Junos® OS

Routing Policies, Firewall Filters, and Traffic Policers Feature Guide

Published
2019-11-22
Understanding and Configuring Junos Routing Policies

Overview | 3

Policy Framework Overview | 3
Routing Policy and Firewall Filters | 4
Reasons to Create a Routing Policy | 4
Router Flows Affected by Policies | 5
Control Points | 8
Policy Components | 9

Comparison of Routing Policies and Firewall Filters | 10

Prefix Prioritization Overview | 15

Accounting of the Policer Overhead Attribute at the Interface Level | 15
Need for Policer Overhead adjustment | 16
Policer Overhead Adjustment Applicability for Policers | 16

Configuring the Accounting of Policer Overhead in Interface Statistics | 18

Understanding Routing Policies | 21
Importing and Exporting Routes | 21
Active and Inactive Routes | 23
Explicitly Configured Routes | 23
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepting Incoming IPv4 Routes by Applying an Address Mask to the Route Address and the Destination Match Prefix</td>
<td>296</td>
</tr>
<tr>
<td>Accepting Incoming IPv4 Routes with Similar Patterns But Different Prefix Lengths</td>
<td>298</td>
</tr>
<tr>
<td>Evaluation of an Address Mask Match Type with Longest-Match Lookup</td>
<td>299</td>
</tr>
<tr>
<td>Understanding Route Filter and Source Address Filter Lists for Use in Routing Policy Match Conditions</td>
<td>300</td>
</tr>
<tr>
<td>Understanding Load Balancing Using Source or Destination IP Only</td>
<td>301</td>
</tr>
<tr>
<td>Configuring Load Balancing Using Source or Destination IP Only</td>
<td>302</td>
</tr>
<tr>
<td>Walkup for Route Filters Overview</td>
<td>304</td>
</tr>
<tr>
<td>Configuring Walkup for Route Filters to Improve Operational Efficiency</td>
<td>308</td>
</tr>
<tr>
<td>Example: Configuring Route Filter Lists</td>
<td>313</td>
</tr>
<tr>
<td>Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency</td>
<td>319</td>
</tr>
<tr>
<td>Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency</td>
<td>326</td>
</tr>
<tr>
<td>Example: Configuring a Route Filter Policy to Specify Priority for Prefixes Learned Through OSPF</td>
<td>333</td>
</tr>
<tr>
<td>Example: Configuring the MED Using Route Filters</td>
<td>338</td>
</tr>
<tr>
<td>Example: Configuring Layer 3 VPN Protocol Family Qualifiers for Route Filters</td>
<td>356</td>
</tr>
<tr>
<td>Understanding Prefix Lists for Use in Routing Policy Match Conditions</td>
<td>360</td>
</tr>
<tr>
<td>Configuring Prefix Lists</td>
<td>361</td>
</tr>
<tr>
<td>How Prefix Lists Are Evaluated in Routing Policy Match Conditions</td>
<td>363</td>
</tr>
<tr>
<td>Configuring Prefix List Filters</td>
<td>363</td>
</tr>
<tr>
<td>Example: Configuring Routing Policy Prefix Lists</td>
<td>364</td>
</tr>
<tr>
<td>Example: Configuring the Priority for Route Prefixes in the RPD Infrastructure</td>
<td>378</td>
</tr>
<tr>
<td>Configuring Priority for Route Prefixes in RPD Infrastructure</td>
<td>390</td>
</tr>
<tr>
<td>Configuring AS Paths as Match Conditions</td>
<td>399</td>
</tr>
<tr>
<td>Understanding AS Path Regular Expressions for Use as Routing Policy Match Conditions</td>
<td>399</td>
</tr>
<tr>
<td>Configuration of AS Path Regular Expressions</td>
<td>400</td>
</tr>
<tr>
<td>Configuring a Null AS Path</td>
<td>404</td>
</tr>
<tr>
<td>How AS Path Regular Expressions Are Evaluated</td>
<td>405</td>
</tr>
<tr>
<td>Examples: Configuring AS Path Regular Expressions</td>
<td>406</td>
</tr>
<tr>
<td>Example: Using AS Path Regular Expressions</td>
<td>407</td>
</tr>
<tr>
<td>Understanding Prepending AS Numbers to BGP AS Paths</td>
<td>420</td>
</tr>
<tr>
<td>Example: Configuring a Routing Policy to Prepend the AS Path</td>
<td>421</td>
</tr>
<tr>
<td>Understanding Adding AS Numbers to BGP AS Paths</td>
<td>425</td>
</tr>
</tbody>
</table>
Example: Advertising Multiple Paths in BGP | 426

Configuring Communities as Match Conditions | 461

Understanding BGP Communities, Extended Communities, and Large Communities as Routing Policy Match Conditions | 461

Understanding How to Define BGP Communities and Extended Communities | 463

 - Defining BGP Communities for Use in Routing Policy Match Conditions | 463
 - Using UNIX Regular Expressions in Community Names | 464
 - Defining BGP Extended Communities for Use in Routing Policy Match Conditions | 467
 - Examples: Defining BGP Extended Communities | 468

How BGP Communities and Extended Communities Are Evaluated in Routing Policy Match Conditions | 469

 - Multiple Matches | 470
 - Inverting Community Matches | 472
 - Extended Community Type | 473
 - Multiple Communities Are Matched with Ex-OR Logic | 474
 - Including BGP Communities and Extended Communities in Routing Policy Match Conditions | 475

Example: Configuring Communities in a Routing Policy | 476

Example: Configuring Extended Communities in a Routing Policy | 494

Example: Configuring BGP Large Communities | 505

Example: Configuring a Routing Policy Based on the Number of BGP Communities | 516

Example: Configuring a Routing Policy That Removes BGP Communities | 526

Increasing Network Stability with BGP Route Flapping Actions | 539

Understanding Damping Parameters | 539

Using Routing Policies to Damp BGP Route Flapping | 540

 - Configuring BGP Flap Damping Parameters | 541
 - Specifying BGP Flap Damping as the Action in Routing Policy Terms | 544
 - Disabling Damping for Specific Address Prefixes | 544
 - Disabling Damping for a Specific Address Prefix | 544
 - Configuring BGP Flap Damping | 545

Example: Configuring BGP Route Flap Damping Parameters | 547

Example: Configuring BGP Route Flap Damping Based on the MBGP MVPN Address Family | 560
Tracking Traffic Usage with Source Class Usage and Destination Class Usage Actions | 575

Understanding Source Class Usage and Destination Class Usage Options | 575

Source Class Usage Overview | 577

Guidelines for Configuring SCU | 578

System Requirements for SCU | 579

Terms and Acronyms for SCU | 580

Roadmap for Configuring SCU | 581

Roadmap for Configuring SCU with Layer 3 VPNs | 581

Configuring Route Filters and Source Classes in a Routing Policy | 582

Applying the Policy to the Forwarding Table | 583

Enabling Accounting on Inbound and Outbound Interfaces | 584

Configuring Input SCU on the vt Interface of the Egress PE Router | 585

Mapping the SCU-Enabled vt Interface to the VRF Instance | 585

Configuring SCU on the Output Interface | 586

Associating an Accounting Profile with SCU Classes | 587

Verifying Your SCU Accounting Profile | 588

SCU Configuration | 589

Configuring SCU | 589

Verifying Your Work | 593

SCU with Layer 3 VPNs Configuration | 600

Configuring SCU in a Layer 3 VPN | 601

Verifying Your Work | 609

Example: Grouping Source and Destination Prefixes into a Forwarding Class | 611

Avoiding Traffic Routing Threats with Conditional Routing Policies | 625

Conditional Advertisement and Import Policy (Routing Table) with certain match conditions | 626

Conditional Advertisement Enabling Conditional Installation of Prefixes Use Cases | 629

Example: Configuring a Routing Policy for Conditional Advertisement Enabling Conditional Installation of Prefixes in a Routing Table | 631

Protecting Against DoS Attacks by Forwarding Traffic to the Discard Interface | 653

Assigning Forwarding Classes and Loss Priority | 654

Understanding Forwarding Packets to the Discard Interface | 655

Example: Forwarding Packets to the Discard Interface | 657
Using Standard Firewall Filters to Affect Local Packets | 724
Trusted Sources | 724
Flood Prevention | 724
Using Standard Firewall Filters to Affect Data Packets | 724
Understanding How Firewall Filters Control Packet Flows | 725
Stateless Firewall Filter Components | 726
Protocol Family | 726
Filter Type | 727
Terms | 729
Match Conditions | 729
Actions | 730
Filter-Terminating Actions | 731
Nonterminating Actions | 731
Flow Control Action | 732
Stateless Firewall Filter Application Points | 733
How Standard Firewall Filters Evaluate Packets | 738
Firewall Filter Packet Evaluation Overview | 739
Packet Evaluation at a Single Firewall Filter | 740
Best Practice: Explicitly Accept Any Traffic That Is Not Specifically Discarded | 741
Best Practice: Explicitly Reject Any Traffic That Is Not Specifically Accepted | 742
Multiple Firewall Filters Attached to a Single Interface | 742
Single Firewall Filter Attached to Multiple Interfaces | 742
Understanding Firewall Filter Fast Lookup Filter | 743
Understanding Egress Firewall Filters with PVLANs | 744
Multifield Classifier for Ingress Queuing on MX Series Routers with MPC | 745
Guidelines for Configuring Firewall Filters | 746
Statement Hierarchy for Configuring Firewall Filters | 747
Firewall Filter Protocol Families | 748
Firewall Filter Names and Options | 748
Firewall Filter Terms | 749
Firewall Filter Match Conditions | 749
Firewall Filter Actions | 751
Guidelines for Applying Standard Firewall Filters | 753

Applying Firewall Filters Overview | 753

Statement Hierarchy for Applying Firewall Filters | 754

Protocol-Independent Firewall Filters on MX Series Routers | 755

All Other Firewall Filters on Logical Interfaces | 755

Restrictions on Applying Firewall Filters | 756

Number of Input and Output Filters Per Logical Interface | 756

MPLS and Layer 2 CCC Firewall Filters in Lists | 756

Layer 2 CCC Firewall Filters on MX Series Routers and EX Series Switches | 756

IPv6 Firewall Filters on PTX Series Packet Transport Routers | 757

Supported Standards for Filtering | 757

Verifying That Firewall Filters Are Operational | 758

Monitoring Firewall Filter Traffic | 759

Monitoring Traffic for All Firewall Filters and Policers That Are Configured | 759

Monitoring Traffic for a Specific Firewall Filter | 760

Monitoring Traffic for a Specific Policier | 760

Troubleshooting Firewall Filters | 761

Troubleshooting QFX10000 Switches | 762

Do Not Combine Match Conditions for Different Layers | 762

Layer 2 Packets Cannot be Discarded with Firewall Filters | 762

Protect-RE (loopback) Firewall Filter Does Not Filter Packets Applied to EM0 Interfaces | 762

Troubleshooting Other Switches | 763

Firewall Filter Configuration Returns a No Space Available in TCAM Message | 763

Filter Counts Previously Dropped Packet | 765

Matching Packets Not Counted | 766

Counter Reset When Editing Filter | 766

Cannot Include loss-priority and policer Actions in Same Term | 767

Cannot Egress Filter Certain Traffic Originating on QFX Switch | 767

Firewall Filter Match Condition Not Working with Q-in-Q Tunneling | 767

Egress Firewall Filters with Private VLANs | 767

Egress Filtering of L2PT Traffic Not Supported | 768

Cannot Drop BGP Packets in Certain Circumstances | 769

Invalid Statistics for Policier | 769
Match Conditions for CCC Firewall Family Filters (ACX Series Routers) | 826

 Match Conditions for CCC Family Firewall Filters | 826

Match Conditions for IPv4 Traffic (ACX Series Routers) | 827
Match Conditions for IPv6 Traffic (ACX Series Routers) | 831
Match Conditions for MPLS Traffic (ACX Series Routers) | 837
Nonterminating Actions (ACX Series Routers) | 838
Terminating Actions (ACX Series Routers) | 842

Firewall Filter Match Conditions for Protocol-Independent Traffic | 843
Firewall Filter Match Conditions for IPv4 Traffic | 845
Firewall Filter Match Conditions for IPv6 Traffic | 861

Firewall Filter Match Conditions Based on Numbers or Text Aliases | 875

 Matching on a Single Numeric Value | 875
 Matching on a Range of Numeric Values | 875
 Matching on a Text Alias for a Numeric Value | 876
 Matching on a List of Numeric Values or Text Aliases | 876

Firewall Filter Match Conditions Based on Bit-Field Values | 876

 Match Conditions for Bit-Field Values | 877
 Match Conditions for Common Bit-Field Values or Combinations | 878
 Logical Operators for Bit-Field Values | 879
 Matching on a Single Bit-Field Value or Text Alias | 880
 Matching on Multiple Bit-Field Values or Text Aliases | 880
 Matching on a Negated Bit-Field Value | 881
 Matching on the Logical OR of Two Bit-Field Values | 881
 Matching on the Logical AND of Two Bit-Field Values | 881
 Grouping Bit-Field Match Conditions | 882

Firewall Filter Match Conditions Based on Address Fields | 882

 Implied Match on the '0/0 except' Address for Firewall Filter Match Conditions Based on Address Fields | 883
 Matching an Address Field to a Subnet Mask or Prefix | 883

 IPv4 Subnet Mask Notation | 883
 Prefix Notation | 883
 Default Prefix Length for IPv4 Addresses | 883
 Default Prefix Length for IPv6 Addresses | 884
 Default Prefix Length for MAC Addresses | 884
Applying Firewall Filters to Routing Engine Traffic | 941

Configuring Logical Units on the Loopback Interface for Routing Instances in Layer 3 VPNs | 941

Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List | 943

Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources | 947

Example: Configuring a Filter to Block Telnet and SSH Access | 954

Example: Configuring a Filter to Block TFTP Access | 961

Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags | 965

Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers | 968

Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods | 976

Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber | 995

Port Number Requirements for DHCP Firewall Filters | 1001

Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine | 1002

Applying Firewall Filters to Transit Traffic | 1009

Example: Configuring a Filter for Use as an Ingress Queuing Filter | 1009

Example: Configuring a Filter to Match on IPv6 Flags | 1012

Example: Configuring a Filter to Match on Port and Protocol Fields | 1014

Example: Configuring a Filter to Count Accepted and Rejected Packets | 1019

Example: Configuring a Filter to Count and Discard IP Options Packets | 1023

Example: Configuring a Filter to Count IP Options Packets | 1028

Example: Configuring a Filter to Count and Sample Accepted Packets | 1034

Example: Configuring a Filter to Set the DSCP Bit to Zero | 1041

Example: Configuring a Filter to Set the DSCP Bit to Zero | 1045

Example: Configuring a Filter to Match on Two Unrelated Criteria | 1049

Example: Configuring a Filter to Accept DHCP Packets Based on Address | 1052

Example: Configuring a Filter to Accept OSPF Packets from a Prefix | 1056

Example: Configuring a Stateless Firewall Filter to Handle Fragments | 1060

Configuring a Firewall Filter to Prevent or Allow IPv4 Packet Fragmentation | 1066

Configuring a Firewall Filter to Discard Ingress IPv6 Packets with a Mobility Extension Header | 1068

Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses | 1069

Example: Configuring a Rate-Limiting Filter Based on Destination Class | 1073
Configuring Firewall Filters in Logical Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filters in Logical Systems Overview</td>
<td>1079</td>
</tr>
<tr>
<td>Logical Systems</td>
<td>1080</td>
</tr>
<tr>
<td>Firewall Filters in Logical Systems</td>
<td>1080</td>
</tr>
<tr>
<td>Identifiers for Firewall Objects in Logical Systems</td>
<td>1080</td>
</tr>
<tr>
<td>Guidelines for Configuring and Applying Firewall Filters in Logical Systems</td>
<td>1080</td>
</tr>
<tr>
<td>Statement Hierarchy for Configuring Firewall Filters in Logical Systems</td>
<td>1081</td>
</tr>
<tr>
<td>Filter Types in Logical Systems</td>
<td>1082</td>
</tr>
<tr>
<td>Firewall Filter Protocol Families in Logical Systems</td>
<td>1082</td>
</tr>
<tr>
<td>Firewall Filter Match Conditions in Logical Systems</td>
<td>1083</td>
</tr>
<tr>
<td>Firewall Filter Actions in Logical Systems</td>
<td>1083</td>
</tr>
<tr>
<td>Statement Hierarchy for Applying Firewall Filters in Logical Systems</td>
<td>1083</td>
</tr>
<tr>
<td>References from a Firewall Filter in a Logical System to Subordinate Objects</td>
<td>1084</td>
</tr>
<tr>
<td>Resolution of References from a Firewall Filter to Subordinate Objects</td>
<td>1084</td>
</tr>
<tr>
<td>Valid Reference from a Firewall Filter to a Subordinate Object</td>
<td>1085</td>
</tr>
<tr>
<td>References from a Firewall Filter in a Logical System to Nonfirewall Objects</td>
<td>1086</td>
</tr>
<tr>
<td>Resolution of References from a Firewall Filter to Nonfirewall Objects</td>
<td>1086</td>
</tr>
<tr>
<td>Valid Reference to a Nonfirewall Object Outside of the Logical System</td>
<td>1086</td>
</tr>
<tr>
<td>References from a Nonfirewall Object in a Logical System to a Firewall Filter</td>
<td>1089</td>
</tr>
<tr>
<td>Resolution of References from a Nonfirewall Object to a Firewall Filter</td>
<td>1089</td>
</tr>
<tr>
<td>Invalid Reference to a Firewall Filter Outside of the Logical System</td>
<td>1090</td>
</tr>
<tr>
<td>Valid Reference to a Firewall Filter Within the Logical System</td>
<td>1092</td>
</tr>
<tr>
<td>Valid Reference to a Firewall Filter Outside of the Logical System</td>
<td>1094</td>
</tr>
<tr>
<td>Example: Configuring Filter-Based Forwarding</td>
<td>1096</td>
</tr>
<tr>
<td>Example: Configuring Filter-Based Forwarding on Logical Systems</td>
<td>1101</td>
</tr>
<tr>
<td>Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods</td>
<td>1114</td>
</tr>
<tr>
<td>Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods</td>
<td>1118</td>
</tr>
<tr>
<td>Unsupported Firewall Filter Statements for Logical Systems</td>
<td>1123</td>
</tr>
<tr>
<td>Unsupported Actions for Firewall Filters in Logical Systems</td>
<td>1125</td>
</tr>
<tr>
<td>Filter-Based Forwarding for Routing Instances</td>
<td>1129</td>
</tr>
<tr>
<td>Forwarding Table Filters for Routing Instances on ACX Series Routers</td>
<td>1130</td>
</tr>
<tr>
<td>Configuring Forwarding Table Filters</td>
<td>1131</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Guidelines for Applying Multiple Firewall Filters as a List</td>
<td>1168</td>
</tr>
<tr>
<td>Statement Hierarchy for Applying Lists of Multiple Firewall Filters</td>
<td>1169</td>
</tr>
<tr>
<td>Filter Input Lists and Output Lists for Router or Switch Interfaces</td>
<td>1169</td>
</tr>
<tr>
<td>Types of Filters Supported in Lists</td>
<td>1170</td>
</tr>
<tr>
<td>Restrictions on Applying Filter Lists for MPLS or Layer 2 CCC Traffic</td>
<td>1170</td>
</tr>
<tr>
<td>Example: Applying Lists of Multiple Firewall Filters</td>
<td>1170</td>
</tr>
<tr>
<td>Example: Nesting References to Multiple Firewall Filters</td>
<td>1177</td>
</tr>
<tr>
<td>Example: Filtering Packets Received on an Interface Set</td>
<td>1182</td>
</tr>
<tr>
<td>Attaching a Single Firewall Filter to Multiple Interfaces</td>
<td>1191</td>
</tr>
<tr>
<td>Interface-Specific Firewall Filter Instances Overview</td>
<td>1191</td>
</tr>
<tr>
<td>Instantiation of Interface-Specific Firewall Filters</td>
<td>1191</td>
</tr>
<tr>
<td>Interface-Specific Names for Firewall Filter Instances</td>
<td>1192</td>
</tr>
<tr>
<td>Interface-Specific Firewall Filter Counters</td>
<td>1193</td>
</tr>
<tr>
<td>Interface-Specific Firewall Filter Policers</td>
<td>1193</td>
</tr>
<tr>
<td>Interface-Specific Firewall Filter Instances Overview</td>
<td>1194</td>
</tr>
<tr>
<td>Instantiation of Interface-Specific Firewall Filters</td>
<td>1194</td>
</tr>
<tr>
<td>Interface-Specific Names for Firewall Filter Instances</td>
<td>1195</td>
</tr>
<tr>
<td>Interface-Specific Firewall Filter Counters</td>
<td>1195</td>
</tr>
<tr>
<td>Interface-Specific Firewall Filter Policers</td>
<td>1196</td>
</tr>
<tr>
<td>Filtering Packets Received on a Set of Interface Groups Overview</td>
<td>1196</td>
</tr>
<tr>
<td>Filtering Packets Received on an Interface Set Overview</td>
<td>1197</td>
</tr>
<tr>
<td>Example: Configuring Interface-Specific Firewall Filter Counters</td>
<td>1198</td>
</tr>
<tr>
<td>Example: Configuring a Stateless Firewall Filter on an Interface Group</td>
<td>1204</td>
</tr>
<tr>
<td>Configuring Filter-Based Tunneling Across IP Networks</td>
<td>1217</td>
</tr>
<tr>
<td>Understanding Filter-Based Tunneling Across IPv4 Networks</td>
<td>1217</td>
</tr>
<tr>
<td>Understanding Filter-Based Tunneling Across IPv4 Networks</td>
<td>1217</td>
</tr>
<tr>
<td>Ingress Firewall Filter on the Ingress PE Router</td>
<td>1218</td>
</tr>
<tr>
<td>Ingress Firewall Filter on the Egress PE Router</td>
<td>1218</td>
</tr>
<tr>
<td>Characteristics of Filter-Based Tunneling Across IPv4 Networks</td>
<td>1218</td>
</tr>
<tr>
<td>Unidirectional Tunneling</td>
<td>1218</td>
</tr>
<tr>
<td>Bidirectional Tunneling</td>
<td>1218</td>
</tr>
<tr>
<td>Transit Traffic Payloads</td>
<td>1218</td>
</tr>
</tbody>
</table>
Service Filter Terms That Do Not Contain Any Actions | 1256
Service Filter Default Action | 1256

Guidelines for Configuring Service Filters | 1257
Statement Hierarchy for Configuring Service Filters | 1257
Service Filter Protocol Families | 1258
Service Filter Names | 1258
Service Filter Terms | 1258
Service Filter Match Conditions | 1258
Service Filter Terminating Actions | 1258

Guidelines for Applying Service Filters | 1259
Restrictions for Adaptive Services Interfaces | 1260
Adaptive Services Interfaces | 1260
System Logging to a Remote Host from M Series Routers | 1260
Statement Hierarchy for Applying Service Filters | 1260
Associating Service Rules with Adaptive Services Interfaces | 1261
Filtering Traffic Before Accepting Packets for Service Processing | 1261
Postservice Filtering of Returning Service Traffic | 1262
Example: Configuring and Applying Service Filters | 1263
Service Filter Match Conditions for IPv4 or IPv6 Traffic | 1269
Service Filter Nonterminating Actions | 1280
Service Filter Terminating Actions | 1281

Configuring Simple Filters | 1283
Simple Filter Overview | 1283
How Simple Filters Evaluate Packets | 1284
Simple Filters That Contain a Single Term | 1284
Simple Filters That Contain Multiple Terms | 1284
Simple Filter Terms That Do Not Contain Any Match Conditions | 1284
Simple Filter Terms That Do Not Contain Any Actions | 1285
Simple Filter Default Action | 1285
Guidelines for Configuring Simple Filters | 1285
Statement Hierarchy for Configuring Simple Filters | 1286
Simple Filter Protocol Families | 1286
Simple Filter Names | 1286
Simple Filter Terms | 1286
Simple Filter Match Conditions | 1287
Simple Filter Terminating Actions | 1289
Simple Filter Nonterminating Actions | 1289
Guidelines for Applying Simple Filters | 1289
Statement Hierarchy for Applying Simple Filters | 1290
Restrictions for Applying Simple Filters | 1290
Example: Configuring and Applying a Simple Filter | 1291

Configuring Layer 2 Firewall Filters | 1299

Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances | 1299
Example: Configuring Filtering of Frames by MAC Address | 1300
Example: Configuring Filtering of Frames by IEEE 802.1p Bits | 1302
Example: Configuring Filtering of Frames by Packet Loss Priority | 1303
Example: Configuring Policing and Marking of Traffic Entering a VPLS Core | 1305
Understanding Firewall Filters on OVSDB-Managed Interfaces | 1308
Example: Applying a Firewall Filter to OVSDB-Managed Interfaces | 1309

Configuring Firewall Filters for Forwarding, Fragments, and Policing | 1313

Filter-Based Forwarding Overview | 1313
 Filters That Classify Packets or Direct Them to Routing Instances | 1313
 Input Filtering to Classify and Forward Packets Within the Router or Switch | 1314
 Output Filtering to Forward Packets to Another Routing Table | 1315
 Restrictions for Applying Filter-Based Forwarding | 1315
Firewall Filters That Handle Fragmented Packets Overview | 1315
Stateless Firewall Filters That Reference Policers Overview | 1316
Example: Configuring Filter-Based Forwarding on the Source Address | 1317
Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1329
 Understanding Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1330
 Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface | 1332
 Example: Configuring Filter-Based Forwarding to a Specific Destination IP Address | 1337
Configuring Firewall Filters (EX2300, EX3400, EX4300 Series Switches) | 1351

Firewall Filters for EX Series Switches Overview | 1352
 Firewall Filter Types | 1352
 Firewall Filter Components | 1353
 Firewall Filter Processing | 1355

Understanding Planning of Firewall Filters | 1355

Understanding Firewall Filter Match Conditions | 1359
 Filter Match Conditions | 1359
 Numeric Filter Match Conditions | 1360
 Interface Filter Match Conditions | 1360
 IP Address Filter Match Conditions | 1361
 MAC Address Filter Match Conditions | 1362
 Bit-Field Filter Match Conditions | 1363

Understanding How Firewall Filters Control Packet Flows | 1365

Understanding How Firewall Filters Are Evaluated | 1366

Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches | 1368

Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
 Firewall Filter Elements | 1370
 Match Conditions Supported on Switches | 1371
 Actions for Firewall Filters | 1379
 Action Modifiers for Firewall Filters | 1380

Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches | 1383
 Firewall Filter Types and Their Bind Points | 1384
 Support for IPv4 and IPv6 Firewall Filters on Switches | 1384
 Platform Support for Match Conditions for IPv4 Traffic | 1385
 Platform Support for Match Conditions for IPv6 Traffic | 1408
 Platform Support for Match Conditions for Non-IP Traffic | 1423
 Platform Support for Actions for IPv4 Traffic | 1424
 Platform Support for Actions for IPv6 Traffic | 1428
 Platform Support for Action Modifiers for IPv4 Traffic | 1431
Understanding Filter-Based Forwarding | 1618

Benefits of Filter-Based Forwarding | 1618

Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1619

Configuring a Firewall Filter to De-Encapsulate GRE Traffic | 1624

 Configuring a Filter to De-Encapsulate GRE Traffic | 1625
 Applying the Filter to an Interface | 1626

Verifying That Firewall Filters Are Operational | 1627

Monitoring Firewall Filter Traffic | 1628

 Monitoring Traffic for All Firewall Filters and Policers That Are Configured on the Switch | 1628
 Monitoring Traffic for a Specific Firewall Filter | 1629
 Monitoring Traffic for a Specific Policier | 1629

Troubleshooting Firewall Filter Configuration | 1630

 Firewall Filter Configuration Returns a No Space Available in TCAM Message | 1631
 Filter Counts Previously Dropped Packet | 1632
 Matching Packets Not Counted | 1633
 Counter Reset When Editing Filter | 1634
 Cannot Include loss-priority and policer Actions in Same Term | 1634
 Cannot Egress Filter Certain Traffic Originating on QFX Switch | 1634
 Firewall Filter Match Condition Not Working with Q-in-Q Tunneling | 1635
 Egress Firewall Filters with Private VLANs | 1635
 Egress Filtering of L2PT Traffic Not Supported | 1636
 Cannot Drop BGP Packets in Certain Circumstances | 1636
 Invalid Statistics for Policier | 1636
 Policers can Limit Egress Filters | 1636

Configuring Firewall Filter Accounting and Logging (EX9200 Switches) | 1639

Example: Configuring Logging for a Stateless Firewall Filter Term | 1639

Using the CLI Editor in Configuration Mode | 1645
Configuring Traffic Policers

Understanding Traffic Policers | 1651

Policer Implementation Overview | 1652

ARP Policer Overview | 1655
 Benefits of the ARP Policer | 1656
 Example: Configuring ARP Policer | 1657

Understanding the Benefits of Policers and Token Bucket Algorithms | 1661
 Scenario 1: Single TCP Connection | 1661
 Scenario 2: Multiple TCP Connections | 1661

Determining Proper Burst Size for Traffic Policers | 1662
 Policer Burst Size Limit Overview | 1662
 Effect of Burst-Size Limit | 1663
 Bursty Traffic Policed Without a Burst-Size Limit | 1663
 Burst-Size Limit Configured to Match Bandwidth Limit and Flow Burstiness | 1664
 Burst-Size Limit That Depletes All Accumulated Tokens | 1664
 Two Methods for Calculating Burst-Size Limit | 1665
 Calculation Based on Interface Bandwidth and Allowable Burst Time | 1665
 Calculation Based on Interface Traffic MTU | 1665
 Comparison of the Two Methods | 1665
 10 x MTU Method for Selecting Initial Burst Size for Gigabit Ethernet with 100 Mbps Bandwidth | 1666
 5 ms Method for Selecting Initial Burst Size for Gigabit Ethernet Interface with 200 Mbps Bandwidth | 1667
 200 Mbps Bandwidth Limit, 5 ms Burst Duration | 1668
 200 Mbps Bandwidth Limit, 600 ms Burst Duration | 1668

Controlling Network Access Using Traffic Policing Overview | 1669
 Congestion Management for IP Traffic Flows | 1669
 Traffic Limits | 1670
 Traffic Color Marking | 1671
 Forwarding Classes and PLP Levels | 1672
 Policer Application to Traffic | 1673
Traffic Policer Types | 1674

Single-Rate Two-Color Policers | 1674

Basic Single-Rate Two-Color Policer | 1674
Bandwidth Policer | 1674
Logical Bandwidth Policer | 1674

Three-Color Policers | 1675

Single-Rate Three-Color Policers | 1675
Two-Rate Three-Color Policers | 1675

Hierarchical Policers | 1675

Two-Color and Three-Color Policier Options | 1676

Logical Interface (Aggregate) Policers | 1676
Physical Interface Policers | 1676
Policers Applied to Layer 2 Traffic | 1677
Multifield Classification | 1677

Order of Policer and Firewall Filter Operations | 1678

Understanding the Frame Length for Policing Packets | 1678

Supported Standards for Policing | 1679

Hierarchical Policer Configuration Overview | 1680

Guidelines for Applying Traffic Policers | 1683

Policer Support for Aggregated Ethernet Interfaces Overview | 1684

Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface | 1685

Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers | 1693

Hierarchical Policier Modes on ACX Series Routers Overview | 1696

Guidelines for Configuring Hierarchical Policier Modes on ACX Series Routers | 1698

Hierarchical Policer Modes on ACX Series Routers | 1699

Guarantee Mode | 1699
Peak Mode | 1701
Hybrid Mode | 1702

Processing of Hierarchical Policers on ACX Series Routers | 1705

Actions Performed for Hierarchical Policers on ACX Series Routers | 1706

Instantiation Methods for Child and Aggregate Policers | 1706
Instantiation Methods for Child Policers or Normal Policers | 1706
Multifield Classification

| Scenario 2: Subnet Prefix Is Longer Than the Prefix in the Filter Match Condition | 1839 |
| Scenario 3: Subnet Prefix Is Shorter Than the Prefix in the Firewall Filter Match Condition | 1840 |

Multifield Classification Overviews

- Forwarding Classes and PLP Levels | 1843
- Multifield Classification and BA Classification | 1843
- Multifield Classification Used In Conjunction with Policers | 1844

Multifield Classification Requirements and Restrictions

- Supported Platforms | 1846
- CoS Tricolor Marking Requirement | 1846
- Restrictions | 1846

Multifield Classification Limitations on M Series Routers

- Problem: Output-Filter Matching on Input-Filter Classification | 1847
- Workaround: Configure All Actions in the Ingress Filter | 1848

Example: Configuring Multifield Classification | 1849

Example: Configuring and Applying a Firewall Filter for a Multifield Classifier | 1858

Policer Overhead to Account for Rate Shaping in the Traffic Manager

- Policer Overhead to Account for Rate Shaping Overview | 1866
- Example: Configuring Policer Overhead to Account for Rate Shaping | 1867

Three-Color Policer Configuration Overview

- Platforms Supported for Three-Color Policers | 1881
- Color Modes for Three-Color Policers | 1882
- Color-Blind Mode | 1882
- Color-Aware Mode | 1882
- Naming Conventions for Three-Color Policers | 1883

Basic Single-Rate Three-Color Policers

- Single-Rate Three-Color Policer Overview | 1885
- Example: Configuring a Single-Rate Three-Color Policer | 1886

Basic Two-Rate Three-Color Policers

- Two-Rate Three-Color Policer Overview | 1893
- Example: Configuring a Two-Rate Three-Color Policer | 1894

Example: Configuring a Two-Rate Three-Color Policer | 1902
Configuring Logical and Physical Interface Traffic Policers at Layer 3 | 1911

Two-Color and Three-Color Logical Interface Policers | 1911
- Logical Interface (Aggregate) Policer Overview | 1911
- Example: Configuring a Two-Color Logical Interface (Aggregate) Policer | 1912
- Example: Configuring a Three-Color Logical Interface (Aggregate) Policer | 1920

Two-Color and Three-Color Physical Interface Policers | 1928
- Physical Interface Policer Overview | 1928
- Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface | 1929

Configuring Policers on Switches | 1939

Overview of Policers | 1940
- Policer Overview | 1940
- Policer Types | 1941
- Policer Actions | 1942
- Policer Colors | 1943
- Filter-Specific Policers | 1943
- Suggested Naming Convention for Policers | 1943
- Policer Counters | 1944
- Policer Algorithms | 1944
- How Many Policers Are Supported? | 1944
- Policers Can Limit Egress Firewall Filters | 1945

Traffic Policier Types | 1946
- Single-Rate Two-Color Policers | 1946
 - Basic Single-Rate Two-Color Policer | 1946
 - Bandwidth Policer | 1947
 - Logical Bandwidth Policer | 1947
- Three-Color Policers | 1947
 - Single-Rate Three-Color Policers | 1947
 - Two-Rate Three-Color Policers | 1947

Two-Color and Three-Color Policer Options | 1948
- Logical Interface (Aggregate) Policers | 1948
- Physical Interface Policers | 1948
- Policers Applied to Layer 2 Traffic | 1949
<table>
<thead>
<tr>
<th>Multifield Classification</th>
<th>1949</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding the Use of Policers in Firewall Filters</td>
<td>1950</td>
</tr>
<tr>
<td>Policers Overview</td>
<td>1950</td>
</tr>
<tr>
<td>Policer Types</td>
<td>1951</td>
</tr>
<tr>
<td>Policer Actions</td>
<td>1951</td>
</tr>
<tr>
<td>Policer Levels</td>
<td>1952</td>
</tr>
<tr>
<td>Color Modes</td>
<td>1953</td>
</tr>
<tr>
<td>Naming Conventions for Policers</td>
<td>1953</td>
</tr>
<tr>
<td>Understanding Tricolor Marking Architecture</td>
<td>1954</td>
</tr>
<tr>
<td>Configuring Policers to Control Traffic Rates (CLI Procedure)</td>
<td>1955</td>
</tr>
<tr>
<td>Configuring Policers</td>
<td>1955</td>
</tr>
<tr>
<td>Specifying Policers in a Firewall Filter Configuration</td>
<td>1957</td>
</tr>
<tr>
<td>Applying a Firewall Filter That Is Configured with a Policer</td>
<td>1957</td>
</tr>
<tr>
<td>Assigning Multifield Classifiers in Firewall Filters to Specify Packet-Forwarding Behavior (CLI Procedure)</td>
<td>1958</td>
</tr>
<tr>
<td>Configuring Tricolor Marking Policers</td>
<td>1960</td>
</tr>
<tr>
<td>Configuring a Tricolor Marking Policer</td>
<td>1960</td>
</tr>
<tr>
<td>Applying Tricolor Marking Policers to Firewall Filters</td>
<td>1961</td>
</tr>
<tr>
<td>Understanding Policers with Link Aggregation Groups</td>
<td>1962</td>
</tr>
<tr>
<td>Understanding Color-Blind Mode for Single-Rate Tricolor Marking</td>
<td>1963</td>
</tr>
<tr>
<td>Understanding Color-Aware Mode for Single-Rate Tricolor Marking</td>
<td>1964</td>
</tr>
<tr>
<td>Summary of PLP Changes</td>
<td>1964</td>
</tr>
<tr>
<td>Effect on Green Packets (Low PLP)</td>
<td>1964</td>
</tr>
<tr>
<td>Effect on Yellow Packets (Medium PLP)</td>
<td>1965</td>
</tr>
<tr>
<td>Effect on Red Packets (High PLP)</td>
<td>1965</td>
</tr>
<tr>
<td>Understanding Color-Blind Mode for Two-Rate Tricolor Marking</td>
<td>1965</td>
</tr>
<tr>
<td>Understanding Color-Aware Mode for Two-Rate Tricolor Marking</td>
<td>1966</td>
</tr>
<tr>
<td>Summary of PLP Changes</td>
<td>1966</td>
</tr>
<tr>
<td>Effect on Green Packets (Low PLP)</td>
<td>1967</td>
</tr>
<tr>
<td>Effect on Yellow Packets (Medium PLP)</td>
<td>1967</td>
</tr>
<tr>
<td>Effect on Red Packets (High PLP)</td>
<td>1968</td>
</tr>
<tr>
<td>Example: Using Two-Color Policers and Prefix Lists</td>
<td>1968</td>
</tr>
<tr>
<td>Example: Using Policers to Manage Oversubscription</td>
<td>1972</td>
</tr>
<tr>
<td>Assigning Forwarding Classes and Loss Priority</td>
<td>1975</td>
</tr>
</tbody>
</table>
Configuring Color-Blind Egress Policers for Medium-Low PLP | 1977
Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
 Configuring Two-Color Policers | 1978
 Configuring Three-Color Policers | 1978
 Specifying Policers in a Firewall Filter Configuration | 1979
 Applying a Firewall Filter That Includes a Policer | 1980
Verifying That Two-Color Policers Are Operational | 1981
Verifying That Three-Color Policers Are Operational | 1981
Troubleshooting Policer Configuration | 1982
 Incomplete Count of Packet Drops | 1982
 Counter Reset When Editing Filter | 1983
 Invalid Statistics for Policer | 1983
 Policers Can Limit Egress Filters | 1983
Troubleshooting Policer Configuration | 1984
 Incomplete Count of Packet Drops | 1985
 Counter Reset When Editing Filter | 1985
 Invalid Statistics for Policer | 1986
 Egress Policers on QFX3500 Devices Might Allow More Throughput Than Is Configured | 1986
 Filter-Specific Egress Policers on QFX3500 Devices Might Allow More Throughput Than Is Configured | 1987
 Policers Can Limit Egress Filters | 1987

Configuration Statements

Routing Policy Configuration Statements | 1991

 address-family | 1993
 aigp-adjust (Policy Action) | 1994
 aigp-originate | 1996
 apply-path | 1998
 arp policer | 1999
 as-path (Policy Options) | 2001
 as-path-group | 2002
 backup-selection (Protocols OSPF or OSPF3) | 2003
 ccc (Routing Policy Condition) | 2005
 community (Policy Options) | 2006
condition | 2009
damping (Policy Options) | 2011
decapsulate (Firewall Filter) | 2013
defaults (Policy Options) | 2015
destination (Protocols OSPF or OSPF3) | 2016
dynamic-db | 2018
eracl-ip6-match (packet-forwarding-options) | 2019
export (Protocols BGP) | 2021
export (Protocols DVMRP) | 2023
export | 2024
export (Protocols LDP) | 2025
export (Protocols MSDP) | 2026
export | 2028
export (Protocols PIM) | 2029
export (Bootstrap) | 2030
export | 2031
export (Protocols RIPng) | 2032
export (Routing Options) | 2033
if-route-exists | 2035
import | 2037
import (Protocols DVMRP) | 2039
import (Protocols LDP) | 2040
import (Protocols MSDP) | 2041
import | 2043
import (Protocols PIM) | 2044
import (Protocols PIM Bootstrap) | 2045
import (Protocols RIP) | 2046
import (Protocols RIPng) | 2047
import | 2048
ingress-queuing-filter | 2049
inet (Routing Policy Condition) | 2050
instance-shared | 2051
interface (Protocols ISIS) | 2052
interface (Protocols OSPF or OSPF3) | 2055
ip-options-protocol-queue | 2059
metric (Policy Action) | 2060
node | 2062
node-tag | 2064
no-walkup | 2066
peer-unit (Routing Policy Condition) | 2067
policy-options | 2068
policy Statement | 2070
prefix-list | 2076
prefix-list-filter | 2078
route-filter | 2079
route-filter-list | 2080
rtf-prefix-list | 2083
source-address-filter-list | 2085
standby (Routing Policy Condition) | 2087
table | 2088
walkup | 2089
priority (policy-options) | 2090

Firewall Filter Configuration Statements | 2093
accounting-profile | 2095
bandwidth-limit | 2096
burst-size-limit | 2097
counter | 2098
enhanced-mode | 2099
destination-address | 2102
destination-port | 2103
direction (forwarding-class-accounting) | 2104
family | 2105
family (Firewall Filter) | 2107
family (Firewall) | 2109
family vpls (Layer 2 Pseudowires) | 2111
fast-lookup-filter | 2112
filter-list-template | 2114
filter (Applying to a Logical Interface) | 2115
filter (Configuring) | 2117
filter (Firewall Filters) | 2119
filter (Layer 2 and Layer 3 Interfaces) | 2120
filter (Layer 3 Interfaces) | 2121
filter (VLANs) | 2122

Firewall Filter Configuration Statements Supported by Junos OS for EX Series Switches | 2123

firewall | 2127
firewall | 2129
firewall | 2131
force-premium (Firewall Filter Action) | 2133
forwarding-class (Firewall Filter Action) | 2134
from | 2135
from | 2136
hierarchical-policer | 2137
if-exceeding | 2140
if-exceeding | 2141
input (Forwarding Table) | 2142
input-chain | 2143
interface-group (Decapsulate GRE) | 2144
interface-set | 2145
interface-shared | 2146
interface-specific (Firewall Filters) | 2147
interface-specific | 2148
interface-specific | 2149
ipv4 (Family MPLS) | 2150
ipv6 (Family MPLS) | 2152
ip-version (Family MPLS) | 2153
ip-version | 2154
output (Forwarding Table) | 2155
output-chain | 2156
packet-format-match | 2157
policer | 2159
promote gre-key | 2161
protocol | 2162
routing-instance | 2163
routing-instance-name (circuit-id) | 2164
scale-optimized | 2165
service-filter (Firewall) | 2167
simple-filter | 2169
source-address | 2171
source-checking | 2172
source-port | 2173
term (Firewall Filter) | 2174
term | 2177
term | 2178
then (Firewall Filters) | 2179
then (Policer Action) | 2180
then (Filters) | 2181
tunnel-end-point | 2183
use-interface-description | 2187

Traffic Policer Configuration Statements | 2189

action | 2192
action | 2193
aggregate (Hierarchical Policer) | 2195
associate-profile | 2197
bandwidth-limit | 2198
bandwidth-limit (Hierarchical Policer) | 2199
bandwidth-limit (Policer) | 2201
bandwidth-percent | 2203
burst-size-limit | 2206
burst-size-limit (Hierarchical Policer) | 2207
burst-size-limit (Policer) | 2209
color-aware | 2211
color-aware | 2213
color-blind | 2214
color-blind | 2215
Operational Commands

Routing Policy Operational Commands | 2307

clear interfaces statistics | 2309
clear policy statistics | 2311
show accounting profile | 2312
show interfaces destination-class | 2318
show interfaces source-class | 2322
show validation session | 2643
show validation statistics | 2647
test policy | 2650

Firewall Filters Operational Commands | 2653

show firewall policer | 2654
show interfaces filters | 2656
show pfe filter hw summary | 2658

Traffic Policer Operational Commands | 2661

clear firewall | 2662
clear firewall | 2665
show firewall | 2667
show firewall | 2678
show firewall filter version | 2683
show firewall log | 2685
show firewall prefix-action-stats | 2689
show interfaces policers | 2692
show policer | 2695
show policer | 2697
Routing policies allow you to control the routing information between the routing protocols and the routing tables and between the routing tables and the forwarding table. All routing protocols use the Junos OS routing tables to store the routes that they learn and to determine which routes they should advertise in their protocol packets. Routing policies also allow you to control which routes the routing protocols store in and retrieve from the routing table.

Firewall filter policies allow you to control packets transiting the router to a network destination and packets destined for and sent by the router. They provide a means of protecting your router from excessive traffic transiting the router to a network destination or destined for the Routing Engine. Firewall filters that control local packets can also protect your router from external incidents such as denial-of-service attacks.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.
Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
   scripts {
   commit {
   file ex-script.xsl;
   }
   }
   }
   interfaces {
   fxp0 {
   disable;
   unit 0 {
   family inet {
   address 10.0.0.1/24;
   }
   }
   }
   }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page xlvi defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td></td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td></td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td></td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xlvi defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>User@host> configure</td>
</tr>
</tbody>
</table>
| **Fixed-width text like this** | Represents output that appears on the terminal screen. | User@host> show chassis alarms
No alarms currently active |
| **Italic text like this** | • Introduces or emphasizes important new terms.
• Identifies guide names.
• Identifies RFC and Internet draft titles. | • A policy term is a named structure that defines match conditions and actions.
• Junos OS CLI User Guide
• RFC 1997, BGP Communities Attribute |
<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>root@# set system domain-name domain-name</td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled CONSOLE.</td>
</tr>
<tr>
<td>< > (angle brackets)</td>
<td>Encloses optional keywords or variables.</td>
<td>stub <default-metric metric>;</td>
</tr>
<tr>
<td></td>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
<tr>
<td># (pound sign)</td>
<td>Indicates a comment specified on the same line as the configuration statement to which it applies.</td>
<td>rsvp [# Required for dynamic MPLS only</td>
</tr>
<tr>
<td>[] (square brackets)</td>
<td>Encloses a variable for which you can substitute one or more values.</td>
<td>community name members [community-ids]</td>
</tr>
<tr>
<td>Indention and braces</td>
<td>Identifies a level in the configuration hierarchy.</td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>routing-options {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>static {</td>
</tr>
<tr>
<td></td>
<td></td>
<td>route default {</td>
</tr>
<tr>
<td>: (semicolon)</td>
<td>Identifies a leaf statement at a configuration hierarchy level.</td>
<td>address;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>retain;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Bold text like this** | Represents graphical user interface (GUI) items you click or select. | • In the Logical Interfaces box, select **All Interfaces**.
• To cancel the configuration, click **Cancel**. |
| > (bold right angle bracket) | Separates levels in a hierarchy of menu selections. | In the configuration editor hierarchy, select **Protocols>Osfp**. |

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- **Online feedback system**—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- **E-mail**—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- **Product warranties**—For product warranty information, visit https://www.juniper.net/support/warranty/.
- **JTAC hours of operation**—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the **Customer Support Center (CSC)** that provides you with the following features:

- **Find CSC offerings**: https://www.juniper.net/customers/support/
- **Search for known bugs**: https://prsearch.juniper.net/
- **Find product documentation**: https://www.juniper.net/documentation/
- **Find solutions and answer questions using our Knowledge Base**: https://kb.juniper.net/
- **Download the latest versions of software and review release notes**: https://www.juniper.net/customers/csc/software/
- **Search technical bulletins for relevant hardware and software notifications**: https://kb.juniper.net/InfoCenter/
- **Join and participate in the Juniper Networks Community Forum**: https://www.juniper.net/company/communities/
- **Create a service request online**: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our **Serial Number Entitlement (SNE) Tool**: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- **Visit** https://myjuniper.juniper.net.
- **Call** 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
PART

Understanding and Configuring Junos Routing Policies

Overview | 3

Evaluating Routing Policies Using Match Conditions, Actions, Terms, and Expressions | 51

Evaluating Complex Cases Using Policy Chains and Subroutines | 235

Configuring Route Filters and Prefix Lists as Match Conditions | 279

Configuring AS Paths as Match Conditions | 399

Configuring Communities as Match Conditions | 461

Increasing Network Stability with BGP Route Flapping Actions | 539

Tracking Traffic Usage with Source Class Usage and Destination Class Usage Actions | 575

Avoiding Traffic Routing Threats with Conditional Routing Policies | 625

Protecting Against DoS Attacks by Forwarding Traffic to the Discard Interface | 653

Improving Commit Times with Dynamic Routing Policies | 671

Testing Before Applying Routing Policies | 697
Overview

IN THIS CHAPTER

- Policy Framework Overview | 3
- Comparison of Routing Policies and Firewall Filters | 10
- Prefix Prioritization Overview | 15
- Accounting of the Policer Overhead Attribute at the Interface Level | 15
- Configuring the Accounting of Policer Overhead in Interface Statistics | 18
- Understanding Routing Policies | 21
- Protocol Support for Import and Export Policies | 24
- Example: Applying Routing Policies at Different Levels of the BGP Hierarchy | 25
- Default Routing Policies | 37
- Example: Configuring a Conditional Default Route Policy | 40

Policy Framework Overview

IN THIS SECTION

- Routing Policy and Firewall Filters | 4
- Reasons to Create a Routing Policy | 4
- Router Flows Affected by Policies | 5
- Control Points | 8
- Policy Components | 9
The Junos® operating system (Junos OS) provides a policy framework, which is a collection of Junos OS policies that allows you to control flows of routing information and packets.

The Junos OS policy architecture is simple and straightforward. However, the actual implementation of each policy adds layers of complexity to the policy as well as adding power and flexibility to your router’s capabilities. Configuring a policy has a major impact on the flow of routing information or packets within and through the router. For example, you can configure a routing policy that does not allow routes associated with a particular customer to be placed in the routing table. As a result of this routing policy, the customer routes are not used to forward data packets to various destinations and the routes are not advertised by the routing protocol to neighbors.

Before configuring a policy, determine what you want to accomplish with it and thoroughly understand how to achieve your goal using the various match conditions and actions. Also, make certain that you understand the default policies and actions for the policy you are configuring.

Routing Policy and Firewall Filters

The policy framework is composed of the following policies:

- Routing policy—Allows you to control the routing information between the routing protocols and the routing tables and between the routing tables and the forwarding table. All routing protocols use the Junos OS routing tables to store the routes that they learn and to determine which routes they should advertise in their protocol packets. Routing policy allows you to control which routes the routing protocols store in and retrieve from the routing table.

- Firewall filter policy—Allows you to control packets transiting the router to a network destination and packets destined for and sent by the router.

NOTE: The term firewall filter policy is used here to emphasize that a firewall filter is a policy and shares some fundamental similarities with a routing policy. However, when referring to a firewall filter policy in the rest of this manual, the term firewall filter is used.

Reasons to Create a Routing Policy

The following are typical circumstances under which you might want to preempt the default routing policies in the routing policy framework by creating your own routing policies:

- You do not want a protocol to import all routes into the routing table. If the routing table does not learn about certain routes, they can never be used to forward packets and they can never be redistributed into other routing protocols.

- You do not want a routing protocol to export all the active routes it learns.
• You want a routing protocol to announce active routes learned from another routing protocol, which is sometimes called **route redistribution**.

• You want to manipulate route characteristics, such as the preference value, AS path, or community. You can manipulate the route characteristics to control which route is selected as the active route to reach a destination. In general, the active route is also advertised to a router's neighbors.

• You want to change the default BGP route flap-damping parameters.

• You want to perform per-packet load balancing.

• You want to enable class of service (CoS).

Router Flows Affected by Policies

The Junos OS policies affect the following router flows:

• Flow of routing information between the routing protocols and the routing tables and between the routing tables and the forwarding table. The Routing Engine handles this flow. **Routing information** is the information about routes learned by the routing protocols from a router’s neighbors. This information is stored in routing tables and is subsequently advertised by the routing protocols to the router’s neighbors. Routing policies allow you to control the flow of this information.

• Flow of data packets in and out of the router’s physical interfaces. The Packet Forwarding Engine handles this flow. **Data packets** are chunks of data that transit the router as they are being forwarded from a source to a destination. When a router receives a data packet on an interface, it determines where to forward the packet by looking in the forwarding table for the best route to a destination. The router then forwards the data packet toward its destination through the appropriate interface. Firewall filters allow you to control the flow of these data packets.

• Flow of local packets from the router’s physical interfaces and to the Routing Engine. The Routing Engine handles this flow. **Local packets** are chunks of data that are destined for or sent by the router. Local packets usually contain routing protocol data, data for IP services such as Telnet or SSH, and data for administrative protocols such as the Internet Control Message Protocol (ICMP). When the Routing Engine receives a local packet, it forwards the packet to the appropriate process or to the kernel, which are both part of the Routing Engine, or to the Packet Forwarding Engine. Firewall filters allow you to control the flow of these local packets.

NOTE: In the rest of this chapter, the term **packets** refers to both data and local packets unless explicitly stated otherwise.

Figure 1 on page 6 illustrates the flows through the router. Although the flows are very different from each other, they are also interdependent. Routing policies determine which routes are placed in the
forwarding table. The forwarding table, in turn, has an integral role in determining the appropriate physical interface through which to forward a packet.

Figure 1: Flows of Routing Information and Packets

You can configure routing policies to control which routes the routing protocols place in the routing tables and to control which routes the routing protocols advertise from the routing tables (see Figure 2 on page 7). The routing protocols advertise active routes only from the routing tables. (An active route is a route that is chosen from all routes in the routing table to reach a destination.)

You can also use routing policies to do the following:

- Change specific route characteristics, which allow you to control which route is selected as the active route to reach a destination. In general, the active route is also advertised to a router's neighbors.
- Change to the default BGP route flap-damping values.
- Perform per-packet load balancing.
- Enable class of service (CoS).
You can configure firewall filters to control the following aspects of packet flow (see Figure 3 on page 8):

- Which data packets are accepted on and transmitted from the physical interfaces. To control the flow of data packets, you apply firewall filters to the physical interfaces.
- Which local packets are transmitted from the physical interfaces and to the Routing Engine. To control local packets, you apply firewall filters on the loopback interface, which is the interface to the Routing Engine.

Firewall filters provide a means of protecting your router from excessive traffic transiting the router to a network destination or destined for the Routing Engine. Firewall filters that control local packets can also protect your router from external incidents such as denial-of-service attacks.
Control Points

All policies provide two points at which you can control routing information or packets through the router (see Figure 4 on page 9). These control points allow you to control the following:

- Routing information before and after it is placed in the routing table.
- Data packets before and after a forwarding table lookup.
- Local packets before and after they are received by the Routing Engine. (Figure 4 on page 9 appears to depict only one control point but because of the bidirectional flow of the local packets, two control points actually exist.)
Because there are two control points, you can configure policies that control the routing information or data packets before and after their interaction with their respective tables, and policies that control local packets before and after their interaction with the Routing Engine. *Import routing policies* control the routing information that is placed in the routing tables, whereas *export routing policies* control the routing information that is advertised from the routing tables. *Input firewall filters* control packets that are received on a router interface, whereas *output firewall filters* control packets that are transmitted from a router interface.

Policy Components

All policies are composed of the following components that you configure:

- *Match conditions*—Criteria against which a route or packets are compared. You can configure one or more criteria. If all criteria match, one or more actions are applied.
- *Actions*—What happens if all criteria match. You can configure one or more actions.
- *Terms*—Named structures in which match conditions and actions are defined. You can define one or more terms.

The policy framework software evaluates each incoming and outgoing route or packet against the match conditions in a term. If the criteria in the match conditions are met, the defined action is taken.

In general, the policy framework software compares the route or packet against the match conditions in the first term in the policy, then goes on to the next term, and so on. Therefore, the order in which you arrange terms in a policy is relevant.

The order of match conditions within a term is not relevant because a route or packet must match all match conditions in a term for an action to be taken.
Comparison of Routing Policies and Firewall Filters

Although routing policies and firewall filters share an architecture, their purposes, implementation, and configuration are different. Table 3 on page 10 describes their purposes. Table 4 on page 10 compares the implementation details for routing policies and firewall filters, highlighting the similarities and differences in their configuration.

Table 3: Purpose of Routing Policies and Firewall Filters

<table>
<thead>
<tr>
<th>Policies</th>
<th>Source</th>
<th>Policy Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing policies</td>
<td>Routing information is generated by internal networking peers.</td>
<td>To control the size and content of the routing tables, which routes are advertised, and which routes are considered the best to reach various destinations.</td>
</tr>
<tr>
<td>Firewall filters</td>
<td>Packets are generated by internal and external devices through which hostile attacks can be perpetrated.</td>
<td>To protect your router and network from excessive incoming traffic or hostile attacks that can disrupt network service, and to control which packets are forwarded from which router interfaces.</td>
</tr>
</tbody>
</table>

Table 4: Implementation Differences Between Routing Policies and Firewall Filters

<table>
<thead>
<tr>
<th>Policy Architecture</th>
<th>Routing Policy Implementation</th>
<th>Firewall Filter Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control points</td>
<td>Control routing information that is placed in the routing table with an import routing policy and advertised from the routing table with an export routing policy.</td>
<td>Control packets that are accepted on a router interface with an input firewall filter and that are forwarded from an interface with an output firewall filter.</td>
</tr>
<tr>
<td>Policy Architecture</td>
<td>Routing Policy Implementation</td>
<td>Firewall Filter Implementation</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Configuration tasks:</td>
<td>Define a policy that contains terms, match conditions, and actions.</td>
<td>Define a policy that contains terms, match conditions, and actions.</td>
</tr>
<tr>
<td>• Define policy</td>
<td>Apply one or more export or import policies to a routing protocol. You can also apply a policy expression, which uses Boolean logical operators with multiple import or export policies. You can also apply one or more export policies to the forwarding table.</td>
<td>Apply one input or output firewall filter to a physical interface or physical interface group to filter data packets received by or forwarded to a physical interface (on routing platforms with an Internet Processor II application-specific integrated circuit [ASIC] only). You can also apply one input or output firewall filter to the routing platform’s loopback interface, which is the interface to the Routing Engine (on all routing platforms). This allows you to filter local packets received by or forwarded from the Routing Engine.</td>
</tr>
<tr>
<td>• Apply policy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Terms | Configure as many terms as desired. Define a name for each term. Terms are evaluated in the order in which you specify them. Evaluation of a policy ends after a packet matches the criteria in a term and the defined or default policy action of accept or reject is taken. The route is not evaluated against subsequent terms in the same policy or subsequent policies. | Configure as many terms as desired. Define a name for each term. Terms are evaluated in the order in which you specify them. Evaluation of a firewall filter ends after a packet matches the criteria in a term and the defined or default action is taken. The packet is not evaluated against subsequent terms in the firewall filter. |
Table 4: Implementation Differences Between Routing Policies and Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Policy Architecture</th>
<th>Routing Policy Implementation</th>
<th>Firewall Filter Implementation</th>
</tr>
</thead>
</table>
| Match conditions | Specify zero or more criteria that a route must match. You can specify criteria based on source, destination, or properties of a route. You can also specify the following match conditions, which require more configuration:
 - Autonomous system (AS) path expression—A combination of AS numbers and regular expression operators.
 - Community—A group of destinations that share a common property.
 - Prefix list—A named list of prefixes.
 - Route list—A list of destination prefixes.
 - Subroutine—A routing policy that is called repeatedly from other routing policies. | Specify zero or more criteria that a packet must match. You must match various fields in the packet’s header. The fields are grouped into the following categories:
 - Numeric values, such as port and protocol numbers.
 - Prefix values, such as IP source and destination prefixes.
 - Bit-field values—Whether particular bits in the fields are set, such as IP options, Transmission Control Protocol (TCP) flags, and IP fragmentation fields. You can specify the fields using Boolean logical operators. |
<table>
<thead>
<tr>
<th>Policy Architecture</th>
<th>Routing Policy Implementation</th>
<th>Firewall Filter Implementation</th>
</tr>
</thead>
</table>
| Actions | Specify zero or one action to take if a route matches all criteria. You can specify the following actions:
 • Accept—Accept the route into the routing table, and propagate it. After this action is taken, the evaluation of subsequent terms and policies ends.
 • Reject—Do not accept the route into the routing table, and do not propagate it. After this action is taken, the evaluation of subsequent terms and policies ends.
 In addition to the preceding actions, you can also specify zero or more of the following types of actions:
 • Next term—Evaluate the next term in the routing policy.
 • Next policy—Evaluate the next routing policy.
 • Actions that manipulate characteristics associated with a route as the routing protocol places it in the routing table or advertises it from the routing table.
 • Trace action, which logs route matches. | Specify zero or one action to take if a packet matches all criteria. (We recommend that you always explicitly configure an action.) You can specify the following actions:
 • Accept—Accept a packet.
 • Discard—Discard a packet silently, without sending an ICMP message.
 • Reject—Discard a packet, and send an ICMP destination unreachable message.
 • Routing instance—Specify a routing table to which packets are forwarded.
 • Next term—Evaluate the next term in the firewall filter.
 NOTE: On Junos OS Evolved, **next term** cannot appear as the last term of the action. A filter term where **next term** is specified as an action but without any match conditions configured is not supported. |
Table 4: Implementation Differences Between Routing Policies and Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Policy Architecture</th>
<th>Routing Policy Implementation</th>
<th>Firewall Filter Implementation</th>
</tr>
</thead>
</table>
| Default policies and actions | If an incoming or outgoing route arrives and a policy related to the route is not explicitly configured, the action specified by the default policy for the associated routing protocol is taken. The following default actions exist for routing policies:
 - If a policy does not specify a match condition, all routes evaluated against the policy match.
 - If a match occurs but the policy does not specify an accept, reject, next term, or next policy action, one of the following occurs:
 - The next term, if present, is evaluated.
 - If no other terms are present, the next policy is evaluated.
 - If no other policies are present, the action specified by the default policy is taken.
 - If a match does not occur with a term in a policy and subsequent terms in the same policy exist, the next term is evaluated.
 - If a match does not occur with any terms in a policy and subsequent policies exist, the next policy is evaluated.
 - If a match does not occur by the end of a policy and no other policies exist, the accept or reject action specified by the default policy is taken. | If an incoming or outgoing packet arrives on an interface and a firewall filter is not configured for the interface, the default policy is taken (the packet is accepted). The following default actions exist for firewall filters:
 - If a firewall filter does not specify a match condition, all packets are considered to match.
 - If a match occurs but the firewall filter does not specify an action, the packet is accepted.
 - If a match occurs, the defined or default action is taken and the evaluation ends. Subsequent terms in the firewall filter are not evaluated, unless the next term action is specified.
 NOTE: On Junos OS Evolved, next term cannot appear as the last term of the action. A filter term where next term is specified as an action but without any match conditions configured is not supported.
 - If a match does not occur with a term in a firewall filter and subsequent terms in the same filter exist, the next term is evaluated.
 - If a match does not occur by the end of a firewall filter, the packet is discarded. |

RELATED DOCUMENTATION

- Policy Framework Overview | 3
- Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
- Understanding the Algorithm Used to Load Balance Traffic on MX Series Routers
Prefix Prioritization Overview

Junos OS routes have a predetermined order for route installation. This is no longer sufficient as it is sometimes required to prioritize certain routes or prefixes over others for better convergence or to provide differentiated services. In a network with a large number of routes, it is sometimes important to control the order in which routes get updated due to a change in the network topology. For example, it would be useful to first update OSPF routes that correspond to an IBGP neighbor, and only then update the rest of the OSPF routes. At a system level, Junos OS implements reasonable defaults based on heuristics to determine the order in which routes get updated. However, the default behavior is not always optimal. Prefix prioritization allows the user to control the order in which the routes get updated from LDP or OSPF to rpdl, and from rpdl to kernel. In Junos OS Release 16.1 and later, you can control the order in which the routes get updated from LDP or OSPF to rpdl, and from rpdl to kernel.

In Junos OS Release 16.1 and later, the Junos OS policy language is extended to let the user set the relative priority high and low for prefixes via the existing protocol import policy. Based on the tagged priority, the routes are placed in different priority queues. Routes that are not explicitly assigned a priority are treated as medium priority. Within the same priority level, routes will continue to be updated in lexicographic order. Prefix prioritization ensures that high priority IGP and LDP routes get updated to the FIB (forwarding table) before medium and low priority routes.

NOTE: There is an upper limit on how many high priority prefixes are allowed in the kernel. Not more than 10,000 high priority prefixes can coexist in the kernel. If this threshold is crossed in the kernel, then any new high priority prefix addition request will be considered as normal priority. This is a "best effort" prioritization scheme and will not be handled if the kernel is highly loaded.

RELATED DOCUMENTATION

Example: Configuring the Priority for Route Prefixes in the RPD Infrastructure | 378
Configuring Priority for Route Prefixes in RPD Infrastructure | 390

Accounting of the Policer Overhead Attribute at the Interface Level

A bandwidth profile (BWP) enforces limits on bandwidth utilization according to the service level specification (SLS) that has been agreed upon by the subscriber and the service provider as part of the service level agreement (SLA). There are two types of bandwidth profiles:
• Ingress Bandwidth Profile
• Egress Bandwidth Profile

Need for Policier Overhead adjustment

The Metro Ethernet Forum (MEF) Carrier Ethernet (CE) 2.0 set of standards has stringent requirements for the bandwidth profile enforcement at the user network interface (UNI). MEF CE 2.0 certification compliance allows only a 2 percent deviation from UNI committed or peak rate across all frame sizes. This means that the policers should take into account the frame size at the UNI interface, including frame checksum and excluding all additional overheads that might be added inside the service provider network (such as S-VLANs). Therefore, this translates into two customer requirements:

- Junos OS egress policers use frame length before output VLAN manipulation. If VLANs are added on output, those extra bytes will not be counted. In order to address MEF CE 2.0 requirements, adjust the length of the packet that is used for policing purposes for Junos egress policers that use frame length before output VLAN manipulation. Therefore, if VLANs are added on output, the extra bytes will not be counted.

- In some network designs, bandwidth profile enforcement is implemented at the Layer 2 (L2) VPN Provider Edge Router and not at the Ethernet access device (EAD) terminating the physical UNI interface. The EAD typically adds an S-VLAN that identifies the port in the access network. The S-VLAN that is added is considered internal to the service provider network and typically should not be taken into account for bandwidth profile enforcement purposes at the Provider Edge device in both ingress and egress directions. This also translates into a requirement to allow adjusting the packet length used for policing purposes on ingress and egress.

In order to address these requirements, **policer-overhead** adjustment is defined on a per logical interface (IFL)/direction granularity, which is the range of -16 bytes to +16 bytes. The **policer-overhead** adjustment is applied for all the policers that take into account Layer 1 (L1) or L2 packet length that are exercised in the specified IFL/direction, including corresponding logical interface family (IFF) feature policers, and is applied only to interface or filter-based policers.

Policer Overhead Adjustment Applicability for Policers

The ingress or egress **policer overhead** adjustment configuration is applicable for the following types of policers on ingress or egress IFL and IFF, respectively:

- L2 two-color and three-color policers.
- IFL-level policers (configured at the IFL or in a filter attached to IFL).
- Family-level policers that use L2 packet length, or policers in filters attached to L2 IFF (family bridge, vpls, ccc).
NOTE: The list is applicable for all types of policers, including regular two-color policers, three-color policers, and hierarchical policers, provided that the policer operates on an L1 or L2 packet length.

Ingress policer overhead adjustment configuration is applied to any policers attached to ingress L2 routing instances.

NOTE: Note that any IFF policer on the L3 family (inet inet6), which considers only L3 packet length, will not consider this adjustment. The **policer overhead** adjustment value (+ve or -ve) is added to the actual L2 packet length to obtain the number of bytes to charge the policer. Therefore, this is used only as an intermediate value, and does not affect actual L2 packet length. This feature is applied before VLAN normalization, and is independent of the **egress-shaping-overhead** or **ingress-shaping-overhead** configuration under class of service.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>policer-overhead-adjustment</th>
<th>2279</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the Accounting of Policer Overhead in Interface Statistics</td>
<td>18</td>
</tr>
</tbody>
</table>
Configuring the Accounting of Policer Overhead in Interface Statistics

The Metro Ethernet Forum (MEF) Carrier Ethernet (CE) 2.0 set of standards has stringent requirements to the bandwidth profile enforcement at the user-to-network interfaces (UNI). MEF CE 2.0 certification compliance allows only a 2 percent deviation from UNI committed or peak rate across all frame sizes. This means that the policers should take into account the frame size at the UNI interface, including frame checksum and excluding all additional overheads that might be added inside the service provider network (such as S-VLANs).

In order to address the MEF CE 2.0 stringent requirements to the bandwidth profile, the policer-overhead adjustment is defined on a per IFL or direction granularity. The policer-overhead adjustment is in the range of -16 bytes to +16 bytes and is applied for all the policers that take into account Layer 1/Layer 2 (L1/L2) packet length in the specified IFL or direction, including corresponding logical interface family (IFF) feature policers.

To configure the policer-overhead:

1. At the [edit interfaces] hierarchy level in configuration mode, create the interface on which to add the policer-overhead to input or output traffic.

```
[edit interfaces]
user@host# edit interfaces interface name
```

For example:

```
[edit interfaces interface name]
user@host# edit xe-0/1/6
```

2. Create the unit on which to add the policer overhead.

```
[edit interfaces unit]
[edit interfaces interface name unit unit-number]
```

For example:

```
[edit interfaces unit]
user@host# edit xe-0/1/6 unit 0
```
3. Configure the policer-overhead for the ingress policer.

```plaintext
[edit interfaces interface name unit unit-number ]
user@host# set policer-overhead ingress value in bytes (-16..+16 bytes)
```

For example:

```plaintext
[edit xe-0/1/6 unit 0]
user@host# set policer-overhead ingress 10;
```

4. Configure the policer-overhead for the egress policer.

```plaintext
user@host# set policer-overhead egress value in bytes (-16..+16 bytes)
```

```plaintext
[edit xe-0/1/6 unit 0]
user@host# set policer-overhead egress 10;
```

5. Verify the configuration.

```plaintext
[edit interfaces]
user@host# show interfaces xe-0/1/6
xe-0/1/6 {
    unit 0 {
        policer-overhead {
            ingress 10;
            egress 10;
        }
    }
}
```

```plaintext
user@host>show interfaces xe-0/1/6
Physical interface: xe-0/1/6, Enabled, Physical link is Up
    Interface index: 161, SNMP ifIndex: 544
    Link-level type: Ethernet, MTU: 1514, MRU: 1522, LAN-PHY mode, Speed: 10Gbps,
    BPDU Error: None, MAC-REWRITE Error: None,
    Loopback: None, Source filtering: Disabled, Flow control: Enabled
    Pad to minimum frame size: Disabled
    Device flags : Present Running
    Interface flags: SNMP-Traps Internal: 0x4000
```
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Schedulers : 0
Current address: 00:23:9c:fc:a8:58, Hardware address: 00:23:9c:fc:a8:58
Last flapped : 2015-09-13 20:12:36 PDT (14:21:57 ago)
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Active alarms : None
Active defects : None

PCS statistics
Bit errors : 0
Errored blocks : 0

Link Degrade:
Link Monitoring : Disable

Interface transmit statistics: Disabled

Logical interface xe-0/1/6.0 (Index 339) (SNMP ifIndex 571)
Flags: Up SNMP-Traps 0x4004000 Encapsulation: ENET2
Policer overhead:
Ingress policer overhead : 10 bytes
Egress policer overhead : 10 bytes
Input packets : 0
Output packets: 0
Protocol multiservice, MTU: Unlimited
Flags: Is-Primary

user@host> show interfaces xe-0/1/6.0
Logical interface xe-0/1/6.0 (Index 339) (SNMP ifIndex 571)
Flags: Up SNMP-Traps 0x4004000 Encapsulation: ENET2
Policer overhead:
Ingress policer overhead : 10 bytes
Egress policer overhead : 10 bytes
Input packets : 0
Output packets: 0
Protocol multiservice, MTU: Unlimited
Flags: Is-Primary

RELATED DOCUMENTATION
Understanding Routing Policies

For some routing platform vendors, the flow of routes occurs between various protocols. If, for example, you want to configure redistribution from RIP to OSPF, the RIP process tells the OSPF process that it has routes that might be included for redistribution. In Junos OS, there is not much direct interaction between the routing protocols. Instead, there are central gathering points where all protocols install their routing information. These are the main unicast routing tables inet.0 and inet6.0.

From these tables, the routing protocols calculate the best route to each destination and place these routes in a forwarding table. These routes are then used to forward routing protocol traffic toward a destination, and they can be advertised to neighbors.

Importing and Exporting Routes

Two terms—*import* and *export*—explain how routes move between the routing protocols and the routing table.

- When the Routing Engine places the routes of a routing protocol into the routing table, it is *importing* routes into the routing table.
- When the Routing Engine uses active routes from the routing table to send a protocol advertisement, it is *exporting* routes from the routing table.
NOTE: The process of moving routes between a routing protocol and the routing table is described always from the point of view of the routing table. That is, routes are imported into a routing table from a routing protocol and they are exported from a routing table to a routing protocol. Remember this distinction when working with routing policies.

As shown in Figure 5 on page 22, you use import routing policies to control which routes are placed in the routing table, and export routing policies to control which routes are advertised from the routing table to neighbors.

Figure 5: Importing and Exporting Routes

In general, the routing protocols place all their routes in the routing table and advertise a limited set of routes from the routing table. The general rules for handling the routing information between the routing protocols and the routing table are known as the routing policy framework.

The routing policy framework is composed of default rules for each routing protocol that determine which routes the protocol places in the routing table and advertises from the routing table. The default rules for each routing protocol are known as default routing policies.

You can create routing policies to preempt the default policies, which are always present. A routing policy allows you to modify the routing policy framework to suit your needs. You can create and implement your own routing policies to do the following:

- Control which routes a routing protocol places in the routing table.
- Control which active routes a routing protocol advertises from the routing table. An active route is a route that is chosen from all routes in the routing table to reach a destination.
- Manipulate the route characteristics as a routing protocol places the route in the routing table or advertises the route from the routing table.
You can manipulate the route characteristics to control which route is selected as the active route to reach a destination. The active route is placed in the forwarding table and is used to forward traffic toward the route's destination. In general, the active route is also advertised to a router’s neighbors.

Active and Inactive Routes

When multiple routes for a destination exist in the routing table, the protocol selects an active route and that route is placed in the appropriate routing table. For equal-cost routes, the Junos OS places multiple next hops in the appropriate routing table.

When a protocol is exporting routes from the routing table, it exports active routes only. This applies to actions specified by both default and user-defined export policies.

When evaluating routes for export, the Routing Engine uses only active routes from the routing table. For example, if a routing table contains multiple routes to the same destination and one route has a preferable metric, only that route is evaluated. In other words, an export policy does not evaluate all routes; it evaluates only those routes that a routing protocol is allowed to advertise to a neighbor.

NOTE: By default, BGP advertises active routes. However, you can configure BGP to advertise *inactive routes*, which go to the same destination as other routes but have less preferable metrics.

Explicitly Configured Routes

An *explicitly configured route* is a route that you have configured. *Direct routes* are not explicitly configured. They are created as a result of IP addresses being configured on an interface. Explicitly configured routes include aggregate, generated, local, and static routes. *(An aggregate route* is a route that distills groups of routes with common addresses into one route. A *generated route* is a route used when the routing table has no information about how to reach a particular destination. A *local route* is an IP address assigned to a router interface. A *static route* is an unchanging route to a destination.)*

The policy framework software treats direct and explicitly configured routes as if they are learned through routing protocols; therefore, they can be imported into the routing table. Routes cannot be exported from the routing table to the pseudoprotocol, because this protocol is not a real routing protocol. However, aggregate, direct, generated, and static routes can be exported from the routing table to routing protocols, whereas local routes cannot.

Dynamic Database

In Junos OS Release 9.5 and later, you can configure routing policies and certain routing policy objects in a dynamic database that is not subject to the same verification required by the standard configuration database. As a result, you can quickly commit these routing policies and policy objects, which can be
referenced and applied in the standard configuration as needed. BGP is the only protocol to which you can apply routing policies that reference policies configured in the dynamic database. After a routing policy based on the dynamic database is configured and committed in the standard configuration, you can quickly make changes to existing routing policies by modifying policy objects in the dynamic database. Because Junos OS does not validate configuration changes to the dynamic database, when you use this feature, you should test and verify all configuration changes before committing them.

RELATED DOCUMENTATION

Example: Configuring Dynamic Routing Policies | 676
Example: Redistributing OSPF Routes into IS-IS

Protocol Support for Import and Export Policies

Table 5: Protocol Support for Import and Export Policies

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Import Policy</th>
<th>Export Policy</th>
<th>Supported Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Yes</td>
<td>Yes</td>
<td>Import: global, group, peer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Export: global, group, peer</td>
</tr>
<tr>
<td>DVMRP</td>
<td>Yes</td>
<td>Yes</td>
<td>Global</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Yes</td>
<td>Yes</td>
<td>Export: global</td>
</tr>
<tr>
<td>LDP</td>
<td>Yes</td>
<td>Yes</td>
<td>Global</td>
</tr>
<tr>
<td>MPLS</td>
<td>No</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>OSPF</td>
<td>Yes</td>
<td>Yes</td>
<td>Export: global</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Import: external routes only</td>
</tr>
<tr>
<td>PIM dense mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Global</td>
</tr>
<tr>
<td>PIM sparse mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Global</td>
</tr>
</tbody>
</table>
Table 5: Protocol Support for Import and Export Policies (continued)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Import Policy</th>
<th>Export Policy</th>
<th>Supported Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoprotocol—Explicitly configured routes, which include the following:</td>
<td>Yes</td>
<td>No</td>
<td>Import: global</td>
</tr>
<tr>
<td>• Aggregate routes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Generated routes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIP and RIPng</td>
<td>Yes</td>
<td>Yes</td>
<td>Import: global, neighbor Export: group</td>
</tr>
</tbody>
</table>

Example: Applying Routing Policies at Different Levels of the BGP Hierarchy

This example shows BGP configured in a simple network topology and explains how routing policies take effect when they are applied at different levels of the BGP configuration.

Requirements

No special configuration beyond device initialization is required before configuring this example.
Overview

For BGP, you can apply policies as follows:

- **BGP global import and export statements**—Include these statements at the [edit protocols bgp] hierarchy level (for routing instances, include these statements at the [edit routing-instances routing-instance-name protocols bgp] hierarchy level).

- **Group import and export statements**—Include these statements at the [edit protocols bgp group group-name] hierarchy level (for routing instances, include these statements at the [edit routing-instances routing-instance-name protocols bgp group group-name] hierarchy level).

- **Peer import and export statements**—Include these statements at the [edit protocols bgp group group-name neighbor address] hierarchy level (for routing instances, include these statements at the [edit routing-instances routing-instance-name protocols bgp group group-name neighbor address] hierarchy level).

A peer-level import or export statement overrides a group import or export statement. A group-level import or export statement overrides a global BGP import or export statement.

In this example, a policy named send-direct is applied at the global level, another policy named send-192.168.0.1 is applied at the group level, and a third policy named send-192.168.20.1 is applied at the neighbor level.

```
user@host# show protocols
bgp {
    local-address 172.16.1.1;
    export send-direct;
    group internal-peers {
        type internal;
        export send-192.168.0.1;
        neighbor 172.16.2.2 {
            export send-192.168.20.1;
        }
        neighbor 172.16.3.3;
    }
    group other-group {
        type internal;
        neighbor 172.16.4.4;
    }
}
```

A key point, and one that is often misunderstood and that can lead to problems, is that in such a configuration, only the most explicit policy is applied. A neighbor-level policy is more explicit than a group-level policy, which in turn is more explicit than a global policy.
The neighbor 172.16.2.2 is subjected only to the send-192.168.20.1 policy. The neighbor 172.16.3.3, lacking anything more specific, is subjected only to the send-192.168.0.1 policy. Meanwhile, neighbor 172.16.4.4 in group other-group has no group or neighbor-level policy, so it uses the send-direct policy.

If you need to have neighbor 172.16.2.2 perform the function of all three policies, you can write and apply a new neighbor-level policy that encompasses the functions of the other three, or you can apply all three existing policies, as a chain, to neighbor 172.16.2.2.

Figure 6 on page 27 shows the sample network.

Figure 6: Applying Routing Policies to BGP

"CLI Quick Configuration" on page 27 shows the configuration for all of the devices in Figure 6 on page 27.

The section "Step-by-Step Procedure" on page 29 describes the steps on Device R1.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces fe-1/2/0 unit 0 description to-R2
set interfaces lo0 unit 0 family inet address 10.10.1.1/30
set protocols bgp local-address 172.16.1.1/32
set protocols bgp export send-direct
```
Device R2

set interfaces fe-1/2/0 unit 0 description to-R1
set interfaces fe-1/2/0 unit 0 family inet address 10.10.10.2/30
set interfaces fe-1/2/1 unit 0 description to-R3
set interfaces fe-1/2/1 unit 0 family inet address 10.10.10.5/30
set interfaces lo0 unit 0 family inet address 172.16.2.2/32
set protocols bgp group internal-peers type internal
set protocols bgp group internal-peers local-address 172.16.2.2
set protocols bgp group internal-peers neighbor 172.16.3.3
set protocols bgp group internal-peers neighbor 172.16.1.1
set protocols bgp group internal-peers neighbor 172.16.4.4
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set policy-options policy-statement send-direct term 1 from protocol static
set policy-options policy-statement send-direct term 1 from route-filter 192.168.0.0/24 or longer
set policy-options policy-statement send-direct term 1 then accept
set policy-options policy-statement send-direct term 1 from protocol static
set policy-options policy-statement send-direct term 1 from route-filter 192.168.20.0/24 or longer
set policy-options policy-statement send-direct term 1 then accept
set routing-options static route 192.168.0.1/32 discard
set routing-options static route 192.168.20.1/32 discard
set routing-options router-id 172.16.1.1
set routing-options autonomous-system 17
Device R3

```plaintext
set interfaces fe-1/2/1 unit 0 description to-R2
set interfaces fe-1/2/1 unit 0 family inet address 10.10.10.6/30
set interfaces fe-1/2/2 unit 0 description to-R4
set interfaces fe-1/2/2 unit 0 family inet address 10.10.10.9/30
set interfaces lo0 unit 0 family inet address 172.16.3.3/32
set protocols bgp group internal-peers type internal
set protocols bgp group internal-peers local-address 172.16.3.3
set protocols bgp group internal-peers neighbor 172.16.2.2
set protocols bgp group internal-peers neighbor 172.16.1.1
set protocols bgp group internal-peers neighbor 172.16.4.4
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set routing-options router-id 172.16.3.3
set routing-options autonomous-system 17
```

Device R4

```plaintext
set interfaces fe-1/2/2 unit 0 description to-R3
set interfaces fe-1/2/2 unit 0 family inet address 10.10.10.10/30
set interfaces lo0 unit 0 family inet address 172.16.4.4/32
set protocols bgp group internal-peers type internal
set protocols bgp group internal-peers local-address 172.16.4.4
set protocols bgp group internal-peers neighbor 172.16.2.2
set protocols bgp group internal-peers neighbor 172.16.1.1
set protocols bgp group internal-peers neighbor 172.16.3.3
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set routing-options router-id 172.16.4.4
set routing-options autonomous-system 17
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure an IS-IS default route policy:

1. Configure the device interfaces.

```
[edit interfaces]
user@R1# set fe-1/2/0 unit 0 description to-R2
user@R1# set fe-1/2/0 unit 0 family inet address 10.10.10.1/30
user@R1# set lo0 unit 0 family inet address 172.16.1.1/32
```

2. Enable OSPF, or another interior gateway protocols (IGP), on the interfaces.

```
[edit protocols OSPF area 0.0.0.0]
user@R1# set interface lo0.0 passive
user@R1# set interface fe-1/2/0.0
```

3. Configure static routes.

```
[edit routing-options]
user@R1# set static route 192.168.0.1/32 discard
user@R1# set static route 192.168.20.1/32 discard
```

4. Enable the routing policies.

```
[edit protocols policy-options]
user@R1# set policy-statement send-direct term 1 from protocol direct
user@R1# set policy-statement send-direct term 1 then accept
user@R1# set policy-statement send-static-192.168.0 term 1 from protocol static
user@R1# set policy-statement send-static-192.168.0 term 1 from route-filter 192.168.0.0/24 orlonger
user@R1# set policy-statement send-static-192.168.0 term 1 then accept
user@R1# set policy-statement send-static-192.168.20 term 1 from protocol static
user@R1# set policy-statement send-static-192.168.20 term 1 from route-filter 192.168.20.0/24 orlonger
user@R1# set policy-statement send-static-192.168.20 term 1 then accept
```

5. Configure BGP and apply the export policies.

```
[edit protocols bgp]
```
6. Configure the router ID and autonomous system (AS) number.

```
[edit routing-options]
user@R1# set router-id 172.16.1.1
user@R1# set autonomous-system 17
```

7. If you are done configuring the device, commit the configuration.

```
[edit]
user@R1# commit
```

Results

From configuration mode, confirm your configuration by issuing the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
fe-1/2/0 {
    unit 0 {
        description to-R2;
        family inet {
            address 10.10.10.1/30;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 172.16.1.1/32;
        }
    }
}
```
user@R1# show protocols
bgp {
 local-address 172.16.1.1;
 export send-direct;
 group internal-peers {
 type internal;
 export send-static-192.168.0;
 neighbor 172.16.2.2 {
 export send-static-192.168.20;
 }
 neighbor 172.16.3.3;
 }
 group other-group {
 type internal;
 neighbor 172.16.4.4;
 }
}
ospf {
 area 0.0.0.0 {
 interface lo0.0 {
 passive;
 }
 interface fe-1/2/0.0;
 }
}

user@R1# show policy-options
policy-statement send-direct {
 term 1 {
 from protocol direct;
 then accept;
 }
}
policy-statement send-static-192.168.0 {
 term 1 {
 from {
 protocol static;
 route-filter 192.168.0.0/24 orlonger;
 }
 then accept;
 }
}
policy-statement send-static-192.168.20 {
 term 1 {
from {
 protocol static;
 route-filter 192.168.20.0/24 or longer;
} then accept;
}

user@R1# show routing-options
static {
 route 192.168.0.1/32 discard;
 route 192.168.20.1/32 discard;
}
router-id 172.16.1.1;
autonomous-system 17;

Verification

IN THIS SECTION

- Verifying BGP Route Learning | 33
- Verifying BGP Route Receiving | 35

Confirm that the configuration is working properly.

Verifying BGP Route Learning

Purpose
Make sure that the BGP export policies are working as expected by checking the routing tables.

Action

user@R1> show route protocol direct

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.1.1/32 *[Direct/0] ld 22:19:47
user@R1> show route protocol static

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 192.168.0.1/32 *[Static/5] 02:20:03
 Discard

 192.168.20.1/32 *[Static/5] 02:20:03
 Discard

user@R2> show route protocol bgp

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 192.168.20.1/32 *[BGP/170] 02:02:40, localpref 100, from 172.16.1.1
 AS path: I, validation-state: unverified
 > to 10.10.10.1 via fe-1/2/0.0

user@R3> show route protocol bgp

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 192.168.0.1/32 *[BGP/170] 02:02:51, localpref 100, from 172.16.1.1
 AS path: I, validation-state: unverified
 > to 10.10.10.5 via fe-1/2/1.0

user@R4> show route protocol bgp

inet.0: 9 destinations, 11 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
Meaning
On Device R1, the `show route protocol direct` command displays two direct routes: 172.16.1.1/32 and 10.10.10.0/30. The `show route protocol static` command displays two static routes: 192.168.0.1/32 and 192.168.20.1/32.

On Device R2, the `show route protocol bgp` command shows that the only route that Device R2 has learned through BGP is the 192.168.20.1/32 route.

On Device R3, the `show route protocol bgp` command shows that the only route that Device R3 has learned through BGP is the 192.168.0.1/32 route.

On Device R4, the `show route protocol bgp` command shows that the only routes that Device R4 has learned through BGP are the 172.16.1.1/32 and 10.10.10.0/30 routes.

Verifying BGP Route Receiving

Purpose
Make sure that the BGP export policies are working as expected by checking the BGP routes received from Device R1.

Action

```
user@R2> show route receive-protocol bgp 172.16.1.1

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
Prefix                       Nexthop            MED  Lclpref   AS path
  * 192.168.20.1/32           172.16.1.1        100  I
```

```
user@R3> show route receive-protocol bgp 172.16.1.1

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
```
user@R4> show route receive-protocol bgp 172.16.1.1

inet.0: 9 destinations, 11 routes (9 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
172.16.1.1/32 172.16.1.1 100 I
10.10.10.0/30 172.16.1.1 100 I

Meaning
On Device R2, the `show route receive-protocol bgp 172.16.1.1` command shows that Device R2 received only one BGP route, 192.168.20.1/32, from Device R1.

On Device R3, the `show route receive-protocol bgp 172.16.1.1` command shows that Device R3 received only one BGP route, 192.168.0.1/32, from Device R1.

On Device R4, the `show route receive-protocol bgp 172.16.1.1` command shows that Device R4 received two BGP routes, 172.16.1.1/32 and 10.10.10.0/30, from Device R1.

In summary, when multiple policies are applied at different CLI hierarchies in BGP, only the most specific application is evaluated, to the exclusion of other, less specific policy applications. Although this point might seem to make sense, it is easily forgotten during router configuration, when you mistakenly believe that a neighbor-level policy is combined with a global or group-level policy, only to find that your policy behavior is not as anticipated.

RELATED DOCUMENTATION

Example: Configuring Policy Chains and Route Filters	237
Example: Configuring a Policy Subroutine	265
Example: Configuring Routing Policy Prefix Lists	364
export	2021
import	2037
Default Routing Policies

If an incoming or outgoing route or packet arrives and there is no explicitly configured policy related to the route or to the interface upon which the packet arrives, the action specified by the default policy is taken. A default policy is a rule or a set of rules that determine whether the route is placed in or advertised from the routing table, or whether the packet is accepted into or transmitted from the router interface.

You must be familiar with the default routing policies to know when you need to modify them to suit your needs. Table 6 on page 37 summarizes the default routing policies for each routing protocol that imports and exports routes. The actions in the default routing policies are taken if you have not explicitly configured a routing policy. This table also shows direct and explicitly configured routes, which for the purposes of this table are considered a pseudoprotocol. Explicitly configured routes include aggregate, generated, and static routes.

Table 6: Default Import and Export Policies for Protocols

<table>
<thead>
<tr>
<th>Importing or Exporting Protocol</th>
<th>Default Import Policy</th>
<th>Default Export Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Accept all received BGP IPv4 routes learned from configured neighbors and import into the inet.0 routing table. Accept all received BGP IPv6 routes learned from configured neighbors and import into the inet6.0 routing table.</td>
<td>Readvertise all active BGP routes to all BGP speakers, while following protocol-specific rules that prohibit one IBGP speaker from readvertising routes learned from another IBGP speaker, unless it is functioning as a route reflector.</td>
</tr>
<tr>
<td>DVMRP</td>
<td>Accept all DVMRP routes and import into the inet.1 routing table.</td>
<td>Accept and export active DVMRP routes.</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Accept all IS-IS routes and import into the inet.0 and inet6.0 routing tables. More information is available here: import (Protocols IS-IS)</td>
<td>Reject everything. (The protocol uses flooding to announce local routes and any learned routes.)</td>
</tr>
<tr>
<td>LDP</td>
<td>Accept all LDP routes and import into the inet.3 routing table.</td>
<td>Reject everything.</td>
</tr>
<tr>
<td>Importing or Exporting Protocol</td>
<td>Default Import Policy</td>
<td>Default Export Policy</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>MPLS</td>
<td>Accept all MPLS routes and import into the inet.3 routing table.</td>
<td>Accept and export active MPLS routes.</td>
</tr>
<tr>
<td>OSPF</td>
<td>Accept all OSPF routes and import into the inet.0 routing table. (You cannot override or change this default policy.)</td>
<td>Reject everything. (The protocol uses flooding to announce local routes and any learned routes.)</td>
</tr>
<tr>
<td>PIM dense mode</td>
<td>Accept all PIM dense mode routes and import into the inet.1 routing table.</td>
<td>Accept active PIM dense mode routes.</td>
</tr>
<tr>
<td>PIM sparse mode</td>
<td>Accept all PIM sparse mode routes and import into the inet.1 routing table.</td>
<td>Accept and export active PIM sparse mode routes.</td>
</tr>
<tr>
<td>Pseudoprotocol:</td>
<td>Accept all direct and explicitly configured routes and import into the inet.0 routing table.</td>
<td>The pseudoprotocol cannot export any routes from the routing table because it is not a routing protocol. Routing protocols can export these or any routes from the routing table.</td>
</tr>
<tr>
<td>• Direct routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explicitly configured routes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Aggregate routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Generated routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Static routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIP</td>
<td>Accept all RIP routes learned from configured neighbors and import into the inet.0 routing table.</td>
<td>Reject everything. To export RIP routes, you must configure an export policy for RIP.</td>
</tr>
<tr>
<td>RIPng</td>
<td>Accept all RIPng routes learned from configured neighbors and import into the inet6.0 routing table.</td>
<td>Reject everything. To export RIPng routes, you must configure an export policy for RIPng.</td>
</tr>
</tbody>
</table>
Table 6: Default Import and Export Policies for Protocols (continued)

<table>
<thead>
<tr>
<th>Importing or Exporting Protocol</th>
<th>Default Import Policy</th>
<th>Default Export Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test policy</td>
<td>Accept all routes. For additional information about test policy, see “Example: Testing a Routing Policy with Complex Regular Expressions” on page 698.</td>
<td></td>
</tr>
</tbody>
</table>

OSPF and IS-IS Import Policies

For OSPF, import policies apply to external routes only. An external route is a route that is outside the OSPF autonomous system (AS). For internal routes (routes learned from OSPF), you cannot change the default import policy for OSPF. As link-state protocols, IS-IS and OSPF exchange routes between systems within an autonomous system (AS). All routers and systems within an AS must share the same link-state database, which includes routes to reachable prefixes and the metrics associated with the prefixes. If an import policy is configured and applied to IS-IS or OSPF, some routes might not be learned or advertised or the metrics for learned routes might be altered, which would make a consistent link-state database impossible.

The default export policy for IS-IS and OSPF protocols is to reject everything. These protocols do not actually export their internally learned routes (the directly connected routes on interfaces that are running the protocol). Both IS-IS and OSPF protocols use a procedure called flooding to announce local routes and any routes learned by the protocol. The flooding procedure is internal to the protocol, and is unaffected by the policy framework. Exporting can be used only to announce information from other protocols, and the default is not to do so.

Automatic Export

For Layer 3 VPNs, the automatic export feature can be configured to overcome the limitation of local prefix leaking and automatically export routes between local VPN routing and forwarding (VRF) routing instances.

In Layer 3 VPNs, multiple CE routers can belong to a single VRF routing instance on a PE router. A PE router can have multiple VRF routing instances. In some cases, shared services might require routes to be written to multiple VRF routing tables, both at the local and remote PE router. This requires the PE router to share route information among each configured VRF routing instance. This exchange of route information is accomplished with custom vrf-export and vrf-import policies that utilize BGP extended community attributes to create hub-and-spoke topologies. This exchange of routing information, such as route prefixes, is known as prefix leaking.

The automatic export feature leaks prefixes between VRF routing instances that are locally configured on a given PE router. The automatic export feature is enabled by using the auto-export statement.
Automatic export is always applied on the local PE router, because it takes care of only local prefix leaking by evaluating the export policy of each VRF and determining which route targets can be leaked locally. The standard VRF import and export policies still affect only the remote PE prefix leaking. If the vrf-export policy examined by the automatic export does not have an explicit then accept action, the automatic export essentially ignores the policy and, therefore, does not leak the route targets specified within it.

RELATED DOCUMENTATION

| Protocol Support for Import and Export Policies | 24 |
| Technology Overview: Understanding the Auto Export Feature |

Example: Configuring a Conditional Default Route Policy

This example shows how to configure a conditional default route on one routing device and redistribute the default route into OSPF.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, OSPF area 0 contains three routing devices. Device R3 has a BGP session with an external peer, for example, an Internet Service Provider (ISP).

To propagate a static route into BGP, this example includes the discard statement when defining the route. The ISP injects a default static route into BGP, which provides the customer network with a default static
route to reach external networks. The static route has a discard next hop. This means that if a packet does not match a more specific route, the packet is rejected and a reject route for this destination is installed in the routing table, but Internet Control Message Protocol (ICMP) unreachable messages are not sent. The discard next hop allows you to originate a summary route, which can be advertised through dynamic routing protocols.

Device R3 exports the default route into OSPF. The route policy on Device R3 is conditional such that if the connection to the ISP goes down, the default route is no longer exported into OSPF because it is no longer active in the routing table. This policy prevents packets from being silently dropped without notification (also known as blackholing).

This example shows the configuration for all of the devices and the step-by-step configuration on Device R3.

Figure 7 on page 41 shows the sample network.

Figure 7: OSPF with a Conditional Default Route to an ISP

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 description R1->R3
set interfaces fe-1/2/0 unit 0 family inet address 10.0.1.2/30
set interfaces fe-1/2/1 unit 2 description R1->R2
```
set interfaces fe-1/2/1 unit 2 family inet address 10.0.0.1/30
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.2

Device R2

set interfaces fe-1/2/0 unit 1 description R2->R1
set interfaces fe-1/2/0 unit 1 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 4 description R2->R3
set interfaces fe-1/2/1 unit 4 family inet address 10.0.2.2/30
set protocols ospf area 0.0.0.0 interface fe-1/2/0.1
set protocols ospf area 0.0.0.0 interface fe-1/2/1.4

Device R3

set interfaces fe-1/2/0 unit 3 description R3->R2
set interfaces fe-1/2/0 unit 3 family inet address 10.0.2.1/30
set interfaces fe-1/2/1 unit 5 description R3->R1
set interfaces fe-1/2/1 unit 5 family inet address 10.0.1.1/30
set interfaces ge-0/0/2 unit 0 description R3->ISP
set interfaces ge-0/0/2 unit 0 family inet address 10.0.45.2/30
set protocols bgp group ext type external
set protocols bgp group ext peer-as 64500
set protocols bgp group ext neighbor 10.0.45.1
set protocols ospf export gendefault
set protocols ospf area 0.0.0.0 interface fe-1/2/1.4
set protocols ospf area 0.0.0.0 interface fe-1/2/0.3
set policy-options policy-statement gendefault term upstreamroutes from protocol bgp
set policy-options policy-statement gendefault term upstreamroutes from as-path upstream
set policy-options policy-statement gendefault term upstreamroutes from route-filter 0.0.0.0/0 upto /16
set policy-options policy-statement gendefault term upstreamroutes then next-hop 10.0.45.1
set policy-options policy-statement gendefault term upstreamroutes then accept
set policy-options policy-statement gendefault term end then reject
set policy-options as-path upstream "^64500 "
set routing-options autonomous-system 64501
Device ISP

```bash
set interfaces ge-0/0/2 unit 0 family inet address 10.0.45.1/30
set protocols bgp group ext type external
set protocols bgp group ext export advertise-default
set protocols bgp group ext peer-as 64501
set protocols bgp group ext neighbor 10.0.45.2
set policy-options policy-statement advertise-default term 1 from route-filter 0.0.0.0/0 exact
set policy-options policy-statement advertise-default term 1 then accept
set routing-options static route 0.0.0.0/0 discard
set routing-options autonomous-system 64500
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R3:

1. Configure the interfaces.

   ```bash
   [edit interfaces]
   user@R3# set fe-1/2/0 unit 3 description R3->R2
   user@R3# set fe-1/2/0 unit 3 family inet address 10.0.2.1/30
   user@R3# set fe-1/2/1 unit 5 description R3->R1
   user@R3# set fe-1/2/1 unit 5 family inet address 10.0.1.1/30
   user@R3# set ge-0/0/2 unit 0 description R3->ISP
   user@R3# set ge-0/0/2 unit 0 family inet address 10.0.45.2/30
   ```

2. Configure the autonomous system (AS) number.

   ```bash
   [edit routing-options]
   user@R3# set autonomous-system 64501
   ```

3. Configure the BGP session with the ISP device.

   ```bash
   [edit protocols bgp group ext]
   user@R3# set type external
   user@R3# set peer-as 64500
   ```
4. Configure OSPF.

 [edit protocols ospf area 0.0.0.0]
 user@R3# set interface fe-1/2/1.4
 user@R3# set interface fe-1/2/0.3

5. Configure the routing policy.

 [edit policy-options policy-statement gendefault]
 user@R3# set term upstreamroutes from protocol bgp
 user@R3# set term upstreamroutes from as-path upstream
 user@R3# set term upstreamroutes from route-filter 0.0.0.0/0 upto /16
 user@R3# set term upstreamroutes then next-hop 10.0.45.1
 user@R3# set term upstreamroutes then accept
 user@R3# set term end then reject
 [edit policy-options]
 user@R3# set as-path upstream "^64500 "

6. Apply the export policy to OSPF.

 [edit protocols ospf]
 user@R3# set export gendefault

7. If you are done configuring the device, commit the configuration.

 [edit]
 user@R3# commit

Results

Confirm your configuration by issuing the show command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

 user@R3# show
 interfaces {

fe-1/2/0 {
 unit 3 {
 description R3->R2;
 family inet {
 address 10.0.2.1/30;
 }
 }
}

fe-1/2/1 {
 unit 5 {
 description R3->R1;
 family inet {
 address 10.0.1.1/30;
 }
 }
}

ge-1/2/0 {
 unit 0 {
 description R3->ISP;
 family inet {
 address 10.0.45.2/30;
 }
 }
}
}

protocols {
 bgp {
 group ext {
 type external;
 peer-as 64500;
 neighbor 10.0.45.1;
 }
 }
 ospf {
 export gendefault;
 area 0.0.0.0 {
 interface fe-1/2/1.4;
 interface fe-1/2/0.3;
 }
 }
}

policy-options {
 policy-statement gendefault {
 term upstreamroutes {
from {
 protocol bgp;
 as-path upstream;
 route-filter 0.0.0.0/0 upto /16;
} then {
 next-hop 10.0.45.1;
 accept;
}
}
 term end {
 then reject;
}
 as-path upstream "^64500 ";
}
 routing-options {
 autonomous-system 64501;
}

Verification

IN THIS SECTION
- Verifying That the Route to the ISP Is Working | 46
- Verifying That the Static Route Is Redistributed | 47
- Testing the Policy Condition | 48

Confirm that the configuration is working properly.

Verifying That the Route to the ISP Is Working

Purpose
Make sure connectivity is established between Device R3 and the ISP’s router.

Action

```
user@R3> ping 10.0.45.1
```
PING 10.0.45.1 (10.0.45.1): 56 data bytes
64 bytes from 10.0.45.1: icmp_seq=0 ttl=64 time=1.185 ms
64 bytes from 10.0.45.1: icmp_seq=1 ttl=64 time=1.199 ms
64 bytes from 10.0.45.1: icmp_seq=2 ttl=64 time=1.186 ms

Meaning
The ping command confirms reachability.

Verifying That the Static Route Is Redistributed

Purpose
Make sure that the BGP policy is redistributing the static route into Device R3’s routing table. Also make sure that the OSPF policy is redistributing the static route into the routing tables of Device R1 and Device R2.

Action

user@R3> show route protocol bgp

inet.0: 9 destinations, 10 routes (9 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 00:00:25, localpref 100
 AS path: 64500 I
 > to 10.0.45.1 via ge-0/0/2.6

user@R1> show route protocol ospf

inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 00:03:58, metric 0, tag 0
 > to 10.0.1.1 via fe-1/2/0.0
10.0.2.0/30 *[OSPF/10] 03:37:45, metric 2
 to 10.0.1.1 via fe-1/2/0.0
 > to 10.0.0.2 via fe-1/2/1.2
Meaning
The routing tables contain the default 0.0.0.0/0 route. If Device R1 and Device R2 receive packets destined for networks not specified in their routing tables, those packets will be sent to Device R3 for further processing. If Device R3 receives packets destined for networks not specified in its routing table, those packets will be sent to the ISP for further processing.

Testing the Policy Condition

Purpose
Deactivate the interface to make sure that the route is removed from the routing tables if the external network becomes unreachable.

Action

user@R3> deactivate interfaces ge-0/0/2 unit 0 family inet address 10.0.45.2/30
user@R3> commit

user@R1> show route protocol ospf

inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.2.0/30 *[OSPF/10] 03:41:48, metric 2
Meaning

The routing tables on Device R1 and Device R2 do not contain the default 0.0.0.0/0 route. This verifies that the default route is no longer present in the OSPF domain. To reactivate the ge-0/0/2.6 interface, issue the `activate interfaces ge-0/0/2 unit 0 family inet address 10.0.45.2/30` configuration mode command.
Evaluating Routing Policies Using Match Conditions, Actions, Terms, and Expressions

IN THIS CHAPTER

- How a Routing Policy Is Evaluated | 51
- Categories of Routing Policy Match Conditions | 52
- Routing Policy Match Conditions | 55
- Route Filter Match Conditions | 67
- Actions in Routing Policy Terms | 69
- Summary of Routing Policy Actions | 84
- Example: Configuring a Routing Policy to Advertise the Best External Route to Internal Peers | 87
- Example: Configuring BGP to Advertise Inactive Routes | 98
- Example: Using Routing Policy to Set a Preference Value for BGP Routes | 107
- Example: Enabling BGP Route Advertisements | 114
- Example: Rejecting Known Invalid Routes | 124
- Example: Using Routing Policy in an ISP Network | 127
- Understanding Policy Expressions | 185
- Understanding Backup Selection Policy for OSPF Protocol | 191
- Configuring Backup Selection Policy for the OSPF Protocol | 193
- Configuring Backup Selection Policy for IS-IS Protocol | 199
- Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 201

How a Routing Policy Is Evaluated

Figure 8 on page 52 shows how a single routing policy is evaluated. This routing policy consists of multiple terms. Each term consists of match conditions and actions to apply to matching routes. Each route is evaluated against the policy as follows:

1. The route is evaluated against the first term. If it matches, the specified action is taken. If the action is to accept or reject the route, that action is taken and the evaluation of the route ends. If the next term
action is specified, if no action is specified, or if the route does not match, the evaluation continues as described in Step 2. If the next policy action is specified, any accept or reject action specified in this term is skipped, all remaining terms in this policy are skipped, all other actions are taken, and the evaluation continues as described in Step 3.

2. The route is evaluated against the second term. If it matches, the specified action is taken. If the action is to accept or reject the route, that action is taken and the evaluation of the route ends. If the next term action is specified, if no action is specified, or if the route does not match, the evaluation continues in a similar manner against the last term. If the next policy action is specified, any accept or reject action specified in this term is skipped, all remaining terms in this policy are skipped, all other actions are taken, and the evaluation continues as described in Step 3.

3. If the route matches no terms in the routing policy or the next policy action is specified, the accept or reject action specified by the default policy is taken. For more information about the default routing policies, see "Default Routing Policies" on page 37.

Figure 8: Routing Policy Evaluation

Categories of Routing Policy Match Conditions

A match condition defines the criteria that a route must match. You can define one or more match conditions. If a route matches all match conditions, one or more actions are applied to the route.

Match conditions fall into two categories: standard and extended. In general, the extended match conditions are more complex than standard match conditions. The extended match conditions provide many powerful
capabilities. The standard match conditions include criteria that are defined within a routing policy and are less complex than the extended match conditions, also called named match conditions.

Extended match conditions are defined separately from the routing policy and are given names. You then reference the name of the match condition in the definition of the routing policy itself.

Named match conditions allow you to do the following:

- Reuse match conditions in other routing policies.
- Read configurations that include complex match conditions more easily.

Named match conditions include communities, prefix lists, and AS path regular expressions.

Table 7 on page 53 describes each match condition, including its category, when you typically use it, and any relevant notes about it. For more information about match conditions, see “Routing Policy Match Conditions” on page 55.

Table 7: Match Condition Concepts

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Category</th>
<th>When to Use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path regular expression—A combination of AS numbers and regular expression operators.</td>
<td>Extended</td>
<td>(BGP only) Match a route based on its AS path. (An AS path consists of the AS numbers of all routers a packet must go through to reach a destination.) You can specify an exact match with a particular AS path or a less precise match.</td>
<td>You use regular expressions to match the AS path.</td>
</tr>
<tr>
<td>Community—A group of destinations that share a property. (Community information is included as a path attribute in BGP update messages.)</td>
<td>Extended</td>
<td>Match a group of destinations that share a property. Use a routing policy to define a community that specifies a group of destinations you want to match and one or more actions that you want taken on this community.</td>
<td>Actions can be performed on the entire group. You can create multiple communities associated with a particular destination. You can create match conditions using regular expressions.</td>
</tr>
<tr>
<td>Prefix list—A named list of IP addresses.</td>
<td>Extended</td>
<td>Match a route based on prefix information. You can specify an exact match of a particular route only.</td>
<td>You can specify a common action only for all prefixes in the list.</td>
</tr>
</tbody>
</table>
Table 7: Match Condition Concepts (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Category</th>
<th>When to Use</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route list—A list of destination prefixes.</td>
<td>Extended</td>
<td>Match a route based on prefix information. You can specify an exact match of a particular route or a less precise match.</td>
<td>You can specify an action for each prefix in the route list or a common action for all prefixes in the route list.</td>
</tr>
<tr>
<td>Standard—A collection of criteria that can match a route.</td>
<td>Standard</td>
<td>Match a route based on one of the following criteria: area ID, color, external route, family, instance (routing), interface name, level number, local preference, metric, neighbor address, next-hop address, origin, preference, protocol, routing table name, or tag. You can specify a match condition for policies based on protocols by naming a protocol from which the route is learned or to which the route is being advertised.</td>
<td>None.</td>
</tr>
<tr>
<td>Subroutine—A routing policy that is called repeatedly from another routing policy.</td>
<td>Extended</td>
<td>Use an effective routing policy in other routing policies. You can create a subroutine that you can call over and over from other routing policies.</td>
<td>The subroutine action influences but does not necessarily determine the final action. For more information, see "How a Routing Policy Subroutine Is Evaluated" on page 263.</td>
</tr>
</tbody>
</table>

Each term can consist of two statements, **from** and **to**, that define match conditions:

- In the **from** statement, you define the criteria that an incoming route must match. You can specify one or more match conditions. If you specify more than one, all conditions must match the route for a match to occur.

- In the **to** statement, you define the criteria that an outgoing route must match. You can specify one or more match conditions. If you specify more than one, all conditions must match the route for a match to occur.

The order of match conditions in a term is not important, because a route must match all match conditions in a term for an action to be taken.
Routing Policy Match Conditions

Each term in a routing policy can include two statements, from and to, to define the conditions that a route must match for the policy to apply:

```
from {
    family family-name;
    match-conditions;
    policy subroutine-policy-name;
    prefix-list name;
    route-filter destination-prefix match-type <actions>;
    source-address-filter source-prefix match-type <actions>;
}
to {
    match-conditions;
    policy subroutine-policy-name;
}
```

In the from statement, you define the criteria that an incoming route must match. You can specify one or more match conditions. If you specify more than one, they all must match the route for a match to occur.

The from statement is optional. If you omit the from, all routes are considered to match. All routes then take the configured actions of the policy term.

In the to statement, you define the criteria that an outgoing route must match. You can specify one or more match conditions. If you specify more than one, they all must match the route for a match to occur. You can specify most of the same match conditions in the to statement that you can in the from statement. In most cases, specifying a match condition in the to statement produces the same result as specifying the same match condition in the from statement.

The to statement is optional. If you omit both the to and the from statements, all routes are considered to match.

Table 8 on page 56 summarizes key routing policy match conditions.
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate-contributor</td>
<td>Matches routes that are contributing to a configured aggregate. This match condition can be used to suppress a contributor in an aggregate route.</td>
</tr>
<tr>
<td>area area-id</td>
<td>Matches a route learned from the specified OSPF area during the exporting of OSPF routes into other protocols.</td>
</tr>
<tr>
<td>as-path name</td>
<td>Matches the name of the path regular expression of an autonomous systems (AS). BGP routes whose AS path matches the regular expression are processed.</td>
</tr>
<tr>
<td>color preference</td>
<td>Matches a color value. You can specify preference values that are finer-grained than those specified in the preference match conditions. The color value can be a number from 0 through 4,294,967,295 ($2^{32} - 1$). A lower number indicates a more preferred route.</td>
</tr>
<tr>
<td>community</td>
<td>Matches the name of one or more communities. If you list more than one name, only one name needs to match for a match to occur. (The matching is effectively a logical OR operation.)</td>
</tr>
<tr>
<td>external [type metric-type]</td>
<td>Matches external OSPF routes, including routes exported from one level to another. In this match condition, type is an optional keyword. The metric-type value can be either 1 or 2. When you do not specify type, this condition matches all external routes.</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>Matches the name or IP address of one or more router interfaces. Use this condition with protocols that are interface-specific. For example, do not use this condition with internal BGP (IBGP). Depending on where the policy is applied, this match condition matches routes learned from or advertised through the specified interface.</td>
</tr>
<tr>
<td>internal</td>
<td>Matches a routing policy against the internal flag for simplified next-hop self policies.</td>
</tr>
<tr>
<td>level level</td>
<td>Matches the IS-IS level. Routes that are from the specified level or are being advertised to the specified level are processed.</td>
</tr>
<tr>
<td>local-preference value</td>
<td>Matches a BGP local preference attribute. The preference value can be from 0 through 4,294,967,295 ($2^{32} - 1$).</td>
</tr>
<tr>
<td>metric metric</td>
<td>Matches a metric value. The metric value corresponds to the multiple exit discriminator (MED), and metric2 corresponds to the IGP metric if the BGP next hop runs back through another route.</td>
</tr>
</tbody>
</table>
Table 8: Summary of Key Routing Policy Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbor address</td>
<td>Matches the address of one or more neighbors (peers). For BGP export policies, the address can be for a directly connected or indirectly connected peer. For all other protocols, the address is for the neighbor from which the advertisement is received.</td>
</tr>
<tr>
<td>next-hop address</td>
<td>Matches the next-hop address or addresses specified in the routing information for a particular route. For BGP routes, matches are performed against each protocol next hop.</td>
</tr>
<tr>
<td>origin value</td>
<td>Matches the BGP origin attribute, which is the origin of the AS path information. The value can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• egp—Path information originated from another AS.</td>
</tr>
<tr>
<td></td>
<td>• igp—Path information originated from within the local AS.</td>
</tr>
<tr>
<td></td>
<td>• incomplete—Path information was learned by some other means.</td>
</tr>
<tr>
<td>preference preference</td>
<td>Matches the preference value. You can specify a primary preference value (preference) and a secondary preference value (preference2). The preference value can be a number from 0 through 4,294,967,295 (2^{32} – 1). A lower number indicates a more preferred route.</td>
</tr>
<tr>
<td>preference2 preference</td>
<td></td>
</tr>
<tr>
<td>protocol protocol</td>
<td>Matches the name of the protocol from which the route was learned or to which the route is being advertised. It can be one of the following: aggregate, bgp, direct, dvmrp, isis, local, ospf, pim-dense, pim-sparse, rip, ripng, or static.</td>
</tr>
<tr>
<td>route-type value</td>
<td>Matches the type of route. The value can be either external or internal.</td>
</tr>
</tbody>
</table>

All conditions in the from and to statements must match for the action to be taken. The match conditions defined in Table 9 on page 58 are effectively a logical AND operation. Matching in prefix lists and route lists is handled differently. They are effectively a logical OR operation. If you configure a policy that includes some combination of route filters, prefix lists, and source address filters, they are evaluated according to a logical OR operation or a longest-route match lookup.

Table 9 on page 58 describes the match conditions available for matching an incoming or outgoing route. The table indicates whether you can use the match condition in both from and to statements and whether the match condition functions the same or differently when used with both statements. If a match condition functions differently in a from statement than in a to statement, or if the condition cannot be used in one type of statement, there is a separate description for each type of statement. Otherwise, the same description applies to both types of statements.
Table 9 on page 58 also indicates whether the match condition is standard or extended. In general, the extended match conditions include criteria that are defined separately from the routing policy (autonomous system [AS] path regular expressions, communities, and prefix lists) and are more complex than standard match conditions. The extended match conditions provide many powerful capabilities. The standard match conditions include criteria that are defined within a routing policy and are less complex than the extended match conditions.

Table 9: Complete List of Routing Policy Match Conditions

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Match Condition Category</th>
<th>from Statement Description</th>
<th>to Statement Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate-contributor</td>
<td>Standard</td>
<td>Match routes that are contributing to a configured aggregate. This match condition can be used to suppress a contributor in an aggregate route.</td>
<td></td>
</tr>
<tr>
<td>area area-id</td>
<td>Standard</td>
<td>(Open Shortest Path First [OSPF] only) Area identifier. In a from statement used with an export policy, match a route learned from the specified OSPF area when exporting OSPF routes into other protocols.</td>
<td></td>
</tr>
<tr>
<td>as-path name</td>
<td>Extended</td>
<td>(Border Gateway Protocol [BGP] only) Name of an AS path regular expression. For more information, see "Understanding AS Path Regular Expressions for Use as Routing Policy Match Conditions" on page 399.</td>
<td></td>
</tr>
<tr>
<td>as-path-group group-name</td>
<td>Extended</td>
<td>(BGP only) Name of an AS path group regular expression. For more information, see "Understanding AS Path Regular Expressions for Use as Routing Policy Match Conditions" on page 399.</td>
<td></td>
</tr>
<tr>
<td>color preference color2 preference</td>
<td>Standard</td>
<td>Color value. You can specify preference values (color and color2) that are finer-grained than those specified in the preference and preference2 match conditions. The color value can be a number in the range from 0 through 4,294,967,295 (2^{32} – 1). A lower number indicates a more preferred route.</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Match Condition Category</td>
<td>from Statement Description</td>
<td>to Statement Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>community-count value (equal</td>
<td>Standard</td>
<td>(BGP only) Number of community entries required for a route to match. The count value can be a number in the range of 0 through 1,024. Specify one of the following options:</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td>orhigher</td>
<td>orlower)</td>
<td>• equal—The number of communities must equal this value to be considered a match.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• orhigher —The number of communities must be greater than or equal to this value to be considered a match.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• orlower—The number of communities must be less than or equal to this value to be considered a match.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: If you configure multiple community-count statements, the matching is effectively a logical AND operation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: The community-count attribute only works with standard communities. It does not work with extended communities.</td>
<td></td>
</tr>
<tr>
<td>community [names]</td>
<td>Extended</td>
<td>Name of one or more communities. If you list more than one name, only one name needs to match for a match to occur (the matching is effectively a logical OR operation). For more information, see “Understanding BGP Communities, Extended Communities, and Large Communities as Routing Policy Match Conditions” on page 461.</td>
<td></td>
</tr>
</tbody>
</table>
Table 9: Complete List of Routing Policy Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Match Condition Category</th>
<th>from Statement Description</th>
<th>to Statement Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>external [type metric-type]</td>
<td>Standard</td>
<td>(OSPF and IS-IS only) Match IGP external routes. For IS-IS routes, the external condition also matches routes that are exported from one IS-IS level to another. The type keyword is optional and is applicable only to OSPF external routes. When you do not specify type, the external condition matches all IGP external (OSPF and IS-IS) routes. When you specify type, the external condition matches only OSPF external routes with the specified OSPF metric type. The metric type can either be 1 or 2. To match BGP external routes, use the route-type match condition.</td>
<td></td>
</tr>
</tbody>
</table>
| family family-name | Standard | Name of an address family. Match the address family of the route. Depending on your device and configuration, family-name can be one of the following:
 - inet—IP version 4 (IPv4) traffic
 - inet-mdt—IPv4 multicast distribution tree (MDT) traffic
 - inet-mvpn—IPv4 multicast virtual private network (MVPN) traffic
 - inet-vpn—IPv4 VPN traffic
 - inet6—IP version 6 (IPv6) traffic
 - inet6-mvpn—IPv6 MVPN traffic
 - inet6-vpn—IPv6 VPN traffic
 - iso—IS-IS traffic
 - route-target—BGP route target filtering routes for VPN traffic
 Default setting is inet. |
<p>| instance instance-name | Standard | Name of one or more routing instances. Match a route learned from one of the specified instances. | Name of one or more routing instances. Match a route to be advertised over one of the specified instances. |
| interface interface-name | Standard | Name or IP address of one or more routing device interfaces. Do not use this qualifier with protocols that are not interface-specific, such as IBGP. Match a route learned from one of the specified interfaces. Direct routes match routes configured on the specified interface. | Name or IP address of one or more routing device interfaces. Do not use this qualifier with protocols that are not interface-specific, such as IBGP. Match a route to be advertised from one of the specified interfaces. |</p>
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Match Condition Category</th>
<th>from Statement Description</th>
<th>to Statement Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>level level</td>
<td>Standard</td>
<td>(Intermediate System-to-Intermediate System [IS-IS only] IS-IS level. Match a route learned from a specified level.</td>
<td>(IS-IS only) IS-IS level. Match a route to be advertised to a specified level.</td>
</tr>
<tr>
<td>local-preference value</td>
<td>Standard</td>
<td>(BGP only) BGP local preference (LOCAL_PREF local-preference (add</td>
<td>subtract) number) attribute. The preference value can be a number in the range 0 through 4,294,967,295 (2^32 – 1).</td>
</tr>
<tr>
<td>metric metric</td>
<td>Standard</td>
<td>Metric value. You can specify up to four metric values, starting with metric (for the first metric value) and continuing with metric2, metric3, and metric4.</td>
<td>(BGP only) metric corresponds to the multiple exit discriminator (MED), and metric2 corresponds to the interior gateway protocol (IGP) metric if the BGP next hop runs back through another route.</td>
</tr>
<tr>
<td>metric2 metric</td>
<td>Standard</td>
<td>Multicast scope value of IPv4 or IPv6 multicast group address. The multicast-scoping name corresponds to an IPv4 prefix. You can match on a specific multicast-scoping prefix or on a range of prefixes. Specify or higher to match on a scope and numerically higher scopes, or or lower to match on a scope and numerically lower scopes. For more information, see the Multicast Protocols Feature Guide. You can apply this scoping policy to the routing table by including the scope-policy statement at the [edit routing-options] hierarchy level. The number value can be any hexadecimal number from 0 through F. The multicast-scoping value is a number from 0 through 15, or one of the following keywords with the associated meanings:</td>
<td></td>
</tr>
<tr>
<td>metric3 metric4 metric</td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multicast scope value of IPv4 or IPv6 multicast group address. The multicast-scoping name corresponds to an IPv4 prefix. You can match on a specific multicast-scoping prefix or on a range of prefixes. Specify or higher to match on a scope and numerically higher scopes, or or lower to match on a scope and numerically lower scopes. For more information, see the Multicast Protocols Feature Guide. You can apply this scoping policy to the routing table by including the scope-policy statement at the [edit routing-options] hierarchy level. The number value can be any hexadecimal number from 0 through F. The multicast-scoping value is a number from 0 through 15, or one of the following keywords with the associated meanings:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Match Condition Category</td>
<td>from Statement Description</td>
<td>to Statement Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>neighbor address</td>
<td>Standard</td>
<td>Address of one or more neighbors (peers).</td>
<td>Address of one or more neighbors (peers).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For BGP, the address can be a directly connected or indirectly connected peer.</td>
<td>For BGP import policies, specifying to neighbor produces the same result as specifying from neighbor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For all other protocols, the address is the neighbor from which the advertisement is received.</td>
<td>For BGP export policies, specifying the neighbor match condition has no effect and is ignored.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: The neighbor address match condition is not valid for the Routing Information Protocol (RIP).</td>
<td>For all other protocols, the to statement matches the neighbor to which the advertisement is sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: The neighbor address match condition is not valid for the Routing Information Protocol (RIP).</td>
<td></td>
</tr>
<tr>
<td>next-hop [addresses]</td>
<td>Standard</td>
<td>One or more next-hop addresses specified in the routing information for a particular route. A next-hop address cannot include a netmask. For BGP routes, matches are performed against each protocol next hop.</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td>next-hop-type merged</td>
<td>Standard</td>
<td>LDP generates a next hop based on RSVP and IP next hops available to use, combined with forwarding-class mapping.</td>
<td></td>
</tr>
<tr>
<td>nlri-route-type</td>
<td>Standard</td>
<td>Route type from NLRI 1 through NLRI 10. Multiple route types can be specified in a single policy.</td>
<td></td>
</tr>
<tr>
<td>origin value</td>
<td>Standard</td>
<td>(BGP only) BGP origin attribute, which is the origin of the AS path information. The value can be one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• egp—Path information originated in another AS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• igp—Path information originated within the local AS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• incomplete—Path information was learned by some other means.</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Match Condition Category</td>
<td>from Statement Description</td>
<td>to Statement Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>policy [policy-name]</td>
<td>Extended</td>
<td>Name of a policy to evaluate as a subroutine.</td>
<td>For information about this extended match condition, see "Understanding Policy Subroutines in Routing Policy Match Conditions" on page 259.</td>
</tr>
<tr>
<td>preference preference preference2 preference</td>
<td>Standard</td>
<td>Preference value. You can specify a primary preference value (preference) and a secondary preference value (preference2). The preference value can be a number from 0 through 4,294,967,295 (2^{32} – 1). A lower number indicates a more preferred route.</td>
<td>To specify even finer-grained preference values, see the color and color2 match conditions in this table.</td>
</tr>
<tr>
<td>prefix-list prefix-list-name ip-addresses</td>
<td>Extended</td>
<td>Named list of IP addresses. You can specify an exact match with incoming routes.</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td>prefix-list-filter prefix-list-name match-type</td>
<td>Extended</td>
<td>Named prefix list. You can specify prefix length qualifiers for the list of prefixes in the prefix list.</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td>protocol protocol</td>
<td>Standard</td>
<td>Name of the protocol from which the route was learned or to which the route is being advertised. It can be one of the following: access, access-internal, aggregate, anchor, arp, bgp, bgp-static, direct, dvmrp, esis, evpn, frr, isis, l2circuit, l2vpn, ldp, local, mpls, msdp, ospf (matches both OSPFv2 and OSPFv3 routes), ospf2 (matches OSPFv2 routes only), ospf3 (matches OSPFv3 routes only), pim, rip, ripng, route-target, rsvp, static, or vpls.</td>
<td></td>
</tr>
</tbody>
</table>
Table 9: Complete List of Routing Policy Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Match Condition Category</th>
<th>from Statement Description</th>
<th>to Statement Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rib routing-table</td>
<td>Standard</td>
<td>Name of a routing table. The value of routing-table can be one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet.0—Unicast IPv4 routes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• instance-name inet.0—Unicast IPv4 routes for a particular routing instance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet.1—Multicast IPv4 routes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet.2—Unicast IPv4 routes for multicast reverse-path forwarding (RPF) lookup</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet.3—MPLS routes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mpls.0—MPLS routes for label-switched path (LSP) next hops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet6.0—Unicast IPv6 routes</td>
<td></td>
</tr>
<tr>
<td>route-filter destination-prefix match-type <actions></td>
<td>Extended</td>
<td>List of destination prefixes. When specifying a destination prefix, you can specify an exact match with a specific route or a less precise match using match types. You can configure either a common action that applies to the entire list or an action associated with each prefix. For more information, see "Understanding Route Filters for Use in Routing Policy Match Conditions" on page 279.</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td>route-type value</td>
<td>Standard</td>
<td>Type of BGP route. The value can be one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• external—External route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• internal—Internal route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To match IGP external routes, use the external match condition.</td>
<td></td>
</tr>
<tr>
<td>rtf-prefix-list name route-targets</td>
<td>Extended</td>
<td>(BGP only) Named list of route target prefixes for BGP route target filtering and proxy BGP route target filtering.</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For information about this extended match condition, see Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs.</td>
<td></td>
</tr>
</tbody>
</table>
Table 9: Complete List of Routing Policy Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Match Condition Category</th>
<th>from Statement Description</th>
<th>to Statement Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-address-filter</td>
<td>Extended</td>
<td>List of multicast source addresses. When specifying a source address, you can specify an exact match with a specific route or a less precise match using match types. You can configure either a common action that applies to the entire list or an action associated with each prefix. For more information, see “Understanding Route Filters for Use in Routing Policy Match Conditions” on page 279.</td>
<td>You cannot specify this match condition.</td>
</tr>
<tr>
<td>destination-prefix match-type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><actions></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>state (active</td>
<td>inactive)</td>
<td>Standard</td>
<td>(BGP export only) Match on the following types of advertised routes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• active—An active BGP route</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inactive—A route advertised to internal BGP peers as the best external path even if the best path is an internal route</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inactive—A route advertised by BGP as the best route even if the routing table did not select it to be an active route</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Match Condition Category</td>
<td>from Statement Description</td>
<td>to Statement Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>tag string tag2 string</td>
<td>Standard</td>
<td>Tag value. You can specify two tag strings: tag (for the first string) and tag2. These values are local to the router and can be set on configured routes or by using an import routing policy. You can specify multiple tags under one match condition by including the tags within a bracketed list. For example: from tag [tag1 tag2 tag3]; For OSPF routes, the tag action sets the 32-bit tag field in OSPF external link-state advertisement (LSA) packets. For IS-IS routes, the tag action sets the 32-bit flag in the IS-IS IP prefix type length values (TLV). OSPF stores the INTERNAL route’s OSPF area ID in the tag2 attribute. However, for EXTERNAL routes, OSPF does not store anything in the tag2 attribute. You can configure a policy term to set the tag2 value for a route. If the route, already has a tag2 value (for example, an OSPF route that stores area id in tag2), then the original tag2 value is overwritten by the new value. When the policy contains the “from area” match condition, for internal OSPF routes, where tag2 is set, based on the OSPF area ID, the evaluation is conducted to compare the tag2 attribute with the area ID. For external OSPF routes that do not have the tag2 attribute set, the match condition fails.</td>
<td></td>
</tr>
<tr>
<td>validation-database</td>
<td>Standard</td>
<td>When BGP origin validation is configured, triggers a lookup in the route validation database to determine if the route prefix is valid, invalid, or unknown. The route validation database contains route origin authorization (ROA) records that map route prefixes to expected originating autonomous systems (AS) sets. This prevents the accidental advertisement of invalid routes. See Configuring Origin Validation for BGP.</td>
<td></td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Understanding Prefix Lists for Use in Routing Policy Match Conditions | 360
- Understanding Route Filters for Use in Routing Policy Match Conditions | 279
Route Filter Match Conditions

When specifying a destination prefix, you can specify an exact match with a specific route, or a less precise match by using match types. You can configure either a common reject action that applies to the entire list, or an action associated with each prefix.

You can specify known invalid ("bad") routes to ignore by specifying matches on destination prefixes. Additionally, you can specify that "good" routes be processed in a particular way. For instance, you can group traffic from specific source or destination addresses into forwarding classes to be processed using the class of service (CoS) feature.

Table 10 on page 67 lists route list match types.

Table 10: Route List Match Types

<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-mask netmask-value</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td></td>
<td>• The bit-wise logical AND of the netmask-value pattern and the incoming IPv4 or IPv6 route address and the bit-wise logical AND of the netmask-value pattern and the destination-prefix address are the same. The bits set in the netmask-value pattern do not need to be contiguous.</td>
</tr>
<tr>
<td></td>
<td>• The prefix-length component of the incoming IPv4 or IPv6 route address and the prefix-length component of the destination-prefix address are the same.</td>
</tr>
</tbody>
</table>

NOTE: The address-mask routing policy match type is valid only for matching an incoming IPv4 (family inet) or IPv6 (family inet6) route address to a list of destination match prefixes specified in a route-filter statement.

The address-mask routing policy match type enables you to match an incoming IPv4 or IPv6 route address on a configured netmask address in addition to the length of a configured destination match prefix. The length of the route address must match exactly with the length of the configured destination match prefix, as the address-mask match type does not support prefix length variations for a range of prefix lengths.

When the longest-match lookup is performed on a route filter, the lookup evaluates an address-mask match type differently from other routing policy match types. The lookup does not consider the length of the destination match prefix. Instead, the lookup considers the number of contiguous high-order bits set in the netmask value.
<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>The route shares the same most-significant bits (described by \textit{prefix-length}), and \textit{prefix-length} is equal to the route's prefix length.</td>
</tr>
<tr>
<td>longer</td>
<td>The route shares the same most-significant bits (described by \textit{prefix-length}), and \textit{prefix-length} is greater than the route's prefix length.</td>
</tr>
<tr>
<td>orlonger</td>
<td>The route shares the same most-significant bits (described by \textit{prefix-length}), and \textit{prefix-length} is equal to or greater than the route's prefix length.</td>
</tr>
<tr>
<td>prefix-length-range \textit{prefix-length2}-\textit{prefix-length3}</td>
<td>The route shares the same most-significant bits (described by \textit{prefix-length}), and the route's prefix length falls between \textit{prefix-length2} and \textit{prefix-length3}, inclusive.</td>
</tr>
<tr>
<td>through \textit{destination-prefix}</td>
<td>All the following are true:</td>
</tr>
<tr>
<td></td>
<td>• The route shares the same most-significant bits (described by \textit{prefix-length}) of the first destination prefix.</td>
</tr>
<tr>
<td></td>
<td>• The route shares the same most-significant bits (described by \textit{prefix-length}) of the second destination prefix for the number of bits in the prefix length.</td>
</tr>
<tr>
<td></td>
<td>• The number of bits in the route's prefix length is less than or equal to the number of bits in the second prefix.</td>
</tr>
<tr>
<td></td>
<td>You do not use the through match type in most routing policy configurations.</td>
</tr>
<tr>
<td>upto \textit{prefix-length2}</td>
<td>The route shares the same most-significant bits (described by \textit{prefix-length}) and the route's prefix length falls between \textit{prefix-length} and \textit{prefix-length2}.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Categories of Routing Policy Match Conditions | 52
- Summary of Routing Policy Actions | 84
- Example: Rejecting Known Invalid Routes | 124
- Example: Grouping Source and Destination Prefixes into a Forwarding Class | 611
Actions in Routing Policy Terms

IN THIS SECTION

- Configuring Flow Control Actions | 70
- Configuring Actions That Manipulate Route Characteristics | 71
- Configuring the Default Action in Routing Policies | 81
- Configuring a Final Action in Routing Policies | 83
- Logging Matches to a Routing Policy Term | 84
- Configuring Separate Actions for Routes in Route Lists | 84

Each term in a routing policy can include a then statement, which defines the actions to take if a route matches all the conditions in the from and to statements in the term:

```plaintext
then {
  actions;
}
```

You can include this statement at the following hierarchy levels:

- [edit policy-options policy-statement policy-name term term-name]
- [edit logical-systems logical-system-name policy-options policy-statement policy-name term term-name]

If a term does not have from and to statements, all routes are considered to match, and the actions apply to them all. For information about the from and to statements, see "Routing Policy Match Conditions" on page 55.

You can specify one or more actions in the then statement. There are three types of actions:

- Flow control actions, which affect whether to accept or reject the route and whether to evaluate the next term or routing policy.
- Actions that manipulate route characteristics.
- Trace action, which logs route matches.
NOTE: When you specify an action that manipulates the route characteristics, the changes occur in a copy of the source route. The source route itself does not change. The effect of the action is visible only after the route is imported into or exported from the routing table. To view the source route before the routing policy has been applied, use the `show route receive-protocol` command. To view a route after an export policy has been applied, use the `show route advertised-protocol` command.

During policy evaluation, the characteristics in the copy of the source route always change immediately after the action is evaluated. However, the route is not copied to the routing table or a routing protocol until the policy evaluation is complete.

The `then` statement is optional. If you omit it, one of the following occurs:

- The next term in the routing policy, if one is present, is evaluated.
- If there are no more terms in the routing policy, the next routing policy, if one is present, is evaluated.
- If there are no more terms or routing policies, the accept or reject action specified by the default policy is taken. For more information, see “Default Routing Policies” on page 37.

The following sections discuss these actions:

Configuring Flow Control Actions

Table 11 on page 70 lists the flow control actions. You can specify one of these actions along with the trace action or one or more of the actions that manipulate route characteristics (see "Configuring Actions That Manipulate Route Characteristics" on page 71).

<table>
<thead>
<tr>
<th>Flow Control Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept the route and propagate it. After a route is accepted, no other terms in the routing policy and no other routing policies are evaluated.</td>
</tr>
<tr>
<td>default-action accept</td>
<td>Accept and override any action intrinsic to the protocol. This is a nonterminating policy action.</td>
</tr>
<tr>
<td>reject</td>
<td>Reject the route and do not propagate it. After a route is rejected, no other terms in the routing policy and no other routing policies are evaluated.</td>
</tr>
<tr>
<td>default-action reject</td>
<td>Reject and override any action intrinsic to the protocol. This is a nonterminating policy action.</td>
</tr>
</tbody>
</table>
Configuring Actions That Manipulate Route Characteristics

You can specify one or more of the actions listed in Table 12 on page 71 to manipulate route characteristics.

Table 12: Actions That Manipulate Route Characteristics

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add-path send-count</td>
<td>(BGP only) Enable sending up to 20 BGP paths to a destination for a subset of add-path advertised prefixes.</td>
</tr>
<tr>
<td>as-path-prepend as-path</td>
<td>(BGP only) Affix one or more AS numbers at the beginning of the AS path. If specifying more than one AS number, enclose the numbers in quotation marks (" "). The AS numbers are added after the local AS number has been added to the path. This action adds AS numbers to AS sequences only, not to AS sets. If the existing AS path begins with a confederation sequence or set, the affixed AS numbers are placed within a confederation sequence. Otherwise, the affixed AS numbers are placed within a nonconfederation sequence. For more information, see "Understanding Prepending AS Numbers to BGP AS Paths" on page 420.</td>
</tr>
</tbody>
</table>

In Junos OS Release 9.1 and later, you can specify 4-byte AS numbers as defined in RFC 4893, BGP Support for Four-octet AS Number Space, as well as the 2-byte AS numbers that are supported in earlier releases of the Junos OS.
Table 12: Actions That Manipulate Route Characteristics (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-path-expand last-as count (n)</td>
<td>(BGP only) Extract the last AS number in the existing AS path and affix that AS number to the beginning of the AS path (n) times, where (n) is a number from 1 through 32. The AS number is added before the local AS number has been added to the path. This action adds AS numbers to AS sequences only, not to AS sets. If the existing AS path begins with a confederation sequence or set, the affixed AS numbers are placed within a confederation sequence. Otherwise, the affixed AS numbers are placed within a non-confederation sequence. This option is typically used in non-IBGP export policies.</td>
</tr>
<tr>
<td>bgp-output-queue-priority</td>
<td>(BGP only) Set the output priority queue used for this route. There are 17 prioritized output queues: an expedited queue that is the highest priority, and 16 numbered queues where 1 is the lowest priority and 16 is the highest.</td>
</tr>
<tr>
<td>class class-name</td>
<td>(Class of service [CoS] only) Apply the specified class-of-service parameters to routes installed into the routing table. For more information, see the Class of Service Feature Guide (Routers and EX9200 Switches).</td>
</tr>
<tr>
<td>color preference color2 preference</td>
<td>Set the preference value to the specified value. The <code>color</code> and <code>color2</code> preference values are even more fine-grained than those specified in the <code>preference</code> and <code>preference2</code> actions. The color value can be a number in the range from 0 through 4,294,967,295 (2^{32} - 1). A lower number indicates a more preferred route. If you set the preference with the <code>color</code> action, the value is internal to Junos OS and is not transitive.</td>
</tr>
<tr>
<td>**color (add</td>
<td>subtract) number color2 (add</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>**community (+</td>
<td>add) [names]**</td>
</tr>
<tr>
<td>**community (-</td>
<td>delete) [names]**</td>
</tr>
<tr>
<td>**community (=</td>
<td>set) [names]**</td>
</tr>
<tr>
<td>cos-next-hop-map map-name</td>
<td>Set CoS-based next-hop map in forwarding table.</td>
</tr>
<tr>
<td>damping name</td>
<td>(BGP only) Apply the specified route-damping parameters to the route. These parameters override the default damping parameters. This action is useful only in an import policy, because the damping parameters affect the state of routes in the routing table. To apply damping parameters, you must enable BGP flap damping as described in the Junos OS Routing Protocols Library, and you must create a named list of parameters as described in "Using Routing Policies to Damp BGP Route Flapping" on page 540.</td>
</tr>
</tbody>
</table>
| **destination-class destination-class-name** | Maintain packet counts for a route passing through your network, based on the destination address in the packet. You can do the following:
 - Configure group destination prefixes by configuring a routing policy.
 - Apply that routing policy to the forwarding table with the corresponding destination class.
 - Enable packet counting on one or more interfaces by including the destination-class-usage statement at the [edit interfaces interface-name unit logical-unit-number family inet accounting] hierarchy level (see the Class of Service Feature Guide (Routers and EX9200 Switches)).
 - View the output by using one of the following commands: show interfaces destination-class (all | destination-class-name logical-interface-name), show interfaces interface-name extensive, or show interfaces interface-name statistics (see the CLI Explorer).
 - To configure a packet count based on the source address, use the source-class statement described in this table. |
<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>external type metric</td>
<td>Set the external metric type for routes exported by OSPF. You must specify the keyword type.</td>
</tr>
<tr>
<td>forwarding-class</td>
<td>Create the forwarding class that includes packets based on both the destination address and the source address in the packet. You can do the following:</td>
</tr>
<tr>
<td>forwarding-class-name</td>
<td>• Configure group prefixes by configuring a routing policy.</td>
</tr>
<tr>
<td></td>
<td>• Apply that routing policy to the forwarding table with the corresponding forwarding class.</td>
</tr>
<tr>
<td></td>
<td>• Enable packet counting on one or more interfaces by using the procedure described in either the destination-class or source-class actions defined in this table.</td>
</tr>
<tr>
<td>install-nexthop <strict> lsp</td>
<td>Choose which next hops, among a set of equal LSP next hops, are installed in the forwarding table. Use the export policy for the forwarding table to specify the LSP next hop to be used for the desired routes. Specify the strict option to enable strict mode, which checks to see if any of the LSP next hops specified in the policy are up. If none of the specified LSP next hops are up, the policy installs the discard next hop.</td>
</tr>
<tr>
<td>lsp-name</td>
<td></td>
</tr>
<tr>
<td>install-to-fib</td>
<td>For PTX Series routers only, override the default BGP routing policy. For more information, see Example: Overriding the Default BGP Routing Policy on PTX Series Packet Transport Routers.</td>
</tr>
<tr>
<td>load-balance consistent-hash</td>
<td>(BGP only) For MX Series routers with modular port concentrators (MPCs) and for QFX10000 switches only, specify consistent load balancing for one or more IP addresses. This feature preserves the affinity of a flow to a path in an equal-cost multipath (ECMP) group when one or more next-hop paths fail. Only flows for paths that are inactive are redirected. Flows mapped to servers that remain active are maintained.</td>
</tr>
<tr>
<td>load-balance destination-ip-only</td>
<td>Calculate load balancing hash based solely on destination IP address. This allows a service provider to direct traffic toward a specific content server in per-subscriber aware environments.</td>
</tr>
<tr>
<td>load-balance per-packet</td>
<td>(For export to the forwarding table only) Install all next-hop addresses in the forwarding table and have the forwarding table perform per-packet load balancing. This policy action allows you to optimize VPLS traffic flows across multiple paths. For more information, see Configuring Per-Packet Load Balancing.</td>
</tr>
<tr>
<td>load-balance per-prefix</td>
<td>For PTX Series routers only, override the default per-packet load balancing routing policy for BGP. For more information, see Example: Overriding the Default BGP Routing Policy on PTX Series Packet Transport Routers.</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>load-balance source-ip-only</td>
<td>Calculate load balancing hash based solely on source IP address. This allows a service provider to direct traffic toward a specific content server in per-subscriber aware environments.</td>
</tr>
<tr>
<td>local-preference value</td>
<td>(BGP only) Set the BGP local preference (LOCAL_PREF) attribute. The preference value can be a number in the range from 0 through 4,294,967,295 ($2^{32} - 1$).</td>
</tr>
<tr>
<td>local-preference (add</td>
<td>subtract) number</td>
</tr>
<tr>
<td>map-to-interface (interface-name</td>
<td>self)</td>
</tr>
<tr>
<td></td>
<td>• A logical interface (for example, ge-0/0/0.0). The logical interface can be any interface that multicast currently supports, including VLAN and aggregated Ethernet interfaces.</td>
</tr>
<tr>
<td></td>
<td>• The keyword self. The self keyword specifies that multicast data packets are sent on the same interface as the control packets and no mapping occurs. If no term matches, then no multicast data packets are sent.</td>
</tr>
<tr>
<td>metric metric metric2 metric metric3 metric4 metric</td>
<td>Set the metric. You can specify up to four metric values, starting with metric (for the first metric value) and continuing with metric2, metric3, and metric4.</td>
</tr>
<tr>
<td></td>
<td>(BGP only) metric corresponds to the MED, and metric2 corresponds to the IGP metric if the BGP next hop loops through another router.</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>**metric (add</td>
<td>subtract) number** metric2 (add</td>
</tr>
<tr>
<td>**metric expression (metric multiplier x offset a</td>
<td>metric2 multiplier y offset b)**</td>
</tr>
<tr>
<td>**metric (igp</td>
<td>minimum-igp) site-offset**</td>
</tr>
</tbody>
</table>
Table 12: Actions That Manipulate Route Characteristics (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>next-hop <code>address</code></td>
<td>discard</td>
</tr>
<tr>
<td>next-table <code>table-name</code></td>
<td></td>
</tr>
<tr>
<td>peer-address</td>
<td>reject</td>
</tr>
</tbody>
</table>
Table 12: Actions That Manipulate Route Characteristics (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the next-hop address. When the advertising protocol is BGP, you can set the next hop only when any third-party next hop can be advertised; that is, when you are using iBGP or eBGP confederations.</td>
<td></td>
</tr>
<tr>
<td>If you specify <code>self</code>, the next-hop address is replaced by one of the local routing device's addresses. The advertising protocol determines which address to use. When the advertising protocol is BGP, this address is set to the local IP address used for the BGP adjacency. A routing device cannot install routes with itself as the next hop.</td>
<td></td>
</tr>
<tr>
<td>If you specify <code>peer-address</code>, the next-hop address is replaced by the peer's IP address. This option is valid only in import policies. Primarily used by BGP to enforce using the peer's IP address for advertised routes, this option is meaningful only when the next hop is the advertising routing device or another directly connected routing device.</td>
<td></td>
</tr>
<tr>
<td>If you specify <code>discard</code>, the next-hop address is replaced by a discard next hop.</td>
<td></td>
</tr>
<tr>
<td>If you specify <code>next-table</code>, the routing device performs a forwarding lookup in the specified table.</td>
<td></td>
</tr>
<tr>
<td>If you use the <code>next-table</code> action, the configuration must include a term qualifier that specifies a different table than the one specified in the <code>next-table</code> action. In other words, the term qualifier in the <code>from</code> statement must exclude the table in the <code>next-table</code> action. In the following example, the first term contains <code>rib vrf-customer2.inet.0</code> as a matching condition. The action specifies a next-hop in a different routing table, <code>vrf-customer1.inet.0</code>. The second term does the opposite by using <code>rib vrf-customer1.inet.0</code> in the match condition and <code>vrf-customer2.inet.0</code> in the <code>next-table</code> action.</td>
<td></td>
</tr>
</tbody>
</table>

```bash
term 1 {
  from {
    protocol bgp;
    rib vrf-customer2.inet.0;
    community customer;
  }
  then {
    next-hop next-table vrf-customer1.inet.0;
  }
}
term 2 {
  from {
    protocol bgp;
    rib vrf-customer1.inet.0;
  }
  }
```
Table 12: Actions That Manipulate Route Characteristics *(continued)*

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>community customer;</td>
<td>If you specify reject, the next-hop address is replaced by a reject next hop.</td>
</tr>
<tr>
<td>then {</td>
<td></td>
</tr>
<tr>
<td>next-hop next-table vrf-customer2.inet.0;</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>

origin value

(BGP only) Set the BGP origin attribute to one of the following values:

- *igp*—Path information originated within the local AS.
- *egp*—Path information originated in another AS.
- *incomplete*—Path information learned by some other means.

p2mp-lsp-root

Set the ingress root node for a multipoint LDP (M-LDP)-based point-to-multipoint label-switched path (LSP). For more information, see Example: Configuring Multipoint LDP In-Band Signaling for Point-to-Multipoint LSPs.

preference preference preference2 preference

Set the preference value. You can specify a primary preference value (*preference*) and a secondary preference value (*preference2*). The preference value can be a number in the range from 0 through 4,294,967,295 ($2^{32} – 1$). A lower number indicates a more preferred route. When you use an import policy to set the value of *preference2* to the highest allowed value of 4,294,967,295, Junos OS resets this value to -1. If you set *preference2* to a number greater than ($2^{31} – 1$), it is reset to a negative value.

To specify even finer-grained preference values, see the *color* and *color2* actions in this table.

If you set the preference with the *preference* action, the new preference remains associated with the route. The new preference is internal to the Junos OS and is not transitive.

preference (add | subtract) number preference2 (add | subtract) number

Change the preference value by the specified amount. If an addition operation results in a value that is greater than 4,294,967,295 ($2^{32} – 1$), the value is set to $2^{32} – 1$. If a subtraction operation results in a value less than 0, the value is set to 0. If an attribute value is not already set at the time of the addition or subtraction operation, the attribute value defaults to a value of 0 regardless of the amount specified. If you perform an addition to an attribute with a value of 0, the number you add becomes the resulting attribute value.
Table 12: Actions That Manipulate Route Characteristics (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>priority (low</td>
<td>medium</td>
</tr>
</tbody>
</table>
| **source-class** source-class-name | Maintain packet counts for a route passing through your network, based on the source address. You can do the following:
 - Configure group source prefixes by configuring a routing policy.
 - Apply that routing policy to the forwarding table with the corresponding source class.
 - Enable packet counting on one or more interfaces by including the source-class-usage interface-name statement at the [edit interfaces logical-unit-number unit family inet accounting] hierarchy level. Also, follow the source-class-usage statement with the input or output statement to define the inbound and outbound interfaces on which traffic monitored for source-class usage (SCU) is arriving and departing (or define one interface for both). The complete syntax is [edit interfaces interface-name unit family inet accounting source-class-usage (input | output | input output) unit-number].
 - View the output by using one of the following commands: show interfaces interface-name source-class source-class-name, show interfaces interface-name extensive, or show interfaces interface-name statistics (see the CLI Explorer).
 - To configure a packet count based on the destination address, use the destination-class statement described in this table.
 - For a detailed source-class usage example configuration, see the "Example: Grouping Source and Destination Prefixes into a Forwarding Class" on page 611. **NOTE:** When configuring policy action statements, you can configure only one source class for each matching route. In other words, more than one source class cannot be applied to the same route. |
| ssm-source [addresses]; | Specify one or more IPv4 or IPv6 source addresses for the source-specific multicast (SSM) policy |
| ssm-source [addresses]; | Specify one or more IPv4 or IPv6 source addresses for the source-specific multicast (SSM) policy. |
Table 12: Actions That Manipulate Route Characteristics (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tag tag2 tag</code></td>
<td>Set the tag value. You can specify two tag strings: <code>tag</code> (for the first string) and <code>tag2</code> (a second string). These values are local to the router.</td>
</tr>
<tr>
<td></td>
<td>• For OSPF routes the <code>tag</code> action sets the 32-bit tag field in OSPF external link-state advertisement (LSA) packets.</td>
</tr>
<tr>
<td></td>
<td>• For IS-IS routes, the <code>tag</code> action sets the 32-bit flag in the IS-IS IP prefix type length values (TLV).</td>
</tr>
<tr>
<td></td>
<td>• For RIPv2 routes, the <code>tag</code> action sets the route-tag community. The <code>tag2</code> option is not supported.</td>
</tr>
<tr>
<td>`tag (add</td>
<td>subtract) number`</td>
</tr>
<tr>
<td>`tag2 (add</td>
<td>subtract) number`</td>
</tr>
<tr>
<td><code>validation-state</code></td>
<td>When BGP origin validation is configured, set the validation state of a route prefix to valid, invalid, or unknown.</td>
</tr>
<tr>
<td></td>
<td>The route validation database contains route origin authorization (ROA) records that map route prefixes to expected originating autonomous systems (ASs). This prevents the accidental advertisement of invalid routes.</td>
</tr>
<tr>
<td></td>
<td>See Understanding Origin Validation for BGP.</td>
</tr>
</tbody>
</table>

Configuring the Default Action in Routing Policies

The `default-action` statement overrides any action intrinsic to the protocol. This action is also nonterminating, so that various policy terms can be evaluated before the policy is terminated. You can specify a default action, either `accept` or `reject`, as follows:

```plaintext
[edit]
policy-options {
  policy-statement policy-name {
    term term-name {
      from {
        family family-name;
        match-conditions;
        policy subroutine-policy-name;
      }
    }
  }
}
```
The resulting action is set either by the protocol or by the last policy term that is matched.

Example: Configuring the Default Action in a Routing Policy

Configure a routing policy that matches routes based on three policy terms. If the route matches the first term, a certain community tag is attached. If the route matches two separate terms, then both community tags are attached. If the route does not match any terms, it is rejected (protocol’s default action). Note that the terms **hub** and **spoke** are mutually exclusive.

```c
[edit]
policy-options {
    policy-statement test {
        term set-default {
            then default-action reject;
        }
        term hub {
            from interface ge-2/1/0.5;
            then {
                community add test-01-hub;
                default-action accept;
            }
        }
        term spoke {
            from interface [ ge-2/1/0.1 ge-2/1/0.2 ];
            then {
                community add test-01-spoke;
                default-action accept;
            }
        }
    }
}
```
Configuring a Final Action in Routing Policies

In addition to specifying an action using the `then` statement in a named term, you can also specify an action using the `then` statement in an unnamed term, as follows:

```plaintext
[edit]
policy-options {
    policy-statement policy-name {
        term term-name {
            from {
                family family-name;
                match-conditions;
                policy subroutine-policy-name;
                prefix-list name;
                route-filter destination-prefix match-type <actions>;
                source-address-filter source-prefix match-type <actions>;
            }
            to {
                match-conditions;
                policy subroutine-policy-name;
            }
            then {
                actions;
            }
        }
        then action;
    }
}
```
Logging Matches to a Routing Policy Term

If you specify the trace action, the match is logged to a trace file. To set up a trace file, you must specify the following elements in the global `traceoptions` statement:

- Trace filename
- `policy` option in the `flag` statement

The following example uses the trace filename of `policy-log`:

```
[edit]
 routing-options {
    traceoptions {
        file "policy-log";
        flag policy;
    }
}
```

This action does not affect the flow control during routing policy evaluation.

If a term that specifies a trace action also specifies a flow control action, the name of the term is logged in the trace file. If a term specifies a trace action only, the word `<default>` is logged.

Configuring Separate Actions for Routes in Route Lists

If you specify route lists in the `from` statement, for each route in the list, you can specify an action to take on that individual route directly, without including a `then` statement. For more information, see “Understanding Route Filters for Use in Routing Policy Match Conditions” on page 279.

RELATED DOCUMENTATION

| Route Filter Match Conditions | 67 |
| Routing Policy Match Conditions | 55 |

Summary of Routing Policy Actions

An action is what the policy framework software does if a route matches all criteria defined in a match condition. You can configure one or more actions in a term.

The policy framework software supports the following types of actions:
• Flow control actions, which affect whether to accept or reject the route or whether to evaluate the next term or routing policy

• Actions that manipulate route characteristics

• Trace action, which logs route matches

Manipulating the route characteristics allows you to control which route is selected as the active route to reach a destination. In general, the active route is also advertised to a routing platform’s neighbors. You can manipulate the following route characteristics: AS path, class, color, community, damping parameters, destination class, external type, next hop, load balance, local preference, metric, origin, preference, and tag.

For the numeric information (color, local preference, metric, preference, and tag), you can set a specific value or change the value by adding or subtracting a specified amount. The addition and subtraction operations do not allow the value to exceed a maximum value and drop below a minimum value.

All policies have default actions in case one of the following situations arises during policy evaluation:

• A policy does not specify a match condition.

• A match occurs, but a policy does not specify an action.

• A match does not occur with a term in a policy and subsequent terms in the same policy exist.

• A match does not occur by the end of a policy.

An action defines what the router does with the route when the route matches all the match conditions in the from and to statements for a particular term. If a term does not have from and to statements, all routes are considered to match and the actions apply to all routes.

Each term can have one or more of the following types of actions. The actions are configured under the then statement.

• Flow control actions, which affect whether to accept or reject the route and whether to evaluate the next term or routing policy

• Actions that manipulate route characteristics

• Trace action, which logs route matches

If you do not specify an action, one of the following results occurs:

• The next term in the routing policy, if one exists, is evaluated.

• If the routing policy has no more terms, the next routing policy, if one exists, is evaluated.

• If there are no more terms or routing policies, the accept or reject action specified by the default policy is executed.

Table 13 on page 86 summarizes the routing policy actions.
Table 13: Summary of Key Routing Policy Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Control Actions</td>
<td>These actions control the flow of routing information into and out of the routing table.</td>
</tr>
<tr>
<td>accept</td>
<td>Accepts the route and propagates it. After a route is accepted, no other terms in the routing policy and no other routing policies are evaluated.</td>
</tr>
<tr>
<td>reject</td>
<td>Rejects the route and does not propagate it. After a route is rejected, no other terms in the routing policy and no other routing policies are evaluated.</td>
</tr>
<tr>
<td>next term</td>
<td>Skips to and evaluates the next term in the same routing policy. Any accept or reject action specified in the then statement is ignored. Any actions specified in the then statement that manipulate route characteristics are applied to the route.</td>
</tr>
<tr>
<td>next policy</td>
<td>Skips to and evaluates the next routing policy. Any accept or reject action specified in the then statement is ignored. Any actions specified in the then statement that manipulate route characteristics are applied to the route.</td>
</tr>
<tr>
<td>Route Manipulation Actions</td>
<td>These actions manipulate the route characteristics.</td>
</tr>
</tbody>
</table>
| as-path-prepend as-path | Appends one or more AS numbers at the beginning of the AS path. If you are specifying more than one AS number, include the numbers in quotation marks.
The AS numbers are added after the local AS number has been added to the path. This action adds AS numbers to AS sequences only, not to AS sets. If the existing AS path begins with a confederation sequence or set, the appended AS numbers are placed within a confederation sequence. Otherwise, the appended AS numbers are placed with a nonconfederation sequence. |
| as-path-expand last-as count n | Extracts the last AS number in the existing AS path and appends that AS number to the beginning of the AS path n times. Replace n with a number from 1 through 32.
The AS numbers are added after the local AS number has been added to the path. This action adds AS numbers to AS sequences only, not to AS sets. If the existing AS path begins with a confederation sequence or set, the appended AS numbers are placed within a confederation sequence. Otherwise, the appended AS numbers are placed with a nonconfederation sequence. |
| class class-name | Applies the specified class-of-service (CoS) parameters to routes installed into the routing table. |
Table 13: Summary of Key Routing Policy Actions (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>color preference</td>
<td>Sets the preference value to the specified value. The color and color2 preference values can be a number from 0 through 4,294,967,295 ($2^{32} - 1$). A lower number indicates a more preferred route.</td>
</tr>
<tr>
<td>color2 preference</td>
<td></td>
</tr>
<tr>
<td>damping name</td>
<td>Applies the specified route-damping parameters to the route. These parameters override BGP’s default damping parameters. This action is useful only in import policies.</td>
</tr>
<tr>
<td>local-preference value</td>
<td>Sets the BGP local preference attribute. The preference can be a number from 0 through 4,294,967,295 ($2^{32} - 1$).</td>
</tr>
<tr>
<td>metric metric</td>
<td>Sets the metric. You can specify up to four metric values, starting with metric (for the first metric value) and continuing with metric2, metric3, and metric4.</td>
</tr>
<tr>
<td>metric2 metric</td>
<td>For BGP routes, metric corresponds to the MED, and metric2 corresponds to the IGP metric if the BGP next hop loops through another router.</td>
</tr>
<tr>
<td>metric3 metric</td>
<td></td>
</tr>
<tr>
<td>metric4 metric</td>
<td></td>
</tr>
<tr>
<td>next-hop address</td>
<td>Sets the next hop. If you specify address as self, the next-hop address is replaced by one of the local router’s addresses. The advertising protocol determines which address to use.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- **Routing Policies, Firewall Filters, and Traffic Policers Feature Guide**

Example: Configuring a Routing Policy to Advertise the Best External Route to Internal Peers

IN THIS SECTION

- Requirements | 89
- Overview | 89
The BGP protocol specification, as defined in RFC 1771, specifies that a BGP peer shall advertise to its internal peers the higher preference external path, even if this path is not the overall best (in other words, even if the best path is an internal path). In practice, deployed BGP implementations do not follow this rule. The reasons for deviating from the specification are as follows:

- Minimizing the amount of advertised information. BGP scales according to the number of available paths.
- Avoiding routing and forwarding loops.

There are, however, several scenarios in which the behavior, specified in RFC 1771, of advertising the best external route might be beneficial. Limiting path information is not always desirable as path diversity might help reduce restoration times. Advertising the best external path can also address internal BGP (IBGP) route oscillation issues as described in RFC 3345, *Border Gateway Protocol (BGP) Persistent Route Oscillation Condition*.

The `advertise-external` statement modifies the behavior of a BGP speaker to advertise the best external path to IBGP peers, even when the best overall path is an internal path.

NOTE: The `advertise-external` statement is supported at both the group and neighbor level. If you configure the statement at the neighbor level, you must configure it for all neighbors in a group. Otherwise, the group is automatically split into different groups.

The `conditional` option limits the behavior of the `advertise-external` setting, such that the external route is advertised only if the route selection process reaches the point where the multiple exit discriminator (MED) metric is evaluated. Thus, an external route is not advertised if it has, for instance, an AS path that is worse (longer) than that of the active path. The `conditional` option restricts external path advertisement to when the best external path and the active path are equal until the MED step of the route selection process. Note that the criteria used for selecting the best external path is the same whether or not the `conditional` option is configured.

Junos OS also provides support for configuring a BGP export policy that matches the state of an advertised route. You can match either active or inactive routes, as follows:

```
policy-options {
    policy-statement name{
        from state (active|inactive);
    }
```

This qualifier only matches when used in the context of an export policy. When a route is being advertised by a protocol that can advertise inactive routes (such as BGP), state inactive matches routes advertised as a result of the advertise-inactive and advertise-external statements.

For example, the following configuration can be used as a BGP export policy toward internal peers to mark routes advertised due to the advertise-external setting with a user-defined community. That community can be later used by the receiving routers to filter out such routes from the forwarding table. Such a mechanism can be used to address concerns that advertising paths not used for forwarding by the sender might lead to forwarding loops.

```bash
user@host# show policy-options
policy-statement mark-inactive {
    term inactive {
        from state inactive;
        then {
            community set comm-inactive;
        }
    }
    term default {
        from protocol bgp;
        then accept;
    }
    then reject;
}
community comm-inactive members 65536:65284;
```

Requirements

Junos OS 9.3 or later is required.

Overview

This example shows three routing devices. Device R2 has an external BGP (EBGP) connection to Device R1. Device R2 has an IBGP connection to Device R3.

Device R1 advertises 172.16.6.0/24. Device R2 does not set the local preference in an import policy for Device R1’s routes, and thus 172.16.6.0/24 has the default local preference of 100.

Device R3 advertises 172.16.6.0/24 with a local preference of 200.
When the **advertise-external** statement is not configured on Device R2, 172.16.6.0/24 is not advertised by Device R2 toward Device R3.

When the **advertise-external** statement is configured on Device R2 on the session toward Device R3, 172.16.6.0/24 is advertised by Device R2 toward Device R3.

When **advertise-external conditional** is configured on Device R2 on the session toward Device R3, 172.16.6.0/24 is not advertised by Device R2 toward Device R3. If you remove the **then local-preference 200** setting on Device R3 and add the **path-selection as-path-ignore** setting on Device R2 (thus making the path selection criteria equal until the MED step of the route selection process), 172.16.6.0/24 is advertised by Device R2 toward Device R3.

NOTE:
To configure the **advertise-external** statement on a route reflector, you must disable intracluster reflection with the **no-client-reflect** statement, and the client cluster must be fully meshed to prevent the sending of redundant route advertisements.

When a routing device is configured as a route reflector for a cluster, a route advertised by the route reflector is considered internal if it is received from an internal peer with the same cluster identifier or if both peers have no cluster identifier configured. A route received from an internal peer that belongs to another cluster, that is, with a different cluster identifier, is considered external.

Topology

Figure 9 on page 90 shows the sample network.

Figure 9: BGP Topology for advertise-external

“**CLI Quick Configuration**” on page 90 shows the configuration for all of the devices in **Figure 9 on page 90**.

The section "**Step-by-Step Procedure**” on page 92 describes the steps on Device R2.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces fe-1/2/0 unit 0 description to-R2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group ext type external
set protocols bgp group ext export send-static
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.2
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 from route-filter 172.16.6.0/24 exact
set policy-options policy-statement send-static term 1 then accept
set policy-options policy-statement send-static term 2 then reject
set routing-options static route 172.16.6.0/24 reject
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 100
```

Device R2

```plaintext
set interfaces fe-1/2/0 unit 0 description to-R1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 description to-R3
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.5/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 100
set protocols bgp group ext neighbor 10.0.0.1
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.2
set protocols bgp group int advertise-external
set protocols bgp group int neighbor 192.168.0.3
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 200
```
Device R3

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.3
set protocols bgp group int export send-static
set protocols bgp group int neighbor 192.168.0.2
set protocols ospf area 0.0.0.0 interface fe-1/2/0.6
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then local-preference 200
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 172.16.6.0/24 reject
set routing-options static route 0.0.0.0/0 next-hop 10.0.0.5
set routing-options autonomous-system 200
```

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the device interfaces.

   ```
   [edit interfaces]
   user@R2# set fe-1/2/0 unit 0 description to-R1
   user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
   user@R2# set fe-1/2/1 unit 0 description to-R3
   user@R2# set fe-1/2/1 unit 0 family inet address 10.0.0.5/30
   user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
   ```

2. Configure OSPF or another interior gateway protocol (IGP).

   ```
   [edit protocols ospf area 0.0.0.0]
   user@R2# set interface fe-1/2/1.0
   user@R2# set interface lo0.0 passive
   ```

3. Configure the EBGP connection to Device R1.
4. Configure the IBGP connection to Device R3.

```
[edit protocols bgp group ext]
user@R2# set type external
user@R2# set peer-as 100
user@R2# set neighbor 10.0.0.1
```

5. Add the `advertise-external` statement to the IBGP group peering session.

```
[edit protocols bgp group int]
user@R2# set advertise-external
```

6. Configure the autonomous system (AS) number and the router ID.

```
[edit routing-options ]
user@R2# set router-id 192.168.0.2
user@R2# set autonomous-system 200
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R2# show interfaces
fe-1/2/0 {
    unit 0{
        description to-R1;
        family inet {
            address 10.0.0.2/30;
        }
    }
}
fe-1/2/1 {
    unit 0{
```
description to-R3;
family inet {
 address 10.0.0.5/30;
}
}
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.2/32;
 }
 }
}

user@R2# show protocols
bgp {
 group ext {
 type external;
 peer-as 100;
 neighbor 10.0.0.1;
 }
 group int {
 type internal;
 local-address 192.168.0.2;
 advertise-external;
 neighbor 192.168.0.3;
 }
}
ospf {
 area 0.0.0.0 {
 interface fe-1/2/1.0;
 interface lo0.0 {
 passive;
 }
 }
}

user@R2# show routing-options
router-id 192.168.0.2;
autonomous-system 200;

If you are done configuring the device, enter **commit** from configuration mode.
Verification

IN THIS SECTION

- Verifying the BGP Active Path | 95
- Verifying the External Route Advertisement | 96
- Verifying the Route on Device R3 | 96
- Experimenting with the conditional Option | 97

Confirm that the configuration is working properly.

Verifying the BGP Active Path

Purpose

On Device R2, make sure that the 172.16.6.0/24 prefix is in the routing table and has the expected active path.

Action

```plaintext
user@R2> show route 172.16.6
```

```
inet.0: 8 destinations, 9 routes (8 active, 1 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.6.0/24  *[BGP/170] 00:00:07, localpref 200, from 192.168.0.3
   AS path: I, validation-state: unverified
         > to 10.0.0.6 via fe-1/2/1.0
       [BGP/170] 03:23:03, localpref 100
       AS path: 100 I, validation-state: unverified
         > to 10.0.0.1 via fe-1/2/0.0
```

Meaning

Device R2 receives the 172.16.6.0/24 route from both Device R1 and Device R3. The route from Device R3 is the active path, as designated by the asterisk (*). The active path has the highest local preference. Even if the local preferences of the two routes were equal, the route from Device R3 would remain active because it has the shortest AS path.
Verifying the External Route Advertisement

Purpose
On Device R2, make sure that the 172.16.6.0/24 route is advertised toward Device R3.

Action

user@R2> show route advertising-protocol bgp 192.168.0.3

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.6.0/24</td>
<td>10.0.0.1</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Meaning
Device R2 is advertising the 172.16.6.0/24 route toward Device R3.

Verifying the Route on Device R3

Purpose
Make sure that the 172.16.6.0/24 prefix is in Device R3’s routing table.

Action

user@R3> show route 172.16.6.0/24

inet.0: 7 destinations, 8 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.6.0/24 *[Static/5] 03:34:14
 Reject
 [BGP/170] 06:34:43, localpref 100, from 192.168.0.2
 AS path: 100 I, validation-state: unverified
 > to 10.0.0.5 via fe-1/2/0.6

Meaning
Device R3 has the static route and the BGP route for 172.16.6.0/24.

Note that the BGP route is hidden on Device R3 if the route is not reachable or if the next hop cannot be resolved. To fulfill this requirement, this example includes a static default route on Device R3 (static route 0.0.0.0/0 next-hop 10.0.0.5).
Experimenting with the conditional Option

Purpose
See how the conditional option works in the context of the BGP path selection algorithm.

Action
1. On Device R2, add the conditional option.

 [edit protocols bgp group int]
 user@R2# set advertise-external conditional
 user@R2# commit

2. On Device R2, check to see if the 172.16.6.0/24 route is advertised toward Device R3.

 user@R2> show route advertising-protocol bgp 192.168.0.3

As expected, the route is no longer advertised. You might need to wait a few seconds to see this result.

3. On Device R3, deactivate the then local-preference policy action.

 [edit policy-options policy-statement send-static term 1]
 user@R3# deactivate logical-systems R3 then local-preference
 user@R3# commit

4. On Device R2, ensure that the local preferences of the two paths are equal.

 user@R2> show route 172.16.6.0/24

 inet.0: 8 destinations, 9 routes (8 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

 172.16.6.0/24

5. On Device R2, add the as-path-ignore statement.

 [edit protocols bgp]
6. On Device R2, check to see if the 172.16.6.0/24 route is advertised toward Device R3.

```
user@R2# set path-selection as-path-ignore
user@R2# commit
```

```
user@R2> show route advertising-protocol bgp 192.168.0.3
inet.0: 8 destinations, 9 routes (8 active, 0 holddown, 0 hidden)
Prefix                  Nexthop              MED     Lclpref    AS path
* 172.16.6.0/24           10.0.0.1                     100        100 I
```

As expected, the route is now advertised because the AS path length is ignored and because the local preferences are equal.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Example: Configuring BGP to Advertise Inactive Routes</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding BGP Path Selection</td>
<td></td>
</tr>
</tbody>
</table>

Example: Configuring BGP to Advertise Inactive Routes

IN THIS SECTION

- Requirements | 100
- Overview | 100
- Configuration | 100
- Verification | 104

By default, BGP readvertises only active routes. To have the routing table export to BGP the best route learned by BGP even if Junos OS did not select it to be an active route, include the `advertise-inactive` statement:

```
advertise-inactive;
```
In Junos OS, BGP advertises BGP routes that are installed or active, which are routes selected as the best based on the BGP path selection rules. The **advertise-inactive** statement allows nonactive BGP routes to be advertised to other peers.

NOTE: If the routing table has two BGP routes where one is active and the other is inactive, the **advertise-inactive** statement does not advertise the inactive BGP prefix. This statement does not advertise an inactive BGP route in the presence of another active BGP route. However, if the active route is a static route, the **advertise-inactive** statement advertises the inactive BGP route.

Junos OS also provides support for configuring a BGP export policy that matches the state of an advertised route. You can match either active or inactive routes, as follows:

```
policy-options {
    policy-statement name{
        from state (active|inactive);
    }
}
```

This qualifier only matches when used in the context of an export policy. When a route is being advertised by a protocol that can advertise inactive routes (such as BGP), **state inactive** matches routes advertised as a result of the **advertise-inactive** (or **advertise-external**) statement.

For example, the following configuration can be used as a BGP export policy to mark routes advertised due to the **advertise-inactive** setting with a user-defined community. That community can be later used by the receiving routers to filter out such routes from the forwarding table. Such a mechanism can be used to address concerns that advertising paths not used for forwarding by the sender might lead to forwarding loops.

```
user@host# show policy-options
policy-statement mark-inactive {
    term inactive {
        from state inactive;
        then {
            community set comm-inactive;
        }
    }
    term default {
        from protocol bgp;
        then accept;
    }
    then reject;
}
```
Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, Device R2 has two external BGP (EBGP) peers, Device R1 and Device R3. Device R1 has a static route to 172.16.5/24. Likewise, Device R2 also has a static route to 172.16.5/24. Through BGP, Device R1 sends information about its static route to Device R2. Device R2 now has information about 172.16.5/24 from two sources—its own static route and the BGP-learned route received from Device R1. Static routes are preferred over BGP-learned routes, so the BGP route is inactive on Device R2. Normally Device R2 would send the BGP-learned information to Device R3, but Device R2 does not do this because the BGP route is inactive. Device R3, therefore, has no information about 172.16.5/24 unless you enable the advertise-inactive command on Device R2, which causes Device R2 to send the BGP-learned to Device R3.

Topology

Figure 10 on page 100 shows the sample network.

Figure 10: BGP Topology for advertise-inactive

"CLI Quick Configuration" on page 100 shows the configuration for all of the devices in Figure 10 on page 100.

The section "Step-by-Step Procedure" on page 102 describes the steps on Device R2.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the `[edit]` hierarchy level.

Device R1

```conf
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30  
set interfaces lo0 unit 0 family inet address 192.168.0.1/32  
set protocols bgp group to_R2 type external  
set protocols bgp group to_R2 export send-static  
set protocols bgp group to_R2 neighbor 10.0.0.2 peer-as 200  
set policy-options policy-statement send-static term 1 from protocol static  
set policy-options policy-statement send-static term 1 then accept  
set routing-options static route 172.16.5.0/24 discard  
set routing-options static route 172.16.5.0/24 install  
set routing-options autonomous-system 100
```

Device R2

```conf
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30  
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.5/30  
set interfaces lo0 unit 0 family inet address 192.168.0.2/32  
set protocols bgp group to_R1 type external  
set protocols bgp group to_R1 neighbor 10.0.0.1 peer-as 100  
set protocols bgp group to_R3 type external  
set protocols bgp group to_R3 advertise-inactive  
set protocols bgp group to_R3 neighbor 10.0.0.6 peer-as 300  
set routing-options static route 172.16.5.0/24 discard  
set routing-options static route 172.16.5.0/24 install  
set routing-options autonomous-system 200
```

Device R3

```conf
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.6/30  
set interfaces fe-1/2/0 unit 9 family inet address 10.0.0.9/30  
set interfaces lo0 unit 0 family inet address 192.168.0.3/32  
set protocols bgp group ext type external
```
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.5
set routing-options autonomous-system 300

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the device interfaces.

```
[edit interfaces]
user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
user@R2# set fe-1/2/1 unit 0 family inet address 10.0.0.5/30
user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
```

2. Configure the EBGP connection to Device R1.

```
[edit protocols bgp group to_R1]
user@R2# set type external
user@R2# set neighbor 10.0.0.1 peer-as 100
```

3. Configure the EBGP connection to Device R3.

```
[edit protocols bgp group to_R3]
user@R2# set type external
user@R2# set neighbor 10.0.0.6 peer-as 300
```

4. Add the advertise-inactive statement to the EBGP group peering session with Device R3.

```
[edit protocols bgp group to_R3]
user@R2# set advertise-inactive
```

5. Configure the static route to the 172.16.5.0/24 network.
6. Configure the autonomous system (AS) number.

[edit routing-options]
user@R2# set autonomous-system 200

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R2# show interfaces
 fe-1/2/0 {
 unit 0 {
 family inet {
 address 10.0.0.2/30;
 }
 }
 }
 fe-1/2/1 {
 unit 0 {
 family inet {
 address 10.0.0.5/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 192.168.0.2/32;
 }
 }
 }

user@R2# show protocols
 bgp {
 group to_R1 {
 type external;
 }
 }
neighbor 10.0.0.1 {
 peer-as 100;
}

group to_R3 {
 type external;
 advertise-inactive;
 neighbor 10.0.0.6 {
 peer-as 300;
 }
}

user@R2# show routing-options
static {
 route 172.16.5.0/24 {
 discard;
 install;
 }
}
autonomous-system 200;

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying the BGP Active Path | 104
- Verifying the External Route Advertisement | 105
- Verifying the Route on Device R3 | 105
- Experimenting with the advertise-inactive Statement | 106

Confirm that the configuration is working properly.

Verifying the BGP Active Path

Purpose
On Device R2, make sure that the 172.16.5.0/24 prefix is in the routing table and has the expected active path.

Action

```
user@R2> show route 172.16.5
```

```
inet.0: 7 destinations, 8 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.5.0/24  *[Static/5] 21:24:38
  Discard
  [BGP/170] 21:21:41, localpref 100
  AS path: 100 I, validation-state: unverified
  > to 10.0.0.1 via fe-1/2/0.0
```

Meaning

Device R2 receives the 172.16.5.0/24 route from both Device R1 and from its own statically configured route. The static route is the active path, as designated by the asterisk (*). The static route path has the lowest route preference (5) as compared to the BGP preference (170). Therefore, the static route becomes active.

Verifying the External Route Advertisement

Purpose

On Device R2, make sure that the 172.16.5.0/24 route is advertised toward Device R3.

Action

```
user@R2> show route advertising-protocol bgp 10.0.0.6
```

```
inet.0: 6 destinations, 7 routes (6 active, 0 holddown, 0 hidden)
Prefix  Nexthop  MED  Lclpref  AS path
172.16.5.0/24  Self  100 I
```

Meaning

Device R2 is advertising the 172.16.5.0/24 route toward Device R3

Verifying the Route on Device R3

Purpose
Make sure that the 172.16.6.0/24 prefix is in Device R3's routing table.

Action

user@R3> **show route 172.16.5.0/24**

| inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden) |
|---------------------|------------------|
| + = Active Route, - = Last Active, * = Both |

<table>
<thead>
<tr>
<th>172.16.5.0/24</th>
<th>*[BGP/170] 00:01:19, localpref 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path: 200 100 I, validation-state: unverified</td>
<td></td>
</tr>
<tr>
<td>> to 10.0.0.5 via fe-1/2/1.0</td>
<td></td>
</tr>
</tbody>
</table>

Meaning

Device R3 has the BGP-learned route for 172.16.5.0/24.

Experimenting with the advertise-inactive Statement

Purpose

See what happens when the `advertise-inactive` statement is removed from the BGP configuration on Device R2.

Action

1. On Device R2, deactivate the `advertise-inactive` statement.

   ```
   [edit protocols bgp group to_R3]
   user@R2# deactivate advertise-inactive
   user@R2# commit
   ```

2. On Device R2, check to see if the 172.16.5.0/24 route is advertised toward Device R3.

   ```
   user@R2> **show route advertising-protocol bgp 10.0.0.6**
   ```

 As expected, the route is no longer advertised.

3. On Device R3, ensure that the 172.16.5/24 route is absent from the routing table.

   ```
   user@R3> **show route 172.16.5/24**
   ```
Meaning

Device R1 advertises route 172.16.5/24 to Device R2, but Device R2 has a manually configured static route for this prefix. Static routes are preferred over BGP routes, so Device R2 installs the BGP route as an inactive route. Because the BGP route is not active, Device R2 does not readvertise the BGP route to Device R3. This is the default behavior in Junos OS. If you add the `advertise-inactive` statement to the BGP configuration on Device R2, Device R2 readvertises nonactive routes.

RELATED DOCUMENTATION

- Example: Configuring a Routing Policy to Advertise the Best External Route to Internal Peers
- Understanding BGP Path Selection

Example: Using Routing Policy to Set a Preference Value for BGP Routes

IN THIS SECTION

- Requirements | 107
- Overview | 107
- Configuration | 108
- Verification | 113

This example shows how to use routing policy to set the preference for routes learned from BGP. Routing information can be learned from multiple sources. To break ties among equally specific routes learned from multiple sources, each source has a preference value. Routes that are learned through explicit administrative action, such as static routes, are preferred over routes learned from a routing protocol, such as BGP or OSPF. This concept is called administrative distance by some vendors.

Requirements

No special configuration beyond device initialization is required before you configure this example.

Overview

Routing information can be learned from multiple sources, such as through static configuration, BGP, or an interior gateway protocol (IGP). When Junos OS determines a route’s preference to become the active
route, it selects the route with the lowest preference as the active route and installs this route into the forwarding table. By default, the routing software assigns a preference of 170 to routes that originated from BGP. Of all the routing protocols, BGP has the highest default preference value, which means that routes learned by BGP are the least likely to become the active route.

Some vendors have a preference (distance) of 20 for external BGP (EBGP) and a distance of 200 for internal BGP (IGBP). Junos OS uses the same value (170) for both EBGP and IBGP. However, this difference between vendors has no operational impact because Junos OS always prefers EBGP routes over IBGP routes.

Another area in which vendors differ is in regard to IGP distance compared to BGP distance. For example, some vendors assign a distance of 110 to OSPF routes. This is higher than the EBGP distance of 20, and results in the selection of an EBGP route over an equivalent OSPF route. In the same scenario, Junos OS chooses the OSPF route, because of the default preference 10 for an internal OSPF route and 150 for an external OSPF route, which are both lower than the 170 preference assigned to all BGP routes.

This example shows a routing policy that matches routes from specific next hops and sets a preference. If a route does not match the first term, it is evaluated by the second term.

Topology

In the sample network, Device R1 and Device R3 have EBGP sessions with Device R2.

On Device R2, an import policy takes the following actions:

- For routes received through BGP from next-hop 10.0.0.1 (Device R1), set the route preference to 10.
- For routes received through BGP from next-hop 10.1.0.2 (Device R3), set the route preference to 15.

Figure 11 on page 108 shows the sample network.

Figure 11: BGP Preference Value Topology

"CLI Quick Configuration" on page 108 shows the configuration for all of the devices in *Figure 11 on page 108*.

The section "Step-by-Step Procedure" on page 110 describes the steps on Device R2.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.2
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 100
```

Device R2

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext import set-preference
set protocols bgp group ext export send-direct
set protocols bgp group ext neighbor 10.0.0.1 peer-as 100
set protocols bgp group ext neighbor 10.1.0.2 peer-as 300
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set policy-options policy-statement set-preference term term1 from protocol bgp
set policy-options policy-statement set-preference term term1 from next-hop 10.0.0.1
set policy-options policy-statement set-preference term term1 then preference 10
set policy-options policy-statement set-preference term term2 from protocol bgp
set policy-options policy-statement set-preference term term2 from next-hop 10.1.0.2
set policy-options policy-statement set-preference term term2 then preference 15
set routing-options autonomous-system 200
```

Device R3

```
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.1.0.1
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 300

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the device interfaces.

   [edit interfaces]
   user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
   user@R2# set fe-1/2/1 unit 0 family inet address 10.1.0.1/30
   user@R2# set lo0 unit 0 family inet address 192.168.0.2/32

2. Configure the local autonomous system.

   [edit routing-options]
   user@R2# set autonomous-system 200

3. Configure the routing policy that sends direct routes.

   [edit policy-options policy-statement send-direct term 1]
   user@R2# set from protocol direct
   user@R2# set then accept

4. Configure the routing policy that changes the preference of received routes.

   [edit policy-options policy-statement set-preference]
5. Configure the external peering with Device R2.

[edit protocols bgp group ext]
user@R2# set type external
user@R2# set export send-direct
user@R2# set neighbor 10.0.0.1 peer-as 100
user@R2# set neighbor 10.1.0.2 peer-as 300

6. Apply the set-preference policy as an import policy.

This affects Device R2’s routing table and has no impact on Device R1 and Device R3.

[edit protocols bgp group ext]
user@R2# set import set-preference

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
lo0 {
    unit 0 {
        family inet {
            address 192.168.0.2/32;
        }
    }
}

user@R2# show protocols
bgp {
    group ext {
        type external;
        import set-preference;
        export send-direct;
        neighbor 10.0.0.1 {
            peer-as 100;
        }
        neighbor 10.1.0.2 {
            peer-as 300;
        }
    }
}

user@R2# show policy-options
policy-statement send-direct {
    term 1 {
        from protocol direct;
        then accept;
    }
}
policy-statement set-preference {
    term term1 {
        from {
            protocol bgp;
            next-hop 10.0.0.1;
        }
        then {
            preference 10;
        }
    }
term term2 {
    from {

protocol bgp;
next-hop 10.1.0.2;
}
then {
    preference 15;
}
}

user@R2# show routing-options
autonomous-system 200;

If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

Confirm that the configuration is working properly.

**Verifying the Preference**

**Purpose**

Make sure that the routing tables on Device R1 and Device R2 reflect the fact that Device R1 is using the configured EBGP preference of 8, and Device R2 is using the default EBGP preference of 170.

**Action**

From operational mode, enter the **show route protocols bgp** command.

user@R2> **show route protocols bgp**

inet.0: 7 destinations, 9 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.0/30      [BGP/10] 04:42:23, localpref 100
                  AS path: 100 I, validation-state: unverified
                  > to 10.0.0.1 via fe-1/2/0.0
10.1.0.0/30      [BGP/15] 04:42:23, localpref 100
                  AS path: 300 I, validation-state: unverified
                  > to 10.1.0.2 via fe-1/2/1.0
192.168.0.1/32   *[BGP/10] 04:42:23, localpref 100
                  AS path: 100 I, validation-state: unverified
                  > to 10.0.0.1 via fe-1/2/0.0
Meaning
The output shows that on Device R2, the preference values have been changed to 15 for routes learned from Device R3, and the preference values have been changed to 10 for routes learned from Device R1.

RELATED DOCUMENTATION

Route Preferences Overview
Understanding External BGP Peering Sessions

Example: Enabling BGP Route Advertisements

Junos OS does not advertise the routes learned from one EBGP peer back to the same external BGP (EBGP) peer. In addition, the software does not advertise those routes back to any EBGP peers that are in the same autonomous system (AS) as the originating peer, regardless of the routing instance. You can modify this behavior by including the `advertise-peer-as` statement in the configuration.

If you include the `advertise-peer-as` statement in the configuration, BGP advertises the route regardless of this check.

To restore the default behavior, include the `no-advertise-peer-as` statement in the configuration:

```
no-advertise-peer-as;
```
The route suppression default behavior is disabled if the `as-override` statement is included in the configuration. If you include both the `as-override` and `no-advertise-peer-as` statements in the configuration, the `no-advertise-peer-as` statement is ignored.

**Requirements**

No special configuration beyond device initialization is required before you configure this example.

**Overview**

This example shows three routing devices with external BGP (EBGP) connections. Device R2 has an EBGP connection to Device R1 and another EBGP connection to Device R3. Although separated by Device R2 which is in AS 64511, Device R1 and Device R3 are in the same AS (AS 64512). Device R1 and Device R3 advertise into BGP direct routes to their own loopback interface addresses.

Device R2 receives these loopback interface routes, and the `advertise peer-as` statement allows Device R2 to advertise them. Specifically, Device R1 sends the 192.168.0.1 route to Device R2, and because Device R2 has the `advertise peer-as` configured, Device R2 can send the 192.168.0.1 route to Device R3. Likewise, Device R3 sends the 192.168.0.3 route to Device R2, and `advertise peer-as` enables Device R2 to forward the route to Device R1.

To enable Device R1 and Device R3 to accept routes that contain their own AS number in the AS path, the `loops 2` statement is required on Device R1 and Device R3.

**Topology**

**Figure 12: BGP Topology for advertise-peer-as**

![BGP Topology for advertise-peer-as](image)

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.
Device R1

set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp family inet unicast loops 2
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext peer-as 64511
set protocols bgp group ext neighbor 10.0.0.2
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 64512

Device R2

set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext advertise-peer-as
set protocols bgp group ext export send-direct
set protocols bgp group ext neighbor 10.0.0.1 peer-as 64512
set protocols bgp group ext neighbor 10.1.0.2 peer-as 64512
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 64511

Device R3

set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp family inet unicast loops 2
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext peer-as 64511
set protocols bgp group ext neighbor 10.1.0.1
set policy-options policy-statement send-direct term 1 from protocol direct
Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

   [edit interfaces]
   user@R1# set fe-1/2/0 unit 0 family inet address 10.0.0.1/30
   user@R1# set lo0 unit 0 family inet address 192.168.0.1/32

2. Configure BGP.

   [edit protocols bgp group ext]
   user@R1# set type external
   user@R1# set peer-as 64511
   user@R1# set neighbor 10.0.0.2

3. Prevent routes from Device R3 from being hidden on Device R1 by including the loops 2 statement.

   The loops 2 statement means that the local device's own AS number can appear in the AS path up to one time without causing the route to be hidden. The route is hidden if the local device's AS number is detected in the path two or more times.

   [edit protocols bgp family inet unicast]
   user@R1# set loops 2

4. Configure the routing policy that sends direct routes.

   [edit policy-options policy-statement send-direct term 1]
   user@R1# set from protocol direct
   user@R1# set then accept
5. Apply the export policy to the BGP peering session with Device R2.

```plaintext
[edit protocols bgp group ext]
user@R1# set export send-direct
```

6. Configure the autonomous system (AS) number.

```plaintext
[edit routing-options]
user@R1# set autonomous-system 64512
```

**Step-by-Step Procedure**

To configure Device R2:

1. Configure the device interfaces.

```plaintext
[edit interfaces]
user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
user@R2# set fe-1/2/1 unit 0 family inet address 10.1.0.1/30
user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
```

2. Configure BGP.

```plaintext
[edit protocols bgp group ext]
user@R2# set type external
user@R2# set neighbor 10.0.0.1 peer-as 64512
user@R2# set neighbor 10.1.0.2 peer-as 64512
```

3. Configure Device R2 to advertise routes learned from one EBGP peer to another EBGP peer in the same AS.

   In other words, advertise to Device R1 routes learned from Device R3 (and the reverse), even though Device R1 and Device R3 are in the same AS.

```plaintext
[edit protocols bgp group ext]
user@R2# set advertise-peer-as
```

4. Configure a routing policy that sends direct routes.

```plaintext
[edit policy-options policy-statement send-direct term 1]
user@R2# set from protocol direct
```
5. Apply the export policy.

```
[edit protocols bgp group ext]
user@R2# set export send-direct
```

6. Configure the AS number.

```
[edit routing-options]
user@R2# set autonomous-system 64511
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Device R1**

```
user@R1# show interfaces
fe-1/2/0 {
 unit 0 {
 family inet {
 address 10.0.0.1/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.1/32;
 }
 }
}

user@R1# show protocols
bgp {
```
family inet {
        unicast {
            loops 2;
        }
    }
}
group ext {
    type external;
    export send-direct;
    peer-as 64511;
    neighbor 10.0.0.2;
}
}

user@R1# show policy-options
policy-statement send-direct {
    term 1 {
        from protocol direct;
        then accept;
    }
}

user@R1# show routing-options
autonomous-system 64512;

Device R2

user@R2# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet {
            address 10.0.0.2/30;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        family inet {
            address 10.1.0.1/30;
        }
    }
}
lo0 {
  unit 0 {
    family inet {
      address 192.168.0.2/32;
    }
  }
}

user@R2# show protocols
bgp {
  group ext {
    type external;
    advertise-peer-as;
    export send-direct;
    neighbor 10.0.0.1 {
      peer-as 64512;
    }
    neighbor 10.1.0.2 {
      peer-as 64512;
    }
  }
}

user@R2# show policy-options
policy-statement send-direct {
  term 1 {
    from protocol direct;
    then accept;
  }
}

user@R2# show routing-options
autonomous-system 64511;

If you are done configuring the devices, enter commit from configuration mode.
Verification

Confirm that the configuration is working properly.

Verifying the BGP Routes

Purpose

Make sure that the routing tables on Device R1 and Device R3 contain the expected routes.

Action

1. On Device R2, deactivate the `advertise-peer-as` statement in the BGP configuration.

   ```
 [edit protocols bgp group ext]
 user@R2# deactivate advertise-peer-as
 user@R2# commit
   ```

2. On Device R3, deactivate the `loops` statement in the BGP configuration.

   ```
 [edit protocols bgp family inet unicast]
 user@R3# deactivate unicast loops
 user@R3# commit
   ```

3. On Device R1, check to see what routes are advertised to Device R2.

   ```
 user@R1> show route advertising-protocol bgp 10.0.0.2
   ```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.0.0.0/30</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 192.168.0.1/32</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

4. On Device R2, check to see what routes are received from Device R1.

   ```
 user@R2> show route receive-protocol bgp 10.0.0.1
   ```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/30</td>
<td>10.0.0.1</td>
<td></td>
<td></td>
<td>64512 I</td>
</tr>
<tr>
<td>* 192.168.0.1/32</td>
<td>10.0.0.1</td>
<td></td>
<td></td>
<td>64512 I</td>
</tr>
</tbody>
</table>

5. On Device R2, check to see what routes are advertised to Device R3.

   ```
 user@R2> show route advertising-protocol bgp 10.1.0.2
   ```
6. On Device R2, activate the `advertise-peer-as` statement in the BGP configuration.

```
[edit protocols bgp group ext]
user@R2# activate advertise-peer-as
user@R2# commit
```

7. On Device R2, recheck the routes that are advertised to Device R3.

```
user@R2> show route advertising-protocol bgp 10.1.0.2
```

8. On Device R3, check the routes that are received from Device R2.

```
user@R3> show route receive-protocol bgp 10.1.0.1
```

9. On Device R3, activate the `loops` statement in the BGP configuration.

```
[edit protocols bgp family inet unicast]
user@R3# activate unicast loops
user@R3# commit
```

10. On Device R3, recheck the routes that are received from Device R2.

```
user@R3> show route receive-protocol bgp 10.1.0.1
```
inet.0: 6 destinations, 8 routes (6 active, 0 holddown, 1 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.0.0.0/30</td>
<td>10.1.0.1</td>
<td></td>
<td></td>
<td>64511 I</td>
</tr>
<tr>
<td>10.1.0.0/30</td>
<td>10.1.0.1</td>
<td></td>
<td></td>
<td>64511 I</td>
</tr>
<tr>
<td>* 192.168.0.1/32</td>
<td>10.1.0.1</td>
<td></td>
<td></td>
<td>64511 64512</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 192.168.0.2/32</td>
<td>10.1.0.1</td>
<td></td>
<td></td>
<td>64511 I</td>
</tr>
</tbody>
</table>

Meaning

First the **advertise-peer-as** statement and the **loops** statement are deactivated so that the default behavior can be examined. Device R1 sends to Device R2 a route to Device R1’s loopback interface address, 192.168.0.1/32. Device R2 does not advertise this route to Device R3. After activating the **advertise-peer-as** statement, Device R2 does advertise the 192.168.0.1/32 route to Device R3. Device R3 does not accept this route until after the **loops** statement is activated.

**RELATED DOCUMENTATION**

- Example: Configuring a Layer 3 VPN with Route Reflection and AS Override

**Example: Rejecting Known Invalid Routes**

This example shows how to create route-based match conditions for a routing policy.

**Requirements**

Before you begin, be sure your router interfaces and protocols are correctly configured.
Overview

In this example, you create a policy called rejectpolicy1 that rejects routes with a mask of /8 and greater (/8, /9, /10, and so on) that have the first 8 bits set to 0. This policy also accepts routes less than 8 bits in length by creating a mask of 0/0 up to /7.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set policy-options policy-statement rejectpolicy1 term rejectterm1 from route-filter 0.0.0.0/0 upto /7 accept
set policy-options policy-statement rejectpolicy1 term rejectterm1 from route-filter 0.0.0.0/8 orlonger reject
set policy-options policy-statement test term 1 from protocol direct
```

Step-by-Step Procedure

To create a policy that rejects known invalid routes:

1. Create the routing policy.

   [edit]
   user@host# edit policy-options policy-statement rejectpolicy1

2. Create the policy term.

   [edit policy-options policy-statement rejectpolicy1]
   user@host# edit term rejectterm1

3. Create a mask that specifies which routes to accept.

   [edit policy-options policy-statement rejectpolicy1 term rejectterm1]
   user@host# set from route-filter 0/0 upto /7 accept

4. Create a mask that specifies which routes to reject.

   [edit policy-options policy-statement rejectpolicy1 term rejectterm1]
   user@host# set from route-filter 0/8 orlonger reject
Results

Confirm your configuration by entering the `show policy-options` command from configuration mode. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
user@host# show policy-options
policy-statement rejectpolicy1 {
 term rejectterm1 {
 from {
 route-filter 0.0.0.0/0 upto /7 accept;
 route-filter 0.0.0.0/8 orlonger reject;
 }
 }
 }
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

To confirm that the configuration is working properly, perform these tasks:

**Verifying the Route-Based Match Conditions**

**Purpose**

Verify that the policy and term are configured on the device with the appropriate route-based match conditions.

**Action**

From operational mode, enter the `show policy-options` command.

**RELATED DOCUMENTATION**

*Junos OS Feature Support Reference for SRX Series and J Series Devices*

| Route Filter Match Conditions | 67 |
| Example: Grouping Source and Destination Prefixes into a Forwarding Class | 611 |
Example: Using Routing Policy in an ISP Network

IN THIS SECTION

- Requirements | 127
- Overview | 127
- Set Commands for All Devices in the Topology | 128
- Configuring Device Customer-1 | 136
- Configuring Device Customer-2 | 139
- Configuring Devices ISP-1 and ISP-2 | 143
- Configuring Device ISP-3 | 150
- Configuring Device Exchange-2 | 156
- Configuring Device Private-Peer-2 | 159
- Verification | 164

This example is a case study in how routing policies might be used in a typical Internet service provider (ISP) network.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this network example, the ISP’s AS number is 64510. The ISP has two transit peers (AS 64514 and AS 64515) to which it connects at an exchange point. The ISP is also connected to two private peers (AS 64513 and AS 64516) with which it exchanges specific customer routes. The ISP has two customers (AS 64511 and AS 64512).

The ISP policies are configured in an outbound direction. That is, the example focuses on the routes that the ISP announces to its peers and customers, and includes the following:

1. The ISP has been assigned AS 64510 and the routing space of 172.16.32.0/21. With the exception of the two customer networks, all other customer routes are simulated with static routes.

2. The exchange peers are used for transit service to other portions of the Internet. This means that the ISP is accepting all routes (the full Internet routing table) from those BGP peers. To help maintain an
optimized Internet routing table, the ISP is configured to advertise only two aggregate routes to the transit peers.

3. The ISP administrators want all data to the private peers to use the direct links. As a result, all the customer routes from the ISP are advertised to those private peers. These peers then advertise all their customer routes to the ISP.

4. Finally, each customer has a different set of requirements. Customer-1 requires a single default route. Customer-2 requires specific routes.

Topology

Figure 13 on page 128 shows the sample network.

Figure 13: ISP Network Example

Set Commands for All Devices in the Topology

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device Customer-1
set interfaces fe-1/2/3 unit 0 description to_ISP-3
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.8/32
set protocols bgp group ext type external
set protocols bgp group ext export send-statics
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.1.0.5
set policy-options policy-statement send-statics term static-routes from protocol static
set policy-options policy-statement send-statics term static-routes then accept
set routing-options static route 172.16.40.0/25 reject
set routing-options static route 172.16.40.128/25 reject
set routing-options static route 172.16.41.0/25 reject
set routing-options static route 172.16.41.128/25 reject
set routing-options autonomous-system 64511

Device Customer-2

set interfaces fe-1/2/1 unit 0 description to_ISP-3
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.10/30
set interfaces fe-1/2/0 unit 0 description to-Private-Peer-2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.21/30
set interfaces lo0 unit 0 family inet address 192.168.0.9/32
set protocols bgp group ext type external
set protocols bgp group ext import inbound-routes
set protocols bgp group ext export outbound-routes
set protocols bgp group ext neighbor 10.0.0.9 peer-as 64510
set protocols bgp group ext neighbor 10.0.0.22 peer-as 64516
set policy-options policy-statement inbound-routes term AS64510-primary from protocol bgp
set policy-options policy-statement inbound-routes term AS64510-primary from as-path AS64510-routes
set policy-options policy-statement inbound-routes term AS64510-primary then local-preference 200
set policy-options policy-statement inbound-routes term AS64510-primary then accept
set policy-options policy-statement inbound-routes term AS64516-backup from protocol bgp
set policy-options policy-statement inbound-routes term AS64516-backup from as-path AS64516-routes
set policy-options policy-statement inbound-routes term AS64516-backup then local-preference 50
set policy-options policy-statement inbound-routes term AS64516-backup then accept
set policy-options policy-statement outbound-routes term statics from protocol static
set policy-options policy-statement outbound-routes term statics then accept
set policy-options policy-statement outbound-routes term internal-bgp-routes from protocol bgp
set policy-options policy-statement outbound-routes term internal-bgp-routes from as-path my-own-routes
set policy-options policy-statement outbound-routes term internal-bgp-routes then accept
set policy-options policy-statement outbound-routes term no-transit then reject
set policy-options as-path my-own-routes "()"
set policy-options as-path AS64510-routes "64510.*"
set policy-options as-path AS64516-routes "64516.*"
set routing-options static route 172.16.44.0/26 reject
set routing-options static route 172.16.44.64/26 reject
set routing-options static route 172.16.44.128/26 reject
set routing-options static route 172.16.44.192/26 reject
set routing-options autonomous-system 64512

Device ISP-1

set interfaces fe-1/2/0 unit 0 description to_ISP-3
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 description to_ISP-2
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces fe-1/2/2 unit 0 description to_Private-Peer-1
set interfaces fe-1/2/2 unit 0 family inet address 10.2.0.2/30
set interfaces fe-1/2/3 unit 0 description to_Exchange-1
set interfaces fe-1/2/3 unit 0 family inet address 10.2.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.1
set protocols bgp group int export internal-peers
set protocols bgp group int neighbor 192.168.0.2
set protocols bgp group int neighbor 192.168.0.3
set protocols bgp group to_64513 type external
set protocols bgp group to_64513 export private-peer
set protocols bgp group to_64513 peer-as 64513
set protocols bgp group to_64513 neighbor 10.2.0.1
set protocols bgp group to_64514 type external
set protocols bgp group to_64514 export exchange-peer
set protocols bgp group to_64514 peer-as 64514
set protocols bgp group to_64514 neighbor 10.2.0.5
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement exchange-peer term AS64510-Aggregate from protocol aggregate
172.16.32.0/21 exact
set policy-options policy-statement exchange-peer term AS64510-Aggregate from route-filter
172.16.32.0/21 exact
set policy-options policy-statement exchange-peer term AS64510-Aggregate then accept
set policy-options policy-statement exchange-peer term Customer-2-Aggregate from protocol aggregate
172.16.40.0/22 exact
set policy-options policy-statement exchange-peer term Customer-2-Aggregate from route-filter
172.16.40.0/22 exact
set policy-options policy-statement exchange-peer term Customer-2-Aggregate then accept
set policy-options policy-statement internal-peers term statics from protocol static
set policy-options policy-statement internal-peers term statics then accept
set policy-options policy-statement internal-peers term next-hop-self then next-hop self
set policy-options policy-statement private-peer term statics from protocol static
set policy-options policy-statement private-peer term statics then accept
set policy-options policy-statement private-peer term isp-and-customer-routes from protocol bgp
172.16.32.0/21 or longer
set policy-options policy-statement private-peer term isp-and-customer-routes then accept
set policy-options policy-statement private-peer term reject-all then reject
set routing-options static route 172.16.32.0/24 reject
set routing-options static route 172.16.33.0/24 reject
set routing-options aggregate route 172.16.32.0/21
set routing-options aggregate route 172.16.40.0/22
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510

Device ISP-2

set interfaces fe-1/2/1 unit 0 description to ISP-1
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces fe-1/2/2 unit 0 description to ISP-3
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.6/30
set interfaces fe-1/2/3 unit 0 description to Private-Peer-2
set interfaces fe-1/2/3 unit 0 family inet address 10.3.0.6/30
set interfaces fe-1/2/0 unit 0 description to Exchange-2
set interfaces fe-1/2/0 unit 0 family inet address 10.3.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.2
set protocols bgp group int export internal-peers
set protocols bgp group int neighbor 192.168.0.1
set protocols bgp group int neighbor 192.168.0.3
set protocols bgp group AS-64516 type external
set protocols bgp group AS-64516 export private-peer
set protocols bgp group AS-64516 peer-as 64516
set protocols bgp group AS-64516 neighbor 10.3.0.5
set protocols bgp group AS-64515 type external
set protocols bgp group AS-64515 export exchange-peer
set protocols bgp group AS-64515 peer-as 64515
set protocols bgp group AS-64515 neighbor 10.3.0.1
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement exchange-peer term AS64510-Aggregate from protocol aggregate
set policy-options policy-statement exchange-peer term AS64510-Aggregate from route-filter 172.16.32.0/21 exact
set policy-options policy-statement exchange-peer term AS64510-Aggregate then accept
set policy-options policy-statement exchange-peer term Customer-2-Aggregate from protocol aggregate
set policy-options policy-statement exchange-peer term Customer-2-Aggregate from route-filter 172.16.44.0/23 exact
set policy-options policy-statement exchange-peer term Customer-2-Aggregate then accept
set policy-options policy-statement exchange-peer term reject-all-other-routes then reject
set policy-options policy-statement internal-peers term statics from protocol static
set policy-options policy-statement internal-peers term statics then accept
set policy-options policy-statement internal-peers term next-hop-self then next-hop self
set policy-options policy-statement private-peer term statics from protocol static
set policy-options policy-statement private-peer term statics then accept
set policy-options policy-statement private-peer term isp-and-customer-routes from protocol bgp
set policy-options policy-statement private-peer term isp-and-customer-routes from route-filter 172.16.32.0/21 orlonger
set policy-options policy-statement private-peer term isp-and-customer-routes then accept
set policy-options policy-statement private-peer term reject-all then reject
set routing-options static route 172.16.34.0/24 reject
set routing-options static route 172.16.35.0/24 reject
set routing-options aggregate route 172.16.44.0/23
set routing-options aggregate route 172.16.32.0/21
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510

Device ISP-3
set interfaces fe-1/2/0 unit 0 description to_ISP-1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/2 unit 0 description to_ISP-2
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.5/30
set interfaces fe-1/2/3 unit 0 description to_Customer-1
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.5/30
set interfaces fe-1/2/1 unit 0 description to_Customer-2
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.9/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.3
set protocols bgp group int export internal-peers
set protocols bgp group int neighbor 192.168.0.1
set protocols bgp group int neighbor 192.168.0.2
set protocols bgp group to_64511 type external
set protocols bgp group to_64511 export customer-1-peer
set protocols bgp group to_64511 neighbor 10.1.0.6 peer-as 64511
set protocols bgp group to_64512 type external
set protocols bgp group to_64512 export customer-2-peer
set protocols bgp group to_64512 neighbor 10.0.0.10 peer-as 64512
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement customer-1-peer term default-route from route-filter 0.0.0.0/0 exact
set policy-options policy-statement customer-1-peer term default-route then accept
set policy-options policy-statement customer-1-peer term reject-all-other-routes then reject
set policy-options policy-statement customer-2-peer term statics from protocol static
set policy-options policy-statement customer-2-peer term statics then accept
set policy-options policy-statement customer-2-peer term isp-and-customer-routes from protocol bgp
set policy-options policy-statement customer-2-peer term isp-and-customer-routes from route-filter 172.16.32.0/21 or longer
set policy-options policy-statement customer-2-peer term isp-and-customer-routes then accept
set policy-options policy-statement customer-2-peer term default-route from route-filter 0.0.0.0/0 exact
set policy-options policy-statement customer-2-peer term default-route then accept
set policy-options policy-statement customer-2-peer term reject-all-other-routes then reject
set policy-options policy-statement if-upstream-routes-exist term only-certain-contributing-routes from route-filter 172.16.8.0/21 exact
set policy-options policy-statement if-upstream-routes-exist term only-certain-contributing-routes then accept
set policy-options policy-statement if-upstream-routes-exist term reject-all-other-routes then reject
set policy-options policy-statement internal-peers term statics from protocol static
set policy-options policy-statement internal-peers term statics then accept
set policy-options policy-statement internal-peers term next then next-hop self
set routing-options static route 172.16.36.0/24 reject
set routing-options static route 172.16.37.0/24 reject
set routing-options static route 172.16.38.0/24 reject
set routing-options static route 172.16.39.0/24 reject
set routing-options generate route 0.0.0.0/0 policy if-upstream-routes-exist
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 64510

Device Exchange-1

set interfaces fe-1/2/3 unit 0 description to_ISP-1
set interfaces fe-1/2/3 unit 0 family inet address 10.2.0.5/30
set interfaces fe-1/2/2 unit 0 description to_Exchange-2
set interfaces fe-1/2/2 unit 0 family inet address 10.3.0.42/30
set interfaces fe-1/2/1 unit 0 description to_Private-Peer-1
set interfaces lo0 unit 0 family inet address 192.168.0.6/32
set protocols bgp group ext type external
set protocols bgp group ext export send-static
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.2.0.6
set protocols bgp group ext neighbor 10.3.0.41 peer-as 64515
set policy-options policy-statement send-static from protocol static
set policy-options policy-statement send-static then accept
set routing-options static route 172.16.8.0/21 reject
set routing-options autonomous-system 64514

Device Exchange-2

set interfaces fe-1/2/0 unit 0 description to_ISP-2
set interfaces fe-1/2/0 unit 0 family inet address 10.3.0.1/30
set interfaces fe-1/2/2 unit 0 description to_Exchange-1
set interfaces fe-1/2/2 unit 0 family inet address 10.3.0.41/30
set interfaces fe-1/2/1 unit 0 description to_Private-Peer-2
set interfaces fe-1/2/1 unit 0 family inet address 10.3.0.49/30
set interfaces lo0 unit 0 family inet address 192.168.0.7/32
set protocols bgp group ext type external
set protocols bgp group ext export outbound-routes
set protocols bgp group ext neighbor 10.3.0.2 peer-as 64510
set protocols bgp group ext neighbor 10.3.0.50 peer-as 64516
set protocols bgp group ext neighbor 10.3.0.42 peer-as 64514
set policy-options policy-statement outbound-routes term statics from protocol static
set policy-options policy-statement outbound-routes term statics then accept
set routing-options autonomous-system 64515
set routing-options static route 172.16.16.0/21 reject

Device Private-Peer-1

set interfaces fe-1/2/2 unit 0 description to_ISP-1
set interfaces fe-1/2/2 unit 0 family inet address 10.2.0.1/30
set interfaces fe-1/2/1 unit 0 description to_Exchange-1
set interfaces fe-1/2/1 unit 0 family inet address 10.3.0.46/30
set interfaces lo0 unit 0 family inet address 192.168.0.4/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.2.0.2
set routing-options autonomous-system 64513

Device Private-Peer-2

set interfaces fe-1/2/3 unit 0 description to_ISP-2
set interfaces fe-1/2/3 unit 0 family inet address 10.3.0.5/30
set interfaces fe-1/2/0 unit 0 description to_Customer-1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.22/30
set interfaces fe-1/2/1 unit 0 description to_Exchange-2
set interfaces fe-1/2/1 unit 0 family inet address 10.3.0.50/30
set interfaces lo0 unit 0 family inet address 192.168.0.5/32
set protocols bgp group ext type external
set protocols bgp group ext export outbound-routes
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.3.0.6
set protocols bgp group to-64512 type external
set protocols bgp group to-64512 peer-as 64512
set protocols bgp group to-64512 neighbor 10.0.0.21
set protocols bgp group to-64512 export internal-routes
set protocols bgp group to-64515 type external
set protocols bgp group to-64515 export outbound-routes
set protocols bgp group to-64515 peer-as 64515
set protocols bgp group to-64515 neighbor 10.3.0.49
set policy-options policy-statement if-upstream-routes-exist term as-64515-routes from route-filter 172.16.16.0/21 exact
set policy-options policy-statement if-upstream-routes-exist term as-64515-routes then accept
set policy-options policy-statement if-upstream-routes-exist term reject-all-other-routes then reject
set policy-options policy-statement internal-routes term statics from protocol static
set policy-options policy-statement internal-routes term statics then accept
set policy-options policy-statement internal-routes term default-route from route-filter 0.0.0.0/0 exact
set policy-options policy-statement internal-routes term default-route then accept
set policy-options policy-statement internal-routes term reject-all-other-routes then reject
set policy-options policy-statement outbound-routes term statics from protocol static
set policy-options policy-statement outbound-routes term statics then accept
set policy-options policy-statement outbound-routes term allowed-bgp-routes from as-path my-own-routes
set policy-options policy-statement outbound-routes term allowed-bgp-routes from as-path AS64512-routes
set policy-options policy-statement outbound-routes term allowed-bgp-routes then accept
set policy-options policy-statement outbound-routes term no-transit then reject
set policy-options as-path my-own-routes "()"
set policy-options as-path AS64512-routes 64512
set routing-options static route 172.16.24.0/25 reject
set routing-options static route 172.16.24.128/25 reject
set routing-options static route 172.16.25.0/26 reject
set routing-options static route 172.16.25.64/26 reject
set routing-options generate route 0.0.0.0/0 policy if-upstream-routes-exist
set routing-options autonomous-system 64516

Configuring Device Customer-1

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

Device Customer-1 has multiple static routes configured to simulate customer routes. These routes are sent to the ISP.

To configure Device Customer-1:

1. Configure the device interfaces.

```
[edit interfaces]
user@Customer-1# set fe-1/2/3 unit 0 description to_ISP-3
user@Customer-1# set fe-1/2/3 unit 0 family inet address 10.1.0.6/30
user@Customer-1# set lo0 unit 0 family inet address 192.168.0.8/32
```

2. Configure the static routes.

```
[edit routing-options static]
user@Customer-1# set route 172.16.40.0/25 reject
user@Customer-1# set route 172.16.40.128/25 reject
user@Customer-1# set route 172.16.41.0/25 reject
user@Customer-1# set route 172.16.41.128/25 reject
```

3. Configure the policy to send static routes.

```
[edit policy-options policy-statement send-statics term static-routes]
user@Customer-1# set from protocol static
user@Customer-1# set then accept
```

4. Configure the external BGP (EBGP) connection to the ISP.

```
[edit protocols bgp group ext]
user@Customer-1# set type external
user@Customer-1# set export send-statics
user@Customer-1# set peer-as 64510
user@Customer-1# set neighbor 10.1.0.5
```

5. Configure the autonomous system (AS) number.

```
[edit routing-options]
```
user@Customer-1# set autonomous-system 64511

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@Customer-1# show interfaces
fe-1/2/1 {
 unit 0 {
 description to_ISP-3;
 family inet {
 address 10.1.0.6/30;
 }
 }
}

lo0 {
 unit 0 {
 family inet {
 address 192.168.0.8/32;
 }
 }
}

user@Customer-1# show protocols
bgp {
 group ext {
 type external;
 export send-statics;
 peer-as 64510;
 neighbor 10.1.0.5;
 }
}

user@Customer-1# show policy-options
policy-statement send-statics {
 term static-routes {
 from protocol static;
 then accept;
 }
}
```
If you are done configuring the device, enter **commit** from configuration mode.

## Configuring Device Customer-2

### Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

Device Customer-2 has two static routes configured to simulate customer routes. These routes are sent to the ISP. Customer-2 has a link to the ISP, as well as a link to AS 8000. This customer has requested specific customer routes from the ISP, as well as from AS 64516. Customer-2 wants to use the ISP for transit service to the Internet, and has requested a default route from the ISP.

To configure Device Customer-2:

1. Configure the device interfaces.

   ```
 [edit interfaces]
 user@Customer-2# set fe-1/2/1 unit 0 description to_ISP-3
 user@Customer-2# set fe-1/2/1 unit 0 family inet address 10.0.0.10/30
 user@Customer-2# set fe-1/2/0 unit 0 description to_Private-Peer-2
 user@Customer-2# set fe-1/2/0 unit 0 family inet address 10.0.0.21/30
 user@Customer-2# set lo0 unit 0 family inet address 192.168.0.9/32
   ```

2. Configure the static routes.

   ```
 [edit routing-options static]
 user@Customer-2# set route 172.16.40.0/25 reject
 user@Customer-2# set route 172.16.40.128/25 reject
 user@Customer-2# set route 172.16.41.0/25 reject
 user@Customer-2# set route 172.16.41.128/25 reject
 user@Customer-2# set route 172.16.44.0/26 reject
   ```

3. Configure the import routing policy.
The route with the highest local preference value is preferred. Routes from the ISP are preferred over the same routes from Device Private-Peer-2

```plaintext
[edit policy-options policy-statement inbound-routes]
user@Customer-2# set term AS64510-primary from protocol bgp
user@Customer-2# set term AS64510-primary from as-path AS64510-routes
user@Customer-2# set term AS64510-primary then local-preference 200
user@Customer-2# set term AS64510-primary then accept
[edit policy-options policy-statement inbound-routes]
user@Customer-2# set term AS64516-backup from protocol bgp
user@Customer-2# set term AS64516-backup from as-path AS64516-routes
user@Customer-2# set term AS64516-backup then local-preference 50
user@Customer-2# set term AS64516-backup then accept
[edit policy-options]
user@Customer-2# set as-path AS64510-routes "64510.*"
user@Customer-2# set as-path AS64516-routes "64516.*"
```

4. Configure the export routing policy.

```plaintext
[edit policy-options policy-statement outbound-routes]
user@Customer-2# set term statics from protocol static
user@Customer-2# set term statics then accept
user@Customer-2# set term internal-bgp-routes from protocol bgp
user@Customer-2# set term internal-bgp-routes from as-path my-own-routes
user@Customer-2# set term internal-bgp-routes then accept
user@Customer-2# set term no-transit then reject
[edit policy-options]
user@Customer-2# set as-path my-own-routes "()"
```

5. Configure the external BGP (EBGP) connection to the ISP and to Device Private-Peer-2.

```plaintext
[edit protocols bgp group ext]
user@Customer-2# set type external
user@Customer-2# set import inbound-routes
user@Customer-2# set export outbound-routes
user@Customer-2# set neighbor 10.0.0.9 peer-as 64510
user@Customer-2# set neighbor 10.0.0.22 peer-as 64516
```

6. Configure the autonomous system (AS) number.

```plaintext
[edit routing-options]
```
user@Customer-2# set autonomous-system 64512

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@Customer-2# show interfaces
fe-1/2/1 {
 unit 0 {
 description to_ISP-3;
 family inet {
 address 10.0.0.10/30;
 }
 }
}
fe-1/2/0 {
 unit 0 {
 description to_Private-Peer-2;
 family inet {
 address 10.0.0.21/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.9/32;
 }
 }
}

user@Customer-2# show protocols
bgp {
 group ext {
 type external;
 import inbound-routes;
 export outbound-routes;
 neighbor 10.0.0.9 {
 peer-as 64510;
 }
 neighbor 10.0.0.22 {
```
peer-as 64516;
}
}

user@Customer-2# show policy-options
policy-statement inbound-routes {
term AS64510-primary {
  from {
    protocol bgp;
    as-path AS64510-routes;
  }
  then {
    local-preference 200;
    accept;
  }
}
term AS64516-backup {
  from {
    protocol bgp;
    as-path AS64516-routes;
  }
  then {
    local-preference 50;
    accept;
  }
}
}

policy-statement outbound-routes {
term statics {
  from protocol static;
  then accept;
}
term internal-bgp-routes {
  from {
    protocol bgp;
    as-path my-own-routes;
  }
  then accept;
}
term no-transit {
  then reject;
}
}
as-path my-own-routes ";
as-path AS64510-routes "64510.*";
as-path AS64516-routes "64516.*";

user@Customer-2# show routing-options
static {
    route 172.16.44.0/26 reject;
    route 172.16.44.64/26 reject;
    route 172.16.44.128/26 reject;
    route 172.16.44.192/26 reject;
}
autonomous-system 64512;

If you are done configuring the device, enter commit from configuration mode.

Configuring Devices ISP-1 and ISP-2

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

Device ISP-1 and Device ISP-2 each have two policies configured: The private-peer policy and the exchange-peer policy. Because of their similar configurations, this example shows the step-by-step configuration only for Device ISP-2.

On Device ISP-2, the private-peer policy sends the ISP customer routes to Device Private-Peer-2. The policy accepts all local static routes (local Device ISP-2 customers) and all BGP routes in the 172.16.32.0/21 range (advertised by other ISP routers). These two policy terms represent the ISP customer routes. The final policy term rejects all other routes, which includes the entire Internet routing table sent by the exchange peers. These routes do not need to be sent to Device Private-Peer-2 for two reasons:

- The peer already maintains a connection to Device Exchange-2 in our example, so the routes are redundant.
- The private peer wants customer routes only. The private-peer policy accomplishes this goal. The exchange-peer policy sends routes to Device Exchange-2.

In the example, only two routes need to be sent to Device Exchange-2:

- The aggregate route that represents the AS 64510 routing space of 172.16.32.0/21. This route is configured as an aggregate route locally and is advertised by the exchange-peer policy.
- The address space assigned to Customer-2, 172.16.44.0/23. This smaller aggregate route needs to be sent to Device Exchange-2 because the customer is also attached to the AS 64516 peer (Device Private-Peer-2).

Sending these two routes to Device Exchange-2 allows other networks in the Internet to reach the customer through either the ISP or the private peer. If just the private peer were to advertise the /23 network while the ISP maintained only its /21 aggregate, all traffic destined for the customer would transit AS 64516 only. Because the customer also wants routes from the ISP, the 172.16.44.0/23 route is announced by Device ISP-2. Like the larger aggregate route, the 172.16.44.0/23 route is configured locally and is advertised by the exchange-peer policy. The final term in that policy rejects all routes, including the specific customer networks of the ISP, the customer routes from Device Private-Peer-1, the customer routes from Device Private-Peer-2, and the routing table from Device Exchange-1. In essence, this final term prevents the ISP from performing transit services for the Internet at large.

To configure Device ISP-2:

1. Configure the device interfaces.

```
[edit interfaces]
user@ISP-2# set fe-1/2/1 unit 0 description to_ISP-1
user@ISP-2# set fe-1/2/1 unit 0 family inet address 10.1.0.1/30
user@ISP-2# set fe-1/2/2 unit 0 description to_ISP-3
```
2. Configure the interior gateway protocol (IGP).

```
[edit protocols ospf area 0.0.0.0]
user@ISP-2# set interface fe-1/2/2.0
user@ISP-2# set interface fe-1/2/1.0
user@ISP-2# set interface lo0.0 passive
```

3. Configure the static and aggregate routes.

```
[edit routing-options static]
user@ISP-2# set route 172.16.34.0/24 reject
user@ISP-2# set route 172.16.35.0/24 reject
[edit routing-options aggregate]
user@ISP-2# set route 172.16.44.0/23
user@ISP-2# set route 172.16.32.0/21
```

4. Configure the routing policies for the exchange peers.

```
[edit policy-options policy-statement exchange-peer]
user@ISP-2# set term AS64510-Aggregate from protocol aggregate
user@ISP-2# set term AS64510-Aggregate from route-filter 172.16.32.0/21 exact
user@ISP-2# set term AS64510-Aggregate then accept
user@ISP-2# set term Customer-2-Aggregate from protocol aggregate
user@ISP-2# set term Customer-2-Aggregate from route-filter 172.16.44.0/23 exact
user@ISP-2# set term Customer-2-Aggregate then accept
user@ISP-2# set term reject-all-other-routes then reject
```

5. Configure the routing policies for the internal peers.

```
[edit policy-options policy-statement internal-peers]
user@ISP-2# set term statics from protocol static
user@ISP-2# set term statics then accept
user@ISP-2# set term next-hop-self then next-hop self
```

6. Configure the routing policies for the private peer.

```plaintext
[edit policy-options policy-statement private-peer]
user@ISP-2# set term statics from protocol static
user@ISP-2# set term statics then accept
user@ISP-2# set term isp-and-customer-routes from protocol bgp
user@ISP-2# set term isp-and-customer-routes from route-filter 172.16.32.0/21 or longer
user@ISP-2# set term isp-and-customer-routes then accept
user@ISP-2# set term reject-all then reject
```

7. Configure the internal BGP (IBGP) connections to the other ISP devices.

```plaintext
[edit protocols bgp group int]
user@ISP-2# set type internal
user@ISP-2# set local-address 192.168.0.2
user@ISP-2# set export internal-peers
user@ISP-2# set neighbor 192.168.0.1
user@ISP-2# set neighbor 192.168.0.3
```

8. Configure the EBGP connections to the exchange peer and the private peer.

```plaintext
[edit protocols bgp group AS-64516]
user@ISP-2# set type external
user@ISP-2# set export private-peer
user@ISP-2# set peer-as 64516
user@ISP-2# set neighbor 10.3.0.5
[edit protocols bgp group AS-64515]
user@ISP-2# set type external
user@ISP-2# set export exchange-peer
user@ISP-2# set peer-as 64515
user@ISP-2# set neighbor 10.3.0.1
```

9. Configure the autonomous system (AS) number and the router ID.

```plaintext
[edit routing-options]
user@ISP-2# set router-id 192.168.0.2
user@ISP-2# set autonomous-system 64510
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@ISP-2# show interfaces
fe-1/2/0 {
 unit 0{
 description to_Exchange-2;
 family inet {
 address 10.3.0.2/30;
 }
 }
}
fe-1/2/1 {
 unit 0{
 description to_ISP-1;
 family inet {
 address 10.1.0.1/30;
 }
 }
}
fe-1/2/2 {
 unit 0 {
 description to_ISP-3;
 family inet {
 address 10.0.0.6/30;
 }
 }
}
fe-1/2/3 {
 unit 0 {
 description to_Private-Peer-2;
 family inet {
 address 10.3.0.6/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.2/32;
 }
 }
}
```
user@ISP-2# show protocols
bgp {
  group int {
    type internal;
    local-address 192.168.0.2;
    export internal-peers;
    neighbor 192.168.0.1;
    neighbor 192.168.0.3;
  }
  group AS-64516 {
    type external;
    export private-peer;
    peer-as 64516;
    neighbor 10.3.0.5;
  }
  group AS-64515 {
    type external;
    export exchange-peer;
    peer-as 64515;
    neighbor 10.3.0.1;
  }
}
ospf {
  area 0.0.0.0 {
    interface fe-1/2/2.0;
    interface fe-1/2/1.0;
    interface lo0.0 {
      passive;
    }
  }
}

user@ISP-2# show policy-options
policy-statement exchange-peer {
  term AS64510-Aggregate {
    from {
      protocol aggregate;
      route-filter 172.16.32.0/21 exact;
    }
    then accept;
  }
  term Customer-2-Aggregate {
    from {
      protocol aggregate;
    }
  }
}
route-filter 172.16.44.0/23 exact;
}
then accept;
}
term reject-all-other-routes {
then reject;
}
}
policy-statement internal-peers {
term statics {
from protocol static;
then accept;
}
term next-hop-self {
then {
next-hop self;
}
}
}
policy-statement private-peer {
term statics {
from protocol static;
then accept;
}
term isp-and-customer-routes {
from {
protocol bgp;
route-filter 172.16.32.0/21 or longer;
}
then accept;
}
term reject-all {
then reject;
}
}
}

user@ISP-2# show routing-options
static {
route 172.16.34.0/24 reject;
route 172.16.35.0/24 reject;
}
aggregate {
route 172.16.44.0/23;
route 172.16.32.0/21;
If you are done configuring the device, enter **commit** from configuration mode.

**Configuring Device ISP-3**

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the **CLI User Guide**.

On Device ISP-3, a separate policy is in place for each customer. The default route for Customer-1 is being sent by the **customer-1-peer** policy. This policy finds the 0.0.0.0/0 default route in inet.0 and accepts it. The policy also rejects all other routes, thereby not sending all BGP routes on the ISP router. The **customer-2-peer** policy is for Customer-2 and contains the same policy terms, which also send the default route and no other transit BGP routes. The additional terms in the **customer-2-peer** policy send the ISP customer routes to Customer-2. Because there are local static routes on Device ISP-3 that represent local customers, these routes are sent as well as all other internal routes announced to the local router by the other ISP routers.

If the upstream route from Device Exchange-1 (172.16.8.0/21) is present, Device ISP-3 generates a default route.

To configure Device ISP-3:

1. Configure the device interfaces.

   ```
 [edit interfaces]
 user@ISP-3# set fe-1/2/0 unit 0 description to_ISP-1
 user@ISP-3# set fe-1/2/0 unit 0 family inet address 10.0.0.1/30
 user@ISP-3# set fe-1/2/2 unit 0 description to_ISP-2
 user@ISP-3# set fe-1/2/2 unit 0 family inet address 10.0.0.5/30
 user@ISP-3# set fe-1/2/3 unit 0 description to_Customer-1
 user@ISP-3# set fe-1/2/3 unit 0 family inet address 10.1.0.5/30
 user@ISP-3# set fe-1/2/1 unit 0 description to_Customer-2
 user@ISP-3# set fe-1/2/1 unit 0 family inet address 10.0.0.9/30
 user@ISP-3# set lo0 unit 0 family inet address 192.168.0.3/32
   ```

2. Configure the interior gateway protocol (IGP).

   ```
 [edit protocols ospf area 0.0.0.0]
   ```
3. Configure the static routes.

```
[edit routing-options static]
user@ISP-3# set route 172.16.36.0/24 reject
user@ISP-3# set route 172.16.37.0/24 reject
user@ISP-3# set route 172.16.38.0/24 reject
user@ISP-3# set route 172.16.39.0/24 reject
```

4. Configure a routing policy that generates a default static route only if a certain upstream route exists.

```
[edit policy-options policy-statement if-upstream-routes-exist term only-certain-contributing-routes]
user@ISP-3# set from route-filter 172.16.8.0/21 exact
user@ISP-3# set then accept
[edit policy-options policy-statement if-upstream-routes-exist]
user@ISP-3# set term reject-all-other-routes then reject
[edit routing-options generate route 0.0.0.0/0]
user@ISP-3# set policy if-upstream-routes-exist
```

5. Configure the routing policy for Customer-1.

```
[edit policy-options policy-statement customer-1-peer]
user@ISP-3# set term default-route from route-filter 0.0.0.0/0 exact
user@ISP-3# set term default-route then accept
user@ISP-3# set term reject-all-other-routes then reject
```


```
[edit policy-options policy-statement customer-2-peer]
user@ISP-3# set term statics from protocol static
user@ISP-3# set term statics then accept
user@ISP-3# set term isp-and-customer-routes from protocol bgp
user@ISP-3# set term isp-and-customer-routes from route-filter 172.16.32.0/21 orlonger
user@ISP-3# set term isp-and-customer-routes then accept
user@ISP-3# set term default-route from route-filter 0.0.0.0/0 exact
user@ISP-3# set term default-route then accept
user@ISP-3# set term reject-all-other-routes then reject
```
7. Configure the routing policies for the internal peers.

```
[edit policy-options policy-statement internal-peers]
user@ISP-3# set term statics from protocol static
user@ISP-3# set term statics then accept
user@ISP-3# set term next then next-hop self
```

8. Configure the internal BGP (IBGP) connections to the other ISP devices.

```
[edit protocols bgp group int]
user@ISP-3# set type internal
user@ISP-3# set local-address 192.168.0.3
user@ISP-3# set export internal-peers
user@ISP-3# set neighbor 192.168.0.1
user@ISP-3# set neighbor 192.168.0.2
```

9. Configure the EBGP connections to the customer peers.

```
[edit protocols bgp group to_64511]
user@ISP-3# set type external
user@ISP-3# set export customer-1-peer
user@ISP-3# set neighbor 10.1.0.6 peer-as 64511
[edit protocols bgp group to_64512]
user@ISP-3# set type external
user@ISP-3# set export customer-2-peer
user@ISP-3# set neighbor 10.0.0.10 peer-as 64512
```

10. Configure the autonomous system (AS) number and the router ID.

```
[edit routing-options]
user@ISP-3# set router-id 192.168.0.3
user@ISP-3# set autonomous-system 64510
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@ISP-3# show interfaces
```
fe-1/2/0 {
    unit 0 {
        description to_ISP-1;
        family inet {
            address 10.0.0.1/30;
        }
    }
}

fe-1/2/1 {
    unit 0 {
        description to_Customer-2;
        family inet {
            address 10.0.0.9/30;
        }
    }
}

fe-1/2/2 {
    unit 0 {
        description to_ISP-2;
        family inet {
            address 10.0.0.5/30;
        }
    }
}

fe-1/2/3 {
    unit 0 {
        description to_Customer-1;
        family inet {
            address 10.1.0.5/30;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 192.168.0.3/32;
        }
    }
}

user@ISP-3# show protocols
bgp {
    group int {
        type internal;
    }
}
local-address 192.168.0.3;
export internal-peers;
neighbor 192.168.0.1;
neighbor 192.168.0.2;
}
group to_64511 {
type external;
export customer-1-peer;
neighbor 10.1.0.6 {
    peer-as 64511;
}
}
group to_64512 {
type external;
export customer-2-peer;
neighbor 10.0.0.10 {
    peer-as 64512;
}
}
}
ospf {
area 0.0.0.0 {
    interface fe-1/2/0.0;
    interface fe-1/2/2.0;
    interface lo0.0 {
        passive;
    }
}
}

user@ISP-3# show policy-options
policy-statement customer-1-peer {
term default-route {
    from {
        route-filter 0.0.0.0/0 exact;
    }
    then accept;
}
term reject-all-other-routes {
    then reject;
}
}
policy-statement customer-2-peer {
term statics {

from protocol static;
    then accept;
} 

term isp-and-customer-routes {
    from {
        protocol bgp;
        route-filter 172.16.32.0/21 or longer;
    }
    then accept;
}

term default-route {
    from {
        route-filter 0.0.0.0/0 exact;
    }
    then accept;
}

term reject-all-other-routes {
    then reject;
}

} 

policy-statement if-upstream-routes-exist {
    term only-certain-contributing-routes {
        from {
            route-filter 172.16.8.0/21 exact;
        }
        then accept;
    }
    term reject-all-other-routes {
        then reject;
    }
}

} 

policy-statement internal-peers {
    term statics {
        from protocol static;
        then accept;
    }
    term next {
        then {
            next-hop self;
        }
    }
}
static {
    route 172.16.36.0/24 reject;
    route 172.16.37.0/24 reject;
    route 172.16.38.0/24 reject;
    route 172.16.39.0/24 reject;
}
generate {
    route 0.0.0.0/0 policy if-upstream-routes-exist;
}
router-id 192.168.0.3;
autonomous-system 64510;

If you are done configuring the device, enter `commit` from configuration mode.

**Configuring Device Exchange-2**

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

Device Exchange-2 exchanges all BGP routes with all BGP peers. The outbound-routes policy for Device Exchange-2 advertises locally defined static routes using BGP. The exclusion of a final `then reject` term causes the default BGP export policy to take effect, which is to send all BGP routes to all external BGP peers.

To configure Device Exchange-2:

1. Configure the device interfaces.

   ```
 [edit interfaces]
 user@Exchange-2# set fe-1/2/0 unit 0 description to_ISP-2
 user@Exchange-2# set fe-1/2/0 unit 0 family inet address 10.3.0.1/30
 user@Exchange-2# set fe-1/2/2 unit 0 description to_Exchange-1
 user@Exchange-2# set fe-1/2/2 unit 0 family inet address 10.3.0.41/30
 user@Exchange-2# set fe-1/2/1 unit 0 description to_Private-Peer-2
 user@Exchange-2# set fe-1/2/1 unit 0 family inet address 10.3.0.49/30
 user@Exchange-2# set lo0 unit 0 family inet address 192.168.0.7/32
   ```

2. Configure the static routes.

   ```
 [edit routing-options static]
 set route 172.16.16.0/21 reject
   ```
3. Configure a routing policy that generates a default static route only if certain internal routes exist.

   [edit policy-options policy-statement outbound-routes term statics]
   user@Exchange-2# set from protocol static
   user@Exchange-2# set then accept

4. Configure the EBGP connections to the customer peers.

   [edit protocols bgp group ext]
   user@Exchange-2# set type external
   user@Exchange-2# set export outbound-routes
   user@Exchange-2# set neighbor 10.3.0.2 peer-as 64510
   user@Exchange-2# set neighbor 10.3.0.50 peer-as 64516
   user@Exchange-2# set neighbor 10.3.0.42 peer-as 64514

5. Configure the autonomous system (AS) number.

   [edit routing-options]
   user@Exchange-2# set autonomous-system 64515

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@Exchange-2 show interfaces
fe-1/2/0 {
    unit 0 {
        description to_ISP-2;
        family inet {
            address 10.3.0.1/30;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        description to_Private-Peer-2;
        family inet {
            address 10.3.0.49/30;
        }
    }
}
user@Exchange-2# show protocols
bgp {
    group ext {
        type external;
        export outbound-routes;
        neighbor 10.3.0.2 {
            peer-as 64510;
        }
        neighbor 10.3.0.50 {
            peer-as 64516;
        }
        neighbor 10.3.0.42 {
            peer-as 64514;
        }
    }
}

user@Exchange-2# show policy-options
policy-statement outbound-routes {
    term statics {
        from protocol static;
        then accept;
    }
}


If you are done configuring the device, enter **commit** from configuration mode.

**Configuring Device Private-Peer-2**

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

Device Private-Peer-2 performs two main functions:

- Advertises routes local to AS 64516 to both the exchange peers and the ISP routers. The **outbound-routes** policy advertises the local static routes (that is, customers) on the router, and also advertises all routes learned by BGP that originated in either AS 64516 or AS 64512. These routes include other AS 64516 customer routes in addition to the AS 64512 customer. The AS routes are identified by an AS path regular expression match criteria in the policy.

- Advertises the 0.0.0.0/0 default route to the AS 64512 customer router. To accomplish this, the private peer creates a generated route for 0.0.0.0/0 locally on the router. This generated route is further assigned a policy called **if-upstream-routes-exist**, which allows only certain routes to contribute to the generated route, making it an active route in the routing table. Once the route is active, it can be sent to the AS 64512 router using BGP and the configured policies. The **if-upstream-routes-exist** policy accepts only the 172.16.32.0/21 route from Device Exchange-2, and rejects all other routes. If the 172.16.32.0/21 route is withdrawn by the exchange peer, the private peer loses the 0.0.0.0/0 default route and withdraws the default route from the AS 64512 customer router.

To configure Device Private-Peer-2:

1. Configure the device interfaces.

```
[edit interfaces]
user@Private-Peer-2# set fe-1/2/3 unit 0 description to_ISP-2
user@Private-Peer-2# set fe-1/2/3 unit 0 family inet address 10.3.0.5/30
user@Private-Peer-2# set fe-1/2/0 unit 0 description to_Customer-1
user@Private-Peer-2# set fe-1/2/0 unit 0 family inet address 10.0.0.22/30
user@Private-Peer-2# set fe-1/2/1 unit 0 description to_Exchange-2
user@Private-Peer-2# set fe-1/2/1 unit 0 family inet address 10.3.0.50/30
user@Private-Peer-2# set lo0 unit 0 family inet address 192.168.0.5/32
```
2. Configure the static routes.

   [edit routing-options static]
   user@Private-Peer-2# set route 172.16.24.0/25 reject
   user@Private-Peer-2# set route 172.16.24.128/25 reject
   user@Private-Peer-2# set route 172.16.25.0/26 reject
   user@Private-Peer-2# set route 172.16.25.64/26 reject

3. Configure a routing policy that generates a default static route only if certain internal routes exist.

   [edit policy-options policy-statement if-upstream-routes-exist]
   user@Private-Peer-2# set term as-64515-routes from route-filter 172.16.16.0/21 exact
   user@Private-Peer-2# set term as-64515-routes then accept
   user@Private-Peer-2# set term reject-all-other-routes then reject
   [edit routing-options generate route 0.0.0.0/0]
   user@Private-Peer-2# set policy if-upstream-routes-exist

4. Configure the routing policy that advertises local static routes and the default route.

   [edit policy-options policy-statement internal-routes]
   user@Private-Peer-2# set term statics from protocol static
   user@Private-Peer-2# set term statics then accept
   user@Private-Peer-2# set term default-route from route-filter 0.0.0.0/0 exact
   user@Private-Peer-2# set term default-route then accept
   user@Private-Peer-2# set term reject-all-other-routes then reject

5. Configure the routing policy that advertises local customer routes.

   [edit policy-options policy-statement outbound-routes]
   user@Private-Peer-2# set term statics from protocol static
   user@Private-Peer-2# set term statics then accept
   user@Private-Peer-2# set term allowed-bgp-routes from as-path my-own-routes
   user@Private-Peer-2# set term allowed-bgp-routes from as-path AS64512-routes
   user@Private-Peer-2# set term allowed-bgp-routes then accept
   user@Private-Peer-2# set term no-transit then reject
   [edit policy-options]
   user@Private-Peer-2# set as-path my-own-routes "()"
   user@Private-Peer-2# set as-path AS64512-routes 64512

[edit protocols bgp group to-64512]
user@Private-Peer-2# set type external
user@Private-Peer-2# set export internal-routes
user@Private-Peer-2# set peer-as 64512
user@Private-Peer-2# set neighbor 10.0.0.21

7. Configure the EBGP connection to Device Exchange-2.

[edit protocols bgp group to-64515]
user@Private-Peer-2# set type external
user@Private-Peer-2# set export outbound-routes
user@Private-Peer-2# set peer-as 64515
user@Private-Peer-2# set neighbor 10.3.0.49

8. Configure the EBGP connections to the ISP.

[edit protocols bgp group ext]
user@Private-Peer-2# set type external
user@Private-Peer-2# set export outbound-routes
user@Private-Peer-2# set peer-as 64510
user@Private-Peer-2# set neighbor 10.3.0.6

9. Configure the autonomous system (AS) number.

[edit routing-options]
user@Private-Peer-2# set autonomous-system 64516

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@Private-Peer-2# show interfaces
fe-1/2/0 {
    unit 0 {
        description to_Customer-1;
        family inet {
            address 10.0.0.22/30;
        }
    }
}
user@Private-Peer-2# show protocols
bgp {
  group ext {
    type external;
    export outbound-routes;
    peer-as 64510;
    neighbor 10.3.0.6;
  }
  group to-64512 {
    type external;
    export internal-routes;
    peer-as 64512;
    neighbor 10.0.0.21;
  }
  group to-64515 {
    type external;
    export outbound-routes;
    peer-as 64515;
  }
}
neighbor 10.3.0.49:
}
}

user@Private-Peer-2# show policy-options
policy-statement if-upstream-routes-exist {
    term as-64515-routes {
        from {
            route-filter 172.16.16.0/21 exact;
        }
        then accept;
    }
    term reject-all-other-routes {
        then reject;
    }
}

policy-statement internal-routes {
    term statics {
        from protocol static;
        then accept;
    }
    term default-route {
        from {
            route-filter 0.0.0.0/0 exact;
        }
        then accept;
    }
    term reject-all-other-routes {
        then reject;
    }
}

policy-statement outbound-routes {
    term statics {
        from protocol static;
        then accept;
    }
    term allowed-bgp-routes {
        from as-path [ my-own-routes AS64512-routes ];
        then accept;
    }
    term no-transit {
        then reject;
    }
}
as-path my-own-routes "()";
as-path AS64512-routes 64512;

user@Private-Peer-2# show routing-options
static {
    route 172.16.24.0/25 reject;
    route 172.16.24.128/25 reject;
    route 172.16.25.0/26 reject;
    route 172.16.25.64/26 reject;
}
generate {
    route 0.0.0.0/0 policy if-upstream-routes-exist;
}
autonomous-system 64516;

If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the Routes on Device Customer-1 | 164
- Verifying the Routes on Device Customer-2 | 165
- Verifying the Routes on Device ISP-1 | 167
- Verifying the Routes on Device ISP-2 | 171
- Verifying the Routes on Device ISP-3 | 175
- Verifying the Routes on Device Exchange-1 | 177
- Verifying the Routes on Device Exchange-2 | 179
- Verifying the Routes on Device Private-Peer-1 | 181
- Verifying the Routes on Device Private-Peer-2 | 182

Confirm that the configuration is working properly.

**Verifying the Routes on Device Customer-1**

**Purpose**
On Device Customer-1, check the routes in the routing table.
Action

user@Customer-1> show route

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[BGP/170] 00:09:25, localpref 100
    AS path: 64510 I, validation-state: unverified
    > to 10.1.0.5 via fe-1/2/3.0
10.1.0.4/30        *[Direct/0] 23:50:20
    > via fe-1/2/3.0
10.1.0.6/32        *[Local/0] 5d 21:56:47
    Local via fe-1/2/3.0
172.16.40.0/25     *[Static/5] 22:59:04
    Reject
    Reject
172.16.41.0/25     *[Static/5] 22:59:04
    Reject
    Reject
192.168.0.8/32     *[Direct/0] 5d 21:25:45
    > via lo0.0

Meaning

Device Customer-1 has its four static routes, and it has learned the default route through BGP.

Verifying the Routes on Device Customer-2

Purpose

On Device Customer-2, check the routes in the routing table.

Action

user@Customer-2> show route

inet.0: 22 destinations, 23 routes (22 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[BGP/170] 00:10:35, localpref 200
    AS path: 64510 I, validation-state: unverified
    > to 10.0.0.9 via fe-1/2/0.10
[BGP/170] 04:58:09, localpref 50  
  AS path: 64516 I, validation-state: unverified  
  > to 10.0.0.22 via fe-1/2/0.0  
10.0.0.8/30 *[Direct/0] 23:51:29  
  > via fe-1/2/0.10  
10.0.0.10/32 *[Local/0] 23:52:49  
  Local via fe-1/2/0.10  
10.0.0.20/30 *[Direct/0] 23:52:49  
  > via fe-1/2/0.0  
10.0.0.21/32 *[Local/0] 23:52:49  
  Local via fe-1/2/0.0  
172.16.24.0/25 *[BGP/170] 04:58:09, localpref 50  
  AS path: 64516 I, validation-state: unverified  
  > to 10.0.0.22 via fe-1/2/0.0  
  AS path: 64516 I, validation-state: unverified  
  > to 10.0.0.22 via fe-1/2/0.0  
172.16.25.0/26 *[BGP/170] 04:58:09, localpref 50  
  AS path: 64516 I, validation-state: unverified  
  > to 10.0.0.22 via fe-1/2/0.0  
172.16.25.64/26 *[BGP/170] 04:58:09, localpref 50  
  AS path: 64516 I, validation-state: unverified  
  > to 10.0.0.22 via fe-1/2/0.0  
172.16.32.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10  
172.16.33.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10  
172.16.34.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10  
172.16.35.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10  
172.16.36.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10  
172.16.37.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10  
172.16.38.0/24 *[BGP/170] 22:38:47, localpref 200  
  AS path: 64510 I, validation-state: unverified  
  > to 10.0.0.9 via fe-1/2/0.10
                        AS path: 64510 I, validation-state: unverified
                        > to 10.0.0.9 via fe-1/2/0.10
172.16.44.0/26       *[Static/5] 22:57:28
                        Reject
172.16.44.64/26      *[Static/5] 22:57:28
                        Reject
172.16.44.128/26     *[Static/5] 22:57:28
                        Reject
172.16.44.192/26     *[Static/5] 22:57:28
                        Reject
192.168.0.9/32       *[Direct/0] 23:52:49
                        > via lo0.0

Meaning
Device Customer-2 has learned the default route through its session with the ISP and also through its session with the private peer. The route learned from the ISP is preferred because it has a higher local preference.

Verifying the Routes on Device ISP-1

Purpose
On Device ISP-1, check the routes in the routing table.

Action

user@ISP-1> show route

inet.0: 42 destinations, 53 routes (42 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

  0.0.0.0/0       *[BGP/170] 22:44:26, localpref 100, from 192.168.0.2
                  AS path: 64516 I, validation-state: unverified
                  > to 10.1.0.1 via fe-1/2/1.0
  10.0.0.0/30    *[Direct/0] 23:52:01
                  > via fe-1/2/0.0
  10.0.0.2/32    *[Local/0] 23:52:01
                  Local via fe-1/2/0.0
  10.0.0.4/30    *[OSPF/10] 23:51:06, metric 2
                  to 10.1.0.1 via fe-1/2/1.0
                  > to 10.0.0.1 via fe-1/2/0.0
  10.0.0.20/30   *[BGP/170] 23:50:55, localpref 100, from 192.168.0.2
                  AS path: 64516 I, validation-state: unverified
<table>
<thead>
<tr>
<th>Network</th>
<th>Action</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.0.0/30</td>
<td>*[Direct/0] 23:52:01</td>
<td>&gt; to 10.2.0.5 via fe-1/2/3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS path: 64514 64515 64516 I, validation-state: unverified</td>
</tr>
<tr>
<td>10.1.0.2/32</td>
<td>*[Local/0] 23:52:01</td>
<td>Local via fe-1/2/1.0</td>
</tr>
<tr>
<td>10.2.0.0/30</td>
<td>*[Direct/0] 23:52:01</td>
<td>&gt; via fe-1/2/2.0</td>
</tr>
<tr>
<td>10.2.0.2/32</td>
<td>*[Local/0] 23:52:01</td>
<td>Local via fe-1/2/2.0</td>
</tr>
<tr>
<td>10.2.0.4/30</td>
<td>*[Direct/0] 23:52:00</td>
<td>&gt; via fe-1/2/3.0</td>
</tr>
<tr>
<td>10.2.0.6/32</td>
<td>*[Local/0] 23:52:00</td>
<td>Local via fe-1/2/3.0</td>
</tr>
<tr>
<td>10.3.0.4/30</td>
<td>*[BGP/170] 23:51:28, localpref 100</td>
<td>&gt; to 10.2.0.5 via fe-1/2/3.0</td>
</tr>
<tr>
<td>10.3.0.48/30</td>
<td>*[BGP/170] 23:50:55, localpref 100, from 192.168.0.2</td>
<td>AS path: 64516 I, validation-state: unverified</td>
</tr>
<tr>
<td>172.16.8.0/21</td>
<td>*[BGP/170] 00:11:08, localpref 100</td>
<td>&gt; to 10.1.0.1 via fe-1/2/1.0</td>
</tr>
<tr>
<td>172.16.16.0/21</td>
<td>*[BGP/170] 02:02:10, localpref 100, from 192.168.0.2</td>
<td>AS path: 64515 I, validation-state: unverified</td>
</tr>
<tr>
<td>172.16.25.0/26</td>
<td>*[BGP/170] 23:06:33, localpref 100, from 192.168.0.2</td>
<td>AS path: 64514 64515 64516 I, validation-state: unverified</td>
</tr>
</tbody>
</table>
AS path: 64516 I, validation-state: unverified
> to 10.1.0.1 via fe-1/2/1.0
[BGP/170] 23:06:33, localpref 100
AS path: 64514 64515 64516 I, validation-state: unverified
> to 10.2.0.5 via fe-1/2/3.0

172.16.25.64/26
* [BGP/170] 23:06:33, localpref 100, from 192.168.0.2
AS path: 64514 I, validation-state: unverified
> to 10.1.0.1 via fe-1/2/1.0
[BGP/170] 23:06:33, localpref 100
AS path: 64514 64515 64516 I, validation-state: unverified
> to 10.2.0.5 via fe-1/2/3.0

172.16.32.0/21
* [Aggregate/130] 22:44:27
Reject

172.16.32.0/24
* [Aggregate/130] 22:44:27
Reject

172.16.33.0/24
* [Aggregate/130] 22:44:27
Reject

172.16.34.0/24
* [BGP/170] 22:39:20, localpref 100, from 192.168.0.2
AS path: I, validation-state: unverified
> to 10.1.0.1 via fe-1/2/1.0

172.16.35.0/24
* [BGP/170] 22:39:20, localpref 100, from 192.168.0.2
AS path: I, validation-state: unverified
> to 10.1.0.1 via fe-1/2/1.0

172.16.36.0/24
* [BGP/170] 22:39:20, localpref 100, from 192.168.0.3
AS path: I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.37.0/24
* [BGP/170] 22:39:20, localpref 100, from 192.168.0.3
AS path: I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.38.0/24
* [BGP/170] 22:39:20, localpref 100, from 192.168.0.3
AS path: I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.39.0/24
* [BGP/170] 22:39:20, localpref 100, from 192.168.0.3
AS path: I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.40.0/22
* [Aggregate/130] 22:44:27
Reject

172.16.40.0/25
* [BGP/170] 23:00:47, localpref 100, from 192.168.0.3
AS path: 64511 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.40.128/25
* [BGP/170] 23:00:47, localpref 100, from 192.168.0.3
AS path: 64511 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.41.0/25
* [BGP/170] 23:00:47, localpref 100, from 192.168.0.3
AS path: 64511 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.41.128/25  *[BGP/170] 23:00:47, localpref 100, from 192.168.0.3
AS path: 64511 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0

172.16.44.0/26  *[BGP/170] 22:58:01, localpref 100, from 192.168.0.3
AS path: 64512 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0
[BGP/170] 22:58:01, localpref 100
AS path: 64514 64515 64516 64512 I, validation-state: unverified
> to 10.2.0.5 via fe-1/2/3.0

172.16.44.64/26  *[BGP/170] 22:58:01, localpref 100, from 192.168.0.3
AS path: 64512 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0
[BGP/170] 22:58:01, localpref 100
AS path: 64514 64515 64516 64512 I, validation-state: unverified
> to 10.2.0.5 via fe-1/2/3.0

172.16.44.128/26  *[BGP/170] 22:58:01, localpref 100, from 192.168.0.3
AS path: 64512 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0
[BGP/170] 22:58:01, localpref 100
AS path: 64514 64515 64516 64512 I, validation-state: unverified
> to 10.2.0.5 via fe-1/2/3.0

172.16.44.192/26  *[BGP/170] 22:58:01, localpref 100, from 192.168.0.3
AS path: 64512 I, validation-state: unverified
> to 10.0.0.1 via fe-1/2/0.0
[BGP/170] 22:58:01, localpref 100
AS path: 64514 64515 64516 64512 I, validation-state: unverified
> to 10.2.0.5 via fe-1/2/3.0

192.168.0.1/32  *[Direct/0] 23:52:01
> via lo0.0

192.168.0.2/32  *[OSPF/10] 23:51:06, metric 1
> to 10.1.0.1 via fe-1/2/1.0

192.168.0.3/32  *[OSPF/10] 23:51:06, metric 1
> to 10.0.0.1 via fe-1/2/0.0

192.168.0.5/32  *[BGP/170] 23:50:55, localpref 100, from 192.168.0.2
AS path: 64516 I, validation-state: unverified
> to 10.1.0.1 via fe-1/2/1.0
[BGP/170] 23:51:28, localpref 100
AS path: 64514 64515 64516 I, validation-state: unverified
Verifying the Routes on Device ISP-2

Purpose
On Device ISP-2, check the routes in the routing table.

Action

user@ISP-2> show route

inet.0: 41 destinations, 59 routes (41 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0       *[BGP/170] 22:45:44, localpref 100
                 AS path: 64516 I, validation-state: unverified
                 > to 10.3.0.5 via fe-1/2/3.0
10.0.0.0/30     *[OSPF/10] 23:52:25, metric 2
                 to 10.0.0.5 via fe-1/2/2.0
                 > to 10.1.0.2 via fe-1/2/1.0
10.0.0.4/30     *[Direct/0] 23:53:21
                 > via fe-1/2/2.0
10.0.0.6/32     *[Local/0] 23:53:23
                 Local via fe-1/2/2.0
10.0.0.20/30    *[BGP/170] 23:53:11, localpref 100
                 AS path: 64516 I, validation-state: unverified
                 > to 10.3.0.5 via fe-1/2/3.0
                 [BGP/170] 23:53:09, localpref 100
                 AS path: 64515 64516 I, validation-state: unverified
                 > to 10.3.0.1 via fe-1/2/0.0
10.1.0.0/30     *[Direct/0] 23:53:19
                 > via fe-1/2/1.0
10.1.0.1/32     *[Local/0] 23:53:23
                 Local via fe-1/2/1.0
10.3.0.0/30     *[Direct/0] 23:53:22
                 > via fe-1/2/0.0
10.3.0.2/32     *[Local/0] 23:53:23
                 Local via fe-1/2/0.0
10.3.0.4/30     *[Direct/0] 23:53:23
                 > via fe-1/2/3.0
                 [BGP/170] 23:53:11, localpref 100
AS path: 64516 I, validation-state: unverified
> to 10.3.0.5 via fe-1/2/3.0
[BGP/170] 23:53:09, localpref 100

AS path: 64515 64516 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0
[BGP/170] 23:52:13, localpref 100, from 192.168.0.1

AS path: 64514 64515 64516 I, validation-state: unverified
> to 10.1.0.2 via fe-1/2/1.0

10.3.0.6/32  *[Local/0] 23:53:23
Local via fe-1/2/3.0

10.3.0.48/30  *[BGP/170] 23:53:11, localpref 100
AS path: 64516 I, validation-state: unverified
> to 10.3.0.5 via fe-1/2/3.0

172.16.8.0/21  *[BGP/170] 00:12:26, localpref 100, from 192.168.0.1
AS path: 64514 I, validation-state: unverified
> to 10.1.0.2 via fe-1/2/1.0
[BGP/170] 00:12:26, localpref 100
AS path: 64515 64514 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0

172.16.16.0/21  *[BGP/170] 02:03:28, localpref 100
AS path: 64515 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0

172.16.24.0/25  *[BGP/170] 23:07:51, localpref 100
AS path: 64516 I, validation-state: unverified
> to 10.3.0.5 via fe-1/2/3.0
[BGP/170] 23:07:51, localpref 100
AS path: 64515 64516 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0

AS path: 64516 I, validation-state: unverified
> to 10.3.0.5 via fe-1/2/3.0
[BGP/170] 23:07:51, localpref 100
AS path: 64515 64516 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0

172.16.25.0/26  *[BGP/170] 23:07:51, localpref 100
AS path: 64516 I, validation-state: unverified
> to 10.3.0.5 via fe-1/2/3.0
[BGP/170] 23:07:51, localpref 100
AS path: 64515 64516 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0

172.16.25.64/26  *[BGP/170] 23:07:51, localpref 100
AS path: 64516 I, validation-state: unverified
> to 10.3.0.5 via fe-1/2/3.0
[BGP/170] 23:07:51, localpref 100
AS path: 64515 64516 I, validation-state: unverified
> to 10.3.0.1 via fe-1/2/0.0

172.16.32.0/21 * [Aggregate/130] 22:40:38
Reject

172.16.32.0/24 * [BGP/170] 22:45:44, localpref 100, from 192.168.0.1
AS path: I, validation-state: unverified
> to 10.1.0.2 via fe-1/2/1.0

172.16.33.0/24 * [BGP/170] 22:45:44, localpref 100, from 192.168.0.1
AS path: I, validation-state: unverified
> to 10.1.0.2 via fe-1/2/1.0

172.16.34.0/24 * [Static/5] 22:40:38
Reject

172.16.35.0/24 * [Static/5] 22:40:38
Reject

172.16.36.0/24 * [BGP/170] 22:40:38, localpref 100, from 192.168.0.1
AS path: I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.37.0/24 * [BGP/170] 22:40:38, localpref 100, from 192.168.0.1
AS path: I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.38.0/24 * [BGP/170] 22:40:38, localpref 100, from 192.168.0.1
AS path: I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.39.0/24 * [BGP/170] 22:40:38, localpref 100, from 192.168.0.1
AS path: I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.40.0/25 * [BGP/170] 23:02:05, localpref 100, from 192.168.0.1
AS path: 64511 I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.41.0/25 * [BGP/170] 23:02:05, localpref 100, from 192.168.0.1
AS path: 64511 I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.41.128/25 * [BGP/170] 23:02:05, localpref 100, from 192.168.0.1
AS path: 64511 I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0

172.16.44.0/23 * [Aggregate/130] 22:40:38
Reject

172.16.44.0/26 * [BGP/170] 22:59:19, localpref 100, from 192.168.0.1
AS path: 64512 I, validation-state: unverified
> to 10.0.0.5 via fe-1/2/2.0
[BGP/170] 22:59:19, localpref 100
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Event Type</th>
<th>Time</th>
<th>Metric</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>174.16.44.64/26</td>
<td>[BGP/170]</td>
<td>22:59:19</td>
<td>localpref 100</td>
<td>192.168.0.3</td>
</tr>
<tr>
<td>174.16.44.128/26</td>
<td>[BGP/170]</td>
<td>22:59:19</td>
<td>localpref 100</td>
<td>192.168.0.3</td>
</tr>
<tr>
<td>174.16.44.192/26</td>
<td>[BGP/170]</td>
<td>22:59:19</td>
<td>localpref 100</td>
<td>192.168.0.3</td>
</tr>
</tbody>
</table>
Verifying the Routes on Device ISP-3

Purpose
On Device ISP-3, check the routes in the routing table.

Action

user@ISP-3> show route

inet.0: 40 destinations, 41 routes (40 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0  *[Aggregate/130] 23:53:57, metric 2
          > to 10.0.0.2 via fe-1/2/0.0
          [BGP/170] 22:46:17, localpref 100, from 192.168.0.2
          AS path: 64516 I, validation-state: unverified
          > to 10.0.0.6 via fe-1/2/2.0

10.0.0.0/30  *[Direct/0] 23:53:52
          > via fe-1/2/0.0

10.0.0.1/32  *[Local/0] 23:53:53
          Local via fe-1/2/0.0

10.0.0.4/30  *[Direct/0] 23:53:54
          > via fe-1/2/2.0

10.0.0.5/32  *[Local/0] 23:53:54
          Local via fe-1/2/2.0

10.0.0.8/30  *[Direct/0] 23:53:53
          > via fe-1/2/1.0

10.0.0.9/32  *[Local/0] 23:53:53
          Local via fe-1/2/1.0

10.0.0.20/30 *[BGP/170] 23:53:02, localpref 100, from 192.168.0.2
          AS path: 64516 I, validation-state: unverified
          > to 10.0.0.6 via fe-1/2/2.0

10.1.0.0/30  *[OSPF/10] 23:53:03, metric 2
          > to 10.0.0.6 via fe-1/2/2.0
          to 10.0.0.2 via fe-1/2/0.0

10.1.0.4/30  *[Direct/0] 23:53:54
          > via fe-1/2/3.0

10.1.0.5/32  *[Local/0] 23:53:54
          Local via fe-1/2/3.0
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Prefix</th>
<th>Time</th>
<th>Localpref</th>
<th>From Address</th>
<th>AS Path</th>
<th>Validation State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.0.4/30</td>
<td>*[BGP/170]</td>
<td>23:52:46</td>
<td>100</td>
<td>from 192.168.0.1</td>
<td>64514 64515 64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.2 via fe-1/2/0.0</td>
</tr>
<tr>
<td>10.3.0.48/30</td>
<td>*[BGP/170]</td>
<td>23:53:02</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.8.0/21</td>
<td>*[BGP/170]</td>
<td>00:12:59</td>
<td>100</td>
<td>from 192.168.0.1</td>
<td>64514</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.2 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.16.0/21</td>
<td>*[BGP/170]</td>
<td>02:04:01</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.24.0/25</td>
<td>*[BGP/170]</td>
<td>23:08:24</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.24.128/25</td>
<td>*[BGP/170]</td>
<td>23:08:24</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.25.0/26</td>
<td>*[BGP/170]</td>
<td>23:08:24</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.25.64/26</td>
<td>*[BGP/170]</td>
<td>23:08:24</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.32.0/24</td>
<td>*[BGP/170]</td>
<td>22:46:17</td>
<td>100</td>
<td>from 192.168.0.1</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.2 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.33.0/24</td>
<td>*[BGP/170]</td>
<td>22:46:17</td>
<td>100</td>
<td>from 192.168.0.1</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.2 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.34.0/24</td>
<td>*[BGP/170]</td>
<td>22:41:11</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.35.0/24</td>
<td>*[BGP/170]</td>
<td>22:41:11</td>
<td>100</td>
<td>from 192.168.0.2</td>
<td>64516</td>
<td>unverified</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0.0.6 via fe-1/2/0.0</td>
</tr>
<tr>
<td>172.16.36.0/24</td>
<td>*[Static/5]</td>
<td>22:41:11</td>
<td>REJECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.37.0/24</td>
<td>*[Static/5]</td>
<td>22:41:11</td>
<td>REJECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.38.0/24</td>
<td>*[Static/5]</td>
<td>22:41:11</td>
<td>REJECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.39.0/24</td>
<td>*[Static/5]</td>
<td>22:41:11</td>
<td>REJECT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Routes on Device Exchange-1

Purpose
On Device Exchange-1, check the routes in the routing table.

Action
user@Exchange-1> show route
inet.0: 23 destinations, 24 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.20/30  *[BGP/170] 23:53:51, localpref 100
   AS path: 64515 64516 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

10.2.0.4/30  *[Direct/0] 23:54:23
   > via fe-1/2/3.0

10.2.0.5/32  *[Local/0] 23:54:29
   Local via fe-1/2/3.0

10.3.0.4/30  *[BGP/170] 23:53:51, localpref 100
   AS path: 64515 64516 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

10.3.0.40/30  *[Direct/0] 23:54:27
   > via fe-1/2/2.0

10.3.0.42/32  *[Local/0] 23:54:29
   Local via fe-1/2/2.0

10.3.0.44/30  *[Direct/0] 23:54:29
   > via fe-1/2/1.0

10.3.0.45/32  *[Local/0] 23:54:29
   Local via fe-1/2/1.0

172.16.8.0/21  *[Static/5] 00:13:31
   Reject

172.16.16.0/21  *[BGP/170] 02:04:33, localpref 100
   AS path: 64515 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

172.16.24.0/25  *[BGP/170] 23:08:56, localpref 100
   AS path: 64515 64516 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

   AS path: 64515 64516 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

172.16.25.0/26  *[BGP/170] 23:08:56, localpref 100
   AS path: 64515 64516 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

172.16.25.64/26  *[BGP/170] 23:08:56, localpref 100
   AS path: 64515 64516 I, validation-state: unverified
   > to 10.3.0.41 via fe-1/2/2.0

172.16.32.0/21  *[BGP/170] 22:46:49, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.2.0.6 via fe-1/2/3.0

   *[BGP/170] 22:41:43, localpref 100
   AS path: 64515 64510 I, validation-state: unverified
Verifying the Routes on Device Exchange-2

Purpose
On Device Exchange-2, check the routes in the routing table.

Action

```
user@Exchange-2> show route
inet.0: 24 destinations, 26 routes (23 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.20/30 *[BGP/170] 23:54:44, localpref 100
 AS path: 64516 I, validation-state: unverified
 > to 10.3.0.50 via fe-1/2/1.0
10.3.0.0/30 *[Direct/0] 23:54:57
 > via fe-1/2/0.0
10.3.0.1/32 *[Local/0] 23:54:57
```

Local via fe-1/2/0.0

10.3.0.4/30  *[BGP/170] 23:54:44, localpref 100
  AS path: 64516 I, validation-state: unverified
  > to 10.3.0.50 via fe-1/2/1.0

10.3.0.40/30  *[Direct/0] 23:54:57
  > via fe-1/2/2.0

10.3.0.41/32  *[Local/0] 23:54:57
  Local via fe-1/2/2.0

10.3.0.48/30  *[Direct/0] 23:54:57
  > via fe-1/2/1.0
  [BGP/170] 23:54:44, localpref 100
  AS path: 64516 I, validation-state: unverified
  > to 10.3.0.50 via fe-1/2/1.0

10.3.0.49/32  *[Local/0] 23:54:57
  Local via fe-1/2/1.0

172.16.8.0/21  *[BGP/170] 00:14:01, localpref 100
  AS path: 64514 I, validation-state: unverified
  > to 10.3.0.42 via fe-1/2/2.0

172.16.16.0/21  *[Static/5] 02:05:03
  Reject

172.16.24.0/25  *[BGP/170] 23:09:26, localpref 100
  AS path: 64516 I, validation-state: unverified
  > to 10.3.0.50 via fe-1/2/1.0

172.16.44.0/23  *[BGP/170] 22:42:13, localpref 100
  AS path: 64510 64512 I, validation-state: unverified
  > to 10.3.0.2 via fe-1/2/0.0

180
172.16.44.0/26  *[BGP/170] 23:00:54, localpref 100
    AS path: 64516 64512 I, validation-state: unverified
    > to 10.3.0.50 via fe-1/2/1.0
172.16.44.64/26  *[BGP/170] 23:00:54, localpref 100
    AS path: 64516 64512 I, validation-state: unverified
    > to 10.3.0.50 via fe-1/2/1.0
172.16.44.128/26 *[BGP/170] 23:00:54, localpref 100
    AS path: 64516 64512 I, validation-state: unverified
    > to 10.3.0.50 via fe-1/2/1.0
172.16.44.192/26 *[BGP/170] 23:00:54, localpref 100
    AS path: 64516 64512 I, validation-state: unverified
    > to 10.3.0.50 via fe-1/2/1.0
192.168.0.5/32  *[BGP/170] 23:54:44, localpref 100
    AS path: 64516 I, validation-state: unverified
    > to 10.3.0.50 via fe-1/2/1.0
192.168.0.7/32  *[Direct/0] 23:54:57
    > via lo0.0

Meaning
On Device Exchange-2, the default route 0/0 is hidden because the next hop for the route is its own interface to Device Private-Peer-2, from which the route was received. The route is hidden to avoid a loop.

Verifying the Routes on Device Private-Peer-1

Purpose
On Device Private-Peer-1, check the routes in the routing table.

Action

user@Private-Peer-1> show route

inet.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.2.0.0/30  *[Direct/0] 23:58:57
    > via fe-1/2/2.0
10.2.0.1/32  *[Local/0] 5d 21:34:22
    Local via fe-1/2/2.0
10.3.0.44/30  *[Direct/0] 23:59:02
    > via fe-1/2/1.0
10.3.0.46/32  *[Local/0] 1d 03:19:52
Verifying the Routes on Device Private-Peer-2

Purpose
On Device Private-Peer-2, check the routes in the routing table.

Action

user@Private-Peer-2> show route

inet.0: 29 destinations, 29 routes (29 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0     *[Aggregate/130] 1d 02:13:28
10.0.0.20/30  *[Direct/0] 1d 00:00:53
   > via fe-1/2/0.0
10.0.0.22/32  *[Local/0] 4d 23:51:14
   Local via fe-1/2/0.0
10.3.0.4/30  *[Direct/0] 23:59:36
   > via fe-1/2/3.0
10.3.0.5/32  *[Local/0] 5d 21:34:57
   Local via fe-1/2/3.0
10.3.0.48/30  *[Direct/0] 23:59:35
   > via fe-1/2/1.0
10.3.0.50/32  *[Local/0] 1d 03:20:27
   Local via fe-1/2/1.0
172.16.8.0/21  *[BGP/170] 00:18:39, localpref 100
   AS path: 64515 64514 I, validation-state: unverified
   > to 10.3.0.49 via fe-1/2/1.0
172.16.16.0/21  *[BGP/170] 02:09:41, localpref 100
   AS path: 64515 I, validation-state: unverified
   > to 10.3.0.49 via fe-1/2/1.0
172.16.24.0/25  *[Static/5] 23:14:04
   Reject
   Reject
172.16.25.0/26  *[Static/5] 23:14:04
   Reject
172.16.25.64/26  *[Static/5] 23:14:04
   Reject
172.16.32.0/21  *[BGP/170] 22:46:51, localpref 100
   AS path: 64515 64510 I, validation-state: unverified
   > to 10.3.0.49 via fe-1/2/1.0
172.16.32.0/24  *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.33.0/24  *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.34.0/24  *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.35.0/24  *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.36.0/24  *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
> to 10.3.0.6 via fe-1/2/3.0
172.16.37.0/24 *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.38.0/24 *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.39.0/24 *[BGP/170] 22:46:51, localpref 100
   AS path: 64510 I, validation-state: unverified
   > to 10.3.0.6 via fe-1/2/3.0
172.16.40.0/22 *[BGP/170] 22:51:57, localpref 100
   AS path: 64515 64514 64510 64511 I, validation-state: unverified
   > to 10.3.0.49 via fe-1/2/1.0
172.16.44.0/23 *[BGP/170] 22:46:51, localpref 100
   AS path: 64515 64510 64512 I, validation-state: unverified
   > to 10.3.0.49 via fe-1/2/1.0
172.16.44.0/26 *[BGP/170] 23:05:32, localpref 100
   AS path: 64512 I, validation-state: unverified
   > to 10.0.0.21 via fe-1/2/0.0
172.16.44.64/26 *[BGP/170] 23:05:32, localpref 100
   AS path: 64512 I, validation-state: unverified
   > to 10.0.0.21 via fe-1/2/0.0
172.16.44.128/26 *[BGP/170] 23:05:32, localpref 100
   AS path: 64512 I, validation-state: unverified
   > to 10.0.0.21 via fe-1/2/0.0
172.16.44.192/26 *[BGP/170] 23:05:32, localpref 100
   AS path: 64512 I, validation-state: unverified
   > to 10.0.0.21 via fe-1/2/0.0
192.168.0.5/32 *[Direct/0] 5d 21:34:57
   > via lo0.0

RELATED DOCUMENTATION

Example: Configuring Policy Chains and Route Filters | 237
Example: Configuring Routing Policy Prefix Lists | 364
Understanding Policy Expressions

Policy expressions give the policy framework software a different way to evaluate routing policies. A policy expression uses Boolean logical operators with policies. The logical operators establish rules by which the policies are evaluated.

During evaluation of a routing policy in a policy expression, the policy action of accept, reject, or next policy is converted to the value of TRUE or FALSE. This value is then evaluated against the specified logical operator to produce output of either TRUE or FALSE. The output is then converted back to a flow control action of accept, reject, or next policy. The result of the policy expression is applied as it would be applied to a single policy; the route is accepted or rejected and the evaluation ends, or the next policy is evaluated.

Table 14 on page 185 summarizes the policy actions and their corresponding TRUE and FALSE values and flow control action values. Table 15 on page 186 describes the logical operators. For complete information about policy expression evaluation, see "Policy Expression Evaluation" on page 188.

You must enclose a policy expression in parentheses. You can place a policy expression anywhere in the import or export statements and in the from policy statement.

Table 14: Policy Action Conversion Values

<table>
<thead>
<tr>
<th>Policy Action</th>
<th>Conversion Value</th>
<th>Flow Control Action Conversion Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept</td>
<td>TRUE</td>
<td>Accept</td>
</tr>
<tr>
<td>Reject</td>
<td>FALSE</td>
<td>Reject</td>
</tr>
<tr>
<td>Next policy</td>
<td>TRUE</td>
<td>Next policy</td>
</tr>
</tbody>
</table>
Table 15: Policy Expression Logical Operators

<table>
<thead>
<tr>
<th>Logical Operator</th>
<th>Policy Expression Logic</th>
<th>How Logical Operator Affects Policy Expression Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&amp;&amp; (Logical AND)</td>
<td>Logical AND requires that all values must be TRUE to produce output of TRUE. Routing policy value of TRUE and TRUE produces output of TRUE. Value of TRUE and FALSE produces output of TRUE. Value of FALSE and FALSE produces output of FALSE.</td>
<td>If the first routing policy returns the value of TRUE, the next policy is evaluated. If the first policy returns the value of FALSE, the evaluation of the expression ends and subsequent policies in the expression are not evaluated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Logical OR)</td>
</tr>
<tr>
<td>! (Logical NOT)</td>
<td>Logical NOT reverses value of TRUE to FALSE and of FALSE to TRUE. It also reverses the actions of accept and next policy to reject, and reject to accept.</td>
<td>If used with the logical AND operator and the first routing policy value of FALSE is reversed to TRUE, the next policy is evaluated. If the value of TRUE is reversed to FALSE, the evaluation of the expression ends and subsequent policies in the expression are not evaluated. If used with the logical OR operator and the first routing policy value of FALSE is reversed to TRUE, the evaluation of the expression ends and subsequent policies in the expression are not evaluated. If the value of TRUE is reversed to FALSE, the next policy is evaluated. If used with a policy and the flow control action is accept or next policy, these actions are reversed to reject. If the flow control action is reject, this action is reversed to accept.</td>
</tr>
</tbody>
</table>

For more information, see the following sections:

**Policy Expression Examples**

The following examples show how to use the logical operators to create policy expressions:
• Logical AND—In the following example, `policy1` is evaluated first. If after `policy1` is evaluated, a value of TRUE is returned, `policy2` is evaluated. If a value of FALSE is returned, `policy2` is not evaluated.

\[
\text{export (policy1 \&\& policy2)}
\]

• Logical OR—In the following example, `policy1` is evaluated first. If after `policy1` is evaluated, a value of TRUE is returned, `policy2` is not evaluated. If a value of FALSE is returned, `policy2` is evaluated.

\[
\text{export (policy1 || policy2)}
\]

• Logical OR and logical AND—In the following example, `policy1` is evaluated first. If after `policy1` is evaluated, a value of TRUE is returned, `policy2` is skipped and `policy3` is evaluated. If after `policy1` is evaluated, a value of FALSE is returned, `policy2` is evaluated. If `policy2` returns a value of TRUE, `policy3` is evaluated. If `policy2` returns a value of FALSE, `policy3` is not evaluated.

\[
\text{export [(policy1 || policy2) \&\& policy3]}
\]

• Logical NOT—In the following example, `policy1` is evaluated first. If after `policy1` is evaluated, a value of TRUE is returned, the value is reversed to FALSE and `policy2` is not evaluated. If a value of FALSE is returned, the value is reversed to TRUE and `policy2` is evaluated.

\[
\text{export (!policy1 \&\& policy2)}
\]

The sequential list `[policy1 policy2 policy3]` is not the same as the policy expression `(policy1 \&\& policy2 \&\& policy3)`.

The sequential list is evaluated on the basis of a route matching a routing policy. For example, if `policy1` matches and the action is accept or reject, `policy2` and `policy3` are not evaluated. If `policy1` does not match, `policy2` is evaluated and so on until a match occurs and the action is accept or reject.

The policy expressions are evaluated on the basis of the action in a routing policy that is converted to the value of TRUE or FALSE and the logic of the specified logical operator. (For complete information about policy expression evaluation, see "Policy Expression Evaluation" on page 188.) For example, if `policy1` returns a value of FALSE, `policy2` and `policy3` are not evaluated. If `policy1` returns a value of TRUE, `policy2` is evaluated. If `policy2` returns a value of FALSE, `policy3` is not evaluated. If `policy2` returns a value of TRUE, `policy3` is evaluated.

You can also combine policy expressions and sequential lists. In the following example, if `policy1` returns a value of FALSE, `policy2` is evaluated. If `policy2` returns a value of TRUE and contains a `next policy` action, `policy3` is evaluated. If `policy2` returns a value of TRUE but does not contain an action, including a `next policy` action, `policy3` is still evaluated (because if you do not specify an action, next term or next policy are the default actions). If `policy2` returns a value of TRUE and contains an `accept` action, `policy3` is not evaluated.
Policy Expression Evaluation

During evaluation, the policy framework software converts policy actions to values of TRUE or FALSE, which are factors in determining the flow control action that is performed upon a route. However, the software does not actually perform a flow control action on a route until it evaluates an entire policy expression.

The policy framework software evaluates a policy expression as follows:

1. The software evaluates a route against the first routing policy in a policy expression and converts the specified or default action to a value of TRUE or FALSE. (For information about the policy action conversion values, see Table 14 on page 185.)

2. The software takes the value of TRUE or FALSE and evaluates it against the logical operator used in the policy expression (see Table 15 on page 186). Based upon the logical operator used, the software determines whether or not to evaluate the next policy, if one is present.

The policy framework software uses a shortcut method of evaluation: if the result of evaluating a policy predetermines the value of the entire policy expression, the software does not evaluate the subsequent policies in the expression. For example, if the policy expression uses the logical AND operator and the evaluation of a policy returns the value of FALSE, the software does not evaluate subsequent policies in the expression because the final value of the expression is guaranteed to be FALSE no matter what the values of the unevaluated policies.

3. The software performs Step 1 and Step 2 for each subsequent routing policy in the policy expression, if they are present and it is necessary to evaluate them.

4. After evaluating the last routing policy, if it is appropriate, the software evaluates the value of TRUE or FALSE obtained from each routing policy evaluation. Based upon the logical operator used, it calculates an output of TRUE or FALSE.

5. The software converts the output of TRUE or FALSE back to an action. (For information about the policy action conversion values, see Table 14 on page 185.) The action is performed.

If each policy in the expression returned a value of TRUE, the software converts the output of TRUE back to the flow control action specified in the last policy. For example, if the policy expression \((\text{policy1} \&\& \text{policy2})\) is specified and \text{policy1} specifies accept and \text{policy2} specifies next term, the next term action is performed.

If an action specified in one of the policies manipulates a route characteristic, the policy framework software carries the new route characteristic forward during the evaluation of the remaining policies.
For example, if the action specified in the first policy of a policy expression sets a route’s metric to 500, this route matches the criteria of **metric 500** defined in the next policy. However, if a route characteristic manipulation action is specified in a policy located in the middle or the end of a policy expression, it is possible, because of the shortcut evaluation, that the policy is never evaluated and the manipulation of the route characteristic never occurs.

**Evaluating Policy Expressions**

The following sample routing policy uses three policy expressions:

```plaintext
[edit]
policy-options {
 policy-statement policy-A {
 from {
 route-filter 10.10.0.0/16 orlonger;
 }
 then reject;
 }
}
policy-options {
 policy-statement policy-B {
 from {
 route-filter 10.20.0.0/16 orlonger;
 }
 then accept;
 }
}
}
protocols {
 bgp {
 neighbor 192.168.1.1 {
 export (policy-A && policy-B);
 }
 neighbor 192.168.2.1 {
 export (policy-A || policy-B);
 }
 neighbor 192.168.3.1 {
 export (!policy-A);
 }
 }
}
```

The policy framework software evaluates the transit BGP route 10.10.1.0/24 against the three policy expressions specified in the sample routing policy as follows:
• (policy-A && policy-B)—10.10.1.0/24 is evaluated against policy-A. 10.10.1.0/24 matches the route list specified in policy-A, so the specified action of reject is returned. reject is converted to a value of FALSE, and FALSE is evaluated against the specified logical AND. Because the result of FALSE is certain no matter what the results of the evaluation of policy-B are (in policy expression logic, any result AND a value of FALSE produces the output of FALSE), policy-B is not evaluated and the output of FALSE is produced. The FALSE output is converted to reject, and 10.10.1.0/24 is rejected.

• (policy-A || policy-B)—10.10.1.0/24 is evaluated against policy-A. 10.10.1.0/24 matches the route list specified in policy-A, so the specified action of reject is returned. reject is converted to a value of FALSE, then FALSE is evaluated against the specified logical OR. Because logical OR requires at least one value of TRUE to produce an output of TRUE, 10.10.1.0/24 is evaluated against policy-B. 10.10.1.0/24 does not match policy-B, so the default action of next-policy is returned. The next-policy is converted to a value of TRUE, then the value of FALSE (for policy-A evaluation) and TRUE (for policy-B evaluation) are evaluated against the specified logical OR. In policy expression logic, FALSE OR TRUE produce an output of TRUE. The output of TRUE is converted to next-policy. (TRUE is converted to next-policy because next-policy was the last action retained by the policy framework software.) policy-B is the last routing policy in the policy expression, so the action specified by the default export policy for BGP is taken.

• (!policy-A)—10.10.1.0/24 is evaluated against policy-A. 10.10.1.0/24 matches the route list specified in policy-A, so the specified action of reject is returned. reject is converted to a value of FALSE, and FALSE is evaluated against the specified logical NOT. The value of FALSE is reversed to an output of TRUE based on the rules of logical NOT. The output of TRUE is converted to accept, and route 10.10.1.0/24 is accepted.

RELATED DOCUMENTATION

Example: Testing a Routing Policy with Complex Regular Expressions	698
Example: Configuring a Policy Subroutine	265
Example: Configuring Policy Chains and Route Filters	237
Example: Configuring Routing Policy Prefix Lists	364
Understanding Backup Selection Policy for OSPF Protocol

Support for OSPF loop-free alternate (LFA) routes essentially adds IP fast-reroute capability for OSPF. Junos OS precomputes multiple loop-free backup routes for all OSPF routes. These backup routes are pre-installed in the Packet Forwarding Engine, which performs a local repair and implements the backup path when the link for a primary next hop for a particular route is no longer available. The selection of LFA is done randomly by selecting any matching LFA to progress to the given destination. This does not ensure best backup coverage available for the network. In order to choose the best LFA, Junos OS allows you to configure network-wide backup selection policies for each destination (IPv4 and IPv6) and a primary next-hop interface. These policies are evaluated based on admin-group, srlg, bandwidth, protection-type, metric, and node information.

During backup shortest-path-first (SPF) computation, each node and link attribute of the backup path is accumulated by IGP and is associated with every node (router) in the topology. The next hop in the best backup path is selected as the backup next hop in the routing table. In general, backup evaluation policy rules are categorized into the following types:

- **Pruning** — Rules configured to select the eligible backup path.
- **Ordering** — Rules configured to select the best among the eligible backup paths.

The backup selection policies can be configured with both pruning and ordering rules. While evaluating the backup policies, each backup path is assigned a score, an integer value that signifies the total weight of the evaluated criteria. The backup path with the highest score is selected.

To enforce LFA selection, configure various rules for the following attributes:

- **admin-group** — Administrative groups, also known as link coloring or resource class, are manually assigned attributes that describe the "color" of links, such that links with the same color conceptually belong to the same class. These configured administrative groups are defined under protocol MPLS. You can use administrative groups to implement a variety of backup selection policies using exclude, include-all, include-any, or preference.

- **srlg** — A shared risk link group (SRLG) is a set of links sharing a common resource, which affects all links in the set if the common resource fails. These links share the same risk of failure and are therefore considered to belong to the same SRLG. For example, links sharing a common fiber are said to be in the same SRLG because a fault with the fiber might cause all links in the group to fail. An SRLG is represented by a 32-bit number unique within an IGP (OSPF) domain. A link might belong to multiple SRLGs. You can define the backup selection to either allow or reject the common SRLGs between the primary and the backup path. This rejection of common SRLGs are based on the non-existence of link having common SRLGs in the primary next-hop and the backup SPF.

**NOTE:** Administrative groups and SRLGs can be created only for default topologies.
• bandwidth—The bandwidth specifies the bandwidth constraints between the primary and the backup path. The backup next-hop link can be used only if the bandwidth of the backup next-hop interface is greater than or equal to the bandwidth of the primary next hop.

• protection-type—The protection-type protects the destination from node failure of the primary node or link failure of the primary link. You can configure node, link, or node-link to protect the destination. If link-node is configured, then the node-protecting LFA is preferred over link-protecting LFA.

• node—The node is per-node policy information. Here, node can be a directly connected router, remote router like RSVP backup LSP tail-end, or any other router in the backup SPF path. The nodes are identified through the route-id advertised by a node in the LSP. You can list the nodes to either prefer or exclude them in the backup path.

• metric—Metric decides how the LFAs should be preferred. In backup selection path, root metric and dest-metric are the two types of metrics. root-metric indicates the metric to the one-hop neighbor or a remote router such as an RSVP backup LSP tail-end router. The dest-metric indicates the metric from a one-hop neighbor or remote router such as an RSVP backup LSP tail-end router to the final destination. The metric evaluation is done either in ascending or descending order. By default, the first preference is given to backup paths with lowest destination evaluation and then to backup paths with lowest root metrics.

The evaluation-order allows you to control the order and criteria of evaluating these attributes in the backup path. You can explicitly configure the evaluation order. Only the configured attributes influence the backup path selection. The default order of evaluation of these attributes for the LFA is [admin-group srlg bandwidth protection-type node metric].

NOTE: TE attributes are not supported in OSPFv3 and cannot be used for backup selection policy evaluation for IPv6 prefixes.

RELATED DOCUMENTATION

Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol  | 201
Configuring Backup Selection Policy for the OSPF Protocol  | 193
backup-selection (Protocols ISIS)
Configuring Backup Selection Policy for the OSPF Protocol

Support for OSPF loop-free alternate (LFA) routes essentially adds IP fast-reroute capability for OSPF. Junos OS precomputes multiple loop-free backup routes for all OSPF routes. These backup routes are pre-installed in the Packet Forwarding Engine, which performs a local repair and implements the backup path when the link for a primary next hop for a particular route is no longer available. The selection of LFA is done randomly by selecting any matching LFA to progress to the given destination. This does not ensure best backup coverage available for the network. In order to choose the best LFA, Junos OS allows you to configure network-wide backup selection policies for each destination (IPv4 and IPv6) and a primary next-hop interface. These policies are evaluated based on admin-group, srlg, bandwidth, protection-type, metric, and node information.

Before you begin to configure the backup selection policy for the OSPF protocol:

- Configure the router interfaces. See the Junos OS Network Management Administration Guide for Routing Devices.
- Configure an interior gateway protocol or static routing. See the Junos OS Routing Protocols Library for Routing Devices.

To configure the backup selection policy for the OSPF protocol:

1. Configure per-packet load balancing.

   [edit policy-options]
   user@host# set policy-statement ecmp term 1 then load-balance per-packet

2. Enable RSVP on all the interfaces.

   [edit protocols]
   user@host# set rsvp interface all

3. Configure administrative groups.

   [edit protocols mpls]
   user@host# set admin-groups group-name

4. Configure srlg values.

   [edit routing-options]
   user@host# set srlg srlg-name srlg-value srlg-value
5. Enable MPLS on all the interfaces.

```
[edit protocols mpls]
user@host# set interface all
```

6. Apply MPLS to an interface configured with an administrative group.

```
[edit protocols mpls]
user@host# set interface interface-name admin-group group-name
```

7. Configure the ID of the router.

```
[edit routing-options]
user@host# set router-id router-id
```

8. Apply the routing policy to all equal cost multipaths exported from the routing table to the forwarding table.

```
[edit routing-options]
user@host# set forwarding-table export ecmp
```

9. Enable link protection and configure metric values on all the interfaces for an area.

```
[edit protocols ospf]
user@host# set area area-id interface interface-name link-protection
user@host# set area area-id interface interface-name metric metric
```

10. Configure the administrative group of the backup selection policy for an IP address.

    You can choose to exclude, include all, include any, or prefer the administrative groups from the backup path.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name admin-group
```

- Specify the administrative group to be excluded.

```
[edit routing-options backup-selection destination ip-address interface interface-name admin-group]
user@host# set exclude group-name
```
The backup path is not selected as the loop-free alternate (LFA) or backup nexthop if any of the links in the path have any one of the listed administrative groups.

For example, to exclude the group c1 from the administrative group:

```
[edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
user@host# set exclude c1
```

• Configure all the administrative groups if each link in the backup path requires all the listed administrative groups in order to accept the path.

```
[edit routing-options backup-selection destination ip-address interface interface-name admin-group]
user@host# set include-all group-name
```

For example, to set all the administrative groups if each link requires all the listed administrative groups in order to accept the path:

```
[edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
user@host# set include-all c2
```

• Configure any administrative group if each link in the backup path requires at least one of the listed administrative groups in order to select the path.

```
[edit routing-options backup-selection destination ip-address interface interface-name admin-group]
user@host# set include-any group-name
```

For example, to set any administrative group if each link in the backup path requires at least one of the listed administrative groups in order to select the path:

```
[edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
user@host# set include-any c3
```

• Define an ordered set of an administrative group that specifies the preference of the backup path.

The leftmost element in the set is given the highest preference.

```
[edit routing-options backup-selection destination ip-address interface interface-name admin-group]
user@host# set preference group-name
```

For example, to set an ordered set of an administrative group that specifies the preference of the backup path:

```
[edit routing-options backup-selection destination 0.0.0.0/0 interface all admin-group]
```
11. Configure the backup path to allow the selection of the backup next hop only if the bandwidth is greater than or equal to the bandwidth of the primary next hop.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name bandwidth-greater-equal-primary
```

12. Configure the backup path to specify the metric from the one-hop neighbor or from the remote router such as an RSVP backup label-switched-path (LSP) tail-end router to the final destination.

The destination metric can be either highest or lowest.

- Configure the backup path that has the highest destination metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name dest-metric highest
```

- Configure the backup path that has the lowest destination metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name dest-metric lowest
```

13. Configure the backup path that is a downstream path to the destination.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name downstream-paths-only
```

14. Set the order of preference of the root and the destination metric during backup path selection.

The preference order can be:

- [root dest] — Backup path selection or preference is first based on the root-metric criteria. If the criteria of all the root-metric is the same, then the selection or preference is based on the dest-metric.

- [dest root] — Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name metric-order dest
user@host# set backup-selection destination ip-address interface interface-name metric-order root
```
15. Configure the backup path to define a list of loop-back IP addresses of the adjacent neighbors to either exclude or prefer in the backup path selection.

The neighbor can be a local (adjacent router) neighbor, remote neighbor, or any other router in the backup path.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name node
```

- Configure the list of neighbors to be excluded.

```
[edit routing-options backup-selection destination ip-address interface interface-name node]
user@host# set exclude node-address
```

The backup path that has a router from the list is not selected as the loop-free alternative or backup next hop.

- Configure an ordered set of neighbors to be preferred.

```
[edit routing-options backup-selection destination ip-address interface interface-name node]
user@host# set preference node-address
```

The backup path having the leftmost neighbor is selected.

16. Configure the backup path to specify the required protection type of the backup path to be link, node, or node-link.

- Select the backup path that provides link protection.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name protection-type link
```

- Select the backup path that provides node protection.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name protection-type node
```

- Select the backup path that allows either node or link protection LFA where node-protection LFA is preferred over link-protection LFA.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface interface-name protection-type node-link
```

17. Specify the metric to the one-hop neighbor or to the remote router such as an RSVP backup label-switched-path (LSP) tail-end router.
• Select the path with highest root metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface all root-metric highest
```

• Select the path with lowest root metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface all root-metric lowest
```

18. Configure the backup selection path to either allow or reject the common shared risk link groups (SRLGs) between the primary link and each link in the backup path.

• Configure the backup path to allow common srlgs between the primary link and each link in the backup path.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface all srlg loose
```

A backup path with a fewer number of srlg collisions is preferred.

• Configure the backup path to reject the backup path that has common srlgs between the primary next-hop link and each link in the backup path.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface all srlg strict
```

19. Configure the backup path to control the order and the criteria of evaluating the backup path based on the administrative group, srlg, bandwidth, protection type, node, and metric.

The default order of evaluation is admin-group, srlg, bandwidth, protection-type, node, and metric.

```
[edit routing-options]
user@host# set backup-selection destination ip-address interface all evaluation-order admin-group
user@host# set backup-selection destination ip-address interface all evaluation-order srlg
user@host# set backup-selection destination ip-address interface all evaluation-order bandwidth
```

RELATED DOCUMENTATION

| Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 201 |
| Understanding Backup Selection Policy for OSPF Protocol | 191 |

backup-selection (Protocols ISIS)
Understanding Backup Selection Policy for IS-IS Protocol

Support for IS-IS loop-free alternate (LFA) routes essentially adds IP fast-reroute capability for IS-IS. Junos OS precomputes multiple loop-free backup routes for all IS-IS routes. These backup routes are pre-installed in the Packet Forwarding Engine, which performs a local repair and implements the backup path when the link for a primary next hop for a particular route is no longer available. The selection of LFA is done randomly by selecting any matching LFA to progress to the given destination. This does not ensure best backup coverage available for the network. In order to choose the best LFA, Junos OS allows you to configure network-wide backup selection policies for each destination (IPv4 and IPv6) and a primary next-hop interface. These policies are evaluated based on admin-group, srlg, bandwidth, protection-type, metric, and neighbor information.

During backup shortest-path-first (SPF) computation, each node and link attribute of the backup path is accumulated by IGP and is associated with every node (router) in the topology. The next hop in the best backup path is selected as the backup next hop in the routing table. In general, backup evaluation policy rules are categorized into the following types:

- **Pruning** — Rules configured to select the eligible backup path.
- **Ordering** — Rules configured to select the best among the eligible backup paths.

The backup selection policies can be configured with both pruning and ordering rules. While evaluating the backup policies, each backup path is assigned a score, an integer value that signifies the total weight of the evaluated criteria. The backup path with the highest score is selected.

To enforce LFA selection, configure various rules for the following attributes:

- **admin-group**— Administrative groups, also known as link coloring or resource class, are manually assigned attributes that describe the "color" of links, such that links with the same color conceptually belong to the same class. These configured administrative groups are defined under protocol MPLS. You can use administrative groups to implement a variety of backup selection policies using exclude, include-all, include-any, or preference.
- **backup-neighbor**— A neighbor ID to either prefer or exclude in the backup path selection.
• node—A list of loop-back IP addresses of the adjacent nodes to either prefer or exclude in the backup path selection. The node can be a local (adjacent router) node, remote node, or any other router in the backup path. The nodes are identified through the TE-router-ID TLV advertised by a node in the LSP.

• node-tag—A node tag identifies a group of nodes in the network based on criteria such as the same neighbor tag values for all PE nodes to either prefer or exclude in the backup path selection. This is implemented using IS-IS admin-tags. The routers are not identified with the explicit router-id but with an admin-tag prefix to their lo0 address prefix. These tags are advertised as part of extended IP reachability with a /32 prefix length that represents the TE-router _ID or node-ID of a router.

• srlg—A shared risk link group (SRLG) is a set of links sharing a common resource, which affects all links in the set if the common resource fails. These links share the same risk of failure and are therefore considered to belong to the same SRLG. For example, links sharing a common fiber are said to be in the same SRLG because a fault with the fiber might cause all links in the group to fail. An SRLG is represented by a 32-bit number unique within an IGP (IS-IS) domain. A link might belong to multiple SRLGs. You can define the backup selection to either allow or reject the common SRLGs between the primary and the backup path.

• bandwidth—The bandwidth specifies the bandwidth constraints between the primary and the backup path. The backup next-hop link can be used only if the bandwidth of the backup next-hop interface is greater than or equal to the bandwidth of the primary next hop.

• protection-type—The protection-type protects the destination from node failure of the primary node or link failure of the primary link. You can configure node, link, or node-link to protect the destination. If link-node is configured, then the node-protecting LFA is preferred over link-protection LFA.

• metric—Metric decides how the LFAs should be preferred. In backup selection path, root metric and dest-metric are the two types of metrics. root-metric indicates the metric to the one-hop neighbor or a remote router such as an RSVP backup LSP tail-end router. The dest-metric indicates the metric from a one-hop neighbor or remote router such as an RSVP backup LSP tail-end router to the final destination. The metric evaluation is done either in ascending or descending order. By default, the first preference is given to backup paths with lowest destination evaluation and then to backup paths with lowest root metrics.

The evaluation-order allows you to control the order and criteria of evaluating these attributes in the backup path. You can explicitly configure the evaluation order. Only the configured attributes influence the backup path selection. The default order of evaluation of these attributes for the LFA is [ admin-group srlg bandwidth protection-type neighbor neighbor-tag metric ].

SEE ALSO

Example: Configuring Backup Selection Policy for IS-IS Protocol
backup-selection (Protocols ISIS)
Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol

IN THIS SECTION

- Requirements | 201
- Overview | 201
- Configuration | 202
- Verification | 227

This example shows how to configure the backup selection policy for the OSPF or OSPF3 protocol, which enables you to select a loop-free alternate (LFA) in the network.

When you enable backup selection policies, Junos OS allows selection of LFA based on the policy rules and attributes of the links and nodes in the network. These attributes are admin-group, srlg, bandwidth, protection-type, metric, and node.

Requirements

This example uses the following hardware and software components:

- Eight routers that can be a combination of M Series Multiservice Edge Routers, MX Series 5G Universal Routing Platforms, PTX Series Packet Transport Routers, and T Series Core Routers
- Junos OS Release 15.1 or later running on all devices

Before you begin:

1. Configure the device interfaces.
2. Configure OSPF.

Overview

In Junos OS, the default loop-free alternative (LFA) selection algorithm or criteria can be overridden with an LFA policy. These policies are configured for each destination (IPv4 and IPv6) and a primary next-hop interface. These backup policies enforce LFA selection based on admin-group, srlg, bandwidth, protection-type, metric, and node attributes of the backup path. During backup shortest-path-first (SPF) computation, each attribute (both node and link) of the backup path, stored per backup next-hop, is accumulated by IGP. For the routes created internally by IGP, the attribute set of every backup path is
evaluated against the policy configured for each destination (IPv4 and IPv6) and a primary next-hop interface. The first or the best backup path is selected and installed as the backup next hop in the routing table. To configure the backup selection policy, include the `backup-selection` configuration statement at the [edit routing-options] hierarchy level. The `show backup-selection` command displays the configured policies for a given interface and destination. The display can be filtered against a particular destination, prefix, interface, or logical systems.

**Topology**

In this topology shown in Figure 14 on page 202, the backup selection policy is configured on Device R3.

**Figure 14: Example Backup Selection Policy for OSPF or OPSF3**

![Topology Diagram]

<table>
<thead>
<tr>
<th>lo0:</th>
<th>R 0 10.10.10.10/32</th>
<th>R 4 172.16.4.4/32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R 1 172.16.1.32</td>
<td>R 5 172.16.5.5/32</td>
</tr>
<tr>
<td></td>
<td>R 2 172.16.2.2/32</td>
<td>R 6 172.16.6.6/32</td>
</tr>
<tr>
<td></td>
<td>R 3 172.16.3.3/32</td>
<td>R 7 172.16.7.7/32</td>
</tr>
</tbody>
</table>

**Configuration**

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

**R0**
set interfaces ge-0/0/0 unit 0 family inet address 10.1.1.1/30
set interfaces ge-0/0/0 unit 0 family inet6 address 2001:db8:10:1:1::1/64
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/1/0 unit 0 family inet address 172.16.15.1/30
set interfaces ge-0/1/0 unit 0 family inet6 address 2001:db8:15:1:1::1/64
set interfaces ge-0/1/0 unit 0 family mpls
set interfaces xe-0/2/0 unit 0 family inet address 172.16.20.1/30
set interfaces xe-0/2/0 unit 0 family inet6 address 2001:db8:20:1:1::1/64
set interfaces xe-0/2/0 unit 0 family mpls
set interfaces ge-1/0/5 unit 0 family inet address 172.16.150.1/24
set interfaces ge-1/0/5 unit 0 family inet6 address 2001:db8:150:1:1::1/64
set interfaces ge-1/0/5 unit 0 family mpls
set interfaces ge-1/1/1 unit 0 family inet address 172.16.30.1/30
set interfaces ge-1/1/1 unit 0 family inet6 address 2001:db8:30:1:1::1/64
set interfaces ge-1/1/1 unit 0 family mpls
set interfaces xe-1/3/0 unit 0 family inet address 172.16.25.1/30
set interfaces xe-1/3/0 unit 0 family inet6 address 2001:db8:25:1:1::1/64
set interfaces xe-1/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 10.10.10.10/32 primary
set interfaces lo0 unit 0 family inet6 address 2001:db8::10:10:10:10/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 10.10.10.10
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 18
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 51
set protocols ospf area 0.0.0.0 interface ge-1/1/0.0 metric 23
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 metric 52
set protocols ospf area 0.0.0.0 interface ge-1/0/5.0
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/1/0.0 metric 18
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 51
set protocols ospf3 area 0.0.0.0 interface ge-1/1/0.0 metric 23
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 52
set protocols ospf3 area 0.0.0.0 interface ge-1/0/5.0
set interfaces ge-0/0/0 unit 0 family inet address 10.1.1.2/30
set interfaces ge-0/0/0 unit 0 family inet6 address 2001:db8:10:1:1::2/64
set interfaces ge-0/0/0 unit 0 family mpls
set interfaces ge-0/0/5 unit 0 family inet address 172.16.35.1/30
set interfaces ge-0/0/5 unit 0 family inet6 address 2001:db8:35:1:1::1/64
set interfaces ge-0/0/5 unit 0 family mpls
set interfaces xe-0/2/0 unit 0 family inet address 172.16.40.1/30
set interfaces xe-0/2/0 unit 0 family inet6 address 2001:db8:40:1:1::1/64
set interfaces xe-0/2/0 unit 0 family mpls
set interfaces xe-0/3/0 unit 0 family inet address 172.16.45.1/30
set interfaces xe-0/3/0 unit 0 family inet6 address 2001:db8:45:1:1::1/64
set interfaces xe-0/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.1.1/32 primary
set interfaces lo0 unit 0 family inet6 address 2001:db8::1:1:1:1/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.1.1
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13  
set protocols mpls admin-groups c14 14  
set protocols mpls admin-groups c15 15  
set protocols mpls admin-groups c16 16  
set protocols mpls admin-groups c17 17  
set protocols mpls admin-groups c18 18  
set protocols mpls admin-groups c19 19  
set protocols mpls admin-groups c20 20  
set protocols mpls admin-groups c21 21  
set protocols mpls admin-groups c22 22  
set protocols mpls admin-groups c23 23  
set protocols mpls admin-groups c24 24  
set protocols mpls admin-groups c25 25  
set protocols mpls admin-groups c26 26  
set protocols mpls admin-groups c27 27  
set protocols mpls admin-groups c28 28  
set protocols mpls admin-groups c29 29  
set protocols mpls admin-groups c30 30  
set protocols mpls admin-groups c31 31  
set protocols mpls interface all  
set protocols mpls interface ge-0/0/0.0 srlg srlg9  
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0 metric 10  
set protocols ospf area 0.0.0.0 interface ge-0/0/5.0 metric 10  
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 10  
set protocols ospf area 0.0.0.0 interface xe-0/3/0.0 metric 10  
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0.0 metric 10  
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 metric 10  
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 10  
set protocols ospf3 area 0.0.0.0 interface xe-0/3/0.0 metric 10

R2

set interfaces ge-0/0/2 unit 0 family inet address 172.16.35.2/30  
set interfaces ge-0/0/2 unit 0 family inet6 address 2001:db8:35:1:1::2/64  
set interfaces ge-0/0/2 unit 0 family mpls  
set interfaces ge-0/1/0 unit 0 family inet address 172.16.50.1/30  
set interfaces ge-0/1/0 unit 0 family inet6 address 2001:db8:50:1:1::1/64  
set interfaces ge-0/1/0 unit 0 family mpls  
set interfaces xe-0/2/1 unit 0 family inet address 172.16.55.1/30  
set interfaces xe-0/2/1 unit 0 family inet6 address 2001:db8:55:1:1::1/64
set interfaces xe-0/2/1 unit 0 family mpls
set interfaces ge-1/0/2 unit 0 family inet address 172.16.60.1/30
set interfaces ge-1/0/2 unit 0 family inet6 address 2001:db8:60:1::1/64
set interfaces ge-1/0/2 unit 0 family mpls
set interfaces ge-1/0/9 unit 0 family inet address 172.16.65.1/30
set interfaces ge-1/0/9 unit 0 family inet6 address 2001:db8:65:1::1/64
set interfaces ge-1/0/9 unit 0 family mpls
set interfaces ge-1/1/5 unit 0 family inet address 172.16.70.1/30
set interfaces ge-1/1/5 unit 0 family inet6 address 2001:db8:70:1::1/64
set interfaces lo0 unit 0 family inet address 172.16.2.2/32 primary
set interfaces lo0 unit 0 family inet6 address 2001:db8::2/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.2.2
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface ge-0/1/0.0 srlg srlg1
set protocols mpls interface ge-1/0/9.0 srlg srlg1
set protocols mpls interface ge-1/1/5.0 srlg srlg7
set protocols ospf area 0.0.0.0 interface ge-0/0/2.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 link-protection
set protocols ospf area 0.0.0.0 interface xe-0/2/1.0 metric 12
set protocols ospf area 0.0.0.0 interface ge-1/0/2.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-1/0/9.0 metric 12
set protocols ospf area 0.0.0.0 interface ge-1/1/5.0 metric 13
set protocols ospf3 area 0.0.0.0 interface ge-0/0/2.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/1/0.0 link-protection
set protocols ospf3 area 0.0.0.0 interface xe-0/2/1.0 metric 12
set protocols ospf3 area 0.0.0.0 interface ge-1/0/2.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-1/0/9.0 metric 12
set protocols ospf3 area 0.0.0.0 interface ge-1/1/5.0 metric 13

R3

set interfaces ge-0/0/5 unit 0 family inet address 172.16.50.2/30
set interfaces ge-0/0/5 unit 0 family inet6 address 2001:db8:50:1::2/64
set interfaces ge-0/0/5 unit 0 family mpls
set interfaces xe-0/3/1 unit 0 family inet address 172.16.75.1/30
set interfaces xe-0/3/1 unit 0 family inet6 address 2001:db8:75:1:1::1/64
set interfaces xe-0/3/1 unit 0 family mpls
set interfaces ge-1/0/0 unit 0 family inet address 172.16.80.1/30
set interfaces ge-1/0/0 unit 0 family inet6 address 2001:db8:80:1:1::1/64
set interfaces ge-1/0/0 unit 0 family mpls
set interfaces ge-1/0/5 unit 0 family inet address 172.16.200.1/24
set interfaces ge-1/0/5 unit 0 family inet6 address 2001:db8:200:1:1::1/64
set interfaces ge-1/0/6 unit 0 family inet address 172.16.85.1/30
set interfaces ge-1/0/6 unit 0 family inet6 address 2001:db8:85:1:1::1/64
set interfaces ge-1/0/6 unit 0 family mpls
set interfaces xe-1/3/0 unit 0 family inet address 172.16.90.1/30
set interfaces xe-1/3/0 unit 0 family inet6 address 2001:db8:90:1:1::1/64
set interfaces xe-1/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.3.3/32 primary
set interfaces lo0 unit 0 family inet6 address 2001:db8::3:3:3:3/128 primary
set interfaces lo0 unit 0 family mpls
set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.3.3
set routing-options forwarding-table export ecmp
set routing-options backup-selection destination 10.1.1.0/30 interface xe-1/3/0.0 admin-group
  include-all c2
set routing-options backup-selection destination 10.1.1.0/30 interface all admin-group exclude c3
set routing-options backup-selection destination 10.1.1.0/30 interface all srlg strict
set routing-options backup-selection destination 10.1.1.0/30 interface all protection-type node
set routing-options backup-selection destination 10.1.1.0/30 interface all
  bandwidth-greater-equal-primary
set routing-options backup-selection destination 10.1.1.0/30 interface all neighbor preference
  172.16.7.7
set routing-options backup-selection destination 10.1.1.0/30 interface all root-metric lowest
set routing-options backup-selection destination 10.1.1.0/30 interface all metric-order root
set routing-options backup-selection destination 172.16.30.0/30 interface all admin-group exclude c5
set routing-options backup-selection destination 172.16.30.0/30 interface all srlg strict
set routing-options backup-selection destination 172.16.30.0/30 interface all protection-type node
set routing-options backup-selection destination 172.16.30.0/30 interface all bandwidth-greater-equal-primary
set routing-options backup-selection destination 172.16.30.0/30 interface all neighbor preference 172.16.7.7
set routing-options backup-selection destination 172.16.30.0/30 interface all root-metric lowest
set routing-options backup-selection destination 172.16.30.0/30 interface all metric-order root
set routing-options backup-selection destination 172.16.45.0/30 interface all admin-group exclude c5
set routing-options backup-selection destination 172.16.45.0/30 interface all srlg strict
set routing-options backup-selection destination 172.16.45.0/30 interface all protection-type node
set routing-options backup-selection destination 172.16.45.0/30 interface all bandwidth-greater-equal-primary
set routing-options backup-selection destination 172.16.45.0/30 interface all neighbor preference 172.16.7.7
set routing-options backup-selection destination 172.16.45.0/30 interface all root-metric lowest
set routing-options backup-selection destination 172.16.45.0/30 interface all metric-order root
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface ge-0/0/5.0 admin-group c0
set protocols ospf area 0.0.0.0 interface ge-0/0/5.0 link-protection
set protocols ospf area 0.0.0.0 interface xe-0/3/1.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf area 0.0.0.0 interface ge-1/0/6.0 metric 15
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 link-protection
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 metric 22
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 link-protection
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/1.0 metric 21
set protocols ospf3 area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf3 area 0.0.0.0 interface ge-1/0/6.0 metric 15
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 link-protection
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 22
set policy-options policy-statement ecmp term 1 then load-balance per-packet

R4

set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.4.4
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 18
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-1/1/0.0 metric 10
set protocols ospf area 0.0.0.0 interface xe-0/3/1.0 metric 21
set protocols ospf3 area 0.0.0.0 interface ge-0/1/0.0 metric 18
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-1/1/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/1.0 metric 21

R5

set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.5.5
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 51
set protocols ospf area 0.0.0.0 interface ge-0/0/1.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-0/0/5.0 metric 13
set protocols ospf area 0.0.0.0 interface ge-0/1/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 51
set protocols ospf3 area 0.0.0.0 interface ge-0/0/1.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/0/5.0 metric 13
set protocols ospf3 area 0.0.0.0 interface ge-0/1/0.0 metric 10

R6

set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg 12 srlg-value 10012
set routing-options router-id 172.16.6.6
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 25
set protocols mpls admin-groups c26 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols ospf area 0.0.0.0 interface xe-0/3/0.0 metric 52
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0 metric 12
set protocols ospf area 0.0.0.0 interface ge-0/0/4.0 metric 15
set protocols ospf area 0.0.0.0 interface xe-0/2/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface xe-0/3/0.0 metric 52
set protocols ospf3 area 0.0.0.0 interface ge-0/0/0.0 metric 12
set protocols ospf3 area 0.0.0.0 interface ge-0/0/4.0 metric 15
set protocols ospf3 area 0.0.0.0 interface xe-0/2/0.0 metric 10

R7

set routing-options srlg srlg1 srlg-value 1001
set routing-options srlg srlg2 srlg-value 1002
set routing-options srlg srlg3 srlg-value 1003
set routing-options srlg srlg4 srlg-value 1004
set routing-options srlg srlg5 srlg-value 1005
set routing-options srlg srlg6 srlg-value 1006
set routing-options srlg srlg7 srlg-value 1007
set routing-options srlg srlg8 srlg-value 1008
set routing-options srlg srlg9 srlg-value 1009
set routing-options srlg srlg10 srlg-value 10010
set routing-options srlg srlg11 srlg-value 10011
set routing-options srlg srlg12 srlg-value 10012
set routing-options router-id 172.16.7.7
set protocols rsvp interface all
set protocols mpls admin-groups c0 0
set protocols mpls admin-groups c1 1
set protocols mpls admin-groups c2 2
set protocols mpls admin-groups c3 3
set protocols mpls admin-groups c4 4
set protocols mpls admin-groups c5 5
set protocols mpls admin-groups c6 6
set protocols mpls admin-groups c7 7
set protocols mpls admin-groups c8 8
set protocols mpls admin-groups c9 9
set protocols mpls admin-groups c10 10
set protocols mpls admin-groups c11 11
set protocols mpls admin-groups c12 12
set protocols mpls admin-groups c13 13
set protocols mpls admin-groups c14 14
set protocols mpls admin-groups c15 15
set protocols mpls admin-groups c16 16
set protocols mpls admin-groups c17 17
set protocols mpls admin-groups c18 18
set protocols mpls admin-groups c19 19
set protocols mpls admin-groups c20 20
set protocols mpls admin-groups c21 21
set protocols mpls admin-groups c22 22
set protocols mpls admin-groups c23 23
set protocols mpls admin-groups c24 24
set protocols mpls admin-groups c25 26
set protocols mpls admin-groups c27 27
set protocols mpls admin-groups c28 28
set protocols mpls admin-groups c29 29
set protocols mpls admin-groups c30 30
set protocols mpls admin-groups c31 31
set protocols mpls interface all
set protocols mpls interface xe-0/3/0.0 srlg srlg8
set protocols ospf area 0.0.0.0 interface ge-0/1/5.0 metric 23
set protocols ospf area 0.0.0.0 interface xe-0/3/0.0 metric 10
set protocols ospf area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf area 0.0.0.0 interface xe-1/3/0.0 metric 22
set protocols ospf area 0.0.0.0 interface xe-1/2/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-0/1/5.0 metric 23
set protocols ospf3 area 0.0.0.0 interface xe-0/3/0.0 metric 10
set protocols ospf3 area 0.0.0.0 interface ge-1/0/0.0 metric 13
set protocols ospf3 area 0.0.0.0 interface xe-1/3/0.0 metric 22
set protocols ospf3 area 0.0.0.0 interface xe-1/2/0.0 metric 10

Configuring Device R3

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R3:

1. Configure the interfaces.

```bash
[edit interfaces]
user@R3# set ge-0/0/5 unit 0 family inet address 172.16.50.2/30
user@R3# set ge-0/0/5 unit 0 family inet6 address 2001:db8:50:1:1::2/64
user@R3# set ge-0/0/5 unit 0 family mpls

user@R3# set xe-0/3/1 unit 0 family inet address 172.16.75.1/30
user@R3# set xe-0/3/1 unit 0 family inet6 address 2001:db8:75:1:1::1/64
user@R3# set xe-0/3/1 unit 0 family mpls
```
2. Configure srlg values.

```
[edit routing-options]
user@R3# set srlg srlg1 srlg-value 1001
user@R3# set srlg srlg2 srlg-value 1002
user@R3# set srlg srlg3 srlg-value 1003
user@R3# set srlg srlg4 srlg-value 1004
user@R3# set srlg srlg5 srlg-value 1005
user@R3# set srlg srlg6 srlg-value 1006
user@R3# set srlg srlg7 srlg-value 1007
user@R3# set srlg srlg8 srlg-value 1008
user@R3# set srlg srlg9 srlg-value 1009
user@R3# set srlg srlg10 srlg-value 10010
user@R3# set srlg srlg11 srlg-value 10011
user@R3# set srlg srlg12 srlg-value 10012
```

3. Configure the ID of the router.

```
[edit routing-options]
user@R3# set router-id 172.16.3.3
```
4. Apply the routing policy to all equal-cost multipaths exported from the routing table to the forwarding table.

```
[edit routing-options]
user@R3# set forwarding-table export ecmp
```

5. Configure attributes of the backup selection policy.

```
[edit routing-options backup-selection]
user@R3# set destination 10.1.1.0/30 interface xe-1/3/0.0 admin-group include-all c2
user@R3# set destination 10.1.1.0/30 interface all admin-group exclude c3
user@R3# set destination 10.1.1.0/30 interface all srlg strict
user@R3# set destination 10.1.1.0/30 interface all protection-type node
user@R3# set destination 10.1.1.0/30 interface all bandwidth-greater-equal-primary
user@R3# set destination 10.1.1.0/30 interface all neighbor preference 172.16.7.7
user@R3# set destination 10.1.1.0/30 interface all root-metric lowest
user@R3# set destination 10.1.1.0/30 interface all metric-order root

user@R3# set destination 172.16.30.0/30 interface all admin-group exclude c5
user@R3# set destination 172.16.30.0/30 interface all srlg strict
user@R3# set destination 172.16.30.0/30 interface all protection-type node
user@R3# set destination 172.16.30.0/30 interface all bandwidth-greater-equal-primary
user@R3# set destination 172.16.30.0/30 interface all neighbor preference 172.16.7.7
user@R3# set destination 172.16.30.0/30 interface all root-metric lowest
user@R3# set destination 172.16.30.0/30 interface all metric-order root

user@R3# set destination 192.168.45.0/30 interface all admin-group exclude c5
user@R3# set destination 192.168.45.0/30 interface all srlg strict
user@R3# set destination 192.168.45.0/30 interface all protection-type node
user@R3# set destination 192.168.45.0/30 interface all bandwidth-greater-equal-primary
user@R3# set destination 192.168.45.0/30 interface all neighbor preference 172.16.7.7
user@R3# set destination 192.168.45.0/30 interface all root-metric lowest
user@R3# set destination 192.168.45.0/30 interface all metric-order root
```

6. Enable RSVP on all the interfaces.

```
[edit protocols]
user@R3# set rsvp interface all
```

7. Configure administrative groups.
8. Enable MPLS on all the interfaces and configure administrative group for an interface.

```
[edit protocols mpls]
user@R3# set interface all
user@R3# set interface ge-0/0/5.0 admin-group c0
```

9. Enable link protection and configure metric values on all the interfaces for an OSPF area.
10. Enable link protection and configure metric values on all the interfaces for an OSPF3 area.

[edit protocols ospf3]
user@R3# set area 0.0.0.0 interface ge-0/0/5.0 link-protection
user@R3# set area 0.0.0.0 interface ge-0/0/5.0 metric 10
user@R3# set area 0.0.0.0 interface xe-0/3/1.0 metric 21
user@R3# set area 0.0.0.0 interface ge-1/0/0.0 metric 13
user@R3# set area 0.0.0.0 interface ge-1/0/6.0 metric 15
user@R3# set area 0.0.0.0 interface xe-1/3/0.0 link-protection
user@R3# set area 0.0.0.0 interface xe-1/3/0.0 metric 22

11. Configure the routing policy.

[edit policy-options]
user@R3# set policy-statement ecmp term 1 then load-balance per-packet

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R3# show interfaces
ge-0/0/5 {
    unit 0 {
        family inet {
            address 192.168.50.2/30;
        }
        family inet6 {
            address 2001:db8:50:1::2/64;
        }
    }
}
family mpls;
}
}
xe-0/3/1 {
  unit 0 {
    family inet {
      address 192.168.75.1/30;
    }
    family inet6 {
      address 2001:db8:75:1:1::1/64;
    }
    family mpls;
  }
}
}
ge-1/0/0 {
  unit 0 {
    family inet {
      address 192.168.80.1/30;
    }
    family inet6 {
      address 2001:db8:80:1:1::1/64;
    }
    family mpls;
  }
}
}
ge-1/0/5 {
  unit 0 {
    family inet {
      address 172.16.200.1/24;
    }
    family inet6 {
      address 2001:db8:200:1:1::1/64;
    }
  }
}
}
ge-1/0/6 {
  unit 0 {
    family inet {
      address 192.168.85.1/30;
    }
    family inet6 {
      address 2001:db8:85:1:1::1/64;
    }
    family mpls;
  }
}
user@R3# show protocols
rsvp {
    interface all;
}
mpls {
    admin-groups {
        c0 0;
        c1 1;
        c2 2;
        c3 3;
        c4 4;
        c5 5;
        c6 6;
        c7 7;
        c8 8;
    }
}
interface all;
interface ge-0/0/5.0 {
  admin-group c0;
}

ospf {
  area 0.0.0.0 {
    interface ge-0/0/5.0 {
      link-protection;
      metric 10;
    }
    interface xe-0/3/1.0 {
      metric 21;
    }
    interface ge-1/0/0.0 {
      metric 13;
    }
    interface ge-1/0/6.0 {
      metric 15;
    }
  }
}
interface xe-1/3/0.0 {
    link-protection;
    metric 22;
}

ospf3 {
    area 0.0.0.0 {
        interface ge-0/0/5.0 {
            link-protection;
            metric 10;
        }
        interface xe-0/3/1.0 {
            metric 21;
        }
        interface ge-1/0/0.0 {
            metric 13;
        }
        interface ge-1/0/6.0 {
            metric 15;
        }
        interface xe-1/3/0.0 {
            link-protection;
            metric 22;
        }
    }
}

user@R3# show routing-options
srlg {
    srlg1 srlg-value 1001;
    srlg2 srlg-value 1002;
    srlg3 srlg-value 1003;
    srlg4 srlg-value 1004;
    srlg5 srlg-value 1005;
    srlg6 srlg-value 1006;
    srlg7 srlg-value 1007;
    srlg8 srlg-value 1008;
    srlg9 srlg-value 1009;
    srlg10 srlg-value 10010;
    srlg11 srlg-value 10011;
    srlg12 srlg-value 10012;
}
router-id 172.16.3.3;
forwarding-table {
    export ecmp;
}
backup-selection {
    destination 10.1.1.0/30 {
        interface xe-1/3/0.0 {
            admin-group {
                include-all c2;
            }
        }
    }
    interface all {
        admin-group {
            exclude c3;
        }
    }
    srlg strict;
    protection-type node;
    bandwidth-greater-equal-primary;
    node {
        preference 172.16.7.7;
    }
    root-metric lowest;
    metric-order root;
}
}
destination 172.16.30.0/30 {
    interface all {
        admin-group {
            exclude c5;
        }
    }
    srlg strict;
    protection-type node;
    bandwidth-greater-equal-primary;
    node {
        preference 172.16.7.7;
    }
    root-metric lowest;
    metric-order root;
}
}
destination 192.168.45.0/30 {
    interface all {
        admin-group {
            exclude c5;
        }
    }
}
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the Routes | 227
- Verifying the OSPF Route | 231
- Verifying the OSPF3 Route | 231
- Verifying the Backup Selection Policy for Device R3 | 232

Confirm that the configuration is working properly.

**Verifying the Routes**

**Purpose**

Verify that the expected routes are learned.

**Action**

From operational mode, run the `show route` command for the routing table.

```
user@R3> show route

inet.0: 48 destinations, 48 routes (48 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.3.3/32 *[Direct/0] 02:22:27
```
10.4.0.0/16  *[Static/5] 02:22:57
> via lo0.0
10.5.0.0/16  *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.6.128.0/17 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.9.0.0/16  *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.10.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.13.4.0/23 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.13.10.0/23 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.82.0.0/15 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.84.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.85.12.0/22 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.92.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.92.16.0/20 *[Direct/0] 02:22:57
> via fxp0.0
   Local via fxp0.0
10.94.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.99.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.102.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.150.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.155.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.157.64.0/19 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.160.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.204.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.205.0.0/16 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.206.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.207.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.209.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.212.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.213.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.214.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.215.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.216.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.218.13.0/24  *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
> to 10.92.31.254 via fxp0.0
10.218.16.0/20  *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.218.32.0/20  *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
10.227.0.0/16   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
172.16.50.0/30  *[Direct/0] 02:19:55
> via ge-0/0/5.0
172.16.50.2/32  *[Local/0] 02:19:58
Local via ge-0/0/5.0
172.16.75.0/30  *[Direct/0] 02:19:55
> via xe-0/3/1.0
172.16.75.1/32  *[Local/0] 02:19:57
Local via xe-0/3/1.0
> via lo0.0
172.16.0.0/12   *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
192.168.0.0/16  *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
192.168.102.0/23 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0
192.168.136.0/24 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0

192.168.137.0/24 *[Static/5] 02:22:57
> to 10.92.31.254 via fxp0.0

192.168.233.5/32 *[OSPF/10] 00:16:55, metric 1
MultiRecv

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

47.0005.80ff.f800.0000.0108.0001.1280.9202.4195/152
 *[Direct/0] 02:22:57
> via lo0.0

mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

inet6.0: 10 destinations, 11 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8:50:1:1::/64 *[Direct/0] 02:19:44
> via ge-0/0/5.0

Local via ge-0/0/5.0

2001:db8:75:1:1::/64 *[Direct/0] 02:19:44
> via xe-0/3/1.0

2001:db8:75:1:1::1/128 *[Local/0] 02:19:57
Local via xe-0/3/1.0

> via lo0.0

 *[Direct/0] 02:22:57
> via lo0.0

fe80::/64 *[Direct/0] 02:19:44
Meaning
The output shows all Device R3 routes.

Verifying the OSPF Route

Purpose
Verify the routing table of OSPF.

Action
From operational mode, run the `show ospf route detail` command for Device R3.

```
user@R3> show ospf route detail

Topology default Route Table:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path</th>
<th>Route</th>
<th>NH</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.50.0/30</td>
<td>Intra Network</td>
<td>IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td>Type</td>
<td>Type</td>
<td>Interface</td>
<td>Address/LSP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intra Network</td>
<td>IP</td>
<td></td>
<td>ge-0/0/5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>area 0.0.0.0, origin 172.16.3.3, priority low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.75.0/30</td>
<td>Intra Network</td>
<td>IP</td>
<td></td>
<td>xe-0/3/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>area 0.0.0.0, origin 172.16.3.3, priority low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The output displays the routing table of OSPF routers.

Verifying the OSPF3 Route

Purpose
Verify the routing table of OSPF3.
Action

From operational mode, run the `show ospf3 route detail` command for Device R3.

```plaintext
user@R3> show ospf3 route detail

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path Type</th>
<th>Route Type</th>
<th>NH Type</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8:50:1::/64</td>
<td>Intra Network</td>
<td>IP</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NH-interface ge-0/0/5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 172.16.3.3, Priority low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001:db8:75:1::/64</td>
<td>Intra Network</td>
<td>IP</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>NH-interface xe-0/3/1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 0.0.0.0, Origin 172.16.3.3, Priority low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Meaning

The output displays the routing table of OSPF3 routers.

Verifying the Backup Selection Policy for Device R3

Purpose

Verify the backup selection policy for Device R3.

Action

From operational mode, run the `show backup-selection` command for Device R3.

```plaintext
user@R3> show backup-selection

Prefix: 10.1.1.0/30
Interface: all
  Admin-group exclude: c3
  Neighbor preference: 172.16.7.7
  Protection Type: Node, Downstream Paths Only: Disabled, SRLG: Strict, B/w >= Primary: Enabled, Root-metric: lowest, Dest-metric: lowest
  Metric Evaluation Order: Root-metric, Dest-metric
  Policy Evaluation Order: Admin-group, SRLG, Bandwidth, Protection, node, Metric

Interface: xe-1/3/0.0
  Admin-group include-all: c2
  Protection Type: Link, Downstream Paths Only: Disabled, SRLG: Loose, B/w >= Primary: Disabled, Root-metric: lowest, Dest-metric: lowest
  Metric Evaluation Order: Dest-metric, Root-metric
  Policy Evaluation Order: Admin-group, SRLG, Bandwidth, Protection, node, Metric
```
Prefix: 172.16.30.0/30
 Interface: all
 Admin-group exclude: c5
 Neighbor preference: 172.16.7.7
 Protection Type: Node, Downstream Paths Only: Disabled, SRLG: Strict, B/w >= Primary: Enabled, Root-metric: lowest, Dest-metric: lowest
 Metric Evaluation Order: Root-metric, Dest-metric
 Policy Evaluation Order: Admin-group, SRLG, Bandwidth, Protection, node, Metric

Prefix: 172.16.45.0/30
 Interface: all
 Admin-group exclude: c5
 Neighbor preference: 172.16.7.7
 Protection Type: Node, Downstream Paths Only: Disabled, SRLG: Strict, B/w >= Primary: Enabled, Root-metric: lowest, Dest-metric: lowest
 Metric Evaluation Order: Root-metric, Dest-metric
 Policy Evaluation Order: Admin-group, SRLG, Bandwidth, Protection, node, Metric

Meaning
The output displays the configured policies per prefix per primary next-hop interface.

RELATED DOCUMENTATION

- Configuring Backup Selection Policy for the OSPF Protocol | 193
- Understanding Backup Selection Policy for OSPF Protocol | 191

backup-selection (Protocols ISIS)
CHAPTER 3

Evaluating Complex Cases Using Policy Chains and Subroutines

IN THIS CHAPTER

- Understanding How a Routing Policy Chain Is Evaluated | 235
- Example: Configuring Policy Chains and Route Filters | 237
- Example: Using Firewall Filter Chains | 252
- Understanding Policy Subroutines in Routing Policy Match Conditions | 259
- How a Routing Policy Subroutine Is Evaluated | 263
- Example: Configuring a Policy Subroutine | 265

Understanding How a Routing Policy Chain Is Evaluated

Figure 15 on page 236 shows how a chain of routing policies is evaluated. These routing policies consist of multiple terms. Each term consists of match conditions and actions to apply to matching routes. Each route is evaluated against the policies as follows:

NOTE: On Junos OS Evolved, **next term** cannot appear as the last term of the action. A filter term where **next term** is specified as an action but without any match conditions configured is not supported.

1. The route is evaluated against the first term in the first routing policy. If it matches, the specified action is taken. If the action is to accept or reject the route, that action is taken and the evaluation of the route ends. If the **next term** action is specified, if no action is specified, or if the route does not match, the evaluation continues as described in Step 2. If the **next policy** action is specified, any accept or reject action specified in this term is skipped, all remaining terms in this policy are skipped, all other actions are taken, and the evaluation continues as described in Step 3.

2. The route is evaluated against the second term in the first routing policy. If it matches, the specified action is taken. If the action is to accept or reject the route, that action is taken and the evaluation of the route ends. If the **next term** action is specified, if no action is specified, or if the route does not
match, the evaluation continues in a similar manner against the last term in the first routing policy. If the next policy action is specified, any accept or reject action specified in this term is skipped, all remaining terms in this policy are skipped, all other actions are taken, and the evaluation continues as described in Step 3.

3. If the route does not match a term or matches a term with a next policy action in the first routing policy, it is evaluated against the first term in the second routing policy.

4. The evaluation continues until the route matches a term with an accept or reject action defined or until there are no more routing policies to evaluate. If there are no more routing policies, then the accept or reject action specified by the default policy is taken.

Figure 15: Routing Policy Chain Evaluation

RELATED DOCUMENTATION

Default Routing Policies | 37
Example: Configuring Policy Chains and Route Filters | 237
A policy chain is the application of multiple policies within a specific section of the configuration. A route filter is a collection of match prefixes.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

An example of a policy chain applied to BGP is as follows:

```bash
user@R1# show protocols bgp
group int {
  type internal;
  local-address 192.168.0.1;
  export [ adv-statics adv-large-aggregates adv-small-aggregates ];
  neighbor 192.168.0.2;
  neighbor 192.168.0.3;
}
```

The adv-statics, adv-large-aggregates, and adv-small-aggregates policies, in addition to the default BGP policy, make up the policy chain applied to the BGP peers of Device R1. Two of the policies demonstrate route filters with different match types. The other policy matches all static routes, so no route filter is needed.

```bash
user@R1# show policy-options
policy-statement adv-large-aggregates {
  term between-16-and-18 {
```
from{
 protocol aggregate;
 route-filter 172.16.0.0/16 upto /18;
}
then accept;
}

policy-statement adv-small-aggregates {
 term between-19-and-24 {
 from {
 protocol aggregate;
 route-filter 172.16.0.0/16 prefix-length-range /19-/24;
 }
 then accept;
 }
}

policy-statement adv-statics {
 term statics {
 from protocol static;
 then accept;
 }
}

Optionally, you can convert this policy chain into a single multiterm policy for the internal BGP (IBGP) peers. If you do this, one of the advantages of a policy chain is lost—the ability to reuse policies for different purposes.

Figure 16 on page 239 displays Device R1 in AS 64510 with its IBGP peers, Device R2 and Device R3. Device R1 also has external BGP (EBGP) connections to Device R4 in AS 64511 and Device R5 in AS 64512. The current administrative policy within AS 64510 is to send the customer static routes only to other IBGP peers. Any EBGP peer providing transit service only receives aggregate routes with mask lengths smaller than 18 bits. Any EBGP peer providing peering services receives all customer routes and all aggregates whose mask length is larger than 19 bits. Each portion of these administrative policies is configured in a separate routing policy within the [edit policy-opitons] configuration hierarchy. These policies provide the administrators of AS 64510 with multiple configuration options for advertising routes to peers.

Device R4 is providing transit service to AS 64510, which allows the AS to advertise its assigned routing space to the Internet. On the other hand, the peering service provided by Device R5 allows AS 64510 to route traffic directly between the autonomous systems (ASs) for all customer routes.

Topology

Figure 16 on page 239 shows the sample network.
CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 description to_R2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/2 unit 0 description to_R3
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.5/30
set interfaces fe-1/2/3 unit 0 description to_R4
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.5/30
set interfaces fe-1/2/1 unit 0 description to_R5
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.10/30
```
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.1
set protocols bgp group int export adv-statics
set protocols bgp group int export adv-large-aggregates
set protocols bgp group int export adv-small-aggregates
set protocols bgp group int neighbor 192.168.0.2
set protocols bgp group int neighbor 192.168.0.3
set protocols bgp group to_64511 type external
set protocols bgp group to_64511 export adv-large-aggregates
set protocols bgp group to_64511 neighbor 10.1.0.6 peer-as 64511
set protocols bgp group to_64512 type external
set protocols bgp group to_64512 export adv-small-aggregates
set protocols bgp group to_64512 export adv-statics
set protocols bgp group to_64512 neighbor 10.0.0.9 peer-as 64512
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement adv-large-aggregates term between-16-and-18 from protocol aggregate
set policy-options policy-statement adv-large-aggregates term between-16-and-18 from route-filter 172.16.0.0/16 upto /18
set policy-options policy-statement adv-large-aggregates term between-16-and-18 then accept
set policy-options policy-statement adv-small-aggregates term between-19-and-24 from protocol aggregate
set policy-options policy-statement adv-small-aggregates term between-19-and-24 from route-filter 172.16.0.0/16 prefix-length-range /19-/24
set policy-options policy-statement adv-small-aggregates term between-19-and-24 then accept
set policy-options policy-statement adv-statics term statics from protocol static
set policy-options policy-statement adv-statics term statics then accept
set routing-options static route 172.16.1.16/28 discard
set routing-options static route 172.16.1.32/28 discard
set routing-options static route 172.16.1.48/28 discard
set routing-options static route 172.16.1.64/28 discard
set routing-options aggregate route 172.16.0.0/16
set routing-options aggregate route 172.16.1.0/24
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510

Device R2
Device R3

set interfaces fe-1/2/0 unit 0 description to_R1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 description to_R3
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.2
set protocols bgp group int neighbor 192.168.0.1 export send-static-aggregate
set protocols bgp group int neighbor 192.168.0.3
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static-aggregate term 1 from protocol static
set policy-options policy-statement send-static-aggregate term 1 from protocol aggregate
set policy-options policy-statement send-static-aggregate term 1 then accept
set routing-options static route 172.16.2.16/28 discard
set routing-options static route 172.16.2.32/28 discard
set routing-options static route 172.16.2.48/28 discard
set routing-options static route 172.16.2.64/28 discard
set routing-options aggregate route 172.16.2.0/24
set routing-options aggregate route 172.16.0.0/16
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510

set interfaces fe-1/2/1 unit 0 description to_R2
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces fe-1/2/2 unit 0 description to_R1
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.3
set protocols bgp group int neighbor 192.168.0.1 export send-static-aggregate
set protocols bgp group int neighbor 192.168.0.2
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static-aggregate from protocol static
set policy-options policy-statement send-static-aggregate from protocol aggregate
Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

```plaintext
set policy-options policy-statement send-static-aggregate then accept
set routing-options static route 172.16.3.16/28 discard
set routing-options static route 172.16.3.32/28 discard
set routing-options static route 172.16.3.48/28 discard
set routing-options static route 172.16.3.64/28 discard
set routing-options aggregate route 172.16.0.0/16
set routing-options aggregate route 172.16.3.0/24
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 64510
```

Device R4

```plaintext
set interfaces fe-1/2/3 unit 0 description to_R1
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.4/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.1.0.5
set routing-options autonomous-system 64511
```

Device R5

```plaintext
set interfaces fe-1/2/1 unit 0 description to_R1
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.9/30
set interfaces lo0 unit 0 family inet address 192.168.0.5/32
set protocols bgp group ext type external
set protocols bgp group ext neighbor 10.0.0.10 peer-as 64510
set routing-options autonomous-system 64512
```
2. Configure the IBGP connections to Device R2 and Device R3.

[edit interfaces]
user@R1# set fe-1/2/0 unit 0 description to_R2
user@R1# set fe-1/2/0 unit 0 family inet address 10.0.0.1/30
user@R1# set fe-1/2/2 unit 0 description to_R3
user@R1# set fe-1/2/2 unit 0 family inet address 10.0.0.5/30
user@R1# set fe-1/2/3 unit 0 description to_R4
user@R1# set fe-1/2/3 unit 0 family inet address 10.1.0.5/30
user@R1# set fe-1/2/1 unit 0 description to_R5
user@R1# set lo0 unit 0 family inet address 192.168.0.1/32

3. Apply the export policies for the internal peers.

[edit protocols bgp group int]
user@R1# set type internal
user@R1# set local-address 192.168.0.1
user@R1# set neighbor 192.168.0.2
user@R1# set neighbor 192.168.0.3

4. Configure the EBGP connection to Device R4.

[edit protocols bgp group to_64511]
user@R1# set type external
user@R1# set neighbor 10.1.0.6 peer-as 64511

5. Apply the export policy for Device R4.

[edit protocols bgp group to_64511]
user@R1# set export adv-large-aggregates

6. Configure the EBGP connection to Device R5.
7. Apply the export policies for Device R5.

[edit protocols bgp group to_64512]
user@R1# set type external
user@R1# set neighbor 10.0.0.9 peer-as 64512

[edit protocols bgp group to_64512]
user@R1# set export adv-small-aggregates
user@R1# set export adv-statics

8. Configure OSPF connections to Device R2 and Device R3.

[edit protocols ospf area 0.0.0.0]
user@R1# set interface fe-1/2/0.0
user@R1# set interface fe-1/2/2.0
user@R1# set interface lo0.0 passive

9. Configure the routing policies.

[edit policy-options policy-statement adv-large-aggregates term between-16-and-18]
user@R1# set from protocol aggregate
user@R1# set from route-filter 172.16.0.0/16 upto /18
user@R1# set then accept
user@R1# set from protocol aggregate
user@R1# set from route-filter 172.16.0.0/16 prefix-length-range /19-/24
user@R1# set then accept
[edit policy-options policy-statement adv-statics term statics]
user@R1# set from protocol static
user@R1# set then accept

10. Configure the static and aggregate routes.

[edit routing-options static]
user@R1# set route 172.16.1.16/28 discard
user@R1# set route 172.16.1.32/28 discard
user@R1# set route 172.16.1.48/28 discard
user@R1# set route 172.16.1.64/28 discard
[edit routing-options aggregate]
user@R1# set route 172.16.0.0/16
11. Configure the autonomous system (AS) number and router ID.

[edit routing-options]
user@R1# set router-id 192.168.0.1
user@R1# set autonomous-system 64510

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R1# show interfaces
fe-1/2/0
 unit 0 {
 description to_R2;
 family inet {
 address 10.0.0.1/30;
 }
 }
fe-1/2/2
 unit 0 {
 description to_R3;
 family inet {
 address 10.0.0.5/30;
 }
 }
fe-1/2/3
 unit 0 {
 description to_R4;
 family inet {
 address 10.1.0.5/30;
 }
 }
fe-1/2/1
 unit 0 {
 description to_R5;
 family inet [245
address 10.0.0.10/30;
}
}
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.1/32;
 }
 }
}

user@R1# show protocols
bgp {
 group int {
 type internal;
 local-address 192.168.0.1;
 export [adv-statics adv-large-aggregates adv-small-aggregates];
 neighbor 192.168.0.2;
 neighbor 192.168.0.3;
 }
 group to_64511 {
 type external;
 export adv-large-aggregates;
 neighbor 10.1.0.6 {
 peer-as 64511;
 }
 }
 group to_64512 {
 type external;
 export [adv-small-aggregates adv-statics];
 neighbor 10.0.0.9 {
 peer-as 64512;
 }
 }
}
ospf {
 area 0.0.0.0 {
 interface fe-1/2/0.0;
 interface fe-1/2/2.0;
 interface lo0.0 {
 passive;
 }
 }
}
user@R1# show policy-options
policy-statement adv-large-aggregates {
 term between-16-and-18 {
 from {
 protocol aggregate;
 route-filter 172.16.0.0/16 upto /18;
 }
 then accept;
 }
}
policy-statement adv-small-aggregates {
 term between-19-and-24 {
 from {
 protocol aggregate;
 route-filter 172.16.0.0/16 prefix-length-range /19-/24;
 }
 then accept;
 }
}
policy-statement adv-statics {
 term statics {
 from protocol static;
 then accept;
 }
}
user@R1# show routing-options
static {
 route 172.16.1.16/28 discard;
 route 172.16.1.32/28 discard;
 route 172.16.1.48/28 discard;
 route 172.16.1.64/28 discard;
}
aggregate {
 route 172.16.0.0/16;
 route 172.16.1.0/24;
}
router-id 192.168.0.1;
autonomous-system 64510;

If you are done configuring the device, enter commit from configuration mode.
Verification

IN THIS SECTION
- Verifying the Route Advertisement to Device R4 | 248
- Checking Where the Longer Routes Are Originating | 249
- Blocking the More Specific Routes | 249
- Verifying the Route Advertisement to Device R5 | 250

Confirm that the configuration is working properly.

Verifying the Route Advertisement to Device R4

Purpose
On Device R1, make sure that the customer routes are advertised to Device R4.

Action

```plaintext
user@R1> show route advertising-protocol bgp 10.1.0.6
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Locpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.2.0/24</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.2.16/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.2.32/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.2.48/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.2.64/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.3.0/24</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.3.16/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.3.32/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.3.48/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.3.64/28</td>
<td>Self</td>
<td>I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The **adv-large-aggregates** policy is applied to the peering session with Device R4 to advertise the aggregate routes with a subnet mask length between 16 and 18 bits. The 172.16.0.0/16 aggregate route is being sent as defined by the administrative policy, but a number of other routes with larger subnet masks are also being sent to Device R4.
Checking Where the Longer Routes Are Originating

Purpose
On Device R1, find where the other routes are coming from.

Action

user@R1> show route 172.16.3.16/28

inet.0: 29 destinations, 31 routes (29 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.3.16/28 *[BGP/170] 20:16:00, localpref 100, from 192.168.0.3
 AS path: I, validation-state: unverified
 > to 10.0.0.6 via fe-1/2/2.0

Meaning
Device R1 has learned this route through its BGP session with Device R3. Because it is an active BGP route, it is automatically advertised by the BGP default policy. Remember that the default policy is always applied to the end of every policy chain. What is needed is a policy to block the more specific routes from being advertised.

Blocking the More Specific Routes

Purpose
Create a policy called not-larger-than-18 that rejects all routes within the 172.16.0.0/16 address space that have a subnet mask length greater than or equal to 19 bits. This ensures that all aggregates with a mask between 16 and 18 bits are advertised, thus accomplishing the goal of the administrative policy.

Action
1. On Device R1, configure the not-larger-than-18 policy.

 [edit policy-options policy-statement not-larger-than-18 term reject-greater-than-18-bits]
 user@R1# set from route-filter 172.16.0.0/16 prefix-length-range /19/-/32
 user@R1# set then reject

2. On Device R1, apply the policy to the peering session with Device R4.

 [edit protocols bgp group to_64511]
 user@R1# set export not-larger-than-18
 user@R1# commit

3. On Device R1, check which routes are advertised to Device R4.
user@R1> show route advertising-protocol bgp 10.1.0.6

inet.0: 29 destinations, 31 routes (29 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.0.0/16</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

Meaning
The policy chain is working correctly. Only the 172.16.0.0/16 route is advertised to Device R4.

Verifying the Route Advertisement to Device R5

Purpose
On Device R1, make sure that the customer routes are advertised to Device R5.

Device R5 is Device R1's EBGP peer in AS 64512. The administrative policy states that this peer receives only aggregate routes larger than 18 bits in length and all customer routes. In anticipation of encountering a problem similar to the problem on Device R4, you can create a policy called not-smaller-than-18 that rejects all aggregates with mask lengths between 16 and 18 bits.

Action
1. On Device R2, configure an aggregate route for 172.16.128.0/17.

 [edit routing-options aggregate]
 user@R2# set route 172.16.128.0/17 discard
 user@R2# commit

2. On Device R1, check which routes are advertised to Device R5.

user@R1> show route advertising-protocol bgp 10.0.0.9

inet.0: 30 destinations, 32 routes (30 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.1.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>
The aggregate route 172.16.128.0/17 is advertised, in violation of the administrative policy

3. On Device R1, configure the not-smaller-than-18 policy.

 [edit policy-options policy-statement not-smaller-than-18 term reject-less-than-18-bits]
 user@R1# set from protocol aggregate
 user@R1# set from route-filter 172.16.0.0/16 upto /18
 user@R1# set then reject

4. On Device R1, apply the policy to the peering session with Device R5.

 [edit protocols bgp group to_64512]
 user@R1# set export not-smaller-than-18
 user@R1# commit

5. On Device R1, check which routes are advertised to Device R5.

 user@R1> show route advertising-protocol bgp 10.0.0.9

 inet.0: 29 destinations, 31 routes (29 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 * 172.16.1.0/24 Self I
 * 172.16.1.16/28 Self I
 * 172.16.1.32/28 Self I
 * 172.16.1.48/28 Self I
 * 172.16.1.64/28 Self I
 * 172.16.2.0/24 Self I
 * 172.16.2.16/28 Self I
 * 172.16.2.32/28 Self I
 * 172.16.2.48/28 Self I
 * 172.16.2.64/28 Self I
 * 172.16.3.0/24 Self I
 * 172.16.3.16/28 Self I
 * 172.16.3.32/28 Self I
Meaning
The policy chain is working correctly. Only aggregate routes larger than 18 bits in length and all customer routes are advertised to Device R5.

RELATED DOCUMENTATION

- Understanding Route Filters for Use in Routing Policy Match Conditions | 279
- Route Filter Match Conditions | 67
- Example: Configuring Routing Policy Prefix Lists | 364
- Example: Configuring a Policy Subroutine | 265

Example: Using Firewall Filter Chains

This example shows the use of firewall filter chains. Firewall filters filter1, filter2, and filter3, are applied to interface ge-0/1/1.0 using the `input-chain` and the `output-chain` configuration statements.

Requirements

Before you begin:

- You should have a MX Series router with MPCs and running Junos release 18.4R1 or later.
- The router should be configured for IP version 4 (IPv4) protocol (family inet) and configured the logical interface with an interface address. All other initial router configurations should be complete, with basic IPv4 connectivity between the devices confirmed.
- The traffic you send should be compatible with the firewall filter rules so the rules you configure can match the test traffic you send.

Overview

This example shows how to chain multiple firewall filters for both ingress and egress so they can be applied to a given interface and evaluated in sequence. Each filter in chain acts the same as the CLI filter. The order of execution occurs in the same order as the chain, from left to right.

Topology

In this example, you configure multiple firewall filters and then apply them in sequence by chaining them to a given interface. This example uses ge-0/1/1.0 configured with the IP address 172.16.1.1/30 for both the input and output chain. If a packet does not match any of the filters in the chain list, the packet is dropped.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level. The filter names used here are filter1, and so on, while the term names are t1_f1 (term1, using filter1), and so on.

```
set firewall family inet filter filter1 term t1_f1 from protocol tcp
set firewall family inet filter filter1 term t1_f1 then count f1_t1_cnt
set firewall family inet filter filter1 term t2_f1 from precedence 7
```
Configure IPv4 Firewall Filters

Here we configure the firewall filters. Each has different match conditions and count actions. The first two filters have multiple terms with the non-terminating action of count, which means matching packets will be passed on to the next filter in the chain, while the third has an action of accept. Packets that don’t match any of the specified conditions would be dropped.

Step-by-Step Procedure

To configure the firewall filters:

1. Navigate the CLI to the hierarchy level at which you configure IPv4 firewall filters.

   ```
   [edit]
   user@host# edit firewall family inet
   ```

2. Configure the first firewall filter to count TCP packets, or packets with a precedence of 7, before sending them on to the next filter in the chain.

   ```
   [edit firewall family inet]
   user@host# set filter filter1 term t1_f1 from protocol tcp
   user@host# set filter filter1 term t1_f1 then count f1_t1_cnt
   user@host# set filter filter1 term t2_f1 from precedence 7
   user@host# set filter filter1 term t2_f1 then count f1_t2_cnt
   ```
3. Configure the second firewall filter to count DSCP packets, or packets with a source port of 1020, before sending them on to the next filter in the chain.

```
[edit firewall family inet]
user@host# set filter filter2 term t1_f2 from dscp 0
user@host# set filter filter2 term t1_f2 then count f2_t1_cnt
user@host# set filter filter2 term t2_f2 from source-port 1020
user@host# set filter filter2 term t2_f2 then count f2_t2_cnt
```

4. Configure the last firewall filter to count and accept packets with a destination address of 172.30.1.1/31, or a destination port of 5454.

```
[edit firewall family inet]
user@host# set filter filter3 term t1_f3 from destination-address 172.30.1.1/31
user@host# set filter filter3 term t1_f3 then count f3_t1_cnt
user@host# set filter filter3 term t2_f3 from destination-port 5454
user@host# set filter filter3 term t2_f3 then count f3_t2_cnt
user@host# set filter filter3 term t2_f3 then accept
```

5. [Optional] Configure a policer to shape traffic flow.

```
[edit firewall]
set policer policer1 if-exceeding bandwidth-limit 5m
set policer policer1 if-exceeding burst-size-limit 100k
set policer policer1 then discard
```

Apply the Chain of Input Filters

Here we attach the firewall filters to a given interface. The order of execution occurs in the same order as the chain, from left to right.

Step-by-Step Procedure

To assign the interface an IP address:

1. Navigate to the interface we are using for the filters, `ge-0/1.0`.

```
[edit]
user@host# edit interfaces ge-0/1.0 unit 0 family inet
```
2. Assign an IPv4 address to the logical interface.

```plaintext
[edit interfaces ge-0/1/1 unit 0 family inet]
user@host# set address 172.16.1.1/30
```

3. Apply the filters as a list of input filters.

```plaintext
[edit interfaces ge-0/1/1 unit 0 family inet]
user@host# set filter input-chain [ filter1 filter2 filter3 ]
user@host# set filter out-chain [ filter1 filter2 filter3 ]
```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the firewall filters by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit firewall]
user@host# show
family inet {
}
filter filter1 {
    term t1_f1 {
        from {
            protocol tcp;
        }
        then count f1_t1_cnt;
    }
    term t2_f1 {
        from {
            precedence 7;
        }
        then count f1_t2_cnt;
    }
}
filter filter2 {
    term t1_f2 {
        from {
            dscp 0;
```
then count f2_t1_cnt;
}

term t2_f2 {
 from {
 source-port 1020;
 }
 then count f2_t2_cnt;
}

filter filter3 {
 term t1_f3 {
 from {
 destination-address {
 172.30.1.1/31;
 }
 }
 then {
 count f3_t1_cnt;
 }
 }
 term t2_f3 {
 from {
 destination-port 5454;
 }
 then {
 count f3_t2_cnt;
 accept;
 }
 }
}

policer policer1 {
 if-exceeding {
 bandwidth-limit 5m;
 burst-size-limit 100k;
 }
 then discard;
}
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command.

```
[edit]
user@host# show interfaces
ge-0/1/1 {
  unit 0 {
    family inet {
      filter {
        input-chain [filter1 filter2 filter3];
      }
      address 172.16.1.1/30;
    }
  }
}
```

3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Verification

IN THIS SECTION

- Send Traffic Through the Firewall Filters | 258

Confirm that the configuration works as expected, that is, that the matching traffic is evaluated by each of the filters filter1, filter2, and filter3, and that the expected action (count or accept) has been taken.

Send Traffic Through the Firewall Filters

Purpose

Send traffic from one device to the router you have configured to see whether matching packets are being evaluated by all relevant filters in the chain.

Action
To verify that input packets are evaluated by filter1, filter2, and filter3:

1. From the remote host that is connected to `ge-0/1/1.0`, send a packet with a precedence of 7. The packet should be counted and then evaluated by filter2.

2. From the remote host that is connected to `ge-0/1/1.0`, send a packet with DSCP value of 0. The packet should be counted and then evaluated by filter3.

3. From the remote host that is connected to `ge-0/1/1.0`, send a packet with a destination address of `172.30.1.1/31` and a destination port number of `5454`. The packet should be counted and then accepted.

4. To display counter information for the filters you configured, enter the `show firewall filter ge-0/1/1.0-i` operational mode command. The command output displays the number of bytes and packets that match filter terms associated with the following counters:
 - `pkts_f1-ge-0/1/1.0-i`
 - `pkts_f2-ge-0/1/1.0-i`
 - `pkts_f3-ge-0/1/1.0-i`
 - `pkts_discard-ge-0/1/1.0-i`

RELATED DOCUMENTATION

| output-chain | 2156 |
| input-chain | 2143 |

Understanding Policy Subroutines in Routing Policy Match Conditions

You can use a routing policy called from another routing policy as a match condition. This process makes the called policy a *subroutine*.

In some ways, the Junos OS policy framework is similar to a programming language. This similarity includes the concept of nesting policies into a policy subroutine. A subroutine in a software program is a section of code that you reference on a regular basis. A policy subroutine works in the same fashion—you reference an existing policy as a match criterion in another policy. The routing device first evaluates the subroutine and then evaluates the main policy. The evaluation of the subroutine returns a true or false Boolean result to the main policy. Because you are referencing the subroutine as a match criterion, a true result means that the main policy has a match and can perform any configured actions. A false result from the subroutine, however, means that the main policy does not have a match.
Configuring Subroutines

To configure a subroutine in a routing policy to be called from another routing policy, create the subroutine and specify its name using the `policy` match condition in the `from` or `to` statement of another routing policy.

NOTE: Do not evaluate a routing policy within itself. The result is that no prefixes ever match the routing policy.

The action specified in a subroutine is used to provide a match condition to the calling policy. If the subroutine specifies an action of accept, the calling policy considers the route to be a match. If the subroutine specifies an action of reject, the calling policy considers the route not to match. If the subroutine specifies an action that is meant to manipulate the route characteristics, the changes are made.

Possible Consequences of Termination Actions in Subroutines

A subroutine with particular statements can behave differently from a routing policy that contains the same statements. With a subroutine, you must remember that the possible termination actions of accept or reject specified by the subroutine or the default policy can greatly affect the expected results.

In particular, you must consider what happens if a match does not occur with routes specified in a subroutine and if the default policy action that is taken is the action that you expect and want.

For example, imagine that you are a network administrator at an Internet service provider (ISP) that provides service to Customer A. You have configured several routing policies for the different classes of neighbors that Customer A presents on various links. To save time maintaining the routing policies for Customer A, you have configured a subroutine that identifies their routes and various routing policies that call the subroutine, as shown below:

```plaintext
[edit]
policy-options {
    policy-statement customer-a-subroutine {
        from {
            route-filter 10.1/16 exact;
            route-filter 10.5/16 exact;
            route-filter 192.168.10/24 exact;
        } then accept;
    }
}

policy-options {
    policy-statement send-customer-a-default {
        from {
            policy customer-a-subroutine;
        }
    }
}
```
then {
 set metric 500;
 accept;
}
}
}
policy-options {
policy-statement send-customer-a-primary {
 from {
 policy customer-a-subroutine;
 }
 then {
 set metric 100;
 accept;
 }
}
}
policy-options {
policy-statement send-customer-a-secondary {
 from {
 policy customer-a-subroutine;
 }
 then {
 set metric 200;
 accept;
 }
}
}
}
protocols {
bgp {
group customer-a {
 export send-customer-a-default;
 neighbor 10.1.1.1;
 neighbor 10.1.2.1;
 neighbor 10.1.3.1 {
 export send-customer-a-primary;
 }
 neighbor 10.1.4.1 {
 export send-customer-a-secondary;
 }
}
}
The following results occur with this configuration:

- The group-level `export` statement resets the metric to 500 when advertising all BGP routes to neighbors 10.1.1.1 and 10.1.2.1 rather than just the routes that match the subroutine route filters.
- The neighbor-level `export` statements reset the metric to 100 and 200 when advertising all BGP routes to neighbors 10.1.3.1 and 10.1.4.1, respectively, rather than just the BGP routes that match the subroutine route filters.

These unexpected results occur because the subroutine policy does not specify a termination action for routes that do not match the route filter and therefore, the default BGP export policy of accepting all BGP routes is taken.

If the statements included in this particular subroutine had been contained within the calling policies themselves, only the desired routes would have their metrics reset.

This example illustrates the differences between routing policies and subroutines and the importance of the termination action in a subroutine. Here, the default BGP export policy action for the subroutine was not carefully considered. A solution to this particular example is to add one more term to the subroutine that rejects all other routes that do not match the route filters:

```
[edit]
 policy-options {
  policy-statement customer-a-subroutine {
    term accept-exact {
      from {
        route-filter 10.1/16 exact;
        route-filter 10.5/16 exact;
        route-filter 192.168.10/24 exact;
      }
      then accept;
    }
    term reject-others {
      then reject;
    }
  }
}
```

Termination action strategies for subroutines in general include the following:

- Depend upon the default policy action to handle all other routes.
- Add a term that accepts all other routes.
- Add a term that rejects all other routes.

The option that you choose depends upon what you want to achieve with your subroutine. Plan your subroutines carefully.
How a Routing Policy Subroutine Is Evaluated

Figure 17 on page 264 shows how a subroutine is evaluated. The subroutine is included in the first term of the first routing policy in a chain. Each route is evaluated against the subroutine as follows:

1. The route is evaluated against the first term in the first routing policy. If the route does not match all match conditions specified before the subroutine, the subroutine is skipped and the next term in the routing policy is evaluated (see Step 2). If the route matches all match conditions specified before the subroutine, the route is evaluated against the subroutine. If the route matches the match conditions in any of the subroutine terms, two levels of evaluation occur in the following order:

 a. The actions in the subroutine term are evaluated. If one of the actions is accept, evaluation of the subroutine ends and a Boolean value of TRUE is returned to the calling policy. If one of the actions is reject, evaluation of the subroutine ends and FALSE is returned to the calling policy.

 If the subroutine does not specify the accept, reject or next-policy action, it uses the accept or reject action specified by the default policy, and the values of TRUE or FALSE are returned to the calling policy as described in the previous paragraph.

 b. The calling policy’s subroutine match condition is evaluated. During this part of the evaluation, TRUE equals a match and FALSE equals no match. If the subroutine returns TRUE to the calling policy, then the evaluation of the calling policy continues. If the subroutine returns FALSE to the calling policy, then the evaluation of the current term ends and the next term is evaluated.

2. The route is evaluated against the second term in the first routing policy.

If you specify a policy chain as a subroutine, the entire chain acts as a single subroutine. As with other chains, the action specified by the default policy is taken only when the entire chain does not accept or reject a route.

If a term defines multiple match conditions, including a subroutine, and a route does not match a condition specified before the subroutine, the evaluation of the term ends and the subroutine is not called and evaluated. In this situation, an action specified in the subroutine that manipulates a route’s characteristics is not implemented.
Figure 17: Routing Policy Subroutine Evaluation

RELATED DOCUMENTATION

- Default Routing Policies | 37
- Understanding Policy Subroutines in Routing Policy Match Conditions | 259
- Understanding How a Routing Policy Chain Is Evaluated | 235
- Example: Configuring a Policy Subroutine | 265
Example: Configuring a Policy Subroutine

IN THIS SECTION

- Requirements | 265
- Overview | 265
- Configuration | 267
- Verification | 274

This example demonstrates the use of a policy subroutine in a routing policy match condition.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

On Device R1, a policy called **main** is configured.

```bash
user@R1# show policy-options
policy-statement main {
  term subroutine-as-a-match {
    from policy subroutine;
    then accept;
  }
  term nothing-else {
    then reject;
  }
}
```

This main policy calls a subroutine called **subroutine**.

```bash
user@R1# show policy-options
policy-statement subroutine {
  term get-routes {
    from protocol static;
    then accept;
  }
}
```
term nothing-else {
 then reject;
}

The router evaluates the logic of **main** in a defined manner. The match criterion of **from policy subroutine** allows the routing device to locate the subroutine. All terms of the subroutine are evaluated, in order, following the normal policy processing rules. In this example, all static routes in the routing table match the subroutine with an action of accept. This returns a true result to the original, or calling, policy which informs the device that a positive match has occurred. The actions in the calling policy are executed and the route is accepted. All other routes in the routing table do not match the subroutine and return a false result to the calling policy. The device evaluates the second term of **main** and rejects the routes.

The actions in the subroutine do not actually accept or reject a specific route. The subroutine actions are only translated into a true or a false result. Actions that modify a route's attributes, however, are applied to the route regardless of the outcome of the subroutine.

Device R1 in AS 64510 has multiple customer routes, some of which are static routes configured locally, and some of which are received from Device R2 and Device R3 through internal BGP (IBGP). AS 64510 is connected to Device R4 in AS 64511. The policy **main** is applied as an export policy in Device R1's BGP peering session with Device R4. This causes Device R1 to send only its own static routes to Device R4. Because of the policy **main**, Device R1 does not send the routes received from its internal peers, Device R2 and Device R3.

When you are working with policy subroutines, it is important to remember that the default EBGP export policy is to advertise all learned BGP routes to all EBGP peers. This default policy is in effect in the main policy and also in the subroutine. Therefore, as shown in this example, if you do not want the default EBGP export policy to take effect, you must configure a **then reject** terminating action as the final term in both the main policy and in the policy subroutine. This example demonstrates what happens when the final **then reject** term is missing either from the main policy or from the policy subroutine.

Topology

Figure 18 on page 267 shows the sample network.
"CLI Quick Configuration" on page 267 shows the configuration for all of the devices in Figure 18 on page 267.

The section "Step-by-Step Procedure" on page 270 describes the steps on Device R1.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 description to_R2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/2 unit 0 description to_R3
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.5/30
set interfaces fe-1/2/3 unit 0 description to_R4
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.5/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group int type internal
```
set protocols bgp group int local-address 192.168.0.1
set protocols bgp group int neighbor 192.168.0.2
set protocols bgp group int neighbor 192.168.0.3
set protocols bgp group to_64511 type external
set protocols bgp group to_64511 export main
set protocols bgp group to_64511 neighbor 10.1.0.6 peer-as 64511
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement main term subroutine-as-a-match from policy subroutine
set policy-options policy-statement main term subroutine-as-a-match then accept
set policy-options policy-statement main term nothing-else then reject
set policy-options policy-statement subroutine term get-routes from protocol static
set policy-options policy-statement subroutine term get-routes then accept
set policy-options policy-statement subroutine term nothing-else then reject
set routing-options static route 172.16.1.16/28 discard
set routing-options static route 172.16.1.32/28 discard
set routing-options static route 172.16.1.48/28 discard
set routing-options static route 172.16.1.64/28 discard
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510

Device R2

set interfaces fe-1/2/0 unit 0 description to_R1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 description to_R3
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.2
set protocols bgp group int neighbor 192.168.0.1 export send-static
set protocols bgp group int neighbor 192.168.0.3
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 172.16.2.16/28 discard
set routing-options static route 172.16.2.32/28 discard
set routing-options static route 172.16.2.48/28 discard
set routing-options static route 172.16.2.64/28 discard
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510

Device R3

set interfaces fe-1/2/1 unit 0 description to_R2
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces fe-1/2/2 unit 0 description to_R1
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.3
set protocols bgp group int neighbor 192.168.0.1 export send-static
set protocols bgp group int neighbor 192.168.0.2
set protocols ospf area 0.0.0.0 interface fe-1/2/2.6
set protocols ospf area 0.0.0.0 interface fe-1/2/0.4
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static from protocol static
set policy-options policy-statement send-static then accept
set routing-options static route 172.16.3.16/28 discard
set routing-options static route 172.16.3.32/28 discard
set routing-options static route 172.16.3.48/28 discard
set routing-options static route 172.16.3.64/28 discard
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 64510

Device R4

set interfaces fe-1/2/3 unit 0 description to_R1
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.4/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.1.0.5
set routing-options autonomous-system 64511
Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

 [edit interfaces]
 user@R1# set fe-1/2/0 unit 0 description to_R2
 user@R1# set fe-1/2/0 unit 0 family inet address 10.0.0.1/30
 user@R1# set fe-1/2/2 unit 0 description to_R3
 user@R1# set fe-1/2/2 unit 0 family inet address 10.0.0.5/30
 user@R1# set fe-1/2/3 unit 0 description to_R4
 user@R1# set fe-1/2/3 unit 0 family inet address 10.1.0.5/30
 user@R1# set lo0 unit 0 family inet address 192.168.0.1/32

2. Configure the internal BGP (IBGP) connections to Device R2 and Device R3.

 [edit protocols bgp group int]
 user@R1# set type internal
 user@R1# set local-address 192.168.0.1
 user@R1# set neighbor 192.168.0.2
 user@R1# set neighbor 192.168.0.3

3. Configure the EBGP connection to Device R4.

 [edit protocols bgp group to_64511]
 user@R1# set type external
 user@R1# set export main
 user@R1# set neighbor 10.1.0.6 peer-as 64511

4. Configure OSPF connections to Device R2 and Device R3.

 [edit protocols ospf area 0.0.0.0]
 user@R1# set interface fe-1/2/0.0
 user@R1# set interface fe-1/2/2.0
 user@R1# set interface lo0.0 passive

5. Configure the policy main.
6. Configure the policy subroutine.

```conf
[edit policy-options policy-statement main term subroutine-as-a-match]
user@R1# set from policy subroutine
user@R1# set then accept
[edit policy-options policy-statement main term nothing-else]
user@R1# set then reject
```

7. Configure the static route to the 172.16.5.0/24 network.

```conf
[edit routing-options static]
user@R1# set route 172.16.1.16/28 discard
user@R1# set route 172.16.1.32/28 discard
user@R1# set route 172.16.1.48/28 discard
user@R1# set route 172.16.1.64/28 discard
```

8. Configure the autonomous system (AS) number and router ID.

```conf
[edit routing-options]
user@R1# set router-id 192.168.0.1
user@R1# set autonomous-system 64510
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```conf
user@R1# show interfaces
fe-1/2/0 {
    unit 0 {
        description to_R2;
        family inet {
            address 10.0.0.1/30;
        }
    }
```
fe-1/2/2 {
 unit 0 {
 description to_R3;
 family inet {
 address 10.0.0.5/30;
 }
 }
}

fe-1/2/3 {
 unit 0 {
 description to_R4;
 family inet {
 address 10.1.0.5/30;
 }
 }
}

lo0 {
 unit 0 {
 family inet {
 address 192.168.0.1/32;
 }
 }
}

user@R1# show protocols
bgp {
 group int {
 type internal;
 local-address 192.168.0.1;
 neighbor 192.168.0.2;
 neighbor 192.168.0.3;
 }
 group to_64511 {
 type external;
 export main;
 neighbor 10.1.0.6 {
 peer-as 64511;
 }
 }
}

ospf {
area 0.0.0.0 {
 interface fe-1/2/0.0;
 interface fe-1/2/2.0;
 interface lo0.0 {
 passive;
 }
}

user@R1# show policy-options
user@R1# show policy-options
policy-statement main {
 term subroutine-as-a-match {
 from policy subroutine;
 then accept;
 }
 term nothing-else {
 then reject;
 }
}

policy-statement subroutine {
 term get-routes {
 from protocol static;
 then accept;
 }
 term nothing-else {
 then reject;
 }
}

user@R1# show routing-options
user@R1# show routing-options
static {
 route 172.6.1.16/28 discard;
 route 172.6.1.32/28 discard;
 route 172.6.1.48/28 discard;
 route 172.6.1.64/28 discard;
}
router-id 192.168.0.1;
autonomous-system 64510;

If you are done configuring the device, enter commit from configuration mode.
Verification

IN THIS SECTION
- Verifying the Routes on Device R1 | 274
- Verifying the Route Advertisement to Device R4 | 274
- Experimenting with the Default BGP Export Policy | 275

Confirm that the configuration is working properly.

Verifying the Routes on Device R1

Purpose
On Device R1, check the static routes in the routing table.

Action

```bash
user@R1> show route protocol static
```

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

```
172.16.1.16/28   *[Static/5] 1d 02:02:13
              Discard
172.16.1.32/28   *[Static/5] 1d 02:02:13
              Discard
172.16.1.48/28   *[Static/5] 1d 02:02:13
              Discard
172.16.1.64/28   *[Static/5] 1d 02:02:13
              Discard
```

Meaning
Device R1 has four static routes.

Verifying the Route Advertisement to Device R4

Purpose
On Device R1, make sure that the static routes are advertised to Device R4.
Action

user@R1> show route advertising-protocol bgp 10.1.0.6

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
* 172.16.1.16/28 Self I
* 172.16.1.32/28 Self I
* 172.16.1.48/28 Self I
* 172.16.1.64/28 Self I
* 172.16.2.16/28 Self I
* 172.16.2.32/28 Self I
* 172.16.2.48/28 Self I
* 172.16.2.64/28 Self I
* 172.16.3.16/28 Self I

Meaning
As expected, Device R1 only advertises its static routes to Device R4.

Experimenting with the Default BGP Export Policy

Purpose
See what can happen when you remove the final then reject term from the policy main or the policy subroutine.

Action
1. On Device R1, deactivate the final term in the policy main.

[edit policy-options policy-statement main]
user@R1# deactivate term nothing-else
user@R1# commit

2. On Device R1, check to see which routes are advertised to Device R4.

user@R1> show route advertising-protocol bgp 10.1.0.6

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
* 172.16.1.16/28 Self I
* 172.16.1.32/28 Self I
* 172.16.1.48/28 Self I
* 172.16.1.64/28 Self I
* 172.16.2.16/28 Self I
* 172.16.2.32/28 Self I
* 172.16.2.48/28 Self I
* 172.16.2.64/28 Self I
* 172.16.3.16/28 Self I
Now, all the BGP routes from Device R1 are sent to Device R4. This is because after the processing is returned to policy main, the default BGP export policy takes effect.

3. On Device R1, reactivate the final term in the policy main, and deactivate the final term in the policy subroutine.

```
[edit policy-options policy-statement main]
user@R1# activate term nothing-else
[edit policy-options policy-statement subroutine]
user@R1# deactivate term nothing-else
user@R1# commit
```

4. On Device R1, check to see which routes are advertised to Device R4.

```
user@R1> show route advertising-protocol bgp 10.1.0.6
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.1.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

Now, all the BGP routes from Device R1 are sent to Device R4. This is because before the processing is returned to policy main, the default BGP export policy takes effect in the policy subroutine.

Meaning

To prevent the default BGP export policy from taking effect, you must include a final then reject term in the main policy and in all referenced subroutines.
CHAPTER 4

Configuring Route Filters and Prefix Lists as Match Conditions

IN THIS CHAPTER

- Understanding Route Filters for Use in Routing Policy Match Conditions | 279
- Understanding Route Filter and Source Address Filter Lists for Use in Routing Policy Match Conditions | 300
- Understanding Load Balancing Using Source or Destination IP Only | 301
- Configuring Load Balancing Using Source or Destination IP Only | 302
- Walkup for Route Filters Overview | 304
- Configuring Walkup for Route Filters to Improve Operational Efficiency | 308
- Example: Configuring Route Filter Lists | 313
- Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency | 319
- Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency | 326
- Example: Configuring a Route Filter Policy to Specify Priority for Prefixes Learned Through OSPF | 333
- Example: Configuring the MED Using Route Filters | 338
- Example: Configuring Layer 3 VPN Protocol Family Qualifiers for Route Filters | 356
- Understanding Prefix Lists for Use in Routing Policy Match Conditions | 360
- Example: Configuring Routing Policy Prefix Lists | 364
- Example: Configuring the Priority for Route Prefixes in the RPD Infrastructure | 378
- Configuring Priority for Route Prefixes in RPD Infrastructure | 390

Understanding Route Filters for Use in Routing Policy Match Conditions

IN THIS SECTION

- Radix Trees | 280
- Configuring Route Filters | 282
A route filter is a collection of match prefixes. When specifying a match prefix, you can specify an exact match with a particular route or a less precise match. You can configure either a common action that applies to the entire list or an action associated with each prefix.

NOTE: Because the configuration of route filters includes setting up prefixes and prefix lengths, we strongly recommend that you have a thorough understanding of IP addressing, including supernetting, before proceeding with the configuration.

It is also important to understand how a route filter is evaluated, particularly if the route filter includes multiple route-filter options in a from statement. We strongly recommend that you read “How Route Filters Are Evaluated in Routing Policy Match Conditions” on page 288 before proceeding with the configuration. Not fully understanding the evaluation process can result in faulty configuration and unexpected results.

This section discusses the following topics:

Radix Trees

To understand the operation of a route filter, you need to be familiar with a device used for binary number matching known as a radix tree (sometimes called a patricia trie or radix trie). A radix tree uses binary lookups to identify IP addresses (routes). Remember that an IP address is a 32-bit number represented in a dotted decimal format for easy comprehension by humans. These 8-bit groupings can each have a value between 0 and 255. A radix tree can be a graphical representation of these binary numbers.

In Figure 19 on page 280, the radix tree starts with no configured value (starts at 0) and is at the leftmost position of the binary IP address. This is shown as 0/0, which is often referred to as the default route.

Figure 19: Beginning of a Radix Tree
Because this is binary, each bit can have only one of two possible values—a 0 or a 1. Moving down the left branch represents a value of 0, while moving to the right represents a value of 1. The first step is shown in Figure 20 on page 281. At the first position, the first octet of the IP address has a value of 00000000 or 10000000—a 0 or 128, respectively. This is represented in Figure 20 on page 281 by the values 0/1 and 128/1.

Figure 20: First Step of a Radix Tree

The second step is shown in Figure 21 on page 281. This second level of the tree has four possible binary values for the first octet: 00000000, 01000000, 10000000, and 11000000. These decimal values of 0, 64, 128, and 192 are represented by the IP addresses of 0/2, 64/2, 128/2, and 192/2 on the radix tree.

Figure 21: Second Step of a Radix Tree

This step-by-step process continues for 33 total levels to represent every possible IP address.

The radix tree structure is helpful when locating a group of routes that all share the same most significant bits. Figure 22 on page 282 shows the point in the radix tree that represents the 192.168.0.0/16 network. All of the routes that are more specific than 192.168.0.0/16 are shown in the highlighted section.
NOTE: The topic, Configuring Route Filters, describes default Junos OS behavior. The walkup feature, which is not covered in this topic, alters the evaluation results discussed in this topic by allowing the router to consider shorter match conditions configured within the same term. See "Walkup for Route Filters Overview" on page 304 for details.

To configure a route filter, include one or more `route-filter` or `source-address-filter` statements:

```plaintext
[edit policy-options policy-statement policy-name term term-name from]
route-filter destination-prefix match-type {
  actions;
}
```

The `route-filter` option is typically used to match an incoming route address to destination match prefixes of any type except for unicast source addresses.

The `destination-prefix` address is the IP version 4 (IPv4) or IP version 6 (IPv6) address prefix specified as `prefix/prefix-length`. If you omit `prefix-length` for an IPv4 prefix, the default is /32. If you omit `prefix-length` for an IPv6 prefix, the default is /128. Prefixes specified in a `from` statement must be either all IPv4 addresses or all IPv6 addresses.

The `source-address-filter` option is typically used to match an incoming route address to unicast source addresses in multiprotocol BGP (MBGP) and Multicast Source Discovery Protocol (MSDP) environments.

```plaintext
source-address-filter source-prefix match-type {
  actions;
}
```
source-prefix address is the IPv4 or IPv6 address prefix specified as prefix/prefix-length. If you omit prefix-length for an IPv4 prefix, the default is /32prefix-length. If you omit prefix-length for an IPv6 prefix, the default is /128. Prefixes specified in a from statement must be either all IPv4 addresses or all IPv6 addresses.

match-type is the type of match to apply to the source or destination prefix. It can be one of the match types listed in Table 16 on page 284. For examples of the match types and the results when presented with various routes, see Table 17 on page 287.

actions are the actions to take if a route address matches the criteria specified for a destination match prefix (specified as part of a route-filter option) or for a source match prefix (specified as part of a destination-address-filter option). The actions can consist of one or more of the actions described in "Actions in Routing Policy Terms" on page 69.

In a route filter you can specify actions in two ways:

- In the route-filter or source-address-filter option—These actions are taken immediately after a match occurs, and the then statement is not evaluated.

- In the then statement—These actions are taken after a match occurs but no actions are specified for the route-filter or source-address-filter option.

The upto and prefix-length-range match types are similar in that both specify the most-significant bits and provide a range of prefix lengths that can match. The difference is that upto allows you to specify an upper limit only for the prefix length range, whereas prefix-length-range allows you to specify both lower and upper limits.

For more examples of these route filter match types, see “Route Filter Examples” on page 291.
Table 16: Route Filter Match Types for a Prefix List

<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-mask
netmask-value</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td></td>
<td>• The bit-wise logical AND of the netmask-value pattern and the incoming IPv4 or IPv6 route address and the bit-wise logical AND of the netmask-value pattern and the destination-prefix address are the same. The bits set in the netmask-value pattern do not need to be contiguous.</td>
</tr>
<tr>
<td></td>
<td>• The prefix-length component of the incoming IPv4 or IPv6 route address and the prefix-length component of the destination-prefix address are the same.</td>
</tr>
</tbody>
</table>

NOTE: The address-mask routing policy match type is valid only for matching an incoming IPv4 (family inet) or IPv6 (family inet6) route address to a list of destination match prefixes specified in a route-filter statement.

The address-mask routing policy match type enables you to match an incoming IPv4 or IPv6 route address on a configured netmask address in addition to the length of a configured destination match prefix. The length of the route address must match exactly with the length of the configured destination match prefix, as the address-mask match type does not support prefix length variations for a range of prefix lengths.

When the longest-match lookup is performed on a route filter, the lookup evaluates an address-mask match type differently from other routing policy match types. The lookup does not consider the length of the destination match prefix. Instead, the lookup considers the number of contiguous high-order bits set in the netmask value.

For more information about this route filter match type, see "How an Address Mask Match Type Is Evaluated" on page 290.

For example configurations showing route filters that contain the address-mask match type, see the following topics:

- "Accepting Incoming IPv4 Routes by Applying an Address Mask to the Route Address and the Destination Match Prefix" on page 296.
- "Accepting Incoming IPv4 Routes with Similar Patterns But Different Prefix Lengths" on page 298.
- "Evaluation of an Address Mask Match Type with Longest-Match Lookup" on page 299.

exact
 All of the following are true:

- The route address shares the same most-significant bits as the match prefix (destination-prefix or source-prefix). The number of significant bits is described by the prefix-length component of the match prefix.
- The prefix-length component of the match prefix is equal to the route’s prefix length.
Table 16: Route Filter Match Types for a Prefix List (continued)

<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>longer</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td></td>
<td>• The route address shares the same most-significant bits as the match prefix (destination-prefix or source-prefix). The number of significant bits is described by the prefix-length component of the match prefix.</td>
</tr>
<tr>
<td></td>
<td>• The route's prefix length is greater than the prefix-length component of the match prefix.</td>
</tr>
<tr>
<td>orlonger</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td></td>
<td>• The route address shares the same most-significant bits as the match prefix (destination-prefix or the source-prefix). The number of significant bits is described by the prefix-length component of the match prefix.</td>
</tr>
<tr>
<td></td>
<td>• The route's prefix length is equal to or greater than the prefix-length component of the configured match prefix.</td>
</tr>
<tr>
<td>prefix-length-range</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td>prefix-length2-pref</td>
<td>• The route address shares the same most-significant bits as the match prefix (destination-prefix or source-prefix). The number of significant bits is described by the prefix-length component of the match prefix.</td>
</tr>
<tr>
<td></td>
<td>• The route's prefix length falls between prefix-length2 and prefix-length3, inclusive.</td>
</tr>
<tr>
<td>through</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td>(destination-prefix2</td>
<td>• The route address shares the same most-significant bits as the first match prefix (destination-prefix or source-prefix). The number of significant bits is described by the prefix-length component of the first match prefix.</td>
</tr>
<tr>
<td>source-prefix2)</td>
<td>• The route address shares the same most-significant bits as the second match prefix (destination-prefix2 or source-prefix2). The number of significant bits is described by the prefix-length component of the second match prefix.</td>
</tr>
<tr>
<td></td>
<td>• The route's prefix length is less than or equal to the prefix-length component of the second match prefix.</td>
</tr>
<tr>
<td></td>
<td>You do not use the through match type in most routing policy configurations. For an example, see "Rejecting Routes from Specific Hosts" on page 293.</td>
</tr>
<tr>
<td>upto prefix-length2</td>
<td>All of the following are true:</td>
</tr>
<tr>
<td></td>
<td>• The route address shares the same most-significant bits as the match prefix (destination-prefix or source-prefix). The number of significant bits is described by the prefix-length component of the match prefix.</td>
</tr>
<tr>
<td></td>
<td>• The route's prefix length falls between the prefix-length component of the first match prefix and prefix-length2.</td>
</tr>
</tbody>
</table>
Figure 23 on page 286 shows the detailed radix tree for the route 192.168.0.0/16.

Figure 23: Portion of the Radix Tree

Figure 24 on page 287 and Table 17 on page 287 demonstrate the operation of the various route filter match types.
Figure 24: Route Filter Match Types

Table 17: Match Type Examples

<table>
<thead>
<tr>
<th>Prefix</th>
<th>192.168/16 exact</th>
<th>192.168/16 longer</th>
<th>192.168/16 orlonger</th>
<th>192.168/16 upto /24</th>
<th>192.168/16 prefix-length-range/19–/20</th>
<th>192.168/16 through /28–/24</th>
<th>192.168/16 exactPrefix 10.0.0.0/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192.168/16</td>
<td>Match</td>
<td>-</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>Match</td>
<td>-</td>
</tr>
<tr>
<td>192.168/16</td>
<td>-</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
</tr>
<tr>
<td>192.168/16</td>
<td>-</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
</tr>
<tr>
<td>192.168/16</td>
<td>-</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
</tr>
</tbody>
</table>
Table 17: Match Type Examples (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.4/24</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192.168.5/30</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192.168.12/30</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192.168.20/32</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192.168.10/20</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192.168.10/16</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>Match</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.169.10/24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.170/16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

How Route Filters Are Evaluated in Routing Policy Match Conditions

During route filter evaluation, the policy framework software compares each route’s source address with the destination prefixes in the route filter. The evaluation occurs in two steps:

1. The policy framework software performs a *longest-match lookup*, which means that the software searches for the prefix in the list with the longest length.

 The longest-match lookup considers the *prefix* and *prefix-length* components of the configured match prefix only, and not the *match-type* component. The following sample route filter illustrates this point:

   ```
   from {
       route-filter 192.168.0.0/14 upto /24 reject;
       route-filter 192.168.0.0/15 exact;
   }
   then accept;
   ```

 The longest match for the candidate route 192.168.1.0/24 is the second route-filter, 192.168.0.0/15, which is based on prefix and prefix length only.

2. When an incoming route matches a prefix (longest first), the following actions occur:
1. The route filter stops evaluating other prefixes, even if the match type fails.

2. The software examines the match type and action associated with that prefix.

NOTE: When a route source address is evaluated against a match criteria that uses the **address-mask** match type, both steps of the evaluation include the configured netmask value. For more information, see “How an Address Mask Match Type Is Evaluated” on page 290.

In Step 1, if route 192.168.0.0/24 were evaluated, it would fail to match. It matches the longest prefix of 192.168.0.0/15, but it does not match **exact**. The route filter is finished because it matched a prefix, but the result is a failed match because the match type failed.

If a match occurs, the action specified with the prefix is taken. If an action is not specified with the prefix, the action in the **then** statement is taken. If neither action is specified, the software evaluates the next term or routing policy, if present, or takes the **accept** or **reject** action specified by the default policy. For more information about the default routing policies, see "Default Routing Policies" on page 37.

NOTE: If you specify multiple prefixes in the route filter, only one prefix needs to match for a match to occur. The route filter matching is effectively a logical OR operation.

If a match does not occur, the software evaluates the next term or routing policy, if present, or takes the **accept** or **reject** action specified by the default policy.

For example, compare the prefix 192.168.254.0/24 against the following route filter:

```plaintext
route-filter 192.168.0.0/16 or longer;
route-filter 192.168.254.0/23 exact;
```

The prefix 192.168.254.0/23 is determined to be the longest prefix. When the software evaluates 192.168.254.0/24 against the longest prefix, a match occurs (192.168.254.0/24 is a subset of 192.168.254.0/23). Because of the match between 192.168.254.0/24 and the longest prefix, the evaluation continues. However, when the software evaluates the match type, a match does not occur between 192.168.254.0/24 and 192.168.254.0/23 exact. The software concludes that the term does not match and goes on to the next term or routing policy, if present, or takes the **accept** or **reject** action specified by the default policy.
How Prefix Order Affects Route Filter Evaluation

The order in which the prefixes are specified (from top to bottom) typically does not matter, because the policy framework software scans the route filter looking for the longest prefix during evaluation. An exception to this rule is when you use the same destination prefix multiple times in a list. In this case, the order of the prefixes is important, because the list of identical prefixes is scanned from top to bottom, and the first match type that matches the route applies.

How an Address Mask Match Type Is Evaluated

The `address-mask` routing policy match type enables you to match incoming IPv4 or IPv6 route addresses on a configured netmask value in addition to the length of a configured destination match prefix. During route filter evaluation, an `address-mask` match type is processed differently from other routing policy match types, taking into consideration the configured netmask value:

- When a longest-match lookup evaluates an `address-mask` routing policy match type, the `prefix-length` component of the configured match prefix is not considered. Instead, the lookup considers the number of contiguous high-order bits set in the configured netmask value.
• When an incoming IPv4 or IPv6 route address is evaluated against a route filter match criteria that uses the **address-mask** routing policy match type, the match succeeds if the following values are identical:
 • The bit-wise logical AND of the configured netmask value and the incoming IPv4 or IPv6 route address
 • The bit-wise logical AND of the configured netmask value and the configured destination match prefix

For an example configuration of a route filter that contains two **address-mask** match types, see "Evaluation of an Address Mask Match Type with Longest-Match Lookup" on page 299.

Common Configuration Problem with the Longest-Match Lookup

A common problem when defining a route filter is including a shorter prefix that you want to match with a longer, similar prefix in the same list. For example, imagine that the prefix 192.168.254.0/24 is compared against the following route filter:

```
route-filter 192.168.0.0/16 or longer;
route-filter 192.168.254.0/23 exact;
```

Because the policy framework software performs longest-match lookup, the prefix 192.168.254.0/23 is determined to be the longest prefix. An exact match does not occur between 192.168.254.0/24 and 192.168.254.0/23 exact. The software determines that the term does not match and goes on to the next term or routing policy, if present, or takes the accept or reject action specified by the default policy. (For more information about the default routing policies, see “Default Routing Policies” on page 37.) The shorter prefix 192.168.0.0/16 or longer that you wanted to match is inadvertently ignored.

One solution to this problem is to remove the prefix 192.168.0.0/16 or longer from the route filter in this term and move it to another term where it is the only prefix or the longest prefix in the list.

Another solution is to enable the **walkup** feature. See "Walkup for Route Filters Overview" on page 304 for details.

Route Filter Examples

IN THIS SECTION

- Rejecting Routes with Specific Destination Prefixes and Mask Lengths | 292
- Rejecting Routes with a Mask Length Greater than Eight | 292
- Rejecting Routes with Mask Length Between 26 and 29 | 293
- Rejecting Routes from Specific Hosts | 293
- Accepting Routes with a Defined Set of Prefixes | 294
- Rejecting Routes with a Defined Set of Prefixes | 294
- Rejecting Routes with Prefixes Longer than 24 Bits | 295
The examples in this section show only fragments of routing policies. Normally, you would combine these fragments with other terms or routing policies.

In all examples, remember that the following actions apply to nonmatching routes:

- Evaluate next term, if present.
- Evaluate next policy, if present.
- Take the accept or reject action specified by the default policy. For more information about the default routing policies, see "Default Routing Policies" on page 37.

The following examples show how to configure route filters for various purposes:

Rejecting Routes with Specific Destination Prefixes and Mask Lengths

Reject routes with a destination prefix of 0.0.0.0 and a mask length from 0 through 8, and accept all other routes:

```plaintext
[edit]
policy-options {
    policy-statement policy-statement from-hall2 {
        term 1 {
            from {
                route-filter 0.0.0.0/0 upto /8 reject;
            }
        }
        then accept;
    }
}
```

Rejecting Routes with a Mask Length Greater than Eight

Reject routes with a mask of /8 and greater (that is, /8, /9, /10, and so on) that have the first 8 bits set to 0 and accept routes less than 8 bits in length:
[edit]
policy-options {
 policy-statement from-hall3 {
 term term1 {
 from {
 route-filter 0/0 upto /7 accept;
 route-filter 0/8 or longer;
 }
 then reject;
 }
 }
}

Rejecting Routes with Mask Length Between 26 and 29
Reject routes with the destination prefix of 192.168.10/24 and a mask between /26 and /29 and accept all other routes:

[edit]
policy-options {
 policy-statement from-customer-a {
 term term1 {
 from {
 route-filter 192.168.10/24 prefix-length-range /26~/29 reject;
 }
 then accept;
 }
 }
}

Rejecting Routes from Specific Hosts
Reject a range of routes from specific hosts, and accept all other routes:

[edit]
policy-options {
 policy-statement hosts-only {
 from {
 route-filter 10.125.0.0/16 upto /31 reject;
 route-filter 0/0;
 }
 then accept;
 }
}
You do not use the **through** match type in most routing policy configurations. You should think of **through** as a tool to group a contiguous set of exact matches. For example, instead of specifying four exact matches:

```plaintext
from route-filter 0.0.0.0/1 exact
from route-filter 0.0.0.0/2 exact
from route-filter 0.0.0.0/3 exact
from route-filter 0.0.0.0/4 exact
```

You could represent them with the following single match:

```plaintext
from route-filter 0.0.0.0/1 through 0.0.0.0/4
```

Accepting Routes with a Defined Set of Prefixes

Explicitly accept a limited set of prefixes (in the first term) and reject all others (in the second term):

```plaintext
policy-options {
    policy-statement internet-in {
        term 1 {
            from {
                route-filter 192.168.231.0/24 exact accept;
                route-filter 192.168.244.0/24 exact accept;
                route-filter 192.168.198.0/24 exact accept;
                route-filter 192.168.160.0/24 exact accept;
                route-filter 192.168.59.0/24 exact accept;
            }
        }
        term 2 {
            then {
                reject;
            }
        }
    }
}
```

Rejecting Routes with a Defined Set of Prefixes

Reject a few groups of prefixes, and accept the remaining prefixes:

```plaintext
[edit policy-options]
policy-statement drop-routes {
    term 1{
        from { # first, reject a number of prefixes:
            route-filter default exact reject; # reject 0.0.0.0/0 exact
            route-filter 0.0.0.0/8 orlonger reject; # reject prefix 0, mask /8 or longer
```
route-filter 10.0.0.0/8 or longer reject; # reject loopback addresses
}
route-filter 10.105.0.0/16 exact { # accept 10.105.0.0/16
 as-path-prepend "1 2 3";
 accept;
}
route-filter 192.0.2.0/24 or longer reject; # reject test network packets
route-filter 172.16.233.0/3 or longer reject; # reject multicast and higher
route-filter 0.0.0.0/0 upto /24 accept; # accept everything up to /24
route-filter 0.0.0.0/0 or longer accept; # accept everything else
}
}
}

Rejecting Routes with Prefixes Longer than 24 Bits

Reject all prefixes longer than 24 bits. You would install this routing policy in a sequence of routing policies in an export statement. The first term in this filter passes on all routes with a prefix length of up to 24 bits. The second, unnamed term rejects everything else.

```
[edit policy-options]
policy-statement 24bit-filter {
    term acl20 {
        from {
            route-filter 0.0.0.0/0 upto /24;
        }
        then next policy;
    }
    then reject;
}
```

If, in this example, you were to specify `route-filter 0.0.0.0/0 upto /24 accept`, matching prefixes would be accepted immediately and the next routing policy in the export statement would never get evaluated.

If you were to include the `then reject` statement in the term `acl20`, prefixes greater than 24 bits would never get rejected because the policy framework software, when evaluating the term, would move on to evaluating the next statement before reaching the `then reject` statement.

Rejecting PIM Multicast Traffic Joins

Configure a routing policy for rejecting Protocol Independent Multicast (PIM) multicast traffic joins for a source destination prefix from a neighbor:

```
[edit]
```
policy-options {
 policy-statement join-filter {
 from {
 neighbor 10.14.12.20;
 source-address-filter 10.83.0.0/16 or longer;
 }
 then reject;
 }
}

Rejecting PIM Traffic

Configure a routing policy for rejecting PIM traffic for a source destination prefix from an interface:

[edit]
policy-options {
 policy-statement join-filter {
 from {
 interface so-1/0/0.0;
 source-address-filter 10.83.0.0/16 or longer;
 }
 then reject;
 }
}

The following routing policy qualifiers apply to PIM:

- **interface**—Interface over which a join is received
- **neighbor**—Source from which a join originates
- **route-filter**—Group address
- **source-address-filter**—Source address for which to reject a join

For more information about importing a PIM join filter in a PIM protocol definition, see the *Multicast Protocols Feature Guide*.

Accepting Incoming IPv4 Routes by Applying an Address Mask to the Route Address and the Destination Match Prefix

Accept incoming IPv4 routes with a destination prefix of 10.1.0/24 and the third byte an even number from 0 to 14, inclusive:

[edit]
policy-options {
 policy-statement from_customer_a {

The route filter in routing policy term `term_1` matches the following incoming IPv4 route addresses:

- 10.1.0.0/24
- 10.1.2.0/24
- 10.1.4.0/24
- 10.1.6.0/24
- 10.1.8.0/24
- 10.1.10.0/24
- 10.1.12.0/24
- 10.1.14.0/24

The bit-wise logical AND of the netmask value and the candidate route address must match the bit-wise logical AND of the netmask value and the match prefix address. That is, where the netmask bit pattern 255.255.241.0 contains a set bit, the incoming IPv4 route address being evaluated must match the value of the corresponding bit in the destination prefix address 10.1.0.0/24.

- The first two bytes of the netmask value are binary 1111 1111 1111 1111, which means that a candidate route address will fail the match if the first two bytes are not 10.1.
- The third byte of the netmask value is binary 1111 0001, which means that a candidate route address will fail the match if the third byte is greater than 15 (decimal), an odd number, or both.
- The prefix length of the match prefix address is 24 (decimal), which means that a candidate route address will fail the match if its prefix length is not exactly 24.
As an example, suppose that the candidate route address being tested in the policy is 10.1.8.0/24 (binary 0000 1010 0000 0001 0000 1000).

- When the netmask value is applied to this candidate route address, the result is binary 0000 1010 0000 0001 0000 0000.
- When the netmask value is applied to the configured destination prefix address, the result is also binary 0000 1010 0000 0001 0000 0000.
- Because the results of both AND operations are the same, the match continues to the second match criteria.
- Because the prefix lengths of the candidate address and the configured destination prefix address are the same (24 bits), the match succeeds.

As another example, suppose that the candidate route address being tested in the policy is 10.1.3.0/24 (binary 0000 1010 0000 0001 0000 0011).

- When the netmask value is applied to this candidate route address, the result is binary 0000 1010 0000 0001 0000 0001.
- However, when the netmask value is applied to the configured destination prefix address, the result is binary 0000 1010 0000 0001 0000 0000.
- Because the results of the two AND operations are different (in the third byte), the match fails.

Accepting Incoming IPv4 Routes with Similar Patterns But Different Prefix Lengths

Accept incoming IPv4 route addresses of the form 10.*.1/24 or 10.*.1.*/32:

```
[edit]
policy-options {
    policy-statement from_customer_b {
        term term_2 {
            from {
                route-filter 10.0.1.0/24 address-mask 255.0.255.0;
                route-filter 10.0.1.0/32 address-mask 255.0.255.0;
            }
            then {
                ...
                reject;
            }
        }
    }
}
```

The route filter match criteria **10.0.1.0/24 address-mask 255.0.255.0** matches an incoming IPv4 route address of the form 10.*.1/24. The route's prefix length must be exactly 24 bits long, and any value is acceptable in the second byte.
The route filter match criteria 10.0.1.0/32 address-mask 255.0.255.0 matches an incoming IPv4 route address of the form 10.*.1.*/32. The route’s prefix length must be exactly 32 bits long, and any value is acceptable in the second byte and the fourth byte.

Evaluation of an Address Mask Match Type with Longest-Match Lookup

This example illustrates how a longest-match lookup evaluates a route filter that contains two address-mask match types. Consider the route filter configured in the routing policy term **term_3** below:

```
[edit]
policy-options {
  policy-statement from_customer_c {
    term term_3 {
      from {
        route-filter 10.0.1.0/24 address-mask 255.0.255.0;
        route-filter 10.0.2.0/24 address-mask 255.240.255.0;
      }
      then {
        ...
      }
    }
  }
}
```

Suppose that the incoming IPv4 route source address 10.1.1.0/24 is tested against the route filter configured in the policy term **term_3**:

1. The longest-match lookup tree for routing policy term **term_3** contains two match prefixes: one prefix for 10.0.1.0/24 address-mask 255.0.255.0 and one prefix for 10.0.2.0/24 address-mask 255.240.255.0. When searching the tree for the longest-prefix match for a candidate, the longest-match lookup considers the number of contiguous high-order bits in the configured netmask-value instead of the length of the configured destination-prefix:

 - For the first route filter match criteria, the longest-match lookup entry is 10.0.0.0/8 because the netmask value contains 8 contiguous high-order bits.
 - For second route filter match criteria, the longest-match lookup entry is 10.0.0.0/12 because the netmask value contains 12 contiguous high-order bits.

For the candidate route address 10.1.1.0/24, the longest-match lookup returns the tree entry 10.0.0.0/12, which is corresponds to the route filter match criteria 10.0.2.0/24 address-mask 255.240.255.0.
2. Now that the longest-match prefix in term 3 has been identified for the candidate route address, the
candidate route address is evaluated against the route filter match criteria 10.0.2.0/24 address-mask
255.240.255.0:

a. To test the incoming IPv4 route address 10.1.1.0/24, the netmask value 255.240.255.0 is applied
to 10.1.1.0/24. The result is 10.0.1.0.

b. To test the configured destination prefix address 10.0.2.0/24, the netmask value 255.240.255.0 is
applied to 10.0.2.0/24. The result is 10.0.2.0.

c. Because the results are different, the route filter match fails. No actions, whether specified with
the match criteria or with the then statement, are taken. The incoming IPv4 route address is not
evaluated against any other match criteria.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Walkup for Route Filters Overview</th>
<th>304</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring Policy Chains and Route Filters</td>
<td>237</td>
</tr>
<tr>
<td>Example: Configuring a Route Filter Policy to Specify Priority for Prefixes Learned Through OSPF</td>
<td>333</td>
</tr>
<tr>
<td>Example: Configuring the MED Using Route Filters</td>
<td>338</td>
</tr>
</tbody>
</table>

Understanding Route Filter and Source Address Filter Lists for Use in Routing Policy Match Conditions

Existing route filters and source address filters are configured and processed inline within the term of the
policy statement. When route policies are changed, the entire policy is purged and rebuilt during the
configuration parsing operation. When this happens on routing policies that include hundreds or even
thousands of route filters and source address filters, a significant amount of time is added to the rebuild
of the policy.

In order to speed the parsing operation, the `route-filter-list` and `source-address-filter-list` statements are
available as another means of configuring route filters and source address filters. These statements maintain
all the capabilities of the `route-filter` and `source-address-filter` statements, including consideration of the
prefix length and match type of the individual prefixes in the list.

Route filters and route filter lists are typically used to match an incoming route address to destination
match prefixes of any type except for unicast source addresses.

Source address filters and source address filter lists are typically used to match an incoming route address
to unicast source addresses in Multiprotocol BGP (MBGP) and Multicast Source Discovery Protocol (MSDP)
environments.
Multiple route filter lists and source address filter lists can be used within the same policy statements. Route filter lists and source address filter lists can also be used in conjunction with route filters and source address filters.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>route-filter-list</th>
<th>2080</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Route Filters for Use in Routing Policy Match Conditions</td>
<td>279</td>
</tr>
</tbody>
</table>

Understanding Load Balancing Using Source or Destination IP Only

In deep packet inspection (DPI) networks with per-subscriber awareness or transparent caches, all of the PE routers in the service provider network should route all traffic to and from a particular subscriber through the specific content server that maintains subscriber state for that subscriber. To reach the same server consistently, the traffic must be hashed onto the same link towards that specific server for traffic in both directions.

In order to accomplish this consistency, certain MX Series routers can be configured to make load-balancing decisions based solely on the source IP address or the destination IP address of the traffic. From a service provider perspective, using only the source IP for inbound traffic, and the destination IP for outbound traffic limits the criteria used in hashing, making it more likely that a particular link will be chosen to forward the traffic.

NOTE: This feature will only work on IP-based traffic. In the case of L3VPN traffic, only MPLS lookup will be performed on the PE routers when the default label assignment scheme is used. In order to use source-or-destination only load-balancing with L3VPN, you can either configure `vrf-table-label` or add a `vt-` interface in the routing instance.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Configuring Load Balancing Using Source or Destination IP Only</th>
<th>302</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf-table-label</code></td>
<td></td>
</tr>
<tr>
<td><code>interface</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Load Balancing Using Source or Destination IP Only

In equal-cost multipath, (ECMP) per-subscriber aware environments such as content service providers who service residential customers, traffic in both directions within the service provider network should always pass through the content servers that maintain the subscriber state information for a given subscriber. This is accomplished by calculating the load balancing hash based solely on source address for traffic coming into the service provider network and calculating the load balancing hash based solely on the destination address for traffic leaving the service provider network.

Source and destination only load balancing is generally configured in an ECMP or aggregated ethernet (AE) environment on an service provider network. It is usually applied to all of the PE routers. It is only supported for IPv4 (inet) and IPv6 (inet6) traffic.

You do not need any special configuration in place before starting this configuration.

NOTE: This feature will only work on IP-based traffic. In the case of L3VPN traffic, only MPLS lookup will be performed on the PE routers when the default label assignment scheme is used. In order to use source-or-destination only load-balancing with L3VPN, you can either configure `vrf-table-label` or add a vt- interface in the routing instance.

To configure load balancing using source or destination IP only, you first configure system-wide forwarding options with a prefix-length to use when calculating the hash-key. Then, you configure a policy action of either `load-balance source-ip-only` or `load-balance destination-ip-only` within a policy statement.

1. To configure system-wide prefix length for use with source and destination IP only load balancing, insert the `source-destination-only-load-balancing` configuration statement at the [edit forwarding-options enhanced-hash-key] hierarchy level and add a prefix length:

 [edit forwarding-options enhanced-hash-key]
 source-destination-only-load-balancing {
 family inet {
 prefix-length prefix-length;
 }
 family inet6 {
 prefix-length prefix-length;
 }
 }

2. To configure routing policy to use load balancing based on source or destination IP only, insert either the `source-ip-only` or `destination-ip-only` as an action statement within a policy statement at the [edit policy-options policy-statement policy-name] hierarchy level:
NOTE: The source-ip-only and destination-ip-only configuration elements cannot be used together in the same term. This is because of the directional nature of the traffic that we are load balancing. To use the two elements in the same policy statement, you create two separate terms, each using a route filter specification that addresses the same traffic. Then use source-ip-only for the inbound traffic and destination-ip-only for the outbound traffic.

RELATED DOCUMENTATION

- Configuring VPLS Load Balancing on MX Series 5G Universal Routing Platforms
- Understanding Load Balancing Using Source or Destination IP Only | 301
- Configuring Stateful Load Balancing on Aggregated Ethernet Interfaces
Walkup for Route Filters Overview

Use the walkup feature if you have concerns about policy performance because of split route filters across multiple policy terms. The walkup feature enables the consolidation of route filters under one policy term.

By default, Junos evaluates multiple route filters in a policy statement term by first finding the longest match prefix and then evaluating the conditions attached to the route filter, such as prefix range. If the route filter condition is false (for example, the prefix is not in the specified range), then the whole term is false, even if there are potentially true shorter route filter prefixes. Due to this behavior, there can be performance issues if route filters are split into individual policy statement terms. The walkup feature changes the default route filter behavior.

Some automated policy tools — for example, those used for autonomous system border routers in the Border Gateway Protocol (BGP) — break up route filters into multiple terms because of the default route filter behavior. Route filters are also used in routing protocols other than BGP; the walkup feature is not limited to BGP route filters.

NOTE: Technically, BGP does not deal with routes in the same way as OSPF or IS-IS. BGP “routes” are more properly called network layer reachability information (NLRI) updates. However, the term “route” is used in most documentation and is used here.

Route filters consist of three major parts:

1. A prefix and prefix length (for example, 10.0.0.0/8)
2. A match condition (for example, exact)
3. An action that is carried out if both previous parts — the prefix and match condition — both evaluate to true (for example, accept)

So the 10.0.0.0/8 exact accept route filter succeeds if and only if the prefix considered is 10.0.0.0/8 exactly. This route filter rejects routes with all other longer prefixes, such as 10.0.0.0/10, although there might be other route filter terms in the policy chain that accept the 10.0.0.0/10 route.

NOTE: Although the 10.0.0.0/8 route and variations are not specifically reserved for documentation, the private RFC 1918 10.0.0.0/8 address space is used in this topic because of the flexibility and realistic scenarios that this address spaces provides.

Route filters can be combined in a single policy statement term. In that case, evaluation becomes more complex. Consider the following routing policy:
[edit policy-options]
policy-statement RouteFilter-A {
 term RouteFilter-1 {
 from {
 route-filter 10.0.0.0/16 prefix-length-range /22-/24;
 route-filter 10.0.0.0/8 orlonger;
 }
 then accept;
 }
 term default {
 then reject;
 }
}

Note that the **10.0.0.0/8 orlonger** filter includes the **10.0.0.0/16 prefix-length-range /22-/24** filter in its scope. That is, any **10.0.0.0** route with a prefix of 8 bits or longer could also be a route with a prefix in the range between 22 and 24 bits.

By default, evaluation of a policy statement term with multiple route filters is a two-step process:

1. The policy framework software performs a longest-match lookup on the list based on prefix and prefix-length values.

2. The software considers the route filter condition (**orlonger**, **exact**, and so on). The route either fulfills the route filter condition (success) or does not match the route filter condition (failure).

Based on the results of these two steps, the action determined by the match or failure is applied to the route. In **Route-Filter-A**, this means that any route that is "true" is accepted and any route that is "false" in the **RouteFilter-1** term is rejected. This route becomes a hidden (filtered) route.

For example, consider what happens when the route **10.0.0.0/18** is evaluated by the policy statement **RouteFilter-A**:

First, the **10.0.0.0/18** route is evaluated by the **RouteFilter-1** term. Because **10.0.0.0/16** is longer than **10.0.0.0/8**, the **10.0.0.0/18** route matches the longer and more specific route prefix. Next, the match fails because the **10.0.0.0/18** route does not match the **prefix-length-range /22-/24** condition. So the route match fails in the **RouteFilter-1** term, and the policy examines the next term, the default term. The **10.0.0.0/18** route is rejected by the default term.

As a result, the **10.0.0.0/18** route is hidden (filtered). (The **10.0.0.0/18** route can still be found with the **show route hidden** command.)

The issue is that the user might actually want the **10.0.0.0/18** route to be accepted, not rejected. Naturally, a route filter with a **10.0.0.0/18 exact** configuration could be added. But in a backbone routing table with 100,000 or more entries, it is not possible to configure a route filter tuned to every possible route or every possible new route added to the network.
The default workaround to achieve the proper behavior from the example routing policy is to configure a separate term for each route filter. This is frequently done, as follows:

```
[edit policy-options]
policy-statement RouteFilter-A {
    term RouteFilter-1 {
        from {
            route-filter 10.0.0.0/16 prefix-length-range /22-/24;
        }
        then accept;
    }
    term RouteFilter-2 {
        from {
            route-filter 10.0.0.0/8 orlonger;
        }
        then accept;
    }
    term default {
        then reject;
    }
}
```

Now the **10.0.0.0/18** route is accepted because, although it still fails the **RouteFilter-1** match condition, it matches the new **RouteFilter-2** term (**10.0.0.0/8** is the longest match, and the **orlonger** condition is true). The problem with this approach is that the complete routing policy now takes more time to evaluate than when multiple route filters are grouped. This method also makes maintenance more complex.

The issues with the one-term-per-route-filters approach are solved with the walkup statement and feature. Walkup alters the default behavior of route filter evaluation globally or on a per-policy basis.

The walkup feature allows terms with multiple route filters to “walk-up” the evaluation process to include less-specific routes as well as the longest match. In other words, the walkup knob changes the default behavior from “if one fails, then the term fails” to if “one matches, then the term matches.”

Consider the application of the walkup feature to the example policy statement (you can also apply walk-up globally to all policies configured):

```
[edit policy-options]
policy-statement RouteFilter-A {
    defaults {
        route-filter walkup;
    }
    term RouteFilter-1 {
        from {
```
This is what happens when the route prefix \texttt{10.0.0.0/18} is evaluated by the policy statement \texttt{RouteFilter-A}:

The default behavior is altered by the walkup knob. As before, the \texttt{10.0.0.0/18} route matches the longer and more specific route prefix because \texttt{10.0.0.0/16} is longer than \texttt{10.0.0.0/8}. As before, this match fails because the \texttt{10.0.0.0/18} route does not match the \texttt{prefix-length-range /22-/24} condition. However, this time the process continues by a "walk up" and examines the less specific \texttt{10.0.0.0/8} route filter. The route condition of \texttt{orlonger} matches this filter and therefore the route is accepted by the \texttt{RouteFilter-1} term.

This can be verified (for a BGP route) by the \texttt{show route protocol bgp 10.0.0.0/18} command. This time, the route is not hidden.

If you enable the walkup feature globally, you can override it locally on a per-policy basis with the \texttt{[edit policy-options policy-statements policy-statement-name defaults route-filter no-walkup]} statement.

\textbf{RELATED DOCUMENTATION}

- Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency | 319
- Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency | 326
- Configuring Walkup for Route Filters to Improve Operational Efficiency | 308
- Route Filter Match Conditions | 67
- BGP Configuration Overview
- Verify That a Particular BGP Route Is Received on Your Router
- Example: Configuring BGP Route Advertisement
Configuring Walkup for Route Filters to Improve Operational Efficiency

Use the walkup feature if you have concerns about policy performance because of split route filters across multiple policy terms. The walkup feature enables the consolidation of route filters under one policy term.

If policy statements have been split into multiple terms because of the default route filter behavior, the route filter walkup feature allows you to consolidate multiple route filters into one policy statement term. By default, Junos OS evaluates multiple route filters in a policy statement term by first finding the longest match prefix and then evaluating the conditions attached to the route filter, such as the prefix range. If the route filter condition is false (for example, the prefix is not in the specified range), then the whole term is false, even if there are potentially true shorter route filter prefixes. The walkup feature alters this default behavior, locally or globally.

The route filter walkup feature is used anywhere multiple route filters are used in a policy statement. The walkup option is supported in the main routing instance at the [edit policy-options] hierarchy level and in logical systems at the [edit logical-systems policy-options] hierarchy level.

Before you begin configuring route filter walkup, be sure you have:

• A properly configured routing policy or set of routing policies
• A need to consolidate multiple route filter terms into fewer routing policy terms

Route filter walkup can be configured in two different ways. You can configure the walkup option globally at the [edit policy-options default route-filter] hierarchy level or in logical systems at the [edit logical-systems policy-options default route-filter] hierarchy level. When you configure the walkup option globally, you alter the policy route filter behavior in every policy statement. Instead of the default policy statement behavior (if the longest match route filter is false, then the term is false), the walkup option changes this behavior globally (to “walk up” from the longest match route filter to less specific, and if any is true, then the term is true).

If you configure the walkup option globally, you can still override it locally on a per-routing-policy basis. So if you have enabled walkup globally, you can override it in a routing policy by configuring the no-walkup option statement at the [edit policy-options policy-statement default route-filter] hierarchy level. The no-walkup option restores the default route filter behavior locally for this policy statement.

NOTE: At the [edit policy-options default route-filter] global level, the only option is the walkup statement because the default behavior globally is “no walkup.” However, for an individual policy statement at the [edit policy-options policy-statement default route-filter] hierarchy level, you can configure either the walkup or no-walkup option statement. In this way, at the local level, you can control whether the policy statement performs a walkup (with the walkup statement configured) or no walkup (with the no-walkup statement configured. This gives the user maximum control over the walkup option.
You configure the walkup feature globally with:

```
user@host> set policy-options defaults route-filter walkup
```

Alternatively, configure the walkup feature globally in a logical system with:

```
user@host> set logical-systems logical-system-name policy-options defaults route-filter walkup
```

You configure the walkup or no-walkup feature locally in a policy statement with:

```
user@host> set policy-options policy-statement policy-statement-name defaults route-filter [ no-walkup | walkup ]
```

Alternatively, configure the walkup feature locally in a logical system with:

```
user@host> set logical-systems logical-system-name policy-options policy-statement policy-statement-name defaults route-filter [ no-walkup | walkup ]
```

Route filter walkup behavior can be complex when the statements are configured at the global and local level at the same time. Table 18 on page 309 shows the behavior of a policy statement with all six possible combinations of the walkup option when you configure the feature both globally and locally.

Table 18: Route Filter Walkup and Policy Statements

<table>
<thead>
<tr>
<th>Case:</th>
<th>Global Configuration</th>
<th>Local Configuration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(none)</td>
<td>(none)</td>
<td>The device does not perform a walkup for any policy (default operation).</td>
</tr>
<tr>
<td>2</td>
<td>(none)</td>
<td>walkup</td>
<td>The device performs a walkup for this policy.</td>
</tr>
<tr>
<td>3</td>
<td>(none)</td>
<td>no-walkup</td>
<td>The device does not perform a walkup for any policy (default operation).</td>
</tr>
<tr>
<td>4</td>
<td>walkup</td>
<td>(none)</td>
<td>The device performs a walkup for all policies.</td>
</tr>
<tr>
<td>5</td>
<td>walkup</td>
<td>walkup</td>
<td>The device performs a walkup for all policies.</td>
</tr>
<tr>
<td>6</td>
<td>walkup</td>
<td>no-walkup</td>
<td>The device does not perform a walkup for this policy only.</td>
</tr>
</tbody>
</table>
Each row forms a possible use case numbered 1 through 6. Each walkup case is configured as follows:

- **Case #1**: This is a trivial configuration for backward compatibility. No route filter walkup is enabled either globally or locally. The device behaves exactly as it did before the feature was introduced. No route filter walkup occurs in any policy.

- **Case #2**: Route filter walkup is not enabled globally, but is enabled locally for a specific policy named `RouteFilter-Case2`. Route filter walkup occurs in this policy.

 To configure the route filter walkup locally for a specific policy:

 1. Enable the walkup feature locally for this policy statement.

     ```
     [edit policy-options]
     user@host# set policy-statement RouteFilter-Case2 defaults route-filter walkup
     ```

 2. Configure policy terms locally (walkup applies to all terms in this policy).

     ```
     [edit policy-options]
     user@host# set policy-statement RouteFilter-Case2 term ...
     ```

 3. Apply the policy statement to a routing protocol.

- **Case #3**: Route filter walkup is not enabled globally, but no-walkup is enabled locally for a specific policy named `RouteFilter-Case3`. (This case is not particularly helpful, because no walkup takes place in all policies by default, but does make local behavior explicit, even if walkup is enabled globally in the future.)

 To configure the route filter no-walkup locally for a specific policy:

 1. Enable the no-walkup feature locally for this policy statement.

     ```
     [edit policy-options]
     user@host# set policy-statement RouteFilter-Case3 defaults route-filter no-walkup
     ```

 2. Configure policy terms locally (no-walkup applies to this policy).

     ```
     [edit policy-options]
     user@host# set policy-statement RouteFilter-Case3 term ...
     ```

 3. Apply the policy statement to a routing protocol.

- **Case #4**: Route filter walkup is enabled globally, but not enabled locally for a specific policy named `RouteFilter-Case4`. Because of the global configuration, route filter walkup occurs in this policy.
To configure the route filter walkup globally for a device:

1. Enable the walkup feature globally for this device.

```
[edit policy-options]
user@host# set defaults route-filter walkup
```

NOTE: Global walkup, in contrast to the walkup or no-walkup statements configured locally in a policy statement, is configured at the [edit policy-options defaults] or [edit logical-systems logical-system-name policy-options defaults] hierarchy level and applies to all policies.

2. Configure policy statement RouteFilter-Case4 and terms locally (walkup applies to this policy).

```
[edit policy-options]
user@host# set policy-statement RouteFilter-Case4 term ...
```

3. Apply the policy statement to a routing protocol.

- Case #5: Route filter walkup is enabled globally, and enabled locally for a specific policy named RouteFilter-Case5. Although this configuration might appear redundant (walkup enabled globally as well as locally), this ensures that route filter walkup occurs in this policy even if route filter walkup is deleted at the global level.

To configure the route filter walkup globally for a device and locally for a specific policy:

1. Enable the walkup feature globally for this device.

```
[edit policy-options]
user@host# set defaults route-filter walkup
```

NOTE: Global walkup is configured at the [edit policy-options defaults] or [edit logical-systems logical-system-name policy-options defaults] hierarchy level and applies to all policies.

2. Configure policy statement RouteFilter-Case5 and enable walkup locally (walkup applies to this policy).

```
[edit policy-options]
```
3. Configure policy statement **RouteFilter-Case5** and terms locally (walkup applies to this policy).

   ```bash
   [edit policy-options]
   user@host# set policy-statement RouteFilter-Case5 term ...
   ```

4. Apply the policy statement to a routing protocol.

 - **Case #6**: Route filter **walkup** is enabled globally, but overridden locally with **no-walkup** for a specific policy named **RouteFilter-Case6**. Because of the local configuration, no route filter walkup occurs in this policy. This case is useful to make sure that a local policy still functions exactly as before global walkup was enabled.

 To configure the route filter walkup globally for a device and the no-walkup feature locally for a specific policy:

 1. Enable the walkup feature globally for this device.

      ```bash
      [edit policy-options]
      user@host# set defaults route-filter walkup
      ```

 NOTE: Global walkup is configured at the `[edit policy-options defaults]` or `[edit logical-systems logical-system-name policy-options defaults]` hierarchy level and applies to all policies.

 2. Configure policy statement **RouteFilter-Case6** and disable walkup locally with the **no-walkup** statement (no walkup is performed in this policy).

      ```bash
      [edit policy-options]
      user@host# set policy-statement Route-Filter-Case6 defaults route-filter walkup
      ```

 3. Configure policy statement **RouteFilter-Case6** and terms locally.

      ```bash
      [edit policy-options]
      user@host# set policy-statement RouteFilter-Case6 term ...
      ```

4. Apply the policy statement to a routing protocol.
NOTE: Keep in mind that a policy statement does nothing until it is applied as an import or export policy for the routing protocol itself. For BGP, this can be done at the global, group or neighbor level.

RELATED DOCUMENTATION

Walkup for Route Filters Overview | 304
Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency | 319
Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency | 326
Route Filter Match Conditions | 67
Verify That a Particular BGP Route Is Received on Your Router
Example: Configuring BGP Route Advertisement

Example: Configuring Route Filter Lists

IN THIS SECTION

- Requirements | 314
- Overview | 314
- Configuration | 314
- Verification | 316

Junos OS has long supported route filters for use in policy statements. Whenever policies are changed, the route filters have to be processed inline with the policy. Policies that contain large numbers of route filters take time to load.

This example shows how to create a route filter list and use that list in a policy statement. Route filter lists reduce the amount of time needed to reload a given policy.
NOTE: There is no speed benefit to using route filter lists in place of individual route filter entries when there are only a few route filters to process. The speed benefit is seen mainly in environments where there are hundreds or thousands of route filters listed within the policies.

Requirements

- A router configured with a routing protocol such as BGP or OSPF that is actively exchanging route information with its peers.
- The router that is configured with route filter lists must be running Junos OS Release 15.2 or later.

Overview

The route-filter-list statement allows for the creation of a pre-defined list of route filters for use in routing policies. You configure the list at the [edit policy-options] hierarchy level. The configured route filter list is then referenced as a match condition in the from section of a policy statement at the [edit policy-options policy-statement policy-statement-name term term-name from] hierarchy level.

In this example, the router that you are configuring is receiving some routes from its BGP neighbor 192.0.2.1. This is shown in the output of the show route receive-protocol bgp 192.0.2.1 operational command.

user@router> show route receive-protocol bgp 192.0.2.1

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lcipref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.151.100.0/29</td>
<td>192.0.2.1</td>
<td></td>
<td></td>
<td>103 I</td>
</tr>
<tr>
<td>198.151.100.8/29</td>
<td>192.0.2.1</td>
<td></td>
<td></td>
<td>103 I</td>
</tr>
<tr>
<td>203.0.113.0/29</td>
<td>192.0.2.1</td>
<td></td>
<td></td>
<td>103 I</td>
</tr>
<tr>
<td>203.0.113.8/29</td>
<td>192.0.2.1</td>
<td></td>
<td></td>
<td>103 I</td>
</tr>
<tr>
<td>203.0.113.16/29</td>
<td>192.0.2.1</td>
<td></td>
<td></td>
<td>103 I</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.
Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

The following step-by-step procedure will lead you through the steps needed to:

- Configure a route filter list named rf-list-1 and populate the list for later use in a route policy.
- Configure a routing policy statement named rf-test-policy that uses route filters and the configured route filter list.
- Configure BGP to use rf-test-policy as an import filter.

1. Configure a route filter list named rf-list-1 for later use in a route policy.

 [edit policy-options]
 user@router# set route-filter-list rf-list-1

2. Populate the list rf-list-1.

 Note that one of the statements in the list has an action configured. This action will be carried out immediately upon a match with a received destination prefix.

 [edit policy-options]
 user@router# set route-filter-list rf-list-1 203.0.113.0/29 exact
 user@router# set route-filter-list rf-list-1 203.0.113.8/29 exact
 user@router# set route-filter-list rf-list-1 203.0.113.16/29 orlonger accept

3. Configure a routing policy statement named rf-test-policy that uses route filters and the configured route filter list.
The overall action for this policy is **reject**. There are individual route filters and elements of the route filter list that have a configured action of **accept**. The actions configured in the individual route filter statements and elements of the route filter list are carried out immediately upon matching a received destination prefix.

```plaintext
[edit policy-options]
user@router# set policy-statement rf-test-policy term term2 from route-filter 198.51.100.0/29 upto 198.51.100.8/30
user@router# set policy-statement rf-test-policy term term2 from route-filter 198.51.100.8/29 upto 198.51.100.8/30 accept
user@router# set policy-statement rf-test-policy term term2 from route-filter-list rf-list-1
user@router# set policy-statement rf-test-policy then reject
```

4. Configure BGP to use the configured policy as an import filter to selectively allow some routes and reject other routes from being added to the routing table.

```plaintext
[edit protocols bgp group test-group]
user@router# set import rf-test-policy
```

Verification

IN THIS SECTION

- Verifying the Configured Route Filter List | 316
- Verifying the Configured Policy Statement | 317
- Verifying That the Policy Statement Is Applied as an Import Policy in the BGP Protocol | 317
- Verifying That the Route Filter List Is Operating as Expected | 318

Verifying the Configured Route Filter List

Purpose
To confirm that the route filter list is properly configured, issue the `show policy-options route-filter-list route-filter-list-name` command at the [edit] hierarchy level.

Action

```
[edit]
```
Verifying the Configured Policy Statement

Purpose
To confirm that the policy statement is properly configured, issue the `show policy-options policy-statement policy-statement-name` command at the [edit] hierarchy level.

Action

```
[edit]
user@router# show policy-options policy-statement rf-test-policy
from {  
  route-filter 198.51.100.0/29 upto 198.51.100.0/30;
  route-filter 198.51.100.8/29 upto 198.51.100.8/30 accept;
  route-filter-list rf-list-1;
}
then reject;
```

Verifying That the Policy Statement Is Applied as an Import Policy in the BGP Protocol

Purpose
To confirm that the configured policy statement is applied as an import policy in the BGP Protocol, issue the `show protocols bgp import` command at the [edit] hierarchy level.

Action

```
[edit]
user@router# show protocols bgp import
import rf-test-policy;
```

Meaning
The output confirms that the stored configuration is correct.
If you have not already done so, you can issue the commit command at the [edit] hierarchy level so that the configuration is made active.

Verifying That the Route Filter List Is Operating as Expected

Purpose
Now that the configuration has been verified and committed, confirm the operation of the route filter list by issuing the show route receive-protocol bgp 192.0.2.1 operational command.

Action
If you compare this output with the output of the same command issued prior to configuring the route filter list and policy statement, you see that some routes are no longer installed in the routing table.

```bash
user@router> show route receive-protocol bgp 192.0.2.1

inet.0: 14 destinations, 15 routes (13 active, 0 holddown, 1 hidden)
Prefix       Nexthop       MED  Lclpref   AS path
* 198.151.100.8/29   192.0.2.1       103 I
* 203.0.113.16/29   192.0.2.1       103 I
```

Meaning
The output shows that three of the five previously installed BGP routes have been rejected by the policy statement rf-test-policy. The only routes that remain from the previous list are the two that had accept actions listed as part of the filter definition. The other routes were rejected by the action of the policy-statement.

RELATED DOCUMENTATION

- route-filter-list | 2080
- Understanding Route Filter and Source Address Filter Lists for Use in Routing Policy Match Conditions | 300
Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency

IN THIS SECTION

- Requirements | 319
- Overview | 319
- Configuring Route Filter Walkup Globally | 320
- Verification | 323
- Troubleshooting | 324

Use the walkup feature if you have concerns about policy performance because of split route filters across multiple policy terms. The walkup feature enables the consolidation of route filters under one policy term.

This example shows how to configure the route filter walkup feature globally for policy statements with route filters. When configured at the global level, the route filter walkup option applies to all policy statements. This example changes the default behavior of policy terms with multiple route filters globally, so that any reversion to the default "no walkup" behavior must be established locally.

Requirements

This example uses the following hardware and software components:

- A Juniper Networks router
- A Junos operating system from 13.3 or above

Before you configure route filter walkup locally, be sure you have:

- A properly configured routing policy or set of routing policies
- A need to consolidate multiple route filter terms into fewer routing policy terms

Overview

Routing protocols exchange information with other routers running the same routing protocols. In many cases, route filters are used in routing policy statements to filter prefixes for import or export. In some cases, when route filters are split into many separate terms, performance is impacted. The route filter walkup feature allows consolidation of policy statement terms for operational efficiency.
This example uses BGP, but the same walkup feature applies to any routing protocol that supports route filtering of input or output.

You can configure a Juniper Networks router to change the default operation of a term in a policy statement with route filters. By default, only a single longest match attempt is made for all route filters in a term. The walkup feature allows the router to "walk up" the route filters in a term from longest match to less specific in search of a true condition. This allows consolidation of multiple terms in a policy statement and corresponding operational efficiency.

This example changes the default behavior globally, for all policy statements. You can still configure no-walkup for an individual policy.

Topology

In the sample network in Figure 25 on page 320, the router CE1 is a router from another vendor. The rest are Juniper Networks routers. The walkup feature can be configured on any router in the figure, except for router CE1. The vendor of router CE1 might or not might support a similar feature.

In the example, the following addresses are used:

- 10.0.0.0/16
- 10.0.0.0/8

NOTE: Although the 10.0.0.0/8 address space is not specifically reserved for documentation, the private RFC 1918 10.0.0.0/8 address space is used in this topic because of the flexibility and realistic scenarios that this address spaces provides.

Configuring Route Filter Walkup Globally

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details such as addresses and interfaces to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device PE1

```
set policy-options defaults route-filter walkup
set policy-options policy-statement routeset1-import term prefixes1 from route-filter 10.0.0.0/16 prefix-length-range /22/-/24
set policy-options policy-statement routeset1-import term prefixes1 from route-filter 10.0.0.0/8 or longer
set policy-options policy-statement routeset1-import term prefixes1 then accept
set policy-options policy-statement routeset1-import term reject-the-rest then reject
set policy-options policy-statement import-route-filter-a term import-routes from protocol bgp
set policy-options policy-statement import-route-filter-a term import-routes from policy routeset1-import
set policy-options policy-statement import-route-filter-a term import-routes then next policy
set policy-options policy-statement import-route-filter-a term all-others then reject
set policy-options policy-statement route-filter-a-export term all then reject
set protocols bgp group routeset1 type external
set protocols bgp group routeset1 neighbor 10.0.10.13 import import-route-filter-a
set protocols bgp group routeset1 neighbor 10.0.10.13 family inet unicast
set protocols bgp group routeset1 neighbor 10.0.10.13 export route-filter-a-export
set protocols bgp group routeset1 neighbor 10.0.10.13 peer-as 64506
```

Step-by-Step Procedure

The following example requires that you navigate to various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure router PE1 to perform walkup globally and combine multiple route filters in one term:

1. Configure the walkup feature globally.
```
[edit policy-options defaults]
user@PE1# set route-filter walkup
```

2. Configure the policy statements for an import policy named `routeset1-import`.
```
[edit policy-options]
```
3. Configure the policy options for the import and export policy statements.

 [edit policy-options]
 user@PE1# set policy-statement import-route-filter-a term import-routes from protocol bgp
 user@PE1# set policy-statement import-route-filter-a term import-routes from policy routeset1-import
 user@PE1# set policy-statement import-route-filter-a term import-routes then next policy
 user@PE1# set policy-statement route-filter-a-export term all-others then reject

4. Apply the import and export policies to a BGP neighbor.

 [edit protocols bgp]
 user@PE1# set group routeset1 type external
 user@PE1# set group routeset1 neighbor 10.0.10.13 import import-route-filter-a
 user@PE1# set group routeset1 neighbor 10.0.10.13 family inet unicast
 user@PE1# set group routeset1 neighbor 10.0.10.13 export route-filter-a-export
 user@PE1# set group routeset1 neighbor 10.0.10.13 peer-as 64506

Results

From configuration mode, confirm your configuration by entering the `show protocols` and `show policy-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

 user@PE1# show policy-options
 defaults {
 route-filter walkup;
 }
 policy-statement routeset1-import {
 term prefixes1 {
 from {
 route-filter 10.0.0.0/16 prefix-length-range /22/-/24;
 route-filter 10.0.0.0/8 orlonger;
 }
 then accept;
If you are done configuring the device, enter **commit** from configuration mode.

Verification

Verifying Route Filter Operation

Purpose
Display expected information about the routes to confirm the route filters are working as expected.

Notice that the **10.0.0.0/8 or longer** filter includes the **10.0.0.0/16 prefix-length-range /22-/24** filter in its scope. That is, any **10.0.0.0** route with a prefix of 8 bits or longer could also be a route with a prefix in the range between 22 and 24 bits. Without the walkup feature enabled, a route such as **10.0.0.0/16** would be rejected and become a hidden route. If the walkup feature is working as expected, then a route such as **10.0.0.0/16** would be accepted by the policy.

Action

From operational mode, enter the **show route protocol bgp 10.0.0.0/16** command. Make sure that **10.0.0.0/16** is not a hidden route.

```
user@PE1> show route protocol bgp 10.0.0.0/16
```

```
in .0: 520762 destinations, 520764 routes (520760 active, 0 holddown, 2 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.0/16       *[BGP/170] 01:07:37, localpref 100
   AS path: 64506, I, validation-state: unverified
   > to 10.0.100.13 via xe-0/2/0.0
```

As a further check, make sure that no routes that should be accepted are hidden routes. From operational mode, enter the **show route protocol bgp ip-address-prefix hidden** command to verify this.

Meaning

The presence of routes that are not the longest match in the configured policy route filter term shows that the walkup feature is functioning globally.

Troubleshooting

To troubleshoot route filter walkup globally:

IN THIS SECTION

- Troubleshooting BGP | 325
- Troubleshooting Policy Statements | 325
- Troubleshooting Route Filters | 325
Troubleshooting BGP

Problem
BGP is not functioning as expected.

Solution
See the BGP Configuration Overview topic, examples, and troubleshooting.

Troubleshooting Policy Statements

Problem
The policy statements are not functioning as expected.

Solution
See the Verify That a Particular BGP Route Is Received on Your Router and Example: Configuring BGP Route Advertisement topics, related examples, and troubleshooting.

Troubleshooting Route Filters

Problem
The route filters are not functioning as expected.

Solution
See the "Route Filter Match Conditions" on page 67 topic, examples, and troubleshooting.

RELATED DOCUMENTATION

Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency	326
Walkup for Route Filters Overview	304
Configuring Walkup for Route Filters to Improve Operational Efficiency	308
Route Filter Match Conditions	67
BGP Configuration Overview	
Verify That a Particular BGP Route Is Received on Your Router	
Example: Configuring BGP Route Advertisement	
Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency

Use the walkup feature if you have concerns about policy performance because of split route filters across multiple policy terms. The walkup feature enables the consolidation of route filters under one policy term.

This example shows how to configure the route filter walkup feature locally for policy statements with route filters. When configured at the local level, the route filter walkup option applies only to the policy statement in which it is configured. This example does not change the default behavior of policy terms with route filters globally. This example establishes route filter walkup locally.

Requirements

This example uses the following hardware and software components:

- A Juniper Networks router
- A Junos operating system from 13.3 or above

Before you configure route filter walkup globally, be sure you have:

- A properly configured routing policy or set of routing policies
- A need to consolidate multiple route filter terms into fewer routing policy terms

Overview

Routing protocols exchange information with other routers running the same routing protocols. In many cases, route filters are used in routing policy statements to filter prefixes for import or export. In some cases, when route filters are split into many separate terms, performance is impacted. The route filter walkup feature allows consolidation of policy statement terms for operational efficiency.
This example uses BGP, but the same walkup feature applies to any routing protocol that supports route filtering of input or output.

You can configure a Juniper Networks router to change the default operation of a term in a policy statement with route filters. By default, only a single longest match attempt is made for all route filters in a term. The walkup feature allows the router to "walk up" the route filters in a term from longest match to less specific in search of a true condition. This allows consolidation of multiple terms in a policy statement and corresponding operational efficiency.

This example changes the default behavior locally in a single policy statement. It does not affect the behavior of other policy statements.

Topology

In the sample network in Figure 25 on page 320, the router CE1 is a router from another vendor. The rest are Juniper Networks routers. The walkup feature can be configured on any router in the figure, except for router CE1. The vendor of router CE1 might or not might support a similar feature.

Figure 26: Topology for the Local Walkup Example

In the example, the following addresses are used:

- 10.0.0.0/16
- 10.0.0.0/8

NOTE: Although the 10.0.0.0/8 address space is not specifically reserved for documentation, the private RFC 1918 10.0.0.0/8 address space is used in this topic because of the flexibility and realistic scenarios that this address spaces provides.

Configuring Route Filter Walkup Locally

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details such as addresses and interfaces to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device PE1

```
set policy-options policy-statement routeset1-import defaults route-filter walkup
set policy-options policy-statement routeset1-import term prefixes1 from route-filter 10.0.0.0/16
    prefix-length-range /22/-/24
set policy-options policy-statement routeset1-import term prefixes1 from route-filter 10.0.0.0/8
    orlonger
set policy-options policy-statement routeset1-import term prefixes1 then accept
set policy-options policy-statement routeset1-import term reject-the-rest then reject
set policy-options policy-statement import-route-filter-a term import-routes from protocol bgp
    routeset1-import
set policy-options policy-statement import-route-filter-a term import-routes from policy
    routeset1-import
set policy-options policy-statement import-route-filter-a term import-routes then next policy
set policy-options policy-statement import-route-filter-a term all-others then reject
set policy-options policy-statement route-filter-a-export term all then reject
set protocols bgp group routeset1 type external
set protocols bgp group routeset1 neighbor 10.0.10.13 import import-route-filter-a
set protocols bgp group routeset1 neighbor 10.0.10.13 family inet unicast
set protocols bgp group routeset1 neighbor 10.0.10.13 export route-filter-a-export
set protocols bgp group routeset1 neighbor 10.0.10.13 peer-as 64506
```

Step-by-Step Procedure

The following example requires that you navigate to various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure router PE1 to perform walkup locally for multiple route filters in one term:

1. Configure the walkup feature locally in a policy named `routeset1-import`.
   ```
   [edit policy-options policy-statement routeset1-import defaults]
   user@PE1# set route-filter walkup
   ```

2. Configure the policy statements for an import policy named `routeset1-import`.
   ```
   [edit policy-options ]
   ```
3. Configure the policy options for the import and export policy statements.

[edit policy-options]
user@PE1# set policy-statement import-route-filter-a term import-routes from protocol bgp
user@PE1# set policy-statement import-route-filter-a term import-routes from policy routeset1-import
user@PE1# set policy-statement import-route-filter-a term import-routes then next policy
user@PE1# set policy-statement route-filter-a-export term all-others then reject

4. Apply the import and export policies to a BGP neighbor.

[edit protocols bgp]
user@PE1# set group routeset1 type external
user@PE1# set group routeset1 neighbor 10.0.10.13 import import-route-filter-a
user@PE1# set group routeset1 neighbor 10.0.10.13 family inet unicast
user@PE1# set group routeset1 neighbor 10.0.10.13 export route-filter-a-export
user@PE1# set group routeset1 neighbor 10.0.10.13 peer-as 64506

Results

From configuration mode, confirm your configuration by entering the show protocols and show policy-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@PE1# show policy-options
policy-statement routeset1-import {
 defaults {
 route-filter walkup;
 }
 term prefixes1 {
 from {
 route-filter 10.0.0.0/16 prefix-length-range /22/-24;
 route-filter 10.0.0.0/8 orlonger;
 }
 then accept;
 }
}
term reject-the-rest {
 then reject;
}
}

policy-statement import-route-filter-a {
 term import-routes {
 from {
 protocol bgp;
 policy routeset1-import;
 }
 then next policy;
 }
 term all-others {
 then reject;
 }
}

policy-statement route-filter-a-export {
 term all {
 then reject;
 }
}

user@PE!# show protocols bgp

group routeset1 {
 type external;
 neighbor 10.0.10.13 {
 import import-route-filter-a;
 family inet {
 unicast;
 }
 export router-filter-a-export;
 peer-as 64506;
 }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

Verifying Route Filter Operation

Purpose
Display expected information about the routes to confirm the route filters are working as expected.

Notice that the **10.0.0.0/8 or longer** filter includes the **10.0.0.0/16 prefix-length-range /22-/24** filter in its scope. That is, any **10.0.0.0** route with a prefix of 8 bits or longer could also be a route with a prefix in the range between 22 and 24 bits. Without the walkup feature enabled in the policy example given, a route such as **10.0.0.0/16** would be rejected and become a hidden route. If the walkup feature is working as expected, then a route such as **10.0.0.0/16** would be accepted by the policy.

Action

From operational mode, enter the **show route protocol bgp 10.0.0.0/16** command. Make sure that **10.0.0.0/16** is not a hidden route.

```
user@PE1> show route protocol bgp 10.0.0.0/16

inet.0: 520762 destinations, 520764 routes (520760 active, 0 holddown, 2 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.0/16       *[BGP/170] 01:07:37, localpref 100
                AS path: 64506, I, validation-state: unverified
                > to 10.0.100.13 via xe-0/2/0.0
```

As a further check, make sure that no routes that should be accepted are hidden routes. From operational mode, enter the **show route protocol bgp ip-address-prefix hidden** command to verify this.

Meaning

The presence of routes that are not the longest match in the configured policy route filter term shows that the walkup feature is functioning locally.

Troubleshooting

To troubleshoot route filter walkup locally:
Troubleshooting BGP

Problem
BGP is not functioning as expected.

Solution
See the BGP Configuration Overview topic, examples, and troubleshooting.

Troubleshooting Policy Statements

Problem
The policy statements are not functioning as expected.

Solution
See the Verify That a Particular BGP Route Is Received on Your Router and Example: Configuring BGP Route Advertisement topics, related examples, and troubleshooting.

Troubleshooting Route Filters

Problem
The route filters are not functioning as expected.

Solution
See the "Route Filter Match Conditions" on page 67 topic, examples, and troubleshooting.

RELATED DOCUMENTATION

Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency	319
Walkup for Route Filters Overview	304
Configuring Walkup for Route Filters to Improve Operational Efficiency	308
Route Filter Match Conditions	67
BGP Configuration Overview	
Verify That a Particular BGP Route Is Received on Your Router	
Example: Configuring BGP Route Advertisement	
Example: Configuring a Route Filter Policy to Specify Priority for Prefixes Learned Through OSPF

IN THIS SECTION

- Requirements | 333
- Overview | 333
- Configuration | 334
- Verification | 338

This example shows how to create an OSPF import policy that prioritizes specific prefixes learned through OSPF.

Requirements

Before you begin:

- Configure the device interfaces. See the Interfaces Feature Guide for Security Devices.
- Configure the router identifiers for the devices in your OSPF network. See Example: Configuring an OSPF Router Identifier.
- Control OSPF designated router election See Example: Controlling OSPF Designated Router Election
- Configure a single-area OSPF network. See Example: Configuring a Single-Area OSPF Network
- Configure a multiarea OSPF network. See Example: Configuring a Multiarea OSPF Network.

Overview

In a network with a large number of OSPF routes, it can be useful to control the order in which routes are updated in response to a network topology change. In Junos OS Release 9.3 and later, you can specify a priority of high, medium, or low for prefixes included in an OSPF import policy. In the event of an OSPF topology change, high priority prefixes are updated in the routing table first, followed by medium and then low priority prefixes.

OSPF import policy can only be used to set priority or to filter OSPF external routes. If an OSPF import policy is applied that results in a reject terminating action for a nonexternal route, then the reject action is ignored and the route is accepted anyway. By default, such a route is now installed in the routing table.
with a priority of low. This behavior prevents traffic black holes, that is, silently discarded traffic, by ensuring consistent routing within the OSPF domain.

In general, OSPF routes that are not explicitly assigned a priority are treated as priority medium, except for the following:

- Summary discard routes have a default priority of low.
- Local routes that are not added to the routing table are assigned a priority of low.
- External routes that are rejected by import policy and thus not added to the routing table are assigned a priority of low.

Any available match criteria applicable to OSPF routes can be used to determine the priority. Two of the most commonly used match criteria for OSPF are the `route-filter` and `tag` statements.

In this example, the routing device is in area 0.0.0.0, with interfaces `fe-0/1/0` and `fe-1/1/0` connecting to neighboring devices. You configure an import routing policy named `ospf-import` to specify a priority for prefixes learned through OSPF. Routes associated with these prefixes are installed in the routing table in the order of the prefixes’ specified priority. Routes matching `192.0.2.0/24 or longer` are installed first because they have a priority of `high`. Routes matching `198.51.100.0/24 or longer` are installed next because they have a priority of `medium`. Routes matching `203.0.113.0/24 or longer` are installed last because they have a priority of `low`. You then apply the import policy to OSPF.

NOTE: The priority value takes effect when a new route is installed, or when there is a change to an existing route.

Configuration

CLI Quick Configuration

To quickly configure an OSPF import policy that prioritizes specific prefixes learned through OSPF, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

```markdown
[edit]
set interfaces fe-0/1/0 unit 0 family inet address 192.168.8.4/30
set interfaces fe-0/1/0 unit 0 family inet address 192.168.8.5/30
set policy-options policy-statement ospf-import term t1 from route-filter 203.0.113.0/24 or longer
set policy-options policy-statement ospf-import term t1 then priority low
set policy-options policy-statement ospf-import term t1 then accept
set policy-options policy-statement ospf-import term t2 from route-filter 198.51.100.0/24 or longer
set policy-options policy-statement ospf-import term t2 then priority medium
```
set policy-options policy-statement ospf-import term t2 then accept
set policy-options policy-statement ospf-import term t3 from route-filter 192.0.2.0/24 or longer
set policy-options policy-statement ospf-import term t3 then priority high
set policy-options policy-statement ospf-import term t3 then accept
set protocols ospf import ospf-import
set protocols ospf area 0.0.0.0 interface fe-0/1/0
set protocols ospf area 0.0.0.0 interface fe-1/1/0

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Modifying the Junos OS Configuration in the CLI User Guide.

To configure an OSPF import policy that prioritizes specific prefixes:

1. Configure the interfaces.

```
[edit]
user@host# set interfaces fe-0/1/0 unit 0 family inet address 192.168.8.4/30
user@host# set interfaces fe-0/2/0 unit 0 family inet address 192.168.8.5/30
```

2. Enable OSPF on the interfaces.

 NOTE: For OSPFv3, include the `ospf3` statement at the [edit protocols] hierarchy level.

```
[edit]
user@host# set protocols ospf area 0.0.0.0 interface fe-0/1/0
user@host# set protocols ospf area 0.0.0.0 interface fe-0/2/0
```

3. Configure the policy to specify the priority for prefixes learned through OSPF.

```
[edit]
user@host# set policy-options policy-statement ospf-import term t1 from route-filter 203.0.113.0/24 or longer
user@host# set policy-options policy-statement ospf-import term t1 then priority low
user@host# set policy-options policy-statement ospf-import term t1 then accept
user@host# set policy-options policy-statement ospf-import term t2 from route-filter 198.51.100.0/24 or longer
user@host# set policy-options policy-statement ospf-import term t2 then priority medium
user@host# set policy-options policy-statement ospf-import term t2 then accept
```
user@host# set policy-options policy-statement ospf-import term t3 from route-filter 192.0.2.0/24 or longer
user@host# set policy-options policy-statement ospf-import term t3 then priority high
user@host# set policy-options policy-statement ospf-import term t3 then accept

4. Apply the policy to OSPF.

[edit]
user@host# set protocols ospf import ospf-import

5. If you are done configuring the device, commit the configuration.

[edit]
user@host# commit

Results
Confirm your configuration by entering the `show interfaces`, `show policy-options`, and the `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@host# show interfaces
fe-0/1/0 {
 unit 0 {
 family inet {
 address 192.168.8.4/30;
 }
 }
}
fe-0/2/0 {
 unit 0 {
 family inet {
 address 192.168.8.5/30;
 }
 }
}

user@host# show protocols ospf
import ospf-import;
area 0.0.0.0 {
 interface fe-0/1/0.0;
 interface fe-0/2/0.0;
user@host# show policy-options
policy-statement ospf-import {
 term t1 {
 from {
 route-filter 203.0.113.0/24 or longer;
 }
 then {
 priority low;
 accept;
 }
 }
 term t2 {
 from {
 route-filter 198.51.100.0/24 or longer;
 }
 then {
 priority medium;
 accept;
 }
 }
 term t3 {
 from {
 route-filter 192.0.2.0/24 or longer;
 }
 then {
 priority high;
 accept;
 }
 }
}

user@host# show protocols ospf
import ospf-import;
area 0.0.0.0 {
 interface fe-0/1/0.0;
 interface fe-0/2/0.0;
}
To confirm your OSPFv3 configuration, enter the `show interfaces`, `show policy-options`, and `show protocols ospf3` commands.

Verification

Confirm that the configuration is working properly.

Verifying the Prefix Priority in the OSPF Routing Table

Purpose

Verify the priority assigned to the prefix in the OSPF routing table.

Action

From operational mode, enter the `show ospf route detail` for OSPFv2, and enter the `show ospf3 route detail` command for OSPFv3.

RELATED DOCUMENTATION

- Understanding Route Filters for Use in Routing Policy Match Conditions | 279
- OSPF Routing Policy Overview

Example: Configuring the MED Using Route Filters

This example shows how to configure a policy that uses route filters to modify the multiple exit discriminator (MED) metric to advertise in BGP update messages.
Requirements

No special configuration beyond device initialization is required before you configure this example.

Overview

To configure a route-filter policy that modifies the advertised MED metric in BGP update messages, include the `metric` statement in the policy action.

Figure 27 on page 339 shows a typical network with internal peer sessions and multiple exit points to a neighboring autonomous system (AS).

Figure 27: Typical Network with IBGP Sessions and Multiple Exit Points

Device R4 has multiple loopback interfaces configured to simulate advertised prefixes. The extra loopback interface addresses are 172.16.44.0/32 and 172.16.144.0/32. This example shows how to configure Device R4 to advertise a MED value of 30 to Device R3 for all routes except 172.16.144.0. For 172.16.144.0, a MED value of 10 is advertised to Device 3. A MED value of 20 is advertised to Device R2, regardless of the route prefix.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.
Device R1

set interfaces fe-1/2/0 unit 1 family inet address 172.16.12.1/24
set interfaces fe-1/2/1 unit 2 family inet address 172.16.13.1/24
set interfaces lo0 unit 1 family inet address 192.168.1.1/32
set protocols bgp group internal type internal
set protocols bgp group internal local-address 192.168.1.1
set protocols bgp group internal export send-direct
set protocols bgp group internal neighbor 192.168.2.1
set protocols bgp group internal neighbor 192.168.3.1
set protocols ospf area 0.0.0.0 interface lo0.1 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.1
set protocols ospf area 0.0.0.0 interface fe-1/2/1.2
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 123
set routing-options router-id 192.168.1.1

Device R2

set interfaces fe-1/2/0 unit 3 family inet address 172.16.12.2/24
set interfaces fe-1/2/1 unit 4 family inet address 172.16.24.2/24
set interfaces lo0 unit 2 family inet address 192.168.2.1/32
set protocols bgp group internal type internal
set protocols bgp group internal local-address 192.168.2.1
set protocols bgp group internal export send-direct
set protocols bgp group internal neighbor 192.168.1.1
set protocols bgp group internal neighbor 192.168.3.1
set protocols bgp group external type external
set protocols bgp group external export send-direct
set protocols bgp group external peer-as 4
set protocols bgp group external neighbor 172.16.24.4
set protocols ospf area 0.0.0.0 interface lo0.2 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.3
set protocols ospf area 0.0.0.0 interface fe-1/2/1.4
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 123
set routing-options router-id 192.168.2.1
Device R3

```
set interfaces fe-1/2/0 unit 5 family inet address 172.16.13.3/24
set interfaces fe-1/2/1 unit 6 family inet address 172.16.34.3/24
set interfaces lo0 unit 3 family inet address 192.168.3.1/32
set protocols bgp group internal type internal
set protocols bgp group internal local-address 192.168.3.1
set protocols bgp group internal export send-direct
set protocols bgp group internal neighbor 192.168.1.1
set protocols bgp group external type external
set protocols bgp group external export send-direct
set protocols bgp group external peer-as 4
set protocols bgp group external neighbor 172.16.34.4
set protocols ospf area 0.0.0.0 interface lo0.3 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.5
set protocols ospf area 0.0.0.0 interface fe-1/2/1.6
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 123
set routing-options router-id 192.168.3.1
```

Device R4

```
set interfaces fe-1/2/0 unit 7 family inet address 172.16.24.4/24
set interfaces fe-1/2/1 unit 8 family inet address 172.16.34.4/24
set interfaces lo0 unit 4 family inet address 192.168.4.1/32
set interfaces lo0 unit 4 family inet address 172.16.44.0/32
set interfaces lo0 unit 4 family inet address 172.16.144.0/32
set protocols bgp group external type external
set protocols bgp group external export send-direct
set protocols bgp group external peer-as 123
set protocols bgp group external neighbor 172.16.34.3 export med-10
set protocols bgp group external neighbor 172.16.34.3 export med-30
set protocols bgp group external neighbor 172.16.24.2 metric-out 20
set policy-options policy-statement med-10 from route-filter 172.16.144.0/32 exact
set policy-options policy-statement med-10 then metric 10
set policy-options policy-statement med-10 then accept
set policy-options policy-statement med-30 from route-filter 0.0.0.0/0 longer
set policy-options policy-statement med-30 then metric 30
```
set policy-options policy-statement med-30 then accept
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 4
set routing-options router-id 192.168.4.1

Configuring Device R1

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

 [edit interfaces fe-1/2/0 unit 1]
 user@R1# set family inet address 172.16.12.1/24
 [edit interfaces fe-1/2/1 unit 2]
 user@R1# set family inet address 172.16.13.1/24
 [edit interfaces lo0 unit 1]
 user@R1# set family inet address 192.168.1.1/32

2. Configure BGP.

 [edit protocols bgp group internal]
 user@R1# set type internal
 user@R1# set local-address 192.168.1.1
 user@R1# set export send-direct
 user@R1# set neighbor 192.168.2.1
 user@R1# set neighbor 192.168.3.1

3. Configure OSPF.

 [edit protocols ospf area 0.0.0.0]
 user@R1# set interface lo0.1 passive
 user@R1# set interface fe-1/2/0.1
 user@R1# set interface fe-1/2/1.2
4. Configure a policy that accepts direct routes.

Other useful options for this scenario might be to accept routes learned through OSPF or local routes.

```
[edit policy-options policy-statement send-direct term 1]
user@R1# set from protocol direct
user@R1# set then accept
```

5. Configure the router ID and autonomous system (AS) number.

```
[edit routing-options]
user@R1# set autonomous-system 123
user@R1# set router-id 192.168.1.1
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
fe-1/2/0 { unit 1 { family inet { address 172.16.12.1/24; } }
}
fe-1/2/1 { unit 2 { family inet { address 172.16.13.1/24; } }
}
lo0 { unit 1 { family inet { address 192.168.1.1/32; } }
}
```
If you are done configuring the device, enter commit from configuration mode.

Configuring Device R2

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the device interfaces.
2. Configure BGP.

```
[edit protocols bgp group internal]
user@R2# set type internal
user@R2# set local-address 192.168.2.1
user@R2# set export send-direct
user@R2# set neighbor 192.168.1.1
user@R2# set neighbor 192.168.3.1
[edit protocols bgp group external]
user@R2# set type external
user@R2# set export send-direct
user@R2# set peer-as 4
user@R2# set neighbor 172.16.24.4
```

3. Configure OSPF.

```
[edit protocols ospf area 0.0.0.0]
user@R2# set interface lo0.2 passive
user@R2# set interface fe-1/2/0.3
user@R2# set interface fe-1/2/1.4
```

4. Configure a policy that accepts direct routes.

```
[edit policy-options policy-statements end-direct term 1]
user@R2# set from protocol direct
user@R2# set then accept
```

5. Configure the router ID and autonomous system (AS) number.

```
[edit routing-options]
user@R2# set autonomous-system 123
```
user@R2# set router-id 192.168.2.1

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R2# show interfaces
fe-1/2/0 {
 unit 3 {
 family inet {
 address 172.16.12.2/24;
 }
 }
}
fe-1/2/1 {
 unit 4 {
 family inet {
 address 172.16.24.2/24;
 }
 }
}
lo0 {
 unit 2 {
 family inet {
 address 192.168.2.1/32;
 }
 }
}

user@R2# show protocols
bgp {
 group internal {
 type internal;
 local-address 192.168.2.1;
 export send-direct;
 neighbor 192.168.1.1;
 neighbor 192.168.3.1;
 }
 group external {
 type external;
 export send-direct;
 }
peer-as 4;
neighbor 172.16.24.4;
}
}
ospf {
area 0.0.0.0 {
interface lo0.2 {
 passive;
}
interface fe-1/2/0.3;
interface fe-1/2/1.4;
}
}

user@R2# show policy-options
policy-statement send-direct {
 term 1 {
 from protocol direct;
 then accept;
 }
}

user@R2# show routing-options
autonomous-system 123;
router-id 192.168.2.1;

If you are done configuring the device, enter **commit** from configuration mode.

Configuring Device R3

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R3:

1. Configure the device interfaces.

 [edit interfaces fe-1/2/0 unit 5]
 user@R3# set family inet address 172.16.13.3/24
 [edit interfaces fe-1/2/1 unit 6]
 user@R3# set family inet address 172.16.34.3/24
2. Configure BGP.

```
[edit protocols bgp group internal]
user@R3# set type internal
user@R3# set local-address 192.168.3.1
user@R3# set export send-direct
user@R3# set neighbor 192.168.1.1
user@R3# set neighbor 192.168.2.1
[edit protocols bgp group external]
user@R3# set type external
user@R3# set export send-direct
user@R3# set peer-as 4
user@R3# set neighbor 172.16.34.4
```

3. Configure OSPF.

```
[edit protocols ospf area 0.0.0.0]
user@R3# set interface lo0.3 passive
user@R3# set interface fe-1/2/0.5
user@R3# set interface fe-1/2/1.6
```

4. Configure a policy that accepts direct routes.

Other useful options for this scenario might be to accept routes learned through OSPF or local routes.

```
[edit policy-options policy-statement send-direct term 1]
user@R3# set from protocol direct
user@R3# set then accept
```

5. Configure the router ID and autonomous system (AS) number.

```
[edit routing-options]
user@R3# set autonomous-system 123
user@R3# set router-id 192.168.3.1
```

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R3# show interfaces
fe-1/2/0 {
    unit 5 {
        family inet {
            address 172.16.13.3/24;
        }
    }
}
fe-1/2/1 {
    unit 6 {
        family inet {
            address 172.16.34.3/24;
        }
    }
}
lo0 {
    unit 3 {
        family inet {
            address 192.168.3.1/32;
        }
    }
}

user@R3# show protocols
bgp {
    group internal {
        type internal;
        local-address 192.168.3.1;
        export send-direct;
        neighbor 192.168.1.1;
        neighbor 192.168.2.1;
    }
    group external {
        type external;
        export send-direct;
        peer-as 4;
        neighbor 172.16.34.4;
    }
}
ospf {
```
area 0.0.0.0 {
 interface lo0.3 {
 passive;
 }
 interface fe-1/2/0.5;
 interface fe-1/2/1.6;
}

user@R3# show policy-options
policy-statement send-direct {
 term 1 {
 from protocol direct;
 then accept;
 }
}

user@R3# show routing-options
autonomous-system 123;
router-id 192.168.3.1;

If you are done configuring the device, enter commit from configuration mode.

Configuring Device R4

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R4:

1. Configure the device interfaces.

 [edit interfaces fe-1/2/0 unit 7]
 user@R4# set family inet address 172.16.24.4/24
 [edit interfaces fe-1/2/1 unit 8]
 user@R4# set family inet address 172.16.34.4/24
 [edit interfaces lo0 unit 4]
 user@R4# set family inet address 192.168.4.1/32
 user@R4# set family inet address 172.16.44.0/32
 user@R4# set family inet address 172.16.144.0/32

Device R4 has multiple loopback interface addresses to simulate advertised prefixes.
2. Configure a policy that accepts direct routes.

Other useful options for this scenario might be to accept routes learned through OSPF or local routes.

```
[edit policy-options policy-statement send-direct term 1]
user@R4# set from protocol direct
user@R4# set then accept
```

3. Configure BGP.

```
[edit protocols bgp group external]
user@R4# set type external
user@R4# set export send-direct
user@R4# set peer-as 123
```

4. Configure the two MED policies.

```
[edit policy-options]
set policy-statement med-10 from route-filter 172.16.144.0/32 exact
set policy-statement med-10 then metric 10
set policy-statement med-10 then accept
set policy-statement med-30 from route-filter 0.0.0.0/0 longer
set policy-statement med-30 then metric 30
set policy-statement med-30 then accept
```

5. Configure the two EBGP neighbors, applying the two MED policies to Device R3, and a MED value of 20 to Device R2.

```
[edit protocols bgp group external]
user@R4# set neighbor 172.16.34.3 export med-10
user@R4# set neighbor 172.16.34.3 export med-30
user@R4# set neighbor 172.16.24.2 metric-out 20
```

6. Configure the router ID and autonomous system (AS) number.

```
[edit routing-options]
user@R4# set autonomous-system 4
user@R4# set router-id 192.168.4.1
```

Results
From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R4# show interfaces
fe-1/2/0 {
  unit 7 {
    family inet {
      address 172.16.24.4/24;
    }
  }
}
fe-1/2/1 {
  unit 8 {
    family inet {
      address 172.16.34.4/24;
    }
  }
}
lo0 {
  unit 4 {
    family inet {
      address 192.168.4.1/32;
      address 172.16.44.0/32;
      address 172.16.144.0/32;
    }
  }
}

user@R4# show protocols
bgp {
  group external {
    type external;
    export send-direct;
    peer-as 123;
    neighbor 172.16.24.2 {
      metric-out 20;
    }
    neighbor 172.16.34.3 {
      export [ med-10 med-30 ];
    }
  }
}
```
user@R4# show policy-options
policy-statement med-10 {
 from {
 route-filter 172.16.144.0/32 exact;
 }
 then {
 metric 10;
 accept;
 }
}

policy-statement med-30 {
 from {
 route-filter 0.0.0.0/0 longer;
 }
 then {
 metric 30;
 accept;
 }
}

policy-statement send-direct {
 term 1 {
 from protocol direct;
 then accept;
 }
}

user@R4# show routing-options
autonomous-system 4;
router-id 192.168.4.1;

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Checking the Active Path from Device R1 to Device R4 | 354
- Verifying That Device R4 Is Sending Its Routes Correctly | 355
Confirm that the configuration is working properly.

Checking the Active Path from Device R1 to Device R4

Purpose
Verify that the active path goes through Device R2.

Action
From operational mode, enter the `show route protocol bgp` command.

```
user@R1> show route protocol bgp

inet.0: 13 destinations, 19 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.12.0/24    [BGP/170] 4d 01:13:32, localpref 100, from 192.168.2.1
                    AS path: I
                    > to 172.16.12.2 via fe-1/2/0.1

172.16.13.0/24    [BGP/170] 3d 05:36:10, localpref 100, from 192.168.3.1
                    AS path: I
                    > to 172.16.13.3 via fe-1/2/1.2

172.16.24.0/24    [BGP/170] 4d 01:13:32, localpref 100, from 192.168.2.1
                    AS path: I
                    > to 172.16.12.2 via fe-1/2/0.1

172.16.34.0/24    [BGP/170] 3d 05:36:10, localpref 100, from 192.168.3.1
                    AS path: I
                    > to 172.16.13.3 via fe-1/2/1.2

172.16.44.0/32    *[BGP/170] 00:06:03, MED 20, localpref 100, from 192.168.2.1
                    AS path: 4 I
                    > to 172.16.12.2 via fe-1/2/0.1

172.16.144.0/32    *[BGP/170] 00:06:03, MED 10, localpref 100, from 192.168.3.1
                    AS path: 4 I
                    > to 172.16.13.3 via fe-1/2/1.2

192.168.2.1/32    [BGP/170] 4d 01:13:32, localpref 100, from 192.168.2.1
                    AS path: I
                    > to 172.16.12.2 via fe-1/2/0.1

192.168.3.1/32    [BGP/170] 3d 05:36:10, localpref 100, from 192.168.3.1
                    AS path: I
                    > to 172.16.13.3 via fe-1/2/1.2

192.168.4.1/32    *[BGP/170] 00:06:03, MED 20, localpref 100, from 192.168.2.1
                    AS path: 4 I
                    > to 172.16.12.2 via fe-1/2/0.1
```

Meaning
The output shows that the preferred path to the routes advertised by Device R4 is through Device R2 for all routes except 172.16.144.0/32. For 172.16.144.0/32, the preferred path is through Device R3.

Verifying That Device R4 Is Sending Its Routes Correctly

Purpose
Make sure that Device R4 is sending update messages with a value of 20 to Device R2 and a value of 30 to Device R3.

Action
From operational mode, enter the `show route advertising-protocol bgp` command.

user@R4> show route advertising-protocol bgp 172.16.24.2

```
inet.0: 11 destinations, 13 routes (11 active, 0 holddown, 0 hidden)  
Prefix                  Nexthop              MED     Lclpref    AS path  
* 172.16.24.0/24           Self                 20                 I  
* 172.16.34.0/24           Self                 20                 I  
* 172.16.44.0/32          Self                 20                 I  
* 172.16.144.0/32      Self                 20                 I  
* 192.168.4.1/32          Self                 20                 I  
```

user@R4> show route advertising-protocol bgp 172.16.34.3

```
inet.0: 11 destinations, 13 routes (11 active, 0 holddown, 0 hidden)  
Prefix                  Nexthop              MED     Lclpref    AS path  
* 172.16.24.0/24           Self                 30                 I  
* 172.16.34.0/24           Self                 30                 I  
* 172.16.44.0/32          Self                 30                 I  
* 172.16.144.0/32      Self                 30                 I  
* 192.168.4.1/32          Self                 30                 I  
```

Meaning
The MED column shows that Device R4 is sending the correct MED values to its two EBGP neighbors.

RELATED DOCUMENTATION

Example: Associating the MED Path Attribute with the IGP Metric and Delaying MED Updates
Understanding Route Filters for Use in Routing Policy Match Conditions | 279
Understanding BGP Path Selection
Example: Configuring Layer 3 VPN Protocol Family Qualifiers for Route Filters

This example shows how to control the scope of BGP import policies by configuring a family qualifier for the BGP import policy. The family qualifier specifies routes of type `inet`, `inet6`, `inet-vpn`, or `inet6-vpn`.

Requirements

This example uses Junos OS Release 10.0 or later.

Before you begin:

- Configure the device interfaces.
- Configure an interior gateway protocol. See the Junos OS Routing Protocols Library.
- Configure a BGP session for multiple route types. For example, configure the session for both family `inet` routes and family `inet-vpn` routes. See Configuring IBGP Sessions Between PE Routers in VPNs and Configuring Layer 3 VPNs to Carry IPv6 Traffic.

Overview

Family qualifiers cause a route filter to match only one specific family. When you configure an IPv4 route filter without a family qualifier, as shown here, the route filter matches `inet` and `inet-vpn` routes.

```
route-filter ipv4-address/mask;
```
Likewise, when you configure an IPv6 route filter without a family qualifier, as shown here, the route filter matches \texttt{inet6} and \texttt{inet6-vpn} routes.

```plaintext
route-filter ipv6-address/mask;
```

Consider the case in which a BGP session has been configured for both family \texttt{inet} routes and family \texttt{inet-vpn} routes, and an import policy has been configured for this BGP session. This means that both family \texttt{inet} and family \texttt{inet-vpn} routes, when received, share the same import policy. The policy term might look as follows:

```plaintext
from {
  route-filter 0.0.0.0/0 exact;
}
then {
  next-hop self;
  accept;
}
```

This route-filter logic matches an \texttt{inet} route of 0.0.0.0 and an \texttt{inet-vpn} route whose IPv4 address portion is 0.0.0.0. The 8-byte route distinguisher portion of the \texttt{inet-vpn} route is not considered in the route-filter matching. This is a change in Junos OS behavior that was introduced in Junos OS Release 10.0.

If you do not want your policy to match both types of routes, add a family qualifier to your policy. To have the route-filter match only \texttt{inet} routes, add the family \texttt{inet} policy qualifier. To have the route-filter match only \texttt{inet-vpn} routes, add the family \texttt{inet-vpn} policy qualifier.

The family qualifier is evaluated before the route-filter is evaluated. Thus, the route-filter is not evaluated if the family match fails. The same logic applies to family \texttt{inet6} and family \texttt{inet6-vpn}. The route-filter used in the \texttt{inet6} example must use an IPv6 address. There is a potential efficiency gain in using a family qualifier because the family qualifier is tested before most other qualifiers, quickly eliminating routes from undesired families.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the \texttt{[edit]} hierarchy level.

inet Example
set policy-options policy-statement specific-family from family inet
set policy-options policy-statement specific-family from route-filter 0.0.0.0/0 exact
set policy-options policy-statement specific-family then next-hop self
set policy-options policy-statement specific-family then accept
set protocols bgp import specific-family

Inet-vpn Example

set policy-options policy-statement specific-family from family inet-vpn
set policy-options policy-statement specific-family from route-filter 0.0.0.0/0 exact
set policy-options policy-statement specific-family then next-hop self
set policy-options policy-statement specific-family then accept
set protocols bgp import specific-family

inet6 Example

set policy-options policy-statement specific-family from family inet6
set policy-options policy-statement specific-family from route-filter 0::0/0 exact
set policy-options policy-statement specific-family then next-hop self
set policy-options policy-statement specific-family then accept
set protocols bgp import specific-family

Inet6-vpn Example

set policy-options policy-statement specific-family from family inet6-vpn
set policy-options policy-statement specific-family from route-filter 0::0/0 exact
set policy-options policy-statement specific-family then next-hop self
set policy-options policy-statement specific-family then accept
set protocols bgp import specific-family

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure a flow map:

1. Configure the family qualifier.

```
[edit policy-options]
user@host# set policy-statement specific-family from family inet
```

2. Configure the route filter.

```
[edit policy-options]
user@host# set policy-statement specific-family from route-filter 0.0.0.0/0 exact
```

3. Configure the policy actions.

```
[edit policy-options]
user@host# set policy-statement specific-family then next-hop self
user@host# set policy-statement specific-family then accept
```

4. Apply the policy.

```
[edit protocols bgp]
user@host# set import specific-family
```

Results

From configuration mode, confirm your configuration by issuing the `show protocols` and `show policy-options` command. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show protocols
bgp {
   import specific-family;
}
user@host# show policy-options
policy-statement specific-family {
```
If you are done configuring the device, enter `commit` from configuration mode.

Repeat the procedure for every protocol family for which you need a specific route-filter policy.

Verification

To verify the configuration, run the following commands:

- `show route advertising-protocol bgp neighbor detail`
- `show route instance instance-name detail`

Understanding Prefix Lists for Use in Routing Policy Match Conditions

A *prefix list* is a named list of IP addresses. You can specify an exact match with incoming routes and apply a common action to all matching prefixes in the list.

Suppose, for example, that you configure the following prefix list:

```plaintext
prefix-list bgp179 {
    apply-path "protocols bgp group <> neighbor <>";
}
```
This works well when all neighbors on the device are in the same address family.

When the neighbors are in different address families, for example when both IPv4 and IPv6 neighbors are configured, you can use a prefix list as follows:

```plaintext
prefix-list IPV4-BGP-NEIGHBORS {
    apply-path "protocols bgp group <*> neighbor <*>.*.*.*";
}
prefix-list IPV6-BGP-NEIGHBORS {
    apply-path "protocols bgp group <*> neighbor <*>:*:*";
}
```

One prefix list matches IPv4 addresses. The other matches IPv6 addresses. You can run the `show configuration policy-options prefix-list prefix-list name | display inheritance` command to verify the configuration.

A prefix list functions like a route list that contains multiple instances of the `exact` match type only. The differences between these two extended match conditions are summarized in Table 19 on page 361.

Table 19: Prefix List and Route List Differences

<table>
<thead>
<tr>
<th>Feature</th>
<th>Prefix List</th>
<th>Route Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Can specify action in a <code>then</code></td>
<td>Can specify action that is applied to a particular prefix in a <code>route-filter</code> match condition in a <code>from</code> statement, or to all prefixes in the list using a <code>then</code> statement.</td>
</tr>
<tr>
<td></td>
<td>statement only. These actions are applied to all prefixes that match the term.</td>
<td></td>
</tr>
</tbody>
</table>

For information about configuring route lists, see "Understanding Route Filters for Use in Routing Policy Match Conditions" on page 279.

This section includes the following information:

Configuring Prefix Lists

You can create a named prefix list and include it in a routing policy with the `prefix-list` match condition (described in "Routing Policy Match Conditions" on page 55).

To define a prefix list, include the `prefix-list` statement:

```plaintext
[edit policy-options]
```
You can use the **apply-path** statement to include all prefixes (and their associated network mask) pointed to by a defined path, or you can specify one or more addresses, or both.

To include a prefix list in a routing policy, specify the **prefix-list** match condition in the **from** statement at the `[edit policy-options policy-statement policy-name term term-name]` hierarchy level:

```plaintext
prefix-list prefix-list-name {
  apply-path path;
  ip-addresses;
}
```

name identifies the prefix list. It can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

ip-addresses are the IPv4 or IP version 6 (IPv6) prefixes specified as **prefix/prefix-length**. If you omit **prefix-length** for an IPv4 prefix, the default is `/32**prefix-length**`. If you omit **prefix-length** for an IPv6 prefix, the default is `/128`. Prefixes specified in a **from** statement must be either all IPv4 addresses or all IPv6 addresses.

NOTE: You cannot apply actions to individual prefixes in the list.

You can specify the same prefix list in the **from** statement of multiple routing policies or firewall filters. For information about firewall filters, see "Guidelines for Configuring Firewall Filters" on page 746 and "Guidelines for Applying Standard Firewall Filters" on page 753.

Use the **apply-path** statement to configure a prefix list comprising all IP prefixes pointed to by a defined path. This eliminates most of the effort required to maintain a group prefix list.

The path consists of elements separated by spaces. Each element matches a configuration keyword or an identifier, and you can use wildcards to match more than one identifier. Wildcards must be enclosed in angle brackets, for example, `<*>`.

NOTE: You cannot add a path element, including wildcards, after a leaf statement in the **apply-path** statement. Path elements, including wildcards, can only be used after a container statement.
NOTE: When you use apply-path to define a prefix list, you can also use the same prefix list in a policy statement.

For examples of configuring a prefix list, see “Example: Configuring Routing Policy Prefix Lists” on page 364.

How Prefix Lists Are Evaluated in Routing Policy Match Conditions

During prefix list evaluation, the policy framework software performs a longest-match lookup, which means that the software searches for the prefix in the list with the longest length. The order in which you specify the prefixes, from top to bottom, does not matter. The software then compares a route's source address to the longest prefix.

You can use prefix list qualifiers for prefixes contained in a prefix list by configuring a prefix list filter. For more information, see Configuring Prefix Lists for Use in Routing Policy Match Conditions.

If a match occurs, the evaluation of the current term continues. If a match does not occur, the evaluation of the current term ends.

NOTE: If you specify multiple prefixes in the prefix list, only one prefix must match for a match to occur. The prefix list matching is effectively a logical OR operation.

Configuring Prefix List Filters

A prefix list filter allows you to apply prefix list qualifiers to a list of prefixes within a prefix list. The prefixes within the list are evaluated using the specified qualifiers. You can configure multiple prefix list filters under the same policy term.

To configure a prefix list filter, include the prefix-list-filter statement at the [edit policy-options policy-statement policy-name from] hierarchy level:

```
[edit policy-options policy-statement policy-name]
from {
    prefix-list-filter prefix-list-name match-type actions;
}
```

The prefix-list-name option is the name of the prefix list to be used for evaluation. You can specify only one prefix list.
The **match-type** option is the type of match to apply to the prefixes in the prefix list. It can be one of the match types listed in Table 20 on page 364.

The **actions** option is the action to take if the prefix list matches. It can be one or more of the actions listed in "Configuring Flow Control Actions" on page 70 and "Configuring Actions That Manipulate Route Characteristics" on page 71.

Table 20: Route List Match Types for a Prefix List Filter

<table>
<thead>
<tr>
<th>Match Type</th>
<th>Match Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>The route shares the same most-significant bits (described by prefix-length), and prefix-length is equal to the route’s prefix length.</td>
</tr>
<tr>
<td>longer</td>
<td>The route shares the same most-significant bits (described by prefix-length), and prefix-length is greater than the route’s prefix length.</td>
</tr>
<tr>
<td>orlonger</td>
<td>The route shares the same most-significant bits (described by prefix-length), and prefix-length is equal to or greater than the route’s prefix length.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Example: Configuring Routing Policy Prefix Lists | 364
- Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List | 943

Example: Configuring Routing Policy Prefix Lists

IN THIS SECTION

- Requirements | 365
- Overview | 365
- Configuration | 367
- Verification | 374

In Junos OS, prefix lists provide one method of defining a set of routes. Junos OS provides other methods of accomplishing the same task, such as route filters. A prefix list is a listing of IP prefixes that represent
a set of routes that are used as match criteria in an applied policy. Such a list might be useful for representing
a list of customer routes in your autonomous system (AS). A prefix list is given a name and is configured
within the [edit policy-options] configuration hierarchy.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

Prefix lists are similar to a list of route filters. The functional difference between route filters and prefix
lists is that you cannot specify a range using a prefix list. You can simulate a range using a prefix list by
including additional prefixes in the list, or by using two prefix lists, one shorter and one longer, setting one
to accept and the other to reject. You can also filter a prefix list using the prefix-list-filter match condition.
Your choices are exact, longer, and orlonger.

The benefit of a prefix list over a list of route filters is seen when the prefixes are referenced in several
different locations. For instance, a prefix list can be referenced in a BGP import policy, an export policy,
an RPF policy, in firewall filters, in loopback filters, in setting a multicast scope, and so on.

When your list of prefixes changes, rather than trying to remember the many different locations prefixes
are configured, you can instead update the prefix list, changing the prefix one time instead of multiple
times. This helps to reduce the likelihood of configuration errors, such as mistyping the address in a location
or forgetting to update one or more locations.

Prefix lists also help when managing a large number of devices. You can write the various filters and policies
as generically as possible, referencing prefix lists instead of specific IP addresses. The more complex logic
in the filters and policies has to be written only one time, with minimal per-device and per-site
customizations.

As shown in Figure 28 on page 367, each router in AS 64510 has customer routes. Device R1 assigns
customer routes within the 172.16.1.0/24 subnet. Device R2 and Device R3 assign customer routes within
the 172.16.2.0/24 and 172.16.3.0/24 subnets, respectively. Device R1 has been designated the central
point in AS 64510 to maintain a complete list of customer routes. Device R1 has a prefix list called
customers, as follows:

```bash
user@R1# show policy-options
prefix-list customers {
  172.16.1.16/28;
  172.16.1.32/28;
  172.16.1.48/28;
  172.16.1.64/28;
  172.16.2.16/28;
  172.16.2.32/28;
```
As you can see, the prefix list does not contain a match type for each route (as you would see with a route filter). This is an important point when using a prefix list in a policy. Routes match only if they exactly match one of the prefixes in the list. In other words, each route in the list must appear in the routing table exactly as it is configured in the prefix list.

You reference the prefix list as a match criterion within a policy like this:

```
user@R1# show policy-options
policy-statement customer-routes {
    term get-routes {
        from {
            prefix-list customers;
        }
        then accept;
    }
    term others {
        then reject;
    }
}
```

In this example, all the routes in the `customers` prefix list appear in the routing table on Device R1. Device R2 and Device R3 export to Device R1 static routes to their customers.

As previously mentioned, you can use the `prefix-list-filter` match condition with the `exact`, `longer`, or `orlonger` match type. This provides a way to avoid the prefix list exact-match limitation of prefix lists. For example:

```
user@R1# show policy-options
policy-statement customer-routes {
    term get-routes {
        from {
            prefix-list-filter customers orlonger;
        }
        then accept;
    }
}
```
The example demonstrates the effects of both the `prefix-list` match condition and the `prefix-list-filter` match condition.

Topology

Figure 28 on page 367 shows the sample network.

Figure 28: BGP Topology for Policy Prefix Lists

"CLI Quick Configuration" on page 367 shows the configuration for all of the devices in Figure 28 on page 367.

The section "Step-by-Step Procedure" on page 370 describes the steps on Device R1.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1
set interfaces fe-1/2/0 unit 0 description to_R2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/2 unit 0 description to_R3
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.5/30
set interfaces fe-1/2/3 unit 0 description to_R4
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.1
set protocols bgp group int neighbor 192.168.0.2
set protocols bgp group int neighbor 192.168.0.3
set protocols bgp group to_64511 type external
set protocols bgp group to_64511 neighbor 10.1.0.6 peer-as 64511
set protocols bgp group to_64511 export customer-routes
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options prefix-list 64510-customers 172.16.1.16/28
set policy-options prefix-list 64510-customers 172.16.1.32/28
set policy-options prefix-list 64510-customers 172.16.1.48/28
set policy-options prefix-list 64510-customers 172.16.1.64/28
set policy-options prefix-list 64510-customers 172.16.2.16/28
set policy-options prefix-list 64510-customers 172.16.2.32/28
set policy-options prefix-list 64510-customers 172.16.2.48/28
set policy-options prefix-list 64510-customers 172.16.2.64/28
set policy-options prefix-list 64510-customers 172.16.3.16/28
set policy-options prefix-list 64510-customers 172.16.3.32/28
set policy-options prefix-list 64510-customers 172.16.3.48/28
set policy-options prefix-list 64510-customers 172.16.3.64/28
set policy-options policy-statement customer-routes term get-routes from prefix-list 64510-customers
set policy-options policy-statement customer-routes term get-routes then accept
set policy-options policy-statement customer-routes term others then reject
set routing-options static route 172.16.1.16/28 discard
set routing-options static route 172.16.1.32/28 discard
set routing-options static route 172.16.1.48/28 discard
set routing-options static route 172.16.1.64/28 discard
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510

Device R2
set interfaces fe-1/2/0 unit 0 description to_R1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/2 unit 0 description to_R3
set interfaces fe-1/2/2 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.2
set protocols bgp group int neighbor 192.168.0.1 export send-static
set protocols bgp group int neighbor 192.168.0.3
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 172.16.2.16/28 discard
set routing-options static route 172.16.2.32/28 discard
set routing-options static route 172.16.2.48/28 discard
set routing-options static route 172.16.2.64/28 discard
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510

Device R3

set interfaces fe-1/2/1 unit 0 description to_R2
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces fe-1/2/2 unit 0 description to_R1
set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.3
set protocols bgp group int neighbor 192.168.0.1 export send-static
set protocols bgp group int neighbor 192.168.0.2
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 172.16.3.16/28 discard
set routing-options static route 172.16.3.32/28 discard
set routing-options static route 172.16.3.48/28 discard
Device R4

```
set interfaces fe-1/2/3 unit 0 description to_R1
set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.6/30
set interfaces lo0 unit 0 family inet address 192.168.0.4/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.1.0.5
set routing-options autonomous-system 64511
```

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

 [edit interfaces]
 user@R1# set interfaces fe-1/2/0 unit 0 description to_R2
 user@R1# set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
 user@R1# set interfaces fe-1/2/2 unit 0 description to_R3
 user@R1# set interfaces fe-1/2/2 unit 0 family inet address 10.0.0.5/30
 user@R1# set interfaces fe-1/2/3 unit 0 description to_R4
 user@R1# set interfaces fe-1/2/3 unit 0 family inet address 10.1.0.5/30
 user@R1# set interfaces lo0 unit 0 family inet address 192.168.0.1/32

2. Configure the internal BGP (IBGP) connections to Device R2 and Device R3.

 [edit protocols bgp group int]
 user@R1# set type internal
 user@R1# set local-address 192.168.0.1
3. Configure the EBGP connection to Device R4.

```plaintext
[edit protocols bgp group to_64511]
user@R1# set type external
user@R1# set neighbor 10.1.0.6 peer-as 64511
user@R1# set export customer-routes
```

4. Configure OSPF connections to Device R2 and Device R3.

```plaintext
[edit protocols ospf area 0.0.0.0]
user@R1# set interface fe-1/2/0.0
user@R1# set interface fe-1/2/2.0
user@R1# set interface lo0.0 passive
```

5. Configure the prefix list.

```plaintext
[edit policy-options prefix-list 64510-customers]
user@R1# set 172.16.1.16/28
user@R1# set 172.16.1.32/28
user@R1# set 172.16.1.48/28
user@R1# set 172.16.1.64/28
user@R1# set 172.16.2.16/28
user@R1# set 172.16.2.32/28
user@R1# set 172.16.2.48/28
user@R1# set 172.16.2.64/28
user@R1# set 172.16.3.16/28
user@R1# set 172.16.3.32/28
user@R1# set 172.16.3.48/28
user@R1# set 172.16.3.64/28
```

6. Configure the routing policy that references the prefix list as a match criterion.

```plaintext
[edit policy-options policy-statement customer-routes term get-routes]
user@R1# set from prefix-list 64510-customers
user@R1# set then accept
[edit policy-options policy-statement customer-routes term others]
user@R1# set then reject
```
7. Configure the static route to the 172.16.5.0/24 network.

```
[edit routing-options static]
user@R1# set route 172.16.1.16/28 discard
user@R1# set route 172.16.1.32/28 discard
user@R1# set route 172.16.1.48/28 discard
user@R1# set route 172.16.1.64/28 discard
```

8. Configure the autonomous system (AS) number and router ID.

```
[edit routing-options]
user@R1# set router-id 192.168.0.1
user@R1# set autonomous-system 64510
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
fe-1/2/0 {
    unit 0 {
        description to_R2;
        family inet {
            address 10.0.0.1/30;
        }
    }
}
}
fe-1/2/2 {
    unit 0 {
        description to_R3;
        family inet {
            address 10.0.0.5/30;
        }
    }
}
}
fe-1/2/3 {
    unit 0 {
        description to_R4;
        family inet {
            address 10.1.0.5/30;
        }
    }
}
```
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.1/32;
 }
 }
}

user@R1# show protocols
bgp {
 group int {
 type internal;
 local-address 192.168.0.1;
 neighbor 192.168.0.2;
 neighbor 192.168.0.3;
 }
 group to_64511 {
 type external;
 export customer-routes;
 neighbor 10.1.0.6 {
 peer-as 64511;
 }
 }
}
ospf {
 area 0.0.0.0 {
 interface fe-1/2/0.0;
 interface fe-1/2/2.0;
 interface lo0.0 {
 passive;
 }
 }
}

user@R1# show policy-options
prefix-list 64510-customers {
 172.16.1.16/28;
 172.16.1.32/28;
 172.16.1.48/28;
 172.16.1.64/28;
 172.16.2.16/28;
172.16.2.32/28;
172.16.2.48/28;
172.16.2.64/28;
172.16.3.16/28;
172.16.3.32/28;
172.16.3.48/28;
172.16.3.64/28;
}

policy-statement customer-routes {
 term get-routes {
 from {
 prefix-list 64510-customers;
 }
 then accept;
 }
 term others {
 then reject;
 }
}

user@R1# show routing-options
static {
 route 172.16.1.16/28 discard;
 route 172.16.1.32/28 discard;
 route 172.16.1.48/28 discard;
 route 172.16.1.64/28 discard;
}
router-id 192.168.0.1;
autonomous-system 64510;

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying the Routes on Device R1 | 375
- Verifying the Route Advertisement to Device R4 | 376
- Experimenting with the prefix-list-filter Statement | 376
Confirm that the configuration is working properly.

Verifying the Routes on Device R1

Purpose

On Device R1, check the routes in the routing table.

Action

```
user@R1> show route terse 172.16/16
```

<table>
<thead>
<tr>
<th>A V Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* ? 172.16.1.16/28</td>
<td>S 5</td>
<td></td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.1.32/28</td>
<td>S 5</td>
<td></td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.1.48/28</td>
<td>S 5</td>
<td></td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.1.64/28</td>
<td>S 5</td>
<td></td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.2.1/32</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.2.16/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.2.32/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.2.48/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.2.64/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.2.96/32</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.3.1/32</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.6</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.3.16/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.6</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.3.32/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.6</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.3.48/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.6</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ? 172.16.3.64/28</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td>>10.0.0.6</td>
<td>I</td>
</tr>
<tr>
<td>unverified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning

Device R1 has learned its own static routes (S) and the BGP routes from Devices R2 and R3 (B).
Verifying the Route Advertisement to Device R4

Purpose
On Device R1, make sure that the customer routes are advertised to Device R4.

Action

```
user@R1> show route advertising-protocol bgp 10.1.0.6
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.1.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

Meaning
As expected, only the routes from the customer prefix list are advertised to Device R4.

Experimenting with the prefix-list-filter Statement

Purpose
See what can happen when you use `prefix-list-filter` instead of `prefix-list`.

Action

1. On Device R2, add a static route that is longer than one of the existing static routes.

   ```
   [edit routing-options static route]
   user@R2# set 172.16.2.65/32 discard
   user@R2# commit
   ```

2. On Device R1, deactivate the prefix list and configure a prefix list filter with the `orlonger` match type.

   ```
   [edit policy-options policy-statement customer-routes term get-routes]
   user@R1# deactivate from prefix-list 64510-customers
   ```
3. On Device R1, check which routes are advertised to Device R4.

```
user@R1> show route advertising-protocol bgp 10.1.0.6
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.1.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.1.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.2.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>172.16.2.65/32</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.16/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.32/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.48/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.64/28</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

Meaning

As expected, Device R1 is now advertising the 172.16.2.65/32 route to Device R4, even though 172.16.2.65/32 is not in the prefix list.

RELATED DOCUMENTATION

- Understanding Prefix Lists for Use in Routing Policy Match Conditions | 360
- Example: Configuring Policy Chains and Route Filters | 237
- Example: Configuring a Policy Subroutine | 265
Example: Configuring the Priority for Route Prefixes in the RPD Infrastructure

This example shows how to configure priority for route prefixes in the RPD infrastructure for the OSPF, LDP, and BGP protocols.

Requirements

This example uses the following hardware and software components:

- Three routers in a combination of ACX Series, M Series, MX Series, PTX Series, and T Series.
- Junos OS Release 16.1 or later running on all devices.

Before you begin:

1. Configure the device interfaces.
2. Configure the following protocols:
 - BGP
 - MPLS
 - OSPF
 - LDP

Overview

In a network with a large number of routes, it is sometimes important to control the order in which routes get updated for better convergence and to provide differentiated services. Prefix prioritization helps users to prioritize certain routes/prefixes over others and have control over the order in which routes get updated in the RIB (routing table) and the FIB (forwarding table). In Junos OS Release 16.1 and later, you can control the order in which the routes get updated from LDP/OSPF to rpd and rpd to kernel. You can specify a
priority of high or low through the existing import policy in the protocols. In the event of a topology change, high priority prefixes are updated in the routing table first, followed by low priority prefixes. In general, routes that are not explicitly assigned a priority are treated as medium priority. Within the same priority level, routes will continue to be updated in lexicographic order.

In this example, the routing device is in area 0.0.0.0, with interface ge-1/3/0 connected to the neighboring device. You configure three import routing policies: next-hop-self, ospf-prio, and prio_for_bgp. The routing policy next-hop-self accepts routes from BGP. For the OSPF routing policy, routes matching 172.16.25.3/32 are installed first because they have a priority of high. LDP imports routes from OSPF. For BGP prioritization, routes matching 172.16.50.1/32 are installed first because they have a priority of high. Routes associated with these prefixes are installed in the routing table in the order of the specified priority of the prefix.

Topology
Figure 29 on page 379 shows the sample topology.

Figure 29: Priority for Route Prefixes in the rpd Infrastructure

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

R1

```
set interfaces ge-1/3/0 unit 0 family inet address 172.16.12.1/24
set interfaces ge-1/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.25.1/32
set protocols mpls interface ge-1/3/0.0
set protocols bgp group prio_internal type internal
set protocols bgp group prio_internal local-address 172.16.25.1
set protocols bgp group prio_internal import prio_for_bgp
set protocols bgp group prio_internal neighbor 172.16.25.3 family inet unicast
```
set protocols bgp group prio_internal neighbor 172.16.25.3 export next-hop-self
set protocols ospf import ospf_prio
set protocols ospf area 0.0.0.0 interface ge-1/3/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ldp interface ge-1/3/0.0
set protocols ldp interface lo0.0
set policy-options policy-statement next-hop-self term nhself from protocol bgp
set policy-options policy-statement next-hop-self term nhself then next-hop self
set policy-options policy-statement next-hop-self term nhself then accept
set policy-options policy-statement ospf_prio term ospf_ldp from protocol ospf
set policy-options policy-statement ospf_prio term ospf_ldp from route-filter 172.16.25.3/32 exact
set policy-options policy-statement ospf_prio term ospf_ldp then priority high
set policy-options policy-statement ospf_prio term ospf ld then accept
set policy-options policy-statement prio_for_bgp term bgp_prio from protocol bgp
set policy-options policy-statement prio_for_bgp term bgp_prio from route-filter 172.16.50.1/32 exact
set policy-options policy-statement prio_for_bgp term bgp_prio then priority high
set routing-options nonstop-routing
set routing-options router-id 172.16.25.1
set routing-options autonomous-system 2525

R2

set interfaces ge-1/0/5 unit 0 family inet address 172.16.12.2/24
set interfaces ge-1/0/5 unit 0 family mpls
set interfaces ge-1/3/0 unit 0 family inet address 172.16.23.2/24
set interfaces ge-1/3/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.25.2/32
set protocols mpls interface ge-1/0/5.0
set protocols mpls interface ge-1/3/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface ge-1/0/5.0
set protocols ospf area 0.0.0.0 interface ge-1/3/0.0
set protocols ldp interface ge-1/0/5.0
set protocols ldp interface ge-1/3/0.0
set protocols ldp interface lo0.0
set routing-options nonstop-routing
set routing-options router-id 172.16.25.2
set routing-options autonomous-system 2525

R3
Configuring Device R1

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the interfaces.

```
set interfaces ge-1/0/1 unit 0 family inet address 172.16.23.3/24
set interfaces ge-1/0/1 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 172.16.25.3/32
set protocols mpls interface ge-1/0/1.0
set protocols bgp group prio_internal type internal
set protocols bgp group prio_internal local-address 172.16.25.3
set protocols bgp group prio_internal neighbor 172.16.25.1 family inet unicast
set protocols bgp group prio_internal neighbor 172.16.25.1 export next-hop-self
set protocols bgp group prio_internal neighbor 172.16.25.1 export static_to_bgp
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface ge-1/0/1.0
set protocols ldp interface ge-1/0/1.0
set ldp interface lo0.0
set policy-options policy-statement next-hop-self term nhself from protocol bgp
set policy-options policy-statement next-hop-self term nhself then next-hop self
set policy-options policy-statement next-hop-self term nhself then accept
set policy-options policy-statement static_to_bgp term s_to_b from protocol static
set policy-options policy-statement static_to_bgp term s_to_b from route-filter 172.16.50.1/32 exact
set policy-options policy-statement static_to_bgp term s_to_b from route-filter 172.16.50.2/32 exact
set policy-options policy-statement static_to_bgp term s_to_b then accept
set routing-options nonstop-routing
set routing-options static route 172.16.50.1/32 receive
set routing-options static route 172.16.50.2/32 receive
set routing-options router-id 172.16.25.3
set routing-options autonomous-system 2525
```
2. Assign the loopback address to the device.

```
[edit lo0 unit 0 family]
user@R1# set address 172.16.25.1/32
```

3. Configure MPLS.

```
[edit protocols]
user@R1# set protocols mpls interface ge-1/3/0.0
```

4. Configure the router ID and autonomous system of Router R1.

```
[edit routing-options]
user@R1# set router-id 172.16.7.7
user@R1# set autonomous-system 100
```

5. Enable OSPF on the interfaces of Router R1.

```
[edit protocols]
user@R1# set protocols ospf import ospf_prio
user@R1# set protocols ospf area 0.0.0.0 interface ge-1/3/0.0
user@R1# set protocols ospf area 0.0.0.0 interface lo0.0 passive
```

6. Configure LDP protocols on the interfaces.

```
[edit protocols]
user@R1# set protocols ldp interface ge-1/3/0.0
user@R1# set protocols ldp interface lo0.0
```

7. Configure BGP.

```
[edit protocols]
user@R1# set protocols bgp group prio_internal type internal
user@R1# set protocols bgp group prio_internal local-address 172.16.25.1
user@R1# set protocols bgp group prio_internal import prio_for_bgp
user@R1# set protocols bgp group prio_internal neighbor 172.16.25.3 family inet unicast
user@R1# set protocols bgp group prio_internal neighbor 172.16.25.3 export next-hop-self
```
8. Configure the policy options to prioritize the routes. The policy next-hop-self accepts routes from BGP. You configure three import routing policies: next-hop-self, ospf-prio, and prio_for_bgp. The routing policy next-hop-self accepts routes from BGP. For the ospf-prio routing policy, routes matching 172.16.25.3/32 are installed first because they have a priority of high. LDP imports routes from OSPF. For prio_for_bgp policy, routes matching 172.16.50.1/32 are installed first because they have a priority of high.

```plaintext
[edit policy-options policy-statement]
user@R1# set policy-options policy-statement next-hop-self term nhself from protocol bgp
user@R1# set policy-options policy-statement next-hop-self term nhself then next-hop self
user@R1# set policy-options policy-statement next-hop-self term nhself then accept

user@R1# set policy-options policy-statement ospf_prio term ospf_ldp from protocol ospf
user@R1# set policy-options policy-statement ospf_prio term ospf_ldp from route-filter 172.16.25.3/32 exact
set policy-options policy-statement ospf_prio term ospf_ldp then priority high

set policy-options policy-statement ospf_prio term ospf_ldp then accept
set policy-options policy-statement prio_for_bgp term bgp_prio from protocol bgp
set policy-options policy-statement prio_for_bgp term bgp_prio from route-filter 172.16.50.1/32 exact
set policy-options policy-statement prio_for_bgp term bgp_prio then priority high
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show routing-options`, and `show policy-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@R1# show interfaces
ge-1/3/0 {
   unit 0 {
      family inet {
         address 172.16.12.1/24;
      }
      family mpls;
   }
}
lo0 {
   unit 0 {
      family inet {
```
address address 172.16.25.1/32;
}
}

[edit]
user@R1# show protocols
mpls {
 interface ge-1/3/0.0;
}
bgp {
 group prio_internal {
 type internal;
 local-address 172.16.25.1;
 import prio_for_bgp
 neighbor 172.16.25.3 {
 family inet {
 unicast;
 }
 export next-hop-self;
 }
 }
}

ospf {
 import ospf_prio;
 area 0.0.0.0 {
 interface ge-1/3/0.0;
 interface lo0.0 {
 passive;
 }
 }
}
}
ldp {
 interface ge-1/3/0.0;
 interface lo0.0;
}
}

[edit]
user@R1# show routing-options
 nonstop-routing;
 router-id 172.16.25.1;
 autonomous-system 2525;
[edit]

user@R1# show policy-options

policy-statement next-hop-self {
 term nhself {
 from protocol bgp;
 then {
 next-hop self;
 accept;
 }
 }
}

policy-statement ospf_prio {
 term ospf_ldp {
 from {
 protocol ospf;
 route-filter 172.16.25.3/32 exact;
 }
 then {
 priority high;
 accept;
 }
 }
}

policy-statement prio_for_bgp {
 term bgp_prio {
 from {
 protocol bgp;
 route-filter 172.16.50.1/32 exact;
 priority high;
 }
 }
}

If you are done configuring the device, enter commit from the configuration mode.

Verification

IN THIS SECTION

- Verifying the Priority for OSPF Routes | 386
- Verifying the Priority for LDP Routes | 386
- Verifying the Priority for BGP Routes | 388
Confirm that the configuration is working properly.

Verifying the Priority for OSPF Routes

Purpose
Verify that the priority is set for the expected route in OSPF.

Action
On Device R1, from operational mode, run the `show ospf route 172.16.25.3/32 extensive` command. A priority of high is applied to OSPF route 172.16.25.3.

```bash
user@R1> show ospf route 172.16.25.3/32 extensive
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Path Type</th>
<th>Route Type</th>
<th>NH Type</th>
<th>Metric</th>
<th>NextHop</th>
<th>Nexthop</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.25.3</td>
<td>Intra Router</td>
<td>IP</td>
<td>2</td>
<td>ge-1/3/0.0</td>
<td>172.16.12.2</td>
<td></td>
</tr>
<tr>
<td>area 0.0.0.0, origin 172.16.25.3, optional-capability 0x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.25.3/32</td>
<td>Intra Network</td>
<td>IP</td>
<td>2</td>
<td>ge-1/3/0.0</td>
<td>172.16.12.2</td>
<td></td>
</tr>
<tr>
<td>area 0.0.0.0, origin 172.16.25.3, priority high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The output shows priority high is applied for OSPF route 172.16.25.3.

Verifying the Priority for LDP Routes

Purpose
Verify if LDP inherits from OSPF.

Action
From operational mode, enter the `show route 172.16.25.3` command to verify if LDP has inherited routes from OSPF.

```bash
user@R1> show route 172.16.25.3
```

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.25.3/32 *[OSPF/10] 00:10:27, metric 2
> to 172.16.25.2 via ge-1/3/0.0
inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.25.3/32 *[LDP/9] 00:10:24, metric 1
 > to 172.16.25.2 via ge-1/3/0.0, Push 299824

From operational mode, enter the **show route 172.16.25.3 extensive** command to verify if LDP has
inherited priority.

user@R1> show route 172.16.25.3 extensive

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
172.16.25.3/32 (1 entry, 1 announced)
 State:<Flashall>
TSI:
KRT in-kernel 172.16.25.3/32 -> (172.16.12.2)
 *OSPF Preference: 10
 Next hop type: Router, Next hop index: 549
 Address: 0xa463390
 Next-hop reference count: 6
 Next hop: 172.16.12.2 via ge-1/3/0.0, selected
 Session Id: 0x0
 State:<Active Int HighPriority>
 Local AS: 2525
 Age: 10:43 Metric: 2
 Validation State: unverified
 Area: 0.0.0.0
 Task: OSPF
 Announcement bits (4): 0-KRT 4-LDP 6-Resolve tree 2
 7-Resolve_IPG_FRR task
 AS path: I

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
172.16.25.3/32 (1 entry, 1 announced)
 State:<Flashall>
LDP Preference: 9
 Next hop type: Router, Next hop index: 582
 Address: 0xa477810
 Next-hop reference count: 12
Next hop: 172.16.12.2 via ge-1/3/0.0, selected
Label operation: Push 299824
Label TTL action: prop-ttl
Load balance label: Label 299824: None;
Label element ptr: 0xa17ad00
Label parent element ptr: 0x0
Label element references: 1
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
State:<Active Int HighPriority>
Local AS: 2525
Age: 10:40 Metric: 1
Validation State: unverified
Task: LDP
Announcement bits (3): 2-Resolve tree 1 3-Resolve tree 2
4-Resolve_IGP_FRR task
AS path: I

Meaning
The output shows that LDP inherits priority high for route 172.16.25.3 from OSPF.

Verifying the Priority for BGP Routes

Purpose
Verify that priority is set for the expected route in BGP.

Action
On Device R1, from operational mode, run the `show route protocol bgp` command to display the routes learned from BGP.

```
user@R1> show route protocol bgp

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

  172.16.50.1/32          *[BGP/170] 00:11:24, localpref 100, from 172.16.25.3
                          AS path: I, validation-state: unverified
                          > to 172.16.12.2 via ge-1/3/0.0, Push 299824
  172.16.50.2/32          *[BGP/170] 00:11:24, localpref 100, from 172.16.25.3
```
On Device R1, from operational mode, run the `show route 172.16.50.1 extensive` command. High priority is applied for BGP route 172.16.50.1.

```plaintext
user@R1> show route 172.16.50.1 extensive
```

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
172.16.50.1/32 (1 entry, 1 announced)
TSI:
 KRT in-kernel 172.16.50.1/32 -> {indirect(1048574)}
 *BGP Preference: 170/-101
 Next hop type: Indirect, Next hop index: 0
 Address: 0xa487b10
 Next-hop reference count: 4
 Source: 172.16.25.3
 Next hop type: Router, Next hop index: 582
 Next hop: 172.16.12.2 via ge-1/3/0.0, selected
 Label operation: Push 299824
 Label TTL action: prop-ttl
 Load balance label: Label 299824: None;
 Label element ptr: 0xa17ad00
 Label parent element ptr: 0x0
 Label element references: 1
 Label element child references: 0
 Label element lsp id: 0
 Session Id: 0x0
 Protocol next hop: 172.16.25.3
 Indirect next hop: 0xa4a9800 1048574 INH Session ID: 0x0
 State: <Active Int Ext HighPriority>
 Local AS: 2525 Peer AS: 2525
 Age: 11:49 Metric2: 1
 Validation State: unverified
 Task: BGP_2525.172.16.25.3
 Announcement bits (2): 0-KRT 6-Resolve tree 2
 AS path: I (Atomic)
 Accepted
 Localpref: 100
The output shows that priority high is applied for BGP route 172.16.50.1.

RELATED DOCUMENTATION

- Prefix Prioritization Overview | 15
- Configuring Priority for Route Prefixes in RPD Infrastructure | 390

Configuring Priority for Route Prefixes in RPD Infrastructure

Prefix prioritization helps users to prioritize certain routes or prefixes for better convergence and to provide differentiated services. In a network with a large number of routes, it is sometimes important to control the order in which routes get updated due to changes in the network topology. At a system level, Junos OS implements reasonable defaults based on heuristics to determine the order in which routes get updated. However, the default behavior is not always optimal. Prefix prioritization provides the user the ability to control the order in which the routes get updated from LDP or OSPF to rpd, and rpd to kernel. The Junos OS policy language is extended to let the user set relative priority (high and low) for prefixes through the existing import policy in protocols. Based on the tagged priority, the routes are placed in different priority queues. In the event of a topology change, high priority prefixes are updated in the routing table first, followed by low priority prefixes. Within the same priority level, routes will continue to be updated in lexicographic order. Routes that are not explicitly assigned a priority are treated as medium priority.

Before you begin to configure prefix prioritization in rpd for protocols such as OSPF, LDP, and BGP:

- Configure the router interfaces.
Configure MPLS.

Configure the OSPF, BGP, and LDP protocols.

To configure the priority high for the OSPF protocol:

1. Configure the policy term.

   ```
   [edit policy-options policy-statement policy-name]
   user@host# set term term-name
   ```

 For example:

   ```
   [edit policy-options policy-statement ospf-prio]
   user@host# set term t1
   ```

2. Configure the policy term to accept routes from OSPF.

   ```
   [edit policy-options policy-statement ospf-prio term t1]
   user@host# set from protocol ospf
   ```

3. Specify the desired route as a match condition for which you want to set priority high.

   ```
   [edit policy-options policy-statement ospf-prio term t1]
   user@host# set from route-filter destination-prefix match-type
   ```

 For example:

   ```
   [edit policy-options policy-statement ospf-prio term t1]
   user@host# set from route-filter 172.16.25.3/32 exact
   ```

4. Specify that the route is to be accepted and set priority high for the route if the previous conditions are matched.

   ```
   [edit policy-options policy-statement ospf-prio term t1]
   user@host# set then priority high
   user@host# set then accept
   ```

5. Verify the configuration.

   ```
   [edit]
   ```
LDP inherits from OSPF.

To configure priority \texttt{high} for LDP:

1. Configure the policy term that imports from OSPF.

 \begin{verbatim}
 [edit policy-options policy-statement policy-name]
 user@host# set term term-name
 \end{verbatim}

 For example:

 \begin{verbatim}
 [edit policy-options policy-statement ospf-import]
 user@host# set term ospf_ldp
 \end{verbatim}

2. Configure the term to accept routes and priority from OSPF.

 \begin{verbatim}
 [edit policy-options policy-statement ospf_import term ospf_ldp]
 user@host# set from protocol ospf
 user@host# set from route-filter destination-prefix match-type
 \end{verbatim}

 For example:

 \begin{verbatim}
 [edit policy-options policy-statement ospf_import term ospf_ldp]
 user@host# set from protocol ospf
 user@host# set from route-filter 172.16.25.3/32 exact
 \end{verbatim}

3. Verify the configuration.
To configure the priority **high** for the BGP protocol:

1. Configure the policy term.

   ```
   [edit]
   user@host# show policy-options
   policy-statement ospf-import {
      term ospf_ldp {
         from {
            protocol ospf;
            route-filter 172.16.25.3/32 exact;
         }
         then {
            priority high;
            accept;
         }
      }
   }
   ```

 For example:

   ```
   [edit policy-options policy-statement policy-name]
   user@host# set term term-name
   ```

   ```
   [edit policy-options policy-statement prio-for-bgp]
   user@host# set bgp_prio
   ```

2. Specify the desired route as a match condition.

   ```
   [edit policy-options policy-statement prio-for-bgp term bgp_prio]
   user@host# set from protocol bgp
   user@host# set from route-filter destination-prefix match-type
   ```

 For example:

   ```
   [edit policy-options policy-statement prio-for-bgp term bgp_prio]
   user@host# set from protocol bgp
   user@host# set from route-filter 172.16.50.1/32 exact
   ```

3. Specify that the route is to be accepted and set the priority **high** for the route if the previous conditions are matched.
4. Verify the configuration.

 policy-statement prio_for_bgp {
 term bgp_prio {
 from {
 protocol bgp;
 route-filter 172.16.50.1/32 exact;
 }
 then {
 priority high;
 accept;
 }
 }
 }

NOTE: For BGP, you can also configure priority based on the route-distinguisher (RD) value in case of L3VPN. For example, you can configure priority for BGP with route-distinguisher 51.51.51.51:111.

To configure priority for BGP based on the route-distinguisher (RD) value:

1. Configure the policy term.

 [edit policy-options policy-statement policy-name]
 user@host# set term term-name

For example:

 [edit policy-options policy-statement prio-for-bgp]
 user@host# set term bgp_prio

2. Specify the desired route as a match condition.

 [edit policy-options policy-statement prio-for-bgp term bgp_prio]
 user@host# set from rib bgp.l3vpn.0
For example:

```
[edit policy-options policy-statement prio-for-bgp term bgp_prio]
user@host# set from rib bgp.l3vpn.0
user@host# set from route-filter 172.16.1.1/32 exact
user@host# set from route-distinguisher RD1
```

3. Specify that the route is to be accepted and set the priority **high** for the route if the previous conditions are matched.

```
[edit policy-options policy-statement prio-for-bgp term bgp_prio]
user@host# set then priority high
user@host# set then accept
```

4. Verify the configuration.

```
policy-statement prio_for_bgp {
  term bgp_prio {
    from {
      protocol rib bgp.l3vpn.0;
      route-filter 172.16.1.1/32 exact;
      route-distinguisher RD1;
    }
    then {
      priority high;
      accept;
    }
  }
}
```

NOTE: Low priority prefixes are installed only after the high priority prefixes in the routing table. You can also configure priority **low** similarly to priority **high** for the routes you want to set to low priority.
NOTE: Priority is applied only when routes are pushed from RIB to FIB. Therefore, you cannot modify the priority of routes that are already installed. Changing the priority of routes already installed does not make sense. If you try changing the priority of routes already installed, there is a show output difference:

```
user@R1> show route 172.16.25.3 extensive | match state

State:  <FlashAll>
    State:  <Active Int HighPriority>  \(===>\) OSPF

    Validation State: unverified

State:  <FlashAll>
    State:  <Active Int>  \(===>\) LDP

    Validation State: unverified
```

As the route is already installed in FIB, LDP does not show the priority as High.

Restarting the routing daemon to remove the routes and adding it again reflects the proper priority from both the OSPF and LDP protocol perspective.

```
user@R1> restart routing
Routing protocols process signalled but still running, waiting 8 seconds more
Routing protocols process started, pid 4512
```

```
user@R1> show route 172.16.25.3 extensive | match state

State:  <FlashAll>
    State:  <Active Int HighPriority>  \(===>\) OSPF

    Validation State: unverified

State:  <FlashAll>
    State:  <Active Int HighPriority>  \(===>\) LDP

    Validation State: unverified
```
RELATED DOCUMENTATION

Prefix Prioritization Overview | 15
Example: Configuring the Priority for Route Prefixes in the RPD Infrastructure | 378
A BGP AS path is the sequence of autonomous systems that network packets traverse to get to a specified router. AS numbers are assembled in a sequence that is read from right to left. For example, for a packet to reach a destination using a route with an AS path 5 4 3 2 1, the packet first traverses AS 1 and so on until it reaches AS 5. In this case, AS 5 is the last AS before the packet destination; it is the AS that the source of the packet would peer with.

When working with AS paths and routing policy match conditions, you can use regular expressions to locate routes. To do so, create one or more match conditions based on some or all of the AS path, and then include it in a routing policy.

The following sections describe AS path regular expressions and provide configuration examples.
Configuration of AS Path Regular Expressions

You can create a named AS path regular expression and then include it in a routing policy with the `as-path` match condition (described in "Routing Policy Match Conditions" on page 55). To create a named AS path regular expression, include the `as-path` statement:

```plaintext
[edit policy-options]
  as-path name regular-expression;
```

To include the AS path regular expression in a routing policy, include the `as-path` match condition in the `from` statement.

Additionally, you can create a named AS path group made up of AS path regular expressions and then include it in a routing policy with the `as-path-group` match condition. To create a named AS path group, include the `as-path-group` statement:

```plaintext
[edit policy-options]
  as-path-group group-name {
    name [ regular-expressions ];
  }
```

To include the AS path regular expressions within the AS path group in a routing policy, include the `as-path-group` match condition in the `from` statement.

NOTE: You cannot include both of the `as-path` and `as-path-group` statements in the same policy term.

NOTE: You can include the names of multiple AS path regular expressions in the `as-path` match condition in the `from` statement. If you do this, only one AS path regular expression needs to match for a match to occur. The AS path regular expression matching is effectively a logical OR operation.

The AS path name identifies the regular expression. It can contain letters, numbers, and hyphens (-), and can be up to 65,536 characters. To include spaces in the name, enclose the entire name in quotation marks (" ").

The regular expression is used to match all or portions of the AS path. It consists of two components, which you specify in the following format:

```plaintext
term <operator>
```
• **term**—Identifies an AS. You can specify it in one of the following ways:

 • **AS number**—The entire AS number composes one term. You cannot reference individual characters within an AS number, which differs from regular expressions as defined in POSIX 1003.2.

 • **Wildcard character**—Matches any single AS number. The wildcard character is a period (.). You can specify multiple wildcard characters.

 • **AS path**—A single AS number or a group of AS numbers enclosed in parentheses. Grouping the regular expression in this way allows you to perform a common operation on the group as a whole and to give the group precedence. The grouped path can itself include operators.

 In Junos OS Release 9.1 and later, you can specify 4-byte AS numbers as defined in RFC 4893, *BGP Support for Four-octet AS Number Space*, as well as the 2-byte AS numbers that are supported in earlier releases of the Junos OS. You can configure a value in the range from 1 through 4,294,967,295.

• **operator**—(Optional) An operator specifying how the term must match. Most operators describe how many times the term must be found to be considered a match (for example, any number of occurrences, or zero, or one occurrence). Table 21 on page 401 lists the regular expression operators supported for AS paths. You place operators immediately after **term** with no intervening space, except for the pipe (|) and dash (–) operators, which you place between two terms, and parentheses, with which you enclose terms.

You can specify one or more term–operator pairs in a single regular expression.

Table 22 on page 402 shows examples of how to define regular expressions to match AS paths.

Table 21: AS Path Regular Expression Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Match Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>{m,n}</td>
<td>At least m and at most n repetitions of term. Both m and n must be positive integers, and m must be smaller than n.</td>
</tr>
<tr>
<td>{m}</td>
<td>Exactly m repetitions of term. m must be a positive integer.</td>
</tr>
<tr>
<td>{m,}</td>
<td>m or more repetitions of term. m must be a positive integer.</td>
</tr>
<tr>
<td>*</td>
<td>Zero or more repetitions of term. This is equivalent to {0,}.</td>
</tr>
<tr>
<td>+</td>
<td>One or more repetitions of term. This is equivalent to {1,}.</td>
</tr>
<tr>
<td>?</td>
<td>Zero or one repetition of term. This is equivalent to {0,1}.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 21: AS Path Regular Expression Operators (continued)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Match Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>A character at the beginning of a community attribute regular expression. This character is added implicitly; therefore, the use of it is optional.</td>
</tr>
<tr>
<td>$</td>
<td>A character at the end of a community attribute regular expression. This character is added implicitly; therefore, the use of it is optional.</td>
</tr>
<tr>
<td>(</td>
<td>A group of terms that are enclosed in the parentheses. Intervening space between the parentheses and the terms is ignored. If a set of parentheses is enclosed in quotation marks with no intervening space "()", it indicates a null path.</td>
</tr>
<tr>
<td>[</td>
<td>Set of AS numbers. One AS number from the set must match. To specify the start and end of a range, use a hyphen (-). A caret (^) may be used to indicate that it does not match a particular AS number in the set, for example [^123].</td>
</tr>
</tbody>
</table>

Table 22: Examples of AS Path Regular Expressions

<table>
<thead>
<tr>
<th>AS Path to Match</th>
<th>Regular Expression</th>
<th>Sample Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path is 1234</td>
<td>1234</td>
<td>1234</td>
</tr>
</tbody>
</table>
| Zero or more occurrences of AS number 1234 | 1234* | 1234
| | | 1234 1234 |
| | | 1234 1234 1234 |
| | | Null AS path |
| Zero or one occurrence of AS number 1234 | 1234? or 1234{0,1} | 1234
| | | Null AS path |
| One through four occurrences of AS number 1234 | 1234{1,4} | 1234
| | | 1234 1234 |
| | | 1234 1234 1234 |
| | | 1234 1234 1234 1234 |
Table 22: Examples of AS Path Regular Expressions (continued)

<table>
<thead>
<tr>
<th>AS Path to Match</th>
<th>Regular Expression</th>
<th>Sample Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>One through four occurrences of AS number 12, followed by one occurrence of AS number 34</td>
<td>12{1,4} 34</td>
<td>12 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 12 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 12 12 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 12 12 12 34</td>
</tr>
<tr>
<td>Range of AS numbers to match a single AS number</td>
<td>123–125</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>[123–125]*</td>
<td>Null AS path</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>124 124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 125 125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123 124 125 125</td>
</tr>
<tr>
<td>Path whose second AS number must be 56 or 78</td>
<td>(.56)</td>
<td>(.78) or .(56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1234 78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9876 56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3857 78</td>
</tr>
<tr>
<td>Path whose second AS number might be 56 or 78</td>
<td>.(56</td>
<td>78)?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34 56 1234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1234 78 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>794 78 2</td>
</tr>
<tr>
<td>Path whose first AS number is 123 and second AS number is either 56 or 78</td>
<td>123 (56</td>
<td>78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123 78</td>
</tr>
<tr>
<td>Path of any length, except nonexistent, whose second AS number can be anything, including nonexistent</td>
<td>.*.</td>
<td>[.0]</td>
</tr>
</tbody>
</table>
Table 22: Examples of AS Path Regular Expressions (continued)

<table>
<thead>
<tr>
<th>AS Path to Match</th>
<th>Regular Expression</th>
<th>Sample Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path is 1 2 3</td>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>One occurrence of the AS numbers 1 and 2, followed by one or more occurrences of the AS number 3</td>
<td>1 2 3+</td>
<td>1 2 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 3 3</td>
</tr>
<tr>
<td>One or more occurrences of AS number 1, followed by one or more occurrences of AS number 2, followed by one or more occurrences of AS number 3</td>
<td>1+ 2+ 3+</td>
<td>1 2 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1 2 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1 2 2 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1 2 2 3 3</td>
</tr>
<tr>
<td>Path of any length that begins with AS numbers 4, 5, 6</td>
<td>4 5 6 .*</td>
<td>4 5 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 5 6 7 8 9</td>
</tr>
<tr>
<td>Path of any length that ends with AS numbers 4, 5, 6</td>
<td>.* 4 5 6</td>
<td>4 5 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 9 4 5 6</td>
</tr>
<tr>
<td>AS path 5, 12, or 18</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Configuring a Null AS Path

You can use AS path regular expressions to create a null AS path that matches routes (prefixes) that have originated in your AS. These routes have not been advertised to your AS by any external peers. To create a null AS path, use the parentheses operator enclosed in quotation marks with no intervening spaces:

"()"
In the following example, locally administered AS 2 is connected to AS 1 (10.2.2.6) and AS 3. AS 3 advertises its routes to AS 2, but the administrator for AS 2 does not want to advertise AS 3 routes to AS 1 and thereby allow transit traffic from AS 1 to AS 3 through AS 2. To prevent transit traffic, the export policy `only-my-routes` is applied to AS 1. It permits advertisement of routes from AS 2 to AS 1 but prevents advertisement of routes for AS 3 (or routes for any other connected AS) to AS 1:

```plaintext
[edit policy-options]
null-as "()";
policy-statement only-my-routes {
term just-my-as {
  from {
    protocol bgp;
    as-path null-as;
  }
  then accept;
}
term nothing-else {
  then reject;
}
}
protocol {
  bgp {
    neighbor 10.2.2.6 {
      export only-my-routes;
    }
  }
}
}
```

How AS Path Regular Expressions Are Evaluated

AS path regular expressions implement the extended (modern) regular expressions as defined in POSIX 1003.2. They are identical to the UNIX regular expressions with the following exceptions:

- The basic unit of matching in an AS path regular expression is the AS number and not an individual character.

- A regular expression matches a route only if the AS path in the route exactly matches `regular-expression`. The equivalent UNIX regular expression is `^regular-expression$`. For example, the AS path regular expression `1234` is equivalent to the UNIX regular expression `^1234$`.

- You can specify a regular expression using wildcard operators.
Examples: Configuring AS Path Regular Expressions

Exactly match routes with the AS path 1234 56 78 9 and accept them:

```
[edit]
policy-options {
    as-path wellington "1234 56 78 9";
policy-statement from-wellington {
    term term1 {
        from as-path wellington;
    }
    then {
        preference 200;
        accept;
    }
    term term2 {
        then reject;
    }
}
}
```

Match alternate paths to an AS and accept them after modifying the preference:

```
[edit]
policy-options {
    as-path wellington-alternate "1234[1,6] (56|47)? (78|101|112)* 9+";
policy-statement from-wellington {
    from as-path wellington-alternate;
}
then {
    preference 200;
    accept;
}
}
```

Match routes with an AS path of 123, 124, or 125 and accept them after modifying the preference:

```
[edit]
policy-options {
    as-path addison "123–125";
policy-statement from-addison {
    from as-path addison;
}
```
An autonomous system (AS) path is a route attribute used by BGP. The AS path is used both for route selection and to prevent potential routing loops. This example shows how to use regular expressions with AS path numbers to locate a set of routes.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

Figure 30 on page 408 shows several ASs connected through external BGP (EBGP) peering sessions. Each device is generating customer routes within its assigned address space.
The administrators of AS 64516 want to reject all routes originating in AS 64513 and AS 64514. Two AS path regular expressions called \texttt{orig-in-64513} and \texttt{orig-in-64514} are created and referenced in a policy called \texttt{reject-some-routes}. The routing policy is then applied as an import policy on Device R6.

"CLI Quick Configuration" on page 408 shows the configuration for all of the devices in Figure 30 on page 408.

The section "Step-by-Step Procedure" on page 412 describes the steps on Device R2 and Device R6. "Verification" on page 417 shows how to use the \texttt{aspath-regex} option with the \texttt{show route} command on Device R2 to locate routes using regular expressions.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces fe-1/2/2 unit 0 description to-R2  
set interfaces fe-1/2/2 unit 0 family inet address 10.2.0.2/30  
set interfaces fe-1/2/3 unit 0 description to-R3  
set interfaces fe-1/2/3 unit 0 family inet address 10.2.0.6/30  
set interfaces fe-1/2/0 unit 0 description to-R5  
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30  
set interfaces lo0 unit 0 family inet address 192.168.0.1/32  
set protocols bgp export send-static  
set protocols bgp group 64512 type external  
set protocols bgp group 64512 peer-as 64512  
set protocols bgp group 64512 neighbor 10.2.0.1  
set protocols bgp group 64513 type external  
set protocols bgp group 64513 peer-as 64513  
set protocols bgp group 64513 neighbor 10.2.0.5  
set protocols bgp group 64515 type external  
set protocols bgp group 64515 peer-as 64515  
set protocols bgp group 64515 neighbor 10.0.0.1  
set policy-options policy-statement send-static term 1 from protocol static  
set policy-options policy-statement send-static term 1 then accept  
set routing-options static route 10.10.1.0/24 reject  
set routing-options static route 10.10.2.0/24 reject  
set routing-options static route 10.10.3.0/24 reject  
set routing-options autonomous-system 64511
```

Device R2

```plaintext
set interfaces fe-1/2/2 unit 0 description to-R1  
set interfaces fe-1/2/2 unit 0 family inet address 10.2.0.1/30  
set interfaces lo0 unit 0 family inet address 192.168.0.2/32  
set protocols bgp export send-static  
set protocols bgp group 64511 type external  
set protocols bgp group 64511 peer-as 64511  
set protocols bgp group 64511 neighbor 10.2.0.2  
set policy-options policy-statement send-static term 1 from protocol static
```
Device R3

set interfaces fe-1/2/3 unit 0 description to-R1
set interfaces fe-1/2/3 unit 0 family inet address 10.2.0.5/30
set interfaces fe-1/2/2 unit 0 description to-R4
set interfaces fe-1/2/2 unit 0 family inet address 10.3.0.42/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp export send-static
set protocols bgp group 64511 type external
set protocols bgp group 64511 peer-as 64511
set protocols bgp group 64511 neighbor 10.2.0.6
set protocols bgp group 64514 type external
set protocols bgp group 64514 peer-as 64514
set protocols bgp group 64514 neighbor 10.3.0.41
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 10.30.1.0/24 reject
set routing-options static route 10.30.2.0/24 reject
set routing-options static route 10.30.3.0/24 reject
set routing-options autonomous-system 64513

Device R4

set interfaces fe-1/2/2 unit 0 description to-R3
set interfaces fe-1/2/2 unit 0 family inet address 10.3.0.41/30
set interfaces lo0 unit 0 family inet address 192.168.0.4/32
set protocols bgp export send-static
set protocols bgp group 64513 type external
set protocols bgp group 64513 peer-as 64513
set protocols bgp group 64513 neighbor 10.3.0.42
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 10.40.1.0/24 reject
set routing-options static route 10.40.2.0/24 reject
set routing-options static route 10.40.3.0/24 reject
set routing-options autonomous-system 64514

Device R5

set interfaces fe-1/2/0 unit 0 description to-R1
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/1 unit 0 description to-R6
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.9/30
set interfaces lo0 unit 0 family inet address 192.168.0.5/32
set protocols bgp export send-static
set protocols bgp group 64511 type external
set protocols bgp group 64511 peer-as 64511
set protocols bgp group 64511 neighbor 10.0.0.2
set protocols bgp group 64516 type external
set protocols bgp group 64516 peer-as 64516
set protocols bgp group 64516 neighbor 10.0.0.10
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 10.50.1.0/24 reject
set routing-options static route 10.50.2.0/24 reject
set routing-options static route 10.50.3.0/24 reject
set routing-options autonomous-system 64515

Device R6

set interfaces fe-1/2/1 unit 0 description to-R5
set interfaces fe-1/2/1 unit 0 family inet address 10.0.0.10/30
set interfaces lo0 unit 0 family inet address 192.168.0.6/32
set protocols bgp export send-static
set protocols bgp group 64515 type external
set protocols bgp group 64515 import reject-some-routes
set protocols bgp group 64515 peer-as 64515
set protocols bgp group 64515 neighbor 10.0.0.9
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set policy-options policy-statement reject-some-routes term find-routes from as-path orig-in-64513
set policy-options policy-statement reject-some-routes term find-routes from as-path orig-in-64514
set policy-options policy-statement reject-some-routes term find-routes then reject
set policy-options as-path orig-in-64513 ".*64513"
set policy-options as-path orig-in-64514 ".*64514"
set routing-options static route 10.60.1.0/24 reject
set routing-options static route 10.60.2.0/24 reject
set routing-options static route 10.60.3.0/24 reject
set routing-options autonomous-system 64516

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the device interfaces.

 [edit interfaces]
 user@R2# set fe-1/2/2 unit 0 description to-R1
 user@R2# set fe-1/2/2 unit 0 family inet address 10.2.0.1/30
 user@R2# set lo0 unit 0 family inet address 192.168.0.2/32

2. Configure the EBGP connection to Device R1.

 [edit protocols bgp]
 user@R2# set export send-static
 user@R2# set group 64511 type external
 user@R2# set group 64511 peer-as 64511
 user@R2# set group 64511 neighbor 10.2.0.2

3. Configure the routing policy.

 [edit policy-options policy-statement send-static term 1]
 user@R2# set from protocol static
 user@R2# set then accept
4. Configure the static routes.

 [edit routing-options static]
 user@R2# set route 10.20.1.0/24 reject
 user@R2# set route 10.20.2.0/24 reject
 user@R2# set route 10.20.3.0/24 reject

5. Configure the AS number.

 [edit routing-options]
 user@R2# set autonomous-system 64512

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R6:

1. Configure the device interfaces.

 [edit interfaces]
 user@R6# set fe-1/2/1 unit 0 description to-R5
 user@R6# set fe-1/2/1 unit 0 family inet address 10.0.0.10/30
 user@R6# set lo0 unit 0 family inet address 192.168.0.6/32

2. Configure the EBGP connection to Device R5.

 [edit protocols bgp]
 user@R6# set export send-static
 user@R6# set group 64515 type external
 user@R6# set group 64515 import reject-some-routes
 user@R6# set group 64515 peer-as 64515
 user@R6# set group 64515 neighbor 10.0.0.9

3. Configure the routing policy that sends static routes.

 [edit policy-options policy-statement send-static term 1]
 user@R6# set from protocol static
 user@R6# set then accept
4. Configure the routing policy that rejects certain routes.

```plaintext
[edit policy-options policy-statement reject-some-routes term find-routes]
user@R6# set from as-path orig-in-64513
user@R6# set from as-path orig-in-64514
user@R6# set then reject
[edit policy-options]
user@R6# set as-path orig-in-64513 ".*64513"
user@R6# set as-path orig-in-64514 ".*64514"
```

5. Configure the static routes.

```plaintext
[edit routing-options static]
user@R6# set route 10.60.1.0/24 reject
user@R6# set route 10.60.2.0/24 reject
user@R6# set route 10.60.3.0/24 reject
```

6. Configure the AS number.

```plaintext
[edit routing-options]
user@R6# set autonomous-system 64516
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R2

```plaintext
user@R2# show interfaces
fe-1/2/0 {
  unit 0 {
    description to-R1;
    family inet {
      address 10.2.0.1/30;
    }
  }
}
lo0 {
```
unit 0 {
 family inet {
 address 192.168.0.2/32;
 }
}

user@R2# show protocols
bgp {
 export send-static;
 group 64511 {
 type external;
 peer-as 64511;
 neighbor 10.2.0.2;
 }
}

user@R2# show policy-options
policy-statement send-static {
 term 1 {
 from protocol static;
 then accept;
 }
}

user@R2# show routing-options
static {
 route 10.20.1.0/24 reject;
 route 10.20.2.0/24 reject;
 route 10.20.3.0/24 reject;
}
autonomous-system 64512;

Device R6

user@R6# show interfaces
fe-1/2/0 {
unit 0 {
 description to-R5;
 family inet {
 address 10.0.0.10/30;
 }
}
}

lo0 {
 unit 0 {
 family inet {
 address 192.168.0.6/32;
 }
 }
}

user@R6# show protocols
bgp {
 export send-static;
group 64515 {
 type external;
 import reject-some-routes;
 peer-as 64515;
 neighbor 10.0.0.9;
 }
}

user@R6# show policy-options
policy-statement reject-some-routes {
 term find-routes {
 from as-path [orig-in-64513 orig-in-64514];
 then reject;
 }
}
policy-statement send-static {
 term 1 {
 from protocol static;
 then accept;
 }
}
as-path orig-in-64513 ".* 64513";
as-path orig-in-64514 ".* 64514";

(user@R6# show routing-options
static {
 route 10.60.1.0/24 reject;
 route 10.60.2.0/24 reject;
 route 10.60.3.0/24 reject;
}
autonomous-system 64516;

If you are done configuring the devices, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Finding Routes on Device R2 | 417
- Making Sure That Routes Are Excluded on Device R6 | 419

Confirm that the configuration is working properly.

Finding Routes on Device R2

Purpose

On Device R2, use the **show route aspath-regex** command to locate routes using regular expressions.

Action

Look for routes that are originated by Device R6 in AS 64516.

(user@R2> **show route terse aspath-regex ".* 64516"**

<table>
<thead>
<tr>
<th>A V Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* ? 10.60.1.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64515</td>
</tr>
<tr>
<td>64516 I</td>
<td></td>
<td></td>
<td></td>
<td>unverified</td>
<td>>10.2.0.2</td>
</tr>
</tbody>
</table>
Look for routes that are originated in either AS 64514 or AS 64516.

```
user@R2> show route terse aspath-regex ".* (64514|64516)"
```

inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A V Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* ? 10.40.1.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64513</td>
</tr>
<tr>
<td>64514 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unverified</td>
<td></td>
<td></td>
<td>>10.2.0.2</td>
<td></td>
</tr>
<tr>
<td>* ? 10.40.2.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64513</td>
</tr>
<tr>
<td>64514 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unverified</td>
<td></td>
<td></td>
<td>>10.2.0.2</td>
<td></td>
</tr>
<tr>
<td>* ? 10.40.3.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64513</td>
</tr>
<tr>
<td>64514 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unverified</td>
<td></td>
<td></td>
<td>>10.2.0.2</td>
<td></td>
</tr>
<tr>
<td>* ? 10.60.1.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64515</td>
</tr>
<tr>
<td>64516 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unverified</td>
<td></td>
<td></td>
<td>>10.2.0.2</td>
<td></td>
</tr>
<tr>
<td>* ? 10.60.2.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64515</td>
</tr>
<tr>
<td>64516 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unverified</td>
<td></td>
<td></td>
<td>>10.2.0.2</td>
<td></td>
</tr>
<tr>
<td>* ? 10.60.3.0/24</td>
<td>B 170</td>
<td>100</td>
<td></td>
<td></td>
<td>64511 64515</td>
</tr>
<tr>
<td>64516 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unverified</td>
<td></td>
<td></td>
<td>>10.2.0.2</td>
<td></td>
</tr>
</tbody>
</table>

Look for routes that use AS 64513 as a transit network.

```
user@R2> show route terse aspath-regex ".*64513.+"
```

inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)
Meaning
The output shows the routing table entries that match the specified AS path regular expressions.

Making Sure That Routes Are Excluded on Device R6

Purpose
On Device R6, use the `show route` and `show route hidden` commands to make sure that routes originating from AS 64513 and AS 64514 are excluded from Device R6’s routing table.

Action

user@R6> **show route 10.30.0/22**

inet.0: 21 destinations, 21 routes (15 active, 0 holddown, 6 hidden)

user@R6> **show route 10.40.0/22**

inet.0: 21 destinations, 21 routes (15 active, 0 holddown, 6 hidden)

user@R6> **show route hidden**

inet.0: 21 destinations, 21 routes (15 active, 0 holddown, 6 hidden)

+ = Active Route, - = Last Active, * = Both
10.30.1.0/24 [BGP] 02:24:47, localpref 100
 AS path: 64515 64511 64513 I, validation-state: unverified
Meaning
The output shows that the 10.30.0/22 and 10.40.0/22 routes are rejected on Device R6.

RELATED DOCUMENTATION

Understanding AS Path Regular Expressions for Use as Routing Policy Match Conditions | 399
Example: Testing a Routing Policy with Complex Regular Expressions | 698

Understanding Prepending AS Numbers to BGP AS Paths

You can prepend one or more autonomous system (AS) numbers at the beginning of an AS path. The AS numbers are added at the beginning of the path after the actual AS number from which the route originates has been added to the path. Prepending an AS path makes a shorter AS path look longer and therefore less preferable to BGP.

The BGP best path algorithm determines how the best path to an autonomous system (AS) is selected. The AS path length determines the best path when all of the following conditions are met:

- There are multiple potential routes to an AS.
• BGP has the lowest preference value (sometimes referred to as administrative distance) of the available routes.

• The local preferences of the available routes are equal.

When these conditions are met, the AS path length is used as the tie breaker in the best path algorithm. When two or more routes exist to reach a particular prefix, BGP prefers the route with the shortest AS Path length.

If you are an enterprise that has multihoming to one or more service providers, you might prefer that incoming traffic take a particular path to reach your network. Perhaps you have two connections, but one costs less than the other. Or you might have one fast connection and another, much slower connection that you only want to use as a backup if your primary connection is down. AS path prepending is an easy method that you can use to influence inbound routing to your AS.

In Junos OS Release 9.1 and later, you can specify 4-byte AS numbers as defined in RFC 4893, BGP Support for Four-octet AS Number Space, as well as the 2-byte AS numbers that are supported in earlier releases of the Junos OS. In plain-number format, you can configure a value in the range from 1 through 4,294,967,295.

If you have a router that does not support 4-byte AS numbers in the AS path, the prependend AS number displayed in the AS path is the AS_TRANS number, AS 23456. To display the route details, use the show route command.

RELATED DOCUMENTATION

Example: Configuring a Routing Policy to Prepend the AS Path | 421
Example: Using AS Path Regular Expressions | 407
Understanding BGP Path Selection

Example: Configuring a Routing Policy to Prepend the AS Path

IN THIS SECTION

Requirements | 422
Overview | 422
Configuration | 422
Verification | 424
This example shows how to configure a routing policy to prepend the AS path.

Requirements

Before you begin, make sure your router interfaces and protocols are correctly configured.

Overview

In this example, you create a routing policy called prependpolicy1 and a term called prependterm1. The routing policy prepends the AS numbers 1111 to routes that are greater than or equal to 172.16.0.0/12, 192.168.0.0/16, and 10.0.0.0/8. The policy is applied as an import policy to all BGP routes and is evaluated when routes are imported to the routing table.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set policy-options policy-statement prependpolicy1 term prependterm1 from route-filter 172.16.0.0/12 or longer
set policy-options policy-statement prependpolicy1 term prependterm1 from route-filter 192.168.0.0/16 or longer
set policy-options policy-statement prependpolicy1 term prependterm1 from route-filter 10.0.0.0/8 or longer
set policy-options policy-statement prependpolicy1 term prependterm1 then as-path-prepend "1 1 1 1"
set policy-options policy-statement prependpolicy1 term prependterm1 from protocol direct
set protocols bgp import prependpolicy1
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To create a routing policy that prepends AS numbers to multiple routes:

1. Create the routing policy.

```
[edit]
user@host# edit policy-options policy-statement prependpolicy1
```
2. Create the routing term.

```
[edit policy-options policy-statement prependpolicy1]
user@host# edit term prependterm1
```

3. Specify the routes to prepend with AS numbers.

```
[edit policy-options policy-statement prependpolicy1 term prependterm1]
user@host# set from route-filter 172.16.0.0/12 orlonger
user@host# set from route-filter 192.168.0.0/16 orlonger
user@host# set from route-filter 10.0.0.0/8 orlonger
```

4. Specify the AS numbers to prepend.

```
[edit policy-options policy-statement prependpolicy1 term prependterm1]
user@host# set then as-path-prepend "1 1 1"
```

NOTE: If you enter multiple numbers, you must separate each number with a space. Enclose the numbers in double quotation marks.

5. Apply the policy as an import policy for all BGP routes.

```
[edit]
user@host# set protocols bgp import prependpolicy1
```

NOTE: You can refer to the same routing policy one or more times in the same or different import statement.

Results

Confirm your configuration by entering the `show policy-options` and `show protocols bgp` commands from configuration mode. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
user@host# show policy-options
```
user@host# show protocols bgp
import prependpolicy1;

If you are done configuring the device, enter commit from configuration mode.

Verification

To confirm that the configuration is working properly, perform these tasks:

Verifying the AS Numbers to Prepend

Purpose
Verify that the policy and term are configured on the device and that the appropriate routes are specified to prepend with AS numbers.

Action
From operational mode, enter the show policy-options command.

Verifying the Routing Policy

Purpose
Verify that the routing policy is applied to the routing protocol.

Action
From operational mode, enter the `show protocols bgp` command.

RELATED DOCUMENTATION

Junos OS Feature Support Reference for SRX Series and J Series Devices

Understanding Adding AS Numbers to BGP AS Paths

You can expand or add one or more AS numbers to an AS sequence. The AS numbers are added before the local AS number has been added to the path. Expanding an AS path makes a shorter AS path look longer and therefore less preferable to BGP. The last AS number in the existing path is extracted and prepended n times, where n is a number from 1 through 32. This is similar to the AS path prepend action, except that the AS path expand action adds an arbitrary sequence of AS numbers.

For example, from AS 1 there are two equal paths (through AS 2 and AS 3) to reach AS 4. You might want packets from certain sources to use the path through AS 2. Therefore, you must make the path through AS 3 less preferable so that BGP chooses the path through AS 2. In AS 1, you can expand multiple AS numbers.

```bash
[edit]
policy-options {
policy-statement as-path-expand {
term expand {
from {
    route-filter 192.168.0.0/16 orlonger;
    route-filter 172.16.0.0/12 orlonger;
    route-filter 10.0.0.0/8 orlonger;
}
then as-path-expand last-as count 4;
}
}
}
```

For routes from AS 2, this makes the route look like 1 2 2 2 2 2 when advertised, where 1 is from AS 1, the 2 from AS 2 is prepended four times, and the final 2 is the original 2 received from the neighbor router.

RELATED DOCUMENTATION

Example: Advertising Multiple Paths in BGP
Example: Advertising Multiple Paths in BGP

In this example, BGP routers are configured to advertise multiple paths instead of advertising only the active path. Advertising multiple paths in BGP is specified in RFC 7911, *Advertisement of Multiple Paths in BGP*.

Requirements

This example uses the following hardware and software components:

- Eight BGP-enabled devices.
- Five of the BGP-enabled devices do not necessarily need to be routers. For example, they can be EX Series Ethernet Switches.
- Three of the BGP-enabled devices are configured to send multiple paths or receive multiple paths (or both send and receive multiple paths). These three BGP-enabled devices must be M Series Multiservice Edge Routers, MX Series 5G Universal Routing Platforms, or T Series Core Routers.
- The three routers must be running Junos OS Release 11.4 or later.

Overview

The following statements are used for configuring multiple paths to a destination:

```plaintext
[edit protocols bgp group group-name family family]
  add-path {
    receive;
    send {
```
In this example, Router R5, Router R6, and Router R7 redistribute static routes into BGP. Router R1 and Router R4 are route reflectors. Router R2 and Router R3 are clients to Route Reflector R1. Router R8 is a client to Route Reflector R4.

Route reflection is optional when multiple-path advertisement is enabled in BGP.

With the `add-path send path-count 6` configuration, Router R1 is configured to send up to six paths (per destination) to Router R4.

With the `add-path receive` configuration, Router R4 is configured to receive multiple paths from Router R1.

With the `add-path send path-count 6` configuration, Router R4 is configured to send up to six paths to Router R8.

With the `add-path receive` configuration, Router R8 is configured to receive multiple paths from Router R4.

The `add-path send prefix-policy allow_199` policy configuration (along with the corresponding route filter) limits Router R4 to sending multiple paths for only the 172.16.199.1/32 route.

Topology Diagram

Figure 31 on page 428 shows the topology used in this example.
Configuration

IN THIS SECTION

- Configuring Router R1 | 432
- Configuring Router R2 | 436
- Configuring Router R3 | 438
- Configuring Router R4 | 441
- Configuring Router R5 | 444
- Configuring Router R6 | 447
- Configuring Router R7 | 449
- Configuring Router R8 | 451
- Results | 452

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Router R1
set interfaces fe-0/0/0 unit 12 family inet address 10.0.12.1/24
set interfaces fe-0/0/1 unit 13 family inet address 10.0.13.1/24
set interfaces fe-1/0/0 unit 14 family inet address 10.0.14.1/24
set interfaces fe-1/2/0 unit 15 family inet address 10.0.15.1/24
set interfaces lo0 unit 10 family inet address 10.0.0.10/32
set protocols bgp group rr type internal
set protocols bgp group rr local-address 10.0.0.10
set protocols bgp group rr cluster 10.0.0.10
set protocols bgp group rr neighbor 10.0.0.20
set protocols bgp group e1 type external
set protocols bgp group e1 neighbor 10.0.15.2 local-address 10.0.15.1
set protocols bgp group e1 neighbor 10.0.15.2 peer-as 2
set protocols bgp group rr_rr type internal
set protocols bgp group rr_rr local-address 10.0.0.10
set protocols bgp group rr_rr neighbor 10.0.0.40 family inet unicast add-path send path-count 6
set protocols ospf area 0.0.0.0 interface lo0.10 passive
set protocols ospf area 0.0.0.0 interface fe-0/0/0.12
set protocols ospf area 0.0.0.0 interface fe-0/0/1.13
set protocols ospf area 0.0.0.0 interface fe-1/0/0.14
set protocols ospf area 0.0.0.0 interface fe-1/2/0.15
set routing-options router-id 10.0.0.10
set routing-options autonomous-system 1

Router R2

set interfaces fe-1/2/0 unit 21 family inet address 10.0.12.2/24
set interfaces fe-1/2/1 unit 26 family inet address 10.0.26.1/24
set interfaces lo0 unit 20 family inet address 10.0.0.20/32
set protocols bgp group rr type internal
set protocols bgp group rr local-address 10.0.0.20
set protocols bgp group rr neighbor 10.0.0.10 export set_nh_self
set protocols bgp group e1 type external
set protocols bgp group e1 neighbor 10.0.26.2 peer-as 2
set protocols ospf area 0.0.0.0 interface lo0.20 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.21
set protocols ospf area 0.0.0.0 interface fe-1/2/1.28
set policy-options policy-statement set_nh_self then next-hop self
set routing-options autonomous-system 1
Router R3

set interfaces fe-1/0/1 unit 31 family inet address 10.0.13.2/24
set interfaces fe-1/0/2 unit 37 family inet address 10.0.37.1/24
set interfaces lo0 unit 30 family inet address 10.0.0.30/32
set protocols bgp group rr type internal
set protocols bgp group rr local-address 10.0.0.30
set protocols bgp group rr neighbor 10.0.0.10 export set_nh_self
set protocols bgp group e1 type external
set protocols bgp group e1 neighbor 10.0.37.2 peer-as 2
set protocols ospf area 0.0.0.0.0 interface lo0.30 passive
set protocols ospf area 0.0.0.0.0 interface fe-1/0/1.31
set protocols ospf area 0.0.0.0.0 interface fe-1/0/2.37
set policy-options policy-statement set_nh_self then next-hop self
set routing-options autonomous-system 1

Router R4

set interfaces fe-1/2/0 unit 41 family inet address 10.0.14.2/24
set interfaces fe-1/2/1 unit 48 family inet address 10.0.48.1/24
set interfaces lo0 unit 40 family inet address 10.0.0.40/32
set protocols bgp group rr type internal
set protocols bgp group rr local-address 10.0.0.40
set protocols bgp group rr family inet unicast add-path receive
set protocols bgp group rr neighbor 10.0.0.10
set protocols bgp group rr_client type internal
set protocols bgp group rr_client local-address 10.0.0.40
set protocols bgp group rr_client cluster 10.0.0.40
set protocols bgp group rr_client neighbor 10.0.0.80 family inet unicast add-path send path-count 6
set protocols bgp group rr_client neighbor 10.0.0.80 family inet unicast add-path send prefix-policy allow_199
set protocols ospf area 0.0.0.0.0 interface fe-1/2/0.41
set protocols ospf area 0.0.0.0.0 interface lo0.40 passive
set protocols ospf area 0.0.0.0.0 interface fe-1/2/1.48
set policy-options policy-statement allow_199 from route-filter 172.16.199.1/32 exact
set policy-options policy-statement allow_199 term match_199 from prefix-list match_199
set policy-options policy-statement allow_199 then add-path send-count 20
set policy-options policy-statement allow_199 then accept
set routing-options autonomous-system 1
Router R5

set interfaces fe-1/2/0 unit 51 family inet address 10.0.15.2/24
set interfaces lo0 unit 50 family inet address 10.0.0.50/32
set protocols bgp group e1 type external
set protocols bgp group e1 neighbor 10.0.15.1 export s2b
set protocols bgp group e1 neighbor 10.0.15.1 peer-as 1
set policy-options policy-statement s2b from protocol static
set policy-options policy-statement s2b from protocol direct
set policy-options policy-statement s2b then as-path-expand 2
set policy-options policy-statement s2b then accept
set routing-options autonomous-system 2
set routing-options static route 172.16.199.1/32 reject
set routing-options static route 172.16.198.1/32 reject

Router R6

set interfaces fe-1/2/0 unit 62 family inet address 10.0.26.2/24
set interfaces lo0 unit 60 family inet address 10.0.0.60/32
set protocols bgp group e1 type external
set protocols bgp group e1 neighbor 10.0.26.1 export s2b
set protocols bgp group e1 neighbor 10.0.26.1 peer-as 1
set policy-options policy-statement s2b from protocol static
set policy-options policy-statement s2b from protocol direct
set policy-options policy-statement s2b then accept
set routing-options autonomous-system 2
set routing-options static route 172.16.199.1/32 reject
set routing-options static route 172.16.198.1/32 reject

Router R7

set interfaces fe-1/2/0 unit 73 family inet address 10.0.37.2/24
set interfaces lo0 unit 70 family inet address 10.0.0.70/32
set protocols bgp group e1 type external
set protocols bgp group e1 neighbor 10.0.37.1 export s2b
set protocols bgp group e1 neighbor 10.0.37.1 peer-as 1
set policy-options policy-statement s2b from protocol static
set policy-options policy-statement s2b from protocol direct
set policy-options policy-statement s2b then accept
set routing-options autonomous-system 2
set routing-options static route 172.16.199.1/32 reject

Router R8

set interfaces fe-1/2/0 unit 84 family inet address 10.0.48.2/24
set interfaces lo0 unit 80 family inet address 10.0.0.80/32
set protocols bgp group rr type internal
set protocols bgp group rr local-address 10.0.0.80
set protocols bgp group rr neighbor 10.0.0.40 family inet unicast add-path receive
set protocols ospf area 0.0.0.0 interface lo0.80 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.84
set routing-options autonomous-system 1

Configuring Router R1

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Router R1:

1. Configure the interfaces to Router R2, Router R3, Router R4, and Router R5, and configure the loopback (lo0) interface.

 [edit interfaces]
 user@R1# set fe-0/0/0 unit 12 family inet address 10.0.12.1/24
 user@R1# set fe-0/0/1 unit 13 family inet address 10.0.13.1/24
 user@R1# set fe-1/0/0 unit 14 family inet address 10.0.14.1/24
 user@R1# set fe-1/2/0 unit 15 family inet address 10.0.15.1/24
 user@R1# set lo0 unit 10 family inet address 10.0.0.10/32

2. Configure BGP on the interfaces, and configure IBGP route reflection.

 [edit protocols bgp]
3. Configure Router R1 to send up to six paths to its neighbor, Router R4.

 The destination of the paths can be any destination that Router R1 can reach through multiple paths.

 [edit protocols bgp]
 user@R1# set group rr_rr neighbor 10.0.0.40 family inet unicast add-path send path-count 6

4. Configure OSPF on the interfaces.

 [edit protocols ospf]
 user@R1# set area 0.0.0.0 interface lo0.10 passive
 user@R1# set area 0.0.0.0 interface fe-0/0/0.12
 user@R1# set area 0.0.0.0 interface fe-0/0/1.13
 user@R1# set area 0.0.0.0 interface fe-1/0/0.14
 user@R1# set area 0.0.0.0 interface fe-1/2/0.15

5. Configure the router ID and the autonomous system number.

 [edit routing-options]
 user@R1# set router-id 10.0.0.10
 user@R1# set autonomous-system 1

6. If you are done configuring the device, commit the configuration.

 user@R1# commit

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
fe-0/0/0 {
  unit 12 {
    family inet {
      address 10.0.12.1/24;
    }
  }
}
fe-0/0/1 {
  unit 13 {
    family inet {
      address 10.0.13.1/24;
    }
  }
}
fe-1/0/0 {
  unit 14 {
    family inet {
      address 10.0.14.1/24;
    }
  }
}
fe-1/2/0 {
  unit 15 {
    family inet {
      address 10.0.15.1/24;
    }
  }
}
lo0 {
  unit 10 {
    family inet {
      address 10.0.0.10/32;
    }
  }
}

user@R1# show protocols
bgp {
  group rr {
```
type internal;
local-address 10.0.0.10;
cluster 10.0.0.10;
neighbor 10.0.0.20;
neighbor 10.0.0.30;
}
groupe1{
type external;
neighbor 10.0.15.2 {
 local-address 10.0.15.1;
 peer-as 2;
}}
group rr_rr {
type internal;
local-address 10.0.0.10;
neighbor 10.0.0.40 {
 family inet {
 unicast {
 add-path {
 send {
 path-count 6;
 }
 }
 }
 }
}
}
}
}
ospf {
area 0.0.0.0 {
 interface lo0.10 {
 passive;
 }
 interface fe-0/0/0.12;
 interface fe-0/0/1.13;
 interface fe-1/0/0.14;
 interface fe-1/2/0.15;
}
}
}

user@R1# show routing-options
router-id 10.0.0.10;
autonomous-system 1;
Configuring Router R2

Step-by-Step Procedure

To configure Router R2:

1. Configure the loopback (lo0) interface and the interfaces to Router R6 and Router R1.

   ```
   [edit interfaces]
   user@R2# set fe-1/2/0 unit 21 family inet address 10.0.12.2/24
   user@R2# set fe-1/2/1 unit 26 family inet address 10.0.26.1/24
   user@R2# set lo0 unit 20 family inet address 10.0.0.20/32
   ```

2. Configure BGP and OSPF on Router R2’s interfaces.

   ```
   [edit protocols]
   user@R2# set bgp group rr type internal
   user@R2# set bgp group rr local-address 10.0.0.20
   user@R2# set bgp group e1 type external
   user@R2# set bgp group e1 neighbor 10.0.26.2 peer-as 2
   user@R2# set ospf area 0.0.0.0 interface lo0.20 passive
   user@R2# set ospf area 0.0.0.0 interface fe-1/2/0.21
   user@R2# set ospf area 0.0.0.0 interface fe-1/2/1.28
   ```

3. For routes sent from Router R2 to Router R1, advertise Router R2 as the next hop, because Router R1 does not have a route to Router R6’s address on the 10.0.26.0/24 network.

   ```
   [edit]
   user@R2# set policy-options policy-statement set_nh_self then next-hop self
   user@R2# set protocols bgp group rr neighbor 10.0.0.10 export set_nh_self
   ```

4. Configure the autonomous system number.

   ```
   [edit]
   user@R2# set routing-options autonomous-system 1
   ```

5. If you are done configuring the device, commit the configuration.

   ```
   user@R2# commit
   ```
Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R2# show interfaces
fe-1/2/0 {
    unit 21 {
        family inet {
            address 10.0.12.2/24;
        }
    }
}
fe-1/2/1 {
    unit 26 {
        family inet {
            address 10.0.26.1/24;
        }
    }
}
lo0 {
    unit 20 {
        family inet {
            address 10.0.0.20/32;
        }
    }
}

user@R2# show protocols
bgp {
    group rr {
        type internal;
        local-address 10.0.0.20;
        neighbor 10.0.0.10 {
            export set_nh_self;
        }
    }
    group e1 {
        type external;
        neighbor 10.0.26.2 {
            peer-as 2;
        }
    }
```

ospf {
 area 0.0.0.0 {
 interface lo0.20 {
 passive;
 }
 interface fe-1/2/0.21;
 interface fe-1/2/1.28;
 }
}

user@R2# show policy-options
policy-statement set_nh_self {
 then {
 next-hop self;
 }
}

user@R2# show routing-options
autonomous-system 1;

Configuring Router R3

Step-by-Step Procedure

To configure Router R3:

1. Configure the loopback (lo0) interface and the interfaces to Router R7 and Router R1.

 [edit interfaces]
 user@R3# set fe-1/0/1 unit 31 family inet address 10.0.13.2/24
 user@R3# set fe-1/0/2 unit 37 family inet address 10.0.37.1/24
 user@R3# set lo0 unit 30 family inet address 10.0.0.30/32

2. Configure BGP and OSPF on Router R3’s interfaces.

 [edit protocols]
 user@R3# set bgp group rr type internal
 user@R3# set bgp group rr local-address 10.0.0.30
 user@R3# set bgp group e1 type external
 user@R3# set bgp group e1 neighbor 10.0.37.2 peer-as 2
 user@R3# set ospf area 0.0.0.0 interface lo0.30 passive
3. For routes sent from Router R3 to Router R1, advertise Router R3 as the next hop, because Router R1 does not have a route to Router R7’s address on the 10.0.37.0/24 network.

```
[edit]
user@R3# set policy-options policy-statement set_nh_self then next-hop self
user@R3# set protocols bgp group rr neighbor 10.0.0.10 export set_nh_self
```

4. Configure the autonomous system number.

```
[edit]
user@R3# set routing-options autonomous-system 1
```

5. If you are done configuring the device, commit the configuration.

```
user@R3# commit
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R3# show interfaces
fe-1/0/1 {
  unit 31 {
    family inet {
      address 10.0.13.2/24;
    }
  }
}
fe-1/0/2 {
  unit 37 {
    family inet {
      address 10.0.37.1/24;
    }
  }
}
```
lo0 {
 unit 30 {
 family inet {
 address 10.0.0.30/32;
 }
 }
}

user@R3# show protocols
bgp {
 group rr {
 type internal;
 local-address 10.0.0.30;
 neighbor 10.0.0.10 {
 export set_nh_self;
 }
 }
 group e1 {
 type external;
 neighbor 10.0.37.2 {
 peer-as 2;
 }
 }
}
ospf {
 area 0.0.0.0 {
 interface lo0.30 {
 passive;
 }
 interface fe-1/0/1.31;
 interface fe-1/0/2.37;
 }
}
user@R3# show policy-options
policy-statement set_nh_self {
 then {
 next-hop self;
 }
}

user@R3# show routing-options
autonomous-system 1;
Configuring Router R4

Step-by-Step Procedure

To configure Router R4:

1. Configure the interfaces to Router R1 and Router R8, and configure the loopback (lo0) interface.

```bash
[edit interfaces]
user@R4# set fe-1/2/0 unit 41 family inet address 10.0.14.2/24
user@R4# set fe-1/2/1 unit 48 family inet address 10.0.48.1/24
user@R4# set lo0 unit 40 family inet address 10.0.0.40/32
```

2. Configure BGP on the interfaces, and configure IBGP route reflection.

```bash
[edit protocols bgp]
user@R4# set group rr type internal
user@R4# set group rr local-address 10.0.0.40
user@R4# set group rr neighbor 10.0.0.10
user@R4# set group rr_client type internal
user@R4# set group rr_client local-address 10.0.0.40
user@R4# set group rr_client cluster 10.0.0.40
```

3. Configure Router R4 to send up to six paths to its neighbor, Router R8.

The destination of the paths can be any destination that Router R4 can reach through multiple paths.

```bash
[edit protocols bgp]
user@R4# set group rr_client neighbor 10.0.0.80 family inet unicast add-path send path-count 6
```

4. Configure Router R4 to receive multiple paths from its neighbor, Router R1.

The destination of the paths can be any destination that Router R1 can reach through multiple paths.

```bash
[edit protocols bgp group rr family inet unicast]
user@R4# set add-path receive
```

5. Configure OSPF on the interfaces.

```bash
[edit protocols ospf area 0.0.0.0]
user@R4# set interface fe-1/2/0.41
```
6. Configure a policy that allows Router R4 to send Router R8 multiple paths to the 172.16.199.1/32 route.

- Router R4 receives multiple paths for the 172.16.198.1/32 route and the 172.16.199.1/32 route. However, because of this policy, Router R4 only sends multiple paths for the 172.16.199.1/32 route.

```
[edit protocols bgp group rr_client neighbor 10.0.0.80 family inet unicast]
user@R4# set add-path send prefix-policy allow_199
[edit policy-options policy-statement allow_199]
user@R4# set from route-filter 172.16.199.1/32 exact
user@R4# set then accept
```

- Router R4 can also be configured to send up to 20 BGP add-path routes for a subset of add-path advertised prefixes.

```
[edit policy-options policy-statement allow_199]
user@R4# set term match_199 from prefix-list match_199
user@R4# set then add-path send-count 20
```

7. Configure the autonomous system number.

```
[edit routing-options]
user@R4# set autonomous-system 1
```

8. If you are done configuring the device, commit the configuration.

```
user@R4# commit
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R4# show interfaces
fe-1/2/0 {
    unit 41 {
        family inet {
```
address 10.0.14.2/24;
}
}
}
fe-1/2/1 {
 unit 48 {
 family inet {
 address 10.0.48.1/24;
 }
 }
}
lo0 {
 unit 40 {
 family inet {
 address 10.0.0.40/32;
 }
 }
}

user@R4# show protocols
bgp {
 group rr {
 type internal;
 local-address 10.0.0.40;
 family inet {
 unicast {
 add-path {
 receive;
 }
 }
 }
 neighbor 10.0.0.10;
 }
 group rr_client {
 type internal;
 local-address 10.0.0.40;
 cluster 10.0.0.40;
 neighbor 10.0.0.80 {
 family inet {
 unicast {
 add-path {
 send {
 path-count 6;
 prefix-policy allow_199;
 }
 }
 }
 }
 }
 }
}
```
ospf {
  area 0.0.0.0 {
    interface lo0.40 {
      passive;
    }
    interface fe-1/2/0.41;
    interface fe-1/2/1.48;
  }
}

user@R4# show policy-options
policy-statement allow_199 {
  from {
    route-filter 172.16.199.1/32 exact;
  }
  from term match_199 {
    prefix-list match_199;
  }
  then add-path send-count 20;
  then accept;
}

user@R4# show routing-options
autonomous-system 1;
```

Configuring Router R5

Step-by-Step Procedure

To configure Router R5:

1. Configure the loopback (lo0) interface and the interface to Router R1.

   ```
   [edit interfaces]
   user@R5# set fe-1/2/0 unit 51 family inet address 10.0.15.2/24
   user@R5# set lo0 unit 50 family inet address 10.0.0.50/32
   ```
2. Configure BGP on Router R5’s interface.

```plaintext
[edit protocols bgp group e1]
user@R5# set type external
user@R5# set neighbor 10.0.15.1 peer-as 1
```

3. Create static routes for redistribution into BGP.

```plaintext
[edit routing-options]
user@R5# set static route 172.16.199.1/32 reject
user@R5# set static route 172.16.198.1/32 reject
```

4. Redistribute static and direct routes into BGP.

```plaintext
[edit protocols bgp group e1 neighbor 10.0.15.1]
user@R5# set export s2b
[edit policy-options policy-statement s2b]
user@R5# set from protocol static
user@R5# set from protocol direct
user@R5# set then as-path-expand 2
user@R5# set then accept
```

5. Configure the autonomous system number.

```plaintext
[edit routing-options]
user@R5# set autonomous-system 2
```

6. If you are done configuring the device, commit the configuration.

```plaintext
user@R5# commit
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@R5# show interfaces
fe-1/2/0 [
unit 51 {
    family inet {
        address 10.0.15.2/24;
    }
}
}
lo0 {
    unit 50 {
        family inet {
            address 10.0.0.50/32;
        }
    }
}

user@R5# show protocols
bgp {
    group e1 {
        type external;
        neighbor 10.0.15.1 {
            export s2b;
            peer-as 1;
        }
    }
}

user@R5# show policy-options
policy-statement s2b {
    from protocol [ static direct ];
    then {
        as-path-expand 2;
        accept;
    }
}

user@R5# show routing-options
static {
    route 172.16.198.1/32 reject;
    route 172.16.199.1/32 reject;
}
autonomous-system 2;
**Configuring Router R6**

**Step-by-Step Procedure**

To configure Router R6:

1. Configure the loopback (lo0) interface and the interface to Router R2.
   ```
 [edit interfaces]
 user@R6# set fe-1/2/0 unit 62 family inet address 10.0.26.2/24
 user@R6# set lo0 unit 60 family inet address 10.0.0.60/32
   ```

2. Configure BGP on Router R6’s interface.
   ```
 [edit protocols]
 user@R6# set bgp group e1 type external
 user@R6# set bgp group e1 neighbor 10.0.26.1 peer-as 1
   ```

3. Create static routes for redistribution into BGP.
   ```
 [edit]
 user@R6# set routing-options static route 172.16.199.1/32 reject
 user@R6# set routing-options static route 172.16.198.1/32 reject
   ```

4. Redistribute static and direct routes from Router R6’s routing table into BGP.
   ```
 [edit protocols bgp group e1 neighbor 10.0.26.1]
 user@R6# set export s2b
 [edit policy-options policy-statement s2b]
 user@R6# set from protocol static
 user@R6# set from protocol direct
 user@R6# set then accept
   ```

5. Configure the autonomous system number.
   ```
 [edit routing-options]
 user@R6# set autonomous-system 2
   ```
6. If you are done configuring the device, commit the configuration.

```bash
user@R6# commit
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```bash
user@R6# show interfaces
fe-1/2/0 {
 unit 62 {
 family inet {
 address 10.0.26.2/24;
 }
 }
 lo0 {
 unit 60 {
 family inet {
 address 10.0.0.60/32;
 }
 }
 }
}

user@R6# show protocols
bgp {
 group e1 {
 type external;
 neighbor 10.0.26.1 {
 export s2b;
 peer-as 1;
 }
 }
}

user@R6# show policy-options
policy-statement s2b {
 from protocol [static direct];
 then accept;
}
show routing-options
t static {
 route 172.16.198.1/32 reject;
 route 172.16.199.1/32 reject;
}
 autonomous-system 2;

Configuring Router R7

Step-by-Step Procedure

To configure Router R7:

1. Configure the loopback (lo0) interface and the interface to Router R3.

 [edit interfaces]
 user@R7# set fe-1/2/0 unit 73 family inet address 10.0.37.2/24
 user@R7# set lo0 unit 70 family inet address 10.0.0.70/32

2. Configure BGP on Router R7’s interface.

 [edit protocols bgp e1]
 user@R7# set type external
 user@R7# set neighbor 10.0.37.1 peer-as 1

3. Create a static route for redistribution into BGP.

 [edit]
 user@R7# set routing-options static route 172.16.199.1/32 reject

4. Redistribute static and direct routes from Router R7’s routing table into BGP.

 [edit protocols bgp e1 neighbor 10.0.37.1]
 user@R7# set export s2b
 [edit policy-options policy-statement s2b]
 user@R7# set from protocol static
 user@R7# set from protocol direct
 user@R7# set then accept
5. Configure the autonomous system number.

```bash
[edit routing-options]
user@R7# set autonomous-system 2
```

6. If you are done configuring the device, commit the configuration.

```bash
user@R7# commit
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```bash
user@R7# show interfaces
fe-1/2/0 {
    unit 73 {
        family inet {
            address 10.0.37.2/24;
        }
    }
}
lo0 {
    unit 70 {
        family inet {
            address 10.0.0.70/32;
        }
    }
}

user@R7# show protocols
bgp {
    group e1 {
        type external;
        neighbor 10.0.37.1 {
            export $2b;
            peer-as 1;
        }
    }
}
```
user@R7# show policy-options
 policy-statement s2b {
 from protocol [static direct];
 then accept;
 }

user@R7# show routing-options
 static {
 route 172.16.199.1/32 reject;
 }
 autonomous-system 2;

Configuring Router R8

Step-by-Step Procedure

To configure Router R8:

1. Configure the loopback (lo0) interface and the interface to Router R4.

 [edit interfaces]

 user@R8# set fe-1/2/0 unit 84 family inet address 10.0.48.2/24
 user@R8# set lo0 unit 80 family inet address 10.0.0.80/32

2. Configure BGP and OSPF on Router R8's interface.

 [edit protocols]

 user@R8# set bgp group rr type internal
 user@R8# set bgp group rr local-address 10.0.0.80
 user@R8# set ospf area 0.0.0.0 interface lo0.80 passive
 user@R8# set ospf area 0.0.0.0 interface fe-1/2/0.84

3. Configure Router R8 to receive multiple paths from its neighbor, Router R4.

 The destination of the paths can be any destination that Router R4 can reach through multiple paths.

 [edit protocols]

 user@R8# set bgp group rr neighbor 10.0.0.40 family inet unicast add-path receive
4. Configure the autonomous system number.

 [edit]
 user@R8# set routing-options autonomous-system 1

5. If you are done configuring the device, commit the configuration.

 user@R8# commit

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

 user@R8# show interfaces
 fe-1/2/0 {
 unit 84 {
 family inet {
 address 10.0.48.2/24;
 }
 }
 }
 lo0 {
 unit 80 {
 family inet {
 address 10.0.0.80/32;
 }
 }
 }

 user@R8# show protocols
 bgp {
 group rr {
 type internal;
 local-address 10.0.0.80;
 neighbor 10.0.0.40 {
 family inet {
 unicast {
 add-path {
 receive;
 }
Verifying That the BGP Peers Have the Ability to Send and Receive Multiple Paths

Purpose

Make sure that one or both of the following strings appear in the output of the `show bgp neighbor` command:

- NLRI's for which peer can receive multiple paths: inet-unicast
- NLRI's for which peer can send multiple paths: inet-unicast
Action

user@R1> show bgp neighbor 10.0.0.40

Peer: 10.0.0.40+179 AS 1 Local: 10.0.0.10+64227 AS 1
 Type: Internal State: Established Flags: <Sync>
 ... NLRI's for which peer can receive multiple paths: inet-unicast
 ...

user@R4> show bgp neighbor 10.0.0.10

Peer: 10.0.0.10+64227 AS 1 Local: 10.0.0.40+179 AS 1
 Type: Internal State: Established Flags: <Sync>
 ...
 NLRI's for which peer can send multiple paths: inet-unicast
 ...

user@R4> show bgp neighbor 10.0.0.80

Peer: 10.0.0.80+55416 AS 1 Local: 10.0.0.40+179 AS 1
 Type: Internal State: Established (route reflector client)Flags: <Sync>
 ...'
 NLRI's for which peer can receive multiple paths: inet-unicast
 ...

user@R8> show bgp neighbor 10.0.0.40

Peer: 10.0.0.40+179 AS 1 Local: 10.0.0.80+55416 AS 1
 Type: Internal State: Established Flags: <Sync>
 ...
 NLRI's for which peer can send multiple paths: inet-unicast
 ...

Verifying That Router R1 Is Advertising Multiple Paths

Purpose
Make sure that multiple paths to the 172.16.198.1/32 destination and multiple paths to the 172.16.199.1/32 destination are advertised to Router R4.
Meaning
When you see one prefix and more than one next hop, it means that multiple paths are advertised to Router R4.

Verifying That Router R4 Is Receiving and Advertising Multiple Paths

Purpose
Make sure that multiple paths to the 172.16.199.1/32 destination are received from Router R1 and advertised to Router R8. Make sure that multiple paths to the 172.16.198.1/32 destination are received from Router R1, but only one path to this destination is advertised to Router R8.

Action

user@R4> show route receive-protocol bgp 10.0.0.10

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.50/32</td>
<td>10.0.15.2</td>
<td></td>
<td>100</td>
<td>2 2 I</td>
</tr>
<tr>
<td>10.0.0.60/32</td>
<td>10.0.0.20</td>
<td></td>
<td>100</td>
<td>2 I</td>
</tr>
<tr>
<td>10.0.0.70/32</td>
<td>10.0.0.30</td>
<td></td>
<td>100</td>
<td>2 I</td>
</tr>
<tr>
<td>172.16.198.1/32</td>
<td>10.0.0.20</td>
<td></td>
<td>100</td>
<td>2 2 I</td>
</tr>
<tr>
<td>172.16.199.1/32</td>
<td>10.0.0.20</td>
<td></td>
<td>100</td>
<td>2 I</td>
</tr>
<tr>
<td>10.0.0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.200.0/30</td>
<td>10.0.0.20</td>
<td></td>
<td>100</td>
<td>2 I</td>
</tr>
</tbody>
</table>

inet.0: 19 destinations, 22 routes (19 active, 0 holddown, 0 hidden)
Meaning
The `show route receive-protocol` command shows that Router R4 receives two paths to the 172.16.198.1/32 destination and three paths to the 172.16.199.1/32 destination. The `show route advertising-protocol` command shows that Router R4 advertises only one path to the 172.16.198.1/32 destination and advertises all three paths to the 172.16.199.1/32 destination.

Because of the prefix policy that is applied to Router R4, Router R4 does not advertise multiple paths to the 172.16.198.1/32 destination. Router R4 advertises only one path to the 172.16.198.1/32 destination even though it receives multiple paths to this destination.

Verifying That Router R8 Is Receiving Multiple Paths

Purpose
Make sure that Router R8 receives multiple paths to the 172.16.199.1/32 destination through Router R4.
Make sure that Router R8 receives only one path to the 172.16.198.1/32 destination through Router R4.

Action

```bash
user@R8> show route receive-protocol bgp 10.0.0.40
```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.198.1/32</td>
<td>10.0.0.20</td>
<td>100</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.199.1/32</td>
<td>10.0.0.20</td>
<td>100</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>10.0.0.30</td>
<td>100</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>10.0.15.2</td>
<td>100</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>* 200.1.1.0/30</td>
<td>10.0.0.20</td>
<td>100</td>
<td>2</td>
<td>I</td>
</tr>
</tbody>
</table>

Checking the Path ID

Purpose

On the downstream devices, Router R4 and Router R8, verify that a path ID uniquely identifies the path. Look for the **Addpath Path ID: string**.

Action

```plaintext
user@R4> show route 172.16.199.1/32 detail
```

inet.0: 18 destinations, 20 routes (18 active, 0 holddown, 0 hidden)
172.16.199.1/32 (3 entries, 3 announced)
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 9
 Source: 10.0.0.10
 Next hop type: Router, Next hop index: 676
 Next hop: 10.0.14.1 via lt-1/2/0.41, selected
 Protocol next hop: 10.0.0.20
 Indirect next hop: 92041c8 262146
 State: <Active Int Ext>
 Local AS: 1 Peer AS: 1
 Age: 1:44:37 Metric2: 2
 Task: BGP_1.10.0.0.10+64227
 Announcement bits (3): 2-KRT 3-BGP RT Background 4-Resolve tree 1

AS path: 2 I (Originator) Cluster list: 10.0.0.10
AS path: Originator ID: 10.0.0.20
Accepted
Localpref: 100
Router ID: 10.0.0.10
Addpath Path ID: 1
```
Next hop type: Router, Next hop index: 676
Next hop: 10.0.14.1 via lt-1/2/0.41, selected
Protocol next hop: 10.0.0.30
Indirect next hop: 92042ac 262151
State: <NotBest Int Ext>
Inactive reason: Not Best in its group - Router ID
Local AS: 1 Peer AS: 1
Age: 1:44:37 Metric2: 2
Task: BGP_1.10.0.0.10+64227
Announcement bits (1): 3-BGP RT Background
AS path: 2 I (Originator) Cluster list: 10.0.0.10
AS path: Originator ID: 10.0.0.30
Accepted
Localpref: 100
Router ID: 10.0.0.10
Addpath Path ID: 2

BGP
Preference: 170/-101
Next hop type: Indirect
Next-hop reference count: 4
Source: 10.0.0.10
Next hop type: Router, Next hop index: 676
Next hop: 10.0.14.1 via lt-1/2/0.41, selected
Protocol next hop: 10.0.0.30
Indirect next hop: 92040e4 262150
State: <Int Ext>
Inactive reason: AS path
Local AS: 1 Peer AS: 1
Age: 1:44:37 Metric2: 2
Task: BGP_1.10.0.0.10+64227
Announcement bits (1): 3-BGP RT Background
AS path: 2 2 I
Accepted
Localpref: 100
Router ID: 10.0.0.10
Addpath Path ID: 3

user@R8> show route 172.16.199.1/32 detail

inet.0: 17 destinations, 19 routes (17 active, 0 holddown, 0 hidden)
172.16.199.1/32 (3 entries, 1 announced)
  *BGP Preference: 170/-101
    Next hop type: Indirect
Next-hop reference count: 9
Source: 10.0.0.40
Next hop type: Router, Next hop index: 1045
Next hop: 10.0.48.1 via lt-1/2/0.84, selected
Protocol next hop: 10.0.0.20
Indirect next hop: 91fc0e4 262148
State: <Active Int Ext>
Local AS:     1 Peer AS:     1
Age: 1:56:51    Metric2: 3
Task: BGP_1.10.0.0.40+179
Announcement bits (2): 2-KRT 4-Resolve tree 1
AS path: 2 I (Originator) Cluster list: 10.0.0.40 10.0.0.10
AS path:  Originator ID: 10.0.0.20
Accepted
Localpref: 100
Router ID: 10.0.0.40
Addpath Path ID: 1

BGP Preference: 170/-101
Next hop type: Indirect
Next-hop reference count: 4
Source: 10.0.0.40
Next hop type: Router, Next hop index: 1045
Next hop: 10.0.48.1 via lt-1/2/0.84, selected
Protocol next hop: 10.0.0.30
Indirect next hop: 91fc1c8 262152
State: <NotBest Int Ext>
Inactive reason: Not Best in its group - Router ID
Local AS:     1 Peer AS:     1
Age: 1:56:51    Metric2: 3
Task: BGP_1.10.0.0.40+179
AS path: 2 I (Originator) Cluster list: 10.0.0.40 10.0.0.10
AS path:  Originator ID: 10.0.0.30
Accepted
Localpref: 100
Router ID: 10.0.0.40
Addpath Path ID: 2

BGP Preference: 170/-101
Next hop type: Indirect
Next-hop reference count: 4
Source: 10.0.0.40
Next hop type: Router, Next hop index: 1045
Next hop: 10.0.48.1 via lt-1/2/0.84, selected
Protocol next hop: 10.0.15.2
Indirect next hop: 91fc2ac 262153
State: <Int Ext>
Inactive reason: AS path
Local AS: 1 Peer AS: 1
Age: 1:56:51 Metric2: 3
Task: BGP_1.10.0.0.40+179
AS path: 2 2 I (Originator) Cluster list: 10.0.0.40
AS path: Originator ID: 10.0.0.10
Accepted
Localpref: 100
Router ID: 10.0.0.40
Addpath Path ID: 3

RELATED DOCUMENTATION

Understanding the Advertisement of Multiple Paths to a Single Destination in BGP
Understanding Adding AS Numbers to BGP AS Paths | 425
Understanding BGP Communities, Extended Communities, and Large Communities as Routing Policy Match Conditions

A BGP community is a group of destinations that share a common property. Community information is included as a path attribute in BGP update messages. This information identifies community members and enables you to perform actions on a group without having to elaborate upon each member. You can use community and extended communities attributes to trigger routing decisions, such as acceptance, rejection, preference, or redistribution.

You can assign community tags to non-BGP routes through configuration (for static, aggregate, or generated routes) or an import routing policy. These tags can then be matched when BGP exports the routes.

A community value is a 32-bit field that is divided into two main sections. The first 16 bits of the value encode the AS number of the network that originated the community, while the last 16 bits carry a unique number assigned by the AS. This system attempts to guarantee a globally unique set of community values for each AS in the Internet. Junos OS uses a notation of as-number:community-value, where each value is a decimal number. The AS values of 0 and 65,535 are reserved, as are all of the community values within those AS numbers. Each community, or set of communities, is given a name within the [edit policy-options] configuration hierarchy. The name of the community uniquely identifies it to the routing device and serves as the method by which routes are categorized. For example, a route with a community value of 64510:1111
might belong to the community named **AS64510-routes**. The community name is also used within a routing policy as a match criterion or as an action. The command syntax for creating a community is: `policy-options community name [community-ids]`. The `community-ids` are either a single community value or multiple community values. When more than one value is assigned to a community name, the routing device interprets this as a logical AND of the community values. In other words, a route must have all of the configured values before being assigned the community name.

The regular community attribute is four octets. Networking enhancements, such as VPNs, have functionality requirements that can be satisfied by an attribute such as a community. However, the 4-octet community value does not provide enough expansion and flexibility to accommodate VPN requirements. This leads to the creation of extended communities. An extended community is an 8-octet value that is also divided into two main sections. The first 2 octets of the community encode a type field while the last 6 octets carry a unique set of data in a format defined by the type field. Extended communities provide a larger range for grouping or categorizing communities.

The BGP extended communities attribute format has three fields: `type:administrator:assigned-number`. The routing device expects you to use the words `target` or `origin` to represent the type field. The administrator field uses a decimal number for the AS or an IPv4 address, while the assigned number field expects a decimal number no larger than the size of the field (65,535 for 2 octets or 4,294,967,295 for 4 octets).

When specifying community IDs for standard and extended community attributes, you can use UNIX-style regular expressions. The only exception is for VPN import policies (`vrf-import`), which do not support regular expressions for the extended communities attribute.

Regular BGP communities attributes are a variable length attribute consisting of a set of one or more 4-byte values that was split into 16 bit values. The most significant word is interpreted as an AS number and least significant word is a locally defined value assigned by the operator of the AS. Since the adoption of 4-byte ASNs, the 4-byte BGP regular community and 6-byte BGP extended community can no longer support BGP community attributes. Operators often encode AS number in the local portion of the BGP community that means that sometimes the format of the community is ASN:ASN. With the 4-byte ASN, you need 8-bytes to encode it. Although BGP extended community permits a 4-byte AS to be encoded as the global administrator field, the local administrator field has only 2-byte of available space. Thus, 6-byte extended community attribute is also unsuitable. To overcome this, Junos OS allows you to configure optional transitive path attribute - a 12-byte BGP large community that provides the most significant 4-byte value to encode autonomous system number as the global administrator and the remaining two 4-byte assigned numbers to encode the local values as defined in RFC 8092. You can configure BGP large community at the `edit policy-options community community-name members` and `edit routing-options static route ip-address community` hierarchy levels. The BGP large community attributes format has four fields: `large:global administrator:assigned number:assigned number`.

**NOTE:** The length of the BGP large communities attribute value should be a non-zero multiple of 12.
To use a BGP community or extended community as a routing policy match condition, you define the community as described in the following sections:

### Defining BGP Communities for Use in Routing Policy Match Conditions

To create a named BGP community and define the community members, include the `community` statement:

```plaintext
[edit policy-options]
community name {
 invert-match;
 members [community-ids];
}
```

`name` identifies the community. It can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

`community-ids` identifies one or more members of the community. Each community ID consists of two components, which you specify in the following format:

```plaintext
as-number:community-value;
```
• **as-number**—AS number of the community member. It can be a value from 0 through 65,535. You can use the following notation in specifying the AS number:
  - String of digits.
  - Asterisk (*)—A wildcard character that matches all AS numbers. (In the definition of the community attribute, the asterisk also functions as described in Table 23 on page 465.)
  - Period (.)—A wildcard character that matches any single digit in an AS number.

• **community-value**—Identifier of the community member. It can be a number from 0 through 65,535. You can use the following notation in specifying the community ID:
  - String of digits.
  - Asterisk (*)—A wildcard character that matches all community values. (In the definition of the community attribute, the asterisk also functions as described in Table 23 on page 465.)
  - Period (.)—A wildcard character that matches any single digit in a community value number.

• Group of AS numbers—A single AS number or a group of AS numbers enclosed in parentheses. Grouping the numbers in this way allows you to perform a common operation on the group as a whole and to give the group precedence. The grouped numbers can themselves include regular expression operators. For more information about regular expressions, see “Using UNIX Regular Expressions in Community Names” on page 464.

You can also include one of the following well-known community names (defined in RFC 1997, **BGP Communities Attribute**) in the `community-ids` option for the `members` statement:

• **no-advertise**—Routes in this community name must not be advertised to other BGP peers.

• **no-export**—Routes in this community must not be advertised outside a BGP confederation boundary. A stand alone autonomous system that is not part of a confederation should be considered a confederation itself.

• **no-export-subconfed**—Routes in this community must not be advertised to external BGP peers, including peers in other members’ ASs inside a BGP confederation.

**Using UNIX Regular Expressions in Community Names**

When specifying the members of a named BGP community (in the `members [community-ids]` statement), you can use UNIX-style regular expressions to specify the AS number and the member identifier. A regular expression consists of two components, which you specify in the following format:

```
term operator;
```
term identifies the string to match.

operator specifies how the term must match. Table 23 on page 465 lists the regular expression operators supported in community IDs. You place an operator immediately after term with no intervening space, except for the pipe (|) and dash (–) operators, which you place between two terms, and parentheses, with which you enclose terms. Table 24 on page 466 shows examples of how to define community-ids using community regular expressions. The operator is optional.

Community regular expressions are identical to the UNIX regular expressions. Both implement the extended (or modern) regular expressions as defined in POSIX 1003.2.

Community regular expressions evaluate the string specified in term on a character-by-character basis. For example, if you specify \texttt{1234:5678} as term, the regular expressions see nine discrete characters, including the colon (:), instead of two sets of numbers (1234 and 5678) separated by a colon.

\textbf{NOTE:} In Junos OS Release 9.1 and later, you can specify 4-byte AS numbers as defined in RFC 4893, BGP Support for Four-octet AS Number Space, as well as the 2-byte AS numbers that are supported in earlier releases of the Junos OS.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Match Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>{m,n}</td>
<td>At least m and at most n repetitions of term. Both m and n must be positive integers, and m must be smaller than n.</td>
</tr>
<tr>
<td>{m}</td>
<td>Exactly m repetitions of term. m must be a positive integer.</td>
</tr>
<tr>
<td>{m,}</td>
<td>m or more repetitions of term. m must be a positive integer.</td>
</tr>
<tr>
<td>*</td>
<td>Zero or more repetitions of term. This is equivalent to {0,}.</td>
</tr>
<tr>
<td>+</td>
<td>One or more repetitions of term. This is equivalent to {1,}.</td>
</tr>
<tr>
<td>?</td>
<td>Zero or one repetition of term. This is equivalent to {0,1}.</td>
</tr>
<tr>
<td></td>
<td>One of the two terms on either side of the pipe.</td>
</tr>
</tbody>
</table>
### Table 23: Community Attribute Regular Expression Operators (continued)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Match Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>−</td>
<td>Between a starting and ending range, inclusive.</td>
</tr>
<tr>
<td>^</td>
<td>Character at the beginning of a community attribute regular expression.</td>
</tr>
<tr>
<td>$</td>
<td>Character at the end of a community attribute regular expression.</td>
</tr>
<tr>
<td>[</td>
<td>Set of characters. One character from the set can match. To specify the start and end of a range, use a hyphen (-). To specify a set of characters that do not match, use the caret (^) as the first character after the opening square bracket ([).</td>
</tr>
<tr>
<td>(</td>
<td>Group of terms that are enclosed in parentheses. If enclosed in quotation marks with no intervening space (&quot;(&quot; ), indicates a null. Intervening space between the parentheses and the terms is ignored.</td>
</tr>
<tr>
<td>&quot; &quot;</td>
<td>Characters (such as space, tab, question mark, and bracket) that are enclosed within quotation marks in a community attribute regular expression indicate special characters.</td>
</tr>
</tbody>
</table>

### Table 24: Examples of Community Attribute Regular Expressions

<table>
<thead>
<tr>
<th>Community Attribute to Match</th>
<th>Regular Expression</th>
<th>Sample Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS number is 56 or 78. Community value is any number.</td>
<td>^((56)</td>
<td>(78)):(.*)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78:64500</td>
</tr>
<tr>
<td>AS number is 56. Community value is any number that starts with 2.</td>
<td>^56:(2.*)$</td>
<td>56:2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56:222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56:234</td>
</tr>
</tbody>
</table>
Table 24: Examples of Community Attribute Regular Expressions (continued)

<table>
<thead>
<tr>
<th>Community Attribute to Match</th>
<th>Regular Expression</th>
<th>Sample Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS number is any number. Community value is any number that ends with 5, 7, or 9.</td>
<td>^(.<em>):(.</em>[579])$</td>
<td>1234:5, 78:2357, 34:64509</td>
</tr>
<tr>
<td>AS number is 56 or 78. Community value is any number that starts with 2 and ends with 2 through 8.</td>
<td>^((56)</td>
<td>(78)):2.*[2–8]$</td>
</tr>
</tbody>
</table>

Defining BGP Extended Communities for Use in Routing Policy Match Conditions

To create a named BGP community and define the community members, include the `community` statement:

```
[edit policy-options]
community name {
 members [community-ids];
}
```

*name* identifies the community. It can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

*community-ids* identifies one or more members of the community. Each community ID consists of three components, which you specify in the following format:

```
type:administrator:assigned-number
```

*type* is the type of extended community and can be either the 16-bit numerical identifier of a specific BGP extended community or one of these types:

- **bandwidth**—Sets up the bandwidth extended community. Specifying link bandwidth allows you to distribute traffic unequally among different BGP paths.
  
  **NOTE:** The link bandwidth attribute does not work concurrently with per-prefix load balancing.

- **domain-id**—Identifies the OSPF domain from which the route originated.
• **origin**—Identifies where the route originated.

• **rt-import**—Identifies the route to install in the routing table.

  NOTE: You must identify the route by an IP address, not an AS number.

• **src-as**—Identifies the AS from which the route originated. You must specify an AS number, not an IP address.

  NOTE: You must identify the AS by an AS number, not an IP address.

• **target**—Identifies the destination to which the route is going.

  NOTE: For an import policy for a VPN routing and forwarding (VRF) instance, you must include at least one route target. Additionally, you cannot use wildcard characters or regular expressions in the route target for a VRF import policy. Each value you configure for a route target for a VRF import policy must be a single value.

**administrator** is the administrator. It is either an AS number or an IP version 4 (IPv4) address prefix, depending on the type of extended community.

**assigned-number** identifies the local provider.

In Junos OS Release 9.1 and later, you can specify 4-byte AS numbers as defined in RFC 4893, *BGP Support for Four-octet AS Number Space*, as well as the 2-byte AS numbers that are supported in earlier releases of the Junos OS. In plain-number format, you can configure a value in the range from 1 through 4,294,967,295. To configure a **target** or **origin** extended community that includes a 4-byte AS number in the plain-number format, append the letter “L” to the end of number. For example, a target community with the 4-byte AS number 334,324 and an assigned number of 132 is represented as **target:334324L:132**.

In Junos OS Release 9.2 and later, you can also use AS-dot notation when defining a 4-byte AS number for the **target** and **origin** extended communities. Specify two integers joined by a period: 16-bit high-order value in decimal.16-bit low-order value in decimal. For example, the 4-byte AS number represented in plain-number format as 65546 is represented in AS-dot notation as **1.10**.

**Examples: Defining BGP Extended Communities**

Configure a target community with an administrative field of **10458** and an assigned number of **20**:

```
[edit policy-options]
```
community test-a members [ target:10458:20 ];

Configure a target community with an administrative field of 10.1.1.1 and an assigned number of 20:

[edit policy-options]
  community test-a members [ target:10.1.1.1:20 ];

Configure an origin community with an administrative field of 10.1.1.1 and an assigned number of 20:

[edit policy-options]
  community test-a members [ origin:10.1.1.1:20 ];

Configure a target community with a 4-byte AS number in the administrative field of 100000 and an assigned number of 130:

[edit policy-options]
  community test-b members [ target:100000L:130 ];

RELATED DOCUMENTATION

Example: Configuring Communities in a Routing Policy | 476
Example: Configuring Extended Communities in a Routing Policy | 494

How BGP Communities and Extended Communities Are Evaluated in Routing Policy Match Conditions

When you use BGP communities and extended communities as match conditions in a routing policy, the policy framework software evaluates them as follows:

• Each route is evaluated against each named community in a routing policy from statement. If a route matches one of the named communities in the from statement, the evaluation of the current term continues. If a route does not match, the evaluation of the current term ends.

• The route is evaluated against each member of a named community. The evaluation of all members must be successful for the named community evaluation to be successful.

• Each member in a named community is identified by either a literal community value or a regular expression. Each member is evaluated against each community associated with the route. (Communities
are an unordered property of a route. For example, 1:2 3:4 is the same as 3:4 1:2.) Only one community from the route is required to match for the member evaluation to be successful.

- Community regular expressions are evaluated on a character-by-character basis. For example, if a route contains community 1234:5678, the regular expressions see nine discrete characters, including the colon (:), instead of two sets of numbers (1234 and 5678) separated by a colon. For example:

```plaintext
[edit]
policy-options {
policy-statement one {
 from {
 community [comm-one comm-two];
 }
}
community comm-one members [1:2 "^4:5|6|$"];
community comm-two members [7:8 9:10];
}
```

If a community member is a regular expression, a string match is made rather than a numeric match. For example:

```plaintext
community example1 members 100:100
community example2 members 100:1..
```

Given a route with a community value of 1100:100, this route matches **community example2** but not **example1**.

- To match routing policy **one**, the route must match either **comm-one** or **comm-two**.
- To match **comm-one**, the route must have a community that matches 1:2 and a community that matches 4:5 or 4:6.
- To match **comm-two**, the route must have a community that matches 7:8 and a community that matches 9:10.

**Multiple Matches**

When multiple matches are found, label aggregation does not happen. Consider the following configuration:

```plaintext
family inet-vpn {
 unicast {
 aggregate-label {
 community community-name;
 }
 }
```
family inet-vpn {
  labeled-unicast {
    aggregate-label {
      community community-name;
    } 
  }
}

Suppose, for instance, that two routes are received with community attributes \texttt{target:65000:1000 origin:65200:2000} and that the community name is "5...:.*". In this case, both the extended community attributes, \texttt{target:65000:1000} and \texttt{origin:65200:2000} match the regular expression of the community name. In this case, label aggregation does not occur. In the following example, the \texttt{Label operation} field shows that the labels are not aggregated.

user@host> show route table VPN detail | match "^10 | Communities | Push"

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Entry Count</th>
<th>Announced</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/30</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Label operation: Push 101040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Push 101040</td>
<td></td>
</tr>
<tr>
<td>10.1.1.4/30</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Label operation: Push 101056</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Push 101056</td>
<td></td>
</tr>
</tbody>
</table>

You can resolve this issue in either of the following ways:

- Be more specific in the regular expression if the site-of-origin extended community attribute does not overlap with the target one.
- Specify the site of origin in the community name.

Both methods are shown in the following examples.

\textbf{Be More Specific in the Regular Expression}

user@host# set policy-options community community-name members "52...:*"
user@host# commit

user@host> show route table VPN detail | match "^10 | Communities | Push"

10.1.1.0/30 (1 entry, 1 announced)
   Label operation: Push 101040
   Push 101040

10.1.1.4/30 (1 entry, 1 announced)
   Label operation: Push 101040
   Push 101040

Specify the Site of Origin in the Community Name

user@host# set policy-options community community-name members "origin:65...:.*"
user@host# commit

user@host> show route table VPN detail | match "^10 | Communities | Push"

10.1.1.0/30 (1 entry, 1 announced)
   Label operation: Push 101040
   Push 101040

10.1.1.4/30 (1 entry, 1 announced)
   Label operation: Push 101040
   Push 101040

Inverting Community Matches

The community match condition defines a regular expression and if it matches the community attribute of the received prefix, Junos OS returns a TRUE result. If not, Junos OS returns a FALSE result. The invert-match statement makes Junos OS behave to the contrary. If there is a match, Junos OS returns a
FALSE result. If there is no match, Junos OS returns a TRUE result. To invert the results of the community expression matching, include the `invert-match` statement in the community configuration.

```plaintext
[edit policy-options community name]
invert-match;
```

**Extended Community Type**

The extended community type is not taken into account by regular expressions. Consider, for instance, the following community attributes and community name.

Communities:
- 5200:1000
- `target:65000:1000`
- `origin:65200:2000`

Community attribute:
- community-name members "5...::*"

In this case, both extended community attribute, `5200:1000` and the extended community attribute, `origin:65200:2000`, match the regular expression of the community name. Therefore, the label aggregation does not occur, as shown here:

```
user@host> show route table VPN detail | match "^10| Communities | Push"
```

```
10.1.1.0/30 (1 entry, 1 announced)
 Label operation: Push 101040
 Push 101040
10.1.1.4/30 (1 entry, 1 announced)
 Label operation: Push 101056
 Push 101056
```

You can resolve this issue by using a more specific regular expression. For example, you can use the anchor character (*) to bind the location of the digits, as shown here:

```
user@host# set policy-options community community-name members "^5...::*"
```
show route table VPN detail | match "^10 | Communities | Push"

Multiple Communities Are Matched with Ex-OR Logic

This differs from the AND matching logic used for non-extended communities in BGP.

If, for instance, four routes are received with two sets of community attributes, the regular expression might match both community attributes. Consider the following example:

- Communities—5200:1000 target:65000:1000
- Community attribute—community community-name member [ "^5...:.*" origin:65.*:.* ]

Both labels are aggregated, as shown here:

show route table VPN detail | match "^10 | Communities | Push"
A more complete example of community values is shown here:

```
user@host> show policy-options community community-name

members ["(^1...:*)|(^3...:*)|(^4...:*)" origin:2:*:* origin:3:*:* origin:6:*:*]
```

This regular expression matches community values starting with 1, 3, or 4, and matches extended community values of type origin whose administrative value starts with 2, 3, or 6.

### Including BGP Communities and Extended Communities in Routing Policy Match Conditions

To include a BGP community or extended community in a routing policy match condition, include the `community` condition in the `from` statement of a policy term:

```
from {
 community [names];
}
```

Additionally, you can explicitly exclude BGP community information with a static route by using the `none` option. Include this option when configuring an individual route in the `route` portion to override a community option specified in the `defaults` portion.

You can include the names of multiple communities in the `community` match condition. If you do this, only one community needs to match for a match to occur (matching is effectively a logical OR operation).

### RELATED DOCUMENTATION

- Using UNIX Regular Expressions in Community Names | 464
- Example: Configuring Communities in a Routing Policy | 476
- Example: Configuring Extended Communities in a Routing Policy | 494
- Example: Configuring a Routing Policy That Removes BGP Communities | 526
- Example: Configuring a Routing Policy Based on the Number of BGP Communities | 516
Example: Configuring Communities in a Routing Policy

A community is a route attribute used by BGP to administratively group routes with similar properties.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

One main role of the community attribute is to be an administrative tag value used to associate routes together. Generally, these routes share some common properties, but that is not required. Communities are a flexible tool within BGP. An individual community value can be assigned to a single route or multiple routes. A route can be assigned a single community value or multiple values. Networks use the community attribute to assist in implementing administrative routing policies. A route’s assigned value can allow it to be accepted into the network, or rejected from the network, or allow it to modify attributes.

Figure 32 on page 477 shows Device R1, Device R2, and Device R3 as internal BGP (iBGP) peers in autonomous system (AS) 64510. Device R4 is advertising the 172.16.0.0/21 address space from AS 64511. The specific routes received by Device R1 from Device R4 are as follows:

```
user@R1> show route receive-protocol bgp 10.0.0.13

inet.0: 20 destinations, 28 routes (20 active, 0 holddown, 8 hidden)

Prefix Nexthop MED Lclpref AS path
* 172.16.0.0/24 10.0.0.13 - - 64511 I
* 172.16.1.0/24 10.0.0.13 - - 64511 I
* 172.16.2.0/24 10.0.0.13 - - 64511 I
* 172.16.3.0/24 10.0.0.13 - - 64511 I
* 172.16.4.0/24 10.0.0.13 - - 64511 I
* 172.16.5.0/24 10.0.0.13 - - 64511 I
```
The administrators of AS 64511 want to receive certain user traffic from Device R1, and other user traffic from Device R3. To accomplish this administrative goal, Device R4 attaches the community value of 64511:1 to some routes that it sends and attaches the community value 64511:3 to other routes that it sends. Routing policies within AS 64510 are configured using a community match criterion to change the local preference of the received routes to new values that alter the BGP route selection algorithm. The route with the highest local preference value is preferred.

On Device R1, routes with the 64511:1 community value are assigned a local preference of 200, and routes with the 64511:3 community value are assigned a local preference of 50. On Device R3, the reverse is done so that routes with the 64511:3 community value are assigned a local preference of 200, and routes with the 64511:1 community value are assigned a local preference of 50. This information is then communicated through IBGP by both Device R1 and Device R3 to Device R2.

**Topology**

Figure 32 on page 477 shows the sample network.

**Figure 32: Topology for Regular BGP Communities**

"CLI Quick Configuration" on page 478 shows the configuration for all of the devices in Figure 32 on page 477.

The section "Step-by-Step Procedure" on page 481 describes the steps on Device R1 and R4.
Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```text
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/2 unit 0 family inet address 10.1.0.5/30
set interfaces fe-1/2/3 unit 0 family inet address 10.0.0.14/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.1
set protocols bgp group int neighbor 192.168.0.2 export send-direct
set protocols bgp group int neighbor 192.168.0.3
set protocols bgp group ext type external
set protocols bgp group ext import change-local-preference
set protocols bgp group ext peer-as 64511
set protocols bgp group ext neighbor 10.0.0.13
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement change-local-preference term find-R1-routes from community from-R1
set policy-options policy-statement change-local-preference term find-R1-routes then local-preference 200
set policy-options policy-statement change-local-preference term find-R3-routes from community from-R3
set policy-options policy-statement change-local-preference term find-R3-routes then local-preference 50
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 from route-filter 10.0.0.12/30 exact
set policy-options policy-statement send-direct term 1 then accept
set policy-options community from-R1 members 64511:1
set policy-options community from-R3 members 64511:3
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510
```

Device R2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.2
set protocols bgp group int neighbor 192.168.0.1
set protocols bgp group int neighbor 192.168.0.3
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510

Device R3

set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces fe-1/2/2 unit 8 family inet address 10.1.0.6/30
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.10/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group int type internal
set protocols bgp group int local-address 192.168.0.3
set protocols bgp group int neighbor 192.168.0.1
set protocols bgp group int neighbor 192.168.0.2 export send-direct
set protocols bgp group ext type external
set protocols bgp group ext import change-local-preference
set protocols bgp group ext peer-as 64511
set protocols bgp group ext neighbor 10.0.0.9
set protocols ospf area 0.0.0.0 interface fe-1/2/1.0
set protocols ospf area 0.0.0.0 interface fe-1/2/2.8
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement change-local-preference term find-R3-routes from community from-R3
set policy-options policy-statement change-local-preference term find-R3-routes then local-preference 200
set policy-options policy-statement change-local-preference term find-R1-routes from community from-R1
set policy-options policy-statement change-local-preference term find-R1-routes then local-preference 50
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 from route-filter 10.0.0.8/30 exact
set policy-options policy-statements send-direct term 1 then accept
set policy-options community from-R1 members 64511:1
set policy-options community from-R3 members 64511:3
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 64510

Device R4

set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.9/30
set interfaces fe-1/2/3 unit 0 family inet address 10.0.0.13/30
set interfaces lo0 unit 0 family inet address 192.168.0.4/32
set protocols bgp group to-R1 type external
set protocols bgp group to-R1 export send-static
set protocols bgp group to-R1 peer-as 64510
set protocols bgp group to-R1 neighbor 10.0.0.14
set protocols bgp group to-R3 type external
set protocols bgp group to-R3 export send-static
set protocols bgp group to-R3 peer-as 64510
set protocols bgp group to-R3 neighbor 10.0.0.10
set policy-options policy-statements send-static term 1 from protocol static
set policy-options policy-statements send-static term 1 from route-filter 172.16.0.0/24 exact
set policy-options policy-statements send-static term 1 from route-filter 172.16.1.0/24 exact
set policy-options policy-statements send-static term 1 from route-filter 172.16.2.0/24 exact
set policy-options policy-statements send-static term 1 from route-filter 172.16.3.0/24 exact
set policy-options policy-statements send-static term 1 then community add from-R1
set policy-options policy-statements send-static term 1 then accept
set policy-options policy-statements send-static term 2 from protocol static
set policy-options policy-statements send-static term 2 from route-filter 172.16.4.0/24 exact
set policy-options policy-statements send-static term 2 from route-filter 172.16.5.0/24 exact
set policy-options policy-statements send-static term 2 from route-filter 172.16.6.0/24 exact
set policy-options policy-statements send-static term 2 from route-filter 172.16.7.0/24 exact
set policy-options policy-statements send-static term 2 then community add from-R3
set policy-options policy-statements send-static term 2 then accept
set policy-options policy-statements send-static term 3 then reject
set policy-options community from-R1 members 64511:1
set policy-options community from-R3 members 64511:3
set routing-options static route 172.16.0.0/24 reject
set routing-options static route 172.16.1.0/24 reject
set routing-options static route 172.16.2.0/24 reject
set routing-options static route 172.16.3.0/24 reject
set routing-options static route 172.16.4.0/24 reject
set routing-options static route 172.16.5.0/24 reject
set routing-options static route 172.16.6.0/24 reject
set routing-options static route 172.16.7.0/24 reject
set routing-options router-id 192.168.0.4
set routing-options autonomous-system 64511

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the interfaces.

   [edit interfaces]
   user@R1# set fe-1/2/0 unit 0 family inet address 10.0.0.1/30
   user@R1# set fe-1/2/2 unit 0 family inet address 10.1.0.5/30
   user@R1# set fe-1/2/3 unit 0 family inet address 10.0.0.14/30
   user@R1# set lo0 unit 0 family inet address 192.168.0.1/32

2. Configure internal gateway protocol (IGP) connections to Device R2 and Device R3.

   [edit protocols ospf area 0.0.0.0]
   user@R1# set interface fe-1/2/0
   user@R1# set interface fe-1/2/2
   user@R1# set interfacelo0.0 passive

3. Configure the IBGP connections to Device R2 and Device R3.

   [edit protocols bgp group int]
   user@R1# set type internal
   user@R1# set local-address 192.168.0.1
   user@R1# set neighbor 192.168.0.2 export send-direct
   user@R1# set neighbor 192.168.0.3

4. Configure the EBGP connection to Device R4.
5. Configure the policy **send-direct**.

   This policy is referenced in the IBGP connection to Device R2 and enables Device R2 to have external
   reachability. An alternative is to configure a **next-hop self** policy on Device R1 and Device R3.

   ```
 [edit protocols bgp group ext]
 user@R1# set type external
 user@R1# set import change-local-preference
 user@R1# set peer-as 64511
 user@R1# set neighbor 10.0.0.13
   ```

6. Configure the policy that changes the local preference for routes with specified community tags.

   ```
 [edit policy-options policy-statement change-local-preference]
 user@R1# set term find-R1-routes from community from-R1
 user@R1# set term find-R1-routes then local-preference 200
 user@R1# set term find-R3-routes from community from-R3
 user@R1# set term find-R3-routes then local-preference 50
 [edit policy-options]
 user@R1# set community from-R1 members 64511:1
 user@R1# set community from-R3 members 64511:3
   ```

7. Configure the autonomous system (AS) number and router ID.

   ```
 [edit routing-options]
 user@R1# set router-id 192.168.0.1
 user@R1# set autonomous-system 64510
   ```

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For
information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the
CLI User Guide.

To configure Device R4:

1. Configure the interfaces.
2. Configure the EBGP connection to Device R1 and Device R3.

```
[edit protocols bgp]
user@R4# set group to-R1 type external
user@R4# set group to-R1 export send-static
user@R4# set group to-R1 peer-as 64510
user@R4# set group to-R1 neighbor 10.0.0.14
user@R4# set group to-R3 type external
user@R4# set group to-R3 export send-static
user@R4# set group to-R3 peer-as 64510
user@R4# set group to-R3 neighbor 10.0.0.10
```

3. Configure the community tags.

```
[edit policy-options]
user@R4# set community from-R1 members 64511:1
user@R4# set community from-R3 members 64511:3
```

4. Configure the policy send-static.

This policy is referenced in the EBGP connections to Device R1 and Device R3. The policy attaches the 64511:1 (from-R1) community to some routes and the 64511:3 (from-R3) community to other routes.

```
[edit policy-options policy-statement send-static term 1]
user@R4# set from protocol static
user@R4# set from route-filter 172.16.0.0/24 exact
user@R4# set from route-filter 172.16.1.0/24 exact
user@R4# set from route-filter 172.16.2.0/24 exact
user@R4# set from route-filter 172.16.3.0/24 exact
user@R4# set then community add from-R1
user@R4# set then accept
[edit policy-options policy-statement send-static term 2]
user@R4# set from protocol static
user@R4# set from route-filter 172.16.4.0/24 exact
user@R4# set from route-filter 172.16.5.0/24 exact
```
5. Configure the static routes.

[edit routing-options static]
user@R4# set route 172.16.0.0/24 reject
user@R4# set route 172.16.1.0/24 reject
user@R4# set route 172.16.2.0/24 reject
user@R4# set route 172.16.3.0/24 reject
user@R4# set route 172.16.4.0/24 reject
user@R4# set route 172.16.5.0/24 reject
user@R4# set route 172.16.6.0/24 reject
user@R4# set route 172.16.7.0/24 reject

6. Configure the autonomous system (AS) number and router ID.

[edit routing-options]
user@R4# set router-id 192.168.0.4
user@R4# set autonomous-system 64511

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R1

user@R1# show interfaces
fe-1/2/0 {
  unit 0 {
    family inet {
      address 10.0.0.1/30;
    }
  }
}
user@R1# show protocols
bgp {
  group int {
    type internal;
    local-address 192.168.0.1;
    neighbor 192.168.0.2 { export send-direct; }
    neighbor 192.168.0.3;
  }
  group ext {
    type external;
    import change-local-preference;
    peer-as 64511;
    neighbor 10.0.0.13;
  }
}
ospf {
area 0.0.0.0 {
    interface fe-1/2/0.0;
    interface fe-1/2/2.0;
    interface lo0.0 {
        passive;
    }
}

user@R1# show policy-options
policy-statement change-local-preference {
    term find-R1-routes {
        from community from-R1;
        then {
            local-preference 200;
        }
    }
    term find-R3-routes {
        from community from-R3;
        then {
            local-preference 50;
        }
    }
}

policy-statement send-direct {
    term 1 {
        from {
            protocol direct;
            route-filter 10.0.0.12/30 exact;
        }
        then accept;
    }
}

community from-R1 members 64511:1;
community from-R3 members 64511:3;

user@R1# show routing-options
router-id 192.168.0.1;
autonomous-system 64510;

Device R4
user@R4# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet {
            address 10.0.0.9/30;
        }
    }
}

fe-1/2/3 {
    unit 0 {
        family inet {
            address 10.0.0.13/30;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 192.168.0.4/32;
        }
    }
}

user@R4# show protocols
bgp {
    group to-R1 {
        type external;
        export send-static;
        peer-as 64510;
        neighbor 10.0.0.14;
    }
    group to-R3 {
        type external;
        export send-static;
        peer-as 64510;
        neighbor 10.0.0.10;
    }
}

user@R4# show policy-options
policy-statement send-static {
  term 1 {
    from {
      protocol static;
      route-filter 172.16.0.0/24 exact;
      route-filter 172.16.1.0/24 exact;
      route-filter 172.16.2.0/24 exact;
      route-filter 172.16.3.0/24 exact;
    }
    then {
      community add from-R1;
      accept;
    }
  }
  term 2 {
    from {
      protocol static;
      route-filter 172.16.4.0/24 exact;
      route-filter 172.16.5.0/24 exact;
      route-filter 172.16.6.0/24 exact;
      route-filter 172.16.7.0/24 exact;
    }
    then {
      community add from-R3;
      accept;
    }
  }
  term 3 {
    then reject;
  }
}
community from-R1 members 64511:1;
community from-R3 members 64511:3;

user@R4# show routing-options
static {
  route 172.16.0.0/24 reject;
  route 172.16.1.0/24 reject;
  route 172.16.2.0/24 reject;
  route 172.16.3.0/24 reject;
  route 172.16.4.0/24 reject;
  route 172.16.5.0/24 reject;
  route 172.16.6.0/24 reject;
  route 172.16.7.0/24 reject;
If you are done configuring the devices, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the Routes Sent on Device R4 | 489
- Verifying the Routes Received on Device R2 | 492

Confirm that the configuration is working properly.

**Verifying the Routes Sent on Device R4**

**Purpose**

On Device R4, check the routes sent to Device R1 and Device R3.

**Action**

```
user@R4> show route advertising-protocol bgp 10.0.0.14 extensive
```

```
inet.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
* 172.16.0.0/24 (1 entry, 1 announced)
 BGP group to-R1 type External
 Nexthop: Self
 AS path: [64511] I
 Communities: 64511:1

* 172.16.1.0/24 (1 entry, 1 announced)
 BGP group to-R1 type External
 Nexthop: Self
 AS path: [64511] I
 Communities: 64511:1

* 172.16.2.0/24 (1 entry, 1 announced)
 BGP group to-R1 type External
```
Nexthop: Self
AS path: [64511] I
Communities: 64511:1

* 172.16.3.0/24 (1 entry, 1 announced)
BGP group to-R1 type External
Nexthop: Self
AS path: [64511] I
Communities: 64511:1

* 172.16.4.0/24 (1 entry, 1 announced)
BGP group to-R1 type External
Nexthop: Self
AS path: [64511] I
Communities: 64511:3

* 172.16.5.0/24 (1 entry, 1 announced)
BGP group to-R1 type External
Nexthop: Self
AS path: [64511] I
Communities: 64511:3

* 172.16.6.0/24 (1 entry, 1 announced)
BGP group to-R1 type External
Nexthop: Self
AS path: [64511] I
Communities: 64511:3

* 172.16.7.0/24 (1 entry, 1 announced)
BGP group to-R1 type External
Nexthop: Self
AS path: [64511] I
Communities: 64511:3

user@R2> show route advertising-protocol bgp 10.0.0.10 extensive

inet.0: 13 destinations, 13 routes (13 active, 0 holdown, 0 hidden)
* 172.16.0.0/24 (1 entry, 1 announced)
BGP group to-R3 type External
Nexthop: Self
AS path: [64511] I
Communities: 64511:1

* 172.16.1.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:1

* 172.16.2.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:1

* 172.16.3.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:1

* 172.16.4.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:3

* 172.16.5.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:3

* 172.16.6.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:3

* 172.16.7.0/24 (1 entry, 1 announced)
  BGP group to-R3 type External
   Nexthop: Self
   AS path: [64511] I
  Communities: 64511:3
Meaning
Device R4 has tagged the routes with the communities 64511:1 and 64511:3 and sent them to Device R1 and R3.

Verifying the Routes Received on Device R2

Purpose
On Device R2, check the routes received from Device R1 and Device R3.

Action

user@R2> show route receive-protocol bgp 192.168.0.1 extensive

inet.0: 22 destinations, 30 routes (22 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
* 10.0.0.12/30 192.168.0.1 100 I
* 172.16.0.0/24 10.0.0.13 200 64511 I
* 172.16.1.0/24 10.0.0.13 200 64511 I
* 172.16.2.0/24 10.0.0.13 200 64511 I
* 172.16.3.0/24 10.0.0.13 200 64511 I
172.16.4.0/24 10.0.0.13 50 64511 I
172.16.5.0/24 10.0.0.13 50 64511 I
172.16.6.0/24 10.0.0.13 50 64511 I
172.16.7.0/24 10.0.0.13 50 64511 I

user@R2> show route match-prefix 172.16.*

inet.0: 22 destinations, 30 routes (22 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.0.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.1
AS path: 64511 I
  to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.3
AS path: 64511 I
  to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7
172.16.1.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.1
AS path: 64511 I
  to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.3
    AS path: 64511 I
    to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7
172.16.2.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.1
    AS path: 64511 I
    to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.3
    AS path: 64511 I
    to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7

172.16.3.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.1
    AS path: 64511 I
    to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.3
    AS path: 64511 I
    to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7

172.16.4.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.3
    AS path: 64511 I
    to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.1
    AS path: 64511 I
    to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6

172.16.5.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.3
    AS path: 64511 I
    to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.1
    AS path: 64511 I
    to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6

172.16.6.0/24 *[BGP/170] 1d 00:47:39, localpref 200, from 192.168.0.3
    AS path: 64511 I
    to 10.1.0.2 via fe-1/2/1.0
> to 10.1.0.6 via fe-1/2/0.7
[BGP/170] 1d 00:47:39, localpref 50, from 192.168.0.1
    AS path: 64511 I
    to 10.0.0.1 via fe-1/2/0.0
> to 10.1.0.5 via fe-1/2/0.6
Meaning
Device R2 has the routes with the expected local preferences and the expected active routes, as designated by the asterisks (*).

RELATED DOCUMENTATION

Example: Configuring Extended Communities in a Routing Policy | 494
Example: Configuring a Routing Policy That Removes BGP Communities | 526
Example: Configuring a Routing Policy Based on the Number of BGP Communities | 516
Example: Configuring a Routing Policy to Redistribute BGP Routes with a Specific Community Tag into IS-IS

Example: Configuring Extended Communities in a Routing Policy

An extended community is similar in most ways to a regular community. Some networking implementations, such as virtual private networks (VPNs), use extended communities because the 4-octet regular community value does not provide enough expansion and flexibility. An extended community is an eight-octet value divided into two main sections.
Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, Device R1 and Device R2 are OSPF neighbors in autonomous system (AS) 64510. Device R3 has an external BGP (EBGP) connection to Device R1. Device R2 has customer networks in the 172.16/16 address space, simulated with addresses on its loopback interface (lo0). Device R1 has static routes to several 172.16.x/24 networks, and attaches regular community values to these routes. Device R1 then uses an export policy to advertise the routes to Device R3. Device R3 receives these routes and uses an import policy to add extended community values to the routes.

Topology

Figure 33 on page 495 shows the sample network.

Figure 33: Topology for Extended BGP Communities

“CLI Quick Configuration” on page 495 shows the configuration for all of the devices in Figure 33 on page 495.

The section "Step-by-Step Procedure" on page 497 describes the steps on Device R3.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/3 unit 0 family inet address 10.0.0.14/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32 primary
set protocols bgp group ext type external
set protocols bgp group ext export send-static
set protocols bgp group ext peer-as 64511
set protocols bgp group ext neighbor 10.0.0.13
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 172.16.1.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.1.0/24 community 64510:1
set routing-options static route 172.16.2.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.2.0/24 community 64510:2
set routing-options static route 172.16.3.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.3.0/24 community 64510:3
set routing-options static route 172.16.4.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.4.0/24 community 64510:4
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510
```

Device R2

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set interfaces lo0 unit 0 family inet address 172.16.1.1/32
set interfaces lo0 unit 0 family inet address 172.16.2.2/32
set interfaces lo0 unit 0 family inet address 172.16.3.3/32
set interfaces lo0 unit 0 family inet address 172.16.4.4/32
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510
```
Device R3

```plaintext
set interfaces fe-1/2/3 unit 0 family inet address 10.0.0.13/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group to-R1 type external
set protocols bgp group to-R1 import set-ext-comms
set protocols bgp group to-R1 peer-as 64510
set protocols bgp group to-R1 neighbor 10.0.0.14
set policy-options policy-statement set-ext-commsterm route-1 from route-filter 172.16.1.0/24 exact
set policy-options policy-statement set-ext-comms term route-1 then community add target-as
set policy-options policy-statement set-ext-comms term route-1 then accept
set policy-options policy-statement set-ext-comms term route-2 from route-filter 172.16.2.0/24 exact
set policy-options policy-statement set-ext-comms term route-2 then community add target-ip
set policy-options policy-statement set-ext-comms term route-2 then accept
set policy-options policy-statement set-ext-comms term route-3 from route-filter 172.16.3.0/24 exact
set policy-options policy-statement set-ext-comms term route-3 then community add origin-as
set policy-options policy-statement set-ext-comms term route-3 then accept
set policy-options policy-statement set-ext-comms term route-4 from route-filter 172.16.4.0/24 exact
set policy-options policy-statement set-ext-comms term route-4 then community add origin-ip
set policy-options policy-statement set-ext-comms term route-4 then accept
set policy-options policy-statement set-ext-comms term route-4 then community origin-as members origin:64511:3
set policy-options community origin-ip members origin:172.16.7.7:4
set policy-options community target-as members target:64511:1
set policy-options community target-ip members target:172.16.7.7:2
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 64511
```

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R3:

1. Configure the interfaces.

   ```plaintext
 [edit interfaces]
 user@R3# set fe-1/2/3 unit 0 family inet address 10.0.0.13/30
 user@R3# set lo0 unit 0 family inet address 192.168.0.3/32
   ```

2. Configure the EBGP connection to Device R1.

   ```plaintext
 set protocols bgp group to-R1 import set-ext-comms
 set protocols bgp group to-R1 peer-as 64510
 set protocols bgp group to-R1 neighbor 10.0.0.14
 set policy-options policy-statement set-ext-commsterm route-1 from route-filter 172.16.1.0/24 exact
 set policy-options policy-statement set-ext-comms term route-1 then community add target-as
 set policy-options policy-statement set-ext-comms term route-1 then accept
 set policy-options policy-statement set-ext-comms term route-2 from route-filter 172.16.2.0/24 exact
 set policy-options policy-statement set-ext-comms term route-2 then community add target-ip
 set policy-options policy-statement set-ext-comms term route-2 then accept
 set policy-options policy-statement set-ext-comms term route-3 from route-filter 172.16.3.0/24 exact
 set policy-options policy-statement set-ext-comms term route-3 then community add origin-as
 set policy-options policy-statement set-ext-comms term route-3 then accept
 set policy-options policy-statement set-ext-comms term route-4 from route-filter 172.16.4.0/24 exact
 set policy-options policy-statement set-ext-comms term route-4 then community add origin-ip
 set policy-options policy-statement set-ext-comms term route-4 then accept
 set policy-options policy-statement set-ext-comms term route-4 then community origin-as members origin:64511:3
 set policy-options community origin-ip members origin:172.16.7.7:4
 set policy-options community target-as members target:64511:1
 set policy-options community target-ip members target:172.16.7.7:2
 set routing-options router-id 192.168.0.3
 set routing-options autonomous-system 64511
   ```
3. Configure the policy that adds extended community values to the routes received from Device R1.

An extended community uses a notation of **type:administrator:assigned-number**.

The specific community values can be anything that accomplishes your administrative goals, within certain parameters, as explained in **community**.

4. Configure the autonomous system (AS) number and router ID.

**Results**

From configuration mode, confirm your configuration by entering the **show interfaces**, **show protocols**, **show policy-options**, and **show routing-options** commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
user@R3# show interfaces
fe-1/2/3 {
    unit 0 {
        family inet {
            address 10.0.0.13/30;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 192.168.0.3/32;
        }
    }
}

user@R3# show protocols
bgp {
    group to-R1 {
        type external;
        import set-ext-comms;
        peer-as 64510;
        neighbor 10.0.0.14;
    }
}

user@R3# show policy-options
policy-statement set-ext-comms {
    term route-1 {
        from {
            route-filter 172.16.1.0/24 exact;
        }
        then {
            community add target-as;
            accept;
        }
    }
    term route-2 {
        from {
            route-filter 172.16.2.0/24 exact;
        }
        then {
            community add target-ip;
        }
    }
}
user@R3# show routing-options
router-id 192.168.0.3;
autonomous-system 64511;

If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the Routes on Device R1 | 501
- Verifying the Routes on Device R3 | 502
Confirm that the configuration is working properly.

**Verifying the Routes on Device R1**

**Purpose**
On Device R1, check the 172.16. routes in the routing table.

**Action**

```
user@R1> show route protocol static match-prefix 172.16.* detail
```

```
inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
172.16.1.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 835
 Address: 0x9260250
 Next-hop reference count: 19
 Next hop: 10.0.0.2 via fe-1/2/0.0, selected
 State: <Active Int Ext>
 Local AS: 64510
 Age: 2:06:08
 Task: RT
 Announcement bits (2): 2-KRT 3-BGP_RT_Background
 AS path: I
 Communities: 64510:1

172.16.2.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 835
 Address: 0x9260250
 Next-hop reference count: 19
 Next hop: 10.0.0.2 via fe-1/2/0.0, selected
 State: <Active Int Ext>
 Local AS: 64510
 Age: 2:06:08
 Task: RT
 Announcement bits (2): 2-KRT 3-BGP_RT_Background
 AS path: I
 Communities: 64510:2

172.16.3.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 835
 Address: 0x9260250
```
Next-hop reference count: 19
Next hop: 10.0.0.2 via fe-1/2/0.0, selected
State: <Active Int Ext>
Local AS: 64510
Age: 2:06:08
Task: RT
Announcement bits (2): 2-KRT 3-BGP_RT_Background
AS path: I
Communities: 64510:3

172.16.4.0/24 (1 entry, 1 announced)
*Static Preference: 5
Next hop type: Router, Next hop index: 835
Address: 0x9260250
Next-hop reference count: 19
Next hop: 10.0.0.2 via fe-1/2/0.0, selected
State: <Active Int Ext>
Local AS: 64510
Age: 2:06:08
Task: RT
Announcement bits (2): 2-KRT 3-BGP_RT_Background
AS path: I
Communities: 64510:4

Meaning
The output shows that the regular community values are attached to the routes.

NOTE: The communities are attached to static routes, thus demonstrating that communities can be attached to non-BGP routes.

Verifying the Routes on Device R3
Purpose
On Device R3, check the 172.16. routes in the routing table.
Action
user@R3> show route protocol bgp match-prefix 172.16.* detail
inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
172.16.1.0/24 (1 entry, 1 announced)
   *BGP  Preference: 170/-101
   Next hop type: Router, Next hop index: 611
   Address: 0x9260130
   Next-hop reference count: 8
   Source: 10.0.0.14
   Next hop: 10.0.0.14 via fe-1/2/3.0, selected
   State: <Active Ext>
   Local AS: 64511 Peer AS: 64510
   Age: 1:57:27
   Task: BGP_64510.10.0.0.14+54618
   Announcement bits (1): 0-KRT
   AS path: 64510 I
   Communities: 64510:1 target:64511:1
   Accepted
   Localpref: 100
   Router ID: 192.168.0.1

172.16.2.0/24 (1 entry, 1 announced)
   *BGP  Preference: 170/-101
   Next hop type: Router, Next hop index: 611
   Address: 0x9260130
   Next-hop reference count: 8
   Source: 10.0.0.14
   Next hop: 10.0.0.14 via fe-1/2/3.0, selected
   State: <Active Ext>
   Local AS: 64511 Peer AS: 64510
   Age: 1:57:27
   Task: BGP_64510.10.0.0.14+54618
   Announcement bits (1): 0-KRT
   AS path: 64510 I
   Communities: 64510:2 target:172.16.7.7:2
   Accepted
   Localpref: 100
   Router ID: 192.168.0.1

172.16.3.0/24 (1 entry, 1 announced)
   *BGP  Preference: 170/-101
   Next hop type: Router, Next hop index: 611
   Address: 0x9260130
Meaning
The output shows that the regular community values remain attached to the routes, and the extended community values are added.

RELATED DOCUMENTATION

- Example: Configuring Communities in a Routing Policy  | 476
- Example: Configuring a Routing Policy That Removes BGP Communities  | 526
- Example: Configuring a Routing Policy Based on the Number of BGP Communities  | 516
Example: Configuring BGP Large Communities

This example shows you to configure optional transitive path attribute - a 12-byte BGP large community that provides the most significant 4-byte value to encode autonomous system number as the global administrator and the remaining two 4-byte assigned numbers to encode the local values as defined in RFC 8092. You can configure BGP large community at [edit policy-options community community-name members] and [edit routing-options static route ip-address community] hierarchy levels. The BGP large community attributes format has four fields: large:global administrator:assigned number:assigned number.

Requirements

This example uses the following hardware and software components:

- Three MX Series routers
- Junos OS Release 17.3 or later running on all devices

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, Device R1 and Device R2 are OSPF neighbors in autonomous system (AS) 64510. Device R3 has an external BGP (EBGP) connection to Device R1. Device R2 has customer networks in the 172.16/16 address space, simulated with addresses on its loopback interface (lo0). Device R1 has static routes to several 172.16.x/24 networks, and attaches regular community values to these routes. Device R1 then uses an export policy to advertise the routes to Device R3. Device R3 receives these routes and uses an import policy to add large community values to the routes.
Topology

Figure 1 shows the sample network.

![Topology Diagram]

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces ge-0/0/0 unit 0 family inet address 10.0.0.1/30
set interfaces ge-0/0/1 unit 0 family inet address 10.0.0.14/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32 primary
set routing-options static route 172.16.1.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.1.0/24 community 64510:1
set routing-options static route 172.16.1.0/24 community large:64510:100:1
set routing-options static route 172.16.2.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.2.0/24 community 64510:2
set routing-options static route 172.16.2.0/24 community large:64510:200:2
set routing-options static route 172.16.3.0/24 next-hop 10.0.0.2
set routing-options static route 172.16.3.0/24 community 64510:3
set routing-options static route 172.16.4.0/24 next-hop 10.0.0.2
```
set routing-options static route 172.16.4.0/24 community 64510:4
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 64510
set protocols bgp group ext type external
set protocols bgp group ext export send-static
set protocols bgp group ext peer-as 64511
set protocols bgp group ext neighbor 10.0.0.13
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept

Device R2

set interfaces ge-0/0/0 unit 0 family inet address 10.0.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set interfaces lo0 unit 0 family inet address 172.16.1.1/32
set interfaces lo0 unit 0 family inet address 172.16.2.2/32
set interfaces lo0 unit 0 family inet address 172.16.3.3/32
set interfaces lo0 unit 0 family inet address 172.16.4.4/32
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64510
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface ge-0/0/0.0

Device R3

set interfaces ge-0/0/1 unit 0 family inet address 10.0.0.13/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 64511
set protocols bgp group to-R1 type external
set protocols bgp group to-R1 import set-large-comms
set protocols bgp group to-R1 peer-as 64510
set protocols bgp group to-R1 neighbor 10.0.0.14
set policy-options policy-statement set-large-comms term route-1 from route-filter 172.16.1.0/24 exact
set policy-options policy-statement set-large-comms term route-1 then community add large2-as
set policy-options policy-statement set-large-comms term route-1 then accept
set policy-options policy-statement set-large-comms term route-2 from route-filter 172.16.2.0/24 exact
set policy-options policy-statement set-large-comms term route-2 then community add large2-ip
set policy-options policy-statement set-large-comms term route-2 then accept
set policy-options policy-statement set-large-comms term route-3 from route-filter 172.16.3.0/24 exact
set policy-options policy-statement set-large-comms term route-3 then community add large1-as
set policy-options policy-statement set-large-comms term route-3 then accept
set policy-options policy-statement set-large-comms term route-4 from route-filter 172.16.4.0/24 exact
set policy-options policy-statement set-large-comms term route-4 then community add large1-ip
set policy-options policy-statement set-large-comms term route-4 then accept
set policy-options community large1-as members large:64511:3:1
set policy-options community large1-ip members large:7777:4:1
set policy-options community large2-as members large:64511:1:1
set policy-options community large2-ip members large:7777:2:1

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R3:

1. Configure the interfaces.

   [edit interfaces]
   set ge-0/0/1 unit 0 family inet address 10.0.0.13/30
   set lo0 unit 0 family inet address 192.168.0.3/32

2. Configure the autonomous system (AS) number and router ID.

   [edit routing-options]
   set router-id 192.168.0.3
   set autonomous-system 64511

3. Configure the EBGP connection to Device R1.
4. Configure the policy that adds large community values to the routes received from Device R1.

A large community uses a notation of large:global administrator:assigned number:assigned number. The specific community values can be anything that accomplishes your administrative goals, within certain parameters.

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
family inet {
    address 10.0.0.13/30;
}
}
}
lo0 {
    unit 0 {
        family inet {
            address 192.168.0.3/32;
        }
    }
}

user@R3# show protocols
bgp {
    group to-R1 {
        type external;
        import set-large-comms;
        peer-as 64510;
        neighbor 10.0.0.14;
    }
}

user@R3# show policy-options
policy-statement set-large-comms {
    term route-1 {
        from {
            route-filter 172.16.1.0/24 exact;
        }
        then {
            community add large2-as;
            accept;
        }
    }
    term route-2 {
        from {
            route-filter 172.16.2.0/24 exact;
        }
        then {
            community add large2-ip;
            accept;
        }
    }
}
term route-3 {
  from {
    route-filter 172.16.3.0/24 exact;
  }
  then {
    community add large1-as;
    accept;
  }
}

term route-4 {
  from {
    route-filter 172.16.4.0/24 exact;
  }
  then {
    community add large1-ip;
    accept;
  }
}
}

community large1-as members large:64511:3:1;
community large1-ip members large:7777:4:1;
community large2-as members large:64511:1:1;
community large2-ip members large:7777:2:1;

user@R3# show routing-options
router-id 192.168.0.3;
autonomous-system 64511;

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Verifying R1 | 512
- Verifying R3 | 514

Confirm that the configuration is working properly.
Verifying R1

Purpose
On Device R1, check the 172.16. routes in the routing table.

Action

```
user@R1> show route protocol static match-prefix 172.16.* detail

inet.0: 17 destinations, 17 routes (17 active, 0 holddown, 0 hidden)
172.16.0.0/12 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 341
 Address: 0xb7a0d90
 Next-hop reference count: 9
 Next hop: 10.49.127.254 via fxp0.0, selected
 Session Id: 0x0
 State: < Active NoReadvrt Int Ext >
 Local AS: 64510
 Age: 4d 22:38:07
 Validation State: unverified
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

172.16.1.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 580
 Address: 0xb7a1270
 Next-hop reference count: 9
 Next hop: 10.0.0.2 via ge-0/0/0.0, selected
 Session Id: 0x140
 State: < Active Int Ext >
 Local AS: 64510
 Age: 4d 19:02:23
 Validation State: unverified
 Task: RT
 Announcement bits (2): 0-KRT 4-BGP_RT_Background
 AS path: I
 Communities: 64510:1 large:64510:100:1

172.16.2.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 580
 Address: 0xb7a1270
```
Next-hop reference count: 9
Next hop: 10.0.0.2 via ge-0/0/0/0.0, selected
Session Id: 0x140
State: < Active Int Ext >
Local AS: 64510
Age: 4d 19:02:23
Validation State: unverified
Task: RT
Announcement bits (2): 0-KRT 4-BGP_RT_Background
AS path: I
Communities: 64510:2 large:64510:200:2

172.16.3.0/24 (1 entry, 1 announced)
  *Static Preference: 5
  Next hop type: Router, Next hop index: 580
  Address: 0xb7a1270
  Next-hop reference count: 9
  Next hop: 10.0.0.2 via ge-0/0/0/0.0, selected
  Session Id: 0x140
  State: < Active Int Ext >
  Local AS: 64510
  Age: 4d 22:17:12
  Validation State: unverified
  Task: RT
  Announcement bits (2): 0-KRT 4-BGP_RT_Background
  AS path: I
  Communities: 64510:3

172.16.4.0/24 (1 entry, 1 announced)
  *Static Preference: 5
  Next hop type: Router, Next hop index: 580
  Address: 0xb7a1270
  Next-hop reference count: 9
  Next hop: 10.0.0.2 via ge-0/0/0/0.0, selected
  Session Id: 0x140
  State: < Active Int Ext >
  Local AS: 64510
  Age: 4d 22:17:12
  Validation State: unverified
  Task: RT
  Announcement bits (2): 0-KRT 4-BGP_RT_Background
  AS path: I
  Communities: 64510:4
Meaning
The output shows that the regular community and large community values are attached to the routes.

NOTE: The communities are attached to static routes, thus demonstrating that communities can be attached to non-BGP routes.

Verifying R3
Purpose
On Device R3, check the 172.16. routes in the routing table.

Action
user@R3> show route protocol bgp match-prefix 172.16.* detail

inet.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
172.16.1.0/24 (1 entry, 1 announced)
  *BGP  Preference: 170/-101
  Next hop type: Router, Next hop index: 581
  Address: 0xb7a10f0
  Next-hop reference count: 8
  Source: 10.0.0.14
  Next hop: 10.0.0.14 via ge-0/0/1.0, selected
  Session Id: 0x140
  State: < Active Ext >
  Local AS: 64511 Peer AS: 64510
  Age: 3d 16:36:18
  Validation State: unverified
  Task: BGP_64510.10.0.0.14
  Announcement bits (1): 0-KRT
  AS path: 64510 I
  Communities: 64510:1 large:64510:100:1 large:64511:1:1
  Accepted
  Localpref: 100
  Router ID: 192.168.0.1
172.16.2.0/24 (1 entry, 1 announced)
   *BGP  Preference: 170/-101
   Next hop type: Router, Next hop index: 581
   Address: 0xb7a10f0
   Next-hop reference count: 8
   Source: 10.0.0.14
   Next hop: 10.0.0.14 via ge-0/0/1.0, selected
   Session Id: 0x140
   State: < Active Ext >
   Local AS: 64511 Peer AS: 64510
   Age: 3d 16:36:18
   Validation State: unverified
   Task: BGP_64510.10.0.0.14
   Announcement bits (1): 0-KRT
   AS path: 64510 I
   Communities: 64510:2 large:7777:2:1 large:64510:200:2 Accepted
   Localpref: 100
   Router ID: 192.168.0.1

172.16.3.0/24 (1 entry, 1 announced)
   *BGP  Preference: 170/-101
   Next hop type: Router, Next hop index: 581
   Address: 0xb7a10f0
   Next-hop reference count: 8
   Source: 10.0.0.14
   Next hop: 10.0.0.14 via ge-0/0/1.0, selected
   Session Id: 0x140
   State: < Active Ext >
   Local AS: 64511 Peer AS: 64510
   Age: 3d 16:36:18
   Validation State: unverified
   Task: BGP_64510.10.0.0.14
   Announcement bits (1): 0-KRT
   AS path: 64510 I
   Communities: 64510:3 large:64511:3:1 Accepted
   Localpref: 100
   Router ID: 192.168.0.1

172.16.4.0/24 (1 entry, 1 announced)
   *BGP  Preference: 170/-101
   Next hop type: Router, Next hop index: 581
   Address: 0xb7a10f0
Next-hop reference count: 8
Source: 10.0.0.14
Next hop: 10.0.0.14 via ge-0/0/1.0, selected
Session Id: 0x140
State: < Active Ext >
Local AS: 64511 Peer AS: 64510
Age: 3d 16:36:18
Validation State: unverified
Task: BGP_64510.10.0.0.14
Announcement bits (1): 0-KRT
AS path: 64510 I
Communities: 64510:4 large:7777:4:1
Accepted
Localpref: 100
Router ID: 192.168.0.1
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
inet6.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

Meaning
The output shows that the regular community values remain attached to the routes, and the large community values are added.

RELATED DOCUMENTATION

- Understanding How to Define BGP Communities and Extended Communities | 463
- community | 2006

Example: Configuring a Routing Policy Based on the Number of BGP Communities

IN THIS SECTION

- Requirements | 517
- Overview | 517
This example shows how to create a policy that accepts BGP routes based on the number of BGP communities.

**Requirements**

No special configuration beyond device initialization is required before you configure this example.

**Overview**

This example shows two routing devices with an external BGP (EBGP) connection between them. Device R2 uses the BGP session to send two static routes to Device R1. On Device R1, an import policy specifies that the BGP-received routes can contain up to five communities to be considered a match. For example, if a route contains three communities, it is considered a match and is accepted. If a route contains six or more communities, it is considered a nonmatch and is rejected.

It is important to remember that the default policy for EBGP is to accept all routes. To ensure that the nonmatching routes are rejected, you must include a *then reject* action at the end of the policy definition.

**Topology**

Figure 34 on page 517 shows the sample network.

Figure 34: BGP Policy with a Limit on the Number of Communities Accepted

**Configuration**

**CLI Quick Configuration**
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

**Device R1**

```plaintext
set interfaces fe-1/1/0 unit 0 description to-R2
set interfaces fe-1/1/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group external-peers type external
set protocols bgp group external-peers peer-as 2
set protocols bgp group external-peers neighbor 10.0.0.2 import import-communities
set policy-options policy-statement import-communities term 1 from protocol bgp
set policy-options policy-statement import-communities term 1 from community-count 5 orlower
set policy-options policy-statement import-communities term 1 then accept
set policy-options policy-statement import-communities term 2 then reject
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 1
```

**Device R2**

```plaintext
set interfaces fe-1/1/0 unit 0 description to-R1
set interfaces fe-1/1/0 unit 0 family inet address 10.0.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group external-peers type external
set protocols bgp group external-peers export statics
set protocols bgp group external-peers peer-as 1
set protocols bgp group external-peers neighbor 10.0.0.1
set policy-options policy-statement statics from protocol static
set policy-options policy-statement statics then community add 1
set policy-options policy-statement statics then accept
set policy-options community 1 members 2:1
set policy-options community 1 members 2:2
set policy-options community 1 members 2:3
set policy-options community 1 members 2:4
set policy-options community 1 members 2:5
set policy-options community 1 members 2:6
set policy-options community 1 members 2:7
set policy-options community 1 members 2:8
set policy-options community 1 members 2:9
```
Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the interfaces.

   [edit interfaces]
   user@R1# set fe-1/1/0 unit 0 description to-R2
   user@R1# set fe-1/1/0 unit 0 family inet address 10.0.0.1/30
   user@R1# set lo0 unit 0 family inet address 192.168.0.1/32

2. Configure BGP.

   Apply the import policy to the BGP peering session with Device R2.

   [edit protocols bgp group external-peers]
   user@R1# set type external
   user@R1# set peer-as 2
   user@R1# set neighbor 10.0.0.2 import import-communities

3. Configure the routing policy that sends direct routes.

   [edit policy-options policy-statement import-communities]
   user@R1# set term 1 from protocol bgp
   user@R1# set term 1 from community-count 5 orlower
   user@R1# set term 1 then accept
   user@R1# set term 2 then reject
4. Configure the autonomous system (AS) number and the router ID.

```
[edit routing-options]
user@R1# set router-id 192.168.0.1
user@R1# set autonomous-system 1
```

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the *CLI User Guide*.

To configure Device R2:

1. Configure the interfaces.

```
[edit interfaces]
user@R2# set fe-1/1/0 unit 0 description to-R1
user@R2# set fe-1/1/0 unit 0 family inet address 10.0.0.2/30
user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
```

2. Configure the router ID and the autonomous system (AS) number.

```
[edit routing-options]
user@R2# set router-id 192.168.0.3
user@R2# set autonomous-system 2
```

3. Configure BGP.

```
[edit protocols bgp group external-peers]
user@R2# set type external
user@R2# set peer-as 1
user@R2# set neighbor 10.0.0.1
```

4. Configure multiple communities, or configure a single community with multiple members.

```
[edit policy-options community 1]
user@R2# set members 2:1
user@R2# set members 2:2
user@R2# set members 2:3
user@R2# set members 2:4
user@R2# set members 2:5
```
5. Configure the static routes.

    [edit routing-options static]
    user@R2# set route 10.2.0.0/16 reject
    user@R2# set route 10.2.0.0/16 install
    user@R2# set route 10.3.0.0/16 reject
    user@R2# set route 10.3.0.0/16 install

6. Configure a routing policy that advertises static routes into BGP and adds the BGP community to the routes.

    [edit policy-options policy-statement statics]
    user@R2# set from protocol static
    user@R2# set then community add 1
    user@R2# set then accept

7. Apply the export policy.

    [edit protocols bgp group external-peers]
    user@R2# set export statics

Results

From configuration mode, confirm your configuration by entering the show interfaces, show protocols, show policy-options, and show routing-options commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R1

    user@R1# show interfaces
    fe-1/1/0 {
        unit 0{
description to-R2:
family inet {
   address 10.0.0.1/30;
}
}
}
lo0 {
   unit 0 {
      family inet {
         address 192.168.0.1/32;
      }
   }
}
}

user@R1# show protocols
bgp {
   group external-peers {
      type external;
      peer-as 2;
      neighbor 10.0.0.2 {
         import import-communities;
      }
   }
}

user@R1# show policy-options
policy-statement import-communities {
   term 1 {
      from {
         protocol bgp;
         community-count 5 orlower;
      } then accept;
   }
   term 2 {
      then reject;
   }
}
Device R2

table

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show routing-options</code></td>
<td>router-id 192.168.0.1; autonomous-system 1;</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>fe-1/1/0 { unit 0 { description to-R1; family inet { address 10.0.0.2/30; } } } lo0 { unit 0 { family inet { address 192.168.0.2/32; } } }</td>
</tr>
<tr>
<td><code>show protocols</code></td>
<td>bgp { group external-peers { type external; export statics; peer-as 1; neighbor 10.0.0.1; } }</td>
</tr>
<tr>
<td><code>show policy-options</code></td>
<td>policy-statement statics { from protocol static; then { community add 1; accept; } }</td>
</tr>
</tbody>
</table>
user@R2# show routing-options
static {
  route 10.2.0.0/16 {
    reject;
    install;
  }
  route 10.3.0.0/16 {
    reject;
    install;
  }
}
router-id 192.168.0.3;
autonomous-system 2;

If you are done configuring the devices, enter **commit** from configuration mode.

**Verification**

Confirm that the configuration is working properly.

**Verifying the BGP Routes**

**Purpose**

Make sure that the routing table on Device R1 contains the expected BGP routes.

**Action**

1. On Device R1, run the **show route protocols bgp** command.

   ```
 user@R1> show route protocols bgp
 inet.0: 5 destinations, 5 routes (3 active, 0 holddown, 2 hidden)
   ```

2. On Device R1, change the **community-count** configuration in the import policy.

   ```
 [edit policy-options policy-statement import-communities term 1]
 user@R1# set from community-count 5 or higher
 user@R1# commit
   ```

3. On Device R1, run the **show route protocols bgp** command.
user@R1> **show route protocols bgp**

inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.2.0.0/16    *[BGP/170] 18:29:53, localpref 100
    AS path: 2 I, validation-state: unverified
    > to 10.0.0.2 via fe-1/1/0.0

10.3.0.0/16    *[BGP/170] 18:29:53, localpref 100
    AS path: 2 I, validation-state: unverified
    > to 10.0.0.2 via fe-1/1/0.0

4. On Device R1, run the **show route protocols bgp extensive** command to view the advertised communities.

user@R1> **show route protocols bgp extensive**

inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
10.2.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.2.0.0/16 -> {10.0.0.2}
   *BGP    Preference: 170/-101
    Next hop type: Router, Next hop index: 671
    Address: 0x9458270
    Next-hop reference count: 4
    Source: 10.0.0.2
    Next hop: 10.0.0.2 via fe-1/1/0.0, selected
    Session Id: 0x100001
    State: <Active Ext>
    Local AS: 1 Peer AS: 2
    Age: 18:56:10
    Validation State: unverified
    Task: BGP_2.10.0.0.2+179
    Announcement bits (1): 0-KRT
    AS path: 2 I
    **Communities: 2:1 2:2 2:3 2:4 2:5 2:6 2:7 2:8 2:9 2:10**
    Accepted
    Localpref: 100
    Router ID: 192.168.0.3

10.3.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.3.0.0/16 -> {10.0.0.2}
   *BGP    Preference: 170/-101
Meaning

The output shows that in Device R1’s routing table, the BGP routes sent from Device R2 are hidden. When the community-count setting in Device R1’s import policy is modified, the BGP routes are no longer hidden.

RELATED DOCUMENTATION

Example: Configuring a Routing Policy to Redistribute BGP Routes with a Specific Community Tag into IS-IS

Understanding External BGP Peering Sessions

Example: Configuring a Routing Policy That Removes BGP Communities

IN THIS SECTION

- Requirements | 527
- Overview | 527
- Configuration | 528
- Verification | 534
This example shows how to create a policy that accepts BGP routes, but removes BGP communities from the routes.

Requirements

No special configuration beyond device initialization is required before you configure this example.

Overview

This example shows two routing devices with an external BGP (EBGP) connection between them. Device R2 uses the BGP session to send two static routes to Device R1. On Device R1, an import policy specifies that all BGP communities must be removed from the routes.

By default, when communities are configured on EBGP peers, they are sent and accepted. To suppress the acceptance of communities received from a neighbor, you can remove all communities or a specified set of communities. When the result of a policy is an empty set of communities, the community attribute is not included. To remove all communities, first define a wildcard set of communities (here, the community is named **wild**):

```
[edit policy-options]
community wild members "*:*";
```

Then, in the routing policy statement, specify the **community delete** action:

```
[edit policy-options]
policy-statement policy-name {
 term term-name {
 then community delete wild;
 }
}
```

To suppress a particular community from any autonomous system (AS), define the community as **community wild members "*.community-value"**.

Topology

Figure 35 on page 528 shows the sample network.
Figure 35: BGP Policy That Removes Communities

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/1/0 unit 0 description to-R2
set interfaces fe-1/1/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group external-peers type external
set protocols bgp group external-peers peer-as 2
set protocols bgp group external-peers neighbor 10.0.0.2 import remove-communities
set policy-options policy-statement remove-communities term 1 from protocol bgp
set policy-options policy-statement remove-communities term 1 then community delete wild
set policy-options policy-statement remove-communities term 1 then accept
set policy-options policy-statement remove-communities term 2 then reject
set policy-options community wild members "*:*"
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 1
```

Device R2

```
set interfaces fe-1/1/0 unit 0 description to-R1
set interfaces fe-1/1/0 unit 0 family inet address 10.0.0.2/30
```
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group external-peers type external
set protocols bgp group external-peers export statics
set protocols bgp group external-peers peer-as 1
set protocols bgp group external-peers neighbor 10.0.0.1
set policy-options policy-statement statics from protocol static
set policy-options policy-statement statics then community add 1
set policy-options policy-statement statics then accept
set policy-options community 1 members 2:1
set policy-options community 1 members 2:2
set policy-options community 1 members 2:3
set policy-options community 1 members 2:4
set policy-options community 1 members 2:5
set policy-options community 1 members 2:6
set policy-options community 1 members 2:7
set policy-options community 1 members 2:8
set policy-options community 1 members 2:9
set policy-options community 1 members 2:10
set routing-options static route 10.2.0.0/16 reject
set routing-options static route 10.2.0.0/16 install
set routing-options static route 10.3.0.0/16 reject
set routing-options static route 10.3.0.0/16 install
set routing-options router-id 192.168.0.3
set routing-options autonomous-system 2

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the interfaces.

   [edit interfaces]
   user@R1# set fe-1/1/0 unit 0 description to-R2
   user@R1# set fe-1/1/0 unit 0 family inet address 10.0.0.1/30
   user@R1# set lo0 unit 0 family inet address 192.168.0.1/32

2. Configure BGP.

   Apply the import policy to the BGP peering session with Device R2.
3. Configure the routing policy that deletes communities.

```
[edit policy-options policy-statement remove-communities]
user@R1# set term 1 from protocol bgp
user@R1# set term 1 then community delete wild
user@R1# set term 1 then accept
user@R1# set term 2 then reject
```

4. Configure the autonomous system (AS) number and the router ID.

```
[edit routing-options]
user@R1# set router-id 192.168.0.1
user@R1# set autonomous-system 1
```

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the interfaces.

```
[edit interfaces]
user@R2# set fe-1/1/0 unit 0 description to-R1
user@R2# set fe-1/1/0 unit 0 family inet address 10.0.0.2/30
user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
```

2. Configure the router ID and the autonomous system (AS) number.

```
[edit routing-options]
user@R2# set router-id 192.168.0.3
user@R2# set autonomous-system 2
```

3. Configure BGP.
4. Configure multiple communities, or configure a single community with multiple members.

```
[edit policy-options community 1]
user@R2# set members 2:1
user@R2# set members 2:2
user@R2# set members 2:3
user@R2# set members 2:4
user@R2# set members 2:5
user@R2# set members 2:6
user@R2# set members 2:7
user@R2# set members 2:8
user@R2# set members 2:9
user@R2# set members 2:10
```

5. Configure the static routes.

```
[edit routing-options static]
user@R2# set route 10.2.0.0/16 reject
user@R2# set route 10.2.0.0/16 install
user@R2# set route 10.3.0.0/16 reject
user@R2# set route 10.3.0.0/16 install
```

6. Configure a routing policy that advertises static routes into BGP and adds the BGP community to the routes.

```
[edit policy-options policy-statement statics]
user@R2# set from protocol static
user@R2# set then community add 1
user@R2# set then accept
```

7. Apply the export policy.

```
[edit protocols bgp group external-peers]
user@R2# set export statics
```
Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R1

```
user@R1# show interfaces
fe-1/1/0 {
 unit 0 {
 description to-R2;
 family inet {
 address 10.0.0.1/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 192.168.0.1/32;
 }
 }
}
```

```
user@R1# show protocols
bgp {
 group external-peers {
 type external;
 peer-as 2;
 neighbor 10.0.0.2 {
 import remove-communities;
 }
 }
}
```

```
user@R1# show policy-options
policy-statement remove-communities {
 term 1 {
 from protocol bgp;
 then {
```
community delete wild;
accept;
}
}
term 2 {
then reject;
}
}
community wild members "*::*";

user@R1# show routing-options
router-id 192.168.0.1;
autonomous-system 1;

Device R2

user@R2# show interfaces
fe-1/1/0 {
    unit 0 {
        description to-R1;
        family inet {
            address 10.0.0.2/30;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 192.168.0.2/32;
        }
    }
}

user@R2# show protocols
bgp {
    group external-peers {
        type external;
        export statics;
        peer-as 1;
        neighbor 10.0.0.1;
    }
}
If you are done configuring the devices, enter **commit** from configuration mode.

**Verification**

Confirm that the configuration is working properly.

*Verifying the BGP Routes*

**Purpose**

Make sure that the routing table on Device R1 does not contain BGP communities.

**Action**

1. On Device R1, run the **show route protocols bgp extensive** command.

    ```
 user@R1> show route protocols bgp extensive
    ```
2. On Device R1, deactivate the **community remove** configuration in the import policy.
3. On Device R1, run the **show route protocols bgp extensive** command to view the advertised communities.

```bash
user@R1> show route protocols bgp extensive

inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
10.2.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.2.0.0/16 -> {10.0.0.2}
 *BGP Preference: 170/-101
 Next hop type: Router, Next hop index: 671
 Address: 0x9458270
 Next-hop reference count: 4
 Source: 10.0.0.2
 Next hop: 10.0.0.2 via lt-1/1/0.5, selected
 Session Id: 0x100001
 State: <Active Ext>
 Local AS: 1 Peer AS: 2
 Age: 20:40:53
 Validation State: unverified
 Task: BGP_2.10.0.0.2+179
 Announcement bits (1): 0-KRT
 AS path: 2 I
 Communities: 2:1 2:2 2:3 2:4 2:5 2:6 2:7 2:8 2:9 2:10
 Accepted
 Localpref: 100
 Router ID: 192.168.0.3

10.3.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.3.0.0/16 -> {10.0.0.2}
 *BGP Preference: 170/-101
 Next hop type: Router, Next hop index: 671
 Address: 0x9458270
 Next-hop reference count: 4
 Source: 10.0.0.2
 Next hop: 10.0.0.2 via lt-1/1/0.5, selected
 Session Id: 0x100001
 State: <Active Ext>
 Local AS: 1 Peer AS: 2
```
Meaning
The output shows that in Device R1’s routing table, the communities are suppressed in the BGP routes sent from Device R2. When the community remove setting in Device R1’s import policy is deactivated, the communities are no longer suppressed.

RELATED DOCUMENTATION

- Example: Configuring a Routing Policy to Redistribute BGP Routes with a Specific Community Tag into IS-IS
- Understanding External BGP Peering Sessions
Increasing Network Stability with BGP Route Flapping Actions

Understanding Damping Parameters

BGP route flapping describes the situation in which BGP systems send an excessive number of update messages to advertise network reachability information. BGP flap damping is a method of reducing the number of update messages sent between BGP peers, thereby reducing the load on these peers, without adversely affecting the route convergence time for stable routes.

Flap damping reduces the number of update messages by marking routes as ineligible for selection as the active or preferable route. Marking routes in this way leads to some delay, or suppression, in the propagation of route information, but the result is increased network stability. You typically apply flap damping to external BGP (EBGP) routes (routes in different ASs). You can also apply flap damping within a confederation, between confederation member ASs. Because routing consistency within an AS is important, do not apply flap damping to internal BGP (IBGP) routes. (If you do, it is ignored.)

There is an exception that rule. Starting in Junos OS Release 12.2, you can apply flap damping at the address family level. In a Junos OS Release 12.2 or later installation, when you apply flap damping at the address family level, it works for both IBGP and EBGP.

By default, route flap damping is not enabled. Damping is applied to external peers and to peers at confederation boundaries.

When you enable damping, default parameters are applied, as summarized in Table 25 on page 540.
Table 25: Damping Parameters

<table>
<thead>
<tr>
<th>Damping Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>half-life minutes</td>
<td>Decay half-life—Number of minutes after which an arbitrary value is halved if a route stays stable.</td>
<td>15 (minutes)</td>
<td>1 through 45</td>
</tr>
<tr>
<td>max-suppress minutes</td>
<td>Maximum hold-down time for a route, in minutes.</td>
<td>60 (minutes)</td>
<td>1 through 720</td>
</tr>
<tr>
<td>reuse</td>
<td>Reuse threshold—Arbitrary value below which a suppressed route can be used again.</td>
<td>750</td>
<td>1 through 20,000</td>
</tr>
<tr>
<td>suppress</td>
<td>Cutoff (suppression) threshold—Arbitrary value above which a route can no longer be used or included in advertisements.</td>
<td>3000</td>
<td>1 through 20,000</td>
</tr>
</tbody>
</table>

To change the default BGP flap damping values, you define actions by creating a named set of damping parameters and including it in a routing policy with the damping action. For the damping routing policy to work, you also must enable BGP route flap damping.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>Starting in Junos OS Release 12.2, you can apply flap damping at the address family level.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Understanding Routing Policies | 21

Using Routing Policies to Damp BGP Route Flapping

IN THIS SECTION

- Configuring BGP Flap Damping Parameters | 541
- Specifying BGP Flap Damping as the Action in Routing Policy Terms | 544
BGP route flapping describes the situation in which BGP systems send an excessive number of update messages to advertise network reachability information. BGP flap damping is a way to reduce the number of update messages sent between BGP peers, thereby reducing the load on these peers without adversely affecting the route convergence time.

Flap damping reduces the number of update messages by marking routes as ineligible for selection as the active or preferable route. Doing this leads to some delay, or suppression, in the propagation of route information, but the result is increased network stability. You typically apply flap damping to external BGP (EBGP) routes (that is, to routes in different ASs). You can also apply it within a confederation, between confederation member ASs. Because routing consistency within an AS is important, do not apply flap damping to IBGP routes. (If you do, it is ignored.)

BGP flap damping is defined in RFC 2439, BGP Route Flap Damping.

To effect changes to the default BGP flap damping values, you define actions by creating a named set of damping parameters and including it in a routing policy with the damping action (described in “Configuring Actions That Manipulate Route Characteristics” on page 71). For the damping routing policy to work, you also must enable BGP route flap damping.

The following sections discuss the following topics:

**Configuring BGP Flap Damping Parameters**

To define damping parameters, include the damping statement:

```
[edit policy-options]
 damping name {
 disable;
 half-life minutes;
 max-suppress minutes;
 reuse number;
 suppress number;
 }
```

The name identifies the group of damping parameters. It can contain letters, numbers, and hyphens (-) and can be up to 255 characters. To include spaces in the name, enclose the entire name in quotation marks (" ").
You can specify one or more of the damping parameters described in Table 26 on page 542.

Table 26: Damping Parameters

<table>
<thead>
<tr>
<th>Damping Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>half-life minutes</td>
<td>Decay half-life, in minutes</td>
<td>15 minutes</td>
<td>1 through 45 minutes</td>
</tr>
<tr>
<td>max-suppress minutes</td>
<td>Maximum hold-down time, in minutes</td>
<td>60 minutes</td>
<td>1 through 720 minutes</td>
</tr>
<tr>
<td>reuse</td>
<td>Reuse threshold</td>
<td>750 (unitless)</td>
<td>1 through 20,000 (unitless)</td>
</tr>
<tr>
<td>suppress</td>
<td>Cutoff (suppression) threshold</td>
<td>3000 (unitless)</td>
<td>1 through 20,000 (unitless)</td>
</tr>
</tbody>
</table>

If you do not specify one or more of the damping parameters, the default value of the parameter is used.

To understand how to configure these parameters, you need to understand how damping suppresses routes. How long a route can be suppressed is based on a figure of merit, which is a value that correlates to the probability of future instability of a route. Routes with higher figure-of-merit values are suppressed for longer periods of time. The figure-of-merit value decays exponentially over time.

A figure-of-merit value of zero is assigned to each new route. The value is increased each time the route is withdrawn or readvertised, or when one of its path attributes changes. With each incident of instability, the value increases as follows:

- Route is withdrawn—1000
- Route is readvertised—1000
- Route’s path attributes change—500

**NOTE:** Other vendors’ implementations for figure-of-merit increase the value only when a route is withdrawn. The Junos OS implementation for figure-of-merit increases the value for both route withdrawal and route readvertisement. To accommodate other implementations for figure-of-merit, multiply the reuse and suppress threshold values by 2.

When a route’s figure-of-merit value reaches a particular level, called the cutoff or suppression threshold, the route is suppressed. If a route is suppressed, the routing table no longer installs the route into the forwarding table and no longer exports this route to any of the routing protocols. By default, a route is
suppressed when its figure-of-merit value reaches 3000. To modify this default, include the `suppress` option at the `[edit policy-options damping name]` hierarchy level.

If a route has flapped, but then becomes stable so that none of the incidents listed previously occur within a configurable amount of time, the figure-of-merit value for the route decays exponentially. The default half-life is 15 minutes. For example, for a route with a figure-of-merit value of 1500, if no incidents occur, its figure-of-merit value is reduced to 750 after 15 minutes and to 375 after another 15 minutes. To modify the default half-life, include the `half-life` option at the `[edit policy-options damping name]` hierarchy level.

**NOTE:** For the half-life, configure a value that is less than the max-suppress. If you do not, the configuration is rejected.

A suppressed route becomes reusable when its figure-of-merit value decays to a value below a reuse threshold, thus allowing routes that experience transient instability to once again be considered valid. The default reuse threshold is 750. When the figure-of-merit value passes below the reuse threshold, the route once again is considered usable and can be installed in the forwarding table and exported from the routing table. To modify the default reuse threshold, include the `reuse` option at the `[edit policy-options damping name]` hierarchy level.

The maximum suppression time provides an upper bound on the time that a route can remain suppressed. The default maximum suppression time is 60 minutes. To modify the default, include the `max-suppress` option at the `[edit policy-options damping name]` hierarchy level.

**NOTE:** For the max-suppress, configure a value that is greater than the half-life. If you do not, the configuration is rejected.

A route’s figure-of-merit value stops increasing when it reaches a maximum suppression threshold, which is determined based on the route’s suppression threshold level, half-life, reuse threshold, and maximum hold-down time.

The merit ceiling, $\varepsilon_c$, which is the maximum merit that a flapping route can collect, is calculated using the following formula:

$$\varepsilon_c \leq \varepsilon_r e^{(t/\lambda) \ln 2}$$

$\varepsilon_r$ is the figure-of-merit reuse threshold, $t$ is the maximum hold-down time in minutes, and $\lambda$ is the half-life in minutes. For example, if you use the default figure-of-merit values in this formula, but use a half-life of 30 minutes, the calculation is as follows:

$$\varepsilon_c \leq 750 e^{(60/30) \ln 2}$$

$$\varepsilon_c \leq 3000$$
NOTE: The cutoff threshold, which you configure using the `suppress` option, must be less than or equal to the merit ceiling, $\varepsilon$. If the configured cutoff threshold or the default cutoff threshold is greater than the merit ceiling, the route is never suppressed and damping never occurs.

To display figure-of-merit information, use the `show policy damping` command.

A route that has been assigned a figure of merit is considered to have a damping state. To display the current damping information on the routing device, use the `show route detail` command.

**Specifying BGP Flap Damping as the Action in Routing Policy Terms**

To BGP flap damping as the action in a routing policy term, include the `damping` statement and the name of the configured damping parameters either as an option of the `route-filter` statement at the `[edit policy-options policy-statement policy-name term term-name from]` hierarchy level:

```
[edit policy-options policy-statement policy-name term term-name from]
route-filter destination-prefix match-type {
 damping damping-parameters;
}
```

or at the `[edit policy-options policy-statement policy-name term term-name then]` hierarchy level:

```
[edit policy-options policy-statement policy-name term term-name then]
damping damping-parameters;
```

**Disabling Damping for Specific Address Prefixes**

Normally, you enable or disable damping on a per-peer basis. However, you can disable damping for a specific prefix received from a peer by including the `disable` option:

```
[edit policy-options damping name]
disable;
```

**Disabling Damping for a Specific Address Prefix**

In this routing policy example, although damping is enabled for the peer, the `damping none` statement specifies that damping be disabled for prefix 10.0.0.0/8 in Policy-A. This route is not damped because the routing policy statement named Policy-A filters on the prefix 10.0.0.0/8 and the action points to the `damping` statement named `none`. The remaining prefixes are damped using the default parameters.
# Configuring BGP Flap Damping

Enable BGP flap damping and configure damping parameters:

```
[edit]
policy-options {
 policy-statement Policy-A {
 from {
 route-filter 10.0.0.0/8 exact;
 }
 then damping none;
 }
 damping none {
 disable;
 }
}
```

```
[edit]
routing-options {
 autonomous-system 666;
}
protocols {
 bgp {
 damping;
 group group1 {
 traceoptions {
 file bgp-log size 1m files 10;
 flag damping;
 }
 import damp;
 type external;
 peer-as 10458;
 neighbor 192.168.2.30;
 }
 }
}
policy-options {
 policy-statement damp {
 from {
 route-filter 192.168.0.0/32 exact {
 damping high;
 accept;
 }
 }
 }
```

```
route-filter 172.16.0.0/32 exact {
 damping medium;
 accept;
}
route-filter 10.0.0.0/8 exact {
 damping none;
 accept;
}

damping high {
 half-life 30;
 suppress 3000;
 reuse 750;
 max-suppress 60;
}
damping medium {
 half-life 15;
 suppress 3000;
 reuse 750;
 max-suppress 45;
}
damping none {
 disable;
}

To display damping parameters for this configuration, use the show policy damping command:

user@host> show policy damping

Damping information for "high":
 Halflife: 30 minutes
 Reuse merit: 750 Suppress/cutoff merit: 3000
 Maximum suppress time: 60 minutes
 Computed values:
 Merit ceiling: 3008
 Maximum decay: 24933

Damping information for "medium":
 Halflife: 15 minutes
 Reuse merit: 750 Suppress/cutoff merit: 3000
 Maximum suppress time: 45 minutes
 Computed values:
 Merit ceiling: 6024
This example shows how to configure damping parameters.

Requirements

Before you begin, configure router interfaces and configure routing protocols.

Overview

This example has three routing devices. Device R2 has external BGP (EBGP) connections with Device R1 and Device R3.

Device R1 and Device R3 have some static routes configured for testing purposes, and these static routes are advertised through BGP to Device R2.

Device R2 damps routes received from Device R1 and Device R3 according to these criteria:
• Damp all prefixes with a mask length equal to or greater than 17 more aggressively than routes with a mask length between 9 and 16.

• Damp routes with a mask length between 0 and 8, inclusive, less than routes with a mask length greater than 8.

• Do not damp the 10.128.0.0/9 prefix at all.

The routing policy is evaluated when routes are being exported from the routing table into the forwarding table. Only the active routes are exported from the routing table.

Figure 36 on page 548 shows the sample network.

Figure 36: BGP Flap Damping Topology

"CLI Quick Configuration" on page 548 shows the configuration for all of the devices in Figure 36 on page 548.

The section "Step-by-Step Procedure" on page 550 describes the steps on Device R2.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct-and-static
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.2
set policy-options policy-statement send-direct-and-static term 1 from protocol direct
set policy-options policy-statement send-direct-and-static term 1 from protocol static
set policy-options policy-statement send-direct-and-static term 1 then accept
```
set routing-options static route 172.16.0.0/16 reject
set routing-options static route 172.16.128.0/17 reject
set routing-options static route 172.16.192.0/20 reject
set routing-options static route 10.0.0.0/9 reject
set routing-options static route 172.16.233.0/7 reject
set routing-options static route 10.224.0.0/11 reject
set routing-options static route 0.0.0.0/0 reject
set routing-options autonomous-system 100

Device R2

set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp damping
set protocols bgp group ext type external
set protocols bgp group ext import damp
set protocols bgp group ext export send-direct
set protocols bgp group ext neighbor 10.0.0.1 peer-as 100
set protocols bgp group ext neighbor 10.1.0.2 peer-as 300
set policy-options policy-statement damp term 1 from route-filter 10.128.0.0/9 exact damping dry
damping timid
set policy-options policy-statement damp term 1 from route-filter 0.0.0.0/0 prefix-length-range /0-/8
 /17-/32 damping aggressive
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options damping aggressive half-life 30
set policy-options damping aggressive suppress 2500
set policy-options damping timid half-life 5
set policy-options damping dry disable
set routing-options autonomous-system 200

Device R3

set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct-and-static
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.1.0.1
set policy-options policy-statement send-direct-and-static term 1 from protocol direct
set policy-options policy-statement send-direct-and-static term 1 from protocol static
set policy-options policy-statement send-direct-and-static term 1 then accept
set routing-options static route 10.128.0.0/9 reject
set routing-options autonomous-system 300

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure damping parameters:

1. Configure the interfaces.

 [edit interfaces]
 user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
 user@R2# set fe-1/2/1 unit 0 family inet address 10.1.0.1/30
 user@R2# set lo0 unit 0 family inet address 192.168.0.2/32

2. Configure the BGP neighbors.

 [edit protocols bgp group ext]
 user@R2# set type external
 user@R2# set neighbor 10.0.0.1 peer-as 100
 user@R2# set neighbor 10.1.0.2 peer-as 300

3. Create and configure the damping parameter groups.

 [edit policy-options]
 user@R2# set damping aggressive half-life 30
 user@R2# set damping aggressive suppress 2500
 user@R2# set damping timid half-life 5
 user@R2# set damping dry disable
4. Configure the damping policy.

```
[edit policy-options policy-statement damp term 1]
user@R2# set from route-filter 10.128.0.0/9 exact damping dry
user@R2# set from route-filter 0.0.0.0/0 prefix-length-range /0-/8 damping timid
user@R2# set from route-filter 0.0.0.0/0 prefix-length-range /17-/32 damping aggressive
```

5. Enable damping for BGP.

```
[edit protocols bgp]
user@R2# set damping
```

6. Apply the policy as an import policy for the BGP neighbor.

```
[edit protocols bgp group ext]
user@R2# set import damp
```

NOTE: You can refer to the same routing policy one or more times in the same or different import statements.

7. Configure an export policy.

```
[edit policy-options policy-statement send-direct term 1]
user@R2# set from protocol direct
user@R2# set then accept
```

8. Apply the export policy.

```
[edit protocols bgp group ext]
user@R2# set export send-direct
```

9. Configure the autonomous system (AS) number.

```
[edit routing-options]
user@R2# set autonomous-system 200
```
Results
From configuration mode, confirm your configuration by issuing the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R2# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet {
            address 10.0.0.2/30;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        family inet {
            address 10.1.0.1/30;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 192.168.0.2/32;
        }
    }
}
```

```
user@R2# show protocols
bgp {
    damping;
    group ext {
        type external;
        import damp;
        export send-direct;
        neighbor 10.0.0.1 {
            peer-as 100;
        }
        neighbor 10.1.0.2 {
            peer-as 300;
        }
    }
}
```
user@R2# show policy-options
policy-statement damp {
 term 1 {
 from {
 route-filter 10.128.0.0/9 exact damping dry;
 route-filter 0.0.0.0/0 prefix-length-range /0-/8 damping timid;
 route-filter 0.0.0.0/0 prefix-length-range /17-/32 damping aggressive;
 }
 }
}
policy-statement send-direct {
 term 1 {
 from protocol direct;
 then accept;
 }
}
damping aggressive {
 half-life 30;
 suppress 2500;
}
damping timid {
 half-life 5;
}
damping dry {
 disable;
}

user@R2# show routing-options
autonomous-system 200;

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Causing Some Routes to Flap | 554
- Checking the Route Flaps | 554
- Verifying Route Flap Damping | 555
- Displaying the Details of a Damped Route | 556
Confirm that the configuration is working properly.

Causing Some Routes to Flap

Purpose
To verify your route flap damping policy, some routes must flap. Having a live Internet feed almost guarantees that a certain number of route flaps will be present. If you have control over a remote system that is advertising the routes, you can modify the advertising router’s policy to effect the advertisement and withdrawal of all routes or of a given prefix. In a test environment, you can cause routes to flap by clearing the BGP neighbors or by restarting the routing process on the BGP neighbors, as shown here.

Action
From operational mode on Device R1 and Device R3, enter the `restart routing` command.

```
user@R1> restart routing
R1 started, pid 10474
```

```
user@R3> restart routing
R3 started, pid 10478
```

Meaning
On Device R2, all of the routes from the neighbors are withdrawn and re-advertised.

Checking the Route Flaps

Purpose
View the number of neighbor flaps.
Action
From operational mode, enter the `show bgp summary` command.

```
user@R2> show bgp summary
```

<table>
<thead>
<tr>
<th>Groups: 1 Peers: 2 Down peers: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>inet.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peer</th>
<th>AS</th>
<th>InPkt</th>
<th>OutPkt</th>
<th>OutQ</th>
<th>Flaps</th>
<th>Last Up/Dwn</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>2:50</td>
</tr>
<tr>
<td>0/9/0/9</td>
<td>0/0/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.0.2</td>
<td>300</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>4</td>
<td>2:53</td>
</tr>
<tr>
<td>1/3/1/2</td>
<td>0/0/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
This output was captured after the routing process was restarted on Device R2’s neighbors four times.

Verifying Route Flap Damping

Purpose
Verify that routes are being hidden due to damping.

Action
From operational mode, enter the `show route damping suppressed` command.

```
user@R2> show route damping suppressed
```

```
inet.0: 15 destinations, 17 routes (6 active, 0 holddown, **11 hidden**)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0   [BGP ] 00:00:12, localpref 100
            AS path: 100 I, validation-state: unverified
            > to 10.0.0.1 via fe-1/2/0.0

10.0.0.0/9  [BGP ] 00:00:12, localpref 100
            AS path: 100 I, validation-state: unverified
            > to 10.0.0.1 via fe-1/2/0.0

10.0.0.0/30 [BGP ] 00:00:12, localpref 100
            AS path: 100 I, validation-state: unverified
            > to 10.0.0.1 via fe-1/2/0.0
```
Meaning
The output shows some routing instability. Eleven routes are hidden due to damping.

Displaying the Details of a Damped Route

Purpose
Display the details of damped routes.

Action
From operational mode, enter the `show route damping suppressed 172.16.192.0/20 detail` command.

```
user@R2> show route damping suppressed 172.16.192.0/20 detail

inet.0: 15 destinations, 17 routes (6 active, 0 holddown, 11 hidden)
172.16.192.0/20 (1 entry, 0 announced)
  BGP         /-101
      Next hop type: Router, Next hop index: 758
```
Address: 0x9414484
Next-hop reference count: 9
Source: 10.0.0.1
Next hop: 10.0.0.1 via fe-1/2/0.0, selected
Session Id: 0x100201
State: <Hidden Ext>
Local AS: 200 Peer AS: 100
Age: 52
Validation State: unverified
Task: BGP_100.10.0.0.1+55922
AS path: 100 I
Localpref: 100
Router ID: 192.168.0.1
Merit (last update/now): 4278/4196
damping-parameters: aggressive
Last update: 00:00:52 First update: 01:01:55
Flaps: 8
Suppressed. Reusable in: 01:14:40
Preference will be: 170

Meaning
This output indicates that the displayed route has a mask length that is equal to or greater than /17, and confirms that it has been correctly mapped to the aggressive damping profile. You can also see the route’s current (and last) figure of merit value, and when the route is expected to become active if it remains stable.

Verifying That Default Damping Parameters Are in Effect

Purpose
Locating a damped route with a /16 mask confirms that the default parameters are in effect.

Action
From operational mode, enter the `show route damping suppressed detail | match 0/16` command.

user@R2> show route damping suppressed detail | match 0/16

172.16.0.0/16 (1 entry, 0 announced)

user@R2> show route damping suppressed 172.16.0.0/16 detail
inet.0: 15 destinations, 17 routes (6 active, 0 holddown, 11 hidden)
172.16.0.0/16 (1 entry, 0 announced)

BGP /-101

Next hop type: Router, Next hop index: 758
Address: 0x9414484
Next-hop reference count: 9
Source: 10.0.0.1
Next hop: 10.0.0.1 via fe-1/2/0.0, selected
Session Id: 0x100201
State: <Hidden Ext>
Local AS: 200 Peer AS: 100
Age: 1:58
Validation State: unverified
Task: BGP_100.10.0.0.1+55922
AS path: 100 I
Localpref: 100
Router ID: 192.168.0.1
Merit (last update/now): 3486/3202

Default damping parameters used

Last update: 00:01:58 First update: 01:03:01
Flaps: 8
Suppressed. Reusable in: 00:31:40
Preference will be: 170

Meaning

Routes with a /16 mask are not impacted by the custom damping rules. Therefore, the default damping rules are in effect.

To repeat, the custom rules are as follows:

- Damp all prefixes with a mask length equal to or greater than 17 more aggressively than routes with a mask length between 9 and 16.
- Damp routes with a mask length between 0 and 8, inclusive, less than routes with a mask length greater than 8.
- Do not damp the 10.128.0.0/9 prefix at all.

Filtering the Damping Information

Purpose

Use OR groupings or cascaded piping to simplify the determination of what damping profile is being used for routes with a given mask length.
Action
From operational mode, enter the `show route damping suppressed` command.

```
user@R2> show route damping suppressed detail | match "0 announced | damp"
```

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Entries</th>
<th>Announced</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: timid</td>
</tr>
<tr>
<td>10.0.0.0/9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default damping parameters used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: aggressive</td>
</tr>
<tr>
<td>10.224.0.0/11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default damping parameters used</td>
</tr>
<tr>
<td>172.16.0.0/16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default damping parameters used</td>
</tr>
<tr>
<td>172.16.128.0/17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: aggressive</td>
</tr>
<tr>
<td>172.16.192.0/20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: aggressive</td>
</tr>
<tr>
<td>192.168.0.1/32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: aggressive</td>
</tr>
<tr>
<td>192.168.0.3/32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: aggressive</td>
</tr>
<tr>
<td>172.16.233.0/7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>damping-parameters: timid</td>
</tr>
</tbody>
</table>

Meaning
When you are satisfied that your EBGP routes are correctly associated with a damping profile, you can issue the `clear bgp damping` operational mode command to restore an active status to your damped routes, which will return your connectivity to normal operation.

RELATED DOCUMENTATION

- Understanding Damping Parameters | 539
- Using Routing Policies to Damp BGP Route Flapping | 540
Example: Configuring BGP Route Flap Damping Based on the MBGP MVPN Address Family

This example shows how to configure an multiprotocol BGP multicast VPN (also called Next-Generation MVPN) with BGP route flap damping.

Requirements

This example uses Junos OS Release 12.2. BGP route flap damping support for MBGP MVPN, specifically, and on an address family basis, in general, is introduced in Junos OS Release 12.2.

Overview

BGP route flap damping helps to diminish route instability caused by routes being repeatedly withdrawn and readvertised when a link is intermittently failing.

This example uses the default damping parameters and demonstrates an MBGP MVPN scenario with three provider edge (PE) routing devices, three customer edge (CE) routing devices, and one provider (P) routing device.

Figure 37 on page 561 shows the topology used in this example.
Figure 37: MBGP MVPN with BGP Route Flap Damping

On PE Device R4, BGP route flap damping is configured for address family **inet-mvpn**. A routing policy called **dampPolicy** uses the **nlri-route-type** match condition to damp only MVPN route types 3, 4, and 5. All other MVPN route types are not damped.

This example shows the full configuration on all devices in the "CLI Quick Configuration" on page 561 section. The "Configuring Device R4" on page 566 section shows the step-by-step configuration for PE Device R4.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces ge-1/2/0 unit 1 family inet address 10.1.1.1/30
set interfaces ge-1/2/0 unit 1 family mpls
set interfaces lo0 unit 1 family inet address 172.16.1.1/32
set protocols ospf area 0.0.0.0 interface lo0.1 passive
set protocols ospf area 0.0.0.0 interface ge-1/2/0.1
set protocols pim rp static address 172.16.100.1
set protocols pim interface all
set routing-options router-id 172.16.1.1
```

Device R2
set interfaces ge-1/2/0 unit 2 family inet address 10.1.1.2/30
set interfaces ge-1/2/0 unit 2 family mpls
set interfaces ge-1/2/1 unit 5 family inet address 10.1.1.5/30
set interfaces ge-1/2/1 unit 5 family mpls
set interfaces vt-1/2/0 unit 2 family inet
set interfaces lo0 unit 2 family inet address 172.16.1.2/32
set interfaces lo0 unit 102 family inet address 172.16.100.1/32
set protocols mpls interface ge-1/2/1.5
set protocols bgp group ibgp type internal
set protocols bgp group ibgp local-address 172.16.1.2
set protocols bgp group ibgp family inet-vpn any
set protocols bgp group ibgp family inet-mvpn signaling
set protocols bgp group ibgp neighbor 172.16.1.4
set protocols bgp group ibgp neighbor 172.16.1.5
set protocols ospf area 0.0.0.0 interface lo0.2 passive
set protocols ospf area 0.0.0.0 interface ge-1/2/1.5
set protocols ldp interface ge-1/2/1.5
set protocols ldp p2mp
set policy-options policy-statement parent_vpn_routes from protocol bgp
set policy-options policy-statement parent_vpn_routes then accept
set routing-instances vpn-1 instance-type vrf
set routing-instances vpn-1 interface ge-1/2/0.2
set routing-instances vpn-1 interface vt-1/2/0.2
set routing-instances vpn-1 interface lo0.102
set routing-instances vpn-1 route-distinguisher 100:100
set routing-instances vpn-1 provider-tunnel ldp-p2mp
set routing-instances vpn-1 vrf-target target:1:1
set routing-instances vpn-1 protocols ospf export parent_vpn_routes
set routing-instances vpn-1 protocols ospf area 0.0.0.0 interface lo0.102 passive
set routing-instances vpn-1 protocols ospf area 0.0.0.0 interface ge-1/2/0.2
set routing-instances vpn-1 protocols pim rp static address 172.16.1.2 with 172.16.4.1100.1
set routing-instances vpn-1 protocols pim interface ge-1/2/0.2 mode sparse
set routing-instances vpn-1 protocols mvpn
set routing-options router-id 172.16.1.2
set routing-options autonomous-system 1001

Device R3

set interfaces ge-1/2/0 unit 6 family inet address 10.1.1.6/30
set interfaces ge-1/2/0 unit 6 family mpls
Device R4

```plaintext
set interfaces ge-1/2/0 unit 10 family inet address 10.1.1.10/30
set interfaces ge-1/2/0 unit 10 family mpls
set interfaces ge-1/2/1 unit 17 family inet address 10.1.1.17/30
set interfaces ge-1/2/1 unit 17 family mpls
set interfaces vt-1/2/0 unit 4 family inet
set interfaces lo0 unit 4 family inet address 172.16.1.4/32
set interfaces lo0 unit 104 family inet address 172.16.100.1/32
set protocols rsvp interface all aggregate
set protocols mpls interface all
set protocols mpls interface ge-1/2/0.10
set protocols bgp group ibgp type internal
set protocols bgp group ibgp local-address 172.16.1.4
set protocols bgp group ibgp family inet-vpn unicast
set protocols bgp group ibgp family inet-vpn any
set protocols bgp group ibgp family inet-mvpn signaling damping
set protocols bgp group ibgp neighbor 172.16.1.2 import dampPolicy
set protocols bgp group ibgp neighbor 172.16.1.5
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface lo0.4 passive
```
set protocols ospf area 0.0.0.0 interface ge-1/2/0.10
set protocols ldp interface ge-1/2/0.10
set protocols ldp p2mp
set policy-options policy-statement dampPolicy term term1 from family inet-mvpn
set policy-options policy-statement dampPolicy term term1 from nlri-route-type 3
set policy-options policy-statement dampPolicy term term1 from nlri-route-type 4
set policy-options policy-statement dampPolicy term term1 from nlri-route-type 5
set policy-options policy-statement dampPolicy term term1 then accept
set policy-options policy-statement dampPolicy then damping no-damp
set policy-options policy-statement dampPolicy then accept
set policy-options policy-statement parent_vpn_routes from protocol bgp
set policy-options policy-statement parent_vpn_routes then accept
set policy-options damping no-damp disable
set routing-instances vpn-1 instance-type vrf
set routing-instances vpn-1 interface vt-1/2/0.4
set routing-instances vpn-1 interface ge-1/2/1.17
set routing-instances vpn-1 interface lo0.104
set routing-instances vpn-1 route-distinguisher 100:100
set routing-instances vpn-1 vrf-target target:1:1
set routing-instances vpn-1 protocols ospf export parent_vpn_routes
set routing-instances vpn-1 protocols ospf area 0.0.0.0 interface lo0.104 passive
set routing-instances vpn-1 protocols ospf area 0.0.0.0 interface ge-1/2/1.17
set routing-instances vpn-1 protocols pim rp static address 172.16.100.1
set routing-instances vpn-1 protocols pim interface ge-1/2/1.17 mode sparse
set routing-instances vpn-1 protocols mvpn
set routing-options router-id 172.16.1.4
set routing-options autonomous-system 64501

Device R5

set interfaces ge-1/2/0 unit 14 family inet address 10.1.1.14/30
set interfaces ge-1/2/0 unit 14 family mpls
set interfaces ge-1/2/1 unit 21 family inet address 10.1.1.21/30
set interfaces ge-1/2/1 unit 21 family mpls
set interfaces vt-1/2/0 unit 5 family inet
set interfaces lo0 unit 5 family inet address 172.16.1.5/32
set interfaces lo0 unit 105 family inet address 172.16.100.5/32
set protocols mpls interface ge-1/2/0.14
set protocols bgp group ibgp type internal
set protocols bgp group ibgp local-address 172.16.1.5
set protocols bgp group ibgp family inet-vpn any
set protocols bgp group ibgp family inet-mvpn signaling
set protocols bgp group ibgp neighbor 172.16.1.2
set protocols bgp group ibgp neighbor 172.16.1.4
set protocols ospf area 0.0.0.0 interface lo0.5 passive
set protocols ospf area 0.0.0.0 interface ge-1/2/0.14
set protocols ldp interface ge-1/2/0.14
set protocols ldp p2mp
set policy-options policy-statement parent_vpn_routes from protocol bgp
set policy-options policy-statement parent_vpn_routes then accept
set routing-instances vpn-1 instance-type vrf
set routing-instances vpn-1 interface vt-1/2/0.5
set routing-instances vpn-1 interface ge-1/2/1.21
set routing-instances vpn-1 interface lo0.105
set routing-instances vpn-1 route-distinguisher 100:100
set routing-instances vpn-1 vrf-target target:1:1
set routing-instances vpn-1 protocols ospf export parent_vpn_routes
set routing-instances vpn-1 protocols ospf area 0.0.0.0 interface lo0.105 passive
set routing-instances vpn-1 protocols ospf area 0.0.0.0 interface ge-1/2/1.21
set routing-instances vpn-1 protocols pim rp static address 172.16.100.2
set routing-instances vpn-1 protocols pim interface ge-1/2/1.21 mode sparse
set routing-instances vpn-1 protocols mvpn
set routing-options router-id 172.16.1.5
set routing-options autonomous-system 1001

Device R6

set interfaces ge-1/2/0 unit 18 family inet address 10.1.1.18/30
set interfaces ge-1/2/0 unit 18 family mpls
set interfaces lo0 unit 6 family inet address 172.16.1.6/32
set protocols sap listen 233.1.1.1
set protocols ospf area 0.0.0.0 interface lo0.6 passive
set protocols ospf area 0.0.0.0 interface ge-1/2/0.18
set protocols pim rp static address 172.16.100.2
set protocols pim interface all
set routing-options router-id 172.16.1.6

Device R7
Configuring Device R4

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R4:

1. Configure the interfaces.

```plaintext
[edit interfaces]
user@R4# set ge-1/2/0 unit 10 family inet address 10.1.1.10/30
user@R4# set ge-1/2/0 unit 10 family mpls
user@R4# set ge-1/2/1 unit 17 family inet address 10.1.1.17/30
user@R4# set ge-1/2/1 unit 17 family mpls
user@R4# set vt-1/2/0 unit 4 family inet
user@R4# set lo0 unit 4 family inet address 172.16.1.4/32
user@R4# set lo0 unit 104 family inet address 172.16.100.4/32
```

2. Configure MPLS and the signaling protocols on the interfaces.

```plaintext
[edit protocols]
user@R4# set mpls interface all
user@R4# set mpls interface ge-1/2/0.10
user@R4# set rsvp interface all aggregate
user@R4# set ldp interface ge-1/2/0.10
user@R4# set ldp p2mp
```
3. Configure BGP.

The BGP configuration enables BGP route flap damping for the inet-mvpn address family. The BGP configuration also imports into the routing table the routing policy called dampPolicy. This policy is applied to neighbor PE Device R2.

```
[edit protocols bgp group ibgp]
user@R4# set type internal
user@R4# set local-address 172.16.1.4
user@R4# set family inet-vpn unicast
user@R4# set family inet-vpn any
user@R4# set family inet-mvpn signaling damping
user@R4# set neighbor 172.16.1.2 import dampPolicy
user@R4# set neighbor 172.16.1.5
```

4. Configure an interior gateway protocol.

```
[edit protocols ospf]
user@R4# set traffic-engineering
[edit protocols ospf area 0.0.0.0]
user@R4# set interface all
user@R4# set interface lo0.4 passive
user@R4# set interface ge-1/2/0.10
```

5. Configure a damping policy that uses the nlri-route-type match condition to damp only MVPN route types 3, 4, and 5.

```
[edit policy-options policy-statement dampPolicy term term1]
user@R4# set from family inet-mvpn
user@R4# set from nlri-route-type 3
user@R4# set from nlri-route-type 4
user@R4# set from nlri-route-type 5
user@R4# set then accept
```
6. Configure the **damping** policy to disable BGP route flap damping.

 The **no-damp** policy (**damping no-damp disable**) causes any damping state that is present in the routing table to be deleted. The **then damping no-damp** statement applies the **no-damp** policy as an action and has no **from** match conditions. Therefore, all routes that are not matched by **term1** are matched by this term, with the result that all other MVPN route types are not damped.


   ```
   [edit policy-options policy-statement dampPolicy]
   user@R4# set then damping no-damp
   user@R4# set then accept
   [edit policy-options]
   user@R4# set damping no-damp disable
   ```

7. Configure the **parent_vpn_routes** to accept all other BGP routes that are not from the **inet-mvpn** address family.

 This policy is applied as an OSPF export policy in the routing instance.

   ```
   [edit policy-options policy-statement parent_vpn_routes]
   user@R4# set from protocol bgp
   user@R4# set then accept
   ```

8. Configure the VPN routing and forwarding (VRF) instance.

   ```
   [edit routing-instances vpn-1]
   user@R4# set instance-type vrf
   user@R4# set interface vt-1/2/0.4
   user@R4# set interface ge-1/2/1.17
   user@R4# set interface lo0.104
   user@R4# set route-distinguisher 100:100
   user@R4# set vrf-target target:1:1
   user@R4# set protocols ospf export parent_vpn_routes
   user@R4# set protocols ospf area 0.0.0.0 interface lo0.104 passive
   user@R4# set protocols ospf area 0.0.0.0 interface ge-1/2/1.17
   user@R4# set protocols pim rp static address 172.16.100.2
   user@R4# set protocols pim interface ge-1/2/1.17 mode sparse
   user@R4# set protocols mvpn
   ```

9. Configure the router ID and the autonomous system (AS) number.

   ```
   [edit routing-options]
   ```
10. If you are done configuring the device, commit the configuration.

```
user@R4# commit
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, `show routing-instances`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R4# show interfaces
ge-1/2/0 {
    unit 10 {
        family inet {
            address 10.1.1.10/30;
        }
        family mpls;
    }
}
ge-1/2/1 {
    unit 17 {
        family inet {
            address 10.1.1.17/30;
        }
        family mpls;
    }
}
vt-1/2/0 {
    unit 4 {
        family inet;
    }
}
lo0 {
    unit 4 {
        family inet {
            address 172.16.1.4/32;
        }
    }
}
```
unit 104 {
 family inet {
 address 172.16.100.4/32;
 }
}

user@R4# show protocols
rsvp {
 interface all {
 aggregate;
 }
}
mpls {
 interface all;
 interface ge-1/2/0.10;
}
bgp {
 group ibgp {
 type internal;
 local-address 172.16.1.4;
 family inet-vpn {
 unicast;
 any;
 }
 family inet-mvpn {
 signaling {
 damping;
 }
 }
 }
 neighbor 172.16.1.2 {
 import dampPolicy;
 }
 neighbor 172.16.1.5;
}
ospf {
 traffic-engineering;
 area 0.0.0.0 {
 interface all;
 interface lo0.4 {
 passive;
 }
 interface ge-1/2/0.10;
 }
interface ge-1/2/0.10;
p2mp;

user@R4# show policy-options
policy-statement dampPolicy {
 term term1 {
 from {
 family inet-mvpn;
 niri-route-type [3 4 5];
 }
 then accept;
 }
 then {
 damping no-damp;
 accept;
 }
}
policy-statement parent_vpn_routes {
 from protocol bgp;
 then accept;
}
damping no-damp {
 disable;
}

user@R4# show routing-instances
vpn-1 {
 instance-type vrf;
 interface vt-1/2/0.4;
 interface ge-1/2/1.17;
 interface lo0.104;
 route-distinguisher 100:100;
 vrf-target target:1:1;
 protocols {
 ospf {
 export parent_vpn_routes;
 area 0.0.0.0 {
 interface lo0.104 {
 passive;
 }
 }
 }
 }
}
Pim {
 Rp {
 Static {
 Address 172.16.100.2;
 }
 }
 Interface ge-1/2/1.17 {
 Mode sparse;
 }
 Mvpn;
}

User@R4# show routing-options
Router-id 172.16.1.4;
Autonomous-system 1001;

Verification

In This Section

- Verifying That Route Flap Damping Is Disabled | 572
- Verifying Route Flap Damping | 573

Confirm that the configuration is working properly.

Verifying That Route Flap Damping Is Disabled

Purpose
Verify the presence of the no-damp policy, which disables damping for MVPN route types other than 3, 4, and 5.

Action
From operational mode, enter the `show policy damping` command.

```
user@R4> show policy damping
```

Default damping information:
- Halflife: 15 minutes
- Reuse merit: 750
- Suppress/cutoff merit: 3000
- Maximum suppress time: 60 minutes

Computed values:
- Merit ceiling: 12110
- Maximum decay: 6193

Damping information for "no-damp":
- Damping disabled

Meaning
The output shows that the default damping parameters are in effect and that the `no-damp` policy is also in effect for the specified route types.

Verifying Route Flap Damping

Purpose
Check whether BGP routes have been damped.

Action
From operational mode, enter the `show bgp summary` command.

```
user@R4> show bgp summary
```

```
Groups: 1 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp.l3vpn.0 6 6 0 0 0 0
bgp.l3vpn.2 0 0 0 0 0
bgp.mvpn.0 2 2 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn
172.16.1.2 1001 3159 3155 0 0 23:43:47
bgp.l3vpn.0: 3/3/3/0
bgp.l3vpn.2: 0/0/0/0
bgp.mvpn.0: 1/1/1/0
```
Meaning
The Damp State field shows that zero routes in the bgp.mvpn.0 routing table have been damped. Further down, the last number in the State field shows that zero routes have been damped for BGP peer 172.16.1.2.

RELATED DOCUMENTATION

- Understanding Damping Parameters | 539
- Using Routing Policies to Damp BGP Route Flapping | 540
- Example: Configuring BGP Route Flap Damping Parameters | 547
Understanding Source Class Usage and Destination Class Usage Options

You can maintain packet counts based on the entry and exit points for traffic passing through your network. Entry and exit points are identified by source and destination prefixes grouped into disjoint sets defined as source classes and destination classes. You can define classes based on a variety of parameters, such as routing neighbors, autonomous systems, and route filters.
Source class usage (SCU) counts packets sent to customers by performing lookups on the IP source address and the IP destination address. SCU makes it possible to track traffic originating from specific prefixes on the provider core and destined for specific prefixes on the customer edge. You must enable SCU accounting on both the inbound and outbound physical interfaces.

Destination class usage (DCU) counts packets from customers by performing lookups of the IP destination address. DCU makes it possible to track traffic originating from the customer edge and destined for specific prefixes on the provider core router.

On T Series Core Routers and M320 Multiservice Edge Routers, the source class and destination classes are not carried across the platform fabric. The implications of this are as follows:

- On T Series and M320 routers, SCU and DCU accounting is performed before the packet enters the fabric.
- On T Series and M320 routers, DCU is performed before output filters are evaluated.
- On M Series platforms, DCU is performed after output filters are evaluated.
- If an output filter drops traffic on M Series devices, the dropped packets are excluded from DCU statistics.
- If an output filter drops traffic on T Series and M320 routers, the dropped packets are included in DCU statistics.

NOTE: SCU and DCU is supported on PTX series routers when enhanced-mode is configured on the chassis.

On MX Series platforms with MPC/MIC interfaces, SCU and DCU are performed after output filters are evaluated. Packets dropped by output filters are not included in SCU or DCU statistics.

On MX Series platforms with non-MPC/MIC interfaces, SCU and DCU are performed before output filters are evaluated. Packets dropped by output filters are included in SCU and DCU statistics.

On PTX Series platforms, SCU and DCU accounting is performed before output filters are evaluated. Packets dropped by output filters are included in SCU and DCU statistics.

On Enhanced Scaling FPCs (T640-FPC1-ES, T640-FPC2-ES, T640-FPC3-ES, T640-FPC4-1P-ES, and T1600-FPC4-ES), the source class accounting is performed at ingress. Starting with Junos OS Release 14.2, the SCU accounting is performed at ingress on a T4000 Type 5 FPC. The implications of this are as follows:

- SCU accounting is performed when packets traverse from T4000 Type 5 FPC (ingress FPC) to Enhanced Scaling FPCs (egress FPC).
- SCU accounting is performed when packets traverse from Enhanced Scaling FPCs (ingress FPC) to T4000 Type 5 FPC (egress FPC).
NOTE: When the interface statistics are cleared and then the routing engine is replaced, the SCU and DCU statistics will not match the statistics of the previous routing engine.

For more information about source class usage, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide and the Junos OS Network Interfaces Library for Routing Devices.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Example: Grouping Source and Destination Prefixes into a Forwarding Class</th>
<th>611</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring SCU or DCU</td>
<td></td>
</tr>
<tr>
<td>Configuring SCU on a Virtual Loopback Tunnel Interface</td>
<td></td>
</tr>
<tr>
<td>Configuring Class Usage Profiles</td>
<td></td>
</tr>
<tr>
<td>Configuring the MIB Profile</td>
<td></td>
</tr>
<tr>
<td>Configuring the Routing Engine Profile</td>
<td></td>
</tr>
</tbody>
</table>

Source Class Usage Overview

Source class usage (SCU) is a logical extension of the destination class usage (DCU) concept. DCU was created so that Juniper Networks customers could count on a per-interface basis how much traffic was sent to specified prefixes. Figure 38 on page 577 shows a service provider edge (PE) router diagram.

![Figure 38: DCU/SCU Concept](image.png)

The Fast Ethernet interfaces contain inbound traffic from customers, and the SONET/SDH interfaces are connected to outbound public network prefixes. With DCU configured on the Fast Ethernet interfaces, you can track how much traffic is sent to a specific prefix in the core of the network originating from one of the specified interfaces (in this case, the Fast Ethernet interfaces).

However, DCU limits your ability to keep track of traffic moving in the reverse direction. It can account for all traffic that arrives on a core interface and heads toward a specific customer, but it cannot count traffic that arrives on a core interface from a specific prefix. For example, DCU can process cumulative
traffic headed toward interface fe-0/0/0, but cannot differentiate between traffic coming only from 10.3.0.0/16 and traffic coming from all prefixes.

You can track source-based traffic by using SCU, which allows you to monitor the amount of traffic originating from a specific prefix. With this feature, usage can be tracked and customers can be billed for the traffic they receive.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>System Requirements for SCU</th>
<th>579</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadmap for Configuring SCU</td>
<td>581</td>
</tr>
<tr>
<td>Roadmap for Configuring SCU with Layer 3 VPNs</td>
<td>581</td>
</tr>
<tr>
<td>SCU Configuration</td>
<td>589</td>
</tr>
<tr>
<td>SCU with Layer 3 VPNs Configuration</td>
<td>600</td>
</tr>
</tbody>
</table>

Guidelines for Configuring SCU

When you enable SCU or DCU, keep the following information in mind:

- In Junos OS Release 5.6 and later for M Series routers only, you can use a source class or a destination class as a match condition in a firewall filter. To configure, include the destination-class or source-class statement at the [edit firewall filter firewall-name term term-name from] hierarchy level. For more information about firewall filters, see the Junos Policy Framework Configuration Guide.

- You can assign up to 126 source classes and 126 destination classes.

- When configuring policy action statements, you can configure only one source class for each matching route. In other words, more than one source class cannot be applied to the same route.

- A source or destination class is applied to a packet only once during the routing table lookup. When a network prefix matches a class-usage policy, SCU is assigned to packets first; DCU is assigned only if SCU has not been assigned. Be careful when using both class types, since misconfiguration can result in uncounted packets. The following example explores one potential mishap:

 A packet arrives on a router interface configured for both SCU and DCU. The packet's source address matches an SCU class, and its destination matches a DCU class. Consequently, the packet is subjected to a source lookup and is marked with the SCU class. The DCU class is ignored. As a result, the packet is forwarded to the outbound interface with only the SCU class still intact.

 However, the outbound interface lacks an SCU configuration. When the packet is ready to leave the router, the router detects that the output interface is not configured for SCU and the packet is not
counted by SCU. Likewise, even though the prefix matched the DCU prefix, the DCU counters do not increment because DCU was superseded by SCU at the inbound interface.

To solve this problem, make sure you configure both the inbound and outbound interfaces completely or configure only one class type per interface per direction.

- Classes cannot be mapped to directly connected prefixes configured on local interfaces. This is true for DCU and SCU classes.
- If you use multiple terms within a single policy, you only need to configure the policy name and apply it to the forwarding table once. This makes it easier to change options within your terms without having to reconfigure the main policy.
- Execute command line interface (CLI) show commands and accounting profiles at the desired outbound interface to track SCU traffic. SCU counters increment at the SCU output interface.
- Apply your classes to the inbound and outbound interfaces by means of the input and output SCU interface parameters.
- On M320 and T Series routers, the source and destination classes are not carried across the platform fabric. For these routers, SCU and DCU accounting is performed before the packet enters the fabric and DCU is performed before output filters are evaluated.
- If an output filter drops traffic on M Series routers other than the M120 router and M320 router, the dropped packets are excluded from DCU statistics. If an output filter drops traffic on M320 and T Series routers, the dropped packets are included in DCU statistics.

RELATED DOCUMENTATION

Source Class Usage Overview	577
System Requirements for SCU	579
Roadmap for Configuring SCU	581
SCU Configuration	589

System Requirements for SCU

To implement SCU, your system must meet these requirements:

- Junos OS Release 8.2 or later for M120 and MX Series router support
- Junos OS Release 6.2 or later for IPv6 SCU
- Junos OS Release 5.6 or later to use a source class or a destination class as a match condition in a firewall filter
• Junos OS Release 5.4 or later for IPv4 SCU

• Three Juniper Networks M Series, MX Series, or T Series routers for basic SCU and five routers for SCU with Layer 3 VPNs. One router acts as a source class usage transit router, and the other routers are used to generate traffic or participate in the Layer 3 VPN.

• For M Series and T Series routers, a Tunnel Services PIC for SCU with Layer 3 VPNs

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Source Class Usage Overview</th>
<th>577</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadmap for Configuring SCU</td>
<td>581</td>
</tr>
<tr>
<td>Roadmap for Configuring SCU with Layer 3 VPNs</td>
<td>581</td>
</tr>
<tr>
<td>SCU Configuration</td>
<td>589</td>
</tr>
<tr>
<td>SCU with Layer 3 VPNs Configuration</td>
<td>600</td>
</tr>
</tbody>
</table>

Terms and Acronyms for SCU

D

destination address (DA) The IP address of a device intended as the receiver for a packet. This address is included in the IP header and is the main address analyzed by the router during routing table lookups and DCU.

destination class usage (DCU) A method of grouping certain types of traffic and monitoring these groups through CLI show commands, accounting profiles, or SNMP. DCU uses a destination address lookup when determining group membership. For more information about DCU, see the Junos Policy Framework Configuration Guide.

S

source address (SA) The IP address of a device sending a packet. This address is included in the IP header and is analyzed by the router for a variety of services, including source-based filtering, policing, class of service (CoS), and SCU.

source class usage (SCU) A method of grouping certain types of traffic and monitoring these groups through CLI show commands, accounting profiles, or SNMP. SCU uses a source address lookup when determining group membership. For more information about SCU, see the Junos Policy Framework Configuration Guide.
Roadmap for Configuring SCU

To configure source class usage (SCU), you must:

1. Create a routing policy that includes prefix route filters that indicate the IPv4 or IPv6 source addresses to monitor. See "Configuring Route Filters and Source Classes in a Routing Policy" on page 582.
2. Apply the filters to the forwarding table. See "Applying the Policy to the Forwarding Table" on page 583.
3. Enable accounting on the inbound and outbound interfaces. See "Enabling Accounting on Inbound and Outbound Interfaces" on page 584.

Roadmap for Configuring SCU with Layer 3 VPNs

SCU can be implemented over regular interfaces; it is also used in combination with Layer 3 VPNs. When you view SCU traffic on an ingress provider edge (PE) router, use the standard procedure outlined in "Roadmap for Configuring SCU" on page 581. However, when you enable packet counting for Layer 3 VPNs at the egress point of the MPLS tunnel, you need to take some additional steps, as follows:

2. Map the SCU-enabled input interface of that router to the virtual routing and forwarding (VRF) instance. See "Mapping the SCU-Enabled vt Interface to the VRF Instance" on page 585.
4. Configure an accounting profile and associate the source class with that accounting profile. You can also specify the filename for the data capture, a class usage profile name, and an interval indicating
how often you want the SCU information to be saved. See “Associating an Accounting Profile with SCU Classes” on page 587.

NOTE: SCU is not supported over Layer 2 VPNs.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Source Class Usage Overview</th>
<th>577</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Requirements for SCU</td>
<td>579</td>
</tr>
<tr>
<td>SCU with Layer 3 VPNs Configuration</td>
<td>600</td>
</tr>
</tbody>
</table>

Configuring Route Filters and Source Classes in a Routing Policy

Begin configuring SCU by creating prefix route filters in a policy statement. These prefixes indicate the IPv4 or IPv6 source addresses to monitor. Within the policy statement, you must define and name the source classes attached to the filters.

```plaintext
[edit policy-options]
policy-statement policy-name {
    term term-name {
        from {
            route-filter address/prefix;
        }
        then source-class class-name;
    }
}
```

NOTE: When configuring policy action statements, you can configure only one source class for each matching route. In other words, more than one source class cannot be applied to the same route.

An alternate configuration method, using the `forwarding-class` policy action, is even more flexible. It allows your IPv4 or IPv6 route filters to apply to an SCU profile, a DCU profile, or both simultaneously. Additionally, if you have only one term, you can implement the `from` and `then` statements at the `[edit policy-options policy-statement policy-name]` hierarchy level.
A third option is the existing DCU parameter of `destination-class`. For more information on DCU, see the *Junos Policy Framework Configuration Guide*.

RELATED DOCUMENTATION

- Source Class Usage Overview | 577
- System Requirements for SCU | 579
- Roadmap for Configuring SCU | 581
- SCU Configuration | 589

Applying the Policy to the Forwarding Table

Next, apply the policy you created to the forwarding table. When you apply the policy, the network prefixes you defined are marked with the appropriate source class.

```plaintext
[edit routing-options]
forwarding-table {
    export policy-name;  
}
```

RELATED DOCUMENTATION

- Source Class Usage Overview | 577
- System Requirements for SCU | 579
- Roadmap for Configuring SCU | 581
- SCU Configuration | 589
Enabling Accounting on Inbound and Outbound Interfaces

Unlike DCU, which only requires implementation on a single interface, accounting for SCU must be enabled on two interfaces: the inbound and outbound physical or logical interfaces traversed by the source class. You must define explicitly the two interfaces on which SCU monitored traffic is expected to arrive and depart. This is because SCU performs two lookups in the routing table: a source address (SA) and a destination address (DA) lookup. In contrast, DCU only has a single destination address lookup. By specifying the addresses involved in the additional SCU SA lookup, you minimize the performance impact on your router.

An individual SCU interface can be configured as an input interface, an output interface, or both. SCU can be enabled in an IPv4 (family inet) or IPv6 (family inet6) network. To configure SCU accounting, include the source-class-usage statement at the [edit interfaces interface-name unit logical-unit-number family (inet | inet6) accounting] hierarchy level:

```
[edit]
interfaces {
    interface-name {
        unit unit-number {
            family (inet | inet6) {
                accounting {
                    source-class-usage {
                        (input | output | input output);
                    } destination-class-usage;
                }
            }
        }
    }
}
```

After the full SCU configuration is enabled, every packet arriving on an SCU input interface is subjected to an SA-based lookup and then a DA-based lookup. In addition, an individual set of counters for every configured SCU class is maintained by the router on a per-interface and per-protocol family basis.

RELATED DOCUMENTATION

- Source Class Usage Overview | 577
- System Requirements for SCU | 579
- Roadmap for Configuring SCU | 581
- SCU Configuration | 589
Configuring Input SCU on the vt Interface of the Egress PE Router

To enable SCU in a Layer 3 VPN, configure source class usage on the virtual loopback tunnel (vt) interface of the egress PE router that is either configured for or equipped with a Tunnel PIC. The interface is equivalent to the inbound SCU interface, so use the input statement at the [edit interfaces vt-interface-number unit 0 family inet accounting source-class-usage] hierarchy level:

```
[edit]
interfaces {
  vt-0/3/0 {
    unit 0 {
      family inet {
        accounting {
          source-class-usage {
            input;
          }
        }
      }
    }
  }
}
```

RELATED DOCUMENTATION

- Source Class Usage Overview | 577
- System Requirements for SCU | 579
- Roadmap for Configuring SCU with Layer 3 VPNS | 581
- SCU with Layer 3 VPNS Configuration | 600

Mapping the SCU-Enabled vt Interface to the VRF Instance

Next, include the VPN loopback tunnel interface in the desired VRF instance at the [edit routing-instances routing-instance-name] hierarchy level:

```
[edit]
routing-instances {
  routing-instance-name {
    instance-type vrf;
  }
}
```
interface at-2/1/1.0;
interface vt-0/3/0.0;
route-distinguisher 10.250.14.225:100;
vrf-import import-policy-name;
vrf-export export-policy-name;
protocols {
 bgp {
 group to-r4 {
 local-address 10.20.253.1;
 peer-as 400;
 neighbor 10.20.253.2;
 }
 }
}

RELATED DOCUMENTATION

Source Class Usage Overview | 577
System Requirements for SCU | 579
Roadmap for Configuring SCU with Layer 3 VPNs | 581
SCU with Layer 3 VPNs Configuration | 600

Configuring SCU on the Output Interface

Since VPN traffic enters the egress router through the VPN loopback tunnel interface, you still need to determine the exit interface for this traffic. To complete your SCU configuration, configure the output version of source class usage on the exit interface of your egress router:

[edit interfaces]
at-1/1/0 {
 unit 0 {
 family inet {
 accounting {
 source-class-usage {
 output;
 }
 }
 }
 }
}
Once your source classes are defined, implemented on the inbound and outbound interfaces, and applied to the forwarding table, you are ready to associate the source class with an accounting profile. Configure the accounting profile at the [edit accounting-options class-usage-profile] hierarchy level. You can associate either an SCU source class or a DCU destination class with the accounting profile. You can also specify the filename for the data capture, a class usage profile name, and an interval (in minutes) indicating how often you want the SCU information to be saved to the file.

```plaintext
[edit]
accounting-options {
    file filename;
    class-usage-profile profile-name {
        file filename;
        interval minutes;
        source-classes {
            source-class-name;
        }
        destination-classes {
            destination-class-name;
        }
    }
}
```
NOTE: SCU accounting occurs on the outbound interface before output filter processing. If an SCU-marked packet is discarded in the router, the SCU counters can indicate more traffic than actually exists. You must use filter counters or trace options logs to ensure that all packets dropped by the SCU filter are recorded. If logged, you can subtract the discarded packets from the SCU counter tallies and calculate the true traffic profile.

Because DCU accounting occurs after the filtering process, DCU is unaffected by this disclaimer.

RELATED DOCUMENTATION

Source Class Usage Overview	577
System Requirements for SCU	579
Roadmap for Configuring SCU with Layer 3 VPNs	581
SCU with Layer 3 VPNs Configuration	600

Verifying Your SCU Accounting Profile

Purpose
To view the results of the SCU accounting profile you created.

Action
Navigate to the /var/log directory of your router. It should contain the designated class usage profile log. The layout of an SCU profile looks like this:

```
profile_name,epoch-timestamp,interface-name,source-class-name,packet-count,byte-count
```

An example of the actual output from a profile looks like this:

```
scu_profile,980313078,ge-1/0/0.0,gold,82,6888
scu_profile,980313078,ge-1/0/0.0,silver,164,13776
scu_profile,980313078,ge-1/0/0.0,bronze,0,0
scu_profile,980313678,ge-1/0/0.0,gold,82,6888
scu_profile,980313678,ge-1/0/0.0,silver,246,20664
scu_profile,980313678,ge-1/0/0.0,bronze,0,0
```
To view the parameters of your SCU accounting profile, you can use the `show accounting-options class-usage-profile scu-profile-name` command.

RELATED DOCUMENTATION

- Source Class Usage Overview | 577
- System Requirements for SCU | 579
- Associating an Accounting Profile with SCU Classes | 587

SCU Configuration

IN THIS SECTION

- Configuring SCU | 589
- Verifying Your Work | 593

Configuring SCU

Figure 39: SCU Topology Diagram

Figure 39 on page 589 shows a basic SCU configuration with three routers. Source routers A and B use loopback addresses as the prefixes to be monitored. Most of the configuration tasks and actual monitoring occurs on transit Router SCU.

Begin your configuration on Router A. The loopback address on Router A contains the origin of the prefix that is to be assigned to source class A on Router SCU. However, no SCU processing happens on this router. Therefore, configure Router A for basic OSPF routing and include your loopback interface and interface `so-0/0/2` in the OSPF process.

Router A:
Router SCU handles the bulk of the activity in this example. On Router SCU, enable source class usage on the inbound and outbound interfaces at the [edit interfaces interface-name unit unit-number family inet accounting] hierarchy level. Make sure you specify the expected traffic: input, output, or, in this case, both.

Next, configure a route filter policy statement that matches the prefixes of the loopback addresses from routers A and B. Include statements in the policy that classify packets from Router A in one group named scu-class-a and packets from Router B in a second class named scu-class-b. Notice the efficient use of a single policy containing multiple terms.

Last, apply the policy to the forwarding table.

Router SCU
interfaces {
 so-0/0/1 {
 unit 0 {
 family inet {
 accounting {
 source-class-usage {
 input;
 output;
 }
 }
 address 10.255.50.1/24;
 }
 }
 }
 so-0/0/3 {
 unit 0 {
 family inet {
 accounting {
 source-class-usage {
 input;
 output;
 }
 }
 address 10.255.10.3/24;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.255.6.111/32;
 }
 }
 }
}
protocols {
 ospf {
 area 0.0.0.0 {
 interface so-0/0/1.0;
 interface so-0/0/3.0;
 }
 }
}
Complete the configuration tasks on Router B. Just as Router A provides a source prefix, Router B's loopback address matches the prefix assigned to scu-class-b on Router SCU. Again, no SCU processing happens on this router, so configure Router B for basic OSPF routing and include your loopback interface and interface so-0/0/4 in the OSPF process.

Router B:

```plaintext
[edit]
interfaces {
    so-0/0/4 {
        unit 0 {
            family inet {
                address 10.255.10.4/24;
            }
        }
    }
    lo0 {
        
    }
}
```
Verifying Your Work

To verify that SCU is functioning properly, use the following commands:

- `show interfaces interface-name statistics`
- `show interfaces interface-name (extensive | detail)`
- `show route (extensive | detail)`
- `show interfaces source-class source-class-name interface-name`
- `clear interface interface-name statistics`

You should always verify SCU statistics at the outbound SCU interface on which you configured the output statement. You can perform the following three steps to check the functionality of SCU:

1. Clear all counters on your SCU-enabled router and verify that they are empty.
2. Send a ping from one edge router to another edge router to generate SCU traffic across the SCU-enabled router.
3. Verify that the counters are incrementing correctly on the outbound interface.

The following section shows the output of these commands as used with the configuration example.

```
user@scu> clear interfaces statistics all
```
show interfaces so-0/0/1.0 statistics
Logical interface so-0/0/1.0 (Index 4) (SNMP ifIndex 119)
Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
Protocol inet, MTU: 4470
Source class Packets Bytes
scu-class-a 0 0
scu-class-b 0 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.255.50/24, Local: 10.255.50.1

show interfaces so-0/0/3.0 statistics
Logical interface so-0/0/3.0 (Index 6) (SNMP ifIndex 113)
Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
Protocol inet, MTU: 4470
Source class Packets Bytes
scu-class-a 0 0
scu-class-b 0 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.255.10/24, Local: 10.255.10.3

show interfaces source-class scu-class-a so-0/0/3.0
Protocol inet
Source class Packets Bytes
scu-class-a 0 0

show interfaces source-class scu-class-b so-0/0/1.0
Protocol inet
Source class Packets Bytes
scu-class-b 0 0

ping 10.255.192.10 source 10.255.165.226 rapid 10000

ping 10.255.165.226 source 10.255.192.10 rapid 10000

show interfaces source-class scu-class-a so-0/0/3.0
Protocol inet
Source class Packets Bytes
scu-class-a 20000 1680000

show interfaces source-class scu-class-a so-0/0/1.0
Protocol inet
Source class Packets Bytes
user@scu> show interfaces so-0/0/3.0 statistics
Logical interface so-0/0/3.0 (Index 6) (SNMP ifIndex 113)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 4470
 Source class Packets Bytes
 scu-class-a 20000 1680000
 scu-class-b 0 0
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.255.10/24, Local: 10.255.10.3

user@scu> show interfaces so-0/0/1.0 statistics
Logical interface so-0/0/1.0 (Index 4) (SNMP ifIndex 119)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 4470
 Source class Packets Bytes
 scu-class-a 0 0
 scu-class-b 20000 1680000
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.255.50/24, Local: 10.255.50.1

user@scu> show route extensive 10.255.192.0

inet.0: 26 destinations, 28 routes (25 active, 0 holddown, 1 hidden)
10.255.192.0/18 (1 entry, 1 announced)
 TSI:
 KRT in-kernel 10.255.192.0/18 -> {so-0/0/1.0}
 Source class: scu-class-a
 *OSPF Preference: 150
 Next hop: via so-0/0/1.0, selected
 State: <Active Int Ext>
 Age: 2:49:31 Metric: 0 Tag: 0
 Task: OSPF
 Announcement bits (1): 0-KRT
 AS path: I
user@scu> show route extensive 10.255.165.0

inet.0: 26 destinations, 28 routes (25 active, 0 holddown, 1 hidden)
10.255.165.0/20 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.255.165.0/20 -> {so-0/0/3.0}
Source class: scu-class-b
 *OSPF Preference: 150
 Next hop: via so-0/0/3.0, selected
 State: <Active Int Ext>
 Age: 2:49:31 Metric: 0 Tag: 0
 Task: OSPF
 Announcement bits (1): 0-KRT
 AS path: I

user@scu> show interfaces so-0/0/1 detail

Physical interface: so-0/0/1, Enabled, Physical link is Up
 Interface index: 12, SNMP ifIndex: 17, Generation: 11
 Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC3,
 Loopback: None, FCS: 16, Payload scrambler: Enabled
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Link flags : Keepalives
 Hold-times : Up 0 ms, Down 0 ms
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive statistics:
 Input : 46 (last seen 00:00:01 ago)
 Output: 45 (last sent 00:00:00 ago)
 LCP state: Opened
 CHAP state: Not-configured
 Statistics last cleared: 2002-04-19 14:52:04 PDT (00:07:27 ago)
 Traffic statistics:
 Input bytes : 1689276 40 bps
 Output bytes: 1689747 49 bps
 Input packets: 20197 0 pps
Output packets: 20200 0 pps
Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 20053 20053 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 146 146 0
SONET alarms: None
SONET defects: None
Logical interface so-0/0/1.0 (Index 4) (SNMP ifIndex 119) (Generation 3)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 4470
 Flags: SCU-in, SCU-out
 Generation: 6 Route table: 0
 Source class Packets Bytes
 scu-class-a 0 0
 scu-class-b 20000 1680000
Filters: Input: icmp-so-0/0/1.0-i, Output: icmp-so-0/0/1.0-o
Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.255.50/24, Local: 10.255.50.1, Broadcast: Unspecified,
 Generation: 8

user@scu> show interfaces so-0/0/1 extensive
Physical interface: so-0/0/1, Enabled, Physical link is Up
 Interface index: 12, SNMP ifIndex: 17, Generation: 11
 Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC3,
 Loopback: None, FCS: 16, Payload scrambler: Enabled
 Device flags: Present Running
 Interface flags: Point-To-Point SNMP-Traps
 Link flags: Keepalives
 Hold-times: Up 0 ms, Down 0 ms
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive statistics:
 Input: 51 (last seen 00:00:04 ago)
 Output: 50 (last sent 00:00:05 ago)
 LCP state: Opened
 CHAP state: Not-configured
 Last flapped: 2002-04-19 11:49:22 PDT (03:11:05 ago)
 Statistics last cleared: 2002-04-19 14:52:04 PDT (00:08:23 ago)
 Traffic statistics:
 Input bytes: 1689884 264 bps
 Output bytes: 1690388 280 bps
 Input packets: 20215 0 pps
Output packets: 20217 0 pps

Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
Bucket drops: 0, Policed discards: 0, L3 incompletes: 0,
L2 channel errors: 0, L2 mismatch timeouts: 0, HS link CRC errors: 0,
HS link FIFO overflows: 0

Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0,
HS link FIFO underflows: 0

Queue counters:

<table>
<thead>
<tr>
<th>Queue</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>20053</td>
<td>20053</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>164</td>
<td>164</td>
<td>0</td>
</tr>
</tbody>
</table>

SONET alarms: None
SONET defects: None

SONET PHY:

<table>
<thead>
<tr>
<th>PLL Lock</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHY Light</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

SONET section:

<table>
<thead>
<tr>
<th>BIP-B1</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEF</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOS</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOF</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ES-S</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SES-S</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEFS-S</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SONET line:

<table>
<thead>
<tr>
<th>BIP-B2</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REI-L</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RDI-L</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIS-L</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BERR-SF</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BERR-SD</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ES-L</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SES-L</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UAS-L</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ES-LFE</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SES-LFE</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UAS-LFE</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

SONET path:

<table>
<thead>
<tr>
<th>BIP-B3</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REI-P</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
LOP-P 0 0 OK
AIS-P 0 0 OK
RDI-P 0 0 OK
UNEQ-P 0 0 OK
PLM-P 0 0 OK
ES-P 0
SES-P 0
UAS-P 0
ES-PFE 0
SES-PFE 0
UAS-PFE 0

Received SONET overhead:
F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0xcf, C2(cmp) : 0xcf, F2 : 0x00
Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00, V5 : 0x00
V5(cmp) : 0x00

Transmitted SONET overhead:
F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0xcf, F2 : 0x00, Z3 : 0x00
Z4 : 0x00, V5 : 0x00

Received path trace: e so-0/0/1
65 20 73 6f 2d 30 2f 30 2f 31 00 00 00 00 00 00 e so-0/0/1......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Transmitted path trace: scu so-0/0/1
67 68 62 20 73 6f 2d 30 2f 30 2f 31 00 00 00 00 scu so-0/0/1....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

HDLC configuration:
Policing bucket: Disabled
Shaping bucket : Disabled
Giant threshold: 4484, Runt threshold: 3

Packet Forwarding Engine configuration:
Destination slot: 0, PLP byte: 1 (0x00)
CoS transmit queue Bandwidth Buffer Priority Limit
% bps % bytes
0 best-effort 0 0 0 low none
1 expedited-forwarding 0 0 0 low none
2 assured-forwarding 0 0 0 low none
3 network-control 0 0 0 low none

Logical interface so-0/0/1.0 (Index 4) (SNMP ifIndex 119) (Generation 3)
Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
Protocol inet, MTU: 4470
Flags: SCU-in, SCU-out
Generation: 6 Route table: 0

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>scu-class-a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>scu-class-b</td>
<td>20000</td>
<td>168000</td>
</tr>
</tbody>
</table>

Filters: Input: icmp-so-0/0/1.0-i, Output: icmp-so-0/0/1.0-o
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.255.50/24, Local: 10.255.50.1, Broadcast: Unspecified,
Generation: 8

RELATED DOCUMENTATION

- Source Class Usage Overview | 577
- System Requirements for SCU | 579
- Roadmap for Configuring SCU | 581

SCU with Layer 3 VPNs Configuration

IN THIS SECTION

- Configuring SCU in a Layer 3 VPN | 601
- Verifying Your Work | 609
Configuring SCU in a Layer 3 VPN

Figure 40: SCU in a Layer 3 VPN Topology Diagram

Figure 40 on page 601 displays a Layer 3 VPN topology. CE1 and CE2 are customer edge (CE) routers connected by a VPN through provider routers PE1, P0, and PE2. EBGP is established between routers CE1 and PE1, IBGP connects routers PE1 and PE2 over an IS-IS/MPLS/LDP core, and a second EBGP connection flows between routers PE2 and CE2.

On Router CE1, begin your VPN by setting up an EBGP connection to PE1. Install a static route of 10.114.1.0/24 and advertise this route to your EBGP neighbor.

Router CE1

```
[edit]
  interfaces {
    ge-0/0/0 {
      unit 0 {
        family inet {
          address 10.20.250.1/30;
        }
      }
    }
  }
  routing-options {
    static {
      route 10.114.1.0/24 reject;
    }
    autonomous-system 100;
  }
  protocols {
    bgp {
      group to-pe1 {
```
On PE1, complete the EBGP connection to CE1 through a VRF routing instance. Set an export policy for your VRF instance that puts BGP traffic into a community, and an import policy that accepts like community traffic from your VPN neighbor. Lastly, configure an IBGP relationship to Router PE2 that runs over an IS-IS, MPLS, and LDP core.

Router PE1

```plaintext
[edit]
interfaces {
  ge-0/0/1 {
    unit 0 {
      family inet {
        address 10.20.250.2/30;
      }
    }
  }
  so-0/2/1 {
```
unit 0 {
 family inet {
 address 10.20.251.1/30;
 }
 family iso;
 family mpls;
}
}
lo0 {
 unit 0 {
 family inet {
 address 10.250.245.245/32;
 }
 family iso;
 family mpls;
 }
}
}
routing-options {
 autonomous-system 300;
}
protocols {
 mpls {
 interface so-0/2/1;
 }
 bgp {
 group ibgp {
 type internal;
 local-address 10.250.245.245;
 family inet-vpn {
 unicast;
 }
 neighbor 10.250.71.14;
 }
 }
 isis {
 interface so-0/2/1;
 }
 ldp {
 interface so-0/2/1;
 }
}
On P0, connect the IBGP neighbors located at PE1 and PE2. Remember to include VPN-related protocols (MPLS, LDP, and IGP) on all interfaces.

Router P0
[edit]
interfaces {
 so-0/1/0 {
 unit 0 {
 family inet {
 address 10.20.252.1/30;
 }
 family iso;
 family mpls;
 }
 }
 so-0/2/0 {
 unit 0 {
 family inet {
 address 10.20.251.2/30;
 }
 family iso;
 family mpls;
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.250.245.246/32;
 }
 family iso;
 family mpls;
 }
 }
}
routing-options {
 autonomous-system 300;
}
protocols {
 mpls {
 interface so-0/1/0;
 interface so-0/2/0;
 }
 isis {
 interface all;
 }
 ldp {

On PE2, complete the IBGP relationship to Router PE1. Establish an EBGP connection to CE2 through a VRF routing instance. Set an export policy for the VRF instance that places BGP traffic into a community, and an import policy that accepts like community traffic from the VPN neighbor. Next, establish a policy that adds the static route from CE1 to a source class called **GOLD1**. Also, export this SCU policy into the forwarding table. Finally, set your vt interface as the SCU input interface and establish the CE-facing interface so-0/0/0 as the SCU output interface.

Router PE2

```conf
[edit]
interfaces {
  so-0/1/1 {
    unit 0 {
      family inet {
        address 10.20.252.2/30;
      }
      family iso;
      family mpls;
    }
  }
  so-0/0/0 {
    unit 0 {
      family inet {
        accounting {
          source-class-usage {
            output;
          }
        }
        address 10.20.253.1/30;
      }
    }
  }
  vt-4/1/0 {
    unit 0 {
      family inet {
```
accounting {
 source-class-usage {
 input;
 }
}
address 10.250.71.14/32;
family iso;
family mpls;
}
}
}
routing-options {
 autonomous-system 300;
 forwarding-table {
 export inject-customer2-dest-class;
 }
}
}
protocols {
 mpls {
 interface so-0/1/1;
 interface vt-4/1/0;
 }
 bgp {
 group ibgp {
 type internal;
 local-address 10.250.71.14;
 family inet-vpn {
 unicast;
 }
 neighbor 10.250.245.245;
 }
 }
 isis {
 interface so-0/1/1;
 }
 ldp {
 interface so-0/1/1;
 }
}
routing-instances {
 red {

instance-type vrf;
interface so-0/0/0.0;
interface vt-4/1/0.0;
route-distinguisher 10.250.71.14:100;
vrf-import red-import;
vrf-export red-export;
protocols {
 bgp {
 group to-ce2 {
 local-address 10.20.253.1;
 peer-as 400;
 neighbor 10.20.253.2;
 }
 }
}
policy-options {
 policy-statement red-import {
 from {
 protocol bgp;
 community red-com;
 }
 then accept;
 }
 policy-statement red-export {
 from protocol bgp;
 then {
 community add red-com;
 accept;
 }
 }
 policy-statement inject-customer2-dest-class {
 term term-gold1-traffic {
 from {
 route-filter 10.114.0.0/24 exact;
 }
 then source-class GOLD1;
 }
 }
 community red-com members target:20:20;
}
On Router CE2, complete the VPN path by finishing the EBGP connection to PE2.

Router CE2

```plaintext
[edit]
interfaces {
  so-0/0/1 {
    unit 0 {
      family inet {
        address 10.20.253.2/30;
      }
    }
  }
}

routing-options {
  autonomous-system 400;
}

protocols {
  bgp {
    group to-pe2 {
      local-address 10.20.253.2;
      export inject-direct;
      peer-as 300;
      neighbor 10.20.253.1;
    }
  }
}

policy-options {
  policy-statement inject-direct {
    from {
      protocol direct;
    } then accept;
  }
}
```

Verifying Your Work

To verify that SCU is functioning properly in the Layer 3 VPN, use the following commands:

- `show interfaces interface-name statistics`
- `show interfaces source-class source-class-name interface-name`
You should always verify SCU statistics at the outbound SCU interface on which you configured the `output` statement. To check SCU functionality, follow these steps:

1. Clear all counters on your SCU-enabled router and verify they are empty.
2. Send a ping from the ingress CE router to the second CE router to generate SCU traffic across the SCU-enabled VPN route.
3. Verify that the counters are incrementing correctly on the outbound interface.

The following section shows the output of these commands used with the configuration example.

```
user@pe2> clear interfaces statistics all
```

```
user@pe2> show interfaces so-0/0/0.0 statistics
Logical interface so-0/0/0.0 (Index 6) (SNMP ifIndex 113)
Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
Protocol inet, MTU: 4470
Source class Packets Bytes
GOLD1 0 0
Addresses, Flags: Is-Preferred Is-Primary

user@pe2> show interfaces source-class GOLD1 so-0/0/0.0
Protocol inet
Source class Packets Bytes
GOLD1 0 0

user@ce1> ping 10.20.253.2 source 10.114.1.1 rapid count 10000

user@scu> show interfaces source-class GOLD1 so-0/0/0.0
Protocol inet
Source class Packets Bytes
GOLD1 20000 1680000

user@scu> show interfaces so-0/0/0.0 statistics
Logical interface so-0/0/0.0 (Index 6) (SNMP ifIndex 113)
Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
Protocol inet, MTU: 4470
Source class Packets Bytes
```
Example: Grouping Source and Destination Prefixes into a Forwarding Class

This example shows how to group source and destination prefixes into a forwarding class.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

This example uses three routing devices: a customer edge (CE) device, a provider edge (PE) device, and a provider core (P) device.

Figure 41 on page 612 shows the sample network.
Source class usage (SCU) counts packets sent to the customer edge by performing lookup on the IP source address and the IP destination address. SCU makes it possible to track traffic originating from specific prefixes on the provider core and destined for specific prefixes on the customer edge.

DCU counts packets from customers by performing a lookup of the IP destination address. DCU makes it possible to track traffic originating from the customer edge and destined for specific prefixes on the provider core router.

On Device PE's fe-1/2/1 interface, facing the provider core (represented by Device P), SCU input is configured with the `source-class-usage input` statement to track traffic originating at Device P and destined to Device CE. On this same interface, the `destination-class-usage input` statement is configured to track traffic originating at Device CE destined to the provider core.

```bash
user@PE# show interfaces fe-1/2/1 unit 0 family inet
accounting {
    source-class-usage {
        input; # tracks traffic destined to customer edge
    }
    destination-class-usage; # tracks traffic destined to provider core
}
address 10.1.0.1/30;
```

Unlike destination class usage (DCU), which only requires implementation on a single interface, accounting for SCU must be enabled on two interfaces: the inbound and outbound interfaces traversed by the source class. You must define explicitly the two interfaces on which SCU monitored traffic is expected to arrive and depart. This is because SCU performs two lookups in the routing table: a source address (SA) and a destination address (DA) lookup. In contrast, DCU only has a single destination address lookup.
On Device PE’s fe-1/2/0 interface, facing Device CE, SCU output is configured with the `source-class-usage output` statement.

```
user@PE# show interfaces fe-1/2/0 unit 0 family inet accounting {
    source-class-usage {
        output;
    }
} address 10.0.0.2/30;
```

To account for traffic destined to the customer, the policy called `scu_class` uses route filters to place traffic into the gold1, gold2, and gold3 classes.

```
user@PE# show policy-options
policy-statement scu_class {
    term gold1 {
        from {
            route-filter 172.16.2.0/24 or longer;
        }
        then source-class gold1;
    }
    term gold2 {
        from {
            route-filter 172.16.3.0/24 or longer;
        }
        then source-class gold2;
    }
    term gold3 {
        from {
            route-filter 172.16.4.0/24 or longer;
        }
        then source-class gold3;
    }
}
```

To account for traffic destined to the provider, the policy called `dcu_class` uses route filters to place traffic into the silver1, silver2, and silver3 classes.

```
user@PE# show policy-options
policy-statement dcu_class {
    term silver1 {
        from {
```
The policies are then applied to the forwarding table.

```
forwarding-table {
    export [ dcu_class scu_class ];
}
```

The example uses static routes to provide connectivity and loopback interface addresses for testing the operation.

"CLI Quick Configuration" on page 614 shows the configuration for all of the devices in Figure 41 on page 612.

The section "Step-by-Step Procedure" on page 616 describes the steps on Device PE.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device CE

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
```
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set interfaces lo0 unit 0 family inet address 172.16.0.1/32
set interfaces lo0 unit 0 family inet address 172.16.0.1/32
set interfaces lo0 unit 0 family inet address 172.16.0.1/32
set interfaces lo0 unit 0 family inet address 172.16.0.1/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext export send-static
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.2
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 10.1.0.0/30 next-hop 10.0.0.2
set routing-options autonomous-system 100

Device PE

set interfaces fe-1/2/0 unit 0 family inet accounting source-class-usage output
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 family inet accounting source-class-usage input
set interfaces fe-1/2/1 unit 0 family inet accounting destination-class-usage
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext neighbor 10.0.0.1 peer-as 100
set protocols bgp group ext neighbor 10.1.0.2 peer-as 300
set policy-options policy-statement dcu_class term silver1 from route-filter 172.16.5.0/24 orlonger
set policy-options policy-statement dcu_class term silver1 then destination-class silver1
set policy-options policy-statement dcu_class term silver2 from route-filter 172.16.6.0/24 orlonger
set policy-options policy-statement dcu_class term silver2 then destination-class silver2
set policy-options policy-statement dcu_class term silver3 from route-filter 172.16.7.0/24 orlonger
set policy-options policy-statement dcu_class term silver3 then destination-class silver3
set policy-options policy-statement scu_class term gold1 from route-filter 172.16.2.0/24 orlonger
set policy-options policy-statement scu_class term gold1 then source-class gold1
set policy-options policy-statement scu_class term gold2 from route-filter 172.16.3.0/24 orlonger
set policy-options policy-statement scu_class term gold2 then source-class gold2
set policy-options policy-statement scu_class term gold3 from route-filter 172.16.4.0/24 or longer
set policy-options policy-statement scu_class term gold3 then source-class gold3
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options autonomous-system 200
set routing-options forwarding-table export dcu_class
set routing-options forwarding-table export scu_class

Device P

set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set interfaces lo0 unit 0 family inet address 172.16.0.3/32
set interfaces lo0 unit 0 family inet address 172.16.0.3/32
set interfaces lo0 unit 0 family inet address 172.16.0.3/32
set interfaces lo0 unit 0 family inet address 172.16.0.3/32
set interfaces lo0 unit 0 family inet address 172.16.0.3/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext export send-static
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.1.0.1
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set routing-options static route 10.0.0.0/30 next-hop 10.1.0.1
discard
set routing-options static route 172.16.2.0/24 discard
set routing-options static route 172.16.3.0/24 discard
set routing-options static route 172.16.4.0/24 discard
discard
set routing-options static route 172.16.5.0/24 discard
discard
set routing-options static route 172.16.6.0/24 discard
discard
set routing-options static route 172.16.7.0/24 discard
discard
set routing-options autonomous-system 300

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To group source and destination prefixes in a forwarding class:

1. Create the router interfaces.

   ```
   [edit interfaces]
   user@PE# set fe-1/2/0 unit 0 family inet accounting source-class-usage output
   user@PE# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
   user@PE# set fe-1/2/1 unit 0 family inet accounting source-class-usage input
   user@PE# set fe-1/2/1 unit 0 family inet accounting destination-class-usage
   user@PE# set fe-1/2/1 unit 0 family inet address 10.1.0.1/30
   user@PE# set lo0 unit 0 family inet address 192.168.0.2/32
   ```

2. Configure BGP.

   ```
   [edit protocols bgp group ext]
   user@PE# set type external
   user@PE# set export send-direct
   user@PE# set neighbor 10.0.0.1 peer-as 100
   user@PE# set neighbor 10.1.0.2 peer-as 300
   ```

3. Configure the DCU policy.

   ```
   [edit policy-options policy-statement dcu_class]
   user@PE# set term silver1 from route-filter 172.16.5.0/24 orlonger
   user@PE# set term silver1 then destination-class silver1
   user@PE# set term silver2 from route-filter 172.16.6.0/24 orlonger
   user@PE# set term silver2 then destination-class silver2
   user@PE# set term silver3 from route-filter 172.16.7.0/24 orlonger
   user@PE# set term silver3 then destination-class silver3
   ```

4. Configure the SCU policy.

   ```
   [edit policy-options policy-statement scu_class]
   user@PE# set term gold1 from route-filter 172.16.2.0/24 orlonger
   user@PE# set term gold1 then source-class gold1
   user@PE# set term gold2 from route-filter 172.16.3.0/24 orlonger
   user@PE# set term gold2 then source-class gold2
   user@PE# set term gold3 from route-filter 172.16.4.0/24 orlonger
   ```
5. Apply the policies to the forwarding table.

```
[edit routing-options forwarding-table]
user@PE# set export dcu_class
user@PE# set export scu_class
```

NOTE: You can refer to the same routing policy one or more times in the same or different export statement.

6. (Optional) Configure a routing policy that advertises direct routes.

```
[edit policy-options policy-statement send-direct term 1]
user@PE# set from protocol direct
user@PE# set then accept
```

7. Configure the autonomous system (AS) number.

```
[edit routing-options]
user@PE# set autonomous-system 200
```

Results

From configuration mode, confirm your configuration by issuing the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@PE# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet {
            accounting {
                source-class-usage {
                    output;
                }
            }
            address 10.0.0.2/30;
            }}
```

```
fe-1/2/1 {
    unit 0 {
        family inet {
            accounting {
                source-class-usage {
                    input;
                }
                destination-class-usage;
            }
            address 10.1.0.1/30;
        }
    }
}

lo0 {
    unit 0 {
        family inet {
            address 192.168.0.2/32;
        }
    }
}

user@PE# show protocols
bgp {
    group ext {
        type external;
        export send-direct;
        neighbor 10.0.0.1 {
            peer-as 100;
        }
        neighbor 10.1.0.2 {
            peer-as 300;
        }
    }
}

user@PE# show policy-options
policy-statement dcu_class {
    term silver1 {
        from {
            route-filter 172.16.5.0/24 orlonger;
{
  then destination-class silver1;
}

term silver2 {
  from {
    route-filter 172.16.6.0/24 or longer;
  }
  then destination-class silver2;
}

term silver3 {
  from {
    route-filter 172.16.7.0/24 or longer;
  }
  then destination-class silver3;
}
}

policy-statement scu_class {
  term gold1 {
    from {
      route-filter 172.16.2.0/24 or longer;
    }
    then source-class gold1;
  }
  term gold2 {
    from {
      route-filter 172.16.3.0/24 or longer;
    }
    then source-class gold2;
  }
  term gold3 {
    from {
      route-filter 172.16.4.0/24 or longer;
    }
    then source-class gold3;
  }
}

policy-statement send-direct {
  term 1 {
    from protocol direct;
    then accept;
  }
}
}

user@PE# show routing-options
autonomous-system 200;
forwarding-table {
    export [ dcu_class scu_class ];
}

If you are done configuring the device, enter commit from configuration mode.

Verification

---

**IN THIS SECTION**

- Making Sure That the DCU Policy Is Working | 621
- Making Sure That the SCU Policy Is Working | 622

---

Confirm that the configuration is working properly.

*Making Sure That the DCU Policy Is Working*

**Purpose**
Verify that traffic sent from the provider core into the customer network is causing the DCU policy counters to increment.

**Action**
1. From Device P, ping an address in the customer network.

```plaintext
user@P> ping rapid count 10000000 172.16.0.1
PING 172.16.0.1 (6.0.0.1): 56 data bytes
!!!
```

2. On Device PE, check the interface statistics on the interface facing the provider core.

```plaintext
user@PE> show interfaces statistics fe-1/2/1.0
Logical interface fe-1/2/1.0 (Index 108) (SNMP ifIndex 546)
 Flags: SNMP-Traps 0x4000 Encapsulation: ENET2
 Input packets : 251956
 Output packets: 251961
```
Meaning
Packet and bit rates are displayed with packet and byte counters.

Alternatively, you can use the `show interfaces destination-class all` command to display the same information.

Making Sure That the SCU Policy Is Working

Purpose
Verify that traffic sent from the customer network into the provider core is causing the SCU policy counters to increment.

Action
1. From Device CE, ping an address in the customer network.

   ```
 user@CE> ping rapid count 10000000 172.16.0.1
 PING 172.16.0.1 (6.0.0.1): 56 data bytes
 !!! ...
 !!!
   ```

2. On Device PE, check the interface statistics on the interface facing the customer network.

   ```
 user@PE> show interfaces statistics fe-1/2/0.0
 Logical interface fe-1/2/0.0 (Index 93) (SNMP ifIndex 554)
 Flags: SNMP-Traps 0x4000 Encapsulation: ENET2
 Input packets : 32246
 Output packets: 32245
   ```
Protocol inet, MTU: 1500

Flags: Sendbcast-pkt-to-re, Is-Primary, SCU-out

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gold1</td>
<td>8871</td>
<td>745164</td>
</tr>
<tr>
<td></td>
<td>(259)</td>
<td>(174497)</td>
</tr>
<tr>
<td>gold2</td>
<td>1812</td>
<td>152208</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>gold3</td>
<td>5711</td>
<td>479724</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.0.0.0/30, Local: 10.0.0.2, Broadcast: 10.0.0.3

**Meaning**
Packet and bit rates are displayed with packet and byte counters.

Alternatively, you can use the `show interfaces source-class all` command to display the same information.

**RELATED DOCUMENTATION**
- Understanding Source Class Usage and Destination Class Usage Options | 575
- Route Filter Match Conditions | 67
Avoiding Traffic Routing Threats with Conditional Routing Policies

IN THIS CHAPTER

- Conditional Advertisement and Import Policy (Routing Table) with certain match conditions | 626
- Conditional Advertisement Enabling Conditional Installation of Prefixes Use Cases | 629
- Example: Configuring a Routing Policy for Conditional Advertisement Enabling Conditional Installation of Prefixes in a Routing Table | 631
Conditional Advertisement and Import Policy (Routing Table) with certain match conditions
BGP accepts all non-looped routes learned from neighbors and imports them into the RIB-In table. If these routes are accepted by the BGP import policy, they are then imported into the inet.0 routing table. In cases where only certain routes are required to be imported, provisions can be made such that the peer routing device exports routes based on a condition or a set of conditions.

The condition for exporting a route can be based on:

- The peer the route was learned from
- The interface the route was learned on
- Some other required attribute

For example:

```
[edit]
 policy-options {
 condition condition-name {
 if-route-exists address-table table-name;
 }
 }
```

This is known as conditional installation of prefixes and is described in "Example: Configuring a Routing Policy for Conditional Advertisement Enabling Conditional Installation of Prefixes in a Routing Table" on page 631.

The Juniper Networks® Junos® Operating System (Junos OS) supports conditional export of routes based on the existence of another route in the routing table. Junos OS does not, however, support policy conditions for import policy.

Figure 42 on page 627 illustrates where BGP import and export policies are applied. An import policy is applied to inbound routes that are visible in the output of the `show route receive-protocol bgp neighbor-address` command. An export policy is applied to outbound routes that are visible in the output of the `show route advertising-protocol bgp neighbor-address` command.

Figure 42: BGP Import and Export Policies

To enable conditional installation of prefixes, an export policy must be configured on the device where
the prefix export has to take place. The export policy evaluates each route to verify that it satisfies all the match conditions under the `from` statement. It also searches for the existence of the route defined under the `condition` statement (also configured under the `from` statement).

If the route does not match the entire set of required conditions defined in the policy, or if the route defined under the `condition` statement does not exist in the routing table, the route is not exported to its BGP peers. Thus, a conditional export policy matches the routes for the desired route or prefix you want installed in the peers’ routing table.

To configure the conditional installation of prefixes with the help of an export policy:

1. Create a `condition` statement to check prefixes.

   ```
 [edit]
 policy-options {
 condition condition-name {
 if-route-exists address table table-name;
 }
 }
   ```

2. Create an export policy with the newly created condition using the `condition` statement.

   ```
 [edit]
 policy-options {
 policy-statement policy-name {
 term1 {
 from {
 protocols bgp;
 condition condition-name;
 }
 then {
 accept;
 }
 }
 }
 }
   ```

3. Apply the export policy to the device that requires only selected prefixes to be exported from the routing table.

   ```
 [edit]
 protocols bgp {
 group group-name {
 export policy-name;
 }
 }
   ```
Networks are usually subdivided into smaller, more-manageable units called autonomous systems (ASs). When BGP is used by routers to form peer relationships in the same AS, it is referred to as internal BGP (IBGP). When BGP is used by routers to form peer relationships in different ASs, it is referred to as external BGP (EBGP).

After performing route sanity checks, a BGP router accepts the routes received from its peers and installs them into the routing table. By default, all routers in IBGP and EBGP sessions follow the standard BGP advertisement rules. While a router in an IBGP session advertises only the routes learned from its direct peers, a router in an EBGP session advertises all routes learned from its direct and indirect peers (peers of peers). Hence, in a typical network configured with EBGP, a router adds all routes received from an EBGP peer into its routing table and advertises nearly all routes to all EBGP peers.

A service provider exchanging BGP routes with both customers and peers on the Internet is at risk of malicious and unintended threats that can compromise the proper routing of traffic, as well as the operation of the routers.

This has several disadvantages:

- **Non-aggregated route advertisements**—A customer could erroneously advertise all its prefixes to the ISP rather than an aggregate of its address space. Given the size of the Internet routing table, this must be carefully controlled. An edge router might also need only a default route out toward the Internet and instead be receiving the entire BGP routing table from its upstream peer.

- **BGP route manipulation**—If a malicious administrator alters the contents of the BGP routing table, it could prevent traffic from reaching its intended destination.
• **BGP route hijacking**—A rogue administrator of a BGP peer could maliciously announce a network’s prefixes in an attempt to reroute the traffic intended for the victim network to the administrator’s network to either gain access to the contents of traffic or to block the victim’s online services.

• **BGP denial of service (DoS)**—If a malicious administrator sends unexpected or undesirable BGP traffic to a router in an attempt to use all of the router's available BGP resources, it might result in impairing the router’s ability to process valid BGP route information.

Conditional installation of prefixes can be used to address all the problems previously mentioned. If a customer requires access to remote networks, it is possible to install a specific route in the routing table of the router that is connected with the remote network. This does not happen in a typical EBGP network and hence, conditional installation of prefixes becomes essential.

ASs are not only bound by physical relationships but by business or other organizational relationships. An AS can provide services to another organization, or act as a transit AS between two other ASs. These transit ASs are bound by contractual agreements between the parties that include parameters on how to connect to each other and most importantly, the type and quantity of traffic they carry for each other. Therefore, for both legal and financial reasons, service providers must implement policies that control how BGP routes are exchanged with neighbors, which routes are accepted from those neighbors, and how those routes affect the traffic between the ASs.

There are many different options available to filter routes received from a BGP peer to both enforce inter-AS policies and mitigate the risks of receiving potentially harmful routes. Conventional route filtering examines the attributes of a route and accepts or rejects the route based on such attributes. A policy or filter can examine the contents of the AS-Path, the next-hop value, a community value, a list of prefixes, the address family of the route, and so on.

In some cases, the standard “acceptance condition” of matching a particular attribute value is not enough. The service provider might need to use another condition outside of the route itself, for example, another route in the routing table. As an example, it might be desirable to install a default route received from an upstream peer, only if it can be verified that this peer has reachability to other networks further upstream. This conditional route installation avoids installing a default route that is used to send traffic toward this peer, when the peer might have lost its routes upstream, leading to black-holed traffic. To achieve this, the router can be configured to search for the presence of a particular route in the routing table, and based on this knowledge accept or reject another prefix.

"Example: Configuring a Routing Policy for Conditional Advertisement Enabling Conditional Installation of Prefixes in a Routing Table" on page 631 explains how the conditional installation of prefixes can be configured and verified.

**RELATED DOCUMENTATION**

Example: Configuring a Routing Policy for Conditional Advertisement Enabling Conditional Installation of Prefixes in a Routing Table | 631
Example: Configuring a Routing Policy for Conditional Advertisement
Enabling Conditional Installation of Prefixes in a Routing Table

This example shows how to configure conditional installation of prefixes in a routing table using BGP export policy.

Requirements

This example uses the following hardware and software components:

- M Series Multiservice Edge Routers, MX Series 5G Universal Routing Platforms, or T Series Core Routers
- Junos OS Release 9.0 or later

Overview

In this example, three routers in three different autonomous systems (ASs) are connected and configured with the BGP protocol. The router labeled Internet, which is the upstream router, has five addresses configured on its lo0.0 loopback interface (172.16.11.1/32, 172.16.12.1/32, 172.16.13.1/32, 172.16.14.1/32, and 172.16.15.1/32), and an extra loopback address (192.168.9.1/32) is configured as the router ID. These six addresses are exported into BGP to emulate the contents of a BGP routing table of a router connected to the Internet, and advertised to North.

The North and South routers use the 10.0.89.12/30 and 10.0.78.12/30 networks, respectively, and use 192.168.7.1 and 192.168.8.1 for their respective loopback addresses.

Figure 43 on page 632 shows the topology used in this example.
Figure 43: Conditional Installation of Prefixes

Router North exports a default route into BGP, and advertises the default route and the five BGP routes to Router South, which is the downstream router. Router South receives the default route and only one other route (172.16.11.1/32), and installs this route and the default route in its routing table.

To summarize, the example meets the following requirements:

- On North, send 0/0 to South only if a particular route is also sent (in the example 172.16.11.1/32).
- On South, accept the default route and the 172.16.11.1/32 route. Drop all other routes. Consider that South might be receiving the entire Internet table, while the operator only wants South to have the default and one other specific prefix.

The first requirement is met with an export policy on North:

```bash
user@North# show policy-options
policy-statement conditional-export-bgp {
 term prefix_11 {
 from {
 protocol bgp;
 route-filter 10.11.0.0/5 or longer;
 }
 then accept;
 }
 term conditional-default {
 from {
 route-filter 0.0.0.0/0 exact;
 condition prefix_11;
 }
 then accept;
 }
```
The logic of the conditional export policy can be summarized as follows: If 0/0 is present, and if 172.16.11.1/32 is present, then send the 0/0 prefix. This implies that if 172.16.11.1/32 is not present, then do not send 0/0.

The second requirement is met with an import policy on South:

```plaintext
user@South# show policy-options
policy-statement import-selected-routes {
 term 1 {
 from {
 rib inet.0;
 neighbor 10.0.78.14;
 route-filter 0.0.0.0/0 exact;
 route-filter 10.11.0.0/8 orlonger;
 }
 then accept;
 }
 term 2 {
 then reject;
 }
}
```

In this example, four routes are dropped as a result of the import policy on South. This is because the export policy on North leaks all of the routes received from Internet, and the import policy on South excludes some of these routes.

It is important to understand that in Junos OS, although an import policy (inbound route filter) might reject a route, not use it for traffic forwarding, and not include it in an advertisement to other peers, the router retains these routes as hidden routes. These hidden routes are not available for policy or routing purposes. However, they do occupy memory space on the router. A service provider filtering routes to control the amount of information being kept in memory and processed by a router might want the router to entirely drop the routes being rejected by the import policy.
Hidden routes can be viewed by using the `show route receive-protocol bgp neighbor-address hidden` command. The hidden routes can then be retained or dropped from the routing table by configuring the `keep all | none` statement at the `[edit protocols bgp]` or `[edit protocols bgp group group-name]` hierarchy level.

The rules of BGP route retention are as follows:

- By default, all routes learned from BGP are retained, except those where the AS path is looped. (The AS path includes the local AS.)
- By configuring the `keep all` statement, all routes learned from BGP are retained, even those with the local AS in the AS path.
- By configuring the `keep none` statement, BGP discards routes that were received from a peer and that were rejected by import policy or other sanity checking. When this statement is configured and the inbound policy changes, Junos OS re-advertises all the routes advertised by the peer.

When you configure `keep all` or `keep none` and the peers support route refresh, the local speaker sends a refresh message and performs an import evaluation. For these peers, the sessions do not restart. To determine if a peer supports refresh, check for **Peer supports Refresh capability** in the output of the `show bgp neighbor` command.

**CAUTION:** If you configure `keep all` or `keep none` and the peer does not support session restart, the associated BGP sessions are restarted (flapped).

### Configuration

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the `[edit]` hierarchy level.

**Router Internet**

```
set interfaces lo0 unit 0 family inet address 172.16.11.1/32
set interfaces lo0 unit 0 family inet address 172.16.12.1/32
set interfaces lo0 unit 0 family inet address 172.16.13.1/32
set interfaces lo0 unit 0 family inet address 172.16.14.1/32
set interfaces lo0 unit 0 family inet address 172.16.15.1/32
set interfaces lo0 unit 0 family inet address 192.168.9.1/32
set interfaces fe-0/1/3 unit 0 family inet address 10.0.89.14/30
```
set protocols bgp group toNorth local-address 10.0.89.14
set protocols bgp group toNorth peer-as 200
set protocols bgp group toNorth neighbor 10.0.89.13
set protocols bgp group toNorth export into-bgp
set policy-options policy-statement into-bgp term 1 from interface lo0.0
set policy-options policy-statement into-bgp term 1 then accept
set routing-options router-id 192.168.9.1
set routing-options autonomous-system 300

Router North

set interfaces fe-1/3/1 unit 0 family inet address 10.0.78.14/30
set interfaces fe-1/3/0 unit 0 family inet address 10.0.89.13/30
set interfaces lo0 unit 0 family inet address 192.168.8.1/32
set protocols bgp group toInternet local-address 10.0.89.13
set protocols bgp group toInternet peer-as 300
set protocols bgp group toInternet neighbor 10.0.89.14
set protocols bgp group toSouth local-address 10.0.78.14
set protocols bgp group toSouth export conditional-export-bgp
set protocols bgp group toSouth peer-as 100
set protocols bgp group toSouth neighbor 10.0.78.13
set policy-options policy-statement conditional-export-bgp term prefix_11 from protocol bgp
set policy-options policy-statement conditional-export-bgp term prefix_11 from route-filter 10.11.0.0/5 orlonger
set policy-options policy-statement conditional-export-bgp term prefix_11 then accept
set policy-options policy-statement conditional-export-bgp term conditional-default from route-filter 0.0.0.0/0 exact
set policy-options policy-statement conditional-export-bgp term conditional-default from condition prefix_11
set policy-options policy-statement conditional-export-bgp term conditional-default then accept
set policy-options policy-statement conditional-export-bgp term others then reject
set policy-options condition prefix_11 if-route-exists 172.16.11.1/32
set policy-options condition prefix_11 if-route-exists table inet.0
set routing-options static route 0/0 reject
set routing-options router-id 192.168.8.1
set routing-options autonomous-system 200

Router South
**Configuring Conditional Installation of Prefixes**

**Step-by-Step Procedure**

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the Junos OS CLI User Guide.

To configure conditional installation of prefixes:

1. Configure the router interfaces forming the links between the three routers.

   **Router Internet**
   
   [edit interfaces]
   
   user@Internet# set fe-0/1/3 unit 0 family inet address 10.0.89.14/30

   **Router North**
   
   [edit interfaces]
   
   user@North# set fe-1/3/1 unit 0 family inet address 10.0.78.14/30
   user@North# set fe-1/3/0 unit 0 family inet address 10.0.89.13/30

   **Router South**
   
   [edit interfaces]
   
   user@South# set fe-0/1/2 unit 0 family inet address 10.0.78.13/30
2. Configure five loopback interface addresses on Router Internet to emulate BGP routes learned from the Internet that are to be imported into the routing table of Router South, and configure an additional address (192.168.9.1/32) that will be configured as the router ID.

<table>
<thead>
<tr>
<th>Router Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>[edit interfaces lo0 unit 0 family inet]</td>
</tr>
<tr>
<td>user@Internet# set address 172.16.11.1/32</td>
</tr>
<tr>
<td>user@Internet# set address 172.16.12.1/32</td>
</tr>
<tr>
<td>user@Internet# set address 172.16.13.1/32</td>
</tr>
<tr>
<td>user@Internet# set address 172.16.14.1/32</td>
</tr>
<tr>
<td>user@Internet# set address 172.16.15.1/32</td>
</tr>
<tr>
<td>user@Internet# set address 192.168.9.1/32</td>
</tr>
</tbody>
</table>

Also, configure the loopback interface addresses on Routers North and South.

<table>
<thead>
<tr>
<th>Router North</th>
</tr>
</thead>
<tbody>
<tr>
<td>[edit interfaces lo0 unit 0 family inet]</td>
</tr>
<tr>
<td>user@North# set address 192.168.8.1/32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Router South</th>
</tr>
</thead>
<tbody>
<tr>
<td>[edit interfaces lo0 unit 0 family inet]</td>
</tr>
<tr>
<td>user@South# set address 192.168.7.1/32</td>
</tr>
</tbody>
</table>

3. Configure the static default route on Router North to be advertised to Router South.

| [edit routing-options] |
| user@North# set static route 0/0 reject |

4. Define the condition for exporting prefixes from the routing table on Router North.

| [edit policy-options condition prefix_11] |
| user@North# set if-route-exists 172.16.11.1/32 |
| user@North# set if-route-exists table inet.0 |

5. Define export policies (into-bgp and conditional-export-bgp) on Routers Internet and North respectively, to advertise routes to BGP.

**NOTE:** Ensure that you reference the condition, prefix_11 (configured in Step 4), in the export policy.
6. Define an import policy (import-selected-routes) on Router South to import some of the routes advertised by Router North into its routing table.

   [edit policy-options policy-statement import-selected-routes ]
   user@South# set term 1 from neighbor 10.0.78.14
   user@South# set term 1 from route-filter 10.11.0.0/8 orlonger
   user@South# set term 1 from route-filter 10.11.0.0/5 orlonger
   user@South# set term 1 then accept
   user@South# set term 2 then reject

7. Configure BGP on all three routers to enable the flow of prefixes between the autonomous systems.

   NOTE: Ensure that you apply the defined import and export policies to the respective BGP groups for prefix advertisement to take place.
8. Configure the router ID and autonomous system number for all three routers.

**NOTE:** In this example, the router ID is configured based on the IP address configured on the lo0.0 interface of the router.
Results

From configuration mode, confirm your configuration by issuing the `show interfaces`, `show protocols bgp`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device Internet

```plaintext
user@Internet# show interfaces
fe-0/1/3 {
 unit 0 {
 family inet {
 address 10.0.89.14/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 172.16.11.1/32;
 address 172.16.12.1/32;
 address 172.16.13.1/32;
 address 172.16.14.1/32;
 address 172.16.15.1/32;
 address 192.168.9.1/32;
 }
 }
}

user@Internet# show protocols bgp
group toNorth {
 local-address 10.0.89.14;
 export into-bgp;
 peer-as 200;
 neighbor 10.0.89.13;
}

user@Internet# show policy-options
policy-statement into-bgp {
 term 1 {
 from interface lo0.3;
 }
}
```
641

then accept;
}
}

user@Internet# show routing-options
router-id 192.168.9.1;
autonomous-system 300;

Device North

user@North# show interfaces
fe-1/3/1 {
unit 0 {
family inet {
address 10.0.78.14/30;
}
}
}
fe-1/3/0 {
unit 0 {
family inet {
address 10.0.89.13/30;
}
}
}
lo0 {
unit 0 {
family inet {
address 192.168.8.1/32;
}
}
}

user@North# show protocols bgp
group toInternet {
local-address 10.0.89.13;
peer-as 300;
neighbor 10.0.89.14;
}
group toSouth {


local-address 10.0.78.14;
export conditional-export-bgp;
peer-as 100;
neighbor 10.0.78.13;
}

user@North# show policy-options
policy-statement conditional-export-bgp {
    term prefix_11 {
        from {
            protocol bgp;
            route-filter 10.11.0.0/5 or longer;
        }
        then accept;
    }
    term conditional-default {
        from {
            route-filter 0.0.0.0/0 exact;
            condition prefix_11;
        }
        then accept;
    }
    term others {
        then reject;
    }
}
condition prefix_11 {
    if-route-exists {
        172.16.11.1/32;
        table inet.0;
    }
}

user@North# show routing-options
static {
    route 0.0.0.0/0 reject;
}
router-id 192.168.8.1;
autonomous-system 200;

Device South
user@South# show interfaces
fe-0/1/2 { 
  unit 0 {
    family inet {
      address 10.0.78.13/30;
    }
  }
}
lo0 { 
  unit 0 { 
    family inet { 
      address 192.168.7.1/32; 
    }
  }
}

user@South# show protocols bgp
bgp { 
  group toNorth { 
    local-address 10.0.78.13; 
    import import-selected-routes; 
    peer-as 200; 
    neighbor 10.0.78.14; 
  } 
}

user@South# show policy-options
policy-statement import-selected-routes { 
  term 1 { 
    from { 
      neighbor 10.0.78.14; 
      route-filter 10.11.0.0/8 orlonger; 
      route-filter 0.0.0.0/0 exact; 
    } 
    then accept; 
  } 
  term 2 { 
    then reject; 
  } 
}
If you are done configuring the routers, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying BGP | 644
- Verifying Prefix Advertisement from Router Internet to Router North | 646
- Verifying Prefix Advertisement from Router North to Router South | 647
- Verifying BGP Import Policy for Installation of Prefixes | 648
- Verifying Conditional Export from Router North to Router South | 649
- Verifying the Presence of Routes Hidden by Policy (Optional) | 650

Confirm that the configuration is working properly.

**Verifying BGP**

**Purpose**
Verify that BGP sessions have been established between the three routers.

**Action**
From operational mode, run the `show bgp neighbor neighbor-address` command.

1. Check the BGP session on Router Internet to verify that Router North is a neighbor.

```
user@Internet> show bgp neighbor 10.0.89.13
```

**Peer: 10.0.89.13+179 AS 200  Local: 10.0.89.14+56187 AS 300**

- Type: External  State: Established  Flags: [ImportEval Sync]
- Last State: OpenConfirm  Last Event: RecvKeepAlive
- Last Error: None
- Export: [ into-bgp ]
- Options: [Preference LocalAddress PeerAS Refresh]
- Local Address: 10.0.89.14  Holdtime: 90  Preference: 170
- Number of flaps: 0
Peer ID: 192.168.8.1   Local ID: 192.168.9.1   Active Holdtime: 90
Keepalive Interval: 30   Group index: 0   Peer index: 0
BFD: disabled, down
Local Interface: fe-0/1/3.0
NLRI for restart configured on peer: inet-unicast
NLRI advertised by peer: inet-unicast
NLRI for this session: inet-unicast
Peer supports Refresh capability (2)
Stale routes from peer are kept for: 300
Peer does not support Restarter functionality
NLRI that restart is negotiated for: inet-unicast
NLRI of received end-of-rib markers: inet-unicast
NLRI of all end-of-rib markers sent: inet-unicast
Peer supports 4 byte AS extension (peer-as 200)
Peer does not support Addpath
Table inet.0 Bit: 10000
   RIB State: BGP restart is complete
   Send state: in sync
   Active prefixes: 0
   Received prefixes: 0
   Accepted prefixes: 0
   Suppressed due to damping: 0
   Advertised prefixes: 6
Last traffic (seconds): Received 9    Sent 18   Checked 28
Input messages: Total 12       Updates 1       Refreshes 0     Octets 232
Output messages: Total 14       Updates 1       Refreshes 0     Octets 383
Output Queue[0]: 0

2. Check the BGP session on Router North to verify that Router Internet is a neighbor.

user@North> show bgp neighbor 10.0.89.14

Peer: 10.0.89.14+56187 AS 300   Local: 10.0.89.13+179 AS 200
   Type: External   State: Established   Flags: [ImportEval Sync]
   Last State: OpenConfirm   Last Event: RecvKeepAlive
   Last Error: None
   Options: [Preference LocalAddress PeerAS Refresh]
   Local Address: 10.0.89.13 Holdtime: 90 Preference: 170
   Number of flaps: 0
   Peer ID: 192.168.9.1   Local ID: 192.168.8.1   Active Holdtime: 90
   Keepalive Interval: 30   Group index: 0   Peer index: 0
   BFD: disabled, down
   Local Interface: fe-1/3/0.0
   NLRI for restart configured on peer: inet-unicast
Check the following fields in these outputs to verify that BGP sessions have been established:

- **Peer**—Check if the peer AS number is listed.
- **Local**—Check if the local AS number is listed.
- **State**—Ensure that the value is Established. If not, check the configuration again and see \texttt{show bgp neighbor} for more details on the output fields.

Similarly, verify that Routers North and South form peer relationships with each other.

**Meaning**

BGP sessions are established between the three routers.

**Verifying Prefix Advertisement from Router Internet to Router North**

**Purpose**

Verify that the routes sent from Router Internet are received by Router North.

**Action**

1. From operational mode on Router Internet, run the \texttt{show route advertising-protocol bgp neighbor-address} command.
2. From operational mode on Router North, run the `show route receive-protocol bgp neighbor-address` command.

```
user@North> show route receive-protocol bgp 10.0.89.14
```

```
inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
* 172.16.11.1/32 10.0.89.14 300 I
* 172.16.12.1/32 10.0.89.14 300 I
* 172.16.13.1/32 10.0.89.14 300 I
* 172.16.14.1/32 10.0.89.14 300 I
* 172.16.15.1/32 10.0.89.14 300 I
* 192.168.9.1/32 10.0.89.14 300 I
```

The output verifies that Router North has received all the routes advertised by Router Internet.

**Meaning**

Prefixes sent by Router Internet have been successfully installed into the routing table on Router North.

**Verifying Prefix Advertisement from Router North to Router South**

**Purpose**

Verify that the routes received from Router Internet and the static default route are advertised by Router North to Router South.

**Action**

1. From operational mode on Router North, run the `show route 0/0 exact` command.

```
user@North> show route 0/0 exact
```
The output verifies the presence of the static default route (0.0.0.0/0) in the routing table on Router North.

2. From operational mode on Router North, run the `show route advertising-protocol bgp neighbor-address` command.

   ```
 user@North> show route advertising-protocol bgp 10.0.78.13
   ```

   The output verifies that Router North is advertising the static route and the 172.16.11.1/32 route received from Router Internet, as well as many other routes, to Router South.

   **Verifying BGP Import Policy for Installation of Prefixes**

   **Purpose**
   Verify that the BGP import policy successfully installs the required prefixes.

   **Action**
   See if the import policy on Router South is operational by checking if only the static default route from Router North and the 172.16.11.1/32 route from Router South are installed in the routing table.

   From operational mode, run the `show route receive-protocol bgp neighbor-address` command.

   ```
 user@South> show route receive-protocol bgp 10.0.78.14
   ```
The output verifies that the BGP import policy is operational on Router South, and only the static default route of 0.0.0.0/0 from Router North and the 172.16.11.1/32 route from Router Internet have leaked into the routing table on Router South.

Meaning
The installation of prefixes is successful because of the configured BGP import policy.

Verifying Conditional Export from Router North to Router South

Purpose
Verify that when Device Internet stops sending the 172.16.11.1/32 route, Device North stops sending the default 0/0 route.

Action
1. Cause Device Internet to stop sending the 172.16.11.1/32 route by deactivating the 172.16.11.1/32 address on the loopback interface.

   [edit interfaces lo0 unit 0 family inet]
   user@Internet# deactivate address 172.16.11.1/32
   user@Internet# commit

2. From operational mode on Router North, run the `show route advertising-protocol bgp neighbor-address` command.

   user@North> show route advertising-protocol bgp 10.0.78.13

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.12.1/32</td>
<td>Self</td>
<td></td>
<td></td>
<td>300 I</td>
</tr>
<tr>
<td>* 172.16.13.1/32</td>
<td>Self</td>
<td></td>
<td></td>
<td>300 I</td>
</tr>
<tr>
<td>* 172.16.14.1/32</td>
<td>Self</td>
<td></td>
<td></td>
<td>300 I</td>
</tr>
<tr>
<td>* 172.16.15.1/32</td>
<td>Self</td>
<td></td>
<td></td>
<td>300 I</td>
</tr>
</tbody>
</table>

   The output verifies that Router North is not advertising the default route to Router South. This is the expected behavior when the 172.16.11.1/32 route is not present.

3. Reactivate the 172.16.11.1/32 address on Device Internet’s loopback interface.

   [edit interfaces lo0 unit 0 family inet]
   user@Internet# activate address 172.16.11.1/32
   user@Internet# commit
Verifying the Presence of Routes Hidden by Policy (Optional)

Purpose
Verify the presence of routes hidden by the import policy configured on Router South.

NOTE: This section demonstrates the effects of various changes you can make to the configuration depending on your needs.

Action
View routes hidden from the routing table of Router South by:

- Using the hidden option for the show route receive-protocol bgp neighbor-address command.
- Deactivating the import policy.

1. From operational mode, run the show route receive-protocol bgp neighbor-address hidden command to view hidden routes.

```
user@South> show route receive-protocol bgp 10.0.78.14 hidden
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.12.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.13.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.14.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.15.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


2. Deactivate the BGP import policy by configuring the deactivate import statement at the [edit protocols bgp group group-name] hierarchy level.

```
[edit protocols bgp group toNorth]
user@South# deactivate import
user@South# commit
```

3. Run the show route receive-protocol bgp neighbor-address operational mode command to check the routes after deactivating the import policy.

```
user@South> show route receive-protocol bgp 10.0.78.14
```
inet.0: 10 destinations, 11 routes (10 active, 0 holddown, 0 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 0.0.0.0/0</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.11.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.12.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.13.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.14.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.15.1/32</td>
<td>10.0.78.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


4. Activate the BGP import policy and remove the hidden routes from the routing table by configuring the `activate import` and `keep none` statements respectively at the `[edit protocols bgp group group-name]` hierarchy level.

```
[edit protocols bgp group toNorth]
user@South# activate import
user@South# set keep none
user@South# commit
```

5. From operational mode, run the `show route receive-protocol bgp neighbor-address hidden` command to check the routes after activating the import policy and configuring the `keep none` statement.

```
user@South> show route receive-protocol bgp 10.0.78.14 hidden
```

inet.0: 6 destinations, 7 routes (6 active, 0 holddown, 0 hidden)

The output verifies that the hidden routes are not maintained in the routing table because of the configured `keep none` statement.

### RELATED DOCUMENTATION

- Conditional Advertisement Enabling Conditional Installation of Prefixes Use Cases | 629
- Conditional Advertisement and Import Policy (Routing Table) with certain match conditions | 626
CHAPTER 10

Protecting Against DoS Attacks by Forwarding Traffic to the Discard Interface

IN THIS CHAPTER

- Assigning Forwarding Classes and Loss Priority | 654
- Understanding Forwarding Packets to the Discard Interface | 655
- Example: Forwarding Packets to the Discard Interface | 657
Assigning Forwarding Classes and Loss Priority

You can configure firewall filters to assign packet loss priority (PLP) and forwarding classes so that if congestion occurs, the marked packets can be dropped according to the priority you set. The valid match conditions are one or more of the six packet header fields: destination address, source address, IP protocol, source port, destination port, and DSCP. In other words, you can set the forwarding class and the PLP for each packet entering or an interface with a specific destination address, source address, IP protocol, source port, destination port, or DSCP.

NOTE: Junos OS assigns forwarding classes and PLP on ingress only. Do not use a filter that assigns forwarding classes or PLP as an egress filter.

When tricolor marking is enabled, a switch supports four PLP designations: low, medium-low, medium-high, and high. You can also specify any of the forwarding classes listed in Table 27 on page 654.

### Table 27: Unicast Forwarding Classes

<table>
<thead>
<tr>
<th>Unicast Forwarding Class</th>
<th>For CoS Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>Best-effort traffic</td>
</tr>
<tr>
<td>no-loss</td>
<td>Guaranteed delivery for TCP traffic</td>
</tr>
<tr>
<td>fcoe</td>
<td>Guaranteed delivery for Fibre Channel over Ethernet (FCoE) traffic</td>
</tr>
<tr>
<td>nc</td>
<td>Network-control traffic</td>
</tr>
</tbody>
</table>

To assign forwarding classes in firewall filters:

1. Configure the family address type and filter name:

   [edit]
   user@switch# edit firewall family inet filter ingress-filter

2. Configure the terms of the filter as appropriate, including the forwarding-class and loss-priority action modifiers. For example, each of the following terms in the filter examines various packet header fields and assigns the appropriate forwarding class and packet loss priority:

   - The term corp-traffic matches all IPv4 packets with a 10.1.1.0/24 source address and assigns the packets to forwarding class no-loss with a loss priority of low:

     [edit firewall family inet filter ingress-filter]
     user@switch# set term corp-traffic from source-address 10.1.1.0/24;
user@switch# set term corp-traffic then forwarding-class no-loss
user@switch# set term corp-traffic then loss-priority low

- The term data-traffic matches all IPv4 packets with a 10.1.2.0/24 source address and assigns the packets to forwarding class be (best effort) with a loss priority of medium-high:

```
[edit firewall family inet filter ingress-filter]
user@switch# set term data-traffic from source-address 10.1.2.0/24;
user@switch# set term data-traffic then forwarding-class be
user@switch# set term data-traffic then loss-priority medium-high
```

- The last term accept-traffic matches any packets that did not match on any of the preceding terms and assigns the packets to forwarding class be with a loss priority of high:

```
[edit firewall family inet filter ingress-filter]
user@switch# set term accept-traffic then forwarding-class be
user@switch# set term accept-traffic then loss-priority high
```

3. Apply the filter ingress-filter to a Layer 3 interface. For information about applying the filter, see “Configuring Firewall Filters” on page 1601. (Assigning forwarding classes and PLP is supported only on ingress filters.)

**Related Documentation**

<table>
<thead>
<tr>
<th>Configuring Firewall Filters</th>
<th>1601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifying That Firewall Filters Are Operational</td>
<td>758</td>
</tr>
<tr>
<td>Monitoring Firewall Filter Traffic</td>
<td>759</td>
</tr>
<tr>
<td>Overview of Policers</td>
<td>1940</td>
</tr>
<tr>
<td>Understanding CoS Classifiers</td>
<td></td>
</tr>
<tr>
<td>Understanding CoS Forwarding Classes</td>
<td></td>
</tr>
</tbody>
</table>

**Understanding Forwarding Packets to the Discard Interface**

The discard (dsc) interface is a virtual interface whose function is simply to silently discard forwarded packets as they are received. It is useful in the case of a denial-of-service (DoS) attacks. Once you know the IP address that is being targeted, you can configure a policy to forward all packets received on that interface to the discard interface, where they will be dropped (no ICMP message is sent). Dropping packets
with no valid route in the forwarding table can also prevent the device from becoming a DDoS reflector, whereby a spoofed source IP address is flooded with ICMP error messages from the device.

The `dsc` interface can be only be configured on unit 0 of the given physical interface, and only one `dsc` instance per device is supported.

Configure an input filter if, for example, you want to take an action such as logging the discard to better understand the nature of the attack.

```plaintext
[edit interfaces interface-name]
dsc {
 unit 0 {
 family inet {
 filter {
 output filter-name;
 }
 }
 }
}
```

You can configure an input policy to associate a BGP community with the discard interface. To configure an input policy to associate a community with the discard interface:

```plaintext
[edit]
policy-options {
 community community-name members [community-id];
 policy-statement statement-name {
 term term-name {
 from community community-name;
 then {
 next-hop address; # Remote end of the point-to-point interface
 accept;
 }
 }
 }
}
```

Configure an output policy to set up the community on the routes injected into the network:

```plaintext
[edit]
policy-options {
 policy-statement statement-name {
 term term-name {
 from prefix-list name;

```
then community (set | add | delete) community-name;
}
}
}

RELATED DOCUMENTATION

Example: Forwarding Packets to the Discard Interface | 657

Example: Forwarding Packets to the Discard Interface

IN THIS SECTION

- Requirements | 657
- Overview | 657
- Configuration | 661
- Verification | 666

This example shows how to use discard routing to mitigate denial of service (DoS) attacks, protect vital network resources from outside attack, provide protection services for customers so that each customer can initiate its own protection, and log and track DoS attempts.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In discard routing, routers are configured with rules that disallow millions of requests in a short period of time from being sent to the same address. If too many requests are received in a short period of time, the router simply discards the requests without forwarding them. The requests are sent to a router that does not forward the packets. The problematic routes are sometimes referred to as discard routes or black-holed routes. The types of routes that should be discarded are identified as attacks to customers from peers or
other customers, attacks from customers to peers or other customers, attack controllers, which are hosts providing attack instructions, and unallocated address spaces, known as bogons or invalid IP addresses.

After the attack attempt is identified, operators can put a configuration in place to mitigate the attack. One way to configure discard routing in Junos OS is to create a discard static route for each next hop used for discard routes. A discard static route uses the **discard** option.

For example:

```plaintext
user@host# show routing-options
static {
 route 192.0.2.101/32 discard;
 route 192.0.2.103/32 discard;
 route 192.0.2.105/32 discard;
}
```

```plaintext
user@host> show route protocol static terse
```

<table>
<thead>
<tr>
<th>A</th>
<th>V</th>
<th>Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>?</td>
<td>192.0.2.101/32</td>
<td>S</td>
<td>5</td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>?</td>
<td>192.0.2.103/32</td>
<td>S</td>
<td>5</td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>?</td>
<td>192.0.2.105/32</td>
<td>S</td>
<td>5</td>
<td></td>
<td>Discard</td>
<td></td>
</tr>
</tbody>
</table>

Another strategy, which is the main focus of this example, is to use routing policy and the discard interface. In this approach, the discard interface contains the next hop you are assigning to the black-hole routes. A discard interface can have only one logical unit (unit 0), but you can configure multiple IP addresses on unit 0.

For example:

```plaintext
user@host# show interfaces dsc
unit 0 {
 family inet {
 address 192.0.2.102/32 {
 destination 192.0.2.101;
 }
 address 192.0.2.104/32 {
 destination 192.0.2.103;
 }
 address 192.0.2.106/32 {
```
destination 192.0.2.105;
}
}
}

user@host> **show interfaces terse dsc**

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsc</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dsc.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>192.0.2.102</td>
<td>--&gt; 192.0.2.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192.0.2.104</td>
<td>--&gt; 192.0.2.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192.0.2.106</td>
<td>--&gt; 192.0.2.105</td>
</tr>
</tbody>
</table>

The advantage of using a discard interface instead of using discard static routes is that the discard interface allows you to configure and assign filters to the interface for counting, logging, and sampling the traffic. This is demonstrated in this example.

To actually discard packets requires a routing policy attached to the BGP sessions. To locate discard-eligible routes, you can use a route filter, an access list, or a BGP community value.

For example, here is how you would use a route filter:

**Route Filter**

```bash
protocols {
 bgp {
 import blackhole-by-route;
 }
}
policy-options {
 policy-statement blackhole-by-route {
 term specific-routes {
 from {
 route-filter 10.10.10.1/32 exact;
 route-filter 10.20.20.2/32 exact;
 route-filter 10.30.30.3/32 exact;
 route-filter 10.40.40.4/32 exact;
 }
 then {
```
Figure 44 on page 660 shows the sample network.

Figure 44: Discard Interface Sample Network

The example includes three routers with external BGP (EBGP) sessions established.

Device R1 represents the attacking device. Device R3 represents the router closest to the device that is being attacked. Device R2 mitigates the attack by forwarding packets to the discard interface.

The example shows an outbound filter applied to the discard interface.

NOTE: An issue with using a single black-hole filter is visibility. All discard packets increment the same counter. To see which categories of packets are being discarded, use destination class usage (DCU), and associate a user-defined class with each black-hole community. Then reference the DCU classes in a firewall filter. For related examples, see “Example: Grouping Source and Destination Prefixes into a Forwarding Class” on page 611 and “Example: Configuring a Rate-Limiting Filter Based on Destination Class” on page 1073.

Compared to using route filters and access lists, using a community value is the least administratively difficult and the most scalable approach. Therefore, this is the approach shown in this example.

By default, the next hop must be equal the external BGP (EBGP) peer address. Altering the next hop for black-hole services requires the multihop feature to be configured on the EBGP sessions.
"CLI Quick Configuration" on page 661 shows the configuration for all of the devices in Figure 44 on page 660.

The section "Step-by-Step Procedure" on page 662 describes the steps on Device R2.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.2
set routing-options autonomous-system 100
```

Device R2

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.1/30
set interfaces dsc unit 0 family inet filter output log-discard
set interfaces dsc unit 0 family inet address 192.0.2.102/32 destination 192.0.2.101
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp import blackhole-policy
set protocols bgp group ext type external
set protocols bgp group ext multihop
set protocols bgp group ext export dsc-export
set protocols bgp group ext neighbor 10.0.0.1 peer-as 100
set protocols bgp group ext neighbor 10.1.0.2 peer-as 300
set policy-options policy-statement blackhole-policy term blackhole-communities from community blackhole-all-routers
set policy-options policy-statement blackhole-policy term blackhole-communities then next-hop 192.0.2.101
set policy-options policy-statement dsc-export from route-filter 192.0.2.101/32 exact
set policy-options policy-statement dsc-export from route-filter 192.0.2.102/32 exact
set policy-options policy-statement dsc-export then community set blackhole-all-routers
```
set policy-options policy-statement dsc-export then accept
set policy-options community blackhole-all-routers members 100:5555
set routing-options static route 192.0.2.102/32 next-hop 192.0.2.101
set routing-options autonomous-system 200
set firewall filter log-discard term one then count counter
set firewall filter log-discard term one then log

Device R3

set interfaces fe-1/2/1 unit 0 family inet address 10.1.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set interfaces lo0 unit 0 family inet address 192.0.2.102/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.1.0.1
set routing-options autonomous-system 300

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Create the router interfaces.

[edit interfaces]
user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
user@R2# set fe-1/2/1 unit 0 family inet address 10.1.0.1/30
user@R2# set lo0 unit 0 family inet address 192.168.0.2/32

2. Configure a firewall filter that matches all packets and counts and logs the packets.

[edit firewall filter log-discard term one]
user@R2# set then count counter
user@R2# set then log
3. Create a discard interface and apply the output firewall filter.

Input firewall filters have no impact in this context.

```
[edit interfaces dsc unit 0 family inet]
user@R2# set filter output log-discard
user@R2# set address 192.0.2.102/32 destination 192.0.2.101
```

4. Configure a static route that sends the next hop to the destination address that is specified in the discard interface.

```
[edit routing-options static]
user@R2# set route 192.0.2.102/32 next-hop 192.0.2.101
```

5. Configure BGP peering.

```
[edit protocols bgp]
user@R2# set group ext type external
user@R2# set group ext multihop
user@R2# set group ext neighbor 10.0.0.1 peer-as 100
user@R2# set group ext neighbor 10.1.0.2 peer-as 300
```

6. Configure the routing policies.

```
[edit policy-options policy-statement blackhole-policy term blackhole-communities]
user@R2# set from community blackhole-all-routers
user@R2# set then next-hop 192.0.2.101
[edit policy-options policy-statement dsc-export]
user@R2# set from route-filter 192.0.2.101/32 exact
user@R2# set from route-filter 192.0.2.102/32 exact
user@R2# set then community set blackhole-all-routers
user@R2# set then accept
[edit policy-options community blackhole-all-routers]
user@R2# set members 100:5555
```

7. Apply the routing policies.

```
[edit protocols bgp]
user@R2# set import blackhole-policy
```
8. Configure the autonomous system (AS) number.

```
[edit routing-options]
user@R2# set autonomous-system 200
```

Results

From configuration mode, confirm your configuration by issuing the `show interfaces`, `show protocols`, `show policy-options`, `show routing-options`, and `show firewall` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@R2# show interfaces
fe-1/2/0 {
 unit 0 {
 family inet {
 address 10.0.0.2/30;
 }
 }
}
fe-1/2/1 {
 unit 0 {
 family inet {
 address 10.1.0.1/30;
 }
 }
}
}
dsc {
 unit 0 {
 family inet {
 filter {
 output log-discard;
 }
 address 192.0.2.102/32 {
 destination 192.0.2.101;
 }
 }
 }
}
lo0 {
```
unit 0 {
  family inet {
    address 192.168.0.2/32;
  }
}

user@R2# show protocols
bgp {
  import blackhole-policy;
  group ext {
    type external;
    multihop;
    export dsc-export;
    neighbor 10.0.0.1 {
      peer-as 100;
    }
    neighbor 10.1.0.2 {
      peer-as 300;
    }
  }
}

user@R2# show policy-options
policy-statement blackhole-policy {
  term blackhole-communities {
    from community blackhole-all-routers;
    then {
      next-hop 192.0.2.101;
    }
  }
}
policy-statement dsc-export {
  from {
    route-filter 192.0.2.101/32 exact;
    route-filter 192.0.2.102/32 exact;
  }
  then {
    community set blackhole-all-routers;
    accept;
  }
}
community blackhole-all-routers members 100:5555;
user@R2# show routing-options
static {
    route 192.0.2.102/32 next-hop 192.0.2.101;
}
autonomous-system 200;

user@R2# show firewall
filter log-discard {
    term one {
        then {
            count counter;
            log;
        }
    }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

**IN THIS SECTION**

- Clearing the Firewall Counters | 666
- Pinging the 192.0.2.101 Address | 667
- Checking the Output Filter | 667
- Checking the Community Attribute | 668

Confirm that the configuration is working properly.

**Clearing the Firewall Counters**

**Purpose**
Clear the counters to make sure you are starting from a known zero (0) state.

**Action**
1. From Device R2, run the clear firewall command.

   user@R2> clear firewall filter log-discard

2. From Device R2, run the show firewall command.
user@R2> show firewall filter log-discard

Filter: /log-discard
Counters:
Name        Bytes    Packets
---           ---        ---
counter      0         0

Pinging the 192.0.2.101 Address

Purpose
Send packets to the destination address.

Action
From Device R1, run the ping command.

user@R1> ping 192.0.2.101

PING 192.0.2.101 (192.0.2.101): 56 data bytes
^C
--- 192.0.2.101 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss

Meaning
As expected, the ping request fails, and no response is sent. The packets are being discarded.

Checking the Output Filter

Purpose
Verify that Device R2’s firewall filter is functioning properly.

Action
From Device R2, enter the show firewall filter log-discard command.

user@R2> show firewall filter log-discard

Filter: log-discard
Counters:
Name        Bytes    Packets
---           ---        ---
counter      336        4

Meaning
As expected, the counter is being incremented.
NOTE: The ping packet carries an additional 20 bytes of IP overhead as well as 8 bytes of ICMP header.

Checking the Community Attribute

Purpose
Verify that the route is being tagged with the community attribute.

Action
From Device R1, enter the `show route extensive` command, using the neighbor address for Device R2, 192.0.2.101.

```
user@R1> show route 192.0.2.101 extensive

inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
192.0.2.101/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 192.0.2.101/32 -> (10.0.0.2)
 *BGP Preference: 170/-101
 Next hop type: Router, Next hop index: 684
 Address: 0x94141d8
 Next-hop reference count: 2
 Source: 10.0.0.2
 Next hop: 10.0.0.2 via fe-1/2/0.0, selected
 Session Id: 0x8000a
 State: <Active Ext>
 Local AS: 100 Peer AS: 200
 Age: 53:03
 Validation State: unverified
 Task: BGP_200.10.0.0.2+63097
 Announcement bits (1): 2-KRT
 AS path: 200 I
 Communities: 100:5555
 Accepted
 Localpref: 100
 Router ID: 192.168.0.2
```

Meaning
As expected, when Device R2 advertises the 192.0.2.101 route to Device R1, Device R2 adds the 100:5555 community tag.
RELATED DOCUMENTATION

- Understanding Forwarding Packets to the Discard Interface | 655
- Example: Configuring Routing Policy Prefix Lists | 364
CHAPTER 11

Improving Commit Times with Dynamic Routing Policies

IN THIS CHAPTER

- Understanding Dynamic Routing Policies | 671
- Example: Configuring Dynamic Routing Policies | 676

Understanding Dynamic Routing Policies

IN THIS SECTION

- Configuring Routing Policies and Policy Objects in the Dynamic Database | 672
- Configuring Routing Policies Based on Dynamic Database Configuration | 673
- Applying Dynamic Routing Policies to BGP | 674
- Preventing Reestablishment of BGP Peering Sessions After NSR Routing Engine Switchover | 675
The verification process required to commit configuration changes can entail a significant amount of overhead and time. For example, changing a prefix in one line of a routing policy that is 20,000 lines long can take up to 20 seconds to commit. It can be useful to be able to commit routing policy changes much more quickly.

In Junos OS Release 9.5 and later, you can configure routing policies and certain routing policy objects in a dynamic database that is not subject to the same verification required in the standard configuration database. As a result, the time it takes to commit changes to the dynamic database is much shorter than for the standard configuration database. You can then reference these policies and policy objects in routing policies you configure in the standard database. BGP is the only protocol to which you can apply routing policies that reference policies and policy objects configured in the dynamic database. After you configure and commit a routing policy based on the objects configured in the dynamic database, you can quickly update any existing routing policy by making changes to the dynamic database configuration.

CAUTION: Because the Junos OS does not validate configuration changes to the dynamic database, when you use this feature, you should test and verify all configuration changes before committing them.

### Configuring Routing Policies and Policy Objects in the Dynamic Database

Junos OS Release 9.5 and later support a configuration database, the dynamic database, which can be edited in a similar way to the standard configuration database but which is not subject to the same verification process to commit configuration changes. As a result, the time it takes to commit a configuration change is much faster. The policies and policy objects defined in the dynamic database can then be referenced in routing policies configured in the standard configuration. The dynamic database is stored in the /var/run/db/juniper.dyn directory.

To configure the dynamic database, enter the configure dynamic command to enter the configuration mode for the dynamic database:

```
user@host> configure dynamic
```

```
Entering configuration mode

[edit dynamic]
user@host#
```

In this dynamic configuration database, you can configure the following statements at the [edit policy-options] hierarchy level:
• as-path name
• as-path-group group-name
• community community-name
• condition condition-name
• prefix-list prefix-list-name
• policy-statement policy-statement-name

NOTE: No other configuration is supported at the [edit dynamic] hierarchy level.

Use the policy-statement policy-statement-name statement to configure routing policies as you would in the standard configuration database.

To exit configuration mode for the dynamic database, issue the exit configuration-mode command from any level within the [edit dynamic] hierarchy, or use the exit command from the top level.

Configuring Routing Policies Based on Dynamic Database Configuration

In the standard configuration mode, you can configure routing policies that reference policies and policy objects configured at the [edit dynamic] hierarchy level in the dynamic database. To define a routing policy that references the dynamic database configuration, include the dynamic-db statement at the [edit policy-options policy-statement policy-statement-name] hierarchy level:

```
[edit policy-options]
policy-statement policy-statement-name {
 dynamic-db;
}
```

You can also define specific policy objects based on the configuration of these objects in the dynamic database. To define a policy object based on the dynamic database, include the dynamic-db statement with the following statements at the [edit policy-options] hierarchy level:

• as-path name
• as-path-group group-name
• community community-name
• condition condition-name
• prefix-list prefix-list-name

In the standard configuration, you can also define a routing policy that references any policy object you have configured in the standard configuration that references an object configured in the dynamic database.
For example, in standard configuration mode, you configure a prefix list `prefix-list pl2` that references a prefix list, also named `prefix-list pl2`, that has been configured in the dynamic database:

```plaintext
[edit policy-options]
prefix-list pl2 {
 dynamic-db; # Reference a prefix list configured in the dynamic database.
}
```

You then configure a routing policy in the standard configuration that includes `prefix-list pl2`:

```plaintext
[edit policy-options]
policy-statement one {
 term term1 {
 from {
 prefix-list pl2; # Include the prefix list configured in the standard configuration
 # database, but which references a prefix list configured in the dynamic database.
 }
 then accept;
 }
 then reject;
}
```

If you need to update the configuration of `prefix-list pl2`, you do so in the dynamic database configuration using the `[edit dynamic]` hierarchy level. This enables you to make commit configuration changes to the prefix list more quickly than you can in the standard configuration database.

**NOTE:** If you are downgrading the Junos OS to Junos OS Release 9.4 or earlier, you must first delete any routing policies that reference the dynamic database. That is, you must delete any routing policies or policy objects configured with the `dynamic-db` statement.

### Applying Dynamic Routing Policies to BGP

BGP is the only routing protocol to which you can apply routing policies that reference the dynamic database configuration. You must apply these policies in the standard configuration. Dynamic policies can be applied to BGP export or import policy. They can also be applied at the global, group, or neighbor hierarchy level.

To apply a BGP export policy, include the `export [policy-names]` statement at the `[edit protocols bgp]`, `[edit protocols bgp group group-name]`, or `[edit protocols bgp group group-name neighbor address]` hierarchy level.
To apply a BGP import policy, include the `import [policy-names]` statement at the `[edit protocols bgp]`, `[edit protocols bgp group group-name]`, or `[edit protocols bgp group group-name neighbor address]` hierarchy level.

Include one or more policy names configured in that standard configuration at the `[edit policy-options policy-statement]` hierarchy level that reference policies configured in the dynamic database.

### Preventing Reestablishment of BGP Peering Sessions After NSR Routing Engine Switchover

If you have active nonstop routing (NSR) enabled, the dynamic database is not synchronized with the backup Routing Engine. As a result, if a switchover to a backup Routing Engine occurs, import and export policies running on the master Routing Engine at the time of the switchover might no longer be available. Therefore, you might want to prevent a BGP peering session from automatically being reestablished as soon as a switchover occurs.

You can configure the router not to reestablish a BGP peering session after an active nonstop routing switchover either for a specified period or until you manually reestablish the session. Include the `idle-after-switch-over (seconds | forever)` statement at the `[edit protocols bgp]`, `[edit protocols bgp group group-name]`, or `[edit protocols bgp group group-name neighbor address]` hierarchy level:

```
[edit]
bgp {
 protocols {
 idle-after-switch-over (seconds | never);
 }
}
```
For seconds, specify a value from 1 through 4,294,967,295 (2^{32} – 1). The BGP peering session is not reestablished until after the specified period. If you specify the forever option, the BGP peering session is not established until you issue the clear bgp neighbor command.

RELATED DOCUMENTATION

Example: Configuring Dynamic Routing Policies | 676

High Availability Feature Guide

Example: Configuring Dynamic Routing Policies

This example shows how to configure routing policy objects in a dynamic database that is not subject to the same verification required in the standard configuration database.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

The verification process required to commit configuration changes can entail a significant amount of overhead and time.

The time it takes to commit changes to the dynamic database is much shorter than for the standard configuration database. You can reference these policies and policy objects in routing policies you configure in the standard database. BGP is the only protocol to which you can apply routing policies that reference policies and policy objects configured in the dynamic database. After you configure and commit a routing
policy based on the objects configured in the dynamic database, you can quickly update any existing routing policy by making changes to the dynamic database configuration.

CAUTION: Because Junos OS does not validate configuration changes to the dynamic database, when you use this feature, you should test and verify all configuration changes before committing them.

Figure 45 on page 677 shows the sample network.

Figure 45: Dynamic Routing Policy Sample Network

The example includes three routers with external BGP (EBGP) sessions established. Only Device R1 makes use of the dynamic database.

On Device R0’s fe-1/2/1 interface, multiple IPv4 interfaces are configured, and a routing policy injects these prefixes into BGP, using the from interface fe-1/2/1.0 policy condition as a shorthand method for specifying all of the IP addresses configured on Device R0’s fe-1/2/1 interface.

Likewise, on Device R2’s fe-1/2/3 interface, multiple IPv4 addresses are configured, and a routing policy injects these prefixes into BGP. Device R2’s configuration is slightly different from Device R0’s in that Device R2’s configuration demonstrates the use of a prefix list.

On Device R1, in the dynamic database, two prefix lists are defined, one for the interface addresses learned from Device R0 and another for the interface addresses learned from Device R2. Device R1’s standard database contains routing policies with prefix lists that are similar to those defined in the dynamic database.

In its peer session with Device R0, Device R1 has the static-database policies applied. In contrast, in its peer session with Device R2, Device R1’s configuration references the dynamic database.

The results of these different configurations are analyzed in the “Verification” on page 688 section.

"CLI Quick Configuration" on page 678 shows the configuration for all of the devices in Figure 45 on page 677.

The section “Step-by-Step Procedure” on page 681 describes the steps on Device R1’s dynamic database.

The section “Step-by-Step Procedure” on page 682 describes the steps on Device R1’s standard database.
Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R0

```plaintext
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces fe-1/2/1 unit 0 family inet address 172.16.4.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.3.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.2.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.1.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.5.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.6.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.7.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.8.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.9.1/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.10.1/24
set interfaces lo0 unit 0 family inet address 10.255.14.151/32
set protocols bgp group ext type external
set protocols bgp group ext neighbor 10.0.0.2 export t2
set protocols bgp group ext neighbor 10.0.0.2 peer-as 200
set policy-options policy-statement t2 from interface fe-1/2/0.0
set policy-options policy-statement t2 from interface fe-1/2/1.0
set policy-options policy-statement t2 then accept
set routing-options router-id 10.255.14.151
set routing-options autonomous-system 100
```

Device R1 Dynamic Database

```plaintext
[edit dynamic]
set policy-options prefix-list dyn_prfx1 172.16.1.0/24
set policy-options prefix-list dyn_prfx1 172.16.2.0/24
set policy-options prefix-list dyn_prfx1 172.16.3.0/24
set policy-options prefix-list dyn_prfx1 172.16.4.0/24
set policy-options prefix-list dyn_prfx1 172.16.5.0/24
set policy-options prefix-list dyn_prfx1 172.16.6.0/24
set policy-options prefix-list dyn_prfx1 172.16.7.0/24
```
set policy-options prefix-list dyn_prfx1 172.16.8.0/24
set policy-options prefix-list dyn_prfx2 172.16.2.0/24
set policy-options prefix-list dyn_prfx2 172.16.3.0/24
set policy-options prefix-list dyn_prfx2 172.16.4.0/24
set policy-options prefix-list dyn_prfx2 172.16.5.0/24
set policy-options prefix-list dyn_prfx2 172.16.6.0/24
set policy-options policy-statement dyn_policy1 term t1 from prefix-list dyn_prfx1
set policy-options policy-statement dyn_policy1 term t1 then accept
set policy-options policy-statement dyn_policy1 term t2 then reject
set policy-options policy-statement dyn_policy2 term t1 from prefix-list dyn_prfx2
set policy-options policy-statement dyn_policy2 term t1 then accept
set policy-options policy-statement dyn_policy2 term t2 then reject

Device R1 Standard Database

set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces fe-1/2/2 unit 0 family inet address 10.1.0.1/30
set interfaces fe-1/2/1 unit 0 family inet address 172.16.4.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.3.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.2.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.1.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.5.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.6.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.7.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.8.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.9.2/24
set interfaces fe-1/2/1 unit 0 family inet address 172.16.10.2/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.22.2/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.23.2/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.24.2/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.25.2/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.26.2/24
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group to_r0 idle-after-switch-over 300
set protocols bgp group to_r0 idle-after-switch-over 300
set protocols bgp group to_r0 neighbor 10.0.0.1 import dyn_policy1
set protocols bgp group to_r0 neighbor 10.0.0.1 export dyn_policy2
set protocols bgp group to_r0 neighbor 10.0.0.1 peer-as 100
set protocols bgp group to_R2 import static_policy1
set protocols bgp group to_R2 export static_policy2
set protocols bgp group to_R2 idle-after-switch-over 300
set protocols bgp group to_R2 neighbor 10.1.0.2 peer-as 300
set policy-options prefix-list static_prfx1 172.16.22.0/24
set policy-options prefix-list static_prfx1 172.16.23.0/24
set policy-options prefix-list static_prfx1 172.16.24.0/24
set policy-options prefix-list static_prfx1 172.16.25.0/24
set policy-options prefix-list static_prfx2 172.16.1.0/24
set policy-options prefix-list static_prfx2 172.16.2.0/24
set policy-options prefix-list static_prfx2 172.16.3.0/24
set policy-options prefix-list static_prfx2 172.16.4.0/24
set policy-options policy-statement dyn_policy1 dynamic-db
set policy-options policy-statement dyn_policy2 dynamic-db
set policy-options policy-statement static_policy1 term t1 from prefix-list static_prfx1
set policy-options policy-statement static_policy1 term t1 then accept
set policy-options policy-statement static_policy1 term t2 then reject
set policy-options policy-statement static_policy2 term t1 from prefix-list static_prfx2
set policy-options policy-statement static_policy2 term t1 then accept
set policy-options policy-statement static_policy2 term t2 then reject
set routing-options autonomous-system 200

Device R2

set interfaces fe-1/2/2 unit 0 family inet address 10.1.0.2/30
set interfaces fe-1/2/3 unit 0 family inet address 172.16.22.1/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.23.1/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.24.1/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.25.1/24
set interfaces fe-1/2/3 unit 0 family inet address 172.16.26.1/24
set interfaces lo0 unit 0 family inet address 192.168.0.3/32
set protocols bgp group to_vin neighbor 10.1.0.1 export p1
set protocols bgp group to_vin neighbor 10.1.0.1 peer-as 200
set policy-options prefix-list ppx1 172.16.22.0/24
set policy-options prefix-list ppx1 172.16.23.0/24
set policy-options prefix-list ppx1 172.16.24.0/24
set policy-options prefix-list ppx1 172.16.25.0/24
set policy-options prefix-list ppx1 172.16.26.0/24
set policy-options policy-statement p1 term t1 from family inet
set policy-options policy-statement p1 term t1 from prefix-list ppx1
set policy-options policy-statement p1 term t1 then accept
set routing-options autonomous-system 300
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R1’s dynamic database:

1. Enter configuration mode for the dynamic database.

   ```bash
 user@R1> configure dynamic
 Entering configuration mode
 [edit dynamic]
   ```

2. Create a prefix list for the interface addresses learned from Device R0.

   ```bash
 [edit dynamic policy-options prefix-list dyn_prfx1]
 user@R1# set 172.16.1.0/24
 user@R1# set 172.16.2.0/24
 user@R1# set 172.16.3.0/24
 user@R1# set 172.16.4.0/24
 user@R1# set 172.16.5.0/24
 user@R1# set 172.16.6.0/24
 user@R1# set 172.16.7.0/24
 user@R1# set 172.16.8.0/24
   ```

3. Create a prefix list for the interface addresses learned from Device R2.

   ```bash
 [edit dynamic policy-options prefix-list dyn_prfx2]
 user@R1# set 172.16.2.0/24
 user@R1# set 172.16.3.0/24
 user@R1# set 172.16.4.0/24
 user@R1# set 172.16.5.0/24
 user@R1# set 172.16.6.0/24
   ```

4. Configure the routing policies.

   ```bash
 [edit dynamic policy-options policy-statement dyn_policy1]
 user@R1# set term t1 from prefix-list dyn_prfx1
 user@R1# set term t1 then accept
 user@R1# set term t2 then reject
 user@R1# set term t1 from prefix-list dyn_prfx2
 user@R1# set term t1 then accept
   ```
Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1's standard database:

1. Create the router interfaces.

   ```
 [edit interfaces]
 user@R1# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
 user@R1# set fe-1/2/2 unit 0 family inet address 10.1.0.1/30
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.4.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.3.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.2.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.1.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.5.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.6.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.7.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.8.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.9.2/24
 user@R1# set fe-1/2/1 unit 0 family inet address 172.16.10.2/24
 user@R1# set fe-1/2/3 unit 0 family inet address 172.16.2.2/24
 user@R1# set fe-1/2/3 unit 0 family inet address 172.16.3.2/24
 user@R1# set fe-1/2/3 unit 0 family inet address 172.16.4.2/24
 user@R1# set fe-1/2/3 unit 0 family inet address 172.16.5.2/24
 user@R1# set fe-1/2/3 unit 0 family inet address 172.16.6.2/24
 user@R1# set lo0 unit 0 family inet address 192.168.0.2/32
   ```

2. Create routing policies that reference the policies in the dynamic database.

   ```
 [edit policy-options]
 user@R1# set policy-statement dyn_policy1 dynamic-db
 user@R1# set policy-statement dyn_policy2 dynamic-db
   ```

3. Configure BGP peering with Device R0.

   ```
 [edit protocols bgp group to_r0]
 user@R1# set neighbor 10.0.0.1 peer-as 100
   ```
4. Apply the dynamic database policies to the BGP peering with Device R0.

```
[edit protocols bgp group to_r0]
user@R1# set neighbor 10.0.0.1 import dyn_policy1
user@R1# set neighbor 10.0.0.1 export dyn_policy2
```

5. Configure a prefix list for prefixes learned from Device R0.

```
[edit policy-options prefix-list static_prfx2]
user@R1# set 172.16.1.0/24
user@R1# set 172.16.2.0/24
user@R1# set 172.16.3.0/24
user@R1# set 172.16.4.0/24
```

6. Configure a prefix list for prefixes learned from Device R2.

```
[edit policy-options prefix-list static_prfx1]
user@R1# set 172.16.2.0/24
user@R1# set 172.16.3.0/24
user@R1# set 172.16.4.0/24
user@R1# set 172.16.5.0/24
```

7. Configure the static database policies.

```
[edit policy-options policy-statement static_policy1]
user@R1# set term t1 from prefix-list static_prfx1
user@R1# set term t1 then accept
user@R1# set term t2 then reject
[edit policy-options policy-statement static_policy2]
user@R1# set term t1 from prefix-list static_prfx2
user@R1# set term t1 then accept
user@R1# set term t2 then reject
```

8. Configure BGP peering with Device R2.

```
[edit protocols bgp group to_R2]
user@R1# set neighbor 10.1.0.2 peer-as 300
```
9. Apply the static database policies to the BGP peering with Device R2.

```
[edit protocols bgp group to_R2]
user@R1# set import static_policy1
user@R1# set export static_policy2
```

10. (Optional) Configure the router not to reestablish the BGP peering sessions after an active nonstop routing switchover either for a specified period or until you manually reestablish the session.

   This statement is particularly useful with dynamic routing policies because the dynamic database is not synchronized with the backup Routing Engine when nonstop active routing (NSR) is enabled. As a result, if a switchover to a backup Routing Engine occurs, import and export policies running on the master Routing Engine at the time of the switchover might no longer be available. Therefore, you might want to prevent a BGP peering session from automatically being reestablished as soon as a switchover occurs.

```
[edit protocols bgp]
user@R1# set group to_r0 idle-after-switch-over 300
user@R1# set group to_R2 idle-after-switch-over 300
```

11. Configure the autonomous system (AS) number.

```
[edit routing-options]
user@R1# set routing-options autonomous-system 200
```

Results

Confirm your configuration by entering the `show` command from configuration mode in the dynamic database, and the `show interfaces`, `show protocols`, `show policy-options` and `show routing-options` commands from configuration mode in the standard database. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

Device R1 Dynamic

```
[edit dynamic]
user@R1# show
policy-options {
 prefix-list dyn_prfx1 {
 172.16.1.0/24;
 172.16.2.0/24;
 172.16.3.0/24;
 }
 prefix-list dyn_prfx2 {
 172.16.4.0/24;
 }
 prefix-list dyn_prfx3 {
 172.16.5.0/24;
 }
}
```
172.16.4.0/24;
172.16.5.0/24;
172.16.6.0/24;
172.16.7.0/24;
172.16.8.0/24;
}
prefix-list dyn_prfx2 {  
172.16.2.0/24;
172.16.3.0/24;
172.16.4.0/24;
172.16.5.0/24;
172.16.6.0/24;
}
policy-statement dyn_policy1 {  
term t1 {    
from {      
prefix-list dyn_prfx1;    }
then accept;
}
term t2 {    
then reject;
}
}
policy-statement dyn_policy2 {  
term t1 {    
from {      
prefix-list dyn_prfx2;    }
then accept;
}
term t2 {    
then reject;
}
}

Device R1 Standard
user@R1# show interfaces
fe-1/2/0 {
    unit 0 {
        family inet {
            address 10.0.0.2/30;
        }
    }
}
fe-1/2/1 {
    unit 0 {
        family inet {
            address 172.16.4.2/24;
            address 172.16.3.2/24;
            address 172.16.2.2/24;
            address 172.16.1.2/24;
            address 172.16.5.2/24;
            address 172.16.6.2/24;
            address 172.16.7.2/24;
            address 172.16.8.2/24;
            address 172.16.9.2/24;
            address 172.16.10.2/24;
        }
    }
}
fe-1/2/2 {
    unit 0 {
        family inet {
            address 10.1.0.1/30;
        }
    }
}
fe-1/2/3 {
    unit 0 {
        family inet {
            address 172.16.2.2/24;
            address 172.16.3.2/24;
            address 172.16.4.2/24;
            address 172.16.5.2/24;
            address 172.16.6.2/24;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 192.168.0.2/32;
        }
    }
}

user@R1# show protocols
bgp {
    group to_R0 {
        idle-after-switch-over 300;
        neighbor 10.0.0.1 {
            import dyn_policy1;
            export dyn_policy2;
            peer-as 100;
        }
    }
    group to_R2 {
        import static_policy1;
        export static_policy2;
        idle-after-switch-over 300;
        neighbor 10.1.0.2 {
            peer-as 300;
        }
    }
}

user@R1# show policy-options
prefix-list static_prfx1 {
    172.16.2.0/24;
    172.16.3.0/24;
    172.16.4.0/24;
    172.16.5.0/24;
}
prefix-list static_prfx2 {
    172.16.1.0/24;
    172.16.2.0/24;
    172.16.3.0/24;
    172.16.4.0/24;
}
policy-statement dyn_policy1 {
  dynamic-db;
}

policy-statement dyn_policy2 {
  dynamic-db;
}

policy-statement static_policy1 {
  term t1 {
    from {
      prefix-list static_prfx1;
    }
    then accept;
  }
  term t2 {
    then reject;
  }
}

policy-statement static_policy2 {
  term t1 {
    from {
      prefix-list static_prfx2;
    }
    then accept;
  }
  term t2 {
    then reject;
  }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Checking the Configured Policies on Device R1 | 689
- Checking the Routes Advertised from Device R0 to Device R1 | 690
- Checking the Routes That Device R1 Is Receiving from Device R0 | 691
Confirm that the configuration is working properly.

**Checking the Configured Policies on Device R1**

**Purpose**
Verify that Device R1 has the dynamic and static policies in effect.

**Action**
From Device R1, enter the `show policy` command.

```
user@R1> show policy
```

```
Configured policies:
dyn_policy1
dyn_policy2
static_policy1
static_policy2
dyn_policy1
dyn_policy2
```

**Meaning**
The dynamic policies are listed two times because they are configured two times, the first and central configuration in the dynamic database. The secondary configuration is in the static database, where the dynamic database is referenced, as shown here:

**Configured in the Dynamic Database**

```
policy-statement dyn_policy1 {
term t1 {
from {
 prefix-list dyn_prfx1;
}
}
```
Referenced from the Static Database

Checking the Routes Advertised from Device R0 to Device R1

Purpose
Verify that Device R0's routing policy is working.

Action
From Device R0, enter the `show route advertising-protocol bgp` command, using the neighbor address for Device R1.

```
user@R0> show route advertising-protocol bgp 10.0.0.2
```
Meaning
Device R0 is sending the expected routes to Device R1.

Checking the Routes That Device R1 Is Receiving from Device R0

Purpose
Verify that Device R1’s import routing policy is working.

Action
From Device R1, enter the `show route receive-protocol bgp` command, using the neighbor address for Device R0.

```
user@R1> show route receive-protocol bgp 10.0.0.1
```

Meaning
Some of the routes that are sent by Device R0 are not received by Device R1. The routes 172.16.9.0/24, 172.16.10.0/24, and 10.0.0.0/30 are missing. This is because Device R1’s import policy, applied to the
BGP peering session with Device R0 using the import dyn_policy1 statement, specifically defines a prefix list limited to the following routes:

```plaintext
prefix-list dyn_prfx1 {
 172.16.1.0/24;
 172.16.2.0/24;
 172.16.3.0/24;
 172.16.4.0/24;
 172.16.5.0/24;
 172.16.6.0/24;
 172.16.7.0/24;
 172.16.8.0/24;
}
```

**Checking the Routes Advertised from Device R2 to Device R1**

**Purpose**
Verify that Device R2’s routing policy is working.

**Action**
From Device R2, enter the `show route advertising-protocol bgp` command, using the neighbor address for Device R1.

```
user@R2> show route advertising-protocol bgp 10.1.0.1
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.2.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.4.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.5.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.6.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

**Meaning**
Device R2 is sending the expected routes to Device R1.

**Checking the Routes That Device R1 Is Receiving from Device R2**

**Purpose**
Verify that Device R1’s import routing policy is working.

**Action**
From Device R1, enter the `show route receive-protocol bgp` command, using the neighbor address for Device R0.

```
user@R1> show route receive-protocol bgp 10.1.0.2
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.0/24</td>
<td>10.1.0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.3.0/24</td>
<td>10.1.0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.4.0/24</td>
<td>10.1.0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.5.0/24</td>
<td>10.1.0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**

One of the routes that is sent by Device R2 is not received by Device R1. The route 172.16.6.0/24 is missing. This is because Device R1’s import policy, applied to the BGP peering session with Device R2 using the `import static_policy1` statement, specifically defines a prefix list limited to the following routes:

```
prefix-list static_prfx1 {
 172.16.2.0/24;
 172.16.3.0/24;
 172.16.4.0/24;
 172.16.5.0/24;
}
```

**Checking the Routes That Device R1 Is Advertising to Device R0**

**Purpose**

Verify that Device R1’s export routing policy is working.

**Action**

From Device R1, enter the `show route advertising-protocol bgp` command, using the neighbor address for Device R0.

```
user@R1> show route advertising-protocol bgp 10.0.0.1
```

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.2.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.3.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.4.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.5.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>* 172.16.6.0/24</td>
<td>Self</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>
Meaning
Perhaps unexpectedly, the route that Device R1 did not receive through BGP from Device R2 (172.16.6.0/24) is nonetheless being advertised by Device R1 through BGP to Device R0. This is happening for two reasons. The first reason is that route 172.16.6.0/24 is in Device R1’s routing table, albeit as a direct route, as shown here:

```
user@R1> show route 172.16.6.0/24 protocol direct

inet.0: 35 destinations, 51 routes (35 active, 0 holddown, 4 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.6.0/24 *[Direct/0] 2d 22:51:41
 > via fe-1/2/3.0
```

The second reason is that Device R1’s export policy, applied to the BGP peering session with Device R0 using the `export dyn_policy2` statement, specifically defines a prefix list limited to the following routes:

```
prefix-list dyn_prfx2 {
 172.16.2.0/24;
 172.16.3.0/24;
 172.16.4.0/24;
 172.16.5.0/24;
 172.16.6.0/24;
}
```

Note the inclusion of 172.16.6.0/24.

Checking the Routes That Device R1 Is Advertising to Device R2

Purpose
Verify that Device R1’s export routing policy is working.

Action
From Device R1, enter the `show route advertising-protocol bgp` command, using the neighbor address for Device R2.

```
user@R1> show route advertising-protocol bgp 10.1.0.2

inet.0: 35 destinations, 51 routes (35 active, 0 holddown, 4 hidden)
Prefix Nexthop MED Lclpref AS path
* 172.16.1.0/24 Self I
* 172.16.2.0/24 Self I
```
Meaning
Device R1 is sending the expected routes to Device R2. Device R1’s export policy, applied to the BGP peering session with Device R2 using the `export static_policy2` statement, specifically defines a prefix list limited to the following routes:

```bash
prefix-list static_prfx2 {
 172.16.1.0/24;
 172.16.2.0/24;
 172.16.3.0/24;
 172.16.4.0/24;
}
```

RELATED DOCUMENTATION

- [Understanding Dynamic Routing Policies](#)  | 671
- [Example: Configuring Routing Policy Prefix Lists](#)  | 364
CHAPTER 12

Testing Before Applying Routing Policies

IN THIS CHAPTER
- Understanding Routing Policy Tests | 697
- Example: Testing a Routing Policy with Complex Regular Expressions | 698

Understanding Routing Policy Tests

Routing policy tests provide a method for verifying the effectiveness of your policies before applying them on the routing device. Before applying a routing policy, you can issue the `test policy` command to ensure that the policy produces the results that you expect:

```
user@host> test policy policy-name prefix
```

Keep in mind that different protocols have different default policies that get applied if the prefix does not match the configured policy. For BGP this is accept, but for RIP it is reject. The `test policy` command always uses accept as the default policy, so unless you explicitly reject all routes that you do not want to match you might see more routes matching than you want.

The default policy of the `test policy` command accepts all routes from all protocols. Test output can be misleading when you are evaluating protocol-specific conditions. For example, if you define a policy for BGP that accepts routes of a specified prefix and apply it to BGP as an export policy, BGP routes that match the prefix are advertised to BGP peers. However, if you test the same policy using the `test policy` command, the test output might indicate that non-BGP routes have been accepted.

Example: Testing a Routing Policy

Test the following policy, which looks for unwanted routes and rejects them:

```
[edit policy-options]
policy-statement reject-unwanted-routes {
 term drop-these-routes {
 from {
```
Test this policy against all routes in the routing table:

```
user@host> test policy reject-unwanted-routes 0/0
```

Test this policy against a specific set of routes:

```
user@host> test policy reject-unwanted-routes 10.49.0.0/16
```

**RELATED DOCUMENTATION**

- Example: Testing a Routing Policy with Complex Regular Expressions | 698

**Example: Testing a Routing Policy with Complex Regular Expressions**

This example shows how to test a routing policy using the `test policy` command to ensure that the policy produces the results that you expect before you apply it in a production environment. Regular expressions,
especially complex ones, can be tricky to get right. This example shows how to use the test policy command to make sure that your regular expressions have the intended effect.

Requirements

No special configuration beyond device initialization is required before you configure this example.

Overview

This example shows two routing devices with an external BGP (EBGP) connection between them. Device R2 uses the BGP session to send customer routes to Device R1. These static routes have multiple community values attached.

```
user@R2> show route match-prefix 172.16.* detail

inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
172.16.1.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Reject
 Address: 0x8fd0dc4
 Next-hop reference count: 8
 State: <Active Int Ext>
 Local AS: 64511
 Age: 21:32:13
 Validation State: unverified
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I
 Communities: 64510:1 64510:10 64510:11 64510:100 64510:111

172.16.2.0/24 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Reject
 Address: 0x8fd0dc4
 Next-hop reference count: 8
 State: <Active Int Ext>
 Local AS: 64511
 Age: 21:32:13
 Validation State: unverified
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I
 Communities: 64510:2 64510:20 64510:22 64510:200 64510:222
```
To test a complex regular expression, Device R2 has a policy called `test-regex` that locates routes. The policy is configured like this:

```
policy-statement test-regex {
 term find-routes {
 from community complex-regex;
 then accept;
 }
 term reject-the-rest {
 then reject;
 }
}
community complex-regex members "^64510:[13].*$";
```
This regular expression matches community values beginning with either 1 or 3.

Topology

Figure 46 on page 701 shows the sample network.

Figure 46: Routing Policy Test for Complex Regular Expressions

"CLI Quick Configuration" on page 701 shows the configuration for all of the devices in Figure 46 on page 701.

The section "Step-by-Step Procedure" on page 702 describes the steps on Device R2.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

    set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
    set interfaces lo0 unit 0 family inet address 192.168.0.1/32
    set protocols bgp group ext type external
    set protocols bgp group ext peer-as 64511
    set protocols bgp group ext neighbor 10.0.0.2
    set routing-options router-id 192.168.0.1
    set routing-options autonomous-system 64510

Device R2
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces lo0 unit 0 family inet address 192.168.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext peer-as 64510
set protocols bgp group ext neighbor 10.0.0.1
set policy-options policy-statement send-static term 1 from protocol static
set policy-options policy-statement send-static term 1 then accept
set policy-options policy-statement send-static term 2 then reject
set policy-options policy-statement test-regex term find-routes from community complex-regex
set policy-options policy-statement test-regex term find-routes then accept
set policy-options policy-statement test-regex term reject-the-rest then reject
set policy-options community complex-regex members "^64510:[13].*$"
set routing-options static route 172.16.1.0/24 reject
set routing-options static route 172.16.1.0/24 community 64510:1
set routing-options static route 172.16.1.0/24 community 64510:10
set routing-options static route 172.16.1.0/24 community 64510:11
set routing-options static route 172.16.1.0/24 community 64510:100
set routing-options static route 172.16.1.0/24 community 64510:111
set routing-options static route 172.16.2.0/24 reject
set routing-options static route 172.16.2.0/24 community 64510:2
set routing-options static route 172.16.2.0/24 community 64510:20
set routing-options static route 172.16.2.0/24 community 64510:22
set routing-options static route 172.16.2.0/24 community 64510:200
set routing-options static route 172.16.2.0/24 community 64510:222
set routing-options static route 172.16.3.0/24 reject
set routing-options static route 172.16.3.0/24 community 64510:3
set routing-options static route 172.16.3.0/24 community 64510:30
set routing-options static route 172.16.3.0/24 community 64510:33
set routing-options static route 172.16.3.0/24 community 64510:300
set routing-options static route 172.16.3.0/24 community 64510:333
set routing-options static route 172.16.4.0/24 reject
set routing-options static route 172.16.4.0/24 community 64510:4
set routing-options static route 172.16.4.0/24 community 64510:40
set routing-options static route 172.16.4.0/24 community 64510:44
set routing-options static route 172.16.4.0/24 community 64510:400
set routing-options static route 172.16.4.0/24 community 64510:444
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 64511

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the interfaces.

   ```
 [edit interfaces]
 user@R2# set fe-1/2/0 unit 0 family inet address 10.0.0.2/30
 user@R2# set lo0 unit 0 family inet address 192.168.0.2/32
   ```

2. Configure BGP.

   Apply the import policy to the BGP peering session with Device R2.

   ```
 [edit protocols bgp group ext]
 user@R2# set type external
 user@R2# set peer-as 64510
 user@R2# set neighbor 10.0.0.1
   ```

3. Configure the routing policy that sends static routes.

   ```
 [edit policy-options policy-statement send-static]
 user@R2# set term 1 from protocol static
 user@R2# set term 1 then accept
 user@R2# set term 2 then reject
   ```

4. Configure the routing policy that tests a regular expression.

   ```
 [edit policy-options policy-statement test-regex]
 user@R2# set term find-routes from community complex-regex
 user@R2# set term find-routes then accept
 user@R2# set term reject-the-rest then reject
 [edit policy-options community]
 user@R2# set complex-regex members "^64510:[13].*$"
   ```

5. Configure the static routes and attaches community values.

   ```
 [edit routing-options static route 172.16.1.0/24]
 user@R2# set reject
   ```
6. Configure the autonomous system (AS) number and the router ID.

This affects Device R2’s routing table, and as no impact on Device R1 and Device R3.

```sh
[edit routing-options]
user@R2# set router-id 192.168.0.2
user@R2# set autonomous-system 64511
```

**Results**

From configuration mode, confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.
user@R2# show policy-options
policy-statement send-static {
    term 1 {
        from protocol static;
        then accept;
    }
    term 2 {
        then reject;
    }
}
policy-statement test-regex {
    term find-routes {
        from community complex-regex;
        then accept;
    }
    term reject-the-rest {
        then reject;
    }
}
community complex-regex members "^64510:[13].*$";

user@R2# show routing-options
static {
    route 172.16.1.0/24 {
        reject;
        community [ 64510:1 64510:10 64510:11 64510:100 64510:111 ];
    }
    route 172.16.2.0/24 {
        reject;
        community [ 64510:2 64510:20 64510:22 64510:200 64510:222 ];
    }
    route 172.16.3.0/24 {
        reject;
        community [ 64510:3 64510:30 64510:33 64510:300 64510:333 ];
    }
}
route 172.16.4.0/24 {
    reject;
    community [ 64510:4 64510:40 64510:44 64510:400 64510:444 ];
}
}
router-id 192.168.0.2;
autonomous-system 64511;

If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm that the configuration is working properly.

Test to See Which Communities Match the Regular Expression

Purpose
You can test the regular expression and its policy by using the test policy policy-name command.

Action
1. On Device R2, run the test policy test-regex 0/0 command.

```
user@R2> test policy test-regex 0/0
```

inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.1.0/24 *[Static/5] 1d 00:32:50
    Reject
172.16.3.0/24 *[Static/5] 1d 00:32:50
    Reject

Policy test-regex: 2 prefix accepted, 5 prefix rejected

2. On Device R2, change the regular expression to match a community value containing any number of instances of the digit 2.

```
[edit policy-options community complex-regex]
user@R2# delete members "^64510:13$"
user@R2# set members "^65020:2+$"
user@R2# commit
```
3. On Device R2, rerun the `test policy test-regex 0/0` command.

```
user@R2> test policy test-regex 0/0

inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.2.0/24 *[Static/5] 1d 00:31:36
 Reject

Policy test-regex: 1 prefix accepted, 6 prefix rejected
```

**Meaning**

The 172.16.1.0/24 and 172.16.3.0/24 routes both have communities attached that match the `^64510:[13].*$` expression. The 172.16.2.0/24 route has communities that match the `^65020:2+$` expression.
Configuring Firewall Filters

Understanding How Firewall Filters Protect Your Network | 711
Firewall Filter Match Conditions and Actions | 771
Applying Firewall Filters to Routing Engine Traffic | 941
Applying Firewall Filters to Transit Traffic | 1009
Configuring Firewall Filters in Logical Systems | 1079
Configuring Firewall Filter Accounting and Logging | 1135
Attaching Multiple Firewall Filters to a Single Interface | 1157
Attaching a Single Firewall Filter to Multiple Interfaces | 1191
Configuring Filter-Based Tunneling Across IP Networks | 1217
Configuring Service Filters | 1253
Configuring Simple Filters | 1283
Configuring Layer 2 Firewall Filters | 1299
Configuring Firewall Filters for Forwarding, Fragments, and Policing | 1313
Configuring Firewall Filters (EX2300, EX3400, EX4300 Series Switches) | 1351
Understanding How Firewall Filters Protect Your Network

Firewall Filters Overview

Firewall filters provide a means of protecting your router (and switch) from excessive traffic transiting the router (and switch) to a network destination or destined for the Routing Engine. Firewall filters that control local packets can also protect your router (and switch) from external incidents.

You can configure a firewall filter to do the following:

- Restrict traffic destined for the Routing Engine based on its source, protocol, and application.
• Limit the traffic rate of packets destined for the Routing Engine to protect against flood, or denial-of-service (DoS) attacks.

• Address special circumstances associated with fragmented packets destined for the Routing Engine. Because the device evaluates every packet against a firewall filter (including fragments), you must configure the filter to accommodate fragments that do not contain packet header information. Otherwise, the filter discards all but the first fragment of a fragmented packet.

RELATED DOCUMENTATION

Stateless Firewall Filter Types
Guidelines for Configuring Firewall Filters | 746
Guidelines for Applying Standard Firewall Filters | 753
Understanding How to Use Standard Firewall Filters | 723

Router Data Flow Overview

IN THIS SECTION

• Flow of Routing Information | 712
• Flow of Data Packets | 713
• Flow of Local Packets | 713
• Interdependent Flows of Routing Information and Packets | 714
• Stateless and Stateful Firewall Filters | 714
• Stateless Firewall Filter Application Points | 715
• Understanding How Firewall Filters Control Packet Flows | 720

The Junos® operating system (Junos OS) provides a policy framework, which is a collection of Junos OS policies that enable you to control flows of routing information and packets within the router.

Flow of Routing Information

Routing information is the information about routes learned by the routing protocols from a router's neighbors. This information is stored in routing tables. The routing protocols advertise active routes only
from the routing tables. An active route is a route that is chosen from all routes in the routing table to reach a destination.

To control which routes the routing protocols place in the routing tables and which routes the routing protocols advertise from the routing tables, you can configure routing policies, which are sets of rules that the policy framework uses to preempt default routing policies.

The Routing Engine, which runs the router’s control plane software, handles the flow of routing information between the routing protocols and the routing tables and between the routing tables and the forwarding table. The Routing Engine runs the Junos OS and routing policies and stores the active router configuration, the master routing table, and the master forwarding table.

Flow of Data Packets

Data packets are chunks of data that transit the router as they are being forwarded from a source to a destination. When a router receives a data packet on an interface, it determines where to forward the packet by looking in the forwarding table for the best route to a destination. The router then forwards the data packet toward its destination through the appropriate interface.

The Packet Forwarding Engine, which is the central processing element of the router’s forwarding plane, handles the flow of data packets in and out of the router’s physical interfaces. Although the Packet Forwarding Engine contains Layer 3 and Layer 4 header information, it does not contain the packet data itself (the packet’s payload).

To control the flow of data packets transiting the device as the packets are being forwarded from a source to a destination, you can apply stateless firewall filters to the input or output of the router’s or switch’s physical interfaces.

To enforce a specified bandwidth and maximum burst size for traffic sent or received on an interface, you can configure policers. Policers are a specialized type of stateless firewall filter and a primary component of the Junos OS class-of-service (CoS).

Flow of Local Packets

Local packets are chunks of data that are destined for or sent by the router. Local packets usually contain routing protocol data, data for IP services such as Telnet or SSH, and data for administrative protocols such as the Internet Control Message Protocol (ICMP). When the Routing Engine receives a local packet, it forwards the packet to the appropriate process or to the kernel, which are both part of the Routing Engine, or to the Packet Forwarding Engine.

The Routing Engine handles the flow of local packets from the router’s physical interfaces and to the Routing Engine.
To control the flow of local packets between the physical interfaces and the Routing Engine, you can apply stateless firewall filters to the input or output of the loopback interface. The loopback interface (lo0) is the interface to the Routing Engine and carries no data packets.

**Interdependent Flows of Routing Information and Packets**

Figure 47 on page 714 illustrates the flow of data through a router. Although routing information flows and packet flows are very different from one another, they are also interdependent.

Routing policies determine which routes the Routing Engine places in the forwarding table. The forwarding table, in turn, has an integral role in determining the appropriate physical interface through which to forward a packet.

**Stateless and Stateful Firewall Filters**

A stateless firewall filter, also known as an access control list (ACL), does not statefully inspect traffic. Instead, it evaluates packet contents statically and does not keep track of the state of network connections. In contrast, a stateful firewall filter uses connection state information derived from other applications and past communications in the data flow to make dynamic control decisions.

The basic purpose of a stateless firewall filter is to enhance security through the use of packet filtering. Packet filtering enables you to inspect the components of incoming or outgoing packets and then perform the actions you specify on packets that match the criteria you specify. The typical use of a stateless firewall filter is to protect the Routing Engine processes and resources from malicious or untrusted packets.
Stateless Firewall Filter Application Points

After you define the firewall filter, you must apply it to an application point. These application points include logical interfaces, physical interfaces, routing interfaces, and routing instances.

In most cases, you can apply a firewall filter as an input filter or an output filter, or both at the same time. Input filters take action on packets being received on the specified interface, whereas output filters take action on packets that are transmitted through the specified interface.

You typically apply one filter with multiple terms to a single logical interface, to incoming traffic, outbound traffic, or both. However, there are times when you might want to chain together multiple firewall filters (with single or multiple terms) and apply them to an interface. You use an input list to apply multiple firewall filters to the incoming traffic on an interface. You use an output list to apply multiple firewall filters to the outbound traffic on an interface. You can include up to 16 filters in an input list or an output list.

There is no limit to the number of filters and counters you can set, but there are some practical considerations. More counters require more terms, and a large number of terms can take a long time to process during a commit operation. However, filters with more than 4000 terms and counters have been implemented successfully.

Table 28 on page 716 describes each point to which you can apply a firewall filter. For each application point, the table describes the types of firewall filters supported at that point, the router (or switch) hierarchy level at which the filter can be applied, and any platform-specific limitations.
Table 28: Stateless Firewall Filter Configuration and Application Summary

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stateless firewall filter</td>
<td></td>
<td>Supported on the following routers:</td>
</tr>
<tr>
<td>Configure by including the <strong>filter</strong> statement the [edit firewall] hierarchy level:</td>
<td></td>
<td>• T Series routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M320 routers</td>
</tr>
<tr>
<td></td>
<td>Logical interface</td>
<td>• M7i routers with the enhanced CFEB (CFEB-e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M10i routers with the enhanced CFEB-e</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit interfaces <strong>interface-name</strong> unit <strong>unit-number</strong> family inet] hierarchy level by including the <strong>input</strong> <strong>filter-name</strong> or <strong>output filter-name</strong> statements:</td>
<td>Also supported on the following Modular Port Concentrators (MPCs) on MX Series routers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10-Gigabit Ethernet MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60-Gigabit Ethernet Queuing MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60-Gigabit Ethernet Enhanced Queuing MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 100-Gigabit Ethernet MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Also supported on EX Series switches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: A filter configured with the implicit inet protocol family cannot be included in an input filter list or an output filter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: On T4000 Type 5 FPCs, a filter attached at the Layer 2 application point (that is, at the logical interface level) is unable to match with the forwarding class of a packet that is set by a Layer 3 classifier such as DSCP, DSCP V6, inet-precedence, and mpls-exp.</td>
</tr>
<tr>
<td>Filter Type</td>
<td>Application Point</td>
<td>Restrictions</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Stateless firewall filter</td>
<td>Protocol family on a logical</td>
<td>The protocol family <code>bridge</code> is supported only on MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apply at the <code>[edit interfaces</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>interface-name</code> <code>unit</code> <code>unit-number</code> <code>family</code> <code>family-name</code> hierarchy level by, including the <code>input</code>, <code>input-list</code>, <code>output</code>, or <code>output-list</code> statements:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{</td>
<td></td>
</tr>
<tr>
<td></td>
<td>input <code>filter-name</code>;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>input-list [ <code>filter-names</code> ];</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output <code>filter-name</code>;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output-list [ <code>filter-names</code> ];</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stateless firewall filter</td>
<td>Routing Engine loopback interface</td>
<td></td>
</tr>
</tbody>
</table>
Table 28: Stateless Firewall Filter Configuration and Application Summary (continued)

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service filter</td>
<td>Family inet or inet6 on a logical interface</td>
<td>Supported only on Adaptive Services (AS) and Multiservices (MS) PICs.</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit interfaces interface-name unit unit-number family (inet</td>
<td>inet6)] hierarchy level by using the service-set statement to apply a service filter as an input or output filter to a service set: service { input { service-set service-set-name service-filter filter-name; } output { service-set service-set-name service-filter filter-name; } }</td>
</tr>
<tr>
<td></td>
<td>Configure a service set at the [edit services] hierarchy level by including the following statement: service-set service-set-name;</td>
<td></td>
</tr>
</tbody>
</table>

Configure at the [edit firewall family (inet | inet6)] hierarchy level by including the following statement: service-filter service-filter-name;
Table 28: Stateless Firewall Filter Configuration and Application Summary (continued)

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Postservice filter</strong></td>
<td>Family inet or inet6 on a logical interface</td>
<td>A postservice filter is applied to traffic returning to the services interface after service processing. The filter is applied only if a service set is configured and selected.</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit firewall family {inet</td>
<td>inet6}] hierarchy level by including the following statement:</td>
</tr>
<tr>
<td></td>
<td>service-filter service-filter-name;</td>
<td></td>
</tr>
<tr>
<td><strong>Simple filter</strong></td>
<td>Family inet on a logical interface</td>
<td>Simple filters can only be applied as input filters. Supported on the following platforms only:</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit interfaces interface-name unit unit-number family {inet</td>
<td>inet6}] hierarchy level by including the following statement:</td>
</tr>
<tr>
<td></td>
<td>simple-filter simple-filter-name;</td>
<td>• Enhanced Queuing Dense Port Concentrators (EQ DPC) on MX Series routers (and EX Series switches).</td>
</tr>
</tbody>
</table>

Configure at the [edit firewall family {inet | inet6}] hierarchy level by including the following statement:

```
service-filter service-filter-name;
```

---

**Family inet on a logical interface**

Apply at the [edit interfaces interface-name unit unit-number family inet] hierarchy level by including the following statement:

```
simple-filter simple-filter-name;
```
### Understanding How Firewall Filters Control Packet Flows

A switch supports firewall filters that allow you to control flows of data packets and local packets. Data packets transit a switch as they are forwarded from a source to a destination. Local packets are destined for or sent by a Routing Engine (they do not transit a switch). Local packets usually contain routing protocol data, data for IP services such as Telnet or SSH, or data for administrative protocols such as the Internet Control Message Protocol (ICMP).

Firewall filters affect packet flows entering into or exiting from a switch as follows:

- **Ingress firewall filters** affect the flow of data packets that are received on switch interfaces. When a switch receives a data packet, the Packet Forwarding Engine in the system that contains the ingress interface determines where to forward the packet by looking in its Layer 2 or Layer 3 forwarding table for the best route to the destination. Data packets are forwarded to an egress interface. Locally destined packets are forwarded to the Routing Engine.

- **Egress firewall filters** affect data packets that are transiting a switch but do not affect packets sent by the Routing Engine. These filters are applied by the Packet Forwarding Engine in the system that contains the egress interface.

---

**Table 28: Stateless Firewall Filter Configuration and Application Summary (continued)**

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse packet forwarding (RPF) check filter</td>
<td>Family inet or inet6 on a logical interface</td>
<td>Supported on MX Series routers and EX Series switches only.</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit interfaces interface-name unit unit-number family (inet</td>
<td>inet6)] hierarchy level by including the following statement:</td>
</tr>
<tr>
<td></td>
<td>rpf-check fail-filter filter-name</td>
<td>to apply the stateless firewall filter as an RPF check filter.</td>
</tr>
<tr>
<td></td>
<td>rpf-check [</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fail-filter filter-name;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mode loose;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>]</td>
<td></td>
</tr>
</tbody>
</table>
Figure 48 on page 721 illustrates the application of ingress and egress firewall filters to control the flow of packets through a switch:

1. Ingress firewall filter applied to locally destined packets that are received on switch interfaces and are destined for the Routing Engine.

2. Ingress firewall filter applied to data packets that are received on switch interfaces and will transit the switch.

3. Egress firewall filter applied to data packets that are transiting the switch.

Figure 48: Application of Firewall Filters to Control Packet Flow

RELATED DOCUMENTATION

- Stateless Firewall Filter Components | 726
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets | 1616
- Understanding How Firewall Filters Are Evaluated | 780
- Configuring Firewall Filters | 1601
- Understanding Route Preference Values (Administrative Distance)
- Understanding Routing Policies | 21
Stateless Firewall Filter Overview

IN THIS SECTION

- Packet Flow Control | 722
- Stateless and Stateful Firewall Filters | 723
- Purpose of Stateless Firewall Filters | 723

Packet Flow Control

To influence which packets are allowed to transit the system and to apply special actions to packets as necessary, you can configure stateless firewall filters. A stateless firewall specifies a sequence of one or more packet-filtering rules, called filter terms. A filter term specifies match conditions to use to determine a match and actions to take on a matched packet. A stateless firewall filter enables you to manipulate any packet of a particular protocol family, including fragmented packets, based on evaluation of Layer 3 and Layer 4 header fields. You typically apply a stateless firewall filter to one or more interfaces that have been configured with protocol family features. You can apply a stateless firewall filter to an ingress interface, an egress interface, or both.

Data Packet Flow Control

To control the flow of data packets transiting the device as the packets are being forwarded from a source to a destination, you can apply stateless firewall filters to the input or output of the router's or switch's physical interfaces.

To enforce a specified bandwidth and maximum burst size for traffic sent or received on an interface, you can configure policers. Policers are a specialized type of stateless firewall filter and a primary component of the Junos OS class-of-service (CoS).

Local Packet Flow Control

To control the flow of local packets between the physical interfaces and the Routing Engine, you can apply stateless firewall filters to the input or output of the loopback interface. The loopback interface (lo0) is the interface to the Routing Engine and carries no data packets.

Junos OS Evolved Local Packet Flow Control

In Junos OS Evolved, you can have two different filters: one for network control traffic (loopback traffic) and one for management traffic. With two filters, you have more flexibility. For example, you can configure a stricter filter on management interface traffic than on network control traffic.

Management filtering uses Routing Engine filters based on netfilters, a framework provided by the Linux kernel. This difference results in only certain matches and actions being supported.
NOTE: You must explicitly add the filter on the management interface as for Junos OS Evolved, the lo filter no longer applies on the management traffic, as is the case for Junos OS.

Stateless and Stateful Firewall Filters

A stateless firewall filter, also known as an access control list (ACL), does not statefully inspect traffic. Instead, it evaluates packet contents statically and does not keep track of the state of network connections. In contrast, a stateful firewall filter uses connection state information derived from other applications and past communications in the data flow to make dynamic control decisions.


Purpose of Stateless Firewall Filters

The basic purpose of a stateless firewall filter is to enhance security through the use of packet filtering. Packet filtering enables you to inspect the components of incoming or outgoing packets and then perform the actions you specify on packets that match the criteria you specify. The typical use of a stateless firewall filter is to protect the Routing Engine processes and resources from malicious or untrusted packets.

RELATED DOCUMENTATION

- Router Data Flow Overview | 712
- Stateless Firewall Filter Types
- Controlling Network Access Using Traffic Policing Overview | 1669
- Packet Flow Through the Junos OS CoS Process Overview

Understanding How to Use Standard Firewall Filters

IN THIS SECTION

- Using Standard Firewall Filters to Affect Local Packets | 724
- Using Standard Firewall Filters to Affect Data Packets | 724
Using Standard Firewall Filters to Affect Local Packets

On a router, you can configure one physical loopback interface, lo0, and one or more addresses on the interface. The loopback interface is the interface to the Routing Engine, which runs and monitors all the control protocols. The loopback interface carries local packets only. Standard firewall filters applied to the loopback interface affect the local packets destined for or transmitted from the Routing Engine.

NOTE: When you create an additional loopback interface, it is important to apply a filter to it so the Routing Engine is protected. We recommend that when you apply a filter to the loopback interface, you include the apply-groups statement. Doing so ensures that the filter is automatically inherited on every loopback interface, including lo0 and other loopback interfaces.

Trusted Sources

The typical use of a standard stateless firewall filter is to protect the Routing Engine processes and resources from malicious or untrusted packets. To protect the processes and resources owned by the Routing Engine, you can use a standard stateless firewall filter that specifies which protocols and services, or applications, are allowed to reach the Routing Engine. Applying this type of filter to the loopback interface ensures that the local packets are from a trusted source and protects the processes running on the Routing Engine from an external attack.

Flood Prevention

You can create standard stateless firewall filters that limit certain TCP and ICMP traffic destined for the Routing Engine. A router without this kind of protection is vulnerable to TCP and ICMP flood attacks, which are also called denial-of-service (DoS) attacks. For example:

- A TCP flood attack of SYN packets initiating connection requests can overwhelm the device until it can no longer process legitimate connection requests, resulting in denial of service.
- An ICMP flood can overload the device with so many echo requests (ping requests) that it expends all its resources responding and can no longer process valid network traffic, also resulting in denial of service.

Applying the appropriate firewall filters to the Routing Engine protects against these types of attacks.

Using Standard Firewall Filters to Affect Data Packets

Standard firewall filters that you apply to your router's transit interfaces evaluate only the user data packets that transit the router from one interface directly to another as they are being forwarded from a source to a destination. To protect the network as a whole from unauthorized access and other threats at specific interfaces, you can apply firewall filters router transit interfaces.

RELATED DOCUMENTATION
A switch supports firewall filters that allow you to control flows of data packets and local packets. *Data packets* transit a switch as they are forwarded from a source to a destination. *Local packets* are destined for or sent by a Routing Engine (they do not transit a switch). Local packets usually contain routing protocol data, data for IP services such as Telnet or SSH, or data for administrative protocols such as the Internet Control Message Protocol (ICMP).

Firewall filters affect packet flows entering into or exiting from a switch as follows:

- **Ingress firewall filters** affect the flow of data packets that are received on switch interfaces. When a switch receives a data packet, the Packet Forwarding Engine in the system that contains the ingress interface determines where to forward the packet by looking in its Layer 2 or Layer 3 forwarding table for the best route to the destination. Data packets are forwarded to an egress interface. Locally destined packets are forwarded to the Routing Engine.

- **Egress firewall filters** affect data packets that are transiting a switch but do not affect packets sent by the Routing Engine. These filters are applied by the Packet Forwarding Engine in the system that contains the egress interface.

*Figure 48 on page 721* illustrates the application of ingress and egress firewall filters to control the flow of packets through a switch:

1. Ingress firewall filter applied to locally destined packets that are received on switch interfaces and are destined for the Routing Engine.

2. Ingress firewall filter applied to data packets that are received on switch interfaces and will transit the switch.

3. Egress firewall filter applied to data packets that are transiting the switch.
Stateless Firewall Filter Components

This topic covers the following information:

Protocol Family

Under the firewall statement, you can specify the protocol family for which you want to filter traffic.

Table 29 on page 727 describes the firewall filter protocol families.
Table 29: Firewall Filter Protocol Families

<table>
<thead>
<tr>
<th>Type of Traffic to Be Filtered</th>
<th>Configuration Statement</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Independent</td>
<td>family any</td>
<td>All protocol families configured on a logical interface.</td>
</tr>
<tr>
<td>Internet Protocol version 4 (IPv4)</td>
<td>family inet</td>
<td>The family inet statement is optional for IPv4.</td>
</tr>
<tr>
<td>Internet Protocol version 6 (IPv6)</td>
<td>family inet6</td>
<td></td>
</tr>
<tr>
<td>MPLS</td>
<td>family mpls</td>
<td></td>
</tr>
<tr>
<td>MPLS-tagged IPv4</td>
<td>family mpls</td>
<td>Supports matching on IP addresses and ports, up to five MPLS stacked labels.</td>
</tr>
<tr>
<td>MPLS-tagged IPv6</td>
<td>family mpls</td>
<td>Supports matching on IP addresses and ports, up to five MPLS stacked labels.</td>
</tr>
<tr>
<td>Virtual private LAN service (VPLS)</td>
<td>family vpls</td>
<td></td>
</tr>
<tr>
<td>Layer 2 Circuit Cross-Connection</td>
<td>family ccc</td>
<td></td>
</tr>
<tr>
<td>Layer 2 Bridging</td>
<td>family bridge (for MX Series routers) and family ethernet-switching (for EX Series switches)</td>
<td>MX Series routers and EX Series switches only.</td>
</tr>
</tbody>
</table>

**Filter Type**

Under the **family family-name** statement, you can specify the type and name of the filter you want to configure.

*Table 30 on page 728* describes the firewall filter types.
<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Configuration Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard Firewall Filter</strong></td>
<td>filter filter-name</td>
<td>Filters the following traffic types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Protocol independent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPv4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPv6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MPLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MPLS-tagged IPv4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MPLS-tagged IPv6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VPLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Layer 2 CCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Layer 2 bridging (MX Series routers and EX Series switches only)</td>
</tr>
<tr>
<td><strong>Service Filter</strong></td>
<td>service-filter service-filter-name</td>
<td>Defines packet-filtering to be applied to ingress or egress before it is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accepted for service processing or applied to returning service traffic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>after service processing has completed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filters the following traffic types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPv4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPv6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supported at logical interfaces configured on the following hardware only:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adaptive Services (AS) PICs on M Series and T Series routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiservices (MS) PICs on M Series and T Series routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiservices (MS) DPCs on MX Series routers (and EX Series switches)</td>
</tr>
<tr>
<td><strong>Simple Filter</strong></td>
<td>simple-filter simple-filter-name</td>
<td>Defines packet filtering to be applied to ingress traffic only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filters the following traffic type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IPv4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supported at logical interfaces configured on the following hardware only:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gigabit Ethernet Intelligent Queuing (IQ2) PICs installed on M120,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M320, or T Series routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enhanced Queuing Dense Port Concentrators (EQ DPCs) installed on MX Series routers and EX Series switches</td>
</tr>
</tbody>
</table>
Terms

Under the **filter**, **service-filter**, or **simple-filter** statement, you must configure at least one firewall filter **term**. A term is a named structure in which match conditions and actions are defined. Within a firewall filter, you must configure a unique name for each term.

TIP: For each protocol family on an interface, you can apply no more than one filter in each direction. If you try to apply additional filters for the same protocol family in the same direction, the last filter overwrites the previous filter. You can, however, apply filters from the same protocol family to the input and output direction of the same interface.

All stateless firewall filters contain one or more terms, and each term consists of two components—match conditions and actions. The match conditions define the values or fields that the packet must contain to be considered a match. If a packet is a match, the corresponding action is taken. By default, a packet that does not match a firewall filter is discarded.

If a packet arrives on an interface for which no firewall filter is applied for the incoming traffic on that interface, the packet is accepted by default.

NOTE: A firewall filter with a large number of terms can adversely affect both the configuration commit time and the performance of the Routing Engine.

Additionally, you can configure a stateless firewall filter within the term of another filter. This method enables you to add common terms to multiple filters without having to modify all filter definitions. You can configure one filter with the desired common terms, and configure this filter as a term in other filters. Consequently, to make a change in these common terms, you need to modify only one filter that contains the common terms, instead of multiple filters.

**Match Conditions**

A firewall filter term must contain at least one packet-filtering criteria, called a **match condition**, to specify the field or value that a packet must contain in order to be considered a match for the firewall filter term. For a match to occur, the packet must match all the conditions in the term. If a packet matches a firewall filter term, the router (or switch) takes the configured action on the packet.

If a firewall filter term contains multiple match conditions, a packet must meet **all** match conditions to be considered a match for the firewall filter term.

If a single match condition is configured with multiple values, such as a range of values, a packet must match only **one** of the values to be considered a match for the firewall filter term.
The scope of match conditions you can specify in a firewall filter term depends on the protocol family under which the firewall filter is configured. You can define various match conditions, including the IP source address field, IP destination address field, TCP or UDP source port field, IP protocol field, Internet Control Message Protocol (ICMP) packet type, IP options, TCP flags, incoming logical or physical interface, and outgoing logical or physical interface. These are pre-defined, or fixed, match conditions.

On MX Series 3D Universal Edge Routers with MPCs or MICs, it is possible to build flexible match conditions for IPv4, IPv6, Layer 2 bridge, CCC, and VPLS protocol families. These flexible match conditions allow a user to specify start location, byte offset, match length, and other parameters within the packet.

Each protocol family supports a different set of match conditions, and some match conditions are supported only on certain routing devices. For example, a number of match conditions for VPLS traffic are supported only on the MX Series 3D Universal Edge Routers.

In the from statement in a firewall filter term, you specify characteristics that the packet must have for the action in the subsequent then statement to be performed. The characteristics are referred to as match conditions. The packet must match all conditions in the from statement for the action to be performed, which also means that the order of the conditions in the from statement is not important.

If an individual match condition can specify a list of values (such as multiple source and destination addresses) or a range of numeric values, a match occurs if any of the values matches the packet.

If a filter term does not specify match conditions, the term accepts all packets and the actions specified in the term’s then statement are optional.

**NOTE:**

Some of the numeric range and bit-field match conditions allow you to specify a text synonym. For a complete list of synonyms:

- If you are using the J-Web interface, select the synonym from the appropriate list.
- If you are using the CLI, type a question mark (?) after the from statement.

**Actions**

The actions specified in a firewall filter term define the actions to take for any packet that matches the conditions specified in the term.

Actions that are configured within a single term are all taken on traffic that matches the conditions configured.
BEST PRACTICE: We strongly recommend that you explicitly configure one or more actions per firewall filter term. Any packet that matches all the conditions of the term is automatically accepted unless the term specifies other or additional actions.

Firewall filter actions fall into the following categories:

**Filter-Terminating Actions**

A filter-terminating action halts all evaluation of a firewall filter for a specific packet. The router (or switch) performs the specified action, and no additional terms are examined.

**Nonterminating Actions**

Nonterminating actions are used to perform other functions on a packet, such as incrementing a counter, logging information about the packet header, sampling the packet data, or sending information to a remote host using the system log functionality.

The presence of a nonterminating action, such as `count`, `log`, or `syslog`, without an explicit terminating action, such as `accept`, `discard`, or `reject`, results in a default terminating action of `accept`. If you do not want the firewall filter action to terminate, use the `next term` action after the nonterminating action.

**NOTE:** On Junos OS Evolved, `next term` cannot appear as the last term of the action. A filter term where `next term` is specified as an action but without any match conditions configured is not supported.

In this example, term 2 is never evaluated, because term 1 has the implicit default `accept` terminating action.

```
[edit firewall filter test]
term 1 {
 from {
 source-address {
 0.0.0.0/0;
 }
 }
 then {
 log;
 <accept> #By default if not specified
 }
}
term 2 {
 then {
```
In this example, term 2 is evaluated, because term 1 has the explicit `next term` flow control action.

```junos
[edit firewall filter test]
term 1 {
 from {
 source-address {
 0.0.0.0/0;
 }
 }
 then {
 log;
 next term;
 }
}
term 2 {
 then {
 reject;
 }
}
```

**Flow Control Action**

For standard stateless firewall filters only, the action `next term` enables the router (or switch) to perform configured actions on the packet and then evaluate the following term in the filter, rather than terminating the filter.

A maximum of 1024 `next term` actions are supported per standard stateless firewall filter configuration. If you configure a standard filter that exceeds this limit, your candidate configuration results in a commit error.

**RELATED DOCUMENTATION**

- Stateless Firewall Filter Types
- Firewall Filter Flexible Match Conditions | 787
- Inserting a New Identifier in a Junos OS Configuration in the CLI User Guide
Stateless Firewall Filter Application Points

After you define the firewall filter, you must apply it to an application point. These application points include logical interfaces, physical interfaces, routing interfaces, and routing instances.

In most cases, you can apply a firewall filter as an input filter or an output filter, or both at the same time. Input filters take action on packets being received on the specified interface, whereas output filters take action on packets that are transmitted through the specified interface.

You typically apply one filter with multiple terms to a single logical interface, to incoming traffic, outbound traffic, or both. However, there are times when you might want to chain together multiple firewall filters (with single or multiple terms) and apply them to an interface. You use an input list to apply multiple firewall filters to the incoming traffic on an interface. You use an output list to apply multiple firewall filters to the outbound traffic on an interface. You can include up to 16 filters in an input list or an output list.

There is no limit to the number of filters and counters you can set, but there are some practical considerations. More counters require more terms, and a large number of terms can take a long time to process during a commit operation. However, filters with more than 4000 terms and counters have been implemented successfully.

Table 28 on page 716 describes each point to which you can apply a firewall filter. For each application point, the table describes the types of firewall filters supported at that point, the router (or switch) hierarchy level at which the filter can be applied, and any platform-specific limitations.
## Table 31: Stateless Firewall Filter Configuration and Application Summary

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stateless firewall filter</td>
<td></td>
<td>Supported on the following routers:</td>
</tr>
<tr>
<td>Configure by including the filter name statement the [edit firewall] hierarchy level:</td>
<td>Logical interface</td>
<td>• T Series routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M320 routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M7i routers with the enhanced CFEB (CFEB-e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• M10i routers with the enhanced CFEB-e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also supported on the following Modular Port Concentrators (MPCs) on MX Series routers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 10-Gigabit Ethernet MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60-Gigabit Ethernet Queuing MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 60-Gigabit Ethernet Enhanced Queuing MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 100-Gigabit Ethernet MPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Also supported on EX Series switches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: A filter configured with the implicit inet protocol family cannot be included in an input filter list or an output filter list.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: On T4000 Type 5 FPCs, a filter attached at the Layer 2 application point (that is, at the logical interface level) is unable to match with the forwarding class of a packet that is set by a Layer 3 classifier such as DSCP, DSCP V6, inet-precedence, and mpls-exp.</td>
</tr>
</tbody>
</table>

NOTE: If you do not include the family statement, the firewall filter processes IPv4 traffic by default.
<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stateless firewall filter</strong></td>
<td>Protocol family on a logical interface</td>
<td>The protocol family bridge is supported only on MX Series routers.</td>
</tr>
<tr>
<td>Configure at the [edit firewall family family-name] hierarchy level by including the following statement: filter filter-name;</td>
<td>Apply at the [edit interfaces interface-name unit unit-number family family-name] hierarchy level by, including the input, input-list, output, or output-list statements: filter { input filter-name; input-list [ filter-names ]; output filter-name; output-list [ filter-names ]; }</td>
<td></td>
</tr>
<tr>
<td>The family-name can be any of the following protocol families: any bridge ethernet-switching ccc inet inet6 mpls vpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Stateless firewall filter</strong></td>
<td>Routing Engine loopback interface</td>
<td></td>
</tr>
<tr>
<td>Filter Type</td>
<td>Application Point</td>
<td>Restrictions</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Service filter</td>
<td>Family inet or inet6 on a logical interface</td>
<td>Supported only on Adaptive Services (AS) and Multiservices (MS) PICs.</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit interfaces interface-name unit unit-number family (inet</td>
<td>inet6)] hierarchy level by using the service-set statement to apply a service filter as an input or output filter to a service set:</td>
</tr>
<tr>
<td></td>
<td>service {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>input {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>service-set service-set-name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>service-filter filter-name;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>output {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>service-set service-set-name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>service-filter filter-name;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configure a service set at the [edit services] hierarchy level by including the following statement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>service-set service-set-name;</td>
<td></td>
</tr>
<tr>
<td>Filter Type</td>
<td>Application Point</td>
<td>Restrictions</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Postservice filter</strong></td>
<td>Family inet or inet6 on a logical interface</td>
<td>A postservice filter is applied to traffic returning to the services interface after service processing. The filter is applied only if a service set is configured and selected.</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit firewall family (inet</td>
<td>inet6)] hierarchy level by including the following statement:</td>
</tr>
<tr>
<td></td>
<td>service-filter service-filter-name;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Simple filter</strong></td>
<td>Family inet on a logical interface</td>
<td>Simple filters can only be applied as input filters.</td>
</tr>
<tr>
<td></td>
<td>Apply at the [edit interfaces interface-name unit unit-number family (inet</td>
<td>inet6)] hierarchy level by including the following statement:</td>
</tr>
<tr>
<td></td>
<td>simple-filter simple-filter-name;</td>
<td>• Gigabit Ethernet intelligent queuing (IQ2) PICs on the M120, M320, and T Series routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enhanced Queuing Dense Port Concentrators (EQ DPC) on MX Series routers (and EX Series switches).</td>
</tr>
</tbody>
</table>

**Table 31: Stateless Firewall Filter Configuration and Application Summary (continued)**
Table 31: Stateless Firewall Filter Configuration and Application Summary (continued)

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Application Point</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse packet forwarding (RPF) check filter</td>
<td></td>
<td>Supported on MX Series routers and EX Series switches only.</td>
</tr>
<tr>
<td>Configured at the [edit firewall family (inet</td>
<td>Family inet or inet6 on a logical interface</td>
<td></td>
</tr>
<tr>
<td>inet6)] hierarchy level by including the</td>
<td>Apply at the [edit interfaces interface-name unit</td>
<td></td>
</tr>
<tr>
<td>following statement:</td>
<td>unit-number family (inet</td>
<td>inet6)] hierarchy level by including the following statement:</td>
</tr>
<tr>
<td>filter filter-name;</td>
<td>rpf-check fail-filter filter-name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rpf-check {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fail-filter filter-name;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mode loose;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>

How Standard Firewall Filters Evaluate Packets

IN THIS SECTION

- Firewall Filter Packet Evaluation Overview | 739
- Packet Evaluation at a Single Firewall Filter | 740
- Best Practice: Explicitly Accept Any Traffic That Is Not Specifically Discarded | 741
- Best Practice: Explicitly Reject Any Traffic That Is Not Specifically Accepted | 742
- Multiple Firewall Filters Attached to a Single Interface | 742
- Single Firewall Filter Attached to Multiple Interfaces | 742

This topic covers the following information:
Firewall Filter Packet Evaluation Overview

The following sequence describes how the device evaluates a packet entering or exiting an interface if the input or output traffic at a device interface is associated with a firewall filter. Packet evaluation proceeds as follows:

1. The device evaluates the packet against the terms in the firewall filter sequentially, beginning with the first term in the filter.
   - If the packet matches all the conditions specified in a term, the device performs all the actions specified in that term.
   - If the packet does not match all the conditions specified in a term, the device proceeds to the next term in the filter (if a subsequent term exists) and evaluates the packet against that term.
   - If the packet does not match any term in the firewall filter, the device implicitly discards the packet.

2. Unlike service filters and simple filters, firewall filters support the **next term** action, which is neither a terminating action nor a nonterminating action but a flow control action.

   **NOTE:** On Junos OS Evolved, **next term** cannot appear as the last term of the action. A filter term where **next term** is specified as an action but without any match conditions configured is not supported.

   - If the matched term includes the **next term** action, the device continues evaluation of the packet at the next term within the firewall filter.
   - If the matched term does not include the **next term** action, evaluation of the packet against the given firewall filter ends at this term. The device does not evaluate the packet against any subsequent terms in this filter.

   A maximum of 1024 **next term** actions are supported per firewall filter configuration. If you configure a firewall filter that exceeds this limit, your candidate configuration results in a commit error.

3. The device stops evaluating a packet against a given firewall filter when either the packet matches a term without the **next term** action or the packet fails to match the last term in the firewall filter.

4. If a local packet arrives at a router interface that is associated with an ingress firewall filter, the filter evaluates the packet twice. The first evaluation occurs in the Packet Forwarding Engine, which is the central processing element of the router's forwarding plane, and the second evaluation occurs in the Routing Engine, which runs the router's control plane software.
NOTE: Local packets—chunks of data that are destined for or sent by the router itself—usually contain routing protocol data, data for IP services such as Telnet or SSH, and data for administrative protocols such as the Internet Control Message Protocol (ICMP).

If the first evaluation of the firewall filter modifies the incoming local packet or packet context values, the second evaluation of the firewall filter is based on the updated packet or packet context values.

For example, suppose that the filter includes a match condition based on the forwarding class or loss priority value associated with the packet and that the filter includes an action that modifies the forwarding class or loss priority value associated with the packet. If an ingress local packet arrives at an associated interface and the filter evaluation in the Packet Forwarding Engine modifies (rather than drops) the packet, then the filter evaluation in the Routing Engine is based on the modified packet context (rather than the original packet context).

Packet Evaluation at a Single Firewall Filter

Table 32 on page 740 describes packet-filtering behaviors at a device interface associated with a single firewall filter.

NOTE: On Junos OS Evolved, next term cannot appear as the last term of the action. A filter term where next term is specified as an action but without any match conditions configured is not supported.

<table>
<thead>
<tr>
<th>Firewall Filter Event</th>
<th>Action</th>
<th>Subsequent Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The firewall filter term does not specify any match conditions.</td>
<td>The term matches all packets by default, and so the device performs the actions specified by that term.</td>
<td>If the term actions include the next term action, the device continues evaluation of the packet against the next term within the firewall filter (if a subsequent term exists).</td>
</tr>
<tr>
<td>The packet matches all conditions specified by the firewall filter term.</td>
<td>The device performs the actions specified by that term.</td>
<td>If the term actions include the next term action, the device continues evaluation of the packet against the next term within the</td>
</tr>
<tr>
<td>Firewall Filter Event</td>
<td>Action</td>
<td>Subsequent Action</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>The packet matches all conditions specified by the firewall filter term, but the term does not specify any actions.</td>
<td>The device implicitly accepts the packet.</td>
<td>firewall filter (if a subsequent term exists).</td>
</tr>
<tr>
<td>The packet does not match all conditions specified by the firewall filter term.</td>
<td>The device does not perform the actions specified by that term.</td>
<td>If the term actions include the <strong>next term</strong> action, the device continues evaluation of the packet against the next term within the firewall filter (if a subsequent term exists).</td>
</tr>
<tr>
<td>The packet does not match any term in the filter</td>
<td>The device implicitly discards the packet.</td>
<td>The device continues evaluation of the packet against the next term within the filter (if a subsequent term exists).</td>
</tr>
</tbody>
</table>

**Best Practice: Explicitly Accept Any Traffic That Is Not Specifically Discarded**

You might want a firewall filter to accept any traffic that the filter does not specifically discard. In this case, we recommend that you configure the firewall filter with a final term that specifies the **accept** terminating action.

In the following example snippet, configuring the `t_allow_all_else` term as the final term in the firewall filter explicitly configures the firewall filter to accept any traffic that the filter did not specifically discard:

```plaintext
term t_allow_all_else {
 then accept;
}
```

Following this best practice can simplify troubleshooting of the firewall filter.
**Best Practice: Explicitly Reject Any Traffic That Is Not Specifically Accepted**

On the other hand, you might want a firewall filter to reject any traffic that the firewall filter does not specifically accept. In this case, we recommend that you configure the firewall filter with a final term that specifies the `reject` terminating action.

In the following example snippet, configuring the `t_deny_all_else` term as the final term in the firewall filter explicitly configures the firewall filter to reject any traffic that the filter did not specifically accept:

```
 term t_deny_all_else {
 then reject;
 }
```

Following this best practice can simplify troubleshooting of the firewall filter.

**Multiple Firewall Filters Attached to a Single Interface**

On supported device interfaces, you can attach multiple firewall filters to a single interface. For more information, see "Understanding Multiple Firewall Filters Applied as a List" on page 1164.

**NOTE:** On supported interfaces, you can attach a protocol-independent (family any) firewall filter and a protocol-specific (family inet or family inet6) firewall filter to the same interface. The protocol-independent firewall filter executes first. For more information, see "Guidelines for Applying Standard Firewall Filters" on page 753.

**Single Firewall Filter Attached to Multiple Interfaces**

On supported interfaces, you can associate a single firewall filter with multiple interfaces, and Junos OS creates an *interface-specific instance* of that firewall filter for each associated interface.

- Junos OS associates each interface-specific instantiation of a firewall filter with a system-generated, interface-specific name.
- For any `count` actions in the filter terms, the Packet Forwarding Engine maintains separate, interface-specific counters, and Junos OS associates each counter with a system-generated, interface-specific name.
- For any `policer` actions in the filter terms, Junos OS creates separate, interface-specific instances of the policer actions.

For more information, see "Interface-Specific Firewall Filter Instances Overview" on page 1194.
In order to enhance the speed at which specific firewall filters are processed, you can use the filter block hardware available on certain modular port concentrators (MPCs). See the MX Series Interface Module Reference manual for details. This hardware allows for an increase in the number of firewall filter operations per second that can be accomplished.

Using the fast-lookup-filter option in environments with hundreds or thousands of terms per filter can increase performance of those filters by utilizing the filter block hardware.

There are 4096 hardware filters available per MPC. The number of firewall filters that can be installed in hardware depends on the number of terms in each filter. One hardware filter is needed for every group of 255 terms in a firewall filter. The total number of terms supported per firewall filter is 8000. However, attaching a given firewall filter with less than 256 terms to multiple interfaces will only result in one instance of that firewall filter being installed in the filter block. This is true for interface-specific filters as well as for filter lists.

You designate specific firewall filters to be processed in the filter block hardware by including the fast-lookup-filter option when configuring the firewall.

When this option is used, firewall parameters are stored in the filter block hardware which accelerates the lookup process. fast-lookup-filter is only available for the inet and inet6 protocol families. The match conditions are limited to 5-tuples: protocol, source-address, destination-address, source-port, and destination-port.

Ranges, prefix lists, and the except keyword are supported within the firewall filters and terms when using this option.

NOTE: Firewall filters that are configured using the fast-lookup-filter option are not optimized by the firewall compiler.
Understanding Egress Firewall Filters with PVLANs

If you apply firewall filters to private VLANs in the output direction, the behavior of the filters might be unexpected. This topic explains how egress filters behave when applied to private VLANs.

If you apply a firewall filter in the output direction to a primary VLAN, the filter also applies to the secondary VLANs that are members of the primary VLAN when the traffic egresses with the primary VLAN tag or isolated VLAN tag, as listed below:

- Traffic forwarded from a secondary VLAN trunk port to a promiscuous port (trunk or access)
- Traffic forwarded from a secondary VLAN trunk port to a PVLAN trunk port.
- Traffic forwarded from a promiscuous port (trunk or access) to a secondary VLAN trunk port
- Traffic forwarded from a PVLAN trunk port to a secondary VLAN trunk port
- Traffic forwarded from a community port to a promiscuous port (trunk or access)

If you apply a firewall filter in the output direction to a primary VLAN, the filter does not apply to traffic that egresses with a community VLAN tag, as listed below:

- Traffic forwarded from a community trunk port to a PVLAN trunk port
- Traffic forwarded from a promiscuous port (trunk or access) to a community trunk port
- Traffic forwarded from a PVLAN trunk port to a community trunk port

If you apply a firewall filter in the output direction to a community VLAN, the following behaviors apply:

- The filter is applied to traffic forwarded from a promiscuous port (trunk or access) to a community trunk port (because the traffic egresses with the community VLAN tag).
- The filter is applied to traffic forwarded from a community port to a PVLAN trunk port (because the traffic egresses with the community VLAN tag).
- The filter is not applied to traffic forwarded from a community port to a promiscuous port (because the traffic egresses with the primary VLAN tag or untagged).
Multifield Classifier for Ingress Queuing on MX Series Routers with MPC

Beginning with Junos OS Release 16.1, the multifield classifier for ingress queuing is an implementation point for firewall filters configured with specific traffic shaping actions. These filters allow you to set the forwarding class and packet loss priority for packets, or drop the packets prior to ingress queue selection. The filters are applied as ingress queue filters. Class-of-service (CoS) commands can then be used to select ingress queue, set rate limiting and so forth.

Firewall filters configured at the protocol family level are able to distinguish specific types of traffic from other types by matching on multiple fields within the packet header. The number and types of matches available depend on which protocol family is used in the filter. Before the introduction of the ingress queuing filter, these firewall filters could only be applied to traffic after the ingress queue had been selected based solely on the behavior aggregate (BA). With the introduction of the ingress queuing filter, firewall filters can be used to set forwarding classification and packet loss priority based on multiple fields within the packet header prior to forwarding queue selection. CoS functions provide traffic classification options and the ability to assign that classified traffic to specific forwarding queues.

NOTE: Ingress queuing filters are only available when the traffic manager mode is set to ingress-and-egress at the [edit chassis fpc fpc-id pic pic-id traffic-manager mode] hierarchy level.

The ingress-queuing-filter configuration statement is used at the [edit interfaces interface-name unit unit-number family family-name] hierarchy level to designate a previously configured firewall filter to be used as an ingress queuing filter. The following list shows which protocol families are compatible with the ingress-queuing-filter statement:

- bridge
- ccc
- inet
- inet6
- mpls
- vpls
The named firewall filter is a normal firewall filter that must be configured with at least one of the following actions: **accept**, **discard**, **forwarding-class**, and **loss-priority**.

**Release History Table**

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Beginning with Junos OS Release 16.1, the multifield classifier for ingress queuing is an implementation point for firewall filters configured with specific traffic shaping actions.</td>
</tr>
</tbody>
</table>

**RELATED DOCUMENTATION**

- **Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic**
- **ingress-queuing-filter** | 2049
- **Example: Configuring a Filter for Use as an Ingress Queuing Filter** | 1009

**Guidelines for Configuring Firewall Filters**

**IN THIS SECTION**

- Statement Hierarchy for Configuring Firewall Filters | 747
- Firewall Filter Protocol Families | 748
- Firewall Filter Names and Options | 748
- Firewall Filter Terms | 749
- Firewall Filter Match Conditions | 749
- Firewall Filter Actions | 751

This topic covers the following information:
Statement Hierarchy for Configuring Firewall Filters

To configure a standard firewall filter, you can include the following statements. For an IPv4 standard firewall filter, the `family inet` statement is optional. For an IPv6 standard firewall filter, the `family inet6` statement is mandatory.

```toml
firewall {
 family family-name {
 filter filter-name {
 accounting-profile name;
 instance-shared;
 interface-specific;
 physical-interface-filter;
 term term-name {
 filter filter-name;
 }
 term term-name {
 from {
 ip-version ip-version {
 match-conditions;
 }
 }
 then {
 actions;
 }
 }
 }
 }
}
```

You can include the firewall configuration at one of the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]
NOTE: For stateless firewall filtering, you must allow the output tunnel traffic through the firewall filter applied to input traffic on the interface that is the next-hop interface toward the tunnel destination. The firewall filter affects only the packets exiting the router (or switch) by way of the tunnel.

Firewall Filter Protocol Families

A firewall filter configuration is specific to a particular protocol family. Under the firewall statement, include one of the following statements to specify the protocol family for which you want to filter traffic:

- **family any**—To filter protocol-independent traffic.
- **family inet**—To filter Internet Protocol version 4 (IPv4) traffic.
- **family inet6**—To filter Internet Protocol version 6 (IPv6) traffic.
- **family mpls**—To filter MPLS traffic.
- **family vpls**—To filter virtual private LAN service (VPLS) traffic.
- **family ccc**—To filter Layer 2 circuit cross-connection (CCC) traffic.
- **family bridge**—To filter Layer 2 bridging traffic for MX Series 3D Universal Edge Routers only.
- **family ethernet-switching**—To filter Layer 2 (Ethernet) traffic.

The **family family-name** statement is required only to specify a protocol family other than IPv4. To configure an IPv4 firewall filter, you can configure the filter at the [edit firewall] hierarchy level without including the **family inet** statement, because the [edit firewall] and [edit firewall family inet] hierarchy levels are equivalent.

NOTE: For bridge family filter, the ip-protocol match criteria is supported only for IPv4 and not for IPv6. This is applicable for line cards that support the Junos Trio chipset such as the MX 3D MPC line cards.

Firewall Filter Names and Options

Under the **family family-name** statement, you can include **filter filter-name** statements to create and name firewall filters. The filter name can contain letters, numbers, and hyphens (-) and be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").
At the [edit firewall family family-name filter filter-name] hierarchy level, the following statements are optional:

- accounting-profile
- instance-shared (MX Series routers with Modular Port Concentrators (MPCS) only)
- interface-specific
- physical-interface-filter

**Firewall Filter Terms**

Under the `filter filter-name` statement, you can include `term term-name` statements to create and name filter terms.

- You must configure at least one term in a firewall filter.
- You must specify a unique name for each term within a firewall filter. The term name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").
- The order in which you specify terms within a firewall filter configuration is important. Firewall filter terms are evaluated in the order in which they are configured. By default, new terms are always added to the end of the existing filter. You can use the `insert` configuration mode command to reorder the terms of a firewall filter.

At the [edit firewall family family-name filter filter-name term term-name] hierarchy level, the `filter filter-name` statement is not valid in the same term as `from` or `then` statements. When included at this hierarchy level, the `filter filter-name` statement is used to nest firewall filters.

**Firewall Filter Match Conditions**

Firewall filter match conditions are specific to the type of traffic being filtered.

With the exception of MPLS-tagged IPv4 or IPv6 traffic, you specify the term's match conditions under the `from` statement. For MPLS-tagged IPv4 traffic, you specify the term's IPv4 address-specific match conditions under the `ip-version ipv4` statement and the term's IPv4 port-specific match conditions under the `protocol (tcp | udp)` statement.

For MPLS-tagged IPv6 traffic, you specify the term's IPv6 address-specific match conditions under the `ip-version ipv6` statement and the term's IPv6 port-specific match conditions under the `protocol (tcp | udp)` statement.

Table 33 on page 750 describes the types of traffic for which you can configure firewall filters.
<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Hierarchy Level at Which Match Conditions Are Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol-independent</td>
<td>[edit firewall family any filter filter-name term term-name]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for Protocol-Independent Traffic&quot; on page 843.</td>
</tr>
<tr>
<td>IPv4</td>
<td>[edit firewall family inet filter filter-name term term-name]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for IPv4 Traffic&quot; on page 845.</td>
</tr>
<tr>
<td>IPv6</td>
<td>[edit firewall family inet6 filter filter-name term term-name]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for IPv6 Traffic&quot; on page 861.</td>
</tr>
<tr>
<td>MPLS</td>
<td>[edit firewall family mpls filter filter-name term term-name]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for MPLS Traffic&quot; on page 899.</td>
</tr>
<tr>
<td>IPv4 addresses in MPLS flows</td>
<td>[edit firewall family mpls filter filter-name term term-name ip-version ipv4 ]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic&quot; on page 903.</td>
</tr>
<tr>
<td>IPv4 ports in MPLS flows</td>
<td>[edit firewall family mpls filter filter-name term term-name ip-version ipv4 protocol (tcp</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic&quot; on page 903.</td>
</tr>
<tr>
<td>IPv6 addresses in MPLS flows</td>
<td>[edit firewall family mpls filter filter-name term term-name ip-version ipv6 ]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic&quot; on page 903.</td>
</tr>
<tr>
<td>IPv6 ports in MPLS flows</td>
<td>[edit firewall family mpls filter filter-name term term-name ip-version ipv6 protocol (tcp</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic&quot; on page 903.</td>
</tr>
</tbody>
</table>
Table 33: Firewall Filter Match Conditions by Protocol Family (continued)

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Hierarchy Level at Which Match Conditions Are Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS</td>
<td>[edit firewall family vpls filter filter-name term term-name]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for VPLS Traffic&quot; on page 906.</td>
</tr>
<tr>
<td>Layer 2 CCC</td>
<td>[edit firewall family ccc filter filter-name term term-name]</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for Layer 2 CCC Traffic&quot; on page 920.</td>
</tr>
<tr>
<td>Layer 2 Bridging</td>
<td>[edit firewall family bridge filter filter-name term term-name]</td>
</tr>
<tr>
<td>(MX Series routers and EX Series switches only)</td>
<td>[edit firewall family ethernet-switching filter filter-name term term-name] (for EX Series switches only)</td>
</tr>
<tr>
<td></td>
<td>For the complete list of match conditions, see &quot;Firewall Filter Match Conditions for Layer 2 Bridging Traffic&quot; on page 925.</td>
</tr>
</tbody>
</table>

If you specify an IPv6 address in a match condition (the address, destination-address, or source-address match conditions), use the syntax for text representations described in RFC 4291, *IP Version 6 Addressing Architecture*. For more information about IPv6 addresses, see *IPv6 Overview* and *Supported IPv6 Standards*.

**Firewall Filter Actions**

Under the then statement for a firewall filter term, you can specify the actions to be taken on a packet that matches the term.

*Table 34 on page 752* summarizes the types of actions you can specify in a firewall filter term.
## Table 34: Firewall Filter Action Categories

<table>
<thead>
<tr>
<th>Type of Action</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminating</td>
<td>Halts all evaluation of a firewall filter for a specific packet. The router (or switch) performs the specified action, and no additional terms are used to examine the packet. You can specify only one terminating action in a firewall filter term. You can, however, specify one terminating action with one or more nonterminating actions in a single term. For example, within a term, you can specify <code>accept</code> with <code>count</code> and <code>syslog</code>. Regardless of the number of terms that contain terminating actions, once the system processes a terminating action within a term, processing of the entire firewall filter halts.</td>
<td>See “Firewall Filter Terminating Actions” on page 804.</td>
</tr>
<tr>
<td>Nonterminating</td>
<td>Performs other functions on a packet (such as incrementing a counter, logging information about the packet header, sampling the packet data, or sending information to a remote host using the system log functionality), but any additional terms are used to examine the packet.</td>
<td>All nonterminating actions include an implicit accept action. This accept action is carried out if no other terminating action is configured in the same term. See “Firewall Filter Nonterminating Actions” on page 795.</td>
</tr>
<tr>
<td>Flow control</td>
<td>For standard firewall filters only, the next term action directs the router (or switch) to perform configured actions on the packet and then, rather than terminate the filter, use the next term in the filter to evaluate the packet. If the next term action is included, the matching packet is evaluated against the next term in the firewall filter. Otherwise, the matching packet is not evaluated against subsequent terms in the firewall filter. For example, when you configure a term with the nonterminating action <code>count</code>, the term's action changes from an implicit <code>discard</code> to an implicit <code>accept</code>. The next term action forces the continued evaluation of the firewall filter.</td>
<td>You cannot configure the next term action with a terminating action in the same filter term. However, you can configure the next term action with another nonterminating action in the same filter term. A maximum of 1024 next term actions are supported per standard firewall filter configuration. If you configure a standard firewall filter that exceeds this limit, your candidate configuration results in a commit error. NOTE: On Junos OS Evolved, next term cannot appear as the last term of the action. A filter term where next term is specified as an action but without any match conditions configured is not supported.</td>
</tr>
</tbody>
</table>
Applying Firewall Filters Overview

You can apply a standard firewall filter to a loopback interface on the router or to a physical or logical interface on the router. You can apply a firewall filter to a single interface or to multiple interfaces on the router. Table 35 on page 753 summarizes the behavior of firewall filters based on the point to which you attach the filter.

Table 35: Firewall Filter Behavior by Filter Attachment Point

<table>
<thead>
<tr>
<th>Filter Attachment Point</th>
<th>Filter Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback interface</td>
<td>The router’s loopback interface, lo0, is the interface to the Routing Engine and carries no data packets. When you apply a firewall filter to the loopback interface, the filter evaluates the local packets received or transmitted by the Routing Engine.</td>
</tr>
<tr>
<td>Physical interface or logical interface</td>
<td>When you apply a filter to a physical interface on the router or to a logical interface (or member of an aggregated Ethernet bundle defined on the interface), the filter evaluates all data packet that pass through that interface.</td>
</tr>
</tbody>
</table>

NOTE:

• ACX5048 and ACX5096 routers do not support the evaluation of packets transmitted by the Routing engine for loopback interface filter.
You can use the same firewall filter one or more times.

On M Series routers, except the M120 and M320 routers, if you apply a firewall filter to multiple interfaces, the filter acts on the sum of traffic entering or exiting those interfaces.

On T Series, M120, M320, and MX Series routers, interfaces are distributed among multiple packet-forwarding components. On these routers, you can configure firewall filters and service filters that, when applied to multiple interfaces, act on the individual traffic streams entering or exiting each interface, regardless of the sum of traffic on the multiple interfaces.

For more information, see "Interface-Specific Firewall Filter Instances Overview" on page 1194.

Single interface with protocol-independent and protocol-specific firewall filters attached

For interfaces hosted on the following hardware only, you can attach a protocol-independent (family any) firewall filter and a protocol-specific (family inet or family inet6) firewall filter simultaneously. The protocol-independent firewall executes first.

- ACX Series Universal Metro Routers
- Flexible PIC Concentrators (FPCs) in M7i and M10i Multiservice Edge Routers
- Modular Interface Cards (MICs) and Modular Port Concentrators (MPCs) in MX Series 5G Universal Routing Platforms
- T Series Core Routers

NOTE:
Interfaces hosted on the following hardware do not support protocol-independent firewall filters:

- Forwarding Engine Boards (FEBs) in M120 routers
- Enhanced III FPCs in M320 routers
- FPC2 and FPC3 modules in MX Series routers
- Dense Port Concentrators (DPCs) in MX Series routers
- PTX Series Packet Transport Routers

Statement Hierarchy for Applying Firewall Filters

To apply a standard firewall filter to a logical interface, configure the `filter` statement for the logical interface defined under either the [edit] or [edit logical-systems logical-system-name] hierarchy level. Under the `filter` statement, you can include one or more of the following statements: `group group-number`, `input filter-name`, `input-list filter-name`, `output filter-name`, or `output-list filter-name`. The hierarchy level at which you attach the `filter` statement depends on the filter type and device type you are configuring.
**Protocol-Independent Firewall Filters on MX Series Routers**

To apply a protocol-independent firewall filter to a logical interface on an MX Series router, configure the `filter` statement directly under the logical unit:

```plaintext
interfaces {
 interface-name {
 unit logical-unit-number {
 filter {
 group group-number;
 input filter-name;
 input-list [filter-names];
 output filter-name;
 output-list [filter-names];
 }
 }
 }
}
```

**All Other Firewall Filters on Logical Interfaces**

To apply a standard firewall filter to a logical interface for all cases other than a protocol-independent filter on an MX Series router, configure the `filter` statement under the protocol family:

```plaintext
interfaces {
 interface-name {
 unit logical-unit-number {
 family family-name {
 ...
 filter {
 group group-number;
 input filter-name;
 input-list [filter-names];
 output filter-name;
 output-list [filter-names];
 }
 }
 }
 }
}
```
Restrictions on Applying Firewall Filters

IN THIS SECTION

- Number of Input and Output Filters Per Logical Interface | 756
- MPLS and Layer 2 CCC Firewall Filters in Lists | 756
- Layer 2 CCC Firewall Filters on MX Series Routers and EX Series Switches | 756
- IPv6 Firewall Filters on PTX Series Packet Transport Routers | 757

**Number of Input and Output Filters Per Logical Interface**

**Input filters**—Although you can use the same filter multiple times, you can apply only one input filter or one input filter list to an interface.

- To specify a single firewall filter to be used to evaluate packets received on the interface, include the `input filter-name` statement in the `filter` stanza.

- To specify an ordered list of firewall filters to be used to evaluate packets received on the interface, include the `input-list [ filter-names ]` statement in the `filter` stanza. You can specify up to 16 firewall filters for the filter input list.

**Output filters**—Although you can use the same filter multiple times, you can apply only one output filter or one output filter list to an interface.

- To specify a single firewall filter to be used to evaluate packets transmitted on the interface, include the `output filter-name` statement in the `filter` stanza.

- To specify an ordered list of firewall filters to be used to evaluate packets transmitted on the interface, include the `output-list [ filter-names ]` statement in the `filter` stanza. You can specify up to 16 firewall filters in a filter output list.

**MPLS and Layer 2 CCC Firewall Filters in Lists**

The `input-list filter-names` and `output-list filter-names` statements for firewall filters for the `ccc` and `mpls` protocol families are supported on all interfaces with the exception of the following:

- Management interfaces and internal Ethernet interfaces (`fxp` or `em0`)
- Loopback interfaces (`lo0`)
- USB modem interfaces (`umd`)

**Layer 2 CCC Firewall Filters on MX Series Routers and EX Series Switches**

Only on MX Series routers and EX Series switches, you cannot apply a Layer 2 CCC stateless firewall filter (a firewall filter configured at the `[edit firewall filter family ccc]` hierarchy level) as an output filter. On
MX Series routers and EX Series switches, firewall filters configured for the family ccc statement can be applied only as input filters.

IPv6 Firewall Filters on PTX Series Packet Transport Routers

On PTX10001-20C routers, you cannot apply IPv6 firewall filters to:

- Tunnel interfaces
- IRB interfaces
- Egress interfaces
- Interface-specific filters, configured at the [edit firewall family inet6 filter filter-name] hierarchy level.
- Traffic policers
- Junos Telemetry Interface

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>family (Firewall)</th>
<th>2109</th>
</tr>
</thead>
<tbody>
<tr>
<td>family (Interfaces)</td>
<td></td>
</tr>
<tr>
<td>filter (Applying to a Logical Interface)</td>
<td>2115</td>
</tr>
<tr>
<td>filter (Configuring)</td>
<td>2117</td>
</tr>
<tr>
<td>Guidelines for Configuring Firewall Filters</td>
<td>746</td>
</tr>
<tr>
<td>Understanding How to Use Standard Firewall Filters</td>
<td>723</td>
</tr>
</tbody>
</table>

Supported Standards for Filtering

The Junos OS supports the following RFCs related to filtering:

- RFC 792, Internet Control Message Protocol
- RFC 2460, Internet Protocol, Version 6 (IPv6)
- RFC 2474, Definition of the Differentiated Services (DS) Field
- RFC 2475, An Architecture for Differentiated Services
- RFC 2597, Assured Forwarding PHB Group
- RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior)
- RFC 4291, IP Version 6 Addressing Architecture
- RFC 4443, Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification
NOTE: ACX Series routers do not support RFC 2460, RFC 4291, and RFC 4443 standards.

RELATED DOCUMENTATION

- Firewall Filters Overview | 711
- Service Filter Overview | 1253
- Simple Filter Overview | 1283
- Firewall Filters in Logical Systems Overview | 1079

Verifying That Firewall Filters Are Operational

**Purpose**
Verify that firewall filters are working properly.

**Action**
Use the `show firewall` operational mode command to verify that the firewall filters are working properly:

```plaintext
user@switch> show firewall
```

```plaintext
Filter: egress-vlan-watch-employee
Counters:
 Name Bytes Packets
counter-employee-web 0 0

Filter: ingress-port-limit-tcp-icmp
Counters:
 Name Bytes Packets
icmp-counter 560 10

Policers:
 Name Packets
icmp-connection-policer 10
tcp-connection-policer 0

Filter: ingress-vlan-rogue-block
Filter: ingress-vlan-limit-guest
```

**Meaning**
The `show firewall` command displays the names of all firewall filters, counters, and policers that are configured. For each counter that is specified in a filter configuration, the output field shows the byte count and packet count for the term in which the counter is specified. In the above example, the `icmp-counter` in the filter `ingress-port-limit-tcp-icmp` shows that the filter matched 10 packets. For each policer that is specified in a filter configuration, the output field shows the packet count for packets that exceed the specified rate limits. The policer `icmp-connection-policer` shows that 10 ICMP packets were policed.

**RELATED DOCUMENTATION**

- Configuring Firewall Filters | 1601
- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Monitoring Firewall Filter Traffic | 759

**Monitoring Firewall Filter Traffic**

You can use operational mode commands to monitor firewall filter traffic.

- Monitoring Traffic for All Firewall Filters and Policers That Are Configured | 759
- Monitoring Traffic for a Specific Firewall Filter | 760
- Monitoring Traffic for a Specific Policer | 760

**Monitoring Traffic for All Firewall Filters and Policers That Are Configured**

**Purpose**

Monitor the number of packets and bytes that matched the firewall filters and monitor the number of packets that exceeded policer rate limits:

**Action**

Use the `show firewall` operational mode command:

```
user@switch> show firewall
```

<table>
<thead>
<tr>
<th>Filter: egress-vlan-watch-employee</th>
<th>Counters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Bytes</td>
</tr>
<tr>
<td>counter-employee-web</td>
<td>3348</td>
</tr>
<tr>
<td>Packets</td>
<td>27</td>
</tr>
</tbody>
</table>

**Filter: ingress-port-limit-tcp-icmp**
Meaning
The `show firewall` command displays the names of all firewall filters, counters, and policers that are configured. For each counter that is specified in a filter configuration, the output field shows the byte count and packet count for the term in which the counter is specified. For each policer that is specified in a filter configuration, the output field shows the packet count for packets that exceed the specified rate limits.

Monitoring Traffic for a Specific Firewall Filter

Purpose
Monitor the number of packets and bytes that matched a firewall filter and monitor the number of packets that exceeded policer rate limits.

Action
Use the `show firewall filter filter-name` operational mode command:

```
user@switch> show firewall filter ingress-port-limit-tcp-icmp
```

Filter: ingress-port-limit-tcp-icmp
Counters:
<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-counter</td>
<td>560</td>
<td>10</td>
</tr>
</tbody>
</table>

Meaning
The `show firewall filter filter-name` command limits the display information to the counters and policers that are defined for the specified filter.

Monitoring Traffic for a Specific Policer

Purpose
Monitor the number of packets that exceeded the rate limits of a policer:

**Action**

Use the `show firewall policer policer-name` operational mode command:

```
user@switch> show firewall policer icmp-connection-policer
```

### Filter: ingress-port-limit-tcp-icmp

#### Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-connection-policer</td>
<td>10</td>
</tr>
</tbody>
</table>

**Meaning**

The `show firewall policer policer-name` command displays the number of packets that exceeded the rate limits for the specified policer.

**RELATED DOCUMENTATION**

- Configuring FirewallFilters | 1601
- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Verifying That Firewall Filters Are Operational | 758

**Troubleshooting Firewall Filters**

**IN THIS SECTION**

- Troubleshooting QFX10000 Switches | 762
- Troubleshooting Other Switches | 763

Use the following information to troubleshoot your firewall filter configuration.
Troubleshooting QFX10000 Switches

IN THIS SECTION
- Do Not Combine Match Conditions for Different Layers | 762
- Layer 2 Packets Cannot be Discarded with Firewall Filters | 762
- Protect-RE (loopback) Firewall Filter Does Not Filter Packets Applied to EM0 Interfaces | 762

This section describes issues specific to QFX10000 switches:

**Do Not Combine Match Conditions for Different Layers**

On QFX10000 switches, do not combine match conditions for Layer 2 and any other layer in a `family ethernet-switching` filter. (For example, do not include conditions that match MAC addresses and IP addresses in the same filter.) If you do so, the filter will commit successfully but will not work. You will also see the following log message: **L2 filter filter-name doesn't support mixed L2 and L3/L4 match conditions. Please re-config.**

**Layer 2 Packets Cannot be Discarded with Firewall Filters**

**Problem**

**Description:** Layer 2 (L2) control packets such as Link Layer Discovery Protocol (LLDP) and bridge protocol data unit (BPU) cannot be discarded with firewall filters.

**Solution**

Configure distributed denial-of-service (DDoS) protection on the L2 control packet and set the aggregate policer bandwidth and burst values to the minimum value of 1. For example,

```bash
[edit system ddos-protection protocols protocol name]
user@host# set aggregate bandwidth 1

[edit system ddos-protection protocols protocol name]
user@host# set aggregate burst 1
```

**Protect-RE (loopback) Firewall Filter Does Not Filter Packets Applied to EM0 Interfaces**

**Problem**

**Description:** On QFX10000 switches, the Protect-RE (loopback) firewall filter does not filter packets applied to EM0 interfaces including SNMP, Telnet, and other services.

**Solution**
This is expected behavior.

Troubleshooting Other Switches

IN THIS SECTION

- Firewall Filter Configuration Returns a No Space Available in TCAM Message | 763
- Filter Counts Previously Dropped Packet | 765
- Matching Packets Not Counted | 766
- Counter Reset When Editing Filter | 766
- Cannot Include loss-priority and policer Actions in Same Term | 767
- Cannot Egress Filter Certain Traffic Originating on QFX Switch | 767
- Firewall Filter Match Condition Not Working with Q-in-Q Tunneling | 767
- Egress Firewall Filters with Private VLANs | 767
- Egress Filtering of L2PT Traffic Not Supported | 768
- Cannot Drop BGP Packets in Certain Circumstances | 769
- Invalid Statistics for Policier | 769
- Policers can Limit Egress Filters | 769

This section describes issues specific to QFX switches other than QFX10000 switches. This information also applies to OCX1100 switches and EX4600 switches.

Firewall Filter Configuration Returns a No Space Available in TCAM Message

Problem

Description: When a firewall filter configuration exceeds the amount of available Ternary Content Addressable Memory (TCAM) space, the system returns the following `syslogd` message:

```
No space available in tcam.
Rules for filter filter-name will not be installed.
```

A switch returns this message during the commit operation if the firewall filter that has been applied to a port, VLAN, or Layer 3 interface exceeds the amount of space available in the TCAM table. The filter is not applied, but the commit operation for the firewall filter configuration is completed in the CLI module.

Solution
When a firewall filter configuration exceeds the amount of available TCAM table space, you must configure a new firewall filter with fewer filter terms so that the space requirements for the filter do not exceed the available space in the TCAM table.

You can perform either of the following procedures to correct the problem:

To delete the filter and its binding and apply the new smaller firewall filter to the same binding:

1. Delete the filter and its binding to ports, VLANs, or Layer 3 interfaces. For example:

   [edit]
   user@switch# delete firewall family ethernet-switching filter ingress-vlan-rogue-block
   user@switch# delete vlans employee-vlan description "filter to block rogue devices on employee-vlan"
   user@switch# delete vlans employee-vlan filter input ingress-vlan-rogue-block

2. Commit the changes:

   [edit]
   user@switch# commit

3. Configure a smaller filter with fewer terms that does not exceed the amount of available TCAM space. For example:

   [edit]
   user@switch# set firewall family ethernet-switching filter new-ingress-vlan-rogue-block ...

4. Apply (bind) the new firewall filter to a port, VLAN, or Layer 3 interface. For example:

   [edit]
   user@switch# set vlans employee-vlan description "filter to block rogue devices on employee-vlan"
   user@switch# set vlans employee-vlan filter input new-ingress-vlan-rogue-block

5. Commit the changes:

   [edit]
   user@switch# commit

To apply a new firewall filter and overwrite the existing binding but not delete the original filter:

1. Configure a firewall filter with fewer terms than the original filter:

   [edit]
   user@switch# set firewall family ethernet-switching filter new-ingress-vlan-rogue-block...
2. Apply the firewall filter to the port, VLAN, or Layer 3 interfaces to overwrite the binding of the original filter—for example:

[edit]
user@switch# set vlans employee-vlan description "smaller filter to block rogue devices on employee-vlan"
user@switch# set vlans employee-vlan filter input new-ingress-vlan-rogue-block

Because you can apply no more than one firewall filter per VLAN per direction, the binding of the original firewall filter to the VLAN is overwritten with the new firewall filter new-ingress-vlan-rogue-block.

3. Commit the changes:

[edit]
user@switch# commit

NOTE: The original filter is not deleted and is still available in the configuration.

Filter Counts Previously Dropped Packet

Problem

Description: If you configure two or more filters in the same direction for a physical interface and one of the filters includes a counter, the counter will be incorrect if the following circumstances apply:

- You configure the filter that is applied to packets first to discard certain packets. For example, imagine that you have a VLAN filter that accepts packets sent to 10.10.1.0/24 addresses and implicitly discards packets sent to any other addresses. You apply the filter to the admin VLAN in the output direction, and interface xe-0/0/1 is a member of that VLAN.

- You configure a subsequent filter to accept and count packets that are dropped by the first filter. In this example, you have a port filter that accepts and counts packets sent to 192.168.1.0/24 addresses that is also applied to xe-0/0/1 in the output direction.

The egress VLAN filter is applied first and correctly discards packets sent to 192.168.1.0/24 addresses. The egress port filter is applied next and counts the discarded packets as matched packets. The packets are not forwarded, but the counter displayed by the egress port filter is incorrect.

Remember that the order in which filters are applied depends on the direction in which they are applied, as indicated here:

Ingress filters:

1. Port (Layer 2) filter
2. VLAN filter

3. Router (Layer 3) filter

Egress filters:
1. Router (Layer 3) filter
2. VLAN filter
3. Port (Layer 2) filter

Solution
This is expected behavior.

Matching Packets Not Counted

Problem
Description: If you configure two egress filters with counters for a physical interface and a packet matches both of the filters, only one of the counters includes that packet.
For example:

- You configure an egress port filter with a counter for interface xe-0/0/1.
- You configure an egress VLAN filter with a counter for the adminVLAN, and interface xe-0/0/1 is a member of that VLAN.
- A packet matches both filters.

In this case, the packet is counted by only one of the counters even though it matched both filters.

Solution
This is expected behavior.

Counter Reset When Editing Filter

Problem
Description: If you edit a firewall filter term, the value of any counter associated with any term in the same filter is set to 0, including the implicit counter for any policer referenced by the filter. Consider the following examples:

- Assume that your filter has term1, term2, and term3, and each term has a counter that has already counted matching packets. If you edit any of the terms in any way, the counters for all the terms are reset to 0.
- Assume that your filter has term1 and term2. Also assume that term2 has a policer action modifier and the implicit counter of the policer has already counted 1000 matching packets. If you edit term1 or term2 in any way, the counter for the policer referenced by term2 is reset to 0.
Solution
This is expected behavior.

**Cannot Include loss-priority and policer Actions in Same Term**

**Problem**
**Description:** You cannot include both of the following actions in the same firewall filter term in a QFX Series switch:
- loss-priority
- policer

If you do so, you see the following error message when you attempt to commit the configuration: “cannot support policer action if loss-priority is configured.”

**Solution**
This is expected behavior.

**Cannot Egress Filter Certain Traffic Originating on QFX Switch**

**Problem**
**Description:** On a QFX Series switch, you cannot filter certain traffic with a firewall filter applied in the output direction if the traffic originates on the QFX switch. This limitation applies to control traffic for protocols such as ICMP (ping), STP, LACP, and so on.

**Solution**
This is expected behavior.

**Firewall Filter Match Condition Not Working with Q-in-Q Tunneling**

**Problem**
**Description:** If you create a firewall filter that includes a match condition of `dot1q-tag` or `dot1q-user-priority` and apply the filter on input to a trunk port that participates in a service VLAN, the match condition does not work if the Q-in-Q EtherType is not 0x8100. (When Q-in-Q tunneling is enabled, trunk interfaces are assumed to be part of the service provider or data center network and therefore participate in service VLANs.)

**Solution**
This is expected behavior. To set the Q-in-Q EtherType to 0x8100, enter the `set dot1q-tunneling ethertype 0x8100` statement at the [edit ethernet-switching-options] hierarchy level. You must also configure the other end of the link to use the same Ethertype.

**Egress Firewall Filters with Private VLANs**

**Problem**
**Description:** If you apply a firewall filter in the output direction to a primary VLAN, the filter also applies to the secondary VLANs that are members of the primary VLAN when the traffic egresses with the primary VLAN tag or isolated VLAN tag, as listed below:
Weather conditions: sunny, temperatures range from 65°F to 75°F

Egress Filtering of L2PT Traffic Not Supported

Problem
Description: Egress filtering of L2PT traffic is not supported on the QFX3500 switch. That is, if you configure L2PT to tunnel a protocol on an interface, you cannot also use a firewall filter to filter traffic for that protocol on that interface in the output direction. If you commit a configuration for this purpose, the firewall filter is not applied to the L2PT-tunneled traffic.

Solution
This is expected behavior.
**Cannot Drop BGP Packets in Certain Circumstances**

**Problem**

**Description:** BGP packets with a time-to-live (TTL) value greater than 1 cannot be discarded using a firewall filter applied to a loopback interface or applied on input to a Layer 3 interface. BGP packets with TTL value of 1 or 0 can be discarded using a firewall filter applied to a loopback interface or applied on input to a Layer 3 interface.

**Solution**

This is expected behavior.

**Invalid Statistics for Policer**

**Problem**

**Description:** If you apply a single-rate two-color policer in more than 128 terms in a firewall filter, the output of the `show firewall` command displays incorrect data for the policer.

**Solution**

This is expected behavior.

**Policers can Limit Egress Filters**

**Problem**

**Description:** On some switches, the number of egress policers that you configure can affect the total number of allowed egress firewall filters. (This does not apply to QFX10000 switches.) Every policer has two implicit counters that consume two entries in a 1024-entry TCAM that is used for counters, including counters that are configured as action modifiers in firewall filter terms. (Policers consume two entries because one is used for green packets and one is used for nongreen packets regardless of policer type.) If the TCAM becomes full, you cannot commit any more egress firewall filters that have terms with counters. For example, if you configure and commit 512 egress policers (two-color, three-color, or a combination of both policer types), all of the memory entries for counters are used up. If later in your configuration file you insert additional egress firewall filters with terms that also include counters, none of the terms in those filters are committed because there is no available memory space for the counters.

Here are some additional examples:

- Assume that you configure egress filters that include a total of 512 policers and no counters. Later in your configuration file you include another egress filter with 10 terms, 1 of which has a counter action modifier. None of the terms in this filter are committed because there is not enough TCAM space for the counter.

- Assume that you configure egress filters that include a total of 500 policers, so 1000 TCAM entries are occupied. Later in your configuration file you include the following two egress filters:

  - Filter A with 20 terms and 20 counters. All the terms in this filter are committed because there is enough TCAM space for all the counters.
• Filter B comes after Filter A and has five terms and five counters. None of the terms in this filter are committed because there is not enough memory space for all the counters. (Five TCAM entries are required but only four are available.)

Solution
You can prevent this problem by ensuring that egress firewall filter terms with counter actions are placed earlier in your configuration file than terms that include policers. In this circumstance, Junos OS commits policers even if there is not enough TCAM space for the implicit counters. For example, assume the following:

• You have 1024 egress firewall filter terms with counter actions.

• Later in your configuration file you have an egress filter with 10 terms. None of the terms have counters but one has a policer action modifier.

You can successfully commit the filter with 10 terms even though there is not enough TCAM space for the implicit counters of the policer. The policer is committed without the counters.
CHAPTER 14

Firewall Filter Match Conditions and Actions

IN THIS CHAPTER

- Overview of Firewall Filters | 772
- Understanding Firewall Filter Match Conditions | 774
- Understanding Firewall Filter Planning | 779
- Understanding How Firewall Filters Are Evaluated | 780
- Understanding Firewall Filter Match Conditions | 782
- Firewall Filter Flexible Match Conditions | 787
- Firewall Filter Nonterminating Actions | 795
- Firewall Filter Terminating Actions | 804
- Firewall Filter Match Conditions and Actions (ACX Series Routers) | 822
- Firewall Filter Match Conditions for Protocol-Independent Traffic | 843
- Firewall Filter Match Conditions for IPv4 Traffic | 845
- Firewall Filter Match Conditions for IPv6 Traffic | 861
- Firewall Filter Match Conditions Based on Numbers or Text Aliases | 875
- Firewall Filter Match Conditions Based on Bit-Field Values | 876
- Firewall Filter Match Conditions Based on Address Fields | 882
- Firewall Filter Match Conditions Based on Address Classes | 892
- Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic | 893
- Firewall Filter Match Conditions for MPLS Traffic | 899
- Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic | 903
- Firewall Filter Match Conditions for VPLS Traffic | 906
- Firewall Filter Match Conditions for Layer 2 CCC Traffic | 920
- Firewall Filter Match Conditions for Layer 2 Bridging Traffic | 925
- Firewall Filter Support on Loopback Interface | 937
Overview of Firewall Filters

Firewall filters provide rules that define whether to accept or discard packets that are transiting an interface. If a packet is accepted, you can configure additional actions to perform on the packet, such as class-of-service (CoS) marking (grouping similar types of traffic together and treating each type of traffic as a class with its own level of service priority) and traffic policing (controlling the maximum rate of traffic sent or received). You configure firewall filters to determine whether to accept or discard a packet before it enters or exits a Layer 3 (routed) interface.

An ingress firewall filter is applied to packets that are entering an interface, and an egress firewall filter is applied to packets that are exiting an interface.

NOTE: Firewall filters are sometimes called access control lists (ACLs).

Where You Can Apply Filters

You can apply a router firewall filter in both ingress and egress directions on IPv4 or IPv6 Layer 3 (routed) interfaces and a loopback interface, which filters traffic sent to the switch itself or generated by the switch.

You apply a filter to a loopback interface in the input direction to protect the switch from unwanted traffic. You also might want to apply a filter to a loopback interface in the output direction so that you can set the forwarding class and DSCP bit value for packets that originate on the switch itself. This feature gives you very fine control over the classification of CPU generated packets. For example, you might want to assign different DSCP values and forwarding classes to traffic generated by different routing protocols so the traffic for those protocols can be treated in a differentiated manner by other devices.

NOTE: On QFX5220 switches, you can only apply a filter to a loopback interface in the ingress direction.
NOTE: If you apply ingress and egress filters to the same interface, the ingress filter is processed first.

To apply a firewall filter:

1. Configure the firewall filter.

2. Apply the firewall filter to a Layer 3 interface and specify the direction. If you specify the input direction, traffic is filtered on ingress. If you specify the output direction, traffic is filtered on egress.

NOTE: You can apply only one firewall filter to a Layer 3 interface for a given direction. For example, for a given family inet interface, you can apply one filter for input and one for output.

OCX switches support the maximum numbers of firewall filter terms per type of attachment point shown in Table 36 on page 773.

Table 36: Supported Firewall Filter Numbers

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Maximum Number of Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress</td>
<td>1536</td>
</tr>
<tr>
<td>Egress</td>
<td>1024</td>
</tr>
</tbody>
</table>

Firewall Filter Components

In a firewall filter, you first define the family address type (inet for IPv4 or inet6 for IPv6) and then define one or more terms that specify the filtering criteria and the action to take if a match occurs.

Each term consists of the following components:

- Match conditions—Specify values that a packet must contain to be considered a match.
- Action—Specifies what to do if a packet matches the match conditions. A filter can accept, discard, or reject a matching packet and then perform additional actions, such as counting, classifying, and policing. If no action is specified for a term, the default is to accept the matching packet.
**Firewall Filter Processing**

If there are multiple terms in a filter, the order of the terms is important. If a packet matches the first term, the switch executes the action defined by that term, and no other terms are evaluated. If the switch does not find a match between the packet and the first term, it compares the packet to the next term. If no match occurs between the packet and the second term, the system continues to compare the packet to each successive term in the filter until a match is found. If the packet does not match any terms in the filter, the switch discards the packet by default.

**RELATED DOCUMENTATION**

- Understanding Firewall Filter Planning | 779
- Understanding How Firewall Filters Are Evaluated | 780
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets | 1616
- Understanding Firewall Filter Match Conditions | 774
- Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches) | 1526
- Firewall Filter Match Conditions and Actions (QFX10000 Switches) | 1561
- Overview of Policers | 1940
- Configuring Firewall Filters | 1601

**Understanding Firewall Filter Match Conditions**

**IN THIS SECTION**

- Filter Match Conditions | 775
- Numeric Filter Match Conditions | 775
- Interface Filter Match Conditions | 776
- IP Address Filter Match Conditions | 776
- Bit-Field Filter Match Conditions | 777

Before you define terms for firewall filters, you must understand how the conditions in a term are handled and how to specify interface, numeric, address, and bit-field filter match conditions to achieve the desired filter results.
Filter Match Conditions

In the from statement of a firewall filter term, you specify the conditions that the packet must match for the action in the then statement to be taken. All conditions must match for the action to be implemented. The order in which you specify match conditions is not important, because a packet must match all the conditions in a term for a match to occur.

If you specify multiple values for the same condition, a match on any one of those values matches that condition. For example, if you specify multiple IP source addresses using the source-address statement, a packet that contains any one of those IP source addresses matches the condition. In some cases you can specify multiple values for the same condition by enclosing the possible values in square brackets, as in:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set protocol (icmp | udp)
```

In other cases you must enter multiple statements, as in:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-address 10.1.1.1
user@switch# set source-address 10.1.1.2
```

If you specify no match conditions in a term, that term matches all packets.

NOTE: Unlike traditional Junos OS firewall filters, you cannot use except in a condition statement to negate the condition.

Numeric Filter Match Conditions

You can specify numeric filter match conditions that are identified by a numeric value, such as port and protocol numbers. For numeric filter match conditions, you specify the condition and a single value that a field in a packet must contain to be considered a match.

You can specify the numeric value in one of the following ways:

- Single number—A match occurs if the value of the field matches the number. For example, to match Telnet traffic:

  ```
 [edit firewall family family-name filter filter-name term term-name from]
 user@switch# set source-port 23
  ```
• Text synonym for a single number—A match occurs if the value of the field matches the number that corresponds to the synonym. For example, to match Telnet traffic:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-port telnet
```

• To specify multiple values for the same match condition in a filter term, enter each value in its own match statement. For example, a match occurs in the following term if the value of the source port in the packet is 22 or 23.

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-port 22
user@switch# set source-port 23
```

**Interface Filter Match Conditions**

You can specify an interface filter match condition to match an interface on which a packet is received or transmitted. In this example, the final character (0) specifies the logical unit. You can include the wildcard (*) as part of the interface name. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set interface ge-0/*/6.0
user@switch# set interface ge-0/1/*.0
user@switch# set interface ge-0/0/6.*
```

Note that you must specify a value or a wildcard for the logical unit.

**IP Address Filter Match Conditions**

You can specify an address filter match condition to match an IP source or destination address or prefix in a packet. Specify the address or prefix type and the address or prefix itself. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-address 10.2.1.0/24;
```

If you omit the prefix length, it defaults to /32. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-address 10
[edit firewall family family-name filter filter-name term term-name from]
user@switch# show
```
destination-address {
  10.0.0.0/32;
}

To specify more than one IP address or prefix in a filter term, enter each address or prefix in its own match statement. For example, a match occurs in the following term if the source address of a packet matches either of the following prefixes:

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-address 10.1.0.0/16
user@switch# set source-address 10.2.0.0/16

Bit-Field Filter Match Conditions

You can specify bit-field filter match conditions to match particular bits within certain fields in Ethernet frames and IP, TCP, UDP, and ICMP headers. You usually specify the field and the bit within the field that must be set in a packet to be considered a match.

In most cases you can use a keyword to specify the bit you want to match on. For example, to match on a TCP SYN packet you can enter `syn`, as in:

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags syn

You can also enter `0x02` because the SYN bit is the third least-significant bit of the 8-bit tcp-flags field:

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags 0x02

To match multiple bit-field values, use the logical operators, which are described in Table 37 on page 777. The operators are listed in order from highest precedence to lowest precedence. Operations are evaluated from left to right.

Table 37: Actions for Firewall Filters

<table>
<thead>
<tr>
<th>Logical Operators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Negation</td>
</tr>
<tr>
<td>&amp;</td>
<td>Logical AND</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you use a logical operator, enclose the values in quotation marks and do not include any spaces. For example, the following statement matches the second packet of a TCP handshake:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "syn&ack"
```

To negate a match, precede the value with an exclamation point. For example, the following statement matches only the initial packet of a TCP handshake:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "syn!ack"
```

You can use text synonyms to specify some common bit-field matches. For example, the following statement also matches the initial packet of a TCP handshake:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-initial
```
**Understanding Firewall Filter Planning**

Before you create a firewall filter and apply it, determine what you want the filter to accomplish and how to use its match conditions and actions to achieve your goals. It is important that you understand how packets are matched, the default and configured actions of the firewall filter, and where to apply the firewall filter.

You can apply no more than one firewall filter per router interface per direction (input and output). For example, for a given interface you can apply at most one filter in the input direction and one filter in the output direction. You should try to be conservative in the number of terms (rules) that you include in each firewall filter, because a large number of terms requires longer processing time during a commit operation and can make testing and troubleshooting more difficult.

Before you configure and apply firewall filters, answer the following questions for each of them:

1. **What is the purpose of the filter?**
   
   For example, the system can drop packets based on header information, rate-limit traffic, classify packets into forwarding classes, log and count packets, or prevent denial-of-service attacks.

2. **What are the appropriate match conditions?** Determine the packet header fields that the packet must contain for a match. Possible fields include:
   
   - **Layer 3 header fields**—Source and destination IP addresses, protocols, and IP options (IP precedence, IP fragmentation flags, or TTL type).
   - **TCP header fields**—Source and destination ports and flags.
   - **ICMP header fields**—Packet type and code.

3. **What are the appropriate actions to take if a match occurs?**
   
   The system can accept, discard, or reject packets.

4. **What additional action modifiers might be required?**
   
   For example, you can configure the system to mirror (copy) packets to a specified port, count matching packets, apply traffic management, or police packets.

5. **On what Layer 3 interface should the firewall filter be applied?**
   
   Before you choose the interface on which to apply a firewall filter, understand how that placement can affect traffic flow to other interfaces. In general, apply a filter close to the source device if the filter matches on source or destination IP addresses, IP protocols, or protocol information—such as ICMP message types, and TCP or UDP port numbers. However, you should apply a filter close to the destination device if the filter matches only on a source IP address. When you apply a filter too close to the source device, the filter could prevent that source device from accessing other services that are available on the network.
6. In which direction should the firewall filter be applied?

You typically configure different actions for traffic entering an interface than you configure for traffic exiting an interface.

7. How many filters should I create?

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>Overview of Policers</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding How Firewall Filters Are Evaluated</td>
<td>780</td>
</tr>
<tr>
<td>Configuring Firewall Filters</td>
<td>1601</td>
</tr>
</tbody>
</table>

**Understanding How Firewall Filters Are Evaluated**

A firewall filter consists of one or more terms, and the order of the terms within a filter is important. Before you configure firewall filters, you should understand how switches evaluate the terms within a filter and how packets are evaluated against the terms.

When a firewall filter consists of a single term, the filter is evaluated as follows:

- If the packet matches all the conditions, the action in the `then` statement is taken.
- If the packet matches all the conditions, and no action is specified in the `then` statement, the default action `accept` is taken.
- If the packet does not match all the conditions, the switch discards it.

When a firewall filter consists of more than one term, the filter is evaluated sequentially:

1. The packet is evaluated against the conditions in the `from` statement in the first term.

2. If the packet matches all the conditions in the term, the action in the `then` statement is taken and the evaluation ends. Subsequent terms in the filter are not evaluated.

3. If the packet does not match all the conditions in the term, the packet is evaluated against the conditions in the `from` statement in the second term.

   This process continues until the packet matches all the conditions in the `from` statement in one of the subsequent terms or there are no more terms in the filter.

4. If a packet passes through all the terms in the filter without a match, the switch discards it.
NOTE: The order of conditions in a from statement is not important because a packet must match all the conditions to be considered a match.

Figure 50 on page 781 shows how switches evaluate the terms within a firewall filter.

Figure 50: Evaluation of Terms Within a Firewall Filter

If you do not include a from statement in a term, all packets will match the term and be processed by the then statement. If a term does not contain a then statement or if an action has not been configured in the then statement, the term accepts any matching packets.

Every firewall filter contains an implicit deny statement at the end of the filter, which is equivalent to the following explicit filter term:

```
term implicit-rule {
 then discard;
}
```

Consequently, a packet that does not match any of the terms in a firewall filter is discarded. If you configure a filter that has no terms, all packets that pass through the filter are discarded.

NOTE: Firewall filtering is supported on packets that are at least 64 bytes long.
Before you define terms for firewall filters, you must understand how the conditions in a term are handled and how to specify interface, numeric, address, and bit-field filter match conditions to achieve the desired filter results.

**Filter Match Conditions**

In the `from` statement of a firewall filter term, you specify the conditions that the packet must match for the action in the `then` statement to be taken. All conditions must match for the action to be implemented. The order in which you specify match conditions is not important, because a packet must match all the conditions in a term for a match to occur.

If you specify multiple values for the same condition, a match on any one of those values matches that condition. For example, if you specify multiple IP source addresses using the `source-address` statement, a packet that contains any one of those IP source addresses matches the condition. In some cases you can specify multiple values for the same condition by enclosing the possible values in square brackets, as in:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set protocol (icmp | udp)
```
In other cases you must enter multiple statements, as in:

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-address 10.1.1.1
user@switch# set source-address 10.1.1.2

If you specify no match conditions in a term, that term matches all packets.

NOTE: Unlike traditional Junos OS firewall filters, you cannot use except in a condition statement to negate the condition.

Numeric Filter Match Conditions

You can specify numeric filter match conditions that are identified by a numeric value, such as port and protocol numbers. For numeric filter match conditions, you specify the condition and a single value that a field in a packet must contain to be considered a match.

You can specify the numeric value in one of the following ways:

• Single number—A match occurs if the value of the field matches the number. For example, to match Telnet traffic:

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-port 23

• Text synonym for a single number—A match occurs if the value of the field matches the number that corresponds to the synonym. For example, to match Telnet traffic:

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-port telnet

• To specify multiple values for the same match condition in a filter term, enter each value in its own match statement. For example, a match occurs in the following term if the value of the source port in the packet is 22 or 23.

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-port 22
user@switch# set source-port 23
Interface Filter Match Conditions

You can specify an interface filter match condition to match an interface on which a packet is received or transmitted. For example, if you apply a filter to a VLAN you might want the filter to match on some interfaces that participate in the VLAN and not match on other interfaces in the VLAN. When you specify the name of the interface, you must include a logical unit.

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set interface ge-0/0/6.0
```

In this example, the final character (0) specifies the logical unit. You can include the wildcard (*) as part of the interface name. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set interface ge-0/*/6.0
user@switch# set interface ge-0/1/*.0
user@switch# set interface ge-0/0/6.*
```

Note that you must specify a value or a wildcard for the logical unit.

IP Address Filter Match Conditions

You can specify an address filter match condition to match an IP source or destination address or prefix in a packet. Specify the address or prefix type and the address or prefix itself. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-address 10.2.1.0/24;
```

If you omit the prefix length, it defaults to /32. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-address 10
[edit firewall family family-name filter filter-name term term-name from]
user@switch# show
destination-address { 10.0.0.0/32; }
```
To specify more than one IP address or prefix in a filter term, enter each address or prefix in its own match statement. For example, a match occurs in the following term if the source address of a packet matches either of the following prefixes:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-address 10.1.0.0/16
user@switch# set source-address 10.2.0.0/16
```

**MAC Address Filter Match Conditions**

You can specify a MAC address filter match condition to match a source or destination MAC address. You specify the address type and value that a packet must contain to be considered a match.

You can specify the MAC address as six hexadecimal bytes in any of the following formats:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-mac-address 00:11:22:33:44:55

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-mac-address 0011.2233.4455

[edit firewall family family-name filter filter-name term term-name from]
user@switch# set destination-mac-address 001122334455
```

Regardless of the formats you use, the system resolves the address to the standard format, in this case 00:11:22:33:44:55.

To specify more than one MAC address in a filter term, enter each MAC address in its own match statement. For example, a match occurs in the following term if the value of the MAC source address matches either of the following addresses:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set source-mac-address 00:11:22:33:44:55
user@switch# set source-mac-address 00:11:22:33:20:15
```

**Bit-Field Filter Match Conditions**

You can specify bit-field filter match conditions to match particular bits within certain fields in Ethernet frames and IP, TCP, UDP, and ICMP headers. You usually specify the field and the bit within the field that must be set in a packet to be considered a match.
In most cases you can use a keyword to specify the bit you want to match on. For example, to match on a TCP SYN packet you can enter syn, as in:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags syn
```

You can also enter 0x02 because the SYN bit is the third least-significant bit of the 8-bit tcp-flags field:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags 0x02
```

To match multiple bit-field values, use the logical operators, which are described in Table 37 on page 777. The operators are listed in order from highest precedence to lowest precedence. Operations are evaluated from left to right.

**Table 38: Actions for Firewall Filters**

<table>
<thead>
<tr>
<th>Logical Operators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Negation</td>
</tr>
<tr>
<td>&amp;</td>
<td>Logical AND</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you use a logical operator, enclose the values in quotation marks and do not include any spaces. For example, the following statement matches the second packet of a TCP handshake:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "syn&ack"
```

To negate a match, precede the value with an exclamation point. For example, the following statement matches only the initial packet of a TCP handshake:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "syn&!ack"
```

You can use text synonyms to specify some common bit-field matches. For example, the following statement also matches the initial packet of a TCP handshake:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-initial
Firewall Filter Flexible Match Conditions

IN THIS SECTION
- Statement Hierarchy | 788
- Flexible Filter Match Types | 789
- Flexible Filter Match Start Locations | 790
- Flexible Filter Match Example | 791
Standard firewall filter match conditions vary based on the protocol family of the traffic being matched. For example, the terms available for bridge protocol traffic are different from those available for the inet or inet6 protocol families. The fields available for matching within each protocol family are, however, fixed or pre-defined. This means that filters can match on patterns within those pre-defined fields only.

Using flexible match conditions, firewall filters can be constructed that start the match at layer-2, layer-3, layer-4 or payload locations. From there, additional offset criteria can be specified thereby enabling pattern matches at custom, user-defined locations within a packet.

Flexible match filter terms are applied to MPC or MIC interfaces as either input or output filters just as any other firewall filter terms. Flexible match filter terms can also be created as templates at the [edit firewall] hierarchy level. These templates can then be referenced within a flexible match term.

NOTE: For MX Series routers with MPCs, you need to initialize Trio-only match filters (that is, a filter that includes at least one match condition or action that is only supported by the Trio chipset) by walking the corresponding SNMP MIB. For example, for any filter that is configured or changed with respect to their Trio only filters, you need to run a command such as the following: `show snmp mib walk (ascii | decimal) object-id`. This forces Junos to learn the filter counters and ensure that the filter statistics are displayed. This guidance applies to all enhanced-mode firewall filters. It also applies to "Firewall Filter Match Conditions for IPv4 Traffic" on page 845 with flexible match filter terms for offset-range or offset-mask, gre-key, and "Firewall Filter Match Conditions for IPv6 Traffic" on page 861 with any of the following match conditions: payload-protocol, extension headers, is_fragment. It also applies to filters with either of the following “Firewall Filter Terminating Actions” on page 804: encapsulate or decapsulate, or either of the following “Firewall Filter Nonterminating Actions” on page 795: policy-map, and clear-policy-map.

NOTE: Flexible match conditions are only supported on MX Series routers with MPCs or MICs. For environments in which FPCs, PICs, and or DPCs are installed along with MPCs or MICs, care must be taken to ensure that flexible match firewall filter criteria are applied only to the MPC or MIC interfaces.

Statement Hierarchy

Flexible match filter terms are available in three variations as shown in Table 39 on page 789. The flexible-match variation is configured at the [edit firewall] hierarchy level. It is used to define flexible match templates. The flexible-filter-match-mask and flexible-match-range are configured at the [edit firewall family [inet/inet6|bridge|ethernet-switching|ccc|vpls] filter <filter-name> term <term-name> from] hierarchy.
NOTE: On the EX9200 switches, you configure firewall filter flexible match conditions under [edit firewall family ethernet-switching]. For example: `flexible-filter-match-mask` and `flexible-match-range` are configured at the [edit firewall family ethernet-switching filter <filter-name> term <term-name> from] hierarchy.

Flexible Filter Match Types

Table 39: Flexible Filter Match Types

<table>
<thead>
<tr>
<th>Flexible Filter Match Type</th>
<th>Available Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flexible-match</code></td>
<td><code><name></code></td>
<td>Create a flexible-match template named as the <code><name></code> attribute.</td>
</tr>
<tr>
<td></td>
<td><code>bit-length</code></td>
<td>Length of the data to be matched in bits, not needed for string input (0..32)</td>
</tr>
<tr>
<td></td>
<td><code>bit-offset</code></td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td></td>
<td><code>byte-offset</code></td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td><code>match-start</code></td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td><code>flexible-match-mask</code></td>
<td><code>bit-length</code></td>
<td>Length of the data to be matched in bits, not needed for string input (0..128)</td>
</tr>
<tr>
<td></td>
<td><code>bit-offset</code></td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td></td>
<td><code>byte-offset</code></td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td><code>flexible-mask-name</code></td>
<td>Select a flexible match from predefined template field. Required unless <code>match-start</code> is configured.</td>
</tr>
<tr>
<td></td>
<td><code>mask-in-hex</code></td>
<td>Mask out bits in the packet data to be matched.</td>
</tr>
<tr>
<td></td>
<td><code>match-start</code></td>
<td>Start point to match in packet. Required unless <code>flexible-mask-name</code> is configured.</td>
</tr>
<tr>
<td></td>
<td><code>prefix</code></td>
<td>Value data/string to be matched.</td>
</tr>
</tbody>
</table>
Table 39: Flexible Filter Match Types (continued)

<table>
<thead>
<tr>
<th>Flexible Filter Match Type</th>
<th>Available Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flexible-match-range</code></td>
<td><code>bit-length</code></td>
<td>Length of the data to be matched in bits. (0..32) Required unless <code>flexible-range-name</code> is configured.</td>
</tr>
<tr>
<td></td>
<td><code>bit-offset</code></td>
<td>Bit offset after the (match-start + byte) offset. (0..7)</td>
</tr>
<tr>
<td></td>
<td><code>byte-offset</code></td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td><code>flexible-range-name</code></td>
<td>Select a flexible match from predefined template.</td>
</tr>
<tr>
<td></td>
<td><code>match-start</code></td>
<td>Start point to match in packet. Required unless <code>flexible-range-name</code> is configured.</td>
</tr>
<tr>
<td></td>
<td><code>range</code></td>
<td>Range of values to be matched.</td>
</tr>
<tr>
<td></td>
<td><code>range-except</code></td>
<td>Range of values to be not matched.</td>
</tr>
</tbody>
</table>

Flexible Filter Match Start Locations

Flexible match filter terms are constructed by giving a start location or anchor point within the packet. The start locations can be any of: layer-2, layer-3, layer-4 or payload, depending on the protocol family in use. **Table 40 on page 790** shows available flexible filter match start locations by protocol family. You use these available start locations as the **match-start** locations for the flexible match filter terms.

From these start locations, specific byte and bit offsets can be utilized to allow the filter to match patterns at very specific locations within the packet.

Table 40: Flexible Filter Match Start Locations

<table>
<thead>
<tr>
<th>Protocol Family</th>
<th>Available Start Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet</td>
<td>layer-3, layer-4 and payload</td>
</tr>
<tr>
<td>inet6</td>
<td>layer-3, layer-4 and payload</td>
</tr>
<tr>
<td>bridge</td>
<td>layer-2, layer-3, layer-4 and payload</td>
</tr>
<tr>
<td>ccc</td>
<td>layer-2, layer-3, layer-4 and payload</td>
</tr>
<tr>
<td>mpls</td>
<td>layer-3 and payload</td>
</tr>
</tbody>
</table>
Table 40: Flexible Filter Match Start Locations (continued)

<table>
<thead>
<tr>
<th>Protocol Family</th>
<th>Available Start Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for MPLS added.mpls</td>
<td>layer-3 and payload</td>
</tr>
<tr>
<td>vpls</td>
<td>layer-2, layer-3, layer-4 and payload</td>
</tr>
<tr>
<td>ethernet-switching (EX9200 switches only)</td>
<td>layer-2, layer-3, layer-4 and payload</td>
</tr>
</tbody>
</table>

Flexible Filter Match Example

The following example illustrates the use and context for `flexible-match-mask`.

```
from {
    flexible-match-mask {
        flexible-mask-name <mask-name>;
        mask-in-hex <mask>;
        prefix <pattern>;
    }
}
```

The `<mask-name>` specifies for `flexible-mask-name` which predefined template is used for the flexible match condition. Templates can be defined to specify at which place (position) in the packet the flexible match condition should be executed.

The `<mask>` for `mask-in-hex` is in hexadecimal format. For example, a configured mask of `0xf0fc` specifies a match for the first four bits in first byte (as referred by `<mask-name>`), and for the first six bits in the second byte. If the packet is IPv4 packet, and `<mask-name>` refers to first two bytes in L3 header, the search is for the IP version field and DSCP field. As another example, a configured mask `0xffc0` specifies a search for entire first byte and for two bits from the second byte. If the `<mask-name>` refers to first two bytes in L3 header, and the packet is IPv6 packet, this specifies the IP version field and DSCP in the Traffic Class field.

The `<pattern>` specified for `prefix` is an ASCII string. If first two characters are `0x`, then the string is processed as a hexadecimal number encoding appropriate bits. For example, the configured prefix `0x40c0` in combination with mask `0xf0fc` and `<mask-name>` referring first two bytes in L3 header, indicates a search for `0100` in the first four bits (version field is equal to 4) and `1100 00` in IPv4 DSCP field (DSCP is equal to cs6). Or, using the configured prefix `0x6c00` in combination with mask `0xffc0` and `<mask-name>` referring first two bytes in L3 header, specifies a search for for `0110` in the first four bits (version field is equal to 6), and `1100 00` in IPv6 DSCP field (DSCP is equal to cs6).

The first example defines a mask template that selects first two bytes (16 bits) from L3 header for flexible match:
The next example defines a mask template that selects the third through sixth byte (32 bits) of the packet payload for flexible match:

```
firawall {
    flexible-match FM-FOUR-PAYLOAD-BYTES {
        match-start payload;
        byte-offset 2;
        bit-offset 0;
        bit-length 32;
    }
}
```

Following is an example filter demonstrating an ASCII character match, for the string JNPR (ASCII characters: 0x4a, 0x4e, 0x50, 0x52) in the third through sixth byte of the packet payload. The filter uses the FM-FOUR-PAYLOAD-BYTES mask template defined in the previous example.

```
firawall {
    family ccc filter FF-COUNT-JNPR-PACKETS {
        term JNPR-STRING {
            from {
                flexible-match-mask {
                    mask-in-hex 0xffffffff;
                    prefix JNPR;
                    flexible-mask-name FM-FOUR-PAYLOAD-BYTES;
                }
            }
            then {
                count CNT-JNPR-YES
                accept;
            }
        }
        term DEFUALT {
            then {
                count CNT-JNPR-NO
            }
        }
    }
}
```
Following is a full example of a family ccc filter looking for DSCP equal to cs6 and DSCP ef, regardless whether the encapsulated packets are IPv4 or IPv6. It uses the the **FM-FIRST-TWO-L3-BYTES** mask template defined in the first example.

```plaintext
firewall {
    family ccc filter FF-DSCP-CLASSIFY {
        term ROUTING-IPV4 {
            from {
                flexible-match-mask {
                    mask-in-hex 0xf0fc;
                    prefix 0x40c0;        # DSCP=cs6 in IPv4 header
                    flexible-mask-name FM-FIRST-TWO-L3-BYTES;
                }
            }
            then {
                count ROUTING-IPV4;
                accept;
            }
        }
        term ROUTING-IPV6 {
            from {
                flexible-match-mask {
                    mask-in-hex 0xffc0;
                    prefix 0x6c00;        # DSCP=cs6 in IPv6 header
                    flexible-mask-name FM-FIRST-TWO-L3-BYTES;
                }
            }
            then {
                count ROUTING-IPV6;
                accept;
            }
        }
        term VOICE-IPV4 {
            from {
                flexible-match-mask {
                    mask-in-hex 0xf0fc;
                    prefix 0x40b8;            # DSCP=ef in IPv4 header
                    flexible-mask-name FM-FIRST-TWO-L3-BYTES;
                }
            }
            then {
                count ROUTING-IPV4;
                accept;
            }
        }
    }
}
```
then {
 count VOICE-IPV4;
 accept;
}

term VOICE-IPV6 {
 from {
 flexible-match-mask {
 mask-in-hex 0xffff;
 prefix 0x6b80; # DSCP=ef in IPv6 header
 flexible-mask-name FM-FIRST-TWO-L3-BYTES;
 }
 }
 then {
 count VOICE-IPV6;
 accept;
 }
}
term DEFAULT {
 then {
 accept;
 }
}

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Support for MPLS added.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filter Match Conditions for IPv4 Traffic</td>
</tr>
<tr>
<td>Firewall Filter Match Conditions for IPv6 Traffic</td>
</tr>
<tr>
<td>enhanced-mode</td>
</tr>
<tr>
<td>enhanced-mode</td>
</tr>
<tr>
<td>Firewall Filter Match Conditions for Layer 2 Bridging Traffic</td>
</tr>
</tbody>
</table>
Firewall Filter Nonterminating Actions

Firewall filters support different sets of nonterminating actions for each protocol family.

NOTE: You cannot configure the `next term` action with a `terminating` action in the same filter term. However, you can configure the `next term` action with another `nonterminating` action in the same filter term.

Nonterminating actions carry with them an implicit accept action. In this context, `nonterminating` means that other actions can follow these actions whereas no other actions can follow a `terminating` action.

NOTE: On Junos OS Evolved, `next term` cannot appear as the last term of the action. A filter term where `next term` is specified as an action but without any match conditions configured is not supported.

Table 41 on page 796 describes the nonterminating actions you can configure for a firewall filter term.
Table 41: Nonterminating Actions for Firewall Filters

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>**bgp-output-queue-priority (expedited</td>
<td>(1-16))**</td>
<td>Assign the packet to one of the 17 prioritized BGP output queues.</td>
</tr>
<tr>
<td>count
counter-name</td>
<td>Count the packet in the named counter.</td>
<td>• family any
• family bridge
• family ccc
• family inet
• family inet6
• family mpls
• family vpls</td>
</tr>
<tr>
<td>**dont-fragment (set</td>
<td>clear)**</td>
<td>Configure the value of the Don't Fragment bit (flag) in the IPv4 header to specify whether the datagram can be fragmented:
• set—Change the flag value to one, preventing fragmentation.
• clear—Change the flag value to zero, allowing fragmentation.</td>
</tr>
</tbody>
</table>

NOTE: The **dont-fragment (set | clear)** actions are supported only on MPCs.
Table 41: Nonterminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
</table>
| **dscp value** | Set the IPv4 Differentiated Services code point (DSCP) bit. You can specify a numerical value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix. The default DSCP value is be (best effort), or 0. You can also specify one of the following text synonyms:
- **af11**—Assured forwarding class 1, low drop precedence (1)
- **af12**—Assured forwarding class 1, medium drop precedence (2)
- **af13**—Assured forwarding class 1, high drop precedence (3); and so on through **af43**, Assured forwarding class 4, high drop precedence
- be—Best effort
- **cs0**—Class selector 0; and so on through **cs7**, Class selector 0
- ef—Expedited forwarding
NOTE: This action is not supported on PTX series routers.
NOTE: MPC line cards running on MX series routers support any value (from 0 to 63) in conjunction with the `set dscp` firewall filter action.
NOTE: The actions **dscp 0** and **dscp be** are supported only on T320, T640, T1600, TX Matrix, TX Matrix Plus, and M320 routers and on 10-Gigabit Ethernet Modular Port Concentrators (MPC). However, these actions are not supported on Enhanced III Flexible PIC Concentrators (FPCs) on M320 routers. On T4000 routers, the **dscp 0** action is not supported during the inter-operation between a T1600 Enhanced Scaling Type 4 FPC and a T4000 Type 5 FPC. | family inet |
| **force-premium** | By default, a hierarchical policer processes the traffic it receives according to the traffic's forwarding class. Premium, expedited-forwarding traffic, has priority for bandwidth over aggregate, best-effort traffic. The **force-premium** filter ensures that traffic matching the term is treated as premium traffic by a subsequent hierarchical policer, regardless of its forwarding class. This traffic is given preference over any aggregate traffic received by that policer.
NOTE: The **force-premium** filter option is supported only on MPCs. | family any
- family bridge
- family ccc
- family inet
- family inet6
- family VPLS |
Table 41: Nonterminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>forwarding-class class-name</td>
<td>Classify the packet to the named forwarding class:</td>
<td>• family any</td>
</tr>
<tr>
<td></td>
<td>• forwarding-class-name</td>
<td>• family bridge</td>
</tr>
<tr>
<td></td>
<td>• assured-forwarding</td>
<td>• family ccc</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td>• expedited-forwarding</td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
<td>• family mpls</td>
</tr>
<tr>
<td></td>
<td>Classify the packet to thenamed forwarding class:</td>
<td>• family vpls</td>
</tr>
<tr>
<td>hierarchical-policer</td>
<td>Police the packet using the specified hierarchical policer</td>
<td>• family any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family ccc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family mpls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family vpls</td>
</tr>
<tr>
<td>ipsec-sa ipsec-sa</td>
<td>Use the specified IPsec security association.</td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td>NOTE: This action is not supported on MX Series routers, Type 5 FPCs on T4000 routers, and PTX Series Packet Transport Routers.</td>
<td></td>
</tr>
<tr>
<td>load-balance group-name</td>
<td>Use the specified load-balancing group.</td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td>NOTE: This action is not supported on MX Series routers or PTX Series Packet Transport Routers.</td>
<td></td>
</tr>
<tr>
<td>log</td>
<td>Log the packet header information in a buffer within the Packet Forwarding Engine. You can access this information by issuing the show firewall log command at the command-line interface (CLI).</td>
<td>• family bridge</td>
</tr>
<tr>
<td></td>
<td>NOTE: The Layer 2 (L2) families log action is available only for MX Series routers with MPCs (MPC mode if the router has only MPCs, or mix mode if it has MPCs and DCPs). For MX Series routers with DPCs, the log action for L2 families is ignored if configured.</td>
<td></td>
</tr>
<tr>
<td>logical-system logical-system-name</td>
<td>Direct packets to a specific logical system.</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family inet6</td>
</tr>
</tbody>
</table>
Table 41: Nonterminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss-priority</td>
<td>Set the packet loss priority (PLP) level. You cannot also configure the three-color-policer nonterminating action for the same firewall filter term. These two nonterminating actions are mutually exclusive.</td>
<td>• family any</td>
</tr>
<tr>
<td>(high</td>
<td>medium-high</td>
<td>medium-low</td>
</tr>
<tr>
<td></td>
<td>This action is supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers. For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs), you must include the tri-color statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the tri-color statement is not enabled, you can only configure the high and low levels. This applies to all protocol families. For information about the tri-color statement and using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
<td></td>
</tr>
</tbody>
</table>

| **next-hop-group** | Use the specified next-hop group. We recommend that you do not use the **next-hop-group** action with the **port-mirror-instance** or **port-mirror** action in the same firewall filter. | • family any |
| **group-name** | | • family inet |

| **next-interface** | (MX Series) Direct packets to the specified outgoing interface. | • family inet |
| **interface-name** | | • family inet6 |

| **next-ip ip-address**| (MX Series) Direct packets to the specified destination IPv4 address. | family inet |

| **next-ip6 ipv6-address**| (MX Series) Direct packets to the specified destination IPv6 address. | family inet6 |

| **packet-mode** | Updates a bit field in the packet key buffer, which specifies traffic that will bypass flow-based forwarding. Packets with the **packet-mode** action modifier follow the packet-based forwarding path and bypass flow-based forwarding completely. Applies to SRX100, SRX210, SRX220, SRX240, and SRX650 devices only. For more information about selective stateless packet-based services, see the *Junos OS Security Configuration Guide*. | family any |
Table 41: Nonterminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
</table>
| **policer policer-name** | Name of policer to use to rate-limit traffic. | • family any
 • family bridge
 • family ccc
 • family inet
 • family inet6
 • family mpls
 • family vpls |
| **policy-map policy-map-name** | (MX Series) Name of policy map used to assign specific rewrite rules to a specific customer. | • family any
 • family ccc
 • family inet
 • family inet6
 • family mpls
 • family vpls |
| **port-mirror instance-name** | Port-mirror the packet based on the specified family. This action is supported on M120 routers, M320 routers configured with Enhanced III FPCs, MX Series routers, and PTX Series Packet Transport Routers only. We recommend that you do not use both the next-hop-group and the port-mirror actions in the same firewall filter. | • family any
 • family bridge
 • family ccc
 • family inet
 • family inet6
 • family mpls
 • family vpls
 • family mpls |
| **port-mirror-instance instance-name** | Port mirror a packet for an instance. This action is supported only on the MX series routers. We recommend that you do not use both the next-hop-group and the port-mirror-instance actions in the same firewall filter. | • family any
 • family bridge
 • family ccc
 • family inet
 • family inet6
 • family mpls
 • family mpls |
| **prefix-action action-name** | Count or police packets based on the specified action name. NOTE: This action is not supported on PTX Series Packet Transport Routers. | family inet |
| **routing-instance routing-instance-name** | Direct packets to the specified routing instance. | • family inet
 • family inet6 |
<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
</table>
| sample | Sample the packet.

NOTE: Junos OS does not sample packets originating from the router. If you configure a filter and apply it to the output side of an interface, then only the transit packets going through that interface are sampled. Packets that are sent from the Routing Engine to the Packet Forwarding Engine are not sampled. | • family inet
• family inet6
• family mpls |
| service-accounting | Use the inline counting mechanism when capturing subscriber per-service statistics.

Count the packet for service accounting. The count is applied to a specific named counter (__junos-dyn-service-counter) that RADIUS can obtain.

The `service-accounting` and `service-accounting-deferred` keywords are mutually exclusive, both per-term and per-filter.

NOTE: This action is not supported on T4000 Type 5 FPCs and PTX Series Packet Transport Routers. | • family any
• family inet
• family inet6 |
| service-accounting-deferred | Use the deferred counting mechanism when capturing subscriber per-service statistics. The count is applied to a specific named counter (__junos-dyn-service-counter) that RADIUS can obtain.

The `service-accounting` and `service-accounting-deferred` keywords are mutually exclusive, both per-term and per-filter.

NOTE: This action is not supported on T4000 Type 5 FPCs and PTX Series Packet Transport Routers. | • family any
• family inet
• family inet6 |
| service-filter-hit | (Only if the `service-filter-hit` flag is marked by a previous filter in the current type of chained filters) Direct the packet to the next type of filters.

Indicate to subsequent filters in the chain that the packet was already processed. This action, coupled with the `service-filter-hit` match condition in receiving filters, helps to streamline filter processing.

NOTE: This action is not supported on T4000 Type 5 FPCs and PTX Series Packet Transport Routers. | • family any
• family inet
• family inet6 |
<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
</table>
| syslog | Log the packet to the system log file.
The syslog firewall action for existing inet and inet6 families, and the syslog action in L2 family filters includes the following L2 information:
Input interface, action, VLAN ID1, VLAN ID2, Ethernet type, source and destination MAC addresses, protocol, source and destination IP addresses, source and destination ports, and the number of packets.
NOTE: The L2 families syslog action is available only for MX Series routers with MPCs (MPC mode if the router has only MPCs, or mix mode if it has MPCs and DCPs). For MX Series routers with DPCs, the syslog action for L2 families is ignored if configured. | • family bridge
• family ccc
• family inet
• family inet6
• family vpls |
| three-color-policer (single-rate | two-rate) policer-name | Police the packet using the specified single-rate or two-rate three-color-policer.
NOTE: You cannot also configure the loss-priority action for the same firewall filter term. These two actions are mutually exclusive. | • family bridge
• family ccc
• family inet
• family inet6
• family mpls
• family vpls |
<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic-class value</td>
<td>Specify the traffic-class code point. You can specify a numerical value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix. The default traffic-class value is best effort, that is, be or 0. In place of the numeric value, you can specify one of the following text synonyms:</td>
<td>family inet6</td>
</tr>
<tr>
<td>• af11</td>
<td>Assured forwarding class 1, low drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af12</td>
<td>Assured forwarding class 1, medium drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af13</td>
<td>Assured forwarding class 1, high drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af21</td>
<td>Assured forwarding class 2, low drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af22</td>
<td>Assured forwarding class 2, medium drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af23</td>
<td>Assured forwarding class 2, high drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af31</td>
<td>Assured forwarding class 3, low drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af32</td>
<td>Assured forwarding class 3, medium drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af33</td>
<td>Assured forwarding class 3, high drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af41</td>
<td>Assured forwarding class 4, low drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af42</td>
<td>Assured forwarding class 4, medium drop precedence</td>
<td></td>
</tr>
<tr>
<td>• af43</td>
<td>Assured forwarding class 4, high drop precedence</td>
<td></td>
</tr>
<tr>
<td>• be</td>
<td>Best effort</td>
<td></td>
</tr>
<tr>
<td>• cs0</td>
<td>Class selector 0</td>
<td></td>
</tr>
<tr>
<td>• cs1</td>
<td>Class selector 1</td>
<td></td>
</tr>
<tr>
<td>• cs2</td>
<td>Class selector 2</td>
<td></td>
</tr>
<tr>
<td>• cs3</td>
<td>Class selector 3</td>
<td></td>
</tr>
<tr>
<td>• cs4</td>
<td>Class selector 4</td>
<td></td>
</tr>
<tr>
<td>• cs5</td>
<td>Class selector 5</td>
<td></td>
</tr>
<tr>
<td>• cs6</td>
<td>Class selector 6</td>
<td></td>
</tr>
<tr>
<td>• cs7</td>
<td>Class selector 7</td>
<td></td>
</tr>
<tr>
<td>• ef</td>
<td>Expedited forwarding</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The actions `traffic-class 0` and `traffic-class be` are supported only on T Series and M320 routers and on the 10-Gigabit Ethernet Modular Port Concentrator (MPC), 60-Gigabit Ethernet MPC, 60-Gigabit Ethernet Queuing MPC, and 60-Gigabit Ethernet Enhanced Queuing MPC on MX Series routers. However, these actions are not supported on Enhanced III Flexible PIC Concentrators (FPCs) on M320 routers.
Firewall Filter Terminating Actions

Firewall filters support a set of terminating actions for each protocol family. A filter-terminating action halts all evaluation of a firewall filter for a specific packet. The router performs the specified action, and no additional terms are examined.

NOTE: You cannot configure the next term action with a terminating action in the same filter term. However, you can configure the next term action with another nonterminating action in the same filter term.

On Junos OS Evolved, next term cannot appear as the last term of the action. A filter term where next term is specified as an action but without any match conditions configured is not supported.

For MX Series routers with MPCs, you need to initialize certain new firewall filters by walking the corresponding SNMP MIB, for example, `show snmp mib walk name ascii`. This forces Junos to learn the filter counters and ensure that the filter statistics are displayed. This guidance applies to all enhanced mode firewall filters, filters with flexible conditions, and filters with the certain terminating actions. See those topics, listed under Related Documentation, for details.

Table 42 on page 804 describes the terminating actions you can specify in a firewall filter term.

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept the packet.</td>
<td>family any, family inet, family inet6, family mpls, family vpls, family ccc, family bridge, family ethernet-switching (for EX Series switches only)</td>
</tr>
<tr>
<td>Terminating Action</td>
<td>Description</td>
<td>Protocols</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>decapsulate gre [routing-instance instance-name]</td>
<td></td>
<td>• family inet</td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
</table>
| At a customer-facing interface on an MX Series router installed at the provider edge (PE) of an IPv4 transport network, enable de-encapsulation of generic routing encapsulation (GRE) packets transported through a filter-based GRE tunnel. You can configure a filter term that pairs this action with a match condition that includes a packet header match for the GRE protocol. For an IPv4 filter, include the `protocol gre` (or `protocol 47`) match condition. Attach the filter to the input of an Ethernet logical interface or aggregated Ethernet interface on a Modular Interface Card (MIC) or Modular Port Concentrator (MPC) in the router. If you commit a configuration that attaches a de-encapsulating filter to an interface that does not support filter-based GRE tunneling, the system writes a syslog warning message that the interface does not support the filter. When the interface receives a matched packet, processes that run on the Packet Forwarding Engine perform the following operations:
- Remove the outer GRE header.
- Forward the inner payload packet to its original destination by performing destination lookup. | | |
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By default, the Packet Forwarding Engine uses the default routing instance to forward payload packets to the destination network. If the payload is MPLS, the Packet Forwarding Engine performs route lookup on the MPLS path routing table using the route label in the MPLS header.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you specify the decapsulate action with an optional routing instance name, the Packet Forwarding Engine performs route lookup on the routing instance, and the instance must be configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: On MX960 routers, the decapsulate action de-encapsulates GRE, IP-in-IP and IPv6-in-IP tunneling packets. You configure this action at the [edit firewall family inet filter filter-name term term-name] hierarchy level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information, see "Understanding Filter-Based Tunneling Across IPv4 Networks" on page 1217 and "Components of Filter-Based Tunneling Across IPv4 Networks" on page 1225.</td>
<td></td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>decapsulate l2tp</td>
<td>[routing-instance instance-name] [forwarding-class class-name] [output-interface interface-name] [cookie l2tpv3-cookie] [sample]</td>
<td>family inet</td>
</tr>
<tr>
<td>Terminating Action</td>
<td>Description</td>
<td>Protocols</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>At a customer-facing interface on an MX Series router installed at the provider edge (PE) of an IPv4 transport network, enable de-encapsulation of Layer 2 tunneling protocol (L2TP) packets transported through a filter-based L2TP tunnel. You can configure a filter term that pairs this action with a match condition that includes a packet header match for the L2TP protocol. For IPv4 traffic, an input firewall filter $\textit{junos-input-filter}$ and an output firewall filter $\textit{junos-output-filter}$ are attached to the interface. Attach the filter to the input of an Ethernet logical interface or aggregated Ethernet interface on a Modular Interface Card (MIC) or Modular Port Concentrator (MPC) in the router. If you commit a configuration that attaches a de-encapsulating filter to an interface that does not support filter-based L2TP tunneling, the system writes a syslog warning message that the interface does not support the filter. The remote tunnel endpoint sends an IP tunnel packet that contains an Ethernet MAC address in the payload. If the destination MAC address of the payload packet contains the MAC address of the router, the Ethernet packet is sent in the outgoing direction towards the...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>network, and it is processed and forwarded as though it is received on the customer port. If the source MAC address of the payload packet contains the MAC address of the router, the Ethernet packet is transmitted in the outgoing direction towards the customer port. If the tunnel does not contain the receive-cookie configured, packet injection does not happen. In such a case, any received tunnel packet is counted and dropped in the same manner in which packets that arrive with a wrong cookie are counted and dropped. The following parameters can be specified with the decapsulate l2tp action:</td>
<td></td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>routing-instance</td>
<td>instance-name—By default, the Packet Forwarding Engine uses the default routing instance to forward payload packets to the destination network. If the payload is MPLS, the Packet Forwarding Engine performs route lookup on the MPLS path routing table using the route label in the MPLS header. If you specify the decapsulate action with an optional routing instance name, the Packet Forwarding Engine performs route lookup on the routing instance, and the instance must be configured.</td>
</tr>
<tr>
<td>forwarding-class</td>
<td>class-name—(Optional) Classify L2TP packets to the specified forwarding class.</td>
</tr>
<tr>
<td>output-interface</td>
<td>interface-name—(Optional) For L2TP tunnels, enable the packet to be duplicated and sent towards the customer or the network (based on the MAC address in the Ethernet payload).</td>
</tr>
<tr>
<td>cookie</td>
<td>l2tpv3-cookie—(Optional) For L2TP tunnels, specify the L2TP cookie for the duplicated packets. If the tunnel does not contain the receive-cookie configured, packet injection does not happen. In such a case, any received tunnel</td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>packet is counted and dropped in the same manner in which packets that arrive with a wrong cookie are counted and dropped.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sample—(Optional) Sample the packet. Junos OS does not sample packets originating from the router. If you configure a filter and apply it to the output side of an interface, then only the transit packets going through that interface are sampled. Packets that are sent from the Routing Engine to the Packet Forwarding Engine are not sampled.</td>
<td></td>
</tr>
<tr>
<td>NOTE: The decapsulate l2tp action that you configure at the [edit firewall family inet filter filter-name term term-name] hierarchy level does not process traffic with IPv4 and IPv6 options. As a result, traffic with such options is discarded by the de-encapsulation of L2TP packets functionality.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently, without sending an Internet Control Message Protocol (ICMP) message. Discarded packets are available for logging and sampling.</td>
<td>family any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family inet6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family mpls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family vpls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family ccc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family ethernet-switching (for EX Series switches only)</td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulate</td>
<td></td>
<td>• family inet</td>
</tr>
<tr>
<td>template-name</td>
<td></td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family mpls</td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
</table>
| | At a customer-facing interface on an MX Series router installed at the provider edge (PE) of an IPv4 transport network, enable filter-based generic routing encapsulation (GRE) tunneling using the specified tunnel template.
You can configure a filter term that pairs this action with the appropriate match conditions, and then attach the filter to the input of an Ethernet logical interface or aggregated Ethernet interface on a Modular Interface Card (MIC) or Modular Port Concentrator (MPC) in the router. If you commit a configuration that attaches an encapsulating filter to an interface that does not support filter-based GRE tunneling, the system writes a syslog warning message that the interface does not support the filter.
When the interface receives a matched packet, processes that run on the Packet Forwarding Engine use information in the specified tunnel template to perform the following operations:
1. Attach a GRE header (with or without a tunnel key value, as specified in the tunnel template.
2. Attach a header for the IPv4 transport protocol.
3. Forward the resulting GRE packet from the tunnel | |
<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>source interface to the tunnel destination (the remote PE router). The specified tunnel template must be configured using the <code>tunnel-end-point</code> statement under the <code>[edit firewall]</code> or <code>[edit logical-systems logical-system-name firewall]</code> hierarchy level. For more information, see “Understanding Filter-Based Tunneling Across IPv4 Networks” on page 1217.</td>
<td></td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>encapsulate</code></td>
<td></td>
<td>• family inet</td>
</tr>
<tr>
<td><code>template-name</code></td>
<td>(for L2TP tunnels)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
At a customer-facing interface on an MX Series router installed at the provider edge (PE) of an IPv4 transport network, enable filter-based L2TP tunneling using the specified tunnel template. You can configure a filter term that pairs this action with the appropriate match conditions, and then attach the filter to the input of an Ethernet logical interface or aggregated Ethernet interface on a Modular Interface Card (MIC) or Modular Port Concentrator (MPC) in the router. If you commit a configuration that attaches an encapsulating filter to an interface that does not support filter-based GRE tunneling, the system writes a syslog warning message that the interface does not support the filter. When the interface receives a matched packet, processes that run on the Packet Forwarding Engine use information in the specified tunnel template to perform the following operations:

1. Attach an L2TP header (with or without a tunnel key value, as specified in the tunnel template).
2. Attach a header for the IPv4 transport protocol.
3. Forward the resulting L2TP packet from the tunnel source interface to the tunnel destination (the remote PE router). The specified tunnel
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>template</td>
<td>template must be configured using the <code>tunnel-end-point</code> statement under the <code>[edit firewall]</code> or <code>[edit logical-systems logical-system-name firewall]</code> statement hierarchy.</td>
<td></td>
</tr>
</tbody>
</table>
| exclude-accounting | Exclude the packet from being included in accurate accounting statistics for tunneled subscribers on an L2TP LAC. Typically used in filters that match DHCPv6 or ICMPv6 control traffic. Failure to exclude these packets results in the idle-timeout detection mechanism considering these packets as data traffic, causing the timeout to never expire. (The idle timeout is configured with the `client-idle-timeout` and `client-idle-timeout-ingress-only` statements in the access profile session options.) The term excludes packets from being included in counts for both family accurate accounting and service accurate accounting. The packets are still included in the session interface statistics. The term is available for both `inet` and `inet6` families, but is used only for `inet6`. | `family inet`
`family inet6` |
| logical-system | Direct the packet to the specified logical system. | `family inet`
`family inet6` |
| logical-system-name| NOTE: This action is not supported on PTX Series Packet Transport Routers. | |
Table 42: Terminating Actions for Firewall Filters (*continued*)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>reject</td>
<td></td>
<td>• family inet</td>
</tr>
<tr>
<td>message-type</td>
<td></td>
<td>• family inet6</td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject the packet and return an ICMPv4 or ICMPv6 message:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If no message-type is specified, a destination unreachable message is returned by default.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If tcp-reset is specified as the message-type, tcp-reset is returned only if the packet is a TCP packet. Otherwise, the administratively-prohibited message, which has a value of 13, is returned.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If any other message-type is specified, that message is returned.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: Rejected packets can be sampled or logged if you configure the sample or syslog action.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE: On PTX1000 routers, the</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 42: Terminating Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>reject action is supported on ingress interfaces only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **routing-instance** instance-name | Direct the packet to the specified routing instance. | • family inet
• family inetó |
| **topology** topology-name | Direct the packet to the specified topology.
NOTE: This action is not supported on PTX Series Packet Transport Routers.
Each routing instance (master or virtual-router) supports one default topology to which all forwarding classes are forwarded. For multitopology routing, you can configure a firewall filter on the ingress interface to match a specific forwarding class, such as expedited forwarding, with a specific topology. The traffic that matches the specified forwarding class is then added to the routing table for that topology. | • family inet
• family inetó |

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Nonterminating Actions | 795
- Firewall Filter Match Conditions for IPv4 Traffic | 845
- Firewall Filter Match Conditions for IPv6 Traffic | 861
- enhanced-mode | 2099
- Firewall Filter Flexible Match Conditions | 787
On ACX Series Universal Metro Routers, you can configure firewall filters to filter packets and to perform an action on packets that match the filter. The match conditions specified to filter the packets are specific to the type of traffic being filtered.

NOTE: On ACX Series routers, the filter for the exiting traffic (egress filter) can be applied only for interface-specific instances of the firewall filter.

Overview of Firewall Filter Match Conditions and Actions on ACX Series Routers

Table 43 on page 823 describes the types of traffic for which you can configure standard stateless firewall filters.
Table 43: Standard Firewall Filter Match Conditions by Protocol Family for ACX Series Routers

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Hierarchy Level at Which Match Conditions Are Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol-independent</td>
<td><code>[edit firewall family any filter filter-name term term-name]</code>
No match conditions are supported for this traffic type on ACX Series routers.</td>
</tr>
<tr>
<td>IPv4</td>
<td><code>[edit firewall family inet filter filter-name term term-name]</code>
For the complete list of match conditions, see “Match Conditions for IPv4 Traffic (ACX Series Routers)” on page 827.</td>
</tr>
<tr>
<td>MPLS</td>
<td><code>[edit firewall family mpls filter filter-name term term-name]</code>
For the complete list of match conditions, see “Match Conditions for MPLS Traffic (ACX Series Routers)” on page 837.</td>
</tr>
<tr>
<td>Layer 2 CCC</td>
<td><code>[edit firewall family ccc filter filter-name term term-name]</code>
No match conditions are supported for this traffic type on ACX Series routers.</td>
</tr>
<tr>
<td>Bridge</td>
<td><code>[edit firewall family bridge filter filter-name term term-name]</code>
 <code>[edit firewall family ethernet-switching filter filter-name term term-name]</code> (Applicable to ACX5048 and ACX5096 routers only.)</td>
</tr>
</tbody>
</table>

On ACX5448 router, the following ingress family filters can be scaled based on the availability of external-tcam:

- family `ethernet-switching`
- family `ccc`
- family `inet`
- family `inet6`
- family `mpls`
- family `vpls`

Under the `then` statement for a standard stateless firewall filter term, you can specify the actions to be taken on a packet that matches the term.
Table 44 on page 824 summarizes the types of actions you can specify in a standard stateless firewall filter term.

Table 44: Standard Firewall Filter Action Categories for ACX Series Routers

<table>
<thead>
<tr>
<th>Type of Action</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminating</td>
<td>Halts all evaluation of a firewall filter for a specific packet. The router performs the specified action, and no additional terms are used to examine the packet.</td>
<td>See “Terminating Actions (ACX Series Routers)” on page 842.</td>
</tr>
<tr>
<td></td>
<td>You can specify only one terminating action in a standard firewall filter. You can, however, specify one terminating action with one or more nonterminating actions in a single term. For example, within a term, you can specify accept with count and syslog.</td>
<td></td>
</tr>
<tr>
<td>Nonterminating</td>
<td>Performs other functions on a packet (such as incriminating a counter, logging information about the packet header, sampling the packet data, or sending information to a remote host using the system log functionality), but any additional terms are used to examine the packet.</td>
<td>See “Nonterminating Actions (ACX Series Routers)” on page 838.</td>
</tr>
</tbody>
</table>

Match Conditions for Bridge Family Firewall Filters (ACX Series Routers)

Bridge Family Firewall Filters on ACX Series Routers

Bridge family firewall filters can be configured at the IFL-family level on ACX series routers. Bridge family filters are used to match the L2 bridge flows based on the supported Layer2/Layer3 fields and take firewall action. The maximum number of terms supported for bridge firewall filters on ACX Series routers is 124.

Table 45 on page 824 shows the match conditions supported for bridge family filters.

Table 45: Bridge Family Firewall Filter Match Conditions for ACX Series Routers

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply-groups</td>
<td>Set the groups from which to inherit configuration data</td>
</tr>
<tr>
<td>apply-groups-except</td>
<td>Set which groups will not broadcast configuration data</td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>Set the destination MAC address</td>
</tr>
</tbody>
</table>
Table 45: Bridge Family Firewall Filter Match Conditions for ACX Series Routers (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port</td>
<td>Match the TCP/UDP destination port</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>Match IP destination prefixes in named list.</td>
</tr>
<tr>
<td>dscp</td>
<td>Match the Differentiated Services (DiffServ) code point</td>
</tr>
<tr>
<td>ether-type</td>
<td>Match the Ethernet type</td>
</tr>
<tr>
<td>icmp-code</td>
<td>Match a ICMP message code</td>
</tr>
<tr>
<td>icmp-type</td>
<td>Match a ICMP message type</td>
</tr>
<tr>
<td>interface-group</td>
<td>Match an interface group</td>
</tr>
<tr>
<td>ip-destination-address</td>
<td>Match an IP destination address</td>
</tr>
<tr>
<td>ip-precedence</td>
<td>Match an IP precedence value</td>
</tr>
<tr>
<td>ip-protocol</td>
<td>Match an IP protocol type</td>
</tr>
<tr>
<td>ip-source-address</td>
<td>Match an IP source address</td>
</tr>
<tr>
<td>learn-vlan-1p-priority</td>
<td>Match the learned 802.1p VLAN Priority</td>
</tr>
<tr>
<td>learn-vlan-dei</td>
<td>Match user VLAN ID DEI bit</td>
</tr>
<tr>
<td>learn-vlan-id</td>
<td>Match a learnt VLAN ID</td>
</tr>
<tr>
<td>source-mac-address</td>
<td>Set the source MAC address</td>
</tr>
<tr>
<td>source-prefix-list</td>
<td>Match IP source prefixes in named list.</td>
</tr>
<tr>
<td>source-port</td>
<td>Match a TCP/UDP source port</td>
</tr>
<tr>
<td>user-vlan-1p-priority</td>
<td>Match user 802.1p VLAN Priority</td>
</tr>
<tr>
<td>user-vlan-id</td>
<td>Match a user VLAN ID</td>
</tr>
<tr>
<td>vlan-ether-type</td>
<td>Match a VLAN Ethernet type</td>
</tr>
</tbody>
</table>

Table 46 on page 826 shows the action fields supported.
Table 46: Bridge Family Firewall Filter Action Fields for ACX Series Routers

<table>
<thead>
<tr>
<th>Action Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept the packet</td>
</tr>
<tr>
<td>count</td>
<td>Count the packet in the named counter</td>
</tr>
<tr>
<td>discard</td>
<td>Discard the packet</td>
</tr>
<tr>
<td>forwarding-class</td>
<td>Classify packet to forwarding class</td>
</tr>
<tr>
<td>loss-priority</td>
<td>Packet's loss priority</td>
</tr>
<tr>
<td>log</td>
<td>Log the packet header information in a buffer within the Packet Forwarding Engine. You can access this information by issuing the show firewall log command at the command-line interface (CLI).</td>
</tr>
<tr>
<td>policer</td>
<td>Name of policer to use to rate-limit traffic</td>
</tr>
<tr>
<td>syslog</td>
<td>Log the packet to the system log file.</td>
</tr>
<tr>
<td>three-color-policer</td>
<td>Police the packet using a three-color-policer</td>
</tr>
</tbody>
</table>

NOTE: Bridge family firewall filters can be applied as an output filter on Layer 2 interfaces. When the Layer 2 interface is on a bridge-domain configured with the `vlan-id` statement, ACX series routers can match the outer-vlan of the packet using the user `vlan-id` match specified in the bridge family firewall filter.

Match Conditions for CCC Firewall Family Filters (ACX Series Routers)

Match Conditions for CCC Family Firewall Filters

On ACX Series routers, you can configure a standard firewall filter with match conditions for circuit cross-connection (CCC) traffic (family ccc).

Table 47 on page 827 describes the match conditions you can configure at the [edit firewall family ccc filter filter-name term term-name] hierarchy level.
Table 47: CCC Family Firewall Filter Match Conditions for ACX Series Routers

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-mac-address</td>
<td>Destination MAC address</td>
</tr>
<tr>
<td>destination-port</td>
<td>Matches TCP/UDP destination port</td>
</tr>
<tr>
<td>dscp</td>
<td>Matches differentiated services (DiffServ) code point</td>
</tr>
<tr>
<td>icmp-code</td>
<td>Matches ICMP message code</td>
</tr>
<tr>
<td>icmp-type</td>
<td>Matches ICMP message type</td>
</tr>
<tr>
<td>ip-destination-address</td>
<td>Matches destination IP address</td>
</tr>
<tr>
<td>ip-precedence</td>
<td>Matches IP precedence value</td>
</tr>
<tr>
<td>ip-protocol</td>
<td>Matches IP protocol type</td>
</tr>
<tr>
<td>ip-source-address</td>
<td>Matches source IP address</td>
</tr>
<tr>
<td>learn-vlan-1p-priority</td>
<td>Matches learned 802.1p VLAN priority</td>
</tr>
<tr>
<td>source-mac-address</td>
<td>Source MAC address</td>
</tr>
<tr>
<td>source-port</td>
<td>Matches TCP/UDP source port</td>
</tr>
<tr>
<td>user-vlan-1p-priority</td>
<td>Matches user 802.1p VLAN priority</td>
</tr>
</tbody>
</table>

Match Conditions for IPv4 Traffic (ACX Series Routers)

On ACX Series routers, you can configure a standard stateless firewall filter with match conditions for IP version 4 (IPv4) traffic (family inet). Table 48 on page 827 describes the match conditions you can configure at the [edit firewall family inet filter filter-name term term-name from] hierarchy level.

Table 48: Firewall Filter Match Conditions for IPv4 Traffic on ACX Series Routers

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address address</td>
<td>Match the IPv4 destination address field.</td>
</tr>
<tr>
<td></td>
<td>NOTE: On ACX Series routers, you can specify only one destination address. A list of IPv4 destination addresses is not supported.</td>
</tr>
</tbody>
</table>
Table 48: Firewall Filter Match Conditions for IPv4 Traffic on ACX Series Routers (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>Match the UDP or TCP destination port field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the <code>protocol udp</code> or <code>protocol tcp</code> match statement in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: On ACX Series routers, you can specify only one destination port number. A list of port numbers is not supported.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed):</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>Match IP destination prefixes in named list.</td>
</tr>
<tr>
<td>dscp number</td>
<td>Match the Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant 6 bits of this byte form the DSCP. For more information, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td></td>
<td>You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>• RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), defines one code point: ef (46).</td>
</tr>
<tr>
<td></td>
<td>• RFC 2597, Assured Forwarding PHB Group, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points:</td>
</tr>
<tr>
<td></td>
<td>• af11 (10), af12 (12), af13 (14)</td>
</tr>
<tr>
<td></td>
<td>• af21 (18), af22 (20), af23 (22)</td>
</tr>
<tr>
<td></td>
<td>• af31 (26), af32 (28), af33 (30)</td>
</tr>
<tr>
<td></td>
<td>• af41 (34), af42 (36), af43 (38)</td>
</tr>
</tbody>
</table>
Table 48: Firewall Filter Match Conditions for IPv4 Traffic on ACX Series Routers (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| **fragment-flags number** | (Ingress only) Match the three-bit IP fragmentation flags field in the IP header.
In place of the numeric field value, you can specify one of the following keywords (the field values are also listed): **dont-fragment** (0x4), **more-fragments** (0x2), or **reserved** (0x8). |
| **icmp-code number** | Match the ICMP message code field.
If you configure this match condition, we recommend that you also configure the protocol **icmp** match condition in the same term.
If you configure this match condition, you must also configure the **icmp-type message-type** match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:
- parameter-problem: **ip-header-bad** (0), **required-option-missing** (1)
- redirect: **redirect-for-host** (1), **redirect-for-network** (0), **redirect-for-tos-and-host** (3), **redirect-for-tos-and-net** (2)
- time-exceeded: **ttl-eq-zero-during-reassembly** (1), **ttl-eq-zero-during-transit** (0)
- unreachable: **communication-prohibited-by-filtering** (13), **destination-host-prohibited** (10), **destination-host-unknown** (7), **destination-network-prohibited** (9), **destination-network-unknown** (6), **fragmentation-needed** (4), **host-precedence-violation** (14), **host-unreachable** (1), **host-unreachable-for-TOS** (12), **network-unreachable** (0), **network-unreachable-for-TOS** (11), **port-unreachable** (3), **precedence-cutoff-in-effect** (15), **protocol-unreachable** (2), **source-host-isolated** (8), **source-route-failed** (5) |
| **icmp-type number** | Match the ICMP message type field.
If you configure this match condition, we recommend that you also configure the protocol **icmp** match condition in the same term.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): **echo-reply** (0), **echo-request** (8), **info-reply** (16), **info-request** (15), **mask-request** (17), **mask-reply** (18), **parameter-problem** (12), **redirect** (5), **router-advertisement** (9), **router-solicit** (10), **source-quench** (4), **time-exceeded** (11), **timestamp** (13), **timestamp-reply** (14), or **unreachable** (3). |
Table 48: Firewall Filter Match Conditions for IPv4 Traffic on ACX Series Routers (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-options values</td>
<td>Match the 8-bit IP option field, if present, to the specified value. ACX Series routers support only the ip-options_any match condition, which ensures that the packets are sent to the Packet Forwarding Engine for processing. NOTE: On ACX Series routers, you can specify only one IP option value. Configuring multiple values is not supported.</td>
</tr>
<tr>
<td>precedence</td>
<td>Match the IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00). You can specify precedence in hexadecimal, binary, or decimal form.</td>
</tr>
<tr>
<td>protocol number</td>
<td>Match the IP protocol type field. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41), no-next-header, ospf (89), pim (103), routing, rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td>source-address address</td>
<td>Match the IPv4 address of the source node sending the packet.</td>
</tr>
<tr>
<td>source-port number</td>
<td>Match the UDP or TCP source port field. If you configure this match condition for IPv4 traffic, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port. In place of the numeric value, you can specify one of the text synonyms listed with the destination-port number match condition.</td>
</tr>
<tr>
<td>source-prefix-list</td>
<td>Match IP source prefixes in named list.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| tcp-flags value | Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header. To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:
 • fin (0x01)
 • syn (0x02)
 • rst (0x04)
 • push (0x08)
 • ack (0x10)
 • urgent (0x20)
In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet.
You can string together multiple flags using the bit-field logical operators.
For combined bit-field match conditions, see the tcp-initial match conditions.
If you configure this match condition, we recommend that you also configure the protocol tcp match statement in the same term to specify that the TCP protocol is being used on the port. |
| tcp-initial | Match the initial packet of a TCP connection. This is an alias for tcp-flags "!(ack & syn)".
This condition does not implicitly check that the protocol is TCP. If you configure this match condition, we recommend that you also configure the protocol tcp match condition in the same term. |
| ttl number | Match the IPv4 time-to-live number. Specify a TTL value or a range of TTL values. For number, you can specify one or more values from 2 through 255. |

Match Conditions for IPv6 Traffic (ACX Series Routers)

You can configure a firewall filter with match conditions for Internet Protocol version 6 (IPv6) traffic (family inet6). Table 49 on page 832 describes the match conditions you can configure at the [edit firewall family inet6 filter filter-name term term-name from] hierarchy level.
Table 49: Firewall Filter Match Conditions for IPv6 Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>Match the IPv6 destination address field.</td>
</tr>
<tr>
<td>address</td>
<td></td>
</tr>
<tr>
<td>destination-port number</td>
<td>Match the UDP or TCP destination port field.</td>
</tr>
<tr>
<td></td>
<td>You cannot specify both the port and destination-port match conditions in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldp (646), login (513), mobileip-agent (434), mobilitp-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfld (2049), ntnt (119), ntalk (518), ntp (123), pop3 (110), pport (1723), printer (515), radacct (1813), radius (1812), rip (520), rinit (2108), smtp (25), snmp (161), snmptrap (162), snmp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>Match IP destination prefixes in named list.</td>
</tr>
<tr>
<td>extension-headers</td>
<td>Match an extension header type that is contained in the packet by identifying a Next Header value.</td>
</tr>
<tr>
<td>header-type</td>
<td>In the first fragment of a packet, the filter searches for a match in any of the extension header types. When a packet with a fragment header is found (a subsequent fragment), the filter only searches for a match of the next extension header type because the location of other extension headers is unpredictable.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), destination (60), esp (50), fragment (44), hop-by-hop (0), mobility (135), or routing (43).</td>
</tr>
<tr>
<td></td>
<td>To match any value for the extension header option, use the text synonym any.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Only the first extension header of the IPv6 packet can be matched. L4 header beyond one IPv6 extension header will be matched.</td>
</tr>
<tr>
<td>hop-limit</td>
<td>Match the hop limit to the specified hop limit or set of hop limits. For hop-limit, specify a single value or a range of values from 0 through 255.</td>
</tr>
</tbody>
</table>
Table 49: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-code message-code</td>
<td>Match the ICMP message code field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header icmp or next-header icmp6 match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, you must also configure the icmp-type message-type match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:</td>
</tr>
<tr>
<td></td>
<td>• parameter-problem: ip6-header-bad (0), unrecognized-next-header (1), unrecognized-option (2)</td>
</tr>
<tr>
<td></td>
<td>• time-exceeded: ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-transit (0)</td>
</tr>
<tr>
<td></td>
<td>• destination-unreachable: administratively-prohibited (1), address-unreachable (3), no-route-to-destination (0), port-unreachable (4)</td>
</tr>
<tr>
<td>icmp-type message-type</td>
<td>Match the ICMP message type field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header icmp or next-header icmp6 match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): certificate-path-advertisement (149), certificate-path-solicitation (148), destination-unreachable (1), echo-reply (129), echo-request (128), home-agent-address-discovery-reply (145), home-agent-address-discovery-request (144), inverse-neighbor-discovery-advertisement (142), inverse-neighbor-discovery-solicitation (141), membership-query (130), membership-report (131), membership-termination (132), mobile-prefix-advertisement-reply (147), mobile-prefix-solicitation (146), neighbor-advertisement (136), neighbor-solicit (135), node-information-reply (140), node-information-request (139), packet-too-big (2), parameter-problem (4), private-experimentation-100 (100), private-experimentation-101 (101), private-experimentation-200 (200), private-experimentation-201 (201), redirect (137), router-advertisement (134), router-renumbering (138), router-solicit (133), or time-exceeded (3).</td>
</tr>
<tr>
<td></td>
<td>For private-experimentation-201 (201), you can also specify a range of values within square brackets.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>next-header header-type</td>
<td>Match the first 8-bit Next Header field in the packet. Support for the next-header firewall match condition is available in Junos OS Release 13.3R6 and later.</td>
</tr>
<tr>
<td></td>
<td>For IPv6, we recommend that you use the payload-protocol term rather than the next-header term when configuring a firewall filter with match conditions. Although either can be used, payload-protocol provides the more reliable match condition because it uses the actual payload protocol to find a match, whereas next-header simply takes whatever appears in the first header following the IPv6 header, which may or may not be the actual protocol. In addition, if next-header is used with IPv6, the accelerated filter block lookup process is bypassed and the standard filter used instead.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstops (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmpv6 (58), igmp (2), ipip (4), ipv6 (41), mobility (135), no-next-header (59), ospf (89), pim (103), routing (43), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td></td>
<td>NOTE: next-header icmp6 and next-header icmpv6 match conditions perform the same function. next-header icmp6 is the preferred option. next-header icmpv6 is hidden in the Junos OS CLI.</td>
</tr>
<tr>
<td>source-address address</td>
<td>Match the IPv6 address of the source node sending the packet.</td>
</tr>
<tr>
<td>source-port number</td>
<td>Match the UDP or TCP source port field.</td>
</tr>
<tr>
<td></td>
<td>You cannot specify the port and source-port match conditions in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed with the destination-port number match condition.</td>
</tr>
<tr>
<td>source-prefix-list</td>
<td>Match IP source prefixes in named list.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **tcp-flags flags** | Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header. To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:
 • fin (0x01)
 • syn (0x02)
 • rst (0x04)
 • push (0x08)
 • ack (0x10)
 • urgent (0x20)
 In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet.
 You can string together multiple flags using the bit-field logical operators.
 For combined bit-field match conditions, see the **tcp-established** and **tcp-initial** match conditions.
 If you configure this match condition, we recommend that you also configure the **next-header tcp** match condition in the same term to specify that the TCP protocol is being used on the port. |
| **tcp-initial** | Match the initial packet of a TCP connection. This is a text synonym for tcp-flags "(!ack & syn)".
 This condition does not implicitly check that the protocol is TCP. If you configure this match condition, we recommend that you also configure the **next-header tcp** match condition in the same term. |
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| traffic-class number | Match the 8-bit field that specifies the class-of-service (CoS) priority of the packet. This field was previously used as the type-of-service (ToS) field in IPv4. You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
 - RFC 3246, *An Expedited Forwarding PHB (Per-Hop Behavior)*, defines one code point: ef (46).
 - RFC 2597, *Assured Forwarding PHB Group*, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points:
 - af11 (10), af12 (12), af13 (14)
 - af21 (18), af22 (20), af23 (22)
 - af31 (26), af32 (28), af33 (30)
 - af41 (34), af42 (36), af43 (38) |
NOTE: If you specify an IPv6 address in a match condition (the address, destination-address, or source-address match conditions), use the syntax for text representations described in RFC 4291, IP Version 6 Addressing Architecture. For more information about IPv6 addresses, see IPv6 Overview and Supported IPv6 Standards.

The following is a sample firewall family inet6 configuration:

```
user@host# show firewall family inet6
filter ipv6-filter {
  term t1 {
    from {
      source-address {
      }
      destination-address {
      }
      next-header tcp;
      source-port 1000;
      destination-port 2000;
      extension-header dstopts;
      traffic-class ef;
      tcp-flags 0x20;
      hop-limit 254;
    }
    then count ipv6-t1-count;
  }
  term t2 {
    from {
      icmp-type neighbor-solicit;
    }
    then count ipv6-t2-count;
  }
}
```

Match Conditions for MPLS Traffic (ACX Series Routers)

On ACX Series routers, you can configure a standard stateless firewall filter with match conditions for MPLS traffic (family mpls).
NOTE: The `input-list filter-names` and `output-list filter-names` statements for firewall filters for the mpls protocol family are supported on all interfaces with the exception of management interfaces and internal Ethernet interfaces (fxp or em0), loopback interfaces (lo0), and USB modem interfaces (umd).

Table 50 on page 838 describes the match conditions you can configure at the `[edit firewall family mpls filter filter-name term term-name from]` hierarchy level.

Table 50: Standard Firewall Filter Match Conditions for MPLS Traffic on ACX Series Routers

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exp number</code></td>
<td>Experimental (EXP) bit number or range of bit numbers in the MPLS header. For <code>number</code>, you can specify one or more values from 0 through 7 in decimal, binary, or hexadecima format.</td>
</tr>
</tbody>
</table>

Nonterminating Actions (ACX Series Routers)

Standard stateless firewall filters support different sets of nonterminating actions for each protocol family.

NOTE: ACX Series routers do not support the `next term` action.

ACX Series routers support log and syslog actions in ingress and egress directions for family `inet` and family `bridge`.

Table 51 on page 838 describes the nonterminating actions you can configure for a standard firewall filter term.

Table 51: Nonterminating Actions for Standard Firewall Filters on ACX Series Routers

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count counter-name</code></td>
<td>Count the packet in the named counter.</td>
<td>• family any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family mpls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family ccc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• family vpls</td>
</tr>
<tr>
<td>Nonterminating Action</td>
<td>Description</td>
<td>Protocol Families</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| forwarding-class <class-name> | Classify the packet based on the specified forwarding class:
 • assured-forwarding
 • best-effort
 • expedited-forwarding
 • network-control
 NOTE: This action is supported on ingress only. | • family inet
 • family inet6
 • family mpls
 • family ccc
 • family bridge
 • family vpls |
| log | Log the packet header information in a buffer within the Packet Forwarding Engine. You can access this information by issuing the show firewall log command at the command-line interface (CLI).
 NOTE: This action is supported on ingress and egress. The action on egress is not supported for family inet6. | • family inet
 • family inet6
 • family bridge |
Table 51: Nonterminating Actions for Standard Firewall Filters on ACX Series Routers (continued)

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss-priority (high</td>
<td>medium-high</td>
</tr>
<tr>
<td></td>
<td>You cannot also configure the three-color-policer nonterminating action for the same firewall filter term. These two nonterminating actions are mutually exclusive.</td>
</tr>
<tr>
<td></td>
<td>You must include the tri-color statement at the <code>[edit class-of-service]</code> hierarchy level to commit a PLP configuration with any of the four levels specified.</td>
</tr>
<tr>
<td></td>
<td>If the tri-color statement is not enabled, you can configure only the high and low levels. This applies to all protocol families.</td>
</tr>
<tr>
<td></td>
<td>For information about the tri-color statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This action is supported on ingress only.</td>
</tr>
<tr>
<td>Nonterminating Action</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **policer policer-name** | Name of policer to use to rate-limit traffic. | • family any
• family inet
• family inet6
• family mpls
• family ccc
• family bridge
• family vpls |
| **port-mirror** | Port-mirror the packet based on the specified family.
NOTE: This action is supported on ingress only.
ACX5048 and ACX5096 routers do not support port-mirror. | family inet |
| **syslog** | Log the packet to the system log file.
NOTE: This action is supported on ingress and egress. The action on egress is not supported for family inet6. | • family inet
• family inet6
• family bridge |
| **three-color-policer (single-rate | two-rate) policer-name** | Police the packet using the specified single-rate or two-rate three-color policer.
You cannot also configure the **loss-priority** action for the same firewall filter term. These two actions are mutually exclusive. | • family any
• family inet
• family inet6
• family mpls
• family ccc
• family bridge
• family vpls |
| **traffic-class** | Set traffic-class code point
NOTE: This action is supported on ingress only. | family inet6 |
Terminating Actions (ACX Series Routers)

Standard stateless firewall filters support different sets of terminating actions for each protocol family.

NOTE: ACX Series routers do not support the next term action.

Table 52 on page 842 describes the terminating actions you can specify in a standard firewall filter term.

Table 52: Terminating Actions for Standard Firewall Filters on ACX Series Routers

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
</table>
| accept | Accept the packet. | • family any
| | | • family inet
| | | • family mpls
| | | • family ccc |
| discard | Discard a packet silently, without sending an Internet Control Message Protocol (ICMP) message. Discarded packets are available for logging and sampling. | • family any
| | | • family inet
| | | • family mpls
| | | • family ccc |
| reject message-type| Reject the packet and return an ICMPv4 or ICMPv6 message: | family inet |
| | • If no message type is specified, a destination-unreachable message is returned by default. | |
| | • If tcp-reset is specified as the message type, tcp-reset is returned only if the packet is a TCP packet. Otherwise, the administratively-prohibited message, which has a value of 13, is returned. | |
| | • If any other message type is specified, that message is returned. | |

NOTE:
- Rejected packets can be sampled or logged if you configure the sample or syslog action.
- This action is supported on ingress only.

The message-type option can have one of the following values: address-unreachable, administratively-prohibited, bad-host-tos, bad-network-tos, beyond-scope, fragmentation-needed, host-prohibited, host-unknown, host-unreachable, network-prohibited, network-unknown, network-unreachable, no-route, port-unreachable, precedence-cutoff, precedence-violation, protocol-unreachable, source-host-isolated, source-route-failed, or tcp-reset.
Table 52: Terminating Actions for Standard Firewall Filters on ACX Series Routers (continued)

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>routing-instance</td>
<td>Direct the packet to the specified routing instance.</td>
<td>• family inet</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Overview of Firewall Filter Match Conditions and Actions on ACX Series Routers | 822
- Terminating Actions (ACX Series Routers) | 842
- Nonterminating Actions (ACX Series Routers) | 838

Firewall Filter Match Conditions for Protocol-Independent Traffic

You can configure a firewall filter with match conditions for protocol-independent traffic (family any).

To apply a protocol-independent firewall filter to a logical interface, configure the **filter** statement under the logical unit.

NOTE:

On MX Series routers, attach a protocol-independent firewall filter to a logical interface by configuring the **filter** statement *directly* under the logical unit:

- [edit interfaces *name* unit *number* filter]
- [edit logical-systems *name* interfaces *name* unit *number* filter]

On all other supported devices, attach a protocol-independent firewall filter to a logical interface by configuring the **filter** statement under the protocol family (family any):

- [edit interfaces *name* unit *number* family any filter]
- [edit logical-systems *name* interfaces *name* unit *number* family any filter]

Table 53 on page 844 describes the **match-conditions** you can configure at the [edit firewall family any filter filter-name term term-name from] hierarchy level.
Table 53: Firewall Filter Match Conditions for Protocol-Independent Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>forwarding-class class</td>
<td>Match the forwarding class of the packet. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control. For information about forwarding classes and router-internal output queues, see Understanding How Forwarding Classes Assign Classes to Output Queues. NOTE: On T4000 Type 5 FPCs, a filter attached at the Layer 2 application point (that is, at the logical interface level) is unable to match with the forwarding class of a packet that is set by a Layer 3 classifier such as DSCP, DSCP V6, inet-precedence, and mpls-exp.</td>
</tr>
<tr>
<td>forwarding-class-except class</td>
<td>Do not match on the forwarding class. For details, see the forwarding-class match condition.</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>Match the interface on which the packet was received. NOTE: If you configure this match condition with an interface that does not exist, the term does not match any packet.</td>
</tr>
<tr>
<td>interface-set interface-set-name</td>
<td>Match the interface on which the packet was received to the specified interface set. To define an interface set, include the interface-set statement at the [edit firewall] hierarchy level. For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197.</td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Match the packet loss priority (PLP) level. Specify a single level or multiple levels: low, medium-low, medium-high, or high. Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers. For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs), you must include the tri-color statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the tri-color statement is not enabled, you can only configure the high and low levels. This applies to all protocol families. NOTE: This match condition is not supported on PTX series packet transport routers. For information about the tri-color statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
</tbody>
</table>
Table 53: Firewall Filter Match Conditions for Protocol-Independent Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss-priority-except level</td>
<td>Do not match the PLP level. For details, see the loss-priority match condition.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td>packet-length bytes</td>
<td>Match the length of the received packet, in bytes. The length refers only to the IP packet, including the packet header, and does not include any Layer 2 encapsulation overhead. You can also specify a range of values to be matched.</td>
</tr>
<tr>
<td>packet-length-except bytes</td>
<td>Do not match on the received packet length, in bytes. For details, see the packet-length match type.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

Guidelines for Configuring Firewall Filters	746
Firewall Filter Terminating Actions	804
Firewall Filter Nonterminating Actions	795

Firewall Filter Match Conditions for IPv4 Traffic

You can configure a firewall filter with match conditions for Internet Protocol version 4 (IPv4) traffic (family inet).

NOTE: For MX Series routers with MPCs, you need to initialize certain new firewall filters by walking the corresponding SNMP MIB, for example, `show snmp mib walk name ascii`. This forces Junos to learn the filter counters and ensure that the filter statistics are displayed. This guidance applies to all enhanced mode firewall filters, filters with flexible conditions, and filters with the certain terminating actions. See those topics, listed under Related Documentation, for details.

Table 54 on page 846 describes the match-conditions you can configure at the `[edit firewall family inet filter filter-name term term-name from]` hierarchy level.
Table 54: Firewall Filter Match Conditions for IPv4 Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address address [except]</code></td>
<td>Match the IPv4 source or destination address field unless the <code>except</code> option is included. If the option is included, do not match the IPv4 source or destination address field.</td>
</tr>
<tr>
<td><code>ah-spi spi-value</code></td>
<td>(M Series routers, except M120 and M320) Match the IPsec authentication header (AH) security parameter index (SPI) value.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series routers.</td>
</tr>
<tr>
<td><code>ah-spi-except spi-value</code></td>
<td>(M Series routers, except M120 and M320) Do not match the IPsec AH SPI value.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series routers.</td>
</tr>
<tr>
<td><code>apply-groups</code></td>
<td>Specify which groups to inherit configuration data from. You can specify more than one group name. You must list them in order of inheritance priority. The configuration data in the first group takes priority over the data in subsequent groups.</td>
</tr>
<tr>
<td><code>apply-groups-except</code></td>
<td>Specify which groups not to inherit configuration data from. You can specify more than one group name.</td>
</tr>
<tr>
<td><code>destination-address</code></td>
<td>Match the IPv4 destination address field unless the <code>except</code> option is included. If the option is included, do not match the IPv4 destination address field.</td>
</tr>
<tr>
<td><code>address address [except]</code></td>
<td>You cannot specify both the <code>address</code> and <code>destination-address</code> match conditions in the same term.</td>
</tr>
<tr>
<td><code>destination-class</code></td>
<td>Match one or more specified destination class names (sets of destination prefixes grouped together and given a class name). For more information, see "Firewall Filter Match Conditions Based on Address Classes" on page 892.</td>
</tr>
<tr>
<td><code>class-names</code></td>
<td></td>
</tr>
<tr>
<td><code>destination-class-except</code></td>
<td>Do not match one or more specified destination class names. For details, see the <code>destination-class</code> match condition.</td>
</tr>
<tr>
<td><code>class-names</code></td>
<td></td>
</tr>
</tbody>
</table>
Table 54: Firewall Filter Match Conditions for IPv4 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>Match the UDP or TCP destination port field.</td>
</tr>
<tr>
<td></td>
<td>You cannot specify both the port and destination-port match conditions in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the protocol match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserv (2401), dhcprp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldpprptp (646), login (513), mobileip-agent (434), mobileip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), ntnot (119), nttalk (518), ntp (123), pop3 (110), pptp (1723), printer (515), rtnacct (1813), radius (1812), rip (520), rlogin (2108), smrpt (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
</tr>
<tr>
<td>destination-port-except number</td>
<td>Do not match the UDP or TCP destination port field. For details, see the destination-port match condition.</td>
</tr>
<tr>
<td>destination-prefix-list name [except]</td>
<td>Match destination prefixes in the specified list unless the except option is included. If the option is included, do not match the destination prefixes in the specified list.</td>
</tr>
<tr>
<td></td>
<td>Specify the name of a prefix list defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
</tbody>
</table>
Table 54: Firewall Filter Match Conditions for IPv4 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| **dscp number** | Match the Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant 6 bits of this byte form the DSCP. For more information, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic. Support was added for filtering on Differentiated Services Code Point (DSCP) and forwarding class for Routing Engine sourced packets, including IS-IS packets encapsulated in generic routing encapsulation (GRE). Subsequently, when upgrading from a previous version of Junos OS where you have both a class of service (CoS) and firewall filter, and both include DSCP or forwarding class filter actions, the criteria in the firewall filter automatically takes precedence over the CoS settings. The same is true when creating new configurations; that is, where the same settings exist, the firewall filter takes precedence over the CoS, regardless of which was created first. You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
 • RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), defines one code point: ef (46).
 • RFC 2597, Assured Forwarding PHB Group, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points:
 • af11 (10), af12 (12), af13 (14)
 • af21 (18), af22 (20), af23 (22)
 • af31 (26), af32 (28), af33 (30)
 • af41 (34), af42 (36), af43 (38)
| **dscp-except number** | Do not match on the DSCP number. For more information, see the dscp match condition. |
| **esp-spi spi-value** | Match the IPsec encapsulating security payload (ESP) SPI value. Match on this specific SPI value. You can specify the ESP SPI value in hexadecimal, binary, or decimal form. NOTE: This match condition is not supported on PTX series routers. |
| **esp-spi-except spi-value** | Match the IPsec ESP SPI value. Do not match on this specific SPI value. NOTE: This match condition is not supported on PTX series routers. |
Table 54: Firewall Filter Match Conditions for IPv4 Traffic *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| **first-fragment** | Match if the packet is the first fragment of a fragmented packet. Do not match if the packet is a trailing fragment of a fragmented packet. The first fragment of a fragmented packet has a fragment offset value of 0.

This match condition is an alias for the bit-field match condition **fragment-offset 0** match condition.

To match both first and trailing fragments, you can use two terms that specify different match conditions: **first-fragment** and **is-fragment**. |
| **flexible-match-mask value** | **bit-length** Length of the data to be matched in bits, not needed for string input (0..128)

bit-offset Bit offset after the (match-start + byte) offset (0..7)

byte-offset Byte offset after the match start point

flexible-mask-name Select a flexible match from predefined template field

mask-in-hex Mask out bits in the packet data to be matched

match-start Start point to match in packet

prefix Value data/string to be matched |
Table 54: Firewall Filter Match Conditions for IPv4 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flexible-match-range</td>
<td>Length of the data to be matched in bits (0..32)</td>
</tr>
<tr>
<td>bit-length</td>
<td></td>
</tr>
<tr>
<td>bit-offset</td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td>byte-offset</td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td>flexible-range-name</td>
<td>Select a flexible match from predefined template field</td>
</tr>
<tr>
<td>match-start</td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td>range</td>
<td>Range of values to be matched</td>
</tr>
<tr>
<td>range-except</td>
<td>Do not match this range of values</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Match the forwarding class of the packet.</td>
</tr>
<tr>
<td></td>
<td>Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td></td>
<td>For information about forwarding classes and router-internal output queues, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td>forwarding-class-except class</td>
<td>Do not match the forwarding class of the packet. For details, see the forwarding-class match condition.</td>
</tr>
<tr>
<td>fragment-flags number</td>
<td>(Ingress only) Match the three-bit IP fragmentation flags field in the IP header.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric field value, you can specify one of the following keywords (the field values are also listed): dont-fragment (0x4), more-fragments (0x2), or reserved (0x8).</td>
</tr>
<tr>
<td>fragment-offset value</td>
<td>Match the 13-bit fragment offset field in the IP header. The value is the offset, in 8-byte units, in the overall datagram message to the data fragment. Specify a numeric value, a range of values, or a set of values. An offset value of 0 indicates the first fragment of a fragmented packet.</td>
</tr>
<tr>
<td></td>
<td>The first-fragment match condition is an alias for the fragment-offset 0 match condition.</td>
</tr>
<tr>
<td></td>
<td>To match both first and trailing fragments, you can use two terms that specify different match conditions (first-fragment and is-fragment).</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>fragment-offset-except number</td>
<td>Do not match the 13-bit fragment offset field.</td>
</tr>
<tr>
<td>gre-key range</td>
<td>Match the gre-key field. The GRE key field is a 4 octet number inserted by the GRE encapsulator. It is an optional field for use in GRE encapsulation. The range can be a single GRE key number or a range of key numbers. For MX Series routers with MPCs, initialize new firewall filters that include this condition by walking the corresponding SNMP MIB.</td>
</tr>
</tbody>
</table>
Table 54: Firewall Filter Match Conditions for IPv4 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-code number</td>
<td>Match the ICMP message code field.</td>
</tr>
</tbody>
</table>

NOTE: When using this match condition, you should also use the `protocol icmp` match condition in the same term (as shown below) to ensure that `icmp` packets are being evaluated.

```
term Allow _ICMP {
    from protocol icmp {
        icmp-code ip-header-bad;
        icmp-type echo-reply;
    }
    then {
        policer ICMP_Policier;
        count Allow_ICMP;
    }
}
```

You must also configure the `icmp-type message-type` match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.

In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:

- parameter-problem: `ip-header-bad` (0), `required-option-missing` (1)
- redirect: `redirect-for-host` (1), `redirect-for-network` (0), `redirect-for-tos-and-host` (3), `redirect-for-tos-and-net` (2)
- time-exceeded: `ttl-eq-zero-during-reassembly` (1), `ttl-eq-zero-during-transit` (0)
- unreachable: `communication-prohibited-by-filtering` (13), `destination-host-prohibited` (10), `destination-host-unknown` (7), `destination-network-prohibited` (9), `destination-network-unknown` (6), `fragmentation-needed` (4), `host-precedence-violation` (14), `host-unreachable` (1), `host-unreachable-for-TOS` (12), `network-unreachable` (0), `network-unreachable-for-TOS` (11), `port-unreachable` (3), `precedence-cutoff-in-effect` (15), `protocol-unreachable` (2), `source-host-isolated` (8), `source-route-failed` (5)

| icmp-code-except message-code | Do not match the ICMP message code field. For details, see the `icmp-code` match condition. |
Table 54: Firewall Filter Match Conditions for IPv4 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type number</td>
<td>Match the ICMP message type field.</td>
</tr>
<tr>
<td></td>
<td>NOTE: When using this match condition, you should also use the protocol icmp match condition in the same term (as shown below) to ensure that icmp packets are being evaluated.</td>
</tr>
<tr>
<td></td>
<td>term Allow _ICMP {</td>
</tr>
<tr>
<td></td>
<td>from protocol icmp {</td>
</tr>
<tr>
<td></td>
<td>icmp-code ip-header-bad;</td>
</tr>
<tr>
<td></td>
<td>icmp-code echo-reply;</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>then {</td>
</tr>
<tr>
<td></td>
<td>policer ICMP_Policier;</td>
</tr>
<tr>
<td></td>
<td>count Allow_ICMP;</td>
</tr>
<tr>
<td></td>
<td>You must also configure the icmp-type message-type match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the protocol match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): echo-reply (0), echo-request (8), info-reply (16), info-request (15), mask-request (17), mask-reply (18), parameter-problem (12), redirect (5), router-advertisement (9), router-solicit (10), source-quench (4), time-exceeded (11), timestamp (13), timestamp-reply (14), or unreachable (3).</td>
</tr>
<tr>
<td>icmp-type-except message-type</td>
<td>Do not match the ICMP message type field. For details, see the icmp-type match condition.</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>Match the interface on which the packet was received.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If you configure this match condition with an interface that does not exist, the term does not match any packet.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **interface-group**
group-number | Match the logical interface on which the packet was received to the specified interface group or set of interface groups. For `group-number`, specify a single value or a range of values from 0 through 255.
To assign a logical interface to an interface group `group-number`, specify the `group-number` at the `[interfaces interface-name unit number family family filter group]` hierarchy level.
NOTE: This match condition is not supported on PTX series routers.
For more information, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196. |
| **interface-group-except**
group-number | Do not match the logical interface on which the packet was received to the specified interface group or set of interface groups. For details, see the `interface-group` match condition.
NOTE: This match condition is not supported on PTX series routers. |
| **interface-set**
interface-set-name | Match the interface on which the packet was received to the specified interface set.
To define an interface set, include the `interface-set` statement at the `[edit firewall]` hierarchy level.
NOTE: This match condition is not supported on PTX series routers.
For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197. |
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-options values</td>
<td>Match the 8-bit IP option field, if present, to the specified value or list of values.</td>
</tr>
<tr>
<td></td>
<td>In place of a numeric value, you can specify one of the following text synonyms (the option values are also listed): loose-source-route (131), record-route (7), router-alert (148), security (130), stream-id (136), strict-source-route (137), or timestamp (68).</td>
</tr>
<tr>
<td></td>
<td>To match any value for the IP option, use the text synonym any. To match on multiple values, specify the list of values within square brackets ('[' and ']'). To match a range of values, use the value specification [value1-value2].</td>
</tr>
<tr>
<td></td>
<td>For example, the match condition ip-options [0-147] matches on an IP options field that contains the loose-source-route, record-route, or security values, or any other value from 0 through 147. However, this match condition does not match on an IP options field that contains only the router-alert value (148).</td>
</tr>
<tr>
<td></td>
<td>For most interfaces, a filter term that specifies an ip-option match on one or more specific IP option values (a value other than any) causes packets to be sent to the Routing Engine so that the kernel can parse the IP option field in the packet header.</td>
</tr>
<tr>
<td></td>
<td>• For a firewall filter term that specifies an ip-option match on one or more specific IP option values, you cannot specify the count, log, or syslog nonterminating actions unless you also specify the discard terminating action in the same term. This behavior prevents double-counting of packets for a filter applied to a transit interface on the router.</td>
</tr>
<tr>
<td></td>
<td>• Packets processed on the kernel might be dropped in case of a system bottleneck. To ensure that matched packets are instead sent to the Packet Forwarding Engine (where packet processing is implemented in hardware), use the ip-options any match condition.</td>
</tr>
<tr>
<td></td>
<td>The 10-Gigabit Ethernet Modular Port Concentrator (MPC), 100-Gigabit Ethernet MPC, 60-Gigabit Ethernet MPC, 60-Gigabit Queuing Ethernet MPC, and 60-Gigabit Ethernet Enhanced Queuing MPC on MX Series routers are capable of parsing the IP option field of the IPv4 packet header. For interfaces configured on those MPCs, all packets that are matched using the ip-options match condition are sent to the Packet Forwarding Engine for processing.</td>
</tr>
<tr>
<td></td>
<td>NOTE: On M and T series routers, firewall filters cannot count ip-options packets on a per option type and per interface basis. A limited workaround is to use the show pfe statistics ip options command to see ip-options statistics on a per PFE basis. See show pfe statistics ip for sample output.</td>
</tr>
<tr>
<td>ip-options-except values</td>
<td>Do not match the IP option field to the specified value or list of values. For details about specifying the values, see the ip-options match condition.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>is-fragment</td>
<td>Match if the packet is a trailing fragment of a fragmented packet. Do not match the first fragment of a fragmented packet.</td>
</tr>
<tr>
<td></td>
<td>NOTE: To match both first and trailing fragments, you can use two terms that specify different match conditions (first-fragment and is-fragment).</td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Match the packet loss priority (PLP) level.</td>
</tr>
<tr>
<td></td>
<td>Specify a single level or multiple levels: low, medium-low, medium-high, or high.</td>
</tr>
<tr>
<td></td>
<td>Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs), you must include the tri-color statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the tri-color statement is not enabled, you can only configure the high and low levels. This applies to all protocol families.</td>
</tr>
<tr>
<td></td>
<td>For information about the tri-color statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td>loss-priority-except level</td>
<td>Do not match the PLP level. For details, see the loss-priority match condition.</td>
</tr>
<tr>
<td>packet-length bytes</td>
<td>Match the length of the received packet, in bytes. The length refers only to the IP packet, including the packet header, and does not include any Layer 2 encapsulation overhead. You can also specify a range of values to be matched.</td>
</tr>
<tr>
<td>packet-length-except bytes</td>
<td>Do not match the length of the received packet, in bytes. For details, see the packet-length match type.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>port number</td>
<td>Match the UDP or TCP source or destination port field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, you cannot configure the destination-port match condition or the source-port match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the protocol match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed under destination-port.</td>
</tr>
<tr>
<td>port-except number</td>
<td>Do not match either the source or destination UDP or TCP port field. For details, see the port match condition.</td>
</tr>
<tr>
<td>precedence</td>
<td>Match the IP precedence field.</td>
</tr>
<tr>
<td>ip-precedence-value</td>
<td>In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00). You can specify precedence in hexadecimal, binary, or decimal form.</td>
</tr>
<tr>
<td>precedence-except</td>
<td>Do not match the IP precedence field.</td>
</tr>
<tr>
<td>ip-precedence-value</td>
<td>In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00). You can specify precedence in hexadecimal, binary, or decimal form.</td>
</tr>
<tr>
<td>prefix-list name [except]</td>
<td>Match the prefixes of the source or destination address fields to the prefixes in the specified list unless the except option is included. If the option is included, do not match the prefixes of the source or destination address fields to the prefixes in the specified list.</td>
</tr>
<tr>
<td></td>
<td>The prefix list is defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX1000 routers.</td>
</tr>
<tr>
<td>protocol number</td>
<td>Match the IP protocol type field. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41), ospf (89), pim (103), rsip (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>protocol-except number</td>
<td>Do not match the IP protocol type field. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41), ospf (89), pim (103), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
</tbody>
</table>
| rat-type tech-type-value | Match the radio-access technology (RAT) type specified in the 8-bit Tech-Type field of Proxy Mobile IPv4 (PMIPv4) access technology type extension. The technology type specifies the access technology through which the mobile device is connected to the access network. Specify a single value, a range of values, or a set of values. You can specify a technology type as a numeric value from 0 through 255 or as a system keyword.
 • The following numeric values are examples of well-known technology types:
 • Numeric value 1 matches IEEE 802.3.
 • Numeric value 2 matches IEEE 802.11a/b/g.
 • Numeric value 3 matches IEEE 802.16e
 • Numeric value 4 matches IEEE 802.16m.
 • Text string eutran matches 4G.
 • Text string geran matches 2G.
 • Text string utran matches 3G. |
| rat-type-except tech-type-value | Do not match the RAT Type. |
| service-filter-hit | Match a packet received from a filter where a service-filter-hit action was applied. NOTE: This match condition is not supported on PTX series routers. |
| source-address address | Match the IPv4 address of the source node sending the packet unless the except option is included. If the option is included, do not match the IPv4 address of the source node sending the packet. You cannot specify both the address and source-address match conditions in the same term. |
| [except] | |
| source-class class-names | Match one or more specified source class names (sets of source prefixes grouped together and given a class name). For more information, see “Firewall Filter Match Conditions Based on Address Classes” on page 892. |
Table 54: Firewall Filter Match Conditions for IPv4 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-class-except</td>
<td>Do not match one or more specified source class names. For details, see the source-class match condition.</td>
</tr>
<tr>
<td>class-names</td>
<td></td>
</tr>
<tr>
<td>source-port number</td>
<td>Match the UDP or TCP source port field.</td>
</tr>
<tr>
<td></td>
<td>You cannot specify the port and source-port match conditions in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition for IPv4 traffic, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the protocol match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed with the destination-port number match condition.</td>
</tr>
<tr>
<td>source-port-except</td>
<td>Do not match the UDP or TCP source port field. For details, see the source-port match condition.</td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>source-prefix-list name</td>
<td>Match source prefixes in the specified list unless the except option is included. If the option is included, do not match the source prefixes in the specified list.</td>
</tr>
<tr>
<td>[except]</td>
<td>Specify the name of a prefix list defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
<tr>
<td>tcp-established</td>
<td>Match TCP packets of an established TCP session (packets other than the first packet of a connection). This is an alias for tcp-flags "(ack</td>
</tr>
<tr>
<td></td>
<td>This match condition does not implicitly check that the protocol is TCP. To check this, specify the protocol tcp match condition.</td>
</tr>
</tbody>
</table>
Table 54: Firewall Filter Match Conditions for IPv4 Traffic *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| **tcp-flags value** | Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header. To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:
 - fin (0x01)
 - syn (0x02)
 - rst (0x04)
 - push (0x08)
 - ack (0x10)
 - urgent (0x20)
In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet. You can string together multiple flags using the bit-field logical operators. For combined bit-field match conditions, see the `tcp-established` and `tcp-initial` match conditions. If you configure this match condition, we recommend that you also configure the `protocol tcp` match statement in the same term to specify that the TCP protocol is being used on the port. For IPv4 traffic only, this match condition does not implicitly check whether the datagram contains the first fragment of a fragmented packet. To check for this condition for IPv4 traffic only, use the `first-fragment` match condition. |
| **tcp-initial** | Match the initial packet of a TCP connection. This is an alias for `tcp-flags "(!ack & syn)"`. This condition does not implicitly check that the protocol is TCP. If you configure this match condition, we recommend that you also configure the `protocol tcp` match condition in the same term. |
| **ttl number** | Match the IPv4 time-to-live number. Specify a TTL value or a range of TTL values. For `number`, you can specify one or more values from 0 through 255. This match condition is supported only on M120, M320, MX Series, and T Series routers. |
| **ttl-except number** | Do not match on the IPv4 TTL number. For details, see the `ttl` match condition. |
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3R7</td>
<td>Support was added for filtering on Differentiated Services Code Point (DSCP) and forwarding class for Routing Engine sourced packets, including IS-IS packets encapsulated in generic routing encapsulation (GRE).</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Terminating Actions | 804
- Firewall Filter Nonterminating Actions | 795
- Firewall Filter Match Conditions for IPv6 Traffic | 861
- Firewall Filter Match Conditions and Actions (PTX10003) | 1578
- enhanced-mode | 2099
- Firewall Filter Flexible Match Conditions | 787

Firewall Filter Match Conditions for IPv6 Traffic

You can configure a firewall filter with match conditions for Internet Protocol version 6 (IPv6) traffic (family inet6).

NOTE: For MX Series routers with MPCs, you need to initialize certain new firewall filters by walking the corresponding SNMP MIB, for example, `show snmp mib walk name ascii`. This forces Junos to learn the filter counters and ensure that the filter statistics are displayed. This guidance applies to all enhanced mode firewall filters, filters with flexible conditions, and filters with the certain terminating actions. See those topics, listed under Related Documentation, for details.

Table 49 on page 832 describes the match conditions you can configure at the [edit firewall family inet6 filter filter-name term term-name from] hierarchy level.
Table 55: Firewall Filter Match Conditions for IPv6 Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>address address [except]</code></td>
<td>Match the IPv6 source or destination address field unless the <code>except</code> option is included. If the option is included, do not match the IPv6 source or destination address field.</td>
</tr>
<tr>
<td><code>apply-groups</code></td>
<td>Specify which groups to inherit configuration data from. You can specify more than one group name. You must list them in order of inheritance priority. The configuration data in the first group takes priority over the data in subsequent groups.</td>
</tr>
<tr>
<td><code>apply-groups-except</code></td>
<td>Specify which groups not to inherit configuration data from. You can specify more than one group name.</td>
</tr>
<tr>
<td><code>destination-address address [except]</code></td>
<td>Match the IPv6 destination address field unless the <code>except</code> option is included. If the option is included, do not match the IPv6 destination address field. You cannot specify both the <code>address</code> and <code>destination-address</code> match conditions in the same term.</td>
</tr>
<tr>
<td><code>destination-class class-names</code></td>
<td>Match one or more specified destination class names (sets of destination prefixes grouped together and given a class name). For more information, see “Firewall Filter Match Conditions Based on Address Classes” on page 892.</td>
</tr>
<tr>
<td><code>destination-class-except class-names</code></td>
<td>Do not match one or more specified destination class names. For details, see the <code>destination-class</code> match condition.</td>
</tr>
</tbody>
</table>
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>Match the UDP or TCP destination port field. You cannot specify both the port and destination-port match conditions in the same term. If you configure this match condition, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port. NOTE: For Junos OS Evolved, you must configure the protocol match statement in the same term. In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserv (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldp (646), login (513), mobileip-agent (434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119), ntalk (518), ntp (123), pop3 (110), pptp (1723), printer (515), radacct (1813), radius (1812), rip (520), rkinit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
</tr>
<tr>
<td>destination-port-except number</td>
<td>Do not match the UDP or TCP destination port field. For details, see the destination-port match condition.</td>
</tr>
<tr>
<td>destination-prefix-list prefix-list-name [except]</td>
<td>Match the IPv6 destination prefix to the specified list unless the except option is included. If the option is included, do not match the IPv6 destination prefix to the specified list. The prefix list is defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
</tbody>
</table>
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>extension-headers \header-type</td>
<td>Match an extension header type that is contained in the packet by identifying a Next Header value.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is only supported on MPCs in MX Series routers.</td>
</tr>
<tr>
<td></td>
<td>In the first fragment of a packet, the filter searches for a match in any of the extension header types. When a packet with a fragment header is found (a subsequent fragment), the filter only searches for a match of the next extension header type because the location of other extension headers is unpredictable.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), destination (60), esp (50), fragment (44), hop-by-hop (0), mobility (135), or routing (43).</td>
</tr>
<tr>
<td></td>
<td>To match any value for the extension header option, use the text synonym any.</td>
</tr>
<tr>
<td></td>
<td>For MX Series routers with MPCs, initialize new firewall filters that include this condition by walking the corresponding SNMP MIB.</td>
</tr>
<tr>
<td>first-fragment</td>
<td>Match if the packet is the first fragment.</td>
</tr>
<tr>
<td>extension-headers-except \header-type</td>
<td>Do not match an extension header type that is contained in the packet. For details, see the extension-headers match condition.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is only supported on MPCs in MX Series routers.</td>
</tr>
</tbody>
</table>
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flexible-match-mask</td>
<td>bit-length Length of integer input (1..32 bits);</td>
</tr>
<tr>
<td></td>
<td>(Optional) Length of string input (1..128 bits)</td>
</tr>
<tr>
<td></td>
<td>bit-offset Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td></td>
<td>byte-offset Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td>flexible-mask-name Select a flexible match from predefined template field</td>
</tr>
<tr>
<td></td>
<td>mask-in-hex Mask out bits in the packet data to be matched</td>
</tr>
<tr>
<td></td>
<td>match-start Start point to match in packet</td>
</tr>
<tr>
<td></td>
<td>prefix Value data/string to be matched</td>
</tr>
<tr>
<td></td>
<td>See "Firewall Filter Flexible Match Conditions" on page 787 for details</td>
</tr>
<tr>
<td>flexible-match-range</td>
<td>bit-length Length of the data to be matched in bits (0..32)</td>
</tr>
<tr>
<td></td>
<td>bit-offset Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td></td>
<td>byte-offset Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td>flexible-range-name Select a flexible match from predefined template field</td>
</tr>
<tr>
<td></td>
<td>match-start Start point to match in packet</td>
</tr>
<tr>
<td></td>
<td>range Range of values to be matched</td>
</tr>
<tr>
<td></td>
<td>range-except Do not match this range of values</td>
</tr>
<tr>
<td></td>
<td>See "Firewall Filter Flexible Match Conditions" on page 787 for details</td>
</tr>
<tr>
<td>forwarding-class</td>
<td>class Match the forwarding class of the packet.</td>
</tr>
<tr>
<td></td>
<td>Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
</tbody>
</table>
| | For information about forwarding classes and router-internal output queues, see Understanding How Forwarding Classes Assign Classes to Output Queues.
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>forwarding-class-except class</td>
<td>Do not match the forwarding class of the packet. For details, see the <code>forwarding-class</code> match condition.</td>
</tr>
<tr>
<td>hop-limit hop-limit</td>
<td>Match the hop limit to the specified hop limit or set of hop limits. For <code>hop-limit</code>, specify a single value or a range of values from 0 through 255. Supplied on interfaces hosted on MICs or MPCs in MX Series routers only. NOTE: This match condition is supported on PTX series routers when <code>enhanced-mode</code> is configured on the router.</td>
</tr>
<tr>
<td>hop-limit-except hop-limit</td>
<td>Do not match the hop limit to the specified hop limit or set of hop limits. For details, see the <code>hop-limit</code> match condition. Supplied on interfaces hosted on MICs or MPCs in MX Series routers only. NOTE: This match condition is supported on PTX series routers when <code>enhanced-mode</code> is configured on the router.</td>
</tr>
</tbody>
</table>
| **icmp-code message-code** | Match the ICMP message code field. If you configure this match condition, we recommend that you also configure the `next-header icmp` or `next-header icmp6` match condition in the same term. If you configure this match condition, you must also configure the `icmp-type message-type` match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:
 - Parameter-problem: `ip6-header-bad` (0), `unrecognized-next-header` (1), `unrecognized-option` (2)
 - Time-exceeded: `ttl-eq-zero-during-reassembly` (1), `ttl-eq-zero-during-transit` (0)
 - Destination-unreachable: `administratively-prohibited` (1), `address-unreachable` (3), `no-route-to-destination` (0), `port-unreachable` (4)

| **icmp-code-except message-code** | Do not match the ICMP message code field. For details, see the `icmp-code` match condition. |
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type message-type</td>
<td>Match the ICMP message type field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header icmp or next-header icmp6 match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the protocol match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): certificate-path-advertisement (149), certificate-path-solicitation (148), destination-unreachable (1), echo-reply (129), echo-request (128), home-agent-address-discovery-reply (145), home-agent-address-discovery-request (144), inverse-neighbor-discovery-advertisement (142), inverse-neighbor-discovery-solicitation (141), membership-query (130), membership-report (131), membership-termination (132), mobile-prefix-advertisement-reply (147), mobile-prefix-solicitation (146), neighbor-advertisement (136), neighbor-solicit (135), node-information-reply (140), node-information-request (139), packet-too-big (2), parameter-problem (4), private-experimentation-100 (100), private-experimentation-101 (101), private-experimentation-200 (200), private-experimentation-201 (201), redirect (137), router-advertisement (134), router-renumbering (138), router-solicit (133), or time-exceeded (3). For private-experimentation-201 (201), you can also specify a range of values within square brackets.</td>
</tr>
<tr>
<td>icmp-type-except message-type</td>
<td>Do not match the ICMP message type field. For details, see the icmp-type match condition.</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>Match the interface on which the packet was received.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If you configure this match condition with an interface that does not exist, the term does not match any packet.</td>
</tr>
<tr>
<td>interface-group group-number</td>
<td>Match the logical interface on which the packet was received to the specified interface group or set of interface groups. For group-number, specify a single value or a range of values from 0 through 255.</td>
</tr>
<tr>
<td></td>
<td>To assign a logical interface to an interface group group-number, specify the group-number at the [interfaces interface-name unit number family family filter group] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>For more information, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196.</td>
</tr>
</tbody>
</table>
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-group-except</td>
<td>Do not match the logical interface on which the packet was received to the specified interface group or set of interface groups. For details, see the interface-group match condition.</td>
</tr>
<tr>
<td>group-number</td>
<td></td>
</tr>
<tr>
<td>interface-set</td>
<td>Match the interface on which the packet was received to the specified interface set. To define an interface set, include the interface-set statement at the [edit firewall] hierarchy level.</td>
</tr>
<tr>
<td>interface-set-name</td>
<td></td>
</tr>
</tbody>
</table>

For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197.
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-options values</td>
<td>Match the 8-bit IP option field, if present, to the specified value or list of values.</td>
</tr>
<tr>
<td></td>
<td>In place of a numeric value, you can specify one of the following text synonyms (the option values are also listed): loose-source-route (131), record-route (7), router-alert (148), security (130), stream-id (136), strict-source-route (137), or timestamp (68).</td>
</tr>
<tr>
<td></td>
<td>To match any value for the IP option, use the text synonym any. To match on multiple values, specify the list of values within square brackets ('[' and ']'). To match a range of values, use the value specification [value1-value2].</td>
</tr>
<tr>
<td></td>
<td>For example, the match condition ip-options [0-147] matches on an IP options field that contains the loose-source-route, record-route, or security values, or any other value from 0 through 147. However, this match condition does not match on an IP options field that contains only the router-alert value (148).</td>
</tr>
<tr>
<td></td>
<td>For most interfaces, a filter term that specifies an ip-option match on one or more specific IP option values (a value other than any) causes packets to be sent to the Routing Engine so that the kernel can parse the IP option field in the packet header.</td>
</tr>
<tr>
<td></td>
<td>• For a firewall filter term that specifies an ip-option match on one or more specific IP option values, you cannot specify the count, log, or syslog nonterminating actions unless you also specify the discard terminating action in the same term. This behavior prevents double-counting of packets for a filter applied to a transit interface on the router.</td>
</tr>
<tr>
<td></td>
<td>• Packets processed on the kernel might be dropped in case of a system bottleneck. To ensure that matched packets are instead sent to the Packet Forwarding Engine (where packet processing is implemented in hardware), use the ip-options any match condition.</td>
</tr>
<tr>
<td></td>
<td>The 10-Gigabit Ethernet Modular Port Concentrator (MPC), 100-Gigabit Ethernet MPC, 60-Gigabit Ethernet MPC, 60-Gigabit Queuing Ethernet MPC, and 60-Gigabit Ethernet Enhanced Queuing MPC on MX Series routers are capable of parsing the IP option field of the IPv4 packet header. For interfaces configured on those MPCs, all packets that are matched using the ip-options match condition are sent to the Packet Forwarding Engine for processing.</td>
</tr>
<tr>
<td>ip-options-except values</td>
<td>Do not match the IP option field to the specified value or list of values. For details about specifying the values, see the ip-options match condition.</td>
</tr>
<tr>
<td>is-fragment</td>
<td>Match if the packet is a fragment.</td>
</tr>
<tr>
<td>last-fragment</td>
<td>Match if the packet is the last fragment.</td>
</tr>
</tbody>
</table>
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss-priority level</td>
<td>Match the packet loss priority (PLP) level. Specify a single level or multiple levels: low, medium-low, medium-high, or high. Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers and EX Series switches. For IP traffic on M320, MX Series, T Series routers and EX Series switches with Enhanced II Flexible PIC Concentrators (FPCs), you must include the <code>tri-color</code> statement at the <code>[edit class-of-service]</code> hierarchy level to commit a PLP configuration with any of the four levels specified. If the <code>tri-color</code> statement is not enabled, you can only configure the high and low levels. This applies to all protocol families. For information about the <code>tri-color</code> statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td>loss-priority-except level</td>
<td>Do not match the PLP level. For details, see the <code>loss-priority</code> match condition.</td>
</tr>
<tr>
<td>next-header header-type</td>
<td>Match the first 8-bit Next Header field in the packet. Support for the <code>next-header</code> firewall match condition is available in Junos OS Release 13.3R6 and later. For IPv6, we recommend that you use the <code>payload-protocol</code> term rather than the <code>next-header</code> term when configuring a firewall filter with match conditions. Although either can be used, <code>payload-protocol</code> provides the more reliable match condition because it uses the actual payload protocol to find a match, whereas <code>next-header</code> simply takes whatever appears in the first header following the IPv6 header, which may or may not be the actual protocol. In addition, if <code>next-header</code> is used with IPv6, the accelerated filter block lookup process is bypassed and the standard filter used instead. Match the first 8-bit Next Header field in the packet. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstops (60), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmpv6 (58), ipv6 (41), mobility (135), no-next-header (59), ospf (89), pim (103), routing (43), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112). NOTE: <code>next-header icmp</code> and <code>next-header icmpv6</code> match conditions perform the same function. <code>next-header icmp</code> is the preferred option. <code>next-header icmpv6</code> is hidden in the Junos OS CLI.</td>
</tr>
<tr>
<td>next-header-except header-type</td>
<td>Do not match the 8-bit Next Header field that identifies the type of header between the IPv6 header and payload. For details, see the <code>next-header</code> match type.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>packet-length bytes</code></td>
<td>Match the length of the received packet, in bytes. The length refers only to the IP packet, including the packet header, and does not include any Layer 2 encapsulation overhead.</td>
</tr>
<tr>
<td><code>packet-length-except bytes</code></td>
<td>Do not match the length of the received packet, in bytes. For details, see the <code>packet-length</code> match type.</td>
</tr>
<tr>
<td><code>payload-protocol protocol-type</code></td>
<td>Match the payload protocol type.</td>
</tr>
<tr>
<td></td>
<td>In place of the <code>protocol-type</code> numeric value, you can specify one of the following text synonyms (the field values are also listed): specify one or a set of of the following: ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), igmp (2), ipip (4), ipv6 (41), no-next-header, ospf (89), pim (103), routing, rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112). You can also use the <code>payload-protocol</code> condition to match an extension header type that the Juniper Networks firmware cannot interpret. You can specify a range of extension header values within square brackets. When the firmware finds the first extension header type that it cannot interpret in a packet, the <code>payload-protocol</code> value is set to that extension header type. The firewall filter only examines the first extension header type that the firmware cannot interpret in the packet. NOTE: This match condition is only supported on MPCs on MX Series Routers. Initialize new firewall filters that include this condition by walking the corresponding SNMP MIB.</td>
</tr>
<tr>
<td><code>payload-protocol-except protocol-type</code></td>
<td>Do not match the payload protocol type. For details, see the <code>payload-protocol</code> match type.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is only supported on MPCs on MX Series Routers</td>
</tr>
<tr>
<td><code>port number</code></td>
<td>Match the UDP or TCP source or destination port field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, you cannot configure the <code>destination-port</code> match condition or the <code>source-port</code> match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the <code>next-header udp</code> or <code>next-header tcp</code> match condition in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the <code>protocol</code> match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed under <code>destination-port</code>.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>port-except number</td>
<td>Do not match the UDP or TCP source or destination port field. For details, see the port match condition.</td>
</tr>
</tbody>
</table>
| **prefix-list prefix-list-name** [except] | Match the prefixes of the source or destination address fields to the prefixes in the specified list unless the except option is included. If the option is included, do not match the prefixes of the source or destination address fields to the prefixes in the specified list.

The prefix list is defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level. |
| **service-filter-hit** | Match a packet received from a filter where a service-filter-hit action was applied. |
| **source-address address** [except] | Match the IPv6 address of the source node sending the packet unless the except option is included. If the option is included, do not match the IPv6 address of the source node sending the packet.

You cannot specify both the address and source-address match conditions in the same term. |
| **source-class class-names** | Match one or more specified source class names (sets of source prefixes grouped together and given a class name).

For more information, see "Firewall Filter Match Conditions Based on Address Classes" on page 892. |
| **source-class-except class-names** | Do not match one or more specified source class names. For details, see the source-class match condition. |
| **source-port number** | Match the UDP or TCP source port field.

You cannot specify the port and source-port match conditions in the same term.

If you configure this match condition, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port.

NOTE: For Junos OS Evolved, you must configure the next-header udp or next-header tcp match statement in the same term.

In place of the numeric value, you can specify one of the text synonyms listed with the destination-port number match condition. |
<p>| source-port-except number | Do not match the UDP or TCP source port field. For details, see the source-port match condition. |</p>
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-prefix-list name</code></td>
<td>Match the IPv6 address prefix of the packet source field unless the <code>except</code> option is included. If the option is included, do not match the IPv6 address prefix of the packet source field.</td>
</tr>
<tr>
<td></td>
<td>Specify a prefix list name defined at the <code>[edit policy-options prefix-list prefix-list-name]</code> hierarchy level.</td>
</tr>
<tr>
<td><code>tcp-established</code></td>
<td>Match TCP packets other than the first packet of a connection. This is a text synonym for `tcp-flags "(ack</td>
</tr>
<tr>
<td></td>
<td>NOTE: This condition does not implicitly check that the protocol is TCP. To check this, specify the <code>protocol tcp</code> match condition.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the <code>next-header tcp</code> match condition in the same term.</td>
</tr>
<tr>
<td><code>tcp-flags flags</code></td>
<td>Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header.</td>
</tr>
<tr>
<td></td>
<td>To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:</td>
</tr>
<tr>
<td></td>
<td>• fin (0x01)</td>
</tr>
<tr>
<td></td>
<td>• syn (0x02)</td>
</tr>
<tr>
<td></td>
<td>• rst (0x04)</td>
</tr>
<tr>
<td></td>
<td>• push (0x08)</td>
</tr>
<tr>
<td></td>
<td>• ack (0x10)</td>
</tr>
<tr>
<td></td>
<td>• urgent (0x20)</td>
</tr>
<tr>
<td></td>
<td>In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet.</td>
</tr>
<tr>
<td></td>
<td>You can string together multiple flags using the bit-field logical operators.</td>
</tr>
<tr>
<td></td>
<td>For combined bit-field match conditions, see the <code>tcp-established</code> and <code>tcp-initial</code> match conditions.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the <code>next-header tcp</code> match condition in the same term to specify that the TCP protocol is being used on the port.</td>
</tr>
</tbody>
</table>
Table 55: Firewall Filter Match Conditions for IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-initial</td>
<td>Match the initial packet of a TCP connection. This is a text synonym for tcp-flags "(!ack & syn)".</td>
</tr>
<tr>
<td></td>
<td>This condition does not implicitly check that the protocol is TCP. If you configure this match condition, we recommend that you also configure the next-header tcp match condition in the same term.</td>
</tr>
<tr>
<td>traffic-class number</td>
<td>Match the 8-bit field that specifies the class-of-service (CoS) priority of the packet.</td>
</tr>
<tr>
<td></td>
<td>This field was previously used as the type-of-service (ToS) field in IPv4.</td>
</tr>
<tr>
<td></td>
<td>You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>• RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), defines one code point: ef (46).</td>
</tr>
<tr>
<td></td>
<td>• RFC 2597, Assured Forwarding PHB Group, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points:</td>
</tr>
<tr>
<td></td>
<td>• af11 (10), af12 (12), af13 (14)</td>
</tr>
<tr>
<td></td>
<td>• af21 (18), af22 (20), af23 (22)</td>
</tr>
<tr>
<td></td>
<td>• af31 (26), af32 (28), af33 (30)</td>
</tr>
<tr>
<td></td>
<td>• af41 (34), af42 (36), af43 (38)</td>
</tr>
<tr>
<td>traffic-class-except number</td>
<td>Do not match the 8-bit field that specifies the CoS priority of the packet. For details, see the traffic-class match description.</td>
</tr>
</tbody>
</table>

NOTE: If you specify an IPv6 address in a match condition (the address, destination-address, or source-address match conditions), use the syntax for text representations described in RFC 4291, IP Version 6 Addressing Architecture. For more information about IPv6 addresses, see IPv6 Overview and Supported IPv6 Standards.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3R6</td>
<td>Support for the next-header firewall match condition is available in Junos OS Release 13.3R6 and later.</td>
</tr>
</tbody>
</table>
Firewall Filter Match Conditions Based on Numbers or Text Aliases

IN THIS SECTION

- Matching on a Single Numeric Value | 875
- Matching on a Range of Numeric Values | 875
- Matching on a Text Alias for a Numeric Value | 876
- Matching on a List of Numeric Values or Text Aliases | 876

Matching on a Single Numeric Value

You can specify a firewall filter match condition based on whether a particular packet field value is a specified numeric value. In the following example, a match occurs if the packet source port number is 25:

```
[edit firewall family inet filter filter1 term term1 from]
user@host# set source-port 25
```

Matching on a Range of Numeric Values

You can specify a firewall filter match condition based on whether a particular packet field value falls within a specified range of numeric values. In the following example, a match occurs for source ports values from 1024 through 65535, inclusive:

```
[edit firewall family inet filter filter2 term term1 from]
user@host# set source-port 1024-65536
```
Matching on a Text Alias for a Numeric Value

You can specify a firewall filter match condition based on whether a particular packet field value is a numeric value that you specify by using a text string as an alias for the numeric value. In the following example, a match occurs if the packet source port number is 25. For the source-port and destination-port match conditions, the text alias smtp corresponds to the numeric value 25.

\[
\text{[edit firewall family inet filter filter3 term term1 from]}
\]
\[
\text{user@host# set source-port smtp}
\]

Matching on a List of Numeric Values or Text Aliases

You can specify a firewall filter match condition based on whether a particular packet field value matches any one of multiple numeric values or text aliases that you specify within square brackets and delimited by spaces. In the following example, a match occurs if the packet source port number is any of the following values: 20 (which corresponds to the text aliases ftp-data), 25, or any value from 1024 through 65535.

\[
\text{[edit firewall family inet filter filter3 term term1 from]}
\]
\[
\text{user@host# set source-port [smtp ftp-data 25 1024-65535]}
\]

RELATED DOCUMENTATION

Guidelines for Configuring Firewall Filters | 746
Firewall Filter Match Conditions Based on Bit-Field Values | 876
Firewall Filter Match Conditions Based on Address Fields | 882
Firewall Filter Match Conditions Based on Address Classes | 892

Firewall Filter Match Conditions Based on Bit-Field Values

IN THIS SECTION

- Match Conditions for Bit-Field Values | 877
- Match Conditions for Common Bit-Field Values or Combinations | 878
- Logical Operators for Bit-Field Values | 879
- Matching on a Single Bit-Field Value or Text Alias | 880
Match Conditions for Bit-Field Values

Table 56 on page 877 lists the firewall filter match conditions that are based on whether certain bit fields in a packet are set or not set. The second and third columns list the types of traffic for which the match condition is supported.

Table 56: Binary and Bit-Field Match Conditions for Firewall Filters

<table>
<thead>
<tr>
<th>Bit-Field Match Condition</th>
<th>Match Values</th>
<th>Protocol Families for Standard Stateless Firewall Filters</th>
<th>Protocol Families for Service Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>fragment-flags flags</td>
<td>Hexadecimal values or text aliases for the three-bit IP fragmentation flags field in the IP header.</td>
<td>family inet</td>
<td>family inet</td>
</tr>
<tr>
<td>fragment-offset value</td>
<td>Hexadecimal values or text aliases for the 13-bit fragment offset field in the IP header.</td>
<td>family inet</td>
<td>family inet</td>
</tr>
<tr>
<td>tcp-flags value†</td>
<td>Hexadecimal values or text aliases for the low-order 6 bits of the 8-bit TCP flags field in the TCP header.</td>
<td>family inet family inet6 family vpls family bridge</td>
<td>family inet family inet6</td>
</tr>
</tbody>
</table>

† The Junos OS does not automatically check the first fragment bit when matching TCP flags for IPv4 traffic. To check the first fragment bit for IPv4 traffic only, use the first-fragment match condition.
Match Conditions for Common Bit-Field Values or Combinations

Table 57 on page 878 describes firewall filter match conditions that are based on whether certain commonly used values or combinations of bit fields in a packet are set or not set.

You can use text synonyms to specify some common bit-field matches. In the previous example, you can specify tcp-initial as the same match condition.

NOTE:
Some of the numeric range and bit-field match conditions allow you to specify a text synonym. For a complete list of synonyms:

- If you are using the J-Web interface, select the synonym from the appropriate list.
- If you are using the CLI, type a question mark (?) after the from statement.

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families for Standard Stateless Firewall Filters</th>
<th>Protocol Families for Service Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>first-fragment</td>
<td>Text alias for the bit-field match condition fragment-offset 0, which indicates the first fragment of a fragmented packet.</td>
<td>family inet</td>
<td>family inet</td>
</tr>
<tr>
<td>is-fragment</td>
<td>Text alias for the bit-field match condition fragment-offset 0 except, which indicates a trailing fragment of a fragmented packet.</td>
<td>family inet</td>
<td>family inet</td>
</tr>
<tr>
<td>tcp-established</td>
<td>Alias for the bit-field match condition tcp-flags "(ack</td>
<td>rst)", which indicates an established TCP session, but not the first packet of a TCP connection.</td>
<td>family inet family inet6</td>
</tr>
</tbody>
</table>
Table 57: Bit-Field Match Conditions for Common Combinations (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families for Standard Stateless Firewall Filters</th>
<th>Protocol Families for Service Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-initial</td>
<td>Alias for the bit-field match condition tcp-flags "(!ack & syn)", which indicates the first packet of a TCP connection, but not an established TCP session.</td>
<td>family inet family inet6</td>
<td>—</td>
</tr>
</tbody>
</table>

Logical Operators for Bit-Field Values

Table 58 on page 879 lists the logical operators you can apply to single bit-field values when specifying stateless firewall filter match conditions. The operators are listed in order, from highest precedence to lowest precedence. Operations are left-associative, meaning that the operations are processed from left to right.

Table 58: Bit-Field Logical Operators

<table>
<thead>
<tr>
<th>Precedence Order</th>
<th>Bit-Field Logical Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(complex-match-condition)</td>
<td>Grouping—The complex match condition is evaluated before any operators outside the parentheses are applied.</td>
</tr>
<tr>
<td>2</td>
<td>! match-condition</td>
<td>Negation—A match occurs if the match condition is false.</td>
</tr>
<tr>
<td>3</td>
<td>match-condition-1 & match-condition-2</td>
<td>Logical AND—A match occurs if both match conditions are true.</td>
</tr>
<tr>
<td></td>
<td>or match-condition-1 + match-condition-2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>match-condition-1</td>
<td>match-condition-2</td>
</tr>
<tr>
<td></td>
<td>or match-condition-1 , match-condition-2</td>
<td></td>
</tr>
</tbody>
</table>
Matching on a Single Bit-Field Value or Text Alias

For the fragment-flags and tcp-flags bit-match conditions, you can specify firewall filter match conditions based on whether a particular bit in the packet field is set or not set.

- Numeric value to specify a single bit—You can specify a single bit-field match condition by using a numeric value that has one bit set. Depending on the match condition, you can specify a decimal value, a binary value, or a hexadecimal value. To specify a binary value, specify the number with the prefix `b`. To specify a hexadecimal value, specify the number with the prefix `0x`.

 In the following example, a match occurs if the RST bit in the TCP flags field is set:

  ```
  [edit firewall family inet filter filter_tcp_rst_number term term1 from]
  user@host# set tcp-flags 0x04
  ```

- Text alias to specify a single bit—You generally specify a single bit-field match condition by using a text alias enclosed in double-quatation marks (`" "`).

 In the following example, a match occurs if the RST bit in the TCP flags field is set:

  ```
  [edit firewall family inet filter filter_tcp_rst_alias term term1 from]
  user@host# set tcp-flags "rst"
  ```

Matching on Multiple Bit-Field Values or Text Aliases

You can specify a firewall filter match condition based on whether a particular set of bits in a packet field are set.

- Numeric values to specify multiple set bits—When you specify a numeric value whose binary representation has more than one set bit, the value is treated as a logical AND of the set bits.

 In the following example, the two match conditions are the same. A match occurs if either bit `0x01` or `0x02` is not set:

  ```
  [edit firewall family inet filter reset_or_not_initial_packet term term5 from]
  user@host# set tcp-flags "!0x3"
  user@host# set tcp-flags "!(0x01 & 0x02)"
  ```
• Text aliases that specify common bit-field matches—You can use text aliases to specify some common bit-field matches. You specify these matches as a single keyword.

In the following example, the **tcp-established** condition, which is an alias for "**(ack | rst)**", specifies that a match occurs on TCP packets other than the first packet of a connection:

```
[edit firewall family inet filter reset_or_not_initial_packet term term6 from]
user@host# set tcp-established
```

Matching on a Negated Bit-Field Value

To negate a match, precede the value with an exclamation point.

In the following example, a match occurs if the **RST** bit in the TCP flags field is **not** set:

```
[edit firewall family inet filter filter_tcp_rst term term1 from]
user@host# set tcp-flags "!rst"
```

Matching on the Logical OR of Two Bit-Field Values

You can use the **logical OR operator** (| or ,) to specify that a match occurs if a bit field matches either of two bit-field values specified.

In the following example, a match occurs if the packet is **not** the initial packet in a TCP session:

```
[edit firewall family inet filter not_initial_packet term term3 from]
user@host# set tcp-flags "!syn | ack"
```

In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet. In a packet that is not the initial packet in a TCP session, either the SYN flag is not set or the ACK flag is set.

Matching on the Logical AND of Two Bit-Field Values

You can use the **logical AND operator** (& or +) to specify that a match occurs if a bit field matches both of two bit-field values specified.

In the following example, a match occurs if the packet is the initial packet in a TCP session:

```
[edit firewall family inet filter initial_packet term term2 from]
user@host# set tcp-flags "syn & !ack"
```
In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet. In a packet that is an initial packet in a TCP session, the SYN flag is set and the ACK flag is not set.

Grouping Bit-Field Match Conditions

You can use the logical grouping notation to specify that the complex match condition inside the parentheses is evaluated before any operators outside the parentheses are applied.

In the following example, a match occurs if the packet is a TCP reset or if the packet is not the initial packet in the TCP session:

```
[edit firewall family inet filter reset_or_not_initial_packet term term4 from]
user@host# set tcp-flags "!(syn & !ack) | rst"
```

In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet. In a packet that is not the initial packet in a TCP session, the SYN flag is not set and the ACK field is set.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Match Conditions Based on Numbers or Text Aliases | 875
- Firewall Filter Match Conditions Based on Address Fields | 882
- Firewall Filter Match Conditions Based on Address Classes | 892

Firewall Filter Match Conditions Based on Address Fields

IN THIS SECTION

- Implied Match on the '0/0 except' Address for Firewall Filter Match Conditions Based on Address Fields | 883
- Matching an Address Field to a Subnet Mask or Prefix | 883
- Matching an Address Field to an Excluded Value | 884
- Matching Either IP Address Field to a Single Value | 888
- Matching an Address Field to Noncontiguous Prefixes | 889
- Matching an Address Field to a Prefix List | 891
You can configure firewall filter match conditions that evaluate packet address fields—IPv4 source and destination addresses, IPv6 source and destination addresses, or media access control (MAC) source and destination addresses—against specified addresses or prefix values.

Implied Match on the '0/0 except' Address for Firewall Filter Match Conditions Based on Address Fields

Every firewall filter match condition based on a set of addresses or address prefixes is associated with an implicit match on the address **0.0.0.0/0 except** (for IPv4 or VPLS traffic) or **0:0:0:0:0:0:0:0/0 except** (for IPv6 traffic). As a result, any packet whose specified address field does not match any of the specified addresses or address prefixes fails to match the entire term.

Matching an Address Field to a Subnet Mask or Prefix

You can specify a single match condition to match a source address or destination address that falls within a specified address prefix.

IPv4 Subnet Mask Notation

For an IPv4 address, you can specify a subnet mask value rather than a prefix length. For example:

```
[edit firewall family inet filter filter_on_dst_addr term term3 from]
user@host# set address 10.0.0.10/255.0.0.255
```

Prefix Notation

To specify the address prefix, use the notation `prefix/`prefix-length`. In the following example, a match occurs if a destination address matches the prefix **10.0.0.0/8**:

```
[edit firewall family inet filter filter_on_dst_addr term term1 from]
user@host# set destination-address 10.0.0.0/8
```

Default Prefix Length for IPv4 Addresses

If you do not specify `/prefix-length` for an IPv4 address, the prefix length defaults to `/32`. The following example illustrates the default prefix value:

```
[edit firewall family inet filter filter_on_dst_addr term term2 from]
user@host# set destination-address 10
user@host# show
destination-address {
    10.0.0.0/32;
}
**Default Prefix Length for IPv6 Addresses**

If you do not specify /prefix-length for an IPv6 address, the prefix length defaults to /128. The following example illustrates the default prefix value:

```
[edit firewall family inet6 filter filter_on_dst_addr term term1 from]
user@host# set destination-address ::10
user@host# show
destination-address {
 ::10/128;
}
```

**Default Prefix Length for MAC Addresses**

If you do not specify /prefix-length for a media access control (MAC) address of a VPLS, Layer 2 CCC, or Layer 2 bridging packet, the prefix length defaults to /48. The following example illustrates the default prefix value:

```
[edit firewall family vpls filter filter_on_dst_mac_addr term term1 from]
user@host# set destination-mac-address 01:00:0c:cc:cc:cd
user@host# show
destination-address {
 01:00:0c:cc:cc:cd/48;
}
```

**Matching an Address Field to an Excluded Value**

For the address-field match conditions, you can include the except keyword to specify that a match occurs for an address field that does not match the specified address or prefix.

**Excluding IP Addresses in IPv4 or IPv6 Traffic**

For the following IPv4 and IPv6 match conditions, you can include the except keyword to specify that a match occurs for an IP address field that does not match the specified IP address or prefix:

- **address address except**—A match occurs if either the source IP address or the destination IP address does not match the specified address or prefix.

- **source-address address except**—A match occurs if the source IP address does not match the specified address or prefix.

- **destination-address address except**—A match occurs if the destination IP address does not match the specified address or prefix.
In the following example, a match occurs for any IPv4 destination addresses that fall under the 192.168.10.0/8 prefix, except for addresses that fall under 192.168.0.0/16. All other addresses implicitly do not match this condition.

```
[edit firewall family inet filter filter_on_dst_addr term term1 from]
user@host# set 192.168.0.0/16 except
user@host# set 192.168.10.0/8
user@host# show
destination-address {
 192.168.0.0/16 except;
 192.168.10.0/8;
}
```

In the following example, a match occurs for any IPv4 destination address that does not fall within the prefix 10.1.1.0/24:

```
[edit firewall family inet filter filter_on_dst_addr term term24 from]
user@host# set destination-address 0.0.0.0/0
user@host# set destination-address 10.1.1.0/24 except
user@host# show
destination-address {
 0.0.0.0/0;
 10.1.1.0/24 except;
}
```

**Excluding IP Addresses in VPLS or Layer 2 Bridging Traffic**

For the following VPLS and Layer 2 bridging match conditions on MX Series routers only, you can include the `except` keyword to specify that a match occurs for an IP address field that does not match the specified IP address or prefix:

- **ip-address address except**—A match occurs if either the source IP address or the destination IP address does not match the specified address or prefix.

- **source-ip-address address except**—A match occurs if the source IP address does not match the specified address or prefix.

- **destination-ip-address address except**—A match occurs if the destination IP address does not match the specified address or prefix.
In the following example for filtering VPLS traffic on an MX Series router, a match occurs if the source IP address falls within the exception range of 55.0.1.0/255.0.255.0 and the destination IP address matches 5172.16.5.0/8:

```
[edit]
firewall {
 family vpls {
 filter fvpls {
 term 1 {
 from {
 ip-address {
 55.0.0.0/8;
 55.0.1.0/255.0.255.0 except;
 }
 }
 then {
 count from-55/8;
 discard;
 }
 }
 }
 }
}
```

**Excluding MAC Addresses in VPLS or Layer 2 Bridging Traffic**

For the following VPLS or Layer 2 bridging traffic match conditions, you can include the `except` keyword to specify that a match occurs for a MAC address field that does not match the specified MAC address or prefix:

- **source-mac-address address except**—A match occurs if the source MAC address does not match the specified address or prefix.

- **destination-mac-address address except**—A match occurs if either the destination MAC address does not match the specified address or prefix.

**Excluding All Addresses Requires an Explicit Match on the ‘0/0’ Address**

If you specify a firewall filter match condition that consists of one or more address-exception match conditions (address match conditions that use the `except` keyword) but no `matchable` address match conditions, packets that do not match any of the configured prefixes fails the overall match operation. To configure a firewall filter term of address-exception match conditions to match any address that is not in the prefix list, include an explicit match of 0/0 so that the term contain a matchable address.
For the following example firewall filter for IPv4 traffic, the `from-trusted-addresses` term fails to discard matching traffic, and the `INTRUDERS-COUNT` counter is missing from the output of the `show firewall` operational mode command:

```
[edit]
user@host# show policy-options
prefix-list TRUSTED-ADDRESSES {
 10.2.1.0/24;
 192.168.122.0/24;
}

[edit firewall family inet filter protect-RE]
user@host# show
term from-trusted-addresses {
 from {
 source-prefix-list {
 TRUSTED-ADDRESSES except;
 }
 protocol icmp;
 }
 then {
 count INTRUDERS-COUNT;
 discard;
 }
}

term other-icmp {
 from {
 protocol icmp;
 }
 then {
 count VALID-COUNT;
 accept;
 }
}

term all {
 then accept;
}

[edit]
user@host# run show firewall

Filter: protect-RE
Counters:
To cause a filter term of address-exception match conditions to match any address that is not in the prefix list, include an explicit match of 0/0 in the set of match conditions:

```plaintext
[edit firewall family inet filter protect-RE]
user@host# show term from-trusted-addresses
from {
    source-prefix-list {
        0.0.0.0/0;
        TRUSTED-ADDRESSES except;
    }
    protocol icmp;
}
```

With the addition of the 0.0.0.0/0 source prefix address to the match condition, the `from-trusted-addresses` term discards matching traffic, and the INTRUDERS-COUNT counter displays in the output of the `show firewall` operational mode command:

```plaintext
[edit]
user@host# run show firewall
```

Matching Either IP Address Field to a Single Value

For IPv4 and IPv6 traffic and for VPLS and Layer 2 bridging traffic on MX Series routers only, you can use a single match condition to match a single address or prefix value to either the source or destination IP address field.

Matching Either IP Address Field in IPv4 or IPv6 Traffic

For IPv4 or IPv6 traffic, you can use a single match condition to specify the same address or prefix value as the match for either the source or destination IP address field. Instead of creating separate filter terms
that specify the same address for the source-address and destination-address match conditions, you use only the address match condition. A match occurs if either the source IP address or the destination IP address matches the specified address or prefix.

If you use the except keyword with the address match condition, a match occurs if both the source IP address and the destination IP address match the specified value before the exception applies.

In a firewall filter term that specifies either the source-address or the destination-address match condition, you cannot also specify the address match condition.

Matching Either IP Address Field in VPLS or Layer 2 Bridging Traffic

For VPLS or Layer 2 bridging traffic on MX Series routers only, you can use a single match condition to specify the same address or prefix value as the match for either the source or destination IP address field. Instead of creating separate filter terms that specify the same address for the source-ip-address and destination-ip-address match conditions, you use only the ip-address match condition. A match occurs if either the source IP address or the destination IP address matches the specified address or prefix.

If you use the except keyword with the ip-address match condition, a match occurs if both the source IP address and the destination IP address match the specified value before the exception applies.

In a firewall filter term that specifies either the source-ip-address or the destination-ip-address match condition, you cannot also specify the ip-address match condition.

Matching an Address Field to Noncontiguous Prefixes

For IPv4 traffic only, specify a single match condition to match the IP source or destination address field to any prefix specified. The prefixes do not need to be contiguous. That is, the prefixes under the source-address or destination-address match condition do not need to be adjacent or neighboring to one another.

In the following example, a match occurs if a destination address matches either the 10.0.0.0/8 prefix or the 192.168.0.0/32 prefix:

```plaintext
[edit firewall family inet filter filter_on_dst_addr term term5 from]
user@host# set destination-address 10.0.0.0/8
user@host# set destination-address 192.168.0.0/32
user@host# show
destination-address {
    destination-address 10.0.0.0/8;
    destination-address 192.168.0.0/32;
}
```

The order in which you specify the prefixes within the match condition is not significant. Packets are evaluated against all the prefixes in the match condition to determine whether a match occurs. If prefixes overlap, longest-match rules are used to determine whether a match occurs. A match condition of
noncontiguous prefixes includes an implicit 0/0 except statement, which means that any prefix that does not match any prefix included in the match condition is explicitly considered not to match.

Because the prefixes are order-independent and use longest-match rules, longer prefixes subsume shorter ones as long as they are the same type (whether you specify except or not). This is because anything that would match the longer prefix would also match the shorter one.

Consider the following example:

```plaintext
[edit firewall family inet filter filter_on_src_addr term term1 from]
source-address {
  172.16.0.0/10;
  172.16.2.0/24 except;
  192.168.1.0;
  192.168.1.192/26 except;
  192.168.1.254;
  172.16.3.0/24; # ignored
  10.2.2.2 except; # ignored
}
```

Within the source-address match condition, two addresses are ignored. The 172.16.3.0/16 value is ignored because it falls under the address 172.16.0.0/10, which is the same type. The 10.2.2.2 except value is ignored because it is subsumed by the implicit 0.0.0.0/0 except match value.

Suppose the following source IP address are evaluated by this firewall filter:

- Source IP address 172.16.1.2—This address matches the 172.16.0.0/10 prefix, and thus the action in the then statement is taken.

- Source IP address 172.16.2.2—This address matches the 172.16.2.0/24 prefix. Because this prefix is negated (that is, includes the except keyword), an explicit mismatch occurs. The next term in the filter is evaluated, if there is one. If there are no more terms, the packet is discarded.

- Source IP address 10.1.2.3—This address does not match any of the prefixes included in the source-address condition. Instead, it matches the implicit 0.0.0.0/0 except at the end of the list of prefixes configured under the source-address match condition, and is considered to be a mismatch.

The 172.16.3.0/24 statement is ignored because it falls under the address 172.16.0.0/10—both are the same type.

The 10.2.2.2 except statement is ignored because it is subsumed by the implicit 0.0.0.0/0 except statement at the end of the list of prefixes configured under the source-address match condition.
BEST PRACTICE: When a firewall filter term includes the `from address address` match condition and a subsequent term includes the `from source-address address` match condition for the same address, packets might be processed by the latter term before they are evaluated by any intervening terms. As a result, packets that should be rejected by the intervening terms might be accepted instead, or packets that should be accepted might be rejected instead.

To prevent this from occurring, we recommend that you do the following. For every firewall filter term that contains the `from address address` match condition, replace that term with two separate terms: one that contains the `from source-address address` match condition, and another that contains the `from destination-address address` match condition.

Matching an Address Field to a Prefix List

You can define a list of IPv4 or IPv6 address prefixes for use in a routing policy statement or in a stateless firewall filter match condition that evaluates packet address fields.

To define a list of IPv4 or IPv6 address prefixes, include the `prefix-list prefix-list` statement.

```plaintext
prefix-list name {
  ip-addresses;
  apply-path path;
}
```

You can include the statement at the following hierarchy levels:

- `[edit policy-options]`
- `[edit logical-systems logical-system-name policy-options]`

After you have defined a prefix list, you can use it when specifying a firewall filter match condition based on an IPv4 or IPv6 address prefix.

```plaintext
[edit firewall family family-name filter filter-name term term-name]
from {
  source-prefix-list {
    prefix-lists;
  }
  destination-prefix-list {
    prefix-lists;
  }
}
```
Firewall Filter Match Conditions Based on Address Classes

For IPv4 and IPv6 traffic only, you can use class-based firewall filter conditions to match packet fields based on source class or destination class.

Source-Class Usage

A source class is a set of source prefixes grouped together and given a class name. To configure a firewall filter term that matches an IP source address field to one or more source classes, use the `source-class class-name` match condition under the `edit firewall family (inet | inet6) filter filter-name term term-name from` hierarchy level.

Source-class usage (SCU) enables you to monitor the amount of traffic originating from a specific prefix. With this feature, usage can be tracked and customers can be billed for the traffic they receive.

Destination-Class Usage

A destination class is a set of destination prefixes grouped together and given a class name. To configure a firewall filter term that matches an IP destination address field to one or more destination classes, use the `destination-class class-name` match condition at the `edit firewall family (inet | inet6) filter filter-name term term-name from` hierarchy level.

Destination-class usage (DCU) enables you to track how much traffic is sent to a specific prefix in the core of the network originating from one of the specified interfaces.
Note, however, that DCU limits your ability to keep track of traffic moving in the reverse direction. It can account for all traffic that arrives on a core interface and heads toward a specific customer, but it cannot count traffic that arrives on a core interface from a specific prefix.

Guidelines for Applying SCU or DCU Firewall Filters to Output Interfaces

When applying a SCU or DCU firewall filter to an interface, keep the following guidelines in mind:

- **Output interfaces**—Class-based firewall filter match conditions work only for firewall filters that you apply to output interfaces. This is because the SCU and DCU are determined after route lookup occurs.
- **Input interfaces**—Although you can specify a source class and destination class for an input firewall filter, the counters are incremented only if the firewall filter is applied on the output interface.
- **Output interfaces for tunnel traffic**—SCU and DCU are not supported on the interfaces you configure as the output interface for tunnel traffic for transit packets exiting the router (or switch) through the tunnel.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Match Conditions for IPv4 Traffic | 845
- Firewall Filter Match Conditions for IPv6 Traffic | 861
- Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
- Firewall Filter Match Conditions Based on Numbers or Text Aliases | 875
- Firewall Filter Match Conditions Based on Bit-Field Values | 876
- Firewall Filter Match Conditions Based on Address Fields | 882

Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic

IN THIS SECTION

- IP-Based Filtering of MPLS Traffic | 894
- Selective Port Mirroring of MPLS Traffic | 895
- Sample Configurations | 896
In an MPLS packet, the IP header comes immediately after the MPLS header. The IP-based filtering feature provides a deep inspection mechanism, where a maximum of up to eight MPLS labels of the inner payload can be inspected to enable filtering of MPLS traffic based on IP parameters. The filtered MPLS traffic can also be port mirrored to a monitoring device to offer network-based services in the core MPLS network.

IP-Based Filtering of MPLS Traffic

Prior to Junos OS Release 18.4R1, filtering based on IP parameters was not supported for MPLS family filter. With the introduction of the IP-based filtering feature, you can apply inbound and outbound filters for MPLS-tagged IPv4 and IPv6 packets based on IP parameters, such as source and destination addresses, Layer 4 protocol type, and source and destination ports.

The IP-based filtering feature enables you to filter MPLS packets at the ingress of an interface, where the filtering is done using match conditions on the inner payload of the MPLS packet. The selective MPLS traffic can then be port mirrored to a remote monitoring device using logical tunnels.

To support IP-based filtering, additional match conditions are added that allow MPLS packets to be deep inspected to parse the inner payload with Layer 3 and Layer 4 headers before the appropriate filters are applied.

NOTE: The IP-based filtering feature is supported only for MPLS-tagged IPv4 and IPv6 packets. In other words, the MPLS filters match IP parameters only when the IP payload comes immediately after the MPLS labels.

In other scenarios, where the MPLS payload includes pseudowires, protocols other than inet and inet6, or other encapsulations like Layer 2 VPN or VPLS, the IP-based filtering feature is not supported.

The following match conditions are added for the IP-based filtering of MPLS traffic:

- IPv4 source address
- IPv4 destination address
- IPv6 source address
- IPv6 destination address
- Protocol
- Source port
- Destination port
- Source IPv4 prefix list
- Destination IPv4 prefix list
• Source IPv6 prefix list
• Destination IPv6 prefix list

NOTE: The following match combinations are supported for the IP-based filtering of MPLS traffic:

• Source and destination address match conditions with IPv4 and IPv6 prefix lists.
• Source and destination port address and protocol types match conditions with IPv4 and IPv6 prefix lists.

Selective Port Mirroring of MPLS Traffic

Port mirroring is the capability of mirroring a packet to a configured destination, in addition to the normal processing and forwarding of the packets. Port mirroring is applied as an action for a firewall filter, which is applied at the ingress or egress of any interface. Similarly, the selective port mirroring feature provides the capability to mirror MPLS traffic, which is filtered based on IP parameters, to a mirrored destination using logical tunnels.

To enable selective port mirroring, additional actions are configured at the [edit firewall family mpls filter filter-name term-name then] hierarchy level, in addition to the existing counter, accept, and discard actions:

• port-mirror
• port-mirror-instance

Port Mirroring

The port-mirror action enables port mirroring globally on the device, which applies to all Packet Forwarding Engines (PFEs) and associated interfaces.

For MPLS family filter, the port-mirror action is enabled for global port mirroring.

Port Mirroring Instance

The port-mirror-instance action enables you to customize each instance with different properties for input sampling and port mirroring output destinations, instead of having to use a single system-wide configuration for port mirroring.

You can configure only two port mirroring instances per Flexible PIC Concentrator (FPC) by including the instance port-mirror-instance-name statement at the [edit forwarding-options port-mirror] hierarchy level. You can then associate individual port mirroring instances with an FPC, PIC, or (Forwarding Engine Board (FEB) depending on the device hardware.

For MPLS family filter, the port-mirror-instance action is enabled only for the port-mirroring instance.
NOTE: For both port-mirror and port-mirror-instance actions, the output interface must be enabled with Layer 2 family and not family MPLS (Layer 3) for the selective port mirroring feature to work.

Sample Configurations

IN THIS SECTION

- IP-Based Filtering Configuration | 896
- Selective Port Mirroring Configuration | 898
- Mirrored Destination Configuration | 899

IP-Based Filtering Configuration

```
[edit firewall family mpls filter mpls-filter]
term ipv4-term {
  from {
    ip-version {
      ipv4 {
        source-address {
          10.10.10.10/24;
        }
        destination-address {
          20.20.20.20/24;
        }
        protocol tcp {
          source-port 100;
          destination-port 200;
        }
        source-prefix-list ipv4-source-users;
        destination-prefix-list ipv4-destination-users;
      }
    }
  }
  exp 1;
  then port-mirror;
  then accept;
  then count;
```

term ipv6-term {
 from {
 ip-version {
 ipv6 {
 source-address {
 2000::1/128;
 }
 destination-address {
 3000::1/128;
 }
 protocol tcp {
 source-port 100;
 destination-port 200;
 }
 source-prefix-list ipv6-source-users;
 destination-prefix-list ipv6-destination-users;
 }
 }
 exp 1;
 }
 then port-mirror-instance port-mirror-instance1;
 then accept;
 then count;
}

[edit policy-options]
prefix-list ipv4-source-users {
 172.16.1.16/28;
 172.16.2.16/28;
}
prefix-list ipv6-source-users {
 2001::1/128;
 3001::1/128;
}

[edit interfaces]
xe-0/0/1 {
 unit 0 {
 family inet {
 address 100.100.100.1/30;
 }
 family mpls {

Selective Port Mirroring Configuration

[edit forwarding-options]
port-mirroring {
 input {
 rate 2;
 run-length 4;
 maximum-packet-length 500;
 }
 family any {
 output {
 interface xe-2/0/2.0;
 }
 }
}

[edit forwarding-options]
port-mirroring {
 instance {
 port-mirror-instance1 {
 input {
 rate 3;
 run-length 5;
 maximum-packet-length 500;
 }
 family any {
 output {
 interface xe-2/0/2.0;
 }
 }
 }
 }
}

NOTE: The output interface xe-2/0/2.0 is configured for Layer 2 family and not family MPLS.

For both port-mirror and port-mirror-instance actions, the output interface must be enabled with Layer 2 family and not family MPLS (Layer 3) for the selective port mirroring feature to work.

Mirrored Destination Configuration

```
[edit interfaces]
xe-2/0/2 {
    vlan-tagging;
    encapsulation extended-vlan-bridge;
    unit 0 {
        vlan-id 600;
    }
}
```

```
[edit bridge-domains]
bd {
    domain-type bridge;
    interface xe-2/0/2.0;
}
```

RELATED DOCUMENTATION

- ip-version | 2153
- ipv4 | 2150
- ipv6 | 2152

Firewall Filter Match Conditions for MPLS Traffic

You can configure a firewall filter with match conditions for MPLS traffic (family mpls).

- The input-list filter-names and output-list filter-names statements for firewall filters for the mpls protocol family are supported on all interfaces except for management interfaces and internal Ethernet interfaces (fxp or em0), loopback interfaces (lo0), and USB modem interfaces (umd).

- If a packet has multiple MPLS labels, the filter applies the match conditions to only the bottom label in the label stack.
• (QFX5100, QFX5110, QFX5200, QFX5210) If you are applying an MPLS filter on a loopback interface, you can only filter on the label, exp, ttl=1, and Layer 4 tcp and udp port number fields. For TTL, you must explicitly specify ttl=1 under family mpls to match on TTL=1 packets. The only actions you can configure are accept, discard, and count. You can apply the filter only in the ingress direction.

Table 59 on page 900 describes the match-conditions you can configure at the [edit firewall family mpls filter filter-name term term-name from] hierarchy level.

Table 59: Firewall Filter Match Conditions for MPLS Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply-groups</td>
<td>Specify which groups to inherit configuration data from. You can specify more than one group name. You must list them in order of inheritance priority. The configuration data in the first group takes priority over the data in subsequent groups.</td>
</tr>
<tr>
<td>apply-groups-except</td>
<td>Specify which groups not to inherit configuration data from. You can specify more than one group name.</td>
</tr>
<tr>
<td>destination-port number</td>
<td>Match on the UDP or TCP destination port field.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldap (646), login (513), mobileip-agent (434), mobilip-tn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-snm (139), nftpd (2049), nntp (119), nntalk (518), ntp (123), pop3 (110), pptp (1723), printer (515), radacct (1813), radius (1812), rip (520), rlogin (2108), smtp (25), snmp (161), snmptrap (162), snmp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
</tr>
<tr>
<td>exp number</td>
<td>Experimental (EXP) bit number or range of bit numbers in the MPLS header of a packet. For number, you can specify one or more values from 0 through 7 in binary, decimal or hexadecimal format, as given below:</td>
</tr>
<tr>
<td></td>
<td>• A single EXP bit—for example, exp 3</td>
</tr>
<tr>
<td></td>
<td>• Several EXP bits—for example, exp 0,4</td>
</tr>
<tr>
<td></td>
<td>• A range of EXP bits—for example, exp [0-5]. These values are not supported on filters applied to the loopback interface.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
</tbody>
</table>
Table 59: Firewall Filter Match Conditions for MPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp-except number</td>
<td>Do not match on the EXP bit number or range of bit numbers in the MPLS header. For number, you can specify one or more values from 0 through 7.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Forwarding class. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>forwarding-class-except class</td>
<td>Do not match on the forwarding class. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>Interface on which the packet was received. You can configure a match condition that matches packets based on the interface on which they were received.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If you configure this match condition with an interface that does not exist, the term does not match any packet.</td>
</tr>
<tr>
<td>interface-set interface-set-name</td>
<td>Match the interface on which the packet was received to the specified interface set.</td>
</tr>
<tr>
<td></td>
<td>To define an interface set, include the interface-set statement at the [edit firewall] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197.</td>
</tr>
<tr>
<td>ip-version number</td>
<td>(Interfaces on Enhanced Scaling flexible PIC concentrators [FPCs] on supported T Series routers only) Inner IP version. To match MPLS-tagged IPv4 packets, match on the text synonym ipv4.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td>label number</td>
<td>MPLS label value or range of label values in the MPLS header of a packet.</td>
</tr>
<tr>
<td></td>
<td>For number, you can specify one or more values from 0 through 1048575 in decimal or hexadecimal format, as given below:</td>
</tr>
<tr>
<td></td>
<td>• A single label—for example, label 3</td>
</tr>
<tr>
<td></td>
<td>• Several labels—for example, label 0,4</td>
</tr>
<tr>
<td></td>
<td>• A range of labels—for example, label [0-5]. These values are not supported on filters applied to the loopback interface.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Match the packet loss priority (PLP) level. Specify a single level or multiple levels: low, medium-low, medium-high, or high. Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers and EX Series switches. For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs), and EX Series switches, you must include the tri-color statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the tri-color statement is not enabled, you can only configure the high and low levels. This applies to all protocol families. For information about the tri-color statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td>loss-priority-except level</td>
<td>Do not match the PLP level. For details, see the loss-priority match condition. NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td>source-port number</td>
<td>Match on the TCP or UDP source port field. You cannot specify the port and source-port match conditions in the same term. If you configure this match condition for IPv4 traffic, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port. In place of the numeric field, you can specify one of the text synonyms listed under destination-port.</td>
</tr>
<tr>
<td>ttl number</td>
<td>Time To Live (TTL) is an 8-bit field in the MPLS label that signifies the remaining time that a packet has left before its life ends and is dropped. For number, you can specify a value from 0 through 255.</td>
</tr>
</tbody>
</table>

Table 60 on page 903 describes the actions you can configure for MPLS firewall filters at the **[edit firewall family mpls filter filter-name term term-name then]** hierarchy level.
Table 60: Supported Actions for MPLS Firewall Filters

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet</td>
</tr>
</tbody>
</table>
| count counter-name | Count the number of packets that pass this filter or term.
NOTE: We recommend that you configure a counter for each term in a firewall
filter, so that you can monitor the number of packets that match the conditions
specified in each filter term. |
| discard | Discard a packet silently without sending an Internet Control Message Protocol
(ICMP) message |
| policer | Starting with Junos OS 13.2X51-D15, you can send traffic matched by an
MPLS filter to a two-color policer. |
| three-color-policer | Starting with Junos OS 13.2X51-D15, you can send traffic matched by an
MPLS filter to a three-color policer. |

RELATED DOCUMENTATION

Overview of MPLS Firewall Filters on Loopback Interface	1608
Guidelines for Configuring Firewall Filters	746
Firewall Filter Terminating Actions	804
Firewall Filter Nonterminating Actions	795

Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic

IN THIS SECTION

- Matching on IPv4 or IPv6 Packet Header Address or Port Fields in MPLS Flows | 904
- IP Address Match Conditions for MPLS Traffic | 904
- IP Port Match Conditions for MPLS Traffic | 905
Matching on IPv4 or IPv6 Packet Header Address or Port Fields in MPLS Flows

To support network-based service in a core network, you can configure a firewall filter that matches Internet Protocol version 4 (IPv4) or version 6 (IPv6) packet header fields in MPLS traffic (family mpls). The firewall filter can match IPv4 or IPv6 packets as an inner payload of an MPLS packet that has a single MPLS label or up to five MPLS labels stacked together. You can configure match conditions based on IPv4 addresses and IPv4 port numbers or IPv6 addresses and IPv6 port numbers in the header.

Firewall filters based on MPLS-tagged IPv4 headers are supported for interfaces on Enhanced Scaling flexible PIC concentrators (FPCs) on T320, T640, T1600, TX Matrix, and TX Matrix Plus routers and switches only. However, the firewall filters based on MPLS-tagged IPv6 headers are supported for interfaces on the Type 5 FPC on T4000 Core Routers only. The feature is not supported for the router or switch loopback interface (lo0), the router or switch management interface (fxp0 or em0), or USB modem interfaces (umd).

To configure a firewall filter term that matches an address or port fields in the Layer 4 header of packets in an MPLS flow, you use the `ip-version ipv4` match condition to specify that the term is to match packets based on inner IP fields:

- To match an MPLS-tagged IPv4 packet on the source or destination address field in the IPv4 header, specify the match condition at the `[edit firewall family mpls filter filter-name term term-name from ip-version ipv4]` hierarchy level.
- To match an MPLS-tagged IPv4 packet on the source or destination port field in the Layer 4 header, specify the match condition at the `[edit firewall family mpls filter filter-name term term-name from ip-version ipv4 protocol (udp | tcp)]` hierarchy level.

To configure a firewall filter term that matches an address or port fields in the IPv6 header of packets in an MPLS flow, you use the `ip-version ipv6` match condition to specify that the term is to match packets based on inner IP fields:

- To match an MPLS-tagged IPv6 packet on the source or destination address field in the IPv6 header, specify the match condition at the `[edit firewall family mpls filter filter-name term term-name from ip-version ipv6]` hierarchy level.
- To match an MPLS-tagged IPv6 packet on the source or destination port field in the Layer 4 header, specify the match condition at the `[edit firewall family mpls filter filter-name term term-name from ip-version ipv6 protocol (udp | tcp)]` hierarchy level.

IP Address Match Conditions for MPLS Traffic

Table 61 on page 905 describes the IP address-specific match conditions you can configure at the `[edit firewall family mpls filter filter-name term term-name from ip-version ip-version]` hierarchy level.
Table 61: IP Address-Specific Firewall Filter Match Conditions for MPLS Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>Match the address of the destination node to receive the packet.</td>
</tr>
<tr>
<td>address</td>
<td></td>
</tr>
<tr>
<td>destination-address</td>
<td>Do not match the address of the destination node to receive the packet.</td>
</tr>
<tr>
<td>address except</td>
<td></td>
</tr>
<tr>
<td>protocol number</td>
<td>Match the IP protocol type field. In place of the numeric value, you can</td>
</tr>
<tr>
<td></td>
<td>specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-</td>
</tr>
<tr>
<td></td>
<td>hop (0), icmp (1), icmpv6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41),</td>
</tr>
<tr>
<td></td>
<td>ospf (89), pim (103), rsrp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td>source-address</td>
<td>Match the address of the source node sending the packet.</td>
</tr>
<tr>
<td>address</td>
<td></td>
</tr>
<tr>
<td>source-address</td>
<td>Do not match the address of the source node sending the packet.</td>
</tr>
<tr>
<td>address except</td>
<td></td>
</tr>
</tbody>
</table>

IP Port Match Conditions for MPLS Traffic

Table 62 on page 905 describes the IP port-specific match-conditions you can configure at the [edit firewall family mpls filter filter-name term term-name from ip-version ip-version protocol (udp | tcp)] hierarchy level.

Table 62: IP Port-Specific Firewall Filter Match Conditions for MPLS Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port</td>
<td>Match on the UDP or TCP destination port field.</td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text</td>
</tr>
<tr>
<td></td>
<td>synonyms (the port numbers are also listed): afs (1483), bgp (179), biff</td>
</tr>
<tr>
<td></td>
<td>(512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcpc (67),</td>
</tr>
<tr>
<td></td>
<td>domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp</td>
</tr>
<tr>
<td></td>
<td>(21), ftp-data (20), http (80), https (443), ident (113), imap (143),</td>
</tr>
<tr>
<td></td>
<td>kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate</td>
</tr>
<tr>
<td></td>
<td>(760), kshell (544), ldap (389), ldap (646), login (513), mobileip-agent</td>
</tr>
<tr>
<td></td>
<td>(434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137),</td>
</tr>
<tr>
<td></td>
<td>netbios-ssn (139), nfd (2049), nntp (119), ntalk (518), ntp (123), pop3</td>
</tr>
<tr>
<td></td>
<td>(110), ppp (1723), printer (515), radacct (1813), radius (1812), rip (520),</td>
</tr>
<tr>
<td></td>
<td>rkin (2108), smtp (25), snmp (161), snmptrap (162), snmp (444), socks</td>
</tr>
<tr>
<td></td>
<td>(1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65),</td>
</tr>
<tr>
<td></td>
<td>talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
</tr>
</tbody>
</table>
Table 62: IP Port-Specific Firewall Filter Match Conditions for MPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destination-port-except</code></td>
<td>Do not match on the UDP or TCP destination port field.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed with the destination-port match condition.</td>
</tr>
<tr>
<td><code>source-port number</code></td>
<td>Match on the TCP or UDP source port field.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric field, you can specify one of the text synonyms listed under destination-port.</td>
</tr>
<tr>
<td><code>source-port-except</code></td>
<td>Do not match on the TCP or UDP source port field.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Terminating Actions | 804
- Firewall Filter Nonterminating Actions | 795

Firewall Filter Match Conditions for VPLS Traffic

In the `from` statement in the VPLS filter term, you specify conditions that the packet must match for the action in the `then` statement to be taken. All conditions in the `from` statement must match for the action to be taken. The order in which you specify match conditions is not important, because a packet must match all the conditions in a term for a match to occur.

If you specify no match conditions in a term, that term matches all packets.

An individual condition in a `from` statement can contain a list of values. For example, you can specify numeric ranges. You can also specify multiple source addresses or destination addresses. When a condition defines a list of values, a match occurs if one of the values in the list matches the packet.

Individual conditions in a `from` statement can be negated. When you negate a condition, you are defining an explicit mismatch. For example, the negated match condition for `forwarding-class` is `forwarding-class-except`. If a packet matches a negated condition, it is immediately considered not to match the `from` statement, and the next term in the filter is evaluated, if there is one. If there are no more terms, the packet is discarded.
You can configure a firewall filter with match conditions for Virtual Private LAN Service (VPLS) traffic (family vpls). Table 63 on page 907 describes the match-conditions you can configure at the [edit firewall family vpls filter filter-name term term-name from] hierarchy level.

NOTE: Not all match conditions for VPLS traffic are supported on all routing platforms or switching platforms. A number of match conditions for VPLS traffic are supported only on MX Series 5G Universal Routing Platforms.

In the VPLS documentation, the word router in terms such as PE router is used to refer to any device that provides routing functions.

Table 63: Firewall Filter Match Conditions for VPLS Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-mac-address</td>
<td>Match the destination media access control (MAC) address of a VPLS packet.</td>
</tr>
<tr>
<td>address</td>
<td></td>
</tr>
<tr>
<td>destination-port number</td>
<td>(MX Series routers and EX Series switches only) Match the UDP or TCP destination port field.</td>
</tr>
<tr>
<td>number</td>
<td>You cannot specify both the port and destination-port match conditions in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), csvpserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldap (646), login (513), mobileip-agent (434), mobilip-mn (435), mpls (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119), ntalk (518), ntp (123), pop3 (110), pptp (1723), printer (515), radacct (1813), radius (1812), rip (520), rkit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
</tr>
<tr>
<td>destination-port-except</td>
<td>(MX Series routers and EX Series switches only) Do not match on the TCP or UDP destination port field. You cannot specify both the port and destination-port match conditions in the same term.</td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-prefix-list name</td>
<td>(ACX Series routers, MX Series routers, and EX Series switches only) Match destination prefixes in the specified list. Specify the name of a prefix list defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>NOTE: VPLS prefix lists support only IPv4 addresses. IPv6 addresses included in a VPLS prefix list will be discarded.</td>
</tr>
<tr>
<td>destination-prefix-list name except</td>
<td>(MX Series routers and EX Series switches only) Do not match destination prefixes in the specified list. For more information, see the destination-prefix-list match condition.</td>
</tr>
<tr>
<td>dscp number</td>
<td>(MX Series routers and EX Series switches only) Match the Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant 6 bits of this byte form the DSCP. For more information, see the Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td></td>
<td>You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>• RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), defines one code point: ef (46).</td>
</tr>
<tr>
<td></td>
<td>• RFC 2597, Assured Forwarding PHB Group, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points:</td>
</tr>
<tr>
<td></td>
<td>af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38)</td>
</tr>
<tr>
<td>dscp-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the DSCP. For details, see the dscp match condition.</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ether-type values</td>
<td>Match the 2-octet IEEE 802.3 Length/EtherType field to the specified value or list of values.</td>
</tr>
<tr>
<td></td>
<td>You can specify decimal or hexadecimal values from 0 through 65535 (0xFFFF). A value from 0 through 1500 (0x05DC) specifies the length of an Ethernet Version 1 frame. A value from 1536 (0x0600) through 65535 specifies the EtherType (nature of the MAC client protocol) of an Ethernet Version 2 frame.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the hexadecimal values are also listed): aarp (0x80F3), appletalk (0x809B), arp (0x0806), ipv4 (0x0800), ipv6 (0x86DD), mpls-multicast (0x8848), mpls-unicast (0x8847), oam (0x8902), ppp (0x880B), pppoe-discovery (0x8863), pppoe-session (0x8864), or sna (0x80D5).</td>
</tr>
<tr>
<td>ether-type-except values</td>
<td>Do not match the 2-octet Length/EtherType field to the specified value or list of values.</td>
</tr>
<tr>
<td></td>
<td>For details about specifying the values, see the ether-type match condition.</td>
</tr>
<tr>
<td>flexible-match-mask value</td>
<td>bit-length</td>
</tr>
<tr>
<td></td>
<td>Starting in Junos OS 14.2, flexible offset filters are supported in firewall hierarchy configurations.</td>
</tr>
<tr>
<td></td>
<td>Length of the data to be matched in bits, not needed for string input (0..128)</td>
</tr>
<tr>
<td></td>
<td>bit-offset</td>
</tr>
<tr>
<td></td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td></td>
<td>byte-offset</td>
</tr>
<tr>
<td></td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td>flexible-mask-name</td>
</tr>
<tr>
<td></td>
<td>Select a flexible match from predefined template field</td>
</tr>
<tr>
<td></td>
<td>mask-in-hex</td>
</tr>
<tr>
<td></td>
<td>Mask out bits in the packet data to be matched</td>
</tr>
<tr>
<td></td>
<td>match-start</td>
</tr>
<tr>
<td></td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td></td>
<td>prefix</td>
</tr>
<tr>
<td></td>
<td>Value data/string to be matched</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flexible-match-range</td>
<td></td>
</tr>
<tr>
<td>value bits</td>
<td>Length of the data to be matched in bits (0..32)</td>
</tr>
<tr>
<td>bit-length</td>
<td></td>
</tr>
<tr>
<td>bit-offset</td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td>byte-offset</td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td>flexible-range-name</td>
<td>Select a flexible match from predefined template field</td>
</tr>
<tr>
<td>match-start</td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td>range</td>
<td>Range of values to be matched</td>
</tr>
<tr>
<td>range-except</td>
<td>Do not match this range of values</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Match the forwarding class. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>forwarding-class-except</td>
<td>Do not match the forwarding class. For details, see the forwarding-class match condition.</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-code message-code</td>
<td>Match the ICMP message code field. If you configure this match condition, we recommend that you also configure the <code>next-header icmp</code> or <code>next-header icmp6</code> match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, you must also configure the <code>icmp-type message-type</code> match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:</td>
</tr>
<tr>
<td></td>
<td>• parameter-problem: <code>ip6-header-bad</code> (0), <code>unrecognized-next-header</code> (1), <code>unrecognized-option</code> (2)</td>
</tr>
<tr>
<td></td>
<td>• time-exceeded: <code>ttl-eq-zero-during-reassembly</code> (1), <code>ttl-eq-zero-during-transit</code> (0)</td>
</tr>
<tr>
<td></td>
<td>• destination-unreachable: <code>address-unreachable</code> (3), <code>administratively-prohibited</code> (1), <code>no-route-to-destination</code> (0), <code>port-unreachable</code> (4)</td>
</tr>
<tr>
<td>icmp-code-except message-code</td>
<td>Do not match the ICMP message code field. For details, see the <code>icmp-code</code> match condition.</td>
</tr>
<tr>
<td>icmp-code number</td>
<td>(MX Series routers and EX Series switches only) Match the ICMP message code field. If you configure this match condition, we recommend that you also configure the <code>ip-protocol icmp</code> or <code>ip-protocol icmp6</code> match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, you must also configure the <code>icmp-type message-type</code> match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:</td>
</tr>
<tr>
<td></td>
<td>• parameter-problem: <code>ip6-header-bad</code> (0), <code>unrecognized-next-header</code> (1), <code>unrecognized-option</code> (2)</td>
</tr>
<tr>
<td></td>
<td>• time-exceeded: <code>ttl-eq-zero-during-reassembly</code> (1), <code>ttl-eq-zero-during-transit</code> (0)</td>
</tr>
<tr>
<td></td>
<td>• destination-unreachable: <code>address-unreachable</code> (3), <code>administratively-prohibited</code> (1), <code>no-route-to-destination</code> (0), <code>port-unreachable</code> (4)</td>
</tr>
<tr>
<td>icmp-code-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the ICMP code field. For details, see the <code>icmp-code</code> match condition.</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| `interface interface-name` | Interface on which the packet was received. You can configure a match condition that matches packets based on the interface on which they were received.
NOTE: If you configure this match condition with an interface that does not exist, the term does not match any packet. |
| `interface-group group-number` | Match the logical interface on which the packet was received to the specified interface group or set of interface groups. For `group-number`, specify a single value or a range of values from 0 through 255.
To assign a logical interface to an interface group `group-number`, specify the `group-number` at the `[interfaces interface-name unit number family family filter group]` hierarchy level.
For more information, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196.
NOTE: This match condition is not supported on T4000 Type 5 FPCs. |
| `interface-group-except group-name` | Do not match the logical interface on which the packet was received to the specified interface group or set of interface groups. For details, see the `interface-group` match condition.
NOTE: This match condition is not supported on T4000 Type 5 FPCs. |
| `interface-set interface-set-name` | Match the interface on which the packet was received to the specified interface set.
To define an interface set, include the `interface-set` statement at the `[edit firewall]` hierarchy level. For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197. |
| `ip-address address` | (MX Series routers and EX Series switches only) 32-bit address that supports the standard syntax for IPv4 addresses.
Note that when using this term, the match condition ether-type IPv4 must be defined on the same term. |
| `ip-destination-address address` | (MX Series routers and EX Series switches only) 32-bit address that is the final destination node address for the packet.
Note that when using this term, the match condition ether-type IPv4 must be defined on the same term. |
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-precedence</td>
<td>(MX Series routers and EX Series switches only) IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00).</td>
</tr>
<tr>
<td>ip-precedence-field</td>
<td></td>
</tr>
<tr>
<td>ip-precedence-except</td>
<td>(MX Series routers and EX Series switches only) Do not match on the IP precedence field.</td>
</tr>
<tr>
<td>ip-precedence-field</td>
<td></td>
</tr>
<tr>
<td>ip-protocol number</td>
<td>(MX Series routers and EX Series switches only) IP protocol field.</td>
</tr>
<tr>
<td>ip-protocol-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the IP protocol field.</td>
</tr>
<tr>
<td>ip-source-address address</td>
<td>(MX Series routers and EX Series switches only) IP address of the source node sending the packet.</td>
</tr>
<tr>
<td></td>
<td>Note that when using this term, the match condition ether-type IPv4 must also be defined on the same term.</td>
</tr>
<tr>
<td>ipv6-source-prefix-list named-list</td>
<td>(MX Series only) Match the IPv6 source address in a named-list.</td>
</tr>
<tr>
<td>ipv6-address address</td>
<td>(MX Series and EX9200 only) 128-bit address that supports the standard syntax for IPv6 addresses. Starting in Junos OS 14.2, firewall family bridge IPv6 match criteria is supported on MX Series and EX9200 switches.</td>
</tr>
<tr>
<td>ipv6-destination-address address</td>
<td>(IMX Series and EX9200 only) 128-bit address that is the final destination node address for this packet. Note that when using this term, the match condition ether-type IPv6 must be defined on the same term.</td>
</tr>
<tr>
<td>ipv6-destination-prefix-list named-list</td>
<td>(MX Series only) Match the IPv6 destination addresses in a named-list.</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-next-header protocol</td>
<td>(MX Series only) Match IPv6 next header protocol type.</td>
</tr>
<tr>
<td></td>
<td>The following list shows the supported values for protocol:</td>
</tr>
<tr>
<td></td>
<td>• ah—IP Security authentication header</td>
</tr>
<tr>
<td></td>
<td>• dstopts—IPv6 destination options</td>
</tr>
<tr>
<td></td>
<td>• egp—Exterior gateway protocol</td>
</tr>
<tr>
<td></td>
<td>• esp—IPSec Encapsulating Security Payload</td>
</tr>
<tr>
<td></td>
<td>• fragment—IPv6 fragment header</td>
</tr>
<tr>
<td></td>
<td>• gre—Generic routing encapsulation</td>
</tr>
<tr>
<td></td>
<td>• hop-by-hop—IPv6 hop by hop options</td>
</tr>
<tr>
<td></td>
<td>• icmp—Internet Control Message Protocol</td>
</tr>
<tr>
<td></td>
<td>• icmp6—Internet Control Message Protocol Version 6</td>
</tr>
<tr>
<td></td>
<td>• igmp—Internet Group Management Protocol</td>
</tr>
<tr>
<td></td>
<td>• ipip—IP in IP</td>
</tr>
<tr>
<td></td>
<td>• ipv6—IPv6 in IP</td>
</tr>
<tr>
<td></td>
<td>• no-next-header—IPv6 no next header</td>
</tr>
<tr>
<td></td>
<td>• ospf—Open Shortest Path First</td>
</tr>
<tr>
<td></td>
<td>• pim—Protocol Independent Multicast</td>
</tr>
<tr>
<td></td>
<td>• routing—IPv6 routing header</td>
</tr>
<tr>
<td></td>
<td>• rsvp—Resource Reservation Protocol</td>
</tr>
<tr>
<td></td>
<td>• sctp—Stream Control Transmission Protocol</td>
</tr>
<tr>
<td></td>
<td>• tcp—Transmission Control Protocol</td>
</tr>
<tr>
<td></td>
<td>• udp—User Datagram Protocol</td>
</tr>
<tr>
<td></td>
<td>• vrrp—Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>ipv6-next-header-except protocol</td>
<td>(MX Series only) Do not match the IPv6 next header protocol type.</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6-payload-protocol protocol</code></td>
<td>(MX Series only) Match IPv6 payload protocol type. The following list shows the supported values for <code>protocol</code>:</td>
</tr>
</tbody>
</table>
| | - ah—IP Security authentication header
| | - dstopts—IPv6 destination options
| | - egp—Exterior gateway protocol
| | - esp—IPSec Encapsulating Security Payload
| | - fragment—IPv6 fragment header
| | - gre—Generic routing encapsulation
| | - hop-by-hop—IPv6 hop by hop options
| | - icmp—Internet Control Message Protocol
| | - icmp6—Internet Control Message Protocol Version 6
| | - igmp—Internet Group Management Protocol
| | - ipip—IP in IP
| | - ipv6—IPv6 in IP
| | - no-next-header—IPv6 no next header
| | - ospf—Open Shortest Path First
| | - pim—Protocol Independent Multicast
| | - routing—IPv6 routing header
| | - rsvp—Resource Reservation Protocol
| | - sctp—Stream Control Transmission Protocol
| | - tcp—Transmission Control Protocol
| | - udp—User Datagram Protocol
| | - vrrp—Virtual Router Redundancy Protocol |
| `ipv6-payload-protocol-except protocol` | (MX Series only) Do not match the IPv6 payload protocol. |
| `ipv6-prefix-list named-list` | (MX Series only) Match the IPv6 address in a `named-list`. |
| `ipv6-source-address address` | (MX Series only) 128-bit address that is the originating source node address for this packet. |
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-traffic-class number</td>
<td>(MX Series only) Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant 6 bits of this byte form the DSCP. For more information, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic. You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>• RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), defines one code point: ef (46).</td>
</tr>
<tr>
<td></td>
<td>• RFC 2597, Assured Forwarding PHB Group, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points: af11 (10), af12 (12), af13 (14), af14 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38)</td>
</tr>
<tr>
<td>ipv6-traffic-class-except number</td>
<td>Do not match the DSCP number.</td>
</tr>
<tr>
<td>learn-vlan-1p-priority number</td>
<td>(MX Series routers, M320 router, and EX Series switches only) Match on the IEEE 802.1p learned VLAN priority bits in the provider VLAN tag (the only tag in a single-tag frame with 802.1Q VLAN tags or the outer tag in a dual-tag frame with 802.1Q VLAN tags). Specify a single value or multiple values from 0 through 7. Compare with the user-vlan-1p-priority match condition. NOTE: This match condition supports the presence of a control word for MX Series routers and the M320 router.</td>
</tr>
<tr>
<td>learn-vlan-1p-priority-except number</td>
<td>(MX Series routers, M320 router, and EX Series switches only) Do not match on the IEEE 802.1p learned VLAN priority bits. For details, see the learn-vlan-1p-priority match condition. NOTE: This match condition supports the presence of a control word for MX Series routers and the M320 router.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>learn-vlan-dei</td>
<td>(MX Series routers and EX Series switches only) Match the user VLAN ID drop eligibility indicator (DEI) bit.</td>
</tr>
<tr>
<td>learn-vlan-dei-except</td>
<td>(MX Series routers and EX Series switches only) Do not match the user VLAN ID DEI bit.</td>
</tr>
<tr>
<td>learn-vlan-id number</td>
<td>(MX Series routers and EX Series switches only) VLAN identifier used for MAC learning.</td>
</tr>
<tr>
<td>learn-vlan-id-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the VLAN identifier used for MAC learning.</td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Packet loss priority (PLP) level. Specify a single level or multiple levels: low, medium-low, medium-high, or high. Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers. For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs) and EX Series switches, you must include the tri-color statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the tri-color statement is not enabled, you can only configure the high and low levels. This applies to all protocol families. For information about the tri-color statement and about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td>loss-priority-except level</td>
<td>Do not match on the packet loss priority level. Specify a single level or multiple levels: low, medium-low, medium-high, or high. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td>port number</td>
<td>(MX Series routers and EX Series switches only) TCP or UDP source or destination port. You cannot specify both the port match condition and either the destination-port or source-port match condition in the same term.</td>
</tr>
<tr>
<td>port-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the TCP or UDP source or destination port. You cannot specify both the port match condition and either the destination-port or source-port match condition in the same term.</td>
</tr>
</tbody>
</table>
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix-list name</td>
<td>(MX Series routers and EX Series switches only) Match the destination or source prefixes in the specified list. Specify the name of a prefix list defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>NOTE: VPLS prefix lists support only IPV4 addresses. IPV6 addresses included in a VPLS prefix list will be discarded.</td>
</tr>
<tr>
<td>prefix-list name except</td>
<td>(MX Series routers and EX Series switches only) Do not match the destination or source prefixes in the specified list. For more information, see the destination-prefix-list match condition.</td>
</tr>
<tr>
<td>source-mac-address address</td>
<td>Source MAC address of a VPLS packet.</td>
</tr>
<tr>
<td>source-port number</td>
<td>(MX Series routers and EX Series switches only) TCP or UDP source port field. You cannot specify the port and source-port match conditions in the same term.</td>
</tr>
<tr>
<td>source-port-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the TCP or UDP source port field. You cannot specify the port and source-port match conditions in the same term.</td>
</tr>
<tr>
<td>source-prefix-list name</td>
<td>(ACX Series routers, MX Series routers, and EX Series switches only) Match the source prefixes in the specified prefix list. Specify a prefix list name defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>NOTE: VPLS prefix lists support only IPV4 addresses. IPV6 addresses included in a VPLS prefix list will be discarded.</td>
</tr>
<tr>
<td>source-prefix-list name except</td>
<td>(MX Series routers and EX Series switches only) Do not match the source prefixes in the specified prefix list. For more information, see the source-prefix-list match condition.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| tcp-flags flags | Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header. To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:
 • fin (0x01)
 • syn (0x02)
 • rst (0x04)
 • push (0x08)
 • ack (0x10)
 • urgent (0x20)
 In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet.
 You can string together multiple flags using the bit-field logical operators.
 If you configure this match condition for IPv6 traffic, we recommend that you also configure the `next-header` tcp match condition in the same term to specify that the TCP protocol is being used on the port. |
| traffic-type type-name | (MX Series routers and EX Series switches only) Traffic type. Specify broadcast, multicast, unknown-unicast, or known-unicast. |
| traffic-type-except type-name | (MX Series routers and EX Series switches only) Do not match on the traffic type. Specify broadcast, multicast, unknown-unicast, or known-unicast. |
| user-vlan-1p-priority number | (MX Series routers, M320 router, and EX Series switches only) Match on the IEEE 802.1p user priority bits in the customer VLAN tag (the inner tag in a dual-tag frame with 802.1Q VLAN tags). Specify a single value or multiple values from 0 through 7.
 Compare with the learn-vlan-1p-priority match condition.
 NOTE: This match condition supports the presence of a control word for MX Series routers and the M320 router. |
| user-vlan-1p-priority-except number | (MX Series routers, M320 router, and EX Series switches only) Do not match on the IEEE 802.1p user priority bits. For details, see the user-vlan-1p-priority match condition.
 NOTE: This match condition supports the presence of a control word for MX Series routers and the M320 router. |
| user-vlan-id number | (MX Series routers and EX Series switches only) Match the first VLAN identifier that is part of the payload. |
Table 63: Firewall Filter Match Conditions for VPLS Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-vlan-id-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the first VLAN identifier that is part of the payload.</td>
</tr>
<tr>
<td>vlan-ether-type value</td>
<td>VLAN Ethernet type field of a VPLS packet.</td>
</tr>
<tr>
<td>vlan-ether-type-except value</td>
<td>Do not match on the VLAN Ethernet type field of a VPLS packet.</td>
</tr>
</tbody>
</table>

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>Starting in Junos OS 14.2, flexible offset filters are supported in firewall hierarchy configurations.</td>
</tr>
<tr>
<td>14.2</td>
<td>Starting in Junos OS 14.2, firewall family bridge IPv6 match criteria is supported on MX Series and EX9200 switches.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Terminating Actions | 804
- Firewall Filter Nonterminating Actions | 795

Firewall Filter Match Conditions for Layer 2 CCC Traffic

You can configure a firewall filter with match conditions for Layer 2 circuit cross-connect (CCC) traffic (family ccc).

The following restrictions apply to firewall filters for Layer 2 CCC traffic:

- The input-list filter-names and output-list filter-names statements for firewall filters for the ccc protocol family are supported on all interfaces with the exception of management interfaces and internal Ethernet interfaces (fxp or em0), loopback interfaces (lo0), and USB modem interfaces (umd).
- Only on MX Series routers and EX Series switches, you cannot apply a Layer 2 CCC stateless firewall filter (a firewall filter configured at the [edit firewall filter family ccc] hierarchy level) as an output filter.
On MX Series routers and EX Series switches, firewall filters configured for the family ccc statement can be applied only as input filters.

Table 64 on page 921 describes the match-conditions you can configure at the [edit firewall family ccc filter filter-name term term-name from] hierarchy level.

Table 64: Firewall Filter Match Conditions for Layer 2 CCC Traffic

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply-groups</td>
<td>Specify which groups to inherit configuration data from. You can specify more than one group name. You must list them in order of inheritance priority. The configuration data in the first group takes priority over the data in subsequent groups.</td>
</tr>
<tr>
<td>apply-groups-except</td>
<td>Specify which groups not to inherit configuration data from. You can specify more than one group name.</td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>(MX Series routers and EX Series switches only) Match the destination media access control (MAC) address of a virtual private LAN service (VPLS) packet.</td>
</tr>
<tr>
<td></td>
<td>To have packets correctly evaluated by this match condition when applied to egress traffic flowing over a CCC circuit from a logical interface on an I-chip DPC in a Layer 2 virtual private network (VPN) routing instance, you must make a configuration change to the Layer 2 VPN routing instance. You must explicitly disable the use of a control word for traffic flowing out over a Layer 2 circuit. The use of a control word is enabled by default for Layer 2 VPN routing instances to support the emulated virtual circuit (VC) encapsulation for Layer 2 circuits.</td>
</tr>
<tr>
<td></td>
<td>To explicitly disable the use of a control word for Layer 2 VPNs, include the no-control-word statement at either of the following hierarchy levels:</td>
</tr>
<tr>
<td></td>
<td>• [edit routing-instances routing-instance-name protocols l2vpn]</td>
</tr>
<tr>
<td></td>
<td>• [edit logical-systems logical-system-name routing-instances routing-instance-name protocols l2vpn]</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>For more information, see Disabling the Control Word for Layer 2 VPNs.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>flexible-match-mask</td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
</tr>
<tr>
<td>bit-length</td>
<td>Length of the data to be matched in bits, not needed for string input (0..128)</td>
</tr>
<tr>
<td>bit-offset</td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td>byte-offset</td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td>flexible-mask-name</td>
<td>Select a flexible match from predefined template field</td>
</tr>
<tr>
<td>mask-in-hex</td>
<td>Mask out bits in the packet data to be matched</td>
</tr>
<tr>
<td>match-start</td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td>prefix</td>
<td>Value data/string to be matched</td>
</tr>
<tr>
<td>flexible-match-range</td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
</tr>
<tr>
<td>bit-length</td>
<td>Length of the data to be matched in bits (0..32)</td>
</tr>
<tr>
<td>bit-offset</td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td>byte-offset</td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td>flexible-range-name</td>
<td>Select a flexible match from predefined template field</td>
</tr>
<tr>
<td>match-start</td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td>range</td>
<td>Range of values to be matched</td>
</tr>
<tr>
<td>range-except</td>
<td>Do not match this range of values</td>
</tr>
<tr>
<td>forwarding-class</td>
<td></td>
</tr>
<tr>
<td>class</td>
<td>Forwarding class. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>forwarding-class-except</td>
<td></td>
</tr>
<tr>
<td>class</td>
<td>Do not match on the forwarding class. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
</tbody>
</table>
Table 64: Firewall Filter Match Conditions for Layer 2 CCC Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-group</td>
<td>Match the logical interface on which the packet was received to the specified interface group or set of interface groups. For group-number, specify a single value or a range of values from 0 through 255.</td>
</tr>
<tr>
<td>group-number</td>
<td>To assign a logical interface to an interface group group-number, specify the group-number at the [interfaces interface-name unit number family family filter group] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers. For more information, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196.</td>
</tr>
<tr>
<td>interface-group-except</td>
<td>Do not match the logical interface on which the packet was received to the specified interface group or set of interface groups. For details, see the interface-group match condition.</td>
</tr>
<tr>
<td>number</td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td>learn-vlan-1p-priority</td>
<td>(MX Series routers, M320 router, and EX Series switches only) Match on the IEEE 802.1p learned VLAN priority bits in the provider VLAN tag (the only tag in a single-tag frame with 802.1Q VLAN tags or the outer tag in a dual-tag frame with 802.1Q VLAN tags). Specify a single value or multiple values from 0 through 7.</td>
</tr>
<tr>
<td>number</td>
<td>Compare with the user-vlan-1p-priority match condition.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition supports the presence of a control word for MX Series and M320 routers.</td>
</tr>
<tr>
<td>learn-vlan-1p-priority-except</td>
<td>(MX Series routers, M320 router, and EX Series switches only) Do not match on the IEEE 802.1p learned VLAN priority bits. For details, see the learn-vlan-1p-priority match condition.</td>
</tr>
<tr>
<td>number</td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition supports the presence of a control word for MX Series and M320 routers.</td>
</tr>
</tbody>
</table>
Table 64: Firewall Filter Match Conditions for Layer 2 CCC Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss-priority level</td>
<td>Packet loss priority (PLP) level. Specify a single level or multiple levels: low, medium-low, medium-high, or high.</td>
</tr>
<tr>
<td></td>
<td>Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers and EX Series switches.</td>
</tr>
<tr>
<td></td>
<td>For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs), and EX Series switches, you must include the tri-color statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the tri-color statement is not enabled, you can only configure the high and low levels. This applies to all protocol families.</td>
</tr>
<tr>
<td></td>
<td>For information about the tri-color statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td>loss-priority-except level</td>
<td>Do not match on the packet loss priority level. Specify a single level or multiple levels: low, medium-low, medium-high, or high.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td>user-vlan-1p-priority number</td>
<td>(MX Series routers, M320 router, and EX Series switches only) Match on the IEEE 802.1p user priority bits in the customer VLAN tag (the inner tag in a dual-tag frame with 802.1Q VLAN tags). Specify a single value or multiple values from 0 through 7.</td>
</tr>
<tr>
<td></td>
<td>Compare with the learn-vlan-1p-priority match condition.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition supports the presence of a control word for MX Series and M320 routers.</td>
</tr>
<tr>
<td>user-vlan-1p-priority-except number</td>
<td>(MX Series routers, M320 router, and EX Series switches only) Do not match on the IEEE 802.1p user priority bits. For details, see the user-vlan-1p-priority match condition.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition is not supported on PTX series packet transport routers.</td>
</tr>
<tr>
<td></td>
<td>NOTE: This match condition supports the presence of a control word for MX Series and M320 routers.</td>
</tr>
</tbody>
</table>
Firewall Filter Match Conditions for Layer 2 Bridging Traffic

Only on MX Series routers and EX Series switches, you can configure a standard stateless firewall filter with match conditions for Layer 2 bridging traffic (family bridge). Table 65 on page 925 describes the **match-conditions** you can configure at the [edit firewall family bridge filter filter-name term term-name from] hierarchy level.

Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-mac-address</td>
<td>Destination media access control (MAC) address of a Layer 2 packet in a bridging environment.</td>
</tr>
<tr>
<td>address</td>
<td></td>
</tr>
<tr>
<td>destination-port number</td>
<td>TCP or UDP destination port field. You cannot specify both the port and destination-port match conditions in the same term.</td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>destination-port-except</td>
<td>Do not match the TCP/UDP destination port.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>Match the IP destination prefixes in a named-list.</td>
</tr>
<tr>
<td>named-list</td>
<td></td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| **dscp number** | Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant 6 bits of this byte form the DSCP. For more information, see *Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic*.
You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include `0x` as a prefix. To specify the value in binary form, include `b` as a prefix.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
* RFC 3246, *An Expedited Forwarding PHB (Per-Hop Behavior)*, defines one code point: ef (46).
* RFC 2597, *Assured Forwarding PHB Group*, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points: af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38) |
| **dscp-except number** | Do not match on the DSCP number. For more information, see the `dscp-except` match condition. |
| **ether-type value** | Match the 2-octet IEEE 802.3 Length/EtherType field to the specified value or list of values.
You can specify decimal or hexadecimal values from 0 through 65535 (0xFFFF). A value from 0 through 1500 (0x05DC) specifies the length of an Ethernet Version 1 frame. A value from 1536 (0x0600) through 65535 specifies the EtherType (nature of the MAC client protocol) of an Ethernet Version 2 frame.
In place of the numeric value, you can specify one of the following text synonyms (the hexadecimal values are also listed): **aarp** (0x80F3), **appletalk** (0x809B), **arp** (0x0806), **ipv4** (0x0800), **ipv6** (0x86DD), **mpls-multicast** (0x8848), **mpls-unicast** (0x8847), **oam** (0x8902), **ppp** (0x880B), **pppoe-discovery** (0x8863), **pppoe-session** (0x8864), **sna** (0x80D5).
NOTE: When matching on ip-address or ipv6-address, the ether-type ipv4 or ipv6, respectively, must also be specified in order to limit matches to ip traffic only. |
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ether-type-except value</td>
<td>Do not match the 2-octet IEEE 802.3 Length/EtherType field to the specified value or list of values. For details about specifying the values, see the ether-type match condition.</td>
</tr>
<tr>
<td>flexible-match-mask value</td>
<td></td>
</tr>
<tr>
<td>bit-length</td>
<td>Length of the data to be matched in bits, not needed for string input (0..128)</td>
</tr>
<tr>
<td>bit-offset</td>
<td>Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td>byte-offset</td>
<td>Byte offset after the match start point</td>
</tr>
<tr>
<td>flexible-mask-name</td>
<td>Select a flexible match from predefined template field</td>
</tr>
<tr>
<td>mask-in-hex</td>
<td>Mask out bits in the packet data to be matched</td>
</tr>
<tr>
<td>match-start</td>
<td>Start point to match in packet</td>
</tr>
<tr>
<td>prefix</td>
<td>Value data/string to be matched</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flex-match-range-value</td>
<td>bit-length Length of the data to be matched in bits (0..32)</td>
</tr>
<tr>
<td></td>
<td>bit-offset Bit offset after the (match-start + byte) offset (0..7)</td>
</tr>
<tr>
<td></td>
<td>byte-offset Byte offset after the match start point</td>
</tr>
<tr>
<td></td>
<td>flexible-range-name Select a flexible match from predefined template field</td>
</tr>
<tr>
<td></td>
<td>match-start Start point to match in packet</td>
</tr>
<tr>
<td></td>
<td>range Range of values to be matched</td>
</tr>
<tr>
<td></td>
<td>range-except Do not match this range of values</td>
</tr>
<tr>
<td>forwarding class class</td>
<td>Forwarding class. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>forwarding-class-except</td>
<td>Ethernet type field of a Layer 2 packet environment. Specify assured-forwarding, best-effort, expedited-forwarding, or network-control.</td>
</tr>
<tr>
<td>class</td>
<td></td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| **icmp-code message-code** | Match the ICMP message code field.
If you configure this match condition, we recommend that you also configure the `ip-protocol icmp`, `ip-protocol icmp6`, or `ip-protocol icmpv6` match condition in the same term.
If you configure this match condition, you must also configure the `icmp-type message-type` match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:
- **parameter-problem:** `ip6-header-bad` (0), `unrecognized-next-header` (1), `unrecognized-option` (2)
- **time-exceeded:** `ttl-eq-zero-during-reassembly` (1), `ttl-eq-zero-during-transit` (0)
- **destination-unreachable:** `address-unreachable` (3), `administratively-prohibited` (1), `no-route-to-destination` (0), `port-unreachable` (4) |
| **icmp-code-except message-code** | Do not match the ICMP message code field. For details, see the `icmp-code` match condition. |
| **icmp-type message-type** | Match the ICMP message type field.
If you configure this match condition, we recommend that you also configure the `ip-protocol icmp`, `ip-protocol icmp6`, or `ip-protocol icmpv6` match condition in the same term.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): `destination-unreachable` (1), `echo-reply` (129), `echo-request` (128), `membership-query` (130), `membership-report` (131), `membership-termination` (132), `neighbor-advertisement` (136), `neighbor-solicit` (135), `node-information-reply` (140), `node-information-request` (139), `packet-too-big` (2), `parameter-problem` (4), `redirect` (137), `router-advertisement` (134), `router-renumbering` (138), `router-solicit` (133), or `time-exceeded` (3). |
| **icmp-type-except message-type** | Do not match the ICMP message type field. For details, see the `icmp-type` match condition. |
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface interface-name</code></td>
<td>Interface on which the packet was received. You can configure a match condition that matches packets based on the interface on which they were received. NOTE: If you configure this match condition with an interface that does not exist, the term does not match any packet.</td>
</tr>
<tr>
<td><code>interface-group group-number</code></td>
<td>Match the logical interface on which the packet was received to the specified interface group or set of interface groups. For group-number, specify a single value or a range of values from 0 through 255. To assign a logical interface to an interface group group-number, specify the group-number at the <code>[interfaces interface-name unit number family family filter group]</code> hierarchy level. For more information, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196.</td>
</tr>
<tr>
<td><code>interface-group-except number</code></td>
<td>Do not match the logical interface on which the packet was received to the specified interface group or set of interface groups. For details, see the <code>interface-group</code> match condition.</td>
</tr>
<tr>
<td><code>interface-set interface-set-name</code></td>
<td>Match the interface on which the packet was received to the specified interface set. To define an interface set, include the <code>interface-set</code> statement at the <code>[edit firewall]</code> hierarchy level. For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197.</td>
</tr>
<tr>
<td><code>ip-address address</code></td>
<td>32-bit address that supports the standard syntax for IPv4 addresses. NOTE: In order to limit matches to IPv4 traffic only, the ether-type ipv4 must also be specified in the same term.</td>
</tr>
<tr>
<td><code>ip-destination-address address</code></td>
<td>32-bit address that is the final destination node address for the packet.</td>
</tr>
<tr>
<td><code>ip-precedence ip-precedence-field</code></td>
<td>IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00).</td>
</tr>
<tr>
<td><code>ip-precedence-except ip-precedence-field</code></td>
<td>Do not match on the IP precedence field.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-protocol number</td>
<td>IP protocol field.</td>
</tr>
<tr>
<td>ip-protocol-except</td>
<td>Do not match the IP protocol type.</td>
</tr>
<tr>
<td>ip-source-address address</td>
<td>IP address of the source node sending the packet.</td>
</tr>
<tr>
<td>ipv6-address address</td>
<td>(MX Series only) 128-bit address that supports the standard syntax for IPv6 addresses.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In order to limit matches to IPv6 traffic only, the ether-type ipv6 must also be specified in the same term.</td>
</tr>
<tr>
<td>ipv6-destination-address address</td>
<td>(MX Series only) 128-bit address that is the final destination node address for this packet.</td>
</tr>
<tr>
<td>ipv6-destination-prefix-list named-list</td>
<td>(MX Series only) Match the IPv6 destination addresses in a named-list.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-next-header protocol</td>
<td>(MX Series only) Match IPv6 next header protocol type. The following list shows the supported values for protocol:</td>
</tr>
<tr>
<td></td>
<td>• ah—IP Security authentication header</td>
</tr>
<tr>
<td></td>
<td>• dstopts—IPv6 destination options</td>
</tr>
<tr>
<td></td>
<td>• egp—Exterior gateway protocol</td>
</tr>
<tr>
<td></td>
<td>• esp—IPSec Encapsulating Security Payload</td>
</tr>
<tr>
<td></td>
<td>• fragment—IPv6 fragment header</td>
</tr>
<tr>
<td></td>
<td>• gre—Generic routing encapsulation</td>
</tr>
<tr>
<td></td>
<td>• hop-by-hop—IPv6 hop by hop options</td>
</tr>
<tr>
<td></td>
<td>• icmp—Internet Control Message Protocol</td>
</tr>
<tr>
<td></td>
<td>• icmp6—Internet Control Message Protocol Version 6</td>
</tr>
<tr>
<td></td>
<td>• igmp—Internet Group Management Protocol</td>
</tr>
<tr>
<td></td>
<td>• ipip—IP in IP</td>
</tr>
<tr>
<td></td>
<td>• ipv6—IPv6 in IP</td>
</tr>
<tr>
<td></td>
<td>• no-next-header—IPv6 no next header</td>
</tr>
<tr>
<td></td>
<td>• ospf—Open Shortest Path First</td>
</tr>
<tr>
<td></td>
<td>• pim—Protocol Independent Multicast</td>
</tr>
<tr>
<td></td>
<td>• routing—IPv6 routing header</td>
</tr>
<tr>
<td></td>
<td>• rsdp—Resource Reservation Protocol</td>
</tr>
<tr>
<td></td>
<td>• sctp—Stream Control Transmission Protocol</td>
</tr>
<tr>
<td></td>
<td>• tcp—Transmission Control Protocol</td>
</tr>
<tr>
<td></td>
<td>• udp—User Datagram Protocol</td>
</tr>
<tr>
<td></td>
<td>• vrrp—Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>ipv6-next-header-except protocol</td>
<td>(MX Series only) Do not match the IPv6 next header protocol type.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-payload-protocol protocol</td>
<td>(MX Series only) Match IPv6 payload protocol type.</td>
</tr>
<tr>
<td></td>
<td>The following list shows the supported values for protocol:</td>
</tr>
<tr>
<td></td>
<td>• ah—IP Security authentication header</td>
</tr>
<tr>
<td></td>
<td>• dstopts—IPv6 destination options</td>
</tr>
<tr>
<td></td>
<td>• egp—Exterior gateway protocol</td>
</tr>
<tr>
<td></td>
<td>• esp—IPSec Encapsulating Security Payload</td>
</tr>
<tr>
<td></td>
<td>• fragment—IPv6 fragment header</td>
</tr>
<tr>
<td></td>
<td>• gre—Generic routing encapsulation</td>
</tr>
<tr>
<td></td>
<td>• hop-by-hop—IPv6 hop by hop options</td>
</tr>
<tr>
<td></td>
<td>• icmp—Internet Control Message Protocol</td>
</tr>
<tr>
<td></td>
<td>• icmp6—Internet Control Message Protocol Version 6</td>
</tr>
<tr>
<td></td>
<td>• igmp—Internet Group Management Protocol</td>
</tr>
<tr>
<td></td>
<td>• ipip—IP in IP</td>
</tr>
<tr>
<td></td>
<td>• ipv6—IPv6 in IP</td>
</tr>
<tr>
<td></td>
<td>• no-next-header—IPv6 no next header</td>
</tr>
<tr>
<td></td>
<td>• ospf—Open Shortest Path First</td>
</tr>
<tr>
<td></td>
<td>• pim—Protocol Independent Multicast</td>
</tr>
<tr>
<td></td>
<td>• routing—IPv6 routing header</td>
</tr>
<tr>
<td></td>
<td>• rsvp—Resource Reservation Protocol</td>
</tr>
<tr>
<td></td>
<td>• sctp—Stream Control Transmission Protocol</td>
</tr>
<tr>
<td></td>
<td>• tcp—Transmission Control Protocol</td>
</tr>
<tr>
<td></td>
<td>• udp—User Datagram Protocol</td>
</tr>
<tr>
<td></td>
<td>• vrrp—Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>ipv6-payload-protocol-except protocol</td>
<td>(MX Series only) Do not match the IPv6 payload protocol.</td>
</tr>
<tr>
<td>ipv6-prefix-list named-list</td>
<td>(MX Series only) Match the IPv6 address in a named-list.</td>
</tr>
<tr>
<td>ipv6-source-address address</td>
<td>(MX Series only) 128-bit address that is the originating source node address for this packet.</td>
</tr>
<tr>
<td>ipv6-source-prefix-list named-list</td>
<td>(MX Series only) Match the IPv6 source address in a named-list.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-traffic-class number</td>
<td>(MX Series only) Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant 6 bits of this byte form the DSCP. For more information, see Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td></td>
<td>You can specify a numeric value from 0 through 63. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>• RFC 3246, An Expedited Forwarding PHB (Per-Hop Behavior), defines one code point:</td>
</tr>
<tr>
<td></td>
<td>ef (46).</td>
</tr>
<tr>
<td></td>
<td>• RFC 2597, Assured Forwarding PHB Group, defines 4 classes, with 3 drop precedences in each class, for a total of 12 code points:</td>
</tr>
<tr>
<td></td>
<td>af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30),</td>
</tr>
<tr>
<td></td>
<td>af41 (34), af42 (36), af43 (38)</td>
</tr>
<tr>
<td>ipv6-traffic-class-except number</td>
<td>Do not match the DSCP number.</td>
</tr>
<tr>
<td>isd number</td>
<td>(Supported with Provider Backbone Bridging [PBB]) Match internet service identifier.</td>
</tr>
<tr>
<td>isd-dei number</td>
<td>(Supported with PBB) Match the Internet service identifier drop eligibility indicator (DEI) bit.</td>
</tr>
<tr>
<td>isd-dei-except number</td>
<td>(Supported with PBB) Do not match the Internet service identifier DEI bit.</td>
</tr>
<tr>
<td>isd-priority-code-point number</td>
<td>(Supported with PBB) Match the Internet service identifier priority code point.</td>
</tr>
<tr>
<td>isd-priority-code-point-except number</td>
<td>(Supported with PBB) Do not match the Internet service identifier priority code point.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>learn-vlan-1p-priority value</td>
<td>(MX Series routers and EX Series switches only) Match on the IEEE 802.1p learned VLAN priority bits in the provider VLAN tag (the only tag in a single-tag frame with 802.1Q VLAN tags or the outer tag in a dual-tag frame with 802.1Q VLAN tags). Specify a single value or multiple values from 0 through 7. Compare with the <code>user-vlan-1p-priority</code> match condition.</td>
</tr>
<tr>
<td>learn-vlan-1p-priority-except value</td>
<td>(MX Series routers and EX Series switches only) Do not match on the IEEE 802.1p learned VLAN priority bits. For details, see the <code>learn-vlan-1p-priority</code> match condition.</td>
</tr>
<tr>
<td>learn-vlan-dei number</td>
<td>(Supported with bridging) Match user virtual LAN (VLAN) identifier DEI bit.</td>
</tr>
<tr>
<td>learn-vlan-dei-except number</td>
<td>(Supported with bridging) Do not match user VLAN identifier DEI bit.</td>
</tr>
<tr>
<td>learn-vlan-id number</td>
<td>VLAN identifier used for MAC learning.</td>
</tr>
<tr>
<td>learn-vlan-id-except number</td>
<td>Do not match on the VLAN identifier used for MAC learning.</td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Packet loss priority (PLP) level. Specify a single level or multiple levels: low, medium-low, medium-high, or high. Supported on M120 and M320 routers; M7i and M10i routers with the Enhanced CFEB (CFEB-E); and MX Series routers and EX Series switches. For IP traffic on M320, MX Series, and T Series routers with Enhanced II Flexible PIC Concentrators (FPCs), and EX Series switches, you must include the <code>tri-color</code> statement at the [edit class-of-service] hierarchy level to commit a PLP configuration with any of the four levels specified. If the <code>tri-color</code> statement is not enabled, you can only configure the <code>high</code> and <code>low</code> levels. This applies to all protocol families. For information about the <code>tri-color</code> statement, see Configuring and Applying Tricolor Marking Policers. For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss-priority-except level</td>
<td>Do not match on the packet loss priority level. Specify a single level or multiple levels: low, medium-low, medium-high, or high.</td>
</tr>
<tr>
<td></td>
<td>For information about using behavior aggregate (BA) classifiers to set the PLP level of incoming packets, see the Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic.</td>
</tr>
<tr>
<td>port number</td>
<td>TCP or UDP source or destination port. You cannot specify both the port match condition and either the destination-port or source-port match conditions in the same term.</td>
</tr>
<tr>
<td>source-mac-address address</td>
<td>Source MAC address of a Layer 2 packet.</td>
</tr>
<tr>
<td>source-port number</td>
<td>TCP or UDP source port field. You cannot specify the port and source-port match conditions in the same term.</td>
</tr>
<tr>
<td>source-port-except</td>
<td>Do not match the TCP/UDP source port.</td>
</tr>
<tr>
<td>tcp-flags flags</td>
<td>Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header.</td>
</tr>
<tr>
<td></td>
<td>To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:</td>
</tr>
<tr>
<td></td>
<td>• fin (0x01)</td>
</tr>
<tr>
<td></td>
<td>• syn (0x02)</td>
</tr>
<tr>
<td></td>
<td>• rst (0x04)</td>
</tr>
<tr>
<td></td>
<td>• push (0x08)</td>
</tr>
<tr>
<td></td>
<td>• ack (0x10)</td>
</tr>
<tr>
<td></td>
<td>• urgent (0x20)</td>
</tr>
<tr>
<td></td>
<td>In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet.</td>
</tr>
<tr>
<td></td>
<td>You can string together multiple flags using the bit-field logical operators.</td>
</tr>
<tr>
<td></td>
<td>Configuring the tcp-flags match condition requires that you configure the next-header-tcp match condition.</td>
</tr>
<tr>
<td>traffic-type type</td>
<td>Traffic type. Specify broadcast, multicast, unknown-unicast, or known-unicast.</td>
</tr>
<tr>
<td>traffic-type-except type</td>
<td>Do not match on the traffic type.</td>
</tr>
</tbody>
</table>
Table 65: Standard Firewall Filter Match Conditions for Layer 2 Bridging (MX Series Routers and EX Series Switches Only) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-vlan-1p-priority value</td>
<td>(MX Series routers and EX Series switches only) Match on the IEEE 802.1p user priority bits in the customer VLAN tag (the inner tag in a dual-tag frame with 802.1Q VLAN tags). Specify a single value or multiple values from 0 through 7. Compare with the learn-vlan-1p-priority match condition.</td>
</tr>
<tr>
<td>user-vlan-1p-priority-except value</td>
<td>(MX Series routers and EX Series switches only) Do not match on the IEEE 802.1p user priority bits. For details, see the user-vlan-1p-priority match condition.</td>
</tr>
<tr>
<td>user-vlan-id number</td>
<td>(MX Series routers and EX Series switches only) Match the first VLAN identifier that is part of the payload.</td>
</tr>
<tr>
<td>user-vlan-id-except number</td>
<td>(MX Series routers and EX Series switches only) Do not match on the first VLAN identifier that is part of the payload.</td>
</tr>
<tr>
<td>vlan-ether-type value</td>
<td>VLAN Ethernet type field of a Layer 2 bridging packet.</td>
</tr>
<tr>
<td>vlan-ether-type-except value</td>
<td>Do not match on the VLAN Ethernet type field of a Layer 2 bridging packet.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Firewall Filter Terminating Actions | 804
- Firewall Filter Nonterminating Actions | 795

Firewall Filter Support on Loopback Interface

A loopback interface is a gateway for all the control traffic that enters the Routing Engine of the router. If you want to monitor this control traffic, you must configure a firewall filter on the loopback interface (lo0). Loopback firewall filters are applied only to packets that are sent to the Routing Engine CPU for further processing. Therefore, you can apply a firewall filter in the ingress and egress directions on the loopback interface. Loopback interfaces on ACX Routers support both inet and inet6 family filters.
NOTE: On ACX, the filter for loopback interface can be applied only for interface-specific instances of the firewall filter.

For standard firewall filter match conditions, see "Match Conditions for IPv4 Traffic (ACX Series Routers)" on page 827.

The firewall filter on loopback interfaces handles only the following exception packets in ingress direction:

- TTL exception packets
- Multicast packets having 224.0.0.x as the destination IP address
- Broadcast packets
- IP option packets

NOTE: Though policer action can be attached to loopback filters in ingress direction, behavior will be dependent on CPU RX queue configurations. Rate limiting in ingress direction (through policer configuration) will be sub-set of CPU rate limiters.

The following is a sample configuration for attaching a firewall to the loopback interface:

```plaintext
[edit interfaces]
lo0 {
    unit 0 {
        family <inet | inet6> {
            filter {
                input f1;
            }
        }
    }
    family <inet | inet6> {
        filter f1 {
            interface-specific; >> Mandatory Field.
            term t1 {
                from {
                    protocol ospf;
                }
                then {
                    count c1:
                    discard;
                }
            }
        }
    }
}
```
term t2 {
 then {
 count c2:
 accept;
 }
}

RELATED DOCUMENTATION

Applying Firewall Filters to Routing Engine Traffic

IN THIS CHAPTER

- Configuring Logical Units on the Loopback Interface for Routing Instances in Layer 3 VPNs | 941
- Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List | 943
- Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources | 947
- Example: Configuring a Filter to Block Telnet and SSH Access | 954
- Example: Configuring a Filter to Block TFTP Access | 961
- Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags | 965
- Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers | 968
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods | 976
- Example: Protecting the Routing Engine with a Packets-Per-Second Rate Limiting Filter | 991
- Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber | 995
- Port Number Requirements for DHCP Firewall Filters | 1001
- Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine | 1002

Configuring Logical Units on the Loopback Interface for Routing Instances in Layer 3 VPNs

For Layer 3 VPNs (VRF routing instances), you can configure a logical unit on the loopback interface into each VRF routing instance that you have configured on the router. Associating a VRF routing instance with a logical unit on the loopback interface allows you to easily identify the VRF routing instance.

Doing this is useful for troubleshooting:

- It allows you to ping a remote CE router from a local PE router in a Layer 3 VPN. For more information, see Example: Troubleshooting Layer 3 VPNs.

- It ensures that a path maximum transmission unit (MTU) check on traffic originating on a VRF or virtual-router routing instance functions properly. For more information, see Configuring Path MTU Checks for VPN Routing Instances.
You can also configure a firewall filter for the logical unit on the loopback interface; this configuration allows you to filter traffic for the VRF routing instance associated with it.

The following describes how firewall filters affect the VRF routing instance depending on whether they are configured on the default loopback interface, the VRF routing instance, or some combination of the two. The “default loopback interface” refers to lo0.0 (associated with the default routing table), and the “VRF loopback interface” refers to lo0.n, which is configured in the VRF routing instance.

- If you configure Filter A on the default loopback interface and Filter B on the VRF loopback interface, the VRF routing instance uses Filter B.
- If you configure Filter A on the default loopback interface but do not configure a filter on the VRF loopback interface, the VRF routing instance does not use a filter.
- If you configure Filter A on the default loopback interface but do not even configure a VRF loopback interface, the VRF routing instance uses Filter A.

To configure a logical unit on the loopback interface, include the `unit` statement:

```plaintext
    unit number {
        family inet {
            address address;
        }
    }
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces lo0]`
- `[edit logical-systems logical-system-name interfaces lo0]`

To associate a firewall filter with the logical unit on the loopback interface, include the `filter` statement:

```plaintext
    filter {
        input filter-name;
    }
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces lo0 unit unit-number family inet]`
- `[edit logical-systems logical-system-name interfaces lo0 unit unit-number family inet]`

To include the `lo0.n` interface (where `n` specifies the logical unit) in the configuration for the VRF routing instance, include the following statement:

```plaintext
    interface lo0.n;
```
You can include this statement at the following hierarchy levels:

- [edit routing-instances routing-instance-name]
- [edit logical-systems logical-system-name routing-instances routing-instance-name]

Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List

This example shows how to configure a standard stateless firewall filter that limits certain TCP and Internet Control Message Protocol (ICMP) traffic destined for the Routing Engine by specifying a list of prefix sources that contain allowed BGP peers.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you create a stateless firewall filter that blocks all TCP connection attempts to port 179 from all requesters except BGP peers that have a specified prefix.

A source prefix list, `plist_bgp179`, is created that specifies the list of source prefixes that contain allowed BGP peers.

The stateless firewall filter `filter_bgp179` matches all packets from the source prefix list `plist_bgp179` to the destination port number 179.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set policy-options prefix-list plist_bgp179 apply-path "protocols bgp group <*> neighbor <*>"
set firewall family inet filter filter_bgp179 term 1 from source-address 0.0.0.0/0
set firewall family inet filter filter_bgp179 term 1 from source-prefix-list plist_bgp179 except
set firewall family inet filter filter_bgp179 term 1 from destination-port bgp
set firewall family inet filter filter_bgp179 term 1 then reject
set firewall family inet filter filter_bgp179 term 2 then accept
set interfaces lo0 unit 0 family inet filter input filter_bgp179
set interfaces lo0 unit 0 family inet address 127.0.0.1/32
```

Configure the Filter

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure the filter:

1. Expand the prefix list **bgp179** to include all prefixes pointed to by the BGP peer group defined by **protocols bgp group <*> neighbor <*>**.

   ```plaintext
   [edit policy-options prefix-list plist_bgp179]
   user@host# set apply-path "protocols bgp group <*> neighbor <*>"
   ```

2. Define the filter term that rejects TCP connection attempts to port 179 from all requesters except the specified BGP peers.

   ```plaintext
   [edit firewall family inet filter filter_bgp179]
   user@host# set term term1 from source-address 0.0.0.0/0
   user@host# set term term1 from source-prefix-list bgp179 except
   user@host# set term term1 from destination-port bgp
   user@host# set term term1 then reject
   ```

3. Define the other filter term to accept all packets.

   ```plaintext
   [edit firewall family inet filter filter_bgp179]
   user@host# set term term2 then accept
   ```
4. Apply the firewall filter to the loopback interface.

```
[edit interfaces lo0 unit 0 family inet]
user@host# set filter input filter_bgp179
user@host# set address 127.0.0.1/32
```

Results

From configuration mode, confirm your configuration by entering the `show firewall`, `show interfaces`, and `show policy-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show firewall
family inet{
  filter filter_bgp179 {
    term 1 {
      from {
        source-address {
          0.0.0.0/0;
        }
        source-prefix-list {
          plist_bgp179 except;
        }
        destination-port bgp;
      }
      then {
        reject;
      }
    }
    term 2 {
      then {
        accept;
      }
    }
  }
}
```

```
user@host# show interfaces
lo0 {
  unit 0 {
    family inet {
      filter {
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

Confirm that the configuration is working properly.

Displaying the Firewall Filter Applied to the Loopback Interface

Purpose

Verify that the firewall filter `filter_bgp179` is applied to the IPv4 input traffic at logical interface `lo0.0`.

Action

Use the `show interfaces statistics operational mode` command for logical interface `lo0.0`, and include the `detail` option. Under the `Protocol inet` section of the command output section, the `Input Filters` field displays the name of the stateless firewall filter applied to the logical interface in the input direction.

```
[edit]

user@host> show interfaces statistics lo0.0 detail

Logical interface lo0.0 (Index 321) (SNMP ifIndex 16) (Generation 130)
  Flags: SNMP-Traps Encapsulation: Unspecified
  Traffic statistics:
    Input  bytes  :                    0
    Output bytes  :                    0
    Input  packets:                    0
    Output packets:                    0
  Local statistics:
    Input  bytes  :                    0
    Output bytes  :                    0
    Input  packets:                    0
```
Output packets: 0
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Protocol inet, MTU: Unlimited, Generation: 145, Route table: 0
Flags: Sendbcast-pkt-to-re
Input Filters: filter_bgp179
Addresses, Flags: Primary
 Destination: Unspecified, Local: 127.0.0.1, Broadcast: Unspecified,
Generation: 138

RELATED DOCUMENTATION

- Understanding How to Use Standard Firewall Filters | 723
- Firewall Filter Match Conditions Based on Address Fields | 882
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods | 976
- Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags | 965
- prefix-list | 2076

Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources

IN THIS SECTION

- Requirements | 948
- Overview | 948
- Configuration | 948
- Verification | 951

This example shows how to create a stateless firewall filter that protects the Routing Engine from traffic originating from untrusted sources.
Requirements

No special configuration beyond device initialization is required before configuring stateless firewall filters.

Overview

In this example, you create a stateless firewall filter called protect-RE that discards all traffic destined for the Routing Engine except SSH and BGP protocol packets from specified trusted sources. This example includes the following firewall filter terms:

- **ssh-term**—Accepts TCP packets with a source address of **192.168.122.0/24** and a destination port that specifies SSH.
- **bgp-term**—Accepts TCP packets with a source address of **10.2.1.0/24** and a destination port that specifies BGP.
- **discard-rest-term**—For all packets that are not accepted by **ssh-term** or **bgp-term**, creates a firewall filter log and system logging records, then discards all packets.

NOTE: You can move terms within the firewall filter using the `insert` command. See `insert` in the CLI User Guide.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter protect-RE term ssh-term from source-address 192.168.122.0/24
set firewall family inet filter protect-RE term ssh-term from protocol tcp
set firewall family inet filter protect-RE term ssh-term from destination-port ssh
set firewall family inet filter protect-RE term ssh-term then accept
set firewall family inet filter protect-RE term bgp-term from source-address 10.2.1.0/24
set firewall family inet filter protect-RE term bgp-term from protocol tcp
set firewall family inet filter protect-RE term bgp-term from destination-port bgp
set firewall family inet filter protect-RE term bgp-term then accept
set firewall family inet filter protect-RE term discard-rest-term then log
set firewall family inet filter protect-RE term discard-rest-term then syslog
set firewall family inet filter protect-RE term discard-rest-term then discard
set interfaces lo0 unit 0 family inet filter input protect-RE
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the stateless firewall filter:

1. Create the stateless firewall filter.

   ```
   [edit]
   user@host# edit firewall family inet filter protect-RE
   ```

2. Create the first filter term.

   ```
   [edit firewall family inet filter protect-RE]
   user@host# edit term ssh-term
   ```

3. Define the protocol, destination port, and source address match conditions for the term.

   ```
   [edit firewall family inet filter protect-RE term ssh-term]
   user@host# set from protocol tcp destination-port ssh source-address 192.168.122.0/24
   ```

4. Define the actions for the term.

   ```
   [edit firewall family inet filter protect-RE term ssh-term]
   user@host# set then accept
   ```

5. Create the second filter term.

   ```
   [edit firewall family inet filter protect-RE]
   user@host# edit term bgp-term
   ```

6. Define the protocol, destination port, and source address match conditions for the term.

   ```
   [edit firewall family inet filter protect-RE term bgp-term]
   user@host# set from protocol tcp destination-port bgp source-address 10.2.1.0/24
   ```
7. Define the action for the term.

```plaintext
[edit firewall family inet filter protect-RE term bgp-term]
user@host# set then accept
```

8. Create the third filter term.

```plaintext
[edit firewall family inet filter protect-RE]
user@host# edit term discard-rest-term
```

9. Define the action for the term.

```plaintext
[edit firewall family inet filter protect-RE term discard-rest]
user@host# set then log syslog discard
```

10. Apply the filter to the input side of the Routing Engine interface.

```plaintext
[edit]
user@host# set interfaces lo0 unit 0 family inet filter input protect-RE
```

Results

Confirm your configuration by entering the `show firewall` command and the `show interfaces lo0` command from configuration mode. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@host# show firewall
family inet {
  filter protect-RE {
    term ssh-term {
      from {
        source-address {
          192.168.122.0/24;
        }
        protocol tcp;
        destination-port ssh;
      }
      then accept;
    }
    term bgp-term {
```
from {
 source-address {
 10.2.1.0/24;
 }
 protocol tcp;
 destination-port bgp;
}
then accept;
}
term discard-rest-term {
 then {
 log:
 syslog;
 discard;
 }
}
}

user@host# show interfaces lo0
unit 0 {
 family inet {
 filter {
 input protect-RE;
 }
 address 127.0.0.1/32;
 }
}

If you are done configuring the device, enter commit from configuration mode.

[edit]
user@host# commit

Verification

IN THIS SECTION
- Displaying Stateless Firewall Filter Configurations | 952
- Verifying a Services, Protocols, and Trusted Sources Firewall Filter | 952
- Displaying Stateless Firewall Filter Logs | 953
To confirm that the configuration is working properly, perform these tasks:

Displaying Stateless Firewall Filter Configurations

Purpose
Verify the configuration of the firewall filter.

Action
From configuration mode, enter the `show firewall` command and the `show interfaces lo0` command.

Meaning
Verify that the output shows the intended configuration of the firewall filter. In addition, verify that the terms are listed in the order in which you want the packets to be tested. You can move terms within a firewall filter by using the `insert` CLI command.

Verifying a Services, Protocols, and Trusted Sources Firewall Filter

Purpose
Verify that the actions of the firewall filter terms are taken.

Action
Send packets to the device that match the terms. In addition, verify that the filter actions are not taken for packets that do not match.

- Use the `ssh host-name` command from a host at an IP address that matches `192.168.122.0/24` to verify that you can log in to the device using only SSH from a host with this address prefix.

- Use the `show route summary` command to verify that the routing table on the device does not contain any entries with a protocol other than Direct, Local, BGP, or Static.

Sample Output

```
% ssh 192.168.249.71

%ssh host
user@host’s password:
--- JUNOS 6.4-20040518.0 (JSERIES) #0: 2004-05-18 09:27:50 UTC

user@host>

user@host> show route summary
```
Router ID: 192.168.249.71

inet.0: 34 destinations, 34 routes (33 active, 0 holddown, 1 hidden)
 Direct: 10 routes, 9 active
 Local: 9 routes, 9 active
 BGP: 10 routes, 10 active
 Static: 5 routes, 5 active

Meaning
Verify the following information:

- You can successfully log in to the device using SSH.
- The show route summary command does not display a protocol other than Direct, Local, BGP, or Static.

Displaying Stateless Firewall Filter Logs

Purpose
Verify that packets are being logged. If you included the log or syslog action in a term, verify that packets matching the term are recorded in the firewall log or your system logging facility.

Action
From operational mode, enter the show firewall log command.

Sample Output

user@host> show firewall log

Log :
Time Filter Action Interface Protocol Src Addr Dest Addr
15:11:02 pfe D ge-0/0/0.0 TCP 172.17.28.19 192.168.70.71
15:11:01 pfe D ge-0/0/0.0 TCP 172.17.28.19 192.168.70.71
15:11:01 pfe D ge-0/0/0.0 TCP 172.17.28.19 192.168.70.71
15:11:01 pfe D ge-0/0/0.0 TCP 172.17.28.19 192.168.70.71

Meaning
Each record of the output contains information about the logged packet. Verify the following information:
• Under **Time**, the time of day the packet was filtered is shown.

• The **Filter** output is always **pfe**.

• Under **Action**, the configured action of the term matches the action taken on the packet—**A** (accept), **D** (discard), **R** (reject).

• Under **Interface**, the inbound (ingress) interface on which the packet arrived is appropriate for the filter.

• Under **Protocol**, the protocol in the IP header of the packet is appropriate for the filter.

• Under **Src Addr**, the source address in the IP header of the packet is appropriate for the filter.

• Under **Dest Addr**, the destination address in the IP header of the packet is appropriate for the filter.

RELATED DOCUMENTATION

| show route summary |
| show firewall | 2667 |
| show firewall log | 2685 |
| show interfaces (Loopback) |

Example: Configuring a Filter to Block Telnet and SSH Access

IN THIS SECTION

- **Requirements** | 954
- **Overview** | 955
- **Configuration** | 955
- **Verification** | 958

Requirements

You must have access to a remote host that has network connectivity with this device.
Overview

In this example, you create an IPv4 stateless firewall filter that logs and rejects Telnet or SSH access packets unless the packet is destined for or originates from the 192.168.1.0/24 subnet.

- To match packets destined for or originating from the address **192.168.1.0/24** subnet, you use the `source-address 192.168.1.0/24` IPv4 match condition.
- To match packets destined for or originating from a TCP port, Telnet port, or SSH port, you use the `protocol tcp`, `port telnet`, and `telnet ssh` IPv4 match conditions.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter **commit** from configuration mode.

```
set firewall family inet filter local_acl term terminal_access from source-address 192.168.1.0/24
set firewall family inet filter local_acl term terminal_access from protocol tcp
set firewall family inet filter local_acl term terminal_access from port ssh
set firewall family inet filter local_acl term terminal_access from port telnet
set firewall family inet filter local_acl term terminal_access then accept
set firewall family inet filter local_acl term terminal_access_denied from protocol tcp
set firewall family inet filter local_acl term terminal_access_denied from port ssh
set firewall family inet filter local_acl term terminal_access_denied from port telnet
set firewall family inet filter local_acl term terminal_access_denied then log
set firewall family inet filter local_acl term terminal_access_denied then reject
set firewall family inet filter local_acl term default-term then accept
```
Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter that selectively blocks Telnet and SSH access:

1. Create the stateless firewall filter `local_acl`.

   ```
   [edit]
   user@myhost# edit firewall family inet filter local_acl
   ```

2. Define the filter term `terminal_access`.

   ```
   [edit firewall family inet filter local_acl]
   user@myhost# set term terminal_access from source-address 192.168.1.0/24
   user@myhost# set term terminal_access from protocol tcp
   user@myhost# set term terminal_access from port ssh
   user@myhost# set term terminal_access from port telnet
   user@myhost# set term terminal_access then accept
   ```

3. Define the filter term `terminal_access_denied`.

   ```
   [edit firewall family inet filter local_acl]
   user@myhost# set term terminal_access_denied from protocol tcp
   user@myhost# set term terminal_access_denied from port ssh
   user@myhost# set term terminal_access_denied from port telnet
   user@myhost# set term terminal_access_denied then log
   user@myhost# set term terminal_access_denied then reject
   user@myhost# set term default-term then accept
   ```

Apply the Firewall Filter to the Loopback Interface

Step-by-Step Procedure

- To apply the firewall filter to the loopback interface:

  ```
  [edit]
  user@myhost# set interfaces lo0 unit 0 family inet filter input local_acl
  user@myhost# set interfaces lo0 unit 0 family inet address 127.0.0.1/32
  ```
Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@myhost# show firewall
family inet {
  filter local_acl {
    term terminal_access {
      from {
        source-address {
          192.168.0.0/24;
        }
        protocol tcp;
        port [ssh telnet];
      }
      then accept;
    }
    term terminal_access_denied {
      from {
        protocol tcp;
        port [ssh telnet];
      }
      then {
        log;
        reject;
      }
    }
    term default-term {
      then accept;
    }
  }
}
```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
```
user@myhost# show interfaces
lo0 {
 unit 0 {
 family inet {
 filter {
 input local_acl;
 }
 source-address 127.0.0.1/32;
 }
 }
}

3. If you are done configuring the device, commit your candidate configuration.

 [edit]
 user@myhost# commit

Verification

IN THIS SECTION

- Verifying Accepted Packets | 958
- Verifying Logged and Rejected Packets | 959

Confirm that the configuration is working properly.

Verifying Accepted Packets

Purpose
Verify that the actions of the firewall filter terms are taken.

Action
1. Clear the firewall log on your router or switch.

 user@myhost> clear firewall log

2. From a host at an IP address within the 192.168.1.0/24 subnet, use the ssh hostname command to verify that you can log in to the device using only SSH. This packet should be accepted, and the packet
header information for this packet should not be logged in the firewall filter log buffer in the Packet Forwarding Engine.

```
user@host-A> ssh myhost

user@myhosts’s password:
--- JUNOS 11.1-20101102.0 built 2010-11-02 04:48:46 UTC

% cli

user@myhost>
```

3. From a host at an IP address within the 192.168.1.0/24 subnet, use the `telnet hostname` command to verify that you can log in to your router or switch using only Telnet. This packet should be accepted, and the packet header information for this packet should not be logged in the firewall filter log buffer in the Packet Forwarding Engine.

```
user@host-A> telnet myhost

Trying 192.168.249.71...
Connected to myhost-fxp0.example.net.
Escape character is '^]'.

host (tty0)

login: user

Password:

--- JUNOS 11.1-20101102.0 built 2010-11-02 04:48:46 UTC

% cli

user@myhost>
```

4. Use the `show firewall log` command to verify that the routing table on the device does not contain any entries with a source address in the 192.168.1.0/24 subnet.

```
user@myhost> show firewall log

Verifying Logged and Rejected Packets

Purpose
Verify that the actions of the firewall filter terms are taken.

**Action**

1. Clear the firewall log on your router or switch.

   ```
 user@myhost> clear firewall log
   ```

2. From a host at an IP address outside of the 192.168.1.0/24 subnet, use the `ssh hostname` command to verify that you cannot log in to the device using only SSH. This packet should be rejected, and the packet header information for this packet should be logged in the firewall filter log buffer in the Packet Forwarding Engine.

   ```
 user@host-B ssh myhost
 ssh: connect to host sugar port 22: Connection refused
 --- JUNOS 11.1-20101102.0 built 2010-11-02 04:48:46 UTC
 %
   ```

3. From a host at an IP address outside of the 192.168.1.0/24 subnet, use the `telnet hostname` command to verify that you can log in to the device using only Telnet. This packet should be rejected, and the packet header information for this packet should be logged in the firewall filter log buffer in the PFE.

   ```
 user@host-B> telnet myhost
 Trying 192.168.249.71...
 telnet: connect to address 192.168.187.3: Connection refused
telnet: Unable to connect to remote host
 %
   ```

4. Use the `show firewall log` command to verify that the routing table on the device does not contain any entries with a source address in the 192.168.1.0/24 subnet.

   ```
 user@myhost> show firewall log
   ```

<table>
<thead>
<tr>
<th>Time</th>
<th>Filter</th>
<th>Action</th>
<th>Interface</th>
<th>Protocol</th>
<th>Src Addr</th>
<th>Dest Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:41:25</td>
<td>local_acl</td>
<td>R</td>
<td>fxp0.0</td>
<td>TCP</td>
<td>192.168.187.5</td>
<td>192.168.187.1</td>
</tr>
<tr>
<td>18:41:25</td>
<td>local_acl</td>
<td>R</td>
<td>fxp0.0</td>
<td>TCP</td>
<td>192.168.187.5</td>
<td>192.168.187.1</td>
</tr>
<tr>
<td>18:41:25</td>
<td>local_acl</td>
<td>R</td>
<td>fxp0.0</td>
<td>TCP</td>
<td>192.168.187.5</td>
<td>192.168.187.1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:43:06</td>
<td>local_acl</td>
<td>R</td>
<td>fxp0.0</td>
<td>TCP</td>
<td>192.168.187.5</td>
<td>192.168.187.1</td>
</tr>
<tr>
<td>18:43:06</td>
<td>local_acl</td>
<td>R</td>
<td>fxp0.0</td>
<td>TCP</td>
<td>192.168.187.5</td>
<td>192.168.187.1</td>
</tr>
<tr>
<td>18:43:06</td>
<td>local_acl</td>
<td>R</td>
<td>fxp0.0</td>
<td>TCP</td>
<td>192.168.187.5</td>
<td>192.168.187.1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Configuring a Filter to Block TFTP Access

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

By default, to decrease vulnerability to denial-of-service (DoS) attacks, the Junos OS filters and discards Dynamic Host Configuration Protocol (DHCP) or Bootstrap Protocol (BOOTP) packets that have a source address of 0.0.0.0 and a destination address of 255.255.255.255. This default filter is known as a unicast RPF check. However, some vendors' equipment automatically accepts these packets.

To interoperate with other vendors' equipment, you can configure a filter that checks for both of these addresses and overrides the default RPF-check filter by accepting these packets. In this example, you block Trivial File Transfer Protocol (TFTP) access, logging any attempts to establish TFTP connections.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.
To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set firewall family inet filter tftp_access_control term one from protocol udp
set firewall family inet filter tftp_access_control term one from port tftp
set firewall family inet filter tftp_access_control term one then log
set firewall family inet filter tftp_access_control term one then discard
set interfaces lo0 unit 0 family inet filter input tftp_access_control
set interfaces lo0 unit 0 family inet address 127.0.0.1/32
```

**Configure the Stateless Firewall Filter**

**Step-by-Step Procedure**

To configure the stateless firewall filter that selectively blocks TFTP access:

1. Create the stateless firewall filter `tftp_access_control`.

```plaintext
[edit]
user@host# edit firewall family inet filter tftp_access_control
```

2. Specify a match on packets received on UDP port 69.

```plaintext
[edit firewall family inet filter tftp_access_control]
user@host# set term one from protocol udp
user@host# set term one from port tftp
```

3. Specify that matched packets be logged to the buffer on the Packet Forwarding Engine and then discarded.

```plaintext
[edit firewall family inet filter tftp_access_control]
user@host# set term one then log
user@host# set term one then discard
```

**Apply the Firewall Filter to the Loopback Interface**

**Step-by-Step Procedure**
To apply the firewall filter to the loopback interface:

- ```
[edit]
user@host# set interfaces lo0 unit 0 family inet filter input tftp_access_control
user@host# set interfaces lo0 unit 0 family inet address 127.0.0.1/32
```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
[edit]
user@host# show firewall
family inet {
  filter tftp_access_control {
    term one {
      from {
        protocol udp;
        port tftp;
      }
      then {
        log;
        discard;
      }
    }
  }
}
```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
[edit]
user@host# show interfaces
lo0 {
  unit 0 {
    family inet {
      filter {
```
3. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

Verification

IN THIS SECTION

- Verifying Logged and Discarded Packets | 964

Confirm that the configuration is operating properly:

Verifying Logged and Discarded Packets

Purpose

Verify that the actions of the firewall filter terms are taken.

Action

To

1. Clear the firewall log on your router or switch.

```
user@myhost> clear firewall log
```

2. From another host, send a packet to UDP port 69 on this router or switch.

RELATED DOCUMENTATION
Example: Configuring a Filter to Accept Packets Based on IPv6 TCP Flags

This example shows how to configure a standard stateless firewall filter to accept packets from a trusted source.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you create a filter that accepts packets with specific IPv6 TCP flags.

Configuration

IN THIS SECTION

- Configure the Stateless Firewall Filter | 966
- Apply the Firewall Filter to the Loopback Interface | 967
- Confirm and Commit Your Candidate Configuration | 967
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set firewall family inet6 filter tcp_filter term 1 from next-header tcp
set firewall family inet6 filter tcp_filter term 1 from tcp-flags syn
set firewall family inet6 filter tcp_filter term 1 then count tcp_syn_pkt
set firewall family inet6 filter tcp_filter term 1 then log
set firewall family inet6 filter tcp_filter term 1 then accept
set interfaces lo0 unit 0 family inet6 filter input tcp_filter
set interfaces lo0 unit 0 family inet6 address ::10.34.1.0/120
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the firewall filter

1. Create the IPv6 stateless firewall filter **tcp_filter**.

   ```plaintext
   [edit]
   user@host# edit firewall family inet6 filter tcp_filter
   ```

2. Specify that a packet matches if it is the initial packet in a TCP session and the next header after the IPv6 header is type TCP.

   ```plaintext
   [edit firewall family inet6 filter tcp_filter]
   user@host# set term 1 from next-header tcp
   user@host# set term 1 from tcp-flags syn
   ```

3. Specify that matched packets are counted, logged to the buffer on the Packet Forwarding Engine, and accepted.

   ```plaintext
   [edit firewall family inet6 filter tcp_filter]
   user@host# set term 1 then count tcp_syn_pkt
   user@host# set term 1 then log
   user@host# set term 1 then accept
   ```
Apply the Firewall Filter to the Loopback Interface

Step-by-Step Procedure

To apply the firewall filter to the loopback interface:

-

  ```
  [edit]
  user@host# set interfaces lo0 unit 0 family inet6 filter input tcp_filter
  user@host# set interfaces lo0 unit 0 family inet6 address ::10.34.1.0/120
  ```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

  ```
  [edit]
  user@host# show firewall
  family inet6 {
  filter tcp_filter {
  term 1 {
  from {
  next-header tcp;
  tcp-flags syn;
  }
  then {
  count tcp_syn_pkt;
  log;
  accept;
  }
  }
  }
  }
  ```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

  ```
  [edit]
  user@host# show interfaces
  ```
lo0 {
 unit 0 {
 family inet6 {
 filter {
 input tcp_filter;
 }
 address ::10.34.1.0/120;
 }
 }
}

3. When you are done configuring the device, commit your candidate configuration.

[edit]
user@host# commit

Verification

To confirm that the configuration is working properly, enter the `show firewall` operational mode command.

RELATED DOCUMENTATION

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods | 976
- Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers | 968

Example: Configuring a Filter to Block TCP Access to a Port Except from Specified BGP Peers

IN THIS SECTION
- Requirements | 969
- Overview | 969
- Configuration | 969
- Verification | 974
This example shows how to configure a standard stateless firewall filter that blocks all TCP connection attempts to port 179 from all requesters except from specified BGP peers.

Requirements

No special configuration beyond device initialization is required before you configure this example.

Overview

In this example, you create a stateless firewall filter that blocks all TCP connection attempts to port 179 from all requesters except the specified BGP peers.

The stateless firewall filter `filter_bgp179` matches all packets from the directly connected interfaces on Device A and Device B to the destination port number 179.

Figure 51 on page 969 shows the topology used in this example. Device C attempts to make a TCP connection to Device E. Device E blocks the connection attempt. This example shows the configuration on Device E.

Figure 51: Typical Network with BGP Peer Sessions

![Diagram of network topology](image-url)

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device C

```plaintext
set interfaces ge-1/2/0 unit 10 description to-E
set interfaces ge-1/2/0 unit 10 family inet address 10.10.10.10/30
set protocols bgp group external-peers type external
```
Device E

```conf
set protocols bgp group external-peers peer-as 17
set protocols bgp group external-peers neighbor 10.10.10.9
set routing-options autonomous-system 22

set interfaces ge-1/2/0 unit 0 description to-A
set interfaces ge-1/2/0 unit 0 family inet address 10.10.10.1/30
set interfaces ge-1/2/1 unit 5 description to-B
set interfaces ge-1/2/1 unit 5 family inet address 10.10.10.5/30
set interfaces ge-1/0/0 unit 9 description to-C
set interfaces ge-1/0/0 unit 9 family inet address 10.10.10.9/30
set interfaces lo0 unit 2 family inet filter input filter_bgp179
set interfaces lo0 unit 2 family inet address 192.168.0.1/32
set protocols bgp group external-peers type external
set protocols bgp group external-peers peer-as 22
set protocols bgp group external-peers neighbor 10.10.10.2
set protocols bgp group external-peers neighbor 10.10.10.6
set protocols bgp group external-peers neighbor 10.10.10.10
set routing-options autonomous-system 17
set firewall family inet filter filter_bgp179 term 1 from source-address 10.10.10.2/32
set firewall family inet filter filter_bgp179 term 1 from source-address 10.10.10.6/32
set firewall family inet filter filter_bgp179 term 1 from destination-port bgp
set firewall family inet filter filter_bgp179 term 1 then accept
set firewall family inet filter filter_bgp179 term 2 then reject
```
2. Configure BGP.

 [edit protocols bgp group external-peers]
 user@E# set type external
 user@E# set peer-as 22
 user@E# set neighbor 10.10.10.2
 user@E# set neighbor 10.10.10.6
 user@E# set neighbor 10.10.10.10

3. Configure the autonomous system number.

 [edit routing-options]
 user@E# set autonomous-system 17

4. Define the filter term that accepts TCP connection attempts to port 179 from the specified BGP peers.

 [edit firewall family inet filter filter_bgp179]
 user@E# set term 1 from source-address 10.10.10.2/32
 user@E# set term 1 from source-address 10.10.10.6/32
 user@E# set term 1 from destination-port bgp
 user@E# set term 1 then accept

5. Define the other filter term to reject packets from other sources.

 [edit firewall family inet filter filter_bgp179]
 user@E# set term 2 then reject

6. Apply the firewall filter to the loopback interface.

 [edit interfaces lo0 unit 2 family inet]
 user@E# set filter input filter_bgp179
 user@E# set address 192.168.0.1/32
Results

From configuration mode, confirm your configuration by entering the `show firewall`, `show interfaces`, `show protocols`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
user@E# show firewall
family inet {
  filter filter_bgp179 {
    term 1 {
      from {
        source-address {
          10.10.10.2/32;
          10.10.10.6/32;
        }
        destination-port bgp;
      }
      then accept;
    }
    term 2 {
      then {
        reject;
      }
    }
  }
}

user@E# show interfaces
lo0 {
  unit 2 {
    family inet {
      filter {
        input filter_bgp179;
      }
      address 192.168.0.1/32;
    }
  }
}

ge-1/2/0 {
  unit 0 {
    description to-A;
    family inet {
      address 10.10.10.1/30;
    }
  }
}````
user@E# show protocols
bgp {
  group external-peers {
    type external;
    peer-as 22:
    neighbor 10.10.10.2;
    neighbor 10.10.10.6;
    neighbor 10.10.10.10;
  }
}

user@E# show routing-options
autonomous-system 17;

If you are done configuring the device, enter commit from configuration mode.
Verification

**IN THIS SECTION**

- Verifying That the Filter Is Configured | 974
- Verifying the TCP Connections | 974
- Monitoring Traffic on the Interfaces | 975

Confirm that the configuration is working properly.

**Verifying That the Filter Is Configured**

**Purpose**

Make sure that the filter is listed in output of the `show firewall filter` command.

**Action**

```
user@E> show firewall filter filter_bgp179
```

| Filter: filter_bgp179 |

**Verifying the TCP Connections**

**Purpose**

Verify the TCP connections.

**Action**

From operational mode, run the `show system connections extensive` command on Device C and Device E.

The output on Device C shows the attempt to establish a TCP connection. The output on Device E shows that connections are established with Device A and Device B only.

```
user@C> show system connections extensive | match 10.10.10
```

| tcp4 | 0 | 0 | 10.10.10.9.51872 | 10.10.10.179 | SYN_SENT |

```
user@E> show system connections extensive | match 10.10.10
```

| tcp4 | 0 | 0 | 10.10.10.51872 | 10.10.10.179 | SYN_SENT |
Monitoring Traffic on the Interfaces

Purpose
Use the `monitor traffic` command to compare the traffic on an interface that establishes a TCP connection with the traffic on an interface that does not establish a TCP connection.

Action
From operational mode, run the `monitor traffic` command on the Device E interface to Device B and on the Device E interface to Device C. The following sample output verifies that in the first example, acknowledgment (ack) messages are received. In the second example, ack messages are not received.

```bash
user@E> monitor traffic size 1500 interface ge-1/2/1.5

19:02:49.700912 Out IP 10.10.10.5.bgp > 10.10.10.6.62096: P
3330573561:3330573580(19) ack 915601686 win 16384 <nop,nop,timestamp 1869518816
1869504850>: BGP, length: 19
19:02:49.801244 In IP 10.10.10.6.62096 > 10.10.10.5.bgp: . ack 19 win 16384
<nop,nop,timestamp 1869518916 1869518816>
19:03:03.323018 In IP 10.10.10.6.62096 > 10.10.10.5.bgp: P 1:20(19) ack 19 win
16384 <nop,nop,timestamp 1869532439 1869518816>: BGP, length: 19
19:03:03.422418 Out IP 10.10.10.5.bgp > 10.10.10.6.62096: . ack 38 win 16384
<nop,nop,timestamp 1869546438 1869546338>

user@E> monitor traffic size 1500 interface ge-1/0/0.9

18:54:20.175012 Out IP 10.10.10.9.61335 > 10.10.10.10.bgp: S 573929123:573929123(0)
win 16384 <mss 1460,nop,wscale 0,nop,nop,timestamp 1869099240 0,sackOK,eol>
18:54:23.174422 Out IP 10.10.10.9.61335 > 10.10.10.10.bgp: S 573929123:573929123(0)
win 16384 <mss 1460,nop,wscale 0,nop,nop,timestamp 1869012240 0,sackOK,eol>
18:54:26.374118 Out IP 10.10.10.9.61335 > 10.10.10.10.bgp: S 573929123:573929123(0)
```
Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods

IN THIS SECTION

- Requirements | 976
- Overview | 977
- Configuration | 978
- Verification | 984

This example shows how to create a stateless firewall filter that protects against TCP and ICMP denial-of-service attacks.

Requirements

No special configuration beyond device initialization is required before configuring stateless firewall filters.
Overview

In this example we create a stateless firewall filter called **protect-RE** to police TCP and ICMP packets. It uses the policers described here:

- **tcp-connection-policer**—This policer limits TCP traffic to 1,000,000 bits per second (bps) with a maximum burst size of 15,000 bytes. Traffic exceeding either limit is discarded.
- **icmp-policer**—This policer limits ICMP traffic to 1,000,000 bps with a maximum burst size of 15,000 bytes. Traffic exceeding either limit is discarded.

When specifying limits, the bandwidth limit can be from 32,000 bps to 32,000,000,000 bps and the burst-size limit can be from 1,500 bytes through 100,000,000 bytes. Use the following abbreviations when specifying limits: k (1,000), m (1,000,000), and g (1,000,000,000).

Each policer is incorporated into the action of a filter term. This example includes the following terms:

- **tcp-connection-term**—Polices certain TCP packets with a source address of 192.168.0.0/24 or 10.0.0.0/24. These addresses are defined in the **trusted-addresses** prefix list.
  
  Filtered packets include **tcp-established** packets. The **tcp-established** match condition is an alias for the bit-field match condition **tcp-flags** "(ack | rst)", which indicates an established TCP session, but not the first packet of a TCP connection.

- **icmp-term**—Polices ICMP packets. All ICMP packets are counted in the **icmp-counter** counter.

**NOTE:** You can move terms within the firewall filter by using the **insert** command. See **insert** in the **CLI User Guide**.

You can apply a stateless firewall to the input or output sides, or both, of an interface. To filter packets transiting the device, apply the firewall filter to any non-Routing Engine interface. To filter packets originating from, or destined for, the Routing Engine, apply the firewall filter to the loopback (lo0) interface.

**Figure 52 on page 978** shows the sample network.
Because this firewall filter limits Routing Engine traffic to TCP packets, routing protocols that use other transport protocols for Layer 4 cannot successfully establish sessions when this filter is active. To demonstrate, this example sets up OSPF between Device R1 and Device R2.

"CLI Quick Configuration" on page 978 shows the configuration for all of the devices in Figure 52 on page 978.

The section "Step-by-Step Procedure" on page 979 describes the steps on Device R2.

**Configuration**

**CLI Quick Configuration**

To quickly configure the stateless firewall filter, copy the following commands to a text file, remove any line breaks, and then paste the commands into the CLI.

**Device R1**

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32 primary
set interfaces lo0 unit 0 family inet address 172.16.0.1/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext peer-as 200
set protocols bgp group ext neighbor 10.0.0.2
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options router-id 192.168.0.1
set routing-options autonomous-system 100
```

**Device R2**
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces lo0 unit 0 family inet filter input protect-RE
set interfaces lo0 unit 0 family inet address 192.168.0.2/32 primary
set interfaces lo0 unit 0 family inet address 172.16.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext neighbor 10.0.0.1 peer-as 100
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set policy-options prefix-list trusted-addresses 10.0.0.0/24
set policy-options prefix-list trusted-addresses 192.168.0.0/24
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 200
set firewall family inet filter protect-RE term tcp-connection-term from source-prefix-list trusted-addresses
set firewall family inet filter protect-RE term tcp-connection-term from protocol tcp
set firewall family inet filter protect-RE term tcp-connection-term from tcp-established
set firewall family inet filter protect-RE term tcp-connection-term then policer tcp-connection-policer
set firewall family inet filter protect-RE term tcp-connection-term then accept
set firewall family inet filter protect-RE term icmp-term from source-prefix-list trusted-addresses
set firewall family inet filter protect-RE term icmp-term from protocol icmp
set firewall family inet filter protect-RE term icmp-term then policer icmp-policer
set firewall family inet filter protect-RE term icmp-term then count icmp-counter
set firewall family inet filter protect-RE term icmp-term then accept
set firewall policer tcp-connection-policer filter-specific
set firewall policer tcp-connection-policer if-exceeding bandwidth-limit 1m
set firewall policer tcp-connection-policer if-exceeding burst-size-limit 15k
set firewall policer tcp-connection-policer then discard
set firewall policer icmp-policer filter-specific
set firewall policer icmp-policer if-exceeding bandwidth-limit 1m
set firewall policer icmp-policer if-exceeding burst-size-limit 15k
set firewall policer icmp-policer then discard

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure stateless firewall filter to discard:

1. Configure the device interfaces.

   [edit interfaces fe-1/2/0 unit 0 family inet ]
   user@R2# set address 10.0.0.2/30
   [edit interfaces lo0 unit 0 family inet]
   user@R2# set address 192.168.0.2/32 primary
   user@R2# set address 172.16.0.2/32

2. Configure the BGP peering session.

   [edit protocols bgp group ext]
   user@R2# set type external
   user@R2# set export send-direct
   user@R2# set neighbor 10.0.0.1 peer-as 100

3. Configure the autonomous system (AS) number and router ID.

   [edit routing-options]
   user@R2# set autonomous-system 200
   user@R2# set router-id 192.168.0.2

4. Configure OSPF.

   [edit protocols ospf area 0.0.0.0]
   user@R2# set interface lo0.0 passive
   user@R2# set interface fe-1/2/0.0

5. Define the list of trusted addresses.

   [edit policy-options prefix-list trusted-addresses]
   user@R2# set 10.0.0.0/24
   user@R2# set 192.168.0.0/24
6. Configure a policy to advertise direct routes.

```plaintext
[edit policy-options policy-statement send-direct term 1]
user@R2# set from protocol direct
user@R2# set then accept
```

7. Configure the TCP policer.

```plaintext
[edit firewall policer tcp-connection-policer]
user@R2# set filter-specific
user@R2# set if-exceeding bandwidth-limit 1m
user@R2# set if-exceeding burst-size-limit 15k
user@R2# set then discard
```

8. Create the ICMP policer.

```plaintext
[edit firewall policer icmp-policer]
user@R2# set filter-specific
user@R2# set if-exceeding bandwidth-limit 1m
user@R2# set if-exceeding burst-size-limit 15k
user@R2# set then discard
```

9. Configure the TCP filter rules.

```plaintext
[edit firewall family inet filter protect-RE term tcp-connection-term]
user@R2# set from source-prefix-list trusted-addresses
user@R2# set from protocol tcp
user@R2# set from tcp-established
user@R2# set then policer tcp-connection-policer
user@R2# set then accept
```

10. Configure the ICMP filter rules.

```plaintext
[edit firewall family inet filter protect-RE term icmp-term]
user@R2# set from source-prefix-list trusted-addresses
user@R2# set from protocol icmp
user@R2# set then policer icmp-policer
user@R2# set then count icmp-counter
user@R2# set then accept
```
11. Apply the filter to the loopback interface.

```
[edit interfaces lo0 unit 0]
user@R2# set family inet filter input protect-RE
```

**Results**

Confirm your configuration by entering the `show interfaces`, `show protocols`, `show policy-options`, `show routing-options`, and `show firewall` commands from configuration mode. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R2# show interfaces
fe-1/2/0 {
 unit 0 {
 family inet {
 address 10.0.0.2/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 filter {
 input protect-RE;
 }
 address 192.168.0.2/32 {
 primary;
 }
 address 172.16.0.2/32;
 }
 }
}
```

```
user@R2# show protocols
bgp {
 group ext {
 type external;
 export send-direct;
 neighbor 10.0.0.1 {
 peer-as 100;
 }
 }
}
```
ospf {
  area 0.0.0.0 {
    interface lo0.0 {
      passive;
    }
    interface fe-1/2/0.0;
  }
}

user@R2# show policy-options
prefix-list trusted-addresses {
  10.0.0.0/24;
  192.168.0.0/24;
}
policy-statement send-direct {
  term 1 {
    from protocol direct;
    then accept;
  }
}

user@R2# show routing-options
router-id 192.168.0.2;
autonomous-system 200;

user@R2# show firewall
family inet {
  filter protect-RE {
    term tcp-connection-term {
      from {
        source-prefix-list {
          trusted-addresses;
        }
        protocol tcp;
        tcp-established;
      }
      then {
        policer tcp-connection-policer;
        accept;
      }
    }
  }
  term icmp-term {
from {
    source-prefix-list {
        trusted-addresses;
    }
    protocol icmp;
}
then {
    policer icmp-policer;
    count icmp-counter;
    accept;
}
}
}
policer tcp-connection-policer {
    filter-specific;
    if-exceeding {
        bandwidth-limit 1m;
        burst-size-limit 15k;
    }
    then discard;
}
policer icmp-policer {
    filter-specific;
    if-exceeding {
        bandwidth-limit 1m;
        burst-size-limit 15k;
    }
    then discard;
}

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Displaying Stateless Firewall Filter That Are in Effect | 985
- Using telnet to Verify the tcp-established Condition in the TCP Firewall Filter | 985
- Using telnet to Verify the Trusted Prefixes Condition in the TCP Firewall Filter | 987
Confirm that the configuration is working properly.

NOTE: To verify the TCP policer, you can use a packet generation tool. This task is not shown here.

Displaying Stateless Firewall Filter That Are in Effect

Purpose
Verify the configuration of the firewall filter.

Action
From operational mode, enter the `show firewall` command.

```
user@R2> show firewall
```

<table>
<thead>
<tr>
<th>Filter: protect-RE</th>
<th>Counters:</th>
<th></th>
<th>Policers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Bytes</td>
<td>Packets</td>
<td>Name</td>
</tr>
<tr>
<td>icmp-counter</td>
<td>0</td>
<td>0</td>
<td>icmp-policer</td>
</tr>
<tr>
<td>Policers:</td>
<td></td>
<td></td>
<td>tcp-connection-policer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Meaning
The output shows the filter, the counter, and the policers that are in effect on Device R2.

Using telnet to Verify the tcp-established Condition in the TCP Firewall Filter

Purpose
Make sure that telnet traffic works as expected.

Action
Verify that the device can establish only TCP sessions with hosts that meet the `from tcp-established` condition.
1. From Device R2, make sure that the BGP session with Device R1 is established.

   user@R2> show bgp summary | match down

   Groups: 1 Peers: 1 Down peers: 0

2. From Device R2, telnet to Device R1.

   user@R2> telnet 192.168.0.1

   Trying 192.168.0.1...
   Connected to R1.example.net.
   Escape character is '^]'.

   R1 (ttyp4)
   login:

3. From Device R1, telnet to Device R2.

   user@R1> telnet 192.168.0.2

   Trying 192.168.0.2...
   telnet: connect to address 192.168.0.2: Operation timed out
   telnet: Unable to connect to remote host

4. On Device R2, deactivate the from tcp-established match condition.

   [edit firewall family inet filter protect-RE term tcp-connection-term]
   user@R2# deactivate from tcp-established
   user@R2# commit

5. From Device R1, try again to telnet to Device R2.

   user@R1> telnet 192.168.0.1

   Trying 192.168.0.2...
   Connected to R2.example.net.
   Escape character is '^]'.

   R2 (ttyp4)
   login:
Meaning
Verify the following information:

- As expected, the BGP session is established. The \texttt{from tcp-established} match condition is not expected to block BGP session establishment.

- From Device R2, you can telnet to Device R1. Device R1 has no firewall filter configured, so this is the expected behavior.

- From Device R1, you cannot telnet to Device R2. Telnet uses TCP as the transport protocol, so this result might be surprising. The cause for the lack of telnet connectivity is the \texttt{from tcp-established} match condition. This match condition limits the type of TCP traffic that is accepted of Device R2. After this match condition is deactivated, the telnet session is successful.

Using telnet to Verify the Trusted Prefixes Condition in the TCP Firewall Filter

Purpose
Make sure that telnet traffic works as expected.

Action
Verify that the device can establish only telnet sessions with a host at an IP address that matches one of the trusted source addresses. For example, log in to the device with the \texttt{telnet} command from another host with one of the trusted address prefixes. Also, verify that telnet sessions with untrusted source addresses are blocked.

1. From Device R1, telnet to Device R2 from an untrusted source address.

   \begin{verbatim}
   user@R1> telnet 172.16.0.2 source 172.16.0.1
   Trying 172.16.0.2...
   ^C
   \end{verbatim}

2. From Device R2, add 172.16/16 to the list of trusted prefixes.

   \begin{verbatim}
   [edit policy-options prefix-list trusted-addresses]
   user@R2# set 172.16.0.0/16
   user@R2# commit
   \end{verbatim}

3. From Device R1, try again to telnet to Device R2.

   \begin{verbatim}
   user@R1> telnet 172.16.0.2 source 172.16.0.1
   Trying 172.16.0.2...
   Connected to R2.example.net.
   Escape character is '\]' .
   \end{verbatim}
Meaning
Verify the following information:

- From Device R1, you cannot telnet to Device R2 with an untrusted source address. After the 172.16/16 prefix is added to the list of trusted prefixes, the telnet request from source address 172.16.0.1 is accepted.

- OSPF session establishment is blocked. OSPF does not use TCP as its transport protocol. After the from protocol tcp match condition is deactivated, OSPF session establishment is not blocked.

Using OSPF to Verify the TCP Firewall Filter

Purpose
Make sure that OSPF traffic works as expected.

Action
Verify that the device cannot establish OSPF connectivity.

1. From Device R1, check the OSPF sessions.

```
user@R1> show ospf neighbor
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.2</td>
<td>fe-1/2/0.0</td>
<td>Init</td>
<td>192.168.0.2</td>
<td>128</td>
<td>34</td>
</tr>
</tbody>
</table>

2. From Device R2, check the OSPF sessions.

```
user@R2> show ospf neighbor
```

3. From Device R2, remove the from protocol tcp match condition.

```
[edit firewall family inet filter protect-RE term tcp-connection-term]
user@R2# deactivate from protocol
tcp-connection-term
user@R2# commit
```

4. From Device R1, recheck the OSPF sessions.

```
user@R1> show ospf neighbor
```
5. From Device R2, recheck the OSPF sessions.

```
user@R2> show ospf neighbor
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>fe-1/2/0.0</td>
<td>Full</td>
<td>192.168.0.1</td>
<td>128</td>
<td>39</td>
</tr>
</tbody>
</table>

**Meaning**

Verify the following information:

- OSPF session establishment is blocked. OSPF does not use TCP as its transport protocol. After the **from protocol tcp** match condition is deactivated, OSPF session establishment is successful.

**Verifying the ICMP Firewall Filter**

**Purpose**

Verify that ICMP packets are being policed and counted. Also make sure that ping requests are discarded when the requests originate from an untrusted source address.

**Action**

1. Undo the configuration changes made in previous verification steps.

   Reactivate the TCP firewall settings, and delete the 172.16/16 trusted source address.

   ```
 [edit firewall family inet filter protect-RE term tcp-connection-term]
 user@R2# activate from protocol
 user@R2# activate from tcp-established
 [edit policy-options prefix-list trusted-addresses]
 user@R2# delete 172.16.0.0/16
 user@R2# commit
   ```

2. From Device R1, ping the loopback interface on Device R2.

```
user@R1> ping 192.168.0.2 rapid count 600 size 2000
```

PING 192.168.0.2 (192.168.0.2): 2000 data bytes

--- 192.168.0.2 ping statistics ---
600 packets transmitted, 536 packets received, 10% packet loss
pingground-trip min/avg/max/stddev = 2.976/3.405/42.380/2.293 ms
3. From Device R2, check the firewall statistics.

```
user@R2> show firewall
```

<table>
<thead>
<tr>
<th>Filter: protect-RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>icmp-counter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>icmp-policer</td>
</tr>
<tr>
<td>tcp-connection-policer</td>
</tr>
</tbody>
</table>

4. From an untrusted source address on Device R1, send a ping request to Device R2's loopback interface.

```
user@R1> ping 172.16.0.2 source 172.16.0.1
```

PING 172.16.0.2 (172.16.0.2): 56 data bytes
^C
--- 172.16.0.2 ping statistics ---
14 packets transmitted, 0 packets received, 100% packet loss

**Meaning**
Verify the following information:

- The ping output shows that 10% packet loss is occurring.
- The ICMP packet counter is incrementing, and the icmp-policer is incrementing.
- Device R2 does not send ICMP responses to the ping 172.16.0.2 source 172.16.0.1 command.

**RELATED DOCUMENTATION**

- Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources | 947
- Two-Color Policer Configuration Overview | 1763
Example: Protecting the Routing Engine with a Packets-Per-Second Rate Limiting Filter

This example shows how to configure a packets-per-second based rate-limiting filter to improve security. It will be applied to the loopback interface in order to help protect the Routing Engine from denial of service attacks.

BEST PRACTICE: This type of filter and policer combination is only one element in a multilayered approach that can be used to help protect the Routing Engine. Other layers of protection are needed in order to fully protect the Routing Engine. See Day One: Securing the Routing Engine on M, MX, and T Series for more information.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a stateless firewall filter to set packets-per-second (pps) rate limits for any traffic destined for the Routing Engine through the loopback interface (lo0.0).

To activate a policer from within a stateless firewall filter configuration:

1. Create a template for the policer by including the policer policer-name statement at the [edit firewall] hierarchy.

2. Reference the policer in a filter term that specifies the policer in the policer policer-name nonterminating action.
You can also apply a policer by including the `policer (input | output) policer-name` statement in a logical interface configuration.

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set firewall policer police_pps if-exceeding-pps pps-limit 1k
set firewall policer police_pps if-exceeding-pps packet-burst 150
set firewall policer police_pps then discard
set firewall family inet filter my_pps_filter term term1 then policer police_pps
set interfaces lo0 unit 0 family inet filter input my_pps_filter
set interfaces lo0 unit 0 family inet address 127.0.0.1/32
```

**Configuring the Policier and the Stateless Firewall Filter**

**Step-by-Step Procedure**

To configure the policer `police_pps` and stateless firewall filter `my_pps_filter`:

1. Configure the policer template `police_pps`.

   ```plaintext
 [edit firewall]
 user@host# set policer police_pps if-exceeding-pps pps-limit 1k
 user@host# set policer police_pps if-exceeding-pps packet-burst 150
 user@host# set policer police_pps then discard
   ```
2. Create the stateless firewall filter `my_pps_filter`.

```
[edit]
user@host# edit firewall family inet filter my_pps_filter
```

3. Configure a filter term that uses policer `police_pps` to rate limit traffic by protocol family.

```
[edit firewall family inet filter my_pps_filter]
user@host# set term term1 then policer police_pps
```

**Applying the Stateless Firewall Filter to the Loopback Logical Interface**

**Step-by-Step Procedure**

To apply the filter `my_pps_filter` to the loopback interface:

1. Configure the logical loopback interface to which you will apply the stateless firewall filter.

```
[edit]
user@host# edit interfaces lo0 unit 0
```

2. Apply the stateless firewall filter to the loopback interface.

```
[edit interfaces lo0 unit 0]
user@host# set family inet filter input my_pps_filter
```

3. Configure the interface address for the loopback interface.

```
[edit interfaces lo0 unit 0]
user@host# set family inet address 127.0.0.1/32
```

**Results**

Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show firewall
family inet{
```
Confirm the configuration of the interface by entering the `show interfaces lo0` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show interfaces lo0
unit 0 {
 family inet {
 filter {
 input my_pps_filter;
 }
 address 127.0.0.1/32;
 }
}
```

If you are done configuring the device, enter commit from configuration mode.

```
user@host# commit
```

**Verification**

**IN THIS SECTION**

- Verifying the Operation of the Filter | 995
**Verifying the Operation of the Filter**

**Purpose**

To confirm that the configuration is working properly, enter the `show firewall filter my_pps_filter` operational mode command.

**NOTE:** The following output results from running a rapid ping from another host to the router under test. In order to show results in the output, a `pps-limit` setting of 50 and a `packet-burst` setting of 10 were used during the ping test.

**Action**

```
user@host> show firewall filter my_pps_filter
```

<table>
<thead>
<tr>
<th>Filter: my_pps_filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policers:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>police_pps-term1</td>
</tr>
<tr>
<td>Bytes</td>
</tr>
<tr>
<td>Packets</td>
</tr>
<tr>
<td>8704</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- PPS-Based Policer Overview | 1682
- if-exceeding-pps (Policer) | 2240

**Example: Configuring a Filter to Exclude DHCPv6 and ICMPv6 Control Traffic for LAC Subscriber**
This example shows how to configure a standard stateless firewall filter that excludes DHCPv6 and ICMPv6 control packets from being considered for idle-timeout detection for tunneled subscribers at the LAC.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

 Subscriber access on a LAC can be limited by configuring an idle timeout period that specifies the maximum period of time a subscriber can remain idle after the subscriber session is established. The LAC monitors the subscriber’s upstream and downstream data traffic to determine whether the subscriber is inactive. Based on the session accounting statistics, the subscriber is not considered idle as long as data traffic is detected in either direction. When no traffic is detected for the duration of the idle time out, the subscriber is logged out gracefully similarly to a RADIUS-initiated disconnect or a CLI-initiated logout.

 However, after a tunnel is established for L2TP subscribers, all packets through the tunnel at the LAC are treated as data packets. Consequently, the accounting statistics for the session are inaccurate and the subscriber is not considered to be idle as long as DHCPv6 and ICMPv6 control packets are being sent.

 Starting in Junos OS Release 17.2R1, you can define a firewall filter for the inet6 family with terms to match on these control packets. Include the use the exclude-accounting terminating action in the filter terms to drop these control packets.

Configuration

CLI Quick Configuration

 To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set access profile v6-exclude-idle session-options client-idle-timeout 10
set access profile v6-exclude-idle session-options client-idle-timeout-ingress-only
edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER
set interface-specific
set term EXCLUDE-ACCT-DHCP-INET6 from next-header udp
set term EXCLUDE-ACCT-DHCP-INET6 from source-port 546
set term EXCLUDE-ACCT-DHCP-INET6 from source-port 547
set term EXCLUDE-ACCT-DHCP-INET6 from destination-port 546
set term EXCLUDE-ACCT-DHCP-INET6 from destination-port 547
set term EXCLUDE-ACCT-DHCP-INET6 then count exclude-acct-dhcpv6
set term EXCLUDE-ACCT-DHCP-INET6 then exclude-accounting
set term EXCLUDE-ACCT-ICMP6 from next-header icmp6
```
Configure the Filter

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure the filter:

1. Set the idle timeout for subscriber sessions.

```
[edit access profile v6-exclude-idle]
user@host# set session-options client-idle-timeout 10
```

2. Specify the idle timeout applies only to ingress traffic.

```
[edit access profile v6-exclude-idle]
user@host# set session-options client-idle-timeout-ingress-only
```

3. Define the firewall filter term that excludes the DHCPv6 control packets from accounting statistics.
   a. Specify a match on packets with the first Next Header field set to UDP (17).

```
[edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER]
user@host# set term EXCLUDE-ACCT-DHCP-INET6 from next-header udp
```

   b. Specify a match on packets with a source port of 546 or 547 (DHCPv6).

```
[edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER]
user@host# set term EXCLUDE-ACCT-DHCP-INET6 from source-port 546
```
4. Define the firewall filter term that excludes the ICMPv6 control packets from accounting statistics.

a. Specify a match on packets with the first Next Header field set to ICMPv6 (58).

```
[edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER]
user@host# set term EXCLUDE-ACCT-ICMP6 from next-header icmp6
```

b. Specify a match on packets with an ICMPv6 message type.

```
[edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER]
user@host# set term EXCLUDE-ACCT-ICMP6 from icmp-type router-solicit
user@host# set term EXCLUDE-ACCT-ICMP6 from icmp-type neighbor-solicit
user@host# set term EXCLUDE-ACCT-ICMP6 from icmp-type neighbor-advertisement
```

c. Count the matched ICMPv6 packets.

```
[edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER]
user@host# set term EXCLUDE-ACCT-ICMP6 then count exclude-acct-icmpv6
```

d. Exclude the matched ICMPv6 packets from accounting statistics.

```
[edit firewall family inet6 filter EXCLUDE-ACCT-INET6-FILTER]
user@host# set term EXCLUDE-ACCT-ICMP6 then exclude-accounting
```

5. Define the default filter term to accept all other packets.
6. Configure the dynamic profile to apply the filter to input and output interfaces for the inet6 family.

```
[edit dynamic-profiles pppoe-dynamic-profile interfaces pp0 unit "$junos-interface-unit"]
user@host# set family inet6 filter input EXCLUDE-ACCT-INET6-FILTER
user@host# set family inet6 filter output EXCLUDE-ACCT-INET6-FILTER
```


```
[edit dynamic-profiles pppoe-dynamic-profile interfaces pp0 unit "$junos-interface-unit"]
user@host# set actual-transit-statistics
```

**Results**

From configuration mode, confirm your configuration by entering the `show access`, `show firewall`, and `show dynamic-profiles` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show access
profile v6-exclude-idle {
 session-options {
 client-idle-timeout 10;
 client-idle-timeout-ingress-only;
 }
}

user@host# show firewall
family inet6 {
 filter EXCLUDE-ACCT-INET6-FILTER {
 interface-specific;
 term EXCLUDE-ACCT-DHCP-INET6 {
 from {
 next-header udp;
 source-port [546 547];
 destination-port [546 547];
 }
 then {
```
count exclude-acct-dhcpv6;
exclude-accounting
}
}
term EXCLUDE-ACCT-ICMP6 {
from {
  next-header icmp6;
  icmp-type [ router-solicit neighbor-solicit neighbor-advertisement ]
}
then {
  count exclude-acct-icmpv6;
  exclude-accounting;
}
}
term default {
  then accept;
}
}
}

user@host# show dynamic-profiles
pppoe-dynamic-profile {
  interfaces {
    pp0 {
      unit "$junos-interface-unit" {
        actual-transit-statistics;
        family inet6 {
          filter {
            input EXCLUDE-ACCT-INET6-FILTER;
            output EXCLUDE-ACCT-INET6-FILTER;
          }
        }
      }
    }
  }
}

If you are done configuring the device, enter commit from configuration mode.

RELATED DOCUMENTATION

Classic Filters Overview
Port Number Requirements for DHCP Firewall Filters

When you configure a firewall filter to perform some action on DHCP packets at the Routing Engine, such as protecting the Routing Engine by allowing only proper DHCP packets, you must specify both port 67 (bootps) and port 68 (bootpc) for both the source and destination. The firewall filter acts at both the line cards and the Routing Engine.

This requirement applies to both DHCP local server and DHCP relay, but it applies only when DHCP is provided by the jdhcpd process. MX Series routers use jdhcpd. For DHCP relay, that means the configuration is required only at the [edit forwarding-options dhcp-relay] hierarchy level and not at the [edit forwarding-options helpers bootp] hierarchy level.

DHCP packets received on the line cards are encapsulated by jdhcpd with a new UDP header where their source and destination addresses are set to port 68 before being forwarded to the Routing Engine.

For DHCP relay and DHCP proxy, packets sent to the DHCP server from the router have both the source and destination UDP ports set to 67. The DHCP server responds using the same ports. However, when the line card receives these DHCP response packets, it changes both port numbers from 67 to 68 before passing the packets to the Routing Engine. Consequently the filter needs to accept port 67 for packets relayed from the client to the server, and port 68 for packets relayed from the server to the client.

Failure to include both port 67 and port 68 as described here results in most DHCP packets not being accepted.

For complete information about configuring firewall filters in general, see Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

RELATED DOCUMENTATION

Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine | 1002

Extended DHCP Local Server Overview

Extended DHCP Relay Agent Overview

Understanding Dynamic Firewall Filters
Example: Configuring a DHCP Firewall Filter to Protect the Routing Engine

This example shows how to configure a firewall filter to ensure that proper DHCP packets can reach the Routing Engine on MX Series routers.

Requirements

This configuration example applies only to routers where DHCP local server and DHCP relay agent services are provided by the jdhcpd process rather than the legacy dhcpd process or fud (UDP forwarding) process. MX Series routers, M120 routers, and M320 routers use jdhcpd. For DHCP relay, that means the configuration is required only at the [edit forwarding-options dhcp-relay] hierarchy level and not at the [edit forwarding-options helpers bootp] hierarchy level.

No special configuration beyond device initialization is required before you can configure this feature.

Overview

Firewall filters that perform some action on DHCP packets at the Routing Engine, such as a filter to protect the Routing Engine by allowing only proper DHCP packets, require that both port 67 (bootps) and port 68 (bootpc) are configured as both source and destination ports.

DHCP packets received on the line cards are encapsulated by jdhcpd with a new UDP header where their source and destination addresses are set to port 68 before being forwarded to the Routing Engine. For DHCP relay and DHCP proxy, packets sent to the DHCP server from the router have both the source and destination UDP ports set to 67. The DHCP server responds using the same ports. However, when the line card receives these DHCP response packets, it changes both port numbers from 67 to 68 before passing the packets to the Routing Engine. Consequently the filter needs to accept port 67 for packets relayed from the client to the server, and port 68 for packets relayed from the server to the client.

In this example, you configure two filter terms, dhcp-client-accept and dhcp-server-accept. The match conditions for dhcp-client-accept specify a source address and destination address for broadcast packets, the UDP protocol used for DHCP packets, and the bootpc (68) source port. Packets that match these
conditions are counted and accepted. This term does not need to specify a match condition for the boot ps (67) destination port. As configured below, this term can handle both the actual packet (port 68) passing to the Packet Forwarding Engine and the encapsulated packet (port 67 converted to 68 by jdhcpd) that reaches the DHCP daemon.

The match conditions for dhcp-server-accept specify the UDP protocol used for DHCP packets, and both port 67 and 68 for both source port and destination port. Packets that match these conditions are counted and accepted.

NOTE: This example does not show all possible configuration choices, nor does it show how the filter is applied in your configuration. This example applies to both static application of the filter as well as dynamic application with a dynamic profile.

Configuration

CLI Quick Configuration
To quickly configure the sample Routing Engine DHCP filter, copy the following commands, paste them in a text file, remove any line breaks, and then copy and paste the commands into the CLI.

```
[edit]
edithostfamily inet filter RE-protect
edit term dhcp-client-accept
set from source-address 0.0.0.0/32
set from destination-address 255.255.255.255/32
set from protocol udp
set from source-port 68
set then count dhcp-client-accept
set then accept
up
edithostfamily inet filter RE-protect
set from protocol udp
set from source-port 67
set from source-port 68
set from destination-port 67
set from destination-port 68
set then count dhcp-client-accept
set then accept
top
```
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure a DHCP firewall filter to protect the Routing Engine:

1. Create or specify a firewall filter.

[edit firewall]
user@host# edit family inet filter RE-protect

2. Create a filter term for the client.

[edit firewall family inet filter RE-protect]  
user@host# edit term dhcp-client-accept

3. Specify the match conditions for DHCP packets.

[edit firewall family inet filter RE-protect term dhcp-client-accept]  
user@host# set from source-address 0.0.0.0/32  
user@host# set from destination-address 255.255.255.255/32  
user@host# set from protocol udp  
user@host# set from source-port 68  
user@host# set from destination-port 67

4. Specify the action to take for matched packets.

[edit firewall family inet filter RE-protect term dhcp-client-accept]  
user@host# set then count dhcp-client-accept  
user@host# set then accept

5. Create a filter term for the server.

[edit firewall family inet filter RE-protect]  
user@host# edit term dhcp-server-accept

6. Specify the match conditions for DHCP packets.

[edit firewall family inet filter RE-protect term dhcp-server-accept]  
user@host# set from protocol udp  
user@host# set from source-port [67 68]
7. Specify the action to take for matched packets.

```
[edit firewall family inet filter RE-protect]
user@host# set from destination-port [67 68]
user@host# set then count dhcp-client-accept
user@host# set then accept
```

**Results**

From configuration mode, confirm your configuration by entering the `show firewall` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit]
user@host# show firewall
family inet {
 filter RE-protect {
 term dhcp-client-accept {
 from {
 source-address { 0.0.0.0/32; }
 destination-address { 255.255.255.255/32; }
 }
 protocol udp;
 source-port 68;
 destination-port 67;
 }
 then {
 count dhcp-client-accept;
 accept;
 }
 }
 term dhcp-server-accept {
 from {
 protocol udp;
 source-port [67 68];
 destination-port [67 68];
 }
 then {
 count dhcp-server-accept;
 }
 }
```

If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**

- Verifying the DHCP Filter Operation | 1006

To confirm that the Routing Engine DHCP protection filter is properly passing DHCP packets, perform these tasks:

**Verifying the DHCP Filter Operation**

**Purpose**
Verify that both counters increment as DHCP traffic passes to the Routing Engine.

**Action**
From operational mode, enter the **show firewall family inet filter RE-protect** command.

```
user@host> show firewall family inet filter RE-protect

Filter: RE-protect
Counters:
Name Bytes Packets
dhcp-client-accept 328 1
dhcp-server-accept 574 1

user@host> show firewall family inet filter RE-protect

Filter: RE-protect
Counters:
Name Bytes Packets
```
### Meaning

The output lists both configured counters, dhcp-client-accept and dhcp-server-accept. By issuing the command more than once, you can see that the byte and packet fields both show that traffic is being accepted and counted.

### RELATED DOCUMENTATION

- Port Number Requirements for DHCP Firewall Filters
- Understanding Dynamic Firewall Filters
- Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
- Extended DHCP Local Server Overview
- Extended DHCP Relay Agent Overview
CHAPTER 16

Applying Firewall Filters to Transit Traffic

IN THIS CHAPTER

- Example: Configuring a Filter for Use as an Ingress Queuing Filter | 1009
- Example: Configuring a Filter to Match on IPv6 Flags | 1012
- Example: Configuring a Filter to Match on Port and Protocol Fields | 1014
- Example: Configuring a Filter to Count Accepted and Rejected Packets | 1019
- Example: Configuring a Filter to Match on Port and Protocol Fields | 1023
- Example: Configuring a Filter to Count IP Options Packets | 1028
- Example: Configuring a Filter to Count and Sample Accepted Packets | 1034
- Example: Configuring a Filter to Set the DSCP Bit to Zero | 1041
- Example: Configuring a Filter to Set the DSCP Bit to Zero | 1045
- Example: Configuring a Filter to Match on Two Unrelated Criteria | 1049
- Example: Configuring a Filter to Accept DHCP Packets Based on Address | 1052
- Example: Configuring a Filter to Accept OSPF Packets from a Prefix | 1056
- Example: Configuring a Stateless Firewall Filter to Handle Fragments | 1060
- Configuring a Firewall Filter to Prevent or Allow IPv4 Packet Fragmentation | 1066
- Configuring a Firewall Filter to Discard Ingress IPv6 Packets with a Mobility Extension Header | 1068
- Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses | 1069
- Example: Configuring a Rate-Limiting Filter Based on Destination Class | 1073

Example: Configuring a Filter for Use as an Ingress Queuing Filter

IN THIS SECTION

- Requirements | 1010
- Overview | 1010
- Configuration | 1010
This example shows how to configure a firewall filter for use as an ingress queuing filter. The ingress queuing filter assists in traffic shaping operations by enabling you to set the forwarding class and packet loss priority, or drop the packet before ingress queue selection. The firewall filter must be configured within one of the following protocol families: bridge, cc, inet, inet6, mpls, or vpls and have one or more of the following actions: accept, discard, forwarding-class, and loss-priority.

NOTE: Although the ingress queuing filter can be used with EX9200 switches and T-Series routers as well as MX-Series routers, it is used only on those MX Series routers that have MPCs. An error is generated at commit if the ingress queuing filter is applied to an interface on any other type of port concentrator.

Requirements

This example uses the following hardware and software components:

- An MX Series router with MPC

In order for ingress queuing filters to function, ingress-and-egress must be configured as the traffic-manager mode at the [edit chassis fpc slot pic slot traffic-manager mode] hierarchy level.

Overview

In this example, you create a firewall filter named iqfilter1 in the inet protocol family that sets the loss priority and forwarding class of packets coming from the 192.168.2.0/24 network. You then apply the iqfilter1 filter to the ge-0/0/0.0 logical interface as an ingress queuing filter.

To configure a firewall filter and apply it for use as an ingress queuing filter involves:

- Creating a firewall filter named iqfilter1 in the inet protocol family with the following two actions: forwarding-class and loss-priority.
- Applying the firewall filter to the ge-0/0/0.0 interface as an ingress queuing filter.

Configuration

IN THIS SECTION

- Configuring the Firewall Filter and Applying It to an Interface as an Input Queuing Filter | 1011
- Results | 1011

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter iqfilter1 term t1 from address 192.168.2.0/24
set firewall family inet filter iqfilter1 term t1 then loss-priority low
set firewall family inet filter iqfilter1 term t1 then forwarding-class expedited-forwarding
set interfaces ge-0/0/0 unit 0 family inet ingress-queuing-filter iqfilter1
```

**Configuring the Firewall Filter and Applying It to an Interface as an Input Queuing Filter**

**Step-by-Step Procedure**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure the firewall filter, *iqfilter1*, and apply it to logical interface ge-0/0/0 unit 0:

1. Create a firewall filter named *iqfilter1*.

   ```
 [edit firewall family inet]
 user@router# set filter iqfilter1 term t1 from address 192.168.2.0/24
 user@router# set filter iqfilter1 term t1 then loss-priority low
 user@router# set filter iqfilter1 term t1 then forwarding-class expedited-forwarding
   ```

2. Apply the firewall filter to the logical interface.

   ```
 [edit]
 user@router# set interfaces ge-0/0/0 unit 0 family inet ingress-queuing-filter iqfilter1
   ```

**Results**

From configuration mode, confirm your configuration by entering the `show firewall` and the `show interfaces ge-0/0/0.0` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@router# show firewall
family inet {
 filter iqfilter1 {
 term t1 {
 from {
```

```
      ```
address { 192.168.0.0/24; }
}
then { loss-priority low;
    forwarding-class expedited-forwarding;
}
}
}
user@router# show interfaces ge-0/0/0.0
family inet {
    ingress-queuing-filter iqfilter1;
}

If you are done configuring the device, enter commit from configuration mode.

user@router# commit

RELATED DOCUMENTATION

- Multifield Classifier for Ingress Queuing on MX Series Routers with MPC | 745
- ingress-queuing-filter | 2049

Example: Configuring a Filter to Match on IPv6 Flags

This example shows how to configure a filter to match on IPv6 TCP flags.
Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you configure a filter to match on IPv6 TCP flags. You can use this example to configure IPv6 TCP flags in M Series, MX Series, and T Series routing devices.

Configuration

Step-by-Step Procedure

To configure a filter to match on IPv6 TCP flags:

1. Include the family statement at the firewall hierarchy level, specifying inet6 as the protocol family.

   ```
 [edit]
 user@host# edit firewall family inet6
   ```

2. Create the stateless firewall filter.

   ```
 [edit firewall family inet6]
 user@host# edit filter tcpfilt
   ```

3. Define the first term for the filter.

   ```
 [edit firewall family inet6 filter tcpfilt]
 user@host# edit term 1
   ```

4. Define the source address match conditions for the term.

   ```
 [edit firewall family inet6 filter tcpfilt term 1]
 user@host# set from next-header tcp tcp-flags syn
   ```

5. Define the actions for the term.

   ```
 [edit firewall family inet6 filter tcpfilt term 1]
 user@host# set then count tcp_syn_pkt log accept
   ```
6. If you are done configuring the device, commit the configuration.

```
[edit firewall family inet6 filter tcpfilt term 1]
user@host top

[edit]
user@host# commit
```

Verification

To confirm that the configuration is working properly, enter the `show firewall filter tcpfilt` command.

---

Example: Configuring a Filter to Match on Port and Protocol Fields

This example shows how to configure a standard stateless firewall filter to match on destination port and protocol fields.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you configure a stateless firewall filter that accepts all IPv4 packets except for TCP and UDP packets. TCP and UDP packets are accepted if destined for the SSH port or the Telnet port. All other packets are rejected.
Configuration

IN THIS SECTION
- Configure the Stateless Firewall Filter | 1015
- Apply the Stateless Firewall Filter to a Logical Interface | 1016
- Confirm and Commit Your Candidate Configuration | 1017

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level:

```
set firewall family inet filter filter1 term term1 from protocol-except tcp
set firewall family inet filter filter1 term term1 from protocol-except udp
set firewall family inet filter filter1 term term1 then accept
set firewall family inet filter filter1 term term2 from address 192.168.0.0/16
set firewall family inet filter filter1 term term2 then reject
set firewall family inet filter filter1 term term3 from destination-port ssh
set firewall family inet filter filter1 term term3 from destination-port telnet
set firewall family inet filter filter1 term term3 then accept
set firewall family inet filter filter1 term term4 then reject
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input filter1
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter **filter1**:

1. Create the IPv4 stateless firewall filter.

   ```
 [edit]
 user@host# edit firewall family inet filter filter1
   ```
2. Configure a term to accept all traffic except for TCP and UDP packets.

```plaintext
[edit firewall family inet filter filter1]
user@host# set term term1 from protocol-except tcp
user@host# set term term1 from protocol-except udp
user@host# set term term1 then accept
```

3. Configure a term to reject packets to or from the 192.168/16 prefix.

```plaintext
[edit firewall family inet filter filter1]
user@host# set term term2 from address 192.168.0.0/16
user@host# set term term2 then reject
```

4. Configure a term to accept packets destined for either the SSH port or the Telnet port.

```plaintext
[edit firewall family inet filter filter1]
user@host# set term term3 from destination-port ssh
user@host# set term term3 from destination-port telnet
user@host# set term term3 then accept
```

5. Configure the last term to reject all packets.

```plaintext
[edit firewall family inet filter filter1]
user@host# set term term4 then reject
```

**Apply the Stateless Firewall Filter to a Logical Interface**

**Step-by-Step Procedure**

To apply the stateless firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.

```plaintext
[edit]
user@host# edit interfaces ge-0/0/1 unit 0 family inet
```

2. Configure the interface address for the logical interface.

```plaintext
[edit interfaces ge-0/0/1 unit 0 family inet]
```
user@host# set address 10.1.2.3/30

3. Apply the stateless firewall filter to the logical interface.

   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set filter input filter1

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   [edit]
   user@host# show firewall
   family inet {
     filter filter1 {
       term term1 {
         from {
           protocol-except [tcp udp];
         }
         then {
           accept;
         }
       }
       term term2 {
         from {
           address 192.168/16;
         }
         then {
           reject;
         }
       }
       term term3 {
         from {
           destination-port [ssh telnet];
         }
         then {
           accept;
         }
       }
     }
   }

   1017
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-0/0/1 {
 unit 0 {
 family inet {
 filter {
 input filter1;
 }
 address 10.1.2.3/30;
 }
 }
}
```

3. If you are done configuring the device, commit your candidate configuration.

```plaintext
[edit]
user@host# commit
```

**Verification**

To confirm that the configuration is working properly, enter the `show firewall filter filter1` operational mode command.
Example: Configuring a Filter to Count Accepted and Rejected Packets

IN THIS SECTION
- Requirements | 1019
- Overview | 1019
- Configuration | 1020
- Verification | 1023

This example shows how to configure a firewall filter to count packets.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a stateless firewall filter to reject all addresses except 192.168.5.0/24.

Topology

In the first term, the match condition **address 192.168.5.0/24 except** causes this address to be considered a mismatch, and this address is passed to the next term in the filter. The match condition **address 0.0.0.0/0** matches all other packets, and these are counted, logged, and rejected.

In the second term, all packets that passed through the first term (that is, packets whose address matches **192.168.5.0/24**) are counted, logged, and accepted.
Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter fire1 term 1 from address 192.168.5.0/24 except
set firewall family inet filter fire1 term 1 from address 0.0.0.0/0
set firewall family inet filter fire1 term 1 then count reject_pref1_1
set firewall family inet filter fire1 term 1 then log
set firewall family inet filter fire1 term 1 then reject
set firewall family inet filter fire1 term 2 then count reject_pref1_2
set firewall family inet filter fire1 term 2 then log
set firewall family inet filter fire1 term 2 then accept
set interfaces ge-0/0/1 unit 0 family inet filter input fire1
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter fire1:

1. Create the stateless firewall filter fire1.

    [edit]
    user@host# edit firewall family inet filter fire1
2. Configure the first term to reject all addresses except those to or from the 192.168.5.0/24 prefix and then count, log, and reject all other packets.

```
[edit firewall family inet filter fire1]
user@host# set term 1 from address 192.168.5.0/24 except
user@host# set term 1 from address 0.0.0.0/0
user@host# set term 1 then count reject pref1_1
user@host# set term 1 then log
user@host# set term 1 then reject
```

3. Configure the next term to count, log, and accept packets in the 192.168.5.0/24 prefix.

```
[edit firewall family inet filter fire1]
user@host# set term 2 then count reject pref1_2
user@host# set term 2 then log
user@host# set term 2 then accept
```

**Apply the Stateless Firewall Filter to a Logical Interface**

**Step-by-Step Procedure**

To apply the stateless firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.

```
[edit]
user@host# edit interfaces ge-0/0/1 unit 0 family inet
```

2. Configure the interface address for the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set address 10.1.2.3/30
```

3. Apply the stateless firewall filter to the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set filter input fire1
```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**
To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 [edit]
 user@host# show firewall
 family inet {
 filter fire1 {
 term 1 {
 from {
 address {
 192.168.5.0/24 except;
 0.0.0.0/0;
 }
 }
 then {
 count reject pref1_1;
 log;
 reject;
 }
 }
 term 2 {
 then {
 count reject pref1_2;
 log;
 accept;
 }
 }
 }
 }
   ```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 [edit]
 user@host# show interfaces
 ge-0/0/1 {
 unit 0 {
 family inet {
 filter {
```
3. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

**Verification**

To confirm that the configuration is working properly, enter the `show firewall filter fire1` operational mode command. You can also display the log and individual counters separately by using the following forms of the command:

- `show firewall counter reject_pref1_1`
- `show firewall counter reject_pref1_2`
- `show firewall log`

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Filter to Count IP Options Packets | 1028
- Example: Configuring a Filter to Count and Discard IP Options Packets | 1023

**Example: Configuring a Filter to Count and Discard IP Options Packets**

**IN THIS SECTION**

- Requirements | 1024
- Overview | 1024
This example shows how to configure a standard stateless firewall to count packets.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Because the filter term matches on any IP option value, the filter term can use the `count` nonterminating action without the `discard` terminating action or (alternatively) without requiring an interface on a 10-Gigabit Ethernet Modular Port Concentrator (MPC), 60-Gigabit Ethernet MPC, 60-Gigabit Queuing Ethernet MPC, or 60-Gigabit Ethernet Enhanced Queuing MPC on an MX Series router.

Overview

In this example, you use a standard stateless firewall filter to count and discard packets that include any IP option value but accept all other packets.

The IP option header field is an optional field in IPv4 headers only. The `ip-options` and `ip-options-except` match conditions are supported for standard stateless firewall filters and service filters only.

**NOTE:** On M and T series routers, firewall filters cannot count `ip-options` packets on a per option type and per interface basis. A limited work around is to use the `show pfe statistics ip options` command to see `ip-options` statistics on a per Packet Forwarding Engine (PFE) basis. See `show pfe statistics ip` for sample output.

Configuration

**IN THIS SECTION**

- Configure the Stateless Firewall Filter | 1025
- Apply the Stateless Firewall Filter to a Logical Interface | 1025
- Confirm and Commit Your Candidate Configuration | 1026
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter block_ip_options term 10 from ip-options any
set firewall family inet filter block_ip_options term 10 then count option_any
set firewall family inet filter block_ip_options term 10 then discard
set firewall family inet filter block_ip_options term 999 then accept
set interfaces ge-0/0/1 unit 0 family inet filter input block_ip_options
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
```

**Configure the Stateless Firewall Filter**

**Step-by-Step Procedure**

To configure the stateless firewall filter:

1. Create the stateless firewall filter `block_ip_options`.

   `[edit]
   user@host# edit firewall family inet filter block_ip_options`

2. Configure the first term to count and discard packets that include any IP options header fields.

   `[edit firewall family inet filter block_ip_options]
   user@host# set term 10 from ip-options any
   user@host# set term 10 then count option_any
   user@host# set term 10 then discard`

3. Configure the other term to accept all other packets.

   `[edit firewall family inet filter block_ip_options]
   user@host# set term 999 then accept`

**Apply the Stateless Firewall Filter to a Logical Interface**

**Step-by-Step Procedure**
To apply the stateless firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.
   
   [edit]
   user@host# edit interfaces ge-0/0/1 unit 0 family inet

2. Configure the interface address for the logical interface.
   
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set address 10.1.2.3/30

3. Apply the stateless firewall filter to the logical interface.
   
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set filter input block_ip_options

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   [edit]
   user@host# show firewall
   family inet {
     filter block_ip_options {
       term 10 {
         from {
           ip-options any;
         } then {
           count option_any;
           discard;
         }
       }
       term 999 {
         then accept;
       }
     }
   }
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces
ge-0/0/1 {
 unit 0 {
 family inet {
 filter {
 input block_ip_options;
 }
 address 10.1.2.3/30;
 }
 }
}
```

3. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

**Verification**

To confirm that the configuration is working properly, enter the `show firewall filter block_ip_options` operational mode command. To display the count of discarded packets separately, enter the `show firewall count option_any` form of the command.

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters  |  723
- Example: Configuring a Filter to Count Accepted and Rejected Packets  |  1019
- Example: Configuring a Filter to Count IP Options Packets  |  1028
Example: Configuring a Filter to Count IP Options Packets

Requirements

This example uses an interface on a 10-Gigabit Ethernet Modular Port Concentrator (MPC), 60-Gigabit Ethernet MPC, 60-Gigabit Queuing Ethernet MPC, or 60-Gigabit Ethernet Enhanced Queuing MPC on an MX Series router. This interface enables you to apply an IPv4 firewall filter (standard or service filter) that can use the **count**, **log**, and **syslog** nonterminating actions on packets that match a specific **ip-option** value without having to also use the **discard** terminating action.

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a stateless firewall filter to count IP options packets but not block any traffic. Also, the filter logs packets that have loose or strict source routing.

The IP option header field is an optional field in IPv4 headers only. The **ip-options** and **ip-options-except** match conditions are supported for standard stateless firewall filters and service filters only.

**NOTE:** On M and T series routers, firewall filters cannot count **ip-options** packets on a per option type and per interface basis. A limited workaround is to use the **show pfe statistics ip options** command to see **ip-options** statistics on a per Packet Forwarding Engine (PFE) basis. See **show pfe statistics ip** for sample output.
Configuration

IN THIS SECTION

- Configure the Stateless Firewall Filter | 1029
- Apply the Stateless Firewall Filter to a Logical Interface | 1031
- Confirm and Commit Your Candidate Configuration | 1031

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter ip_options_filter term match_strict_source from ip-options strict-source-route
set firewall family inet filter ip_options_filter term match_strict_source then count strict_source_route
set firewall family inet filter ip_options_filter term match_strict_source then log
set firewall family inet filter ip_options_filter term match_strict_source then accept
set firewall family inet filter ip_options_filter term match_loose_source from ip-options loose-source-route
set firewall family inet filter ip_options_filter term match_loose_source then count loose_source_route
set firewall family inet filter ip_options_filter term match_loose_source then log
set firewall family inet filter ip_options_filter term match_loose_source then accept
set firewall family inet filter ip_options_filter term match_record from ip-options record-route
set firewall family inet filter ip_options_filter term match_record then count record_route
set firewall family inet filter ip_options_filter term match_record then accept
set firewall family inet filter ip_options_filter term match_timestamp from ip-options timestamp
set firewall family inet filter ip_options_filter term match_timestamp then count timestamp
set firewall family inet filter ip_options_filter term match_timestamp then accept
set firewall family inet filter ip_options_filter term match_router_alert from ip-options router-alert
set firewall family inet filter ip_options_filter term match_router_alert then count router_alert
set firewall family inet filter ip_options_filter term match_router_alert then accept
set firewall family inet filter ip_options_filter term match_all then accept
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input ip_options_filter
```

**Configure the Stateless Firewall Filter**

**Step-by-Step Procedure**
To configure the stateless firewall filter `ip_option_filter`:

1. Create the stateless firewall filter `ip_option_filter`.

   ```
 [edit]
 user@host# edit firewall family inet filter ip_options_filter
   ```

2. Configure the first term to count, log, and accept packets with the `strict_source_route` IP optional header field.

   ```
 [edit firewall family inet filter ip_option_filter]
 user@host# set term match strict_source from ip-options strict_source_route
 user@host# set term match strict_source then count strict_source_route
 user@host# set term match strict_source then log
 user@host# set term match strict_source then accept
   ```

3. Configure the next term to count, log, and accept packets with the `loose-source-route` IP optional header field.

   ```
 [edit firewall family inet filter ip_option_filter]
 user@host# set term match loose_source from ip-options loose-source-route
 user@host# set term match loose_source then count loose_source_route
 user@host# set term match loose_source then log
 user@host# set term match loose_source then accept
   ```

4. Configure the next term to count and accept packets with the `record-route` IP optional header field.

   ```
 [edit firewall family inet filter ip_option_filter]
 user@host# set term match record from ip-options record-route
 user@host# set term match record then count record_route
 user@host# set term match record then accept
   ```

5. Configure the next term to count and accept packets with the `timestamp` IP optional header field.

   ```
 [edit firewall family inet filter ip_option_filter]
 user@host# set term match timestamp from ip-options timestamp
 user@host# set term match timestamp then count timestamp
 user@host# set term match timestamp then accept
   ```
6. Configure the next term to count and accept packets with the **router-alert** IP optional header field.

```
[edit firewall family inet filter ip_option_filter]
user@host# set term match_router_alert from ip-options router-alert
user@host# set term match_router_alert then count router_alert
user@host# set term match_router_alert then accept
```

7. Create the last term to accept any packet without incrementing any counters.

```
[edit firewall family inet filter ip_option_filter]
user@host# set term match_all then accept
```

**Apply the Stateless Firewall Filter to a Logical Interface**

**Step-by-Step Procedure**

To apply the stateless firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.

```
[edit]
user@host# edit interfaces ge-0/0/1 unit 0 family inet
```

2. Configure the interface address for the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set address 10.1.2.3/30
```

3. Apply the stateless firewall filter to the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set filter input ip_options_filter
```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**
To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show firewall
family inet {
 filter ip_options_filter {
 term match_strict_source {
 from {
 ip-options strict-source-route;
 }
 then {
 count strict_source_route;
 log;
 accept;
 }
 }
 }
 term match_loose_source {
 from {
 ip-options loose-source-route;
 }
 then {
 count loose_source_route;
 log;
 accept;
 }
 }
 term match_record {
 from {
 ip-options record-route;
 }
 then {
 count record_route;
 accept;
 }
 }
 term match_timestamp {
 from {
 ip-options timestamp;
 }
 then {
 count timestamp;
 }
 }
}
```
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-0/0/1 {
 unit 0 {
 family inet {
 filter {
 input ip_option_filter;
 }
 address 10.1.2.3/30;
 }
 }
}
```

3. If you are done configuring the device, commit your candidate configuration.

```plaintext
[edit]
user@host# commit
```
Verification

To confirm that the configuration is working properly, enter the `show firewall filter ip_option_filter` operational mode command. You can also display the log and individual counters separately by using the following forms of the command:

- `show firewall counter strict_source_route`
- `show firewall counter loose_source_route`
- `show firewall counter record_route`
- `show firewall counter timestamp`
- `show firewall counter router_alert`
- `show firewall log`

**RELATED DOCUMENTATION**

Understanding How to Use Standard Firewall Filters	723
Example: Configuring a Filter to Count Accepted and Rejected Packets	1019
Example: Configuring a Filter to Count and Discard IP Options Packets	1023

**Example: Configuring a Filter to Count and Sample Accepted Packets**

This example shows how to configure a standard stateless firewall filter to count and sample accepted packets.
Requirements

No special configuration beyond device initialization is required before configuring this example.

Before you begin, configure traffic sampling by including the `sampling` statement at the [edit forwarding-options] hierarchy level.

Overview

In this example, you use a standard stateless firewall filter to count and sample all packets received on a logical interface.

**NOTE:** When you enable reverse path forwarding (RPF) on an interface with an input filter for firewall log and count, the input firewall filter does not log the packets rejected by RPF, although the rejected packets are counted. To log the rejected packets, use an RPF check fail filter.

**WARNING:** On MX Series routers with MPC3 or MPC4, if firewall filters are configured to count Two-Way Active Measurement Protocol (TWAMP) packets then the count is doubled for all TWAMP packets. There may also be a small increase in round trip time (RTT) when the TWAMP server is hosted on MPC3 or MPC4. This warning does not apply for routers with MPC1 or MPC2 cards.

Configuration

**IN THIS SECTION**

- Configure the Stateless Firewall Filter | 1036
- Apply the Stateless Firewall Filter to a Logical Interface | 1036
- Confirm and Commit Your Candidate Configuration | 1037

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:
CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filters sam term all then count count_sam
set firewall family inet filters sam term all then sample
set interfaces at-2/0/0 unit 301 family inet address 10.1.2.3/30
set interfaces at-2/0/0 unit 301 family inet filter input sam
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter sam:

1. Create the stateless firewall filter sam.

   ```
 [edit]
 user@host# edit firewall family inet filter sam
   ```

2. Configure the term to count and sample all packets.

   ```
 [edit firewall family inet filter sam]
 user@host# set term all then count count_sam
 user@host# set term all then sample
   ```

Apply the Stateless Firewall Filter to a Logical Interface

Step-by-Step Procedure

To apply the stateless firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.

   ```
 [edit]
 user@host# edit interfaces ge-0/0/1 unit 0 family inet
   ```

2. Configure the interface address for the logical interface.

   ```
 [edit interfaces ge-0/0/1 unit 0 family inet]
 user@host# set address 10.1.2.3/30
   ```
3. Apply the stateless firewall filter to the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set filter input sam
```

**NOTE:** The Junos OS does not sample packets originating from the router or switch. If you configure a filter and apply it to the output side of an interface, then only the transit packets going through that interface are sampled. Packets that are sent from the Routing Engine to the Packet Forwarding Engine are not sampled.

---

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 [edit]
 user@host# show firewall
 family inet {
 filter sam {
 term all {
 then {
 count count_sam;
 sample; # default action is accept
 }
 }
 }
 }
   ```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 [edit]
 user@host# show interfaces
 interfaces {
 at-2/0/0 {
   ```
3. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

**Verification**

**IN THIS SECTION**

- Displaying the Packet Counter | 1038
- Displaying the Firewall Filter Log Output | 1039
- Displaying the Sampling Output | 1040

Confirm that the configuration is working properly.

**Displaying the Packet Counter**

**Purpose**
Verify that the firewall filter is evaluating packets.

**Action**

```
user@host> show firewall filter sam
```

Filter:
Counters:
<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>sam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sam-1</td>
<td>98</td>
<td>8028</td>
</tr>
</tbody>
</table>

**Displaying the Firewall Filter Log Output**

**Purpose**
Display the packet header information for all packets evaluated by the firewall filter.

**Action**

```
user@host> show firewall log
```

<table>
<thead>
<tr>
<th>Time</th>
<th>Filter</th>
<th>A</th>
<th>Interface</th>
<th>Pro Source address</th>
<th>Destination address</th>
</tr>
</thead>
<tbody>
<tr>
<td>23:09:09</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>TCP 10.2.0.25</td>
<td>10.211.211.1:80</td>
</tr>
<tr>
<td>23:09:07</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>TCP 10.2.0.25</td>
<td>10.211.211.1:56</td>
</tr>
<tr>
<td>23:09:07</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>ICM 10.2.0.25</td>
<td>10.211.211.1:49552</td>
</tr>
<tr>
<td>23:02:27</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>TCP 10.2.0.25</td>
<td>10.211.211.1:56</td>
</tr>
<tr>
<td>23:02:25</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>TCP 10.2.0.25</td>
<td>10.211.211.1:80</td>
</tr>
<tr>
<td>23:01:22</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>ICM 10.2.2.101</td>
<td>10.211.211.1:23251</td>
</tr>
<tr>
<td>23:01:21</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>ICM 10.2.2.101</td>
<td>10.211.211.1:16557</td>
</tr>
<tr>
<td>23:01:20</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>ICM 10.2.2.101</td>
<td>10.211.211.1:29471</td>
</tr>
<tr>
<td>23:01:19</td>
<td></td>
<td>A</td>
<td>at-2/0/0.301</td>
<td>ICM 10.2.2.101</td>
<td>10.211.211.1:26873</td>
</tr>
</tbody>
</table>

**Meaning**
This output file contains the following fields:

- **Time**—Time at which the packet was received (not shown in the default).
- **Filter**—Name of a filter that has been configured with the `filter` statement at the `[edit firewall]` hierarchy level. A hyphen (-) or the abbreviation `pfe` indicates that the packet was handled by the Packet Forwarding Engine. A space (no hyphen) indicates that the packet was handled by the Routing Engine.
- **A**—Filter action:
  - **A**—Accept (or next term)
  - **D**—Discard
  - **R**—Reject
- **Interface**—Interface on which the filter is configured.
NOTE: We strongly recommend that you always explicitly configure an action in the then statement.

- **Pro**—Packet’s protocol name or number.
- **Source address**—Source IP address in the packet.
- **Destination address**—Destination IP address in the packet.

**Displaying the Sampling Output**

**Purpose**
Verify that the sampling output contains appropriate data.

**Action**

```
wtmp.0.gz Size: 15017, Last changed: Dec 19 13:15:54 wtmp.1.gz
wtmp.2.gz Size: 57, Last changed: Oct 20 15:24:34
| Pipe through a command
```

```
user@host> show log /var/tmp/sam
```

```
Apr 7 15:48:50
Time Dest addr Src Dest Src Proto TOS Pkt Intf IP TCP len num frag flags
 addr port port len num frag flags
Apr 7 15:48:54 192.168.9.194 192.168.9.195 0 0 1 0x0 84 8 0x0 0x0
Apr 7 15:48:55 192.168.9.194 192.168.9.195 0 0 1 0x0 84 8 0x0 0x0
Apr 7 15:48:56 192.168.9.194 192.168.9.195 0 0 1 0x0 84 8 0x0 0x0
```

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Filter to Set the DSCP Bit to Zero | 1041
Example: Configuring a Filter to Set the DSCP Bit to Zero

This example shows how to configure a standard stateless firewall filter based on the Differentiated Services code point (DSCP).

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a stateless firewall filter to match packets on DSCP bit patterns. If the DSCP is 2, the packet is classified to the best-effort forwarding class, and the DSCP is set to 0. If the DSCP is 3, the packet is classified to the best-effort forwarding class.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:
**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the `[edit]` hierarchy level.

```
set firewall filter filter1 term 1 from dscp 2
set firewall filter filter1 term 1 then forwarding-class best-effort
set firewall filter filter1 term 1 then dscp 0
set firewall filter filter1 term 2 from dscp 3
set firewall filter filter1 term 2 then forwarding-class best-effort
set interfaces so-0/1/0 unit 0 family inet filter input filter1
```

**Configure the Stateless Firewall Filter**

**Step-by-Step Procedure**

To configure the stateless firewall filter `filter1`:

1. Create the stateless firewall filter.

   ```
 [edit]
 user@host# edit firewall filter filter1
   ```

2. Configure the first term to match a packet with a DSCP of 2, change the DSCP to 0, and classify the packet to the `best-effort` forwarding class.

   ```
 [edit firewall filter filter1]
 user@host# set term 1 from dscp 2
 user@host# set term 1 then forwarding-class best-effort
 user@host# set term 1 then dscp 0
   ```

3. Configure the other term to match a packet with a DSCP of 3 and classify the packet to the `best-effort` forwarding class.

   ```
 [edit firewall filter filter1]
 user@host# set term 2 from dscp 3
 user@host# set term 2 then forwarding-class best-effort
   ```

**Apply the Stateless Firewall Filter to a Logical Interface**

**Step-by-Step Procedure**
To apply the stateless firewall filter to the logical interface corresponding to the VPN routing and forwarding (VRF) instance:

1. Configure the logical interface to which you will apply the stateless firewall filter.

```
[edit]
user@host# edit interfaces so-0/1/0 unit 0 family inet
```

2. Apply the stateless firewall filter to the logical interface.

```
[input filter1]
user@host# set filter input filter1
```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
filter filter1 {
 term term1 {
 from {
 dscp 2;
 }
 then {
 forwarding-class best-effort;
 dscp 0;
 }
 }
 term term2 {
 from {
 dscp 3;
 }
 then {
 forwarding-class best-effort;
 }
 }
}
```
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
so-0/1/0 {
 unit 0 {
 family inet {
 filter input filter1;
 }
 }
}
```

3. If you are done configuring the device, commit your candidate configuration.

```plaintext
[edit]
user@host# commit
```

**Verification**

To confirm that the configuration is working properly, enter the following operational mode commands:

- **show class-of-service**—Displays the entire class-of-service (CoS) configuration, including system-chosen defaults.
- **show class-of-service classifier type dscp**—Displays only the classifiers of the DSCP for IPv4 type.

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Filter to Count and Sample Accepted Packets | 1034
Example: Configuring a Filter to Set the DSCP Bit to Zero

IN THIS SECTION

- Requirements | 1045
- Overview | 1045
- Configuration | 1045
- Verification | 1048

This example shows how to configure a standard stateless firewall filter based on the Differentiated Services code point (DSCP).

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a stateless firewall filter to match packets on DSCP bit patterns. If the DSCP is 2, the packet is classified to the best-effort forwarding class, and the DSCP is set to 0. If the DSCP is 3, the packet is classified to the best-effort forwarding class.

Configuration

IN THIS SECTION

- Configure the Stateless Firewall Filter | 1046
- Apply the Stateless Firewall Filter to a Logical Interface | 1046
- Confirm and Commit Your Candidate Configuration | 1047

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:
CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall filter filter1 term 1 from dscp 2
set firewall filter filter1 term 1 then forwarding-class best-effort
set firewall filter filter1 term 1 then dscp 0
set firewall filter filter1 term 2 from dscp 3
set firewall filter filter1 term 2 then forwarding-class best-effort
set interfaces ge-0/1/0 unit 0 family inet filter input filter1
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter `filter1`:

1. Create the stateless firewall filter.

   ```
 [edit]
 user@host# edit firewall filter filter1
   ```

2. Configure the first term to match a packet with a DSCP of 2, change the DSCP to 0, and classify the packet to the best-effort forwarding class.

   ```
 [edit firewall filter filter1]
 user@host# set term 1 from dscp 2
 user@host# set term 1 then forwarding-class best-effort
 user@host# set term 1 then dscp 0
   ```

3. Configure the other term to match a packet with a DSCP of 3 and classify the packet to the best-effort forwarding class.

   ```
 [edit firewall filter filter1]
 user@host# set term 2 from dscp 3
 user@host# set term 2 then forwarding-class best-effort
   ```

Apply the Stateless Firewall Filter to a Logical Interface

Step-by-Step Procedure
To apply the stateless firewall filter to the logical interface corresponding to the VPN routing and forwarding (VRF) instance:

1. Configure the logical interface to which you will apply the stateless firewall filter.

```
[edit]
user@host# edit interfaces ge-0/1/0 unit 0 family inet
```

2. Apply the stateless firewall filter to the logical interface.

```
[input filter1]
user@host# set filter input filter1
```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
filter filter1 {
 term term1 {
 from {
 dscp 2;
 }
 then {
 forwarding-class best-effort;
 dscp 0;
 }
 }
 term term2 {
 from {
 dscp 3;
 }
 then {
 forwarding-class best-effort;
 }
 }
}
```
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces
ge-0/1/0 {
 unit 0 {
 family inet {
 filter input filter1;
 }
 }
}
```

3. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

**Verification**

To confirm that the configuration is working properly, enter the following operational mode commands:

- `show class-of-service`—Displays the entire class-of-service (CoS) configuration, including system-chosen defaults.
- `show class-of-service classifier type dscp`—Displays only the classifiers of the DSCP for IPv4 type.

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Filter to Count and Sample Accepted Packets | 1034
Example: Configuring a Filter to Match on Two Unrelated Criteria

This example shows how to configure a standard stateless firewall filter to match on two unrelated criteria.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a standard stateless firewall filter to match IPv4 packets that are either OSPF packets or packets that come from an address in the prefix 10.108/16, and send an administratively-prohibited ICMP message for all packets that do not match.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration
To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter ospf_or_131 term protocol_match from protocol ospf
set firewall family inet filter ospf_or_131 term address-match from source-address 10.108.0.0/16
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input ospf_or_131
```

**Configuring the IPv4 Firewall Filter**

**Step-by-Step Procedure**

To configure the IPv4 firewall filter:

1. Enable configuration of the IPv4 firewall filter.

   ```
 [edit]
 user@host# edit firewall family inet filter ospf_or_131
   ```

2. Configure the first term to accept OSPF packets.

   ```
 [edit firewall family inet filter ospf_or_131]
 user@host# set term protocol_match from protocol ospf
   ```

   Packets that match the condition are accepted by default. Because another term follows this term, packets that do not match this condition are evaluated by the next term.

3. Configure the second term to accept packets from any IPv4 address in a particular prefix.

   ```
 [edit firewall family inet filter ospf_or_131]
 user@host# set term address_match from source-address 10.108.0.0/16
   ```

   Packets that match this condition are accepted by default. Because this is the last term in the filter, packets that do not match this condition are discarded by default.

**Results**

Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
```
Applying the IPv4 Firewall Filter to a Logical Interface

Step-by-Step Procedure

To apply the stateless firewall filter to a logical interface:

1. Enable configuration of a logical interface.

   ```
 [edit]
 user@host# edit interfaces ge-0/0/1 unit 0 family inet
   ```

2. Configure an IP address for the logical interface.

   ```
 [edit interfaces ge-0/0/1 unit 0 family inet]
 user@host# set address 10.1.2.3/30
   ```

3. Apply the IPv4 firewall filter to the logical interface.

   ```
 [edit interfaces ge-0/0/1 unit 0 family inet]
 user@host# set filter input ospf_or_131
   ```

Results
Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-0/0/1 {
 unit 0 {
 family inet {
 filter {
 input ospf_or_131;
 }
 address 10.1.2.3/30;
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

To confirm that the configuration is working properly, enter the `show firewall filter ospf_or_131` operational mode command.

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Filter to Match on IPv6 Flags | 1012
- Example: Configuring a Filter to Match on Port and Protocol Fields | 1014

**Example: Configuring a Filter to Accept DHCP Packets Based on Address**

**IN THIS SECTION**

- Requirements | 1053
- Overview | 1053
- Configuration | 1053
- Verification | 1056
This example shows how to configure a standard stateless firewall filter to accept packets from a trusted source.

Requirements

This example is supported only on MX Series routers and EX Series switches.

Overview

In this example, you create a filter (rpf_dhcp) that accepts DHCP packets with a source address of 0.0.0.0 and a destination address of 255.255.255.255.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter rpf_dhcp term dhcp_term from source-address 0.0.0.0/32
set firewall family inet filter rpf_dhcp term dhcp_term from destination-address 255.255.255.255/32
set firewall family inet filter rpf_dhcp term dhcp_term then accept
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input sam
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure
To configure the stateless firewall filter:

1. Create the stateless firewall filter `rpf_dhcp`.

   ```
 [edit]
 user@host# edit firewall family inet filter rpf_dhcp
   ```

2. Configure the term to match packets with a source address of `0.0.0.0` and a destination address of `255.255.255.255`.

   ```
 [edit firewall family inet filter rpf_dhcp]
 user@host# set term dhcp_term from source-address 0.0.0.0/32
 user@host# set term dhcp_term from destination-address 255.255.255.255/32
   ```

3. Configure the term to accept packets that match the specified conditions.

   ```
 [edit firewall family inet filter rpf_dhcp]
 set term dhcp_term then accept
   ```

**Apply the Firewall Filter to the Loopback Interface**

**Step-by-Step Procedure**

To apply the filter to the input at the loopback interface:

1. Apply the `rpf_dhcp` filter if packets are not arriving on an expected path.

   ```
 [edit]
 user@host# set interfaces lo0 unit 0 family inet rpf-check fail-filter rpf_dhcp
   ```

2. Configure an address for the loopback interface.

   ```
 [edit]
 user@host# set interfaces lo0 unit 0 family inet address 127.0.0.1/32
   ```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**
To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
 filter rpf_dhcp {
 term dhcp_term {
 from {
 source-address {
 0.0.0.0/32;
 }
 destination-address {
 255.255.255.255/32;
 }
 }
 then accept;
 }
 }
}
```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces
lo0 {
 unit 0 {
 family inet {
 filter {
 rpf-check {
 fail-filter rpf_dhcp;
 mode loose;
 }
 }
 address 127.0.0.1/32;
 }
 }
}
```
3. When you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

**Verification**

To confirm that the configuration is working properly, enter the *show firewall* operational mode command.

**RELATED DOCUMENTATION**

- Understanding How to Use Standard Firewall Filters | 723
- Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources | 947
- Example: Configuring a Filter to Block Telnet and SSH Access | 954
- Example: Configuring a Filter to Block TFTP Access | 961
- Example: Configuring a Filter to Accept OSPF Packets from a Prefix | 1056

**Example: Configuring a Filter to Accept OSPF Packets from a Prefix**

This example shows how to configure a standard stateless firewall filter to accept packets from a trusted source.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.
Overview

In this example, you create a filter that accepts only OSPF packets from an address in the prefix 10.108.0.0/16, discarding all other packets with an administratively-prohibited ICMP message.

Configuration

IN THIS SECTION
- Configure the Stateless Firewall Filter | 1057
- Apply the Firewall Filter to the Loopback Interface | 1058
- Confirm and Commit Your Candidate Configuration | 1058

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter ospf_filter term term1 from source-address 10.108.0.0/16
set firewall family inet filter ospf_filter term term1 from protocol ospf
set firewall family inet filter ospf_filter term term1 then accept
set firewall family inet filter ospf_filter term default-term then reject administratively-prohibited
set interfaces lo0 unit 0 family inet address 10.1.2.3/30
set interfaces lo0 unit 0 family inet filter input ospf_filter
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter ospf_filter:

1. Create the filter.

```
[edit]
user@host# edit firewall family inet filter ospf_filter
```
2. Configure the term that accepts packets.

```
[edit firewall family inet filter ospf_filter]
user@host# set term term1 from source-address 10.108.0.0/16
user@host# set term term1 from protocol ospf
user@host# set term term1 then accept
```

3. Configure the term that rejects all other packets.

```
[edit firewall family inet filter ospf_filter]
user@host# set term default_term then reject administratively-prohibited
```

**Apply the Firewall Filter to the Loopback Interface**

**Step-by-Step Procedure**

To apply the firewall filter to the loopback interface:

1. Configure the interface.

```
[edit]
user@host# edit interfaces lo0 unit 0 family inet
```

2. Configure the logical interface IP address.

```
[edit interfaces lo0 unit 0 family inet]
user@host# set address 10.1.2.3/30
```

3. Apply the filter to the input.

```
[edit interfaces lo0 unit 0 family inet]
user@host# set filter input ospf_filter
```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**
To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 [edit]
 user@host# show firewall
 family inet {
 filter ospf_filter {
 term term1 {
 from {
 source-address {
 10.108.0.0/16;
 }
 protocol ospf;
 }
 then {
 accept;
 }
 }
 term default_term {
 then {
 reject administratively-prohibited; # default reject action
 }
 }
 }
 }
   ```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
 [edit]
 user@host# show interfaces
 lo0 {
 unit 0 {
 family inet {
 filter {
 input ospf_filter;
 }
 address 10.1.2.3/30;
 }
 }
 }
3. If you are done configuring the device, commit your candidate configuration.

```mermaid
[edit]
user@host# commit
```

Verification

To confirm that the configuration is working properly, enter the `show firewall filter ospf_filter` operational mode command.

RELATED DOCUMENTATION

- [Understanding How to Use Standard Firewall Filters](#) | 723
- [Example: Configuring a Stateless Firewall Filter to Accept Traffic from Trusted Sources](#) | 947
- [Example: Configuring a Filter to Block Telnet and SSH Access](#) | 954
- [Example: Configuring a Filter to Block TFTP Access](#) | 961
- [Example: Configuring a Filter to Accept DHCP Packets Based on Address](#) | 1052

Example: Configuring a Stateless Firewall Filter to Handle Fragments

IN THIS SECTION

- Requirements | 1061
- Overview | 1061
- Configuration | 1061
- Verification | 1065

This example shows how to create a stateless firewall filter that handles packet fragments.
Requirements

No special configuration beyond device initialization is required before configuring stateless firewall filters.

Overview

In this example, you create a stateless firewall filter called fragment-RE that accepts fragmented packets originating from 10.2.1.0/24 and destined for the BGP port. This example includes the following firewall filter terms:

- **not-from-prefix-term**—Discards packets that are not from 10.2.1.0/24 to ensure that subsequent terms in the firewall filter are matched against packets from 10.2.1.0/24 only.

- **small-offset-term**—Discards small (1–5) offset packets to ensure that subsequent terms in the firewall filter can be matched against all the headers in the packet. In addition, the term adds a record to the system logging destinations for the firewall facility.

- **not-fragmented-term**—Accepts unfragmented TCP packets with a destination port that specifies the BGP protocol. A packet is considered unfragmented if the MF flag is not set and the fragment offset equals 0.

- **first-fragment-term**—Accepts the first fragment of a fragmented TCP packet with a destination port that specifies the BGP protocol.

- **fragment-term**—Accepts all fragments that were not discarded by small-offset-term. (packet fragments 6–8191). However, only those fragments that are part of a packet containing a first fragment accepted by first-fragment-term arereassembled by the destination device.

Packet fragments offset can be from 1 through 8191.

NOTE: You can move terms within the firewall filter by using the insert command. For more information, see “insert” in the CLI User Guide.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter fragment-RE term not-from-prefix-term from source-address 0.0.0.0/0
set firewall family inet filter fragment-RE term not-from-prefix-term from source-address 10.2.1.0/24 except
```
set firewall family inet filter fragment-RE term not-from-prefix-term then discard
set firewall family inet filter fragment-RE term small-offset-term from fragment-offset 1-5
set firewall family inet filter fragment-RE term small-offset-term then syslog
set firewall family inet filter fragment-RE term small-offset-term then discard
set firewall family inet filter fragment-RE term not-fragmented-term from fragment-offset 0
set firewall family inet filter fragment-RE term not-fragmented-term from fragment-flags "!more-fragments"
set firewall family inet filter fragment-RE term not-fragmented-term from protocol tcp
set firewall family inet filter fragment-RE term not-fragmented-term from destination-port bgp
set firewall family inet filter fragment-RE term not-fragmented-term then accept
set firewall family inet filter fragment-RE term first-fragment-term from first-fragment
configure the first term for the filter.
set firewall family inet filter fragment-RE term first-fragment-term from protocol tcp
set firewall family inet filter fragment-RE term first-fragment-term from destination-port bgp
set firewall family inet filter fragment-RE term first-fragment-term then accept
set firewall family inet filter fragment-RE term fragment-term from fragment-offset 6-8191
set firewall family inet filter fragment-RE term fragment-term then accept

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the stateless firewall filter:
1. Define the stateless firewall filter.

 [edit]
 user@host# edit firewall family inet filter fragment-RE

2. Configure the first term for the filter.

 [edit firewall family inet filter fragment-RE]
 user@host# set term not-from-prefix-term from source-address 0.0.0.0/0
 user@host# set term not-from-prefix-term from source-address 10.2.1.0/24 except
 user@host# set term not-from-prefix-term then discard

3. Define the second term for the filter.

 [edit firewall family inet filter fragment-RE]
 user@host# edit term small-offset-term
4. Define the match conditions for the term.

```
[edit firewall family inet filter fragment-RE term small-offset-term]
user@host# set from fragment-offset 1-5
```

5. Define the action for the term.

```
[edit firewall family inet filter fragment-RE term small-offset-term]
user@host# set then syslog discard
```

6. Define the third term for the filter.

```
[edit]
user@host# edit firewall family inet filter fragment-RE term not-fragmented-term
```

7. Define the match conditions for the term.

```
[edit firewall family inet filter fragment-RE term not-fragmented-term]
user@host# set from fragment-flags "!more-fragments" fragment-offset 0 protocol tcp destination-port bgp
```

8. Define the action for the term.

```
[edit firewall family inet filter fragment-RE term not-fragmented-term]
user@host# set then accept
```

9. Define the fourth term for the filter.

```
[edit]
user@host# edit firewall family inet filter fragment-RE term first-fragment-term
```

10. Define the match conditions for the term.

```
[edit firewall family inet filter fragment-RE term first-fragment-term]
user@host# set from first-fragment protocol tcp destination-port bgp
```
11. Define the action for the term.

```
[edit firewall family inet filter fragment-RE term first-fragment-term]
user@host# set then accept
```

12. Define the last term for the filter.

```
[edit]
user@host# edit firewall family inet filter fragment-RE term fragment-term
```

13. Define the match conditions for the term.

```
[edit firewall family inet filter fragment-RE term fragment-term]
user@host# set from fragment-offset 6–8191
```

14. Define the action for the term.

```
[edit firewall family inet filter fragment-RE term fragment-term]
user@host# set then accept
```

Results

Confirm your configuration by entering the `show firewall` command from configuration mode. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host# show firewall
family inet {
  filter fragment-RE {
    term not-from-prefix-term {
      from {
        source-address {
          0.0.0.0/0;
          10.2.1.0/24 except;
        }
      }
    }
    then discard;
  }
  term small-offset-term {
    from {
```
fragment-offset 1-5;
}
then {
 syslog;
 discard;
}
}

 term not-fragmented-term {
 from {
 fragment-offset 0;
 fragment-flags !more-fragments;
 protocol tcp;
 destination-port bgp;
 }
 then accept;
 }
 term first-fragment-term {
 from {
 first-fragment;
 protocol tcp;
 destination-port bgp;
 }
 then accept;
 }
 term fragment-term {
 from {
 fragment-offset 6-8191;
 }
 then accept;
 }
}

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

- Displaying Stateless Firewall Filter Configurations | 1066
- Verifying a Firewall Filter that Handles Fragments | 1066
To confirm that the configuration is working properly, perform these tasks:

Displaying Stateless Firewall Filter Configurations

Purpose
Verify the configuration of the firewall filter. You can analyze the flow of the filter terms by displaying the entire configuration.

Action
From configuration mode, enter the `show firewall` command.

Meaning
Verify that the output shows the intended configuration of the firewall filter. In addition, verify that the terms are listed in the order in which you want the packets to be tested. You can move terms within a firewall filter by using the `insert` CLI command.

Verifying a Firewall Filter that Handles Fragments

Purpose
Verify that the actions of the firewall filter terms are taken.

Action
Send packets to the device that match the terms.

Meaning
Verify that packets from 10.2.1.0/24 with small fragment offsets are recorded in the device's system logging destinations for the firewall facility.

RELATED DOCUMENTATION
- `show route summary`

Configuring a Firewall Filter to Prevent or Allow IPv4 Packet Fragmentation

This topic explains how to use the `dont-fragment (set | clear)` actions in an ingress firewall filter to modify the Don't Fragment flag in IPv4 packet headers. These actions are supported only on MPCs in MX Series routers.

You can use a firewall filter on an ingress interface to match IPv4 packets that have the Don't Fragment flag set to one or cleared to zero. Fragmentation is prevented when this flag is set in the packet header. Fragmentation is allowed when the flag is not set.
To prevent an IPv4 packet from being fragmented:

- Configure a filter term that modifies the Don't Fragment flag to one.

```
[edit firewall family inet filter dfSet]
user@host# set term t1 then dont-fragment set
```

To allow an IPv4 packet to be fragmented:

- Configure a filter term that modifies the Don't Fragment flag to zero.

```
[edit firewall family inet filter dfClear]
user@host# set term t1 then dont-fragment clear
```

In the following example, the dfSet firewall filter matches packets that are fragmented and changes the Don't Fragment flag to prevent fragmentation. The dfClear firewall filter matches packets that are not fragmented and changes the Don't Fragment flag to allow fragmentation.

```
[edit firewall family inet]
user@host# edit filter dfSet
user@host# set term t1 from fragment-flags is-fragment
user@host# set term t1 then dont-fragment set
user@host# up
user@host# edit filter dfClear
user@host# set term t1 from fragment-flags dont-fragment
user@host# set term t1 then dont-fragment clear
```

RELATED DOCUMENTATION

Firewall Filter Match Conditions for IPv4 Traffic	845
Firewall Filter Nonterminating Actions	795
Stateless Firewall Filter Components	726
Stateless Firewall Filter Overview	722
Configuring a Firewall Filter to Discard Ingress IPv6 Packets with a Mobility Extension Header

This topic explains how to configure a firewall filter to discard IPv6 packets that contain a mobility extension header. This feature is supported only on MPCs in MX Series routers.

To configure the stateless firewall filter:

1. Create the stateless firewall filter.


   ```
   [edit]
   user@host# edit firewall family inet6 filter filter-name
   ```

 For example:

   ```
   [edit]
   user@host# edit firewall family inet6 filter drop-mobility
   ```

2. Configure a term to discard all traffic that contains a mobility extension header.

   ```
   [edit firewall family inet6 filter drop-mobility]
   user@host# set term term1 from extension-header mobility
   user@host# set term term1 then discard
   ```

3. Configure a term to accept all other traffic.

   ```
   [edit firewall family inet6 filter drop-mobility]
   user@host# set term term2 then accept
   ```

4. Apply the firewall filter to a logical interface.

   ```
   [edit interfaces ge-1/2/10 unit 0 family inet6]
   user@host# set filter input drop-mobility
   ```

RELATED DOCUMENTATION

Understanding How to Use Standard Firewall Filters | 723
Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses

This example shows how to configure a firewall filter to accept IPv6 packets egressing an inet6 interface.

Requirements

This topic describes a feature supported on EX4300 and QFX5100 that was introduced in Junos OS Release 19.1R1. No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you create a typical firewall filter to accept IPv6 source and destination packets in the egress direction of an inet6 interface. To support filtering in the egress direction, however, you'll first need to set the `set system packet-forwarding-options eracl-ip6-match` using either the `srcip6-and-destip6` or `srcip6-only` option. You'll also need to restart the packet forwarding engine(PFE) after committing the configuration.

Configuration

IN THIS SECTION

- Enable the system for IPv6 address filtering | 1070
- Apply the firewall filter to an egress interface | 1072
- Confirm and Commit Your Candidate Configuration | 1072
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set system packet-forwarding-options eracl-ip6-match srcip6-and-destip6
set firewall family inet6 filter ipv6_filter term t1 from source-address 3001::10/64
set firewall family inet6 filter ipv6_filter term t1 from destination-address 2001::10/64
set interfaces ge-0/0/0 unit 0 family inet6 filter output ipv6_filter
```

Enable the system for IPv6 address filtering

Step-by-Step Procedure

To configure a firewall filter for IPv6 filtering on an `inet6` egress interface:

1. Enable packet forwarding options for matching on either IPv6 source, or IPv6 source and destination IP addresses. In this example, we'll enable both source and destination IP address matching.

   ```
   [edit]
   user@host# set system packet-forwarding-options eracl-ip6-match srcip6-and-destip6
   ```

2. Check, and if appropriate, delete any existing firewall filters that are already bound to the interface you will use for the IPv6 firewall filter:

   ```
   [edit]
   user@host# delete interfaces ge-0/0/0 unit 0 family inet6 filter output tcp_filter.
   ```
3. Commit the changes above, then stop and restart the PFE to accept the **packet-forwarding-options** and clear the PFE for the IPv6 filter(s).

 - For EX4300, use the following:

     ```
     user@host# commit
     user@host# run request restart pfe-manager
     ```

 - For EX4300 virtual chassis, use the following:

     ```
     user@host# commit
     user@host# run request system reboot all-members
     ```

 - For QFX5100, reboot the system:

     ```
     user@host# commit
     user@host# run request system reboot
     ```

4. Create a IPv6 firewall filter named `tcp_filter`.

   ```
   [edit]
   user@host# edit firewall family inet6 filter tcp_filter
   ```

5. Configure the required filter action, here to match packets with an IPv6 source or destination address within the configured range.

   ```
   [edit firewall family inet6 filter tcp_filter]
   user@host# set term t1 from source-address 3001::10/64
   user@host# set term t1 from destination-address 2001::10/64
   ```

6. Specify that matched packets are counted, logged to the buffer on the PFE, and accepted.

   ```
   [edit firewall family inet6 filter tcp_filter]
   user@host# set term t1 then count egress_ipv6-packets
   user@host# set term t1 then log
   user@host# set term t1 then accept
   ```
Apply the firewall filter to an egress interface

Step-by-Step Procedure
To apply the firewall filter to an egress inet6 interface, type the following:

- user@host# set interfaces ge-0/0/0 unit 0 family inet6 filter output tcp_filter

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure
To confirm and then commit your candidate configuration:

1. Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show firewall
family inet6 {
  filter tcp_filter {
    term t1 {
      from {
        source-address 3001::10/64;
        destination-address 2001::10/64;
      }
      then {
        count egress_ipv6-packets;
        log;
        accept;
      }
    }
  }
}
```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-0/0/0 {
  unit 0 {
    family inet6 {
      filter {
    ```
output tcp_filter;
}
source-address 3001::10/64;
destination-address 2001::10/64;
}
}

3. When you are done configuring the device, commit the candidate configuration.

[edit]
user@host# commit

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>eracl-ip6-match</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding How to Use Standard Firewall Filters</td>
<td>723</td>
</tr>
</tbody>
</table>

Example: Configuring a Rate-Limiting Filter Based on Destination Class

IN THIS SECTION

- Requirements | 1073
- Overview | 1074
- Configuration | 1074
- Verification | 1077

This example shows how to configure a rate-limiting stateless firewall filter.

Requirements

No special configuration beyond device initialization is required before configuring this example.
Before you begin, configure the destination class class1.

Overview

In this example, you use a stateless firewall filter to set rate limits based on a destination class.

To activate a policer from within a stateless firewall filter configuration:

- Create a template for the policer by including the `policer policer-name` statement.
- Reference the policer in a filter term that specifies the policer in the `policer policer-name` nonterminating action.

You can also activate a policer by including the `policer (input | output) policer-template-name` statement at a logical interface.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall filter rl_dclass1 policer police_class1 if-exceeding bandwidth-limit 25
set firewall filter rl_dclass1 policer police_class1 if-exceeding burst-size-limit 1000
set firewall filter rl_dclass1 policer police_class1 then discard
set firewall filter rl_dclass1 term term1 from destination-class class1
set firewall filter rl_dclass1 term term1 then policer police_class1
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input rl_dclass1
```
Configure the Stateless Firewall Filter

Step-by-Step Procedure
To configure the stateless firewall filter rl_dclass1 with policer police_class1 for destination class class1:

1. Create the stateless firewall filter rl_dclass1.

```
[edit]
user@host# edit firewall filter rl_dclass1
```

2. Configure the policer template police_class1.

```
[edit firewall filter rl_dclass1]
user@host# set policer police_class1 if-exceeding bandwidth-limit 25
user@host# set policer police_class1 if-exceeding burst-size-limit 1000
user@host# set policer police_class1 then discard
```

3. Configure a filter term that uses policer police_class1 to rate-limit traffic for destination class class1.

```
[edit firewall filter rl_dclass1]
user@host# set term term1 from destination-class class1
user@host# set term term1 then policer police_class1
```

Apply the Stateless Firewall Filter to a Logical Interface

Step-by-Step Procedure
To apply the filter rl_dclass1 to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.

```
[edit]
user@host# edit interfaces ge-0/0/1 unit 0 family inet
```

2. Configure the interface address for the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set address 10.1.2.3/30
```
3. Apply the stateless firewall filter to the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set filter input rl_dclass1
```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
filter rl_dclass1 {
    policer police_class1 {
        if-exceeding {
            bandwidth-limit 25;
            burst-size-limit 1000;
        }
        then {
            discard;
        }
    }
    term term1 {
        from {
            destination-class class1;
        }
        then {
            policer police_class1;
        }
    }
}
```

2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces
```
3. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

Verification

To confirm that the configuration is working properly, enter the `show class-of-service ge-0/0/1` operational mode command.

RELATED DOCUMENTATION

- Understanding How to Use Standard Firewall Filters | 723
- Filtering Packets Received on an Interface Set Overview | 1197
- Example: Filtering Packets Received on an Interface Set | 1182
CHAPTER 17

Configuring Firewall Filters in Logical Systems

IN THIS CHAPTER

- Firewall Filters in Logical Systems Overview | 1079
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems | 1080
- References from a Firewall Filter in a Logical System to Subordinate Objects | 1084
- References from a Firewall Filter in a Logical System to Nonfirewall Objects | 1086
- References from a Nonfirewall Object in a Logical System to a Firewall Filter | 1089
- Example: Configuring Filter-Based Forwarding | 1096
- Example: Configuring Filter-Based Forwarding on Logical Systems | 1101
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods | 1114
- Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods | 1118
- Unsupported Firewall Filter Statements for Logical Systems | 1123
- Unsupported Actions for Firewall Filters in Logical Systems | 1125
- Filter-Based Forwarding for Routing Instances | 1129
- Forwarding Table Filters for Routing Instances on ACX Series Routers | 1130
- Configuring Forwarding Table Filters | 1131

Firewall Filters in Logical Systems Overview

IN THIS SECTION

- Logical Systems | 1080
- Firewall Filters in Logical Systems | 1080
- Identifiers for Firewall Objects in Logical Systems | 1080
Logical Systems

With the Junos OS, you can partition a single physical router or switch into multiple logical devices that perform independent routing tasks. Because logical systems perform a subset of the tasks once handled by the physical router or switch, logical systems offer an effective way to maximize the use of a single router or switch.

Firewall Filters in Logical Systems

You can configure a separate set of firewall filters for each logical system on a router or switch. To configure a filter in a logical system, you must define the filter in the firewall stanza at the [edit logical-systems logical-system-name] hierarchy level, and you must apply the filter to a logical interface that is also configured at the [edit logical-systems logical-system-name] hierarchy level.

Identifiers for Firewall Objects in Logical Systems

To identify firewall objects configured under logical systems, operational show commands and firewall-related SNMP MIB objects include a __logical-system-name/ prefix in the object name. For example, firewall objects configured under the ls1 logical system include __ls1/ as the prefix.

RELATED DOCUMENTATION

Stateless Firewall Filter Types

Guidelines for Configuring and Applying Firewall Filters in Logical Systems | 1080
Unsupported Firewall Filter Statements for Logical Systems | 1123
Unsupported Actions for Firewall Filters in Logical Systems | 1125
Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods | 1114
"Introduction to Logical Systems
"Logical Systems Operations and Restrictions

Guidelines for Configuring and Applying Firewall Filters in Logical Systems

IN THIS SECTION

- Statement Hierarchy for Configuring Firewall Filters in Logical Systems | 1081
- Filter Types in Logical Systems | 1082
Statement Hierarchy for Configuring Firewall Filters in Logical Systems

To configure a firewall filter in a logical system, include the `filter`, `service-filter`, or `simple-filter` statement at the `[edit logical-systems logical-system-name firewall family family-name] hierarchy level.

```plaintext
[edit]
logical systems {
    logical-system-name {
        firewall {
            family family-name {
                filter filter-name {
                    interface-specific;
                    physical-interface-filter;
                    term term-name {
                        filter filter-name;
                        from {
                            match-conditions;
                        }
                        then {
                            actions;
                        }
                    }
                }
                service-filter filter-name { # For 'family inet' or 'family inet6' only.
                    term term-name {
                        from {
                            match-conditions;
                        }
                        then {
                            actions;
                         }
                    }
                }
                simple-filter filter-name { # For 'family inet' only.
                    term term-name {
```
Filter Types in Logical Systems

There are no special restrictions on the types of stateless firewall filter types that you can configure in logical systems.

In a logical system, you can use the same types of stateless firewall filters that are available on a physical router or switch:

- Standard stateless firewall filters
- Service filters
- Simple filters

Firewall Filter Protocol Families in Logical Systems

There are no special restrictions on the protocol families supported with stateless firewall filters in logical systems.

In a logical system, you can filter the same protocol families as you can on a physical router or switch.

- Standard stateless firewall filters—In logical systems, you can filter the following traffic types: protocol-independent, IPv4, IPv6, MPLS, MPLS-tagged IPv4 or IPv6, VPLS, Layer 2 circuit cross-connection, and Layer 2 bridging.
- Service filters—In logical systems, you can filter IPv4 and IPv6 traffic.
- Simple filters—In logical systems, you can filter IPv4 traffic only.
Firewall Filter Match Conditions in Logical Systems

There are no special restrictions on the match conditions supported with stateless firewall filters in logical systems.

Firewall Filter Actions in Logical Systems

There are no special restrictions on the actions supported with stateless firewall filters in logical systems.

Statement Hierarchy for Applying Firewall Filters in Logical Systems

To apply a firewall filter in a logical system, include the filter `filter-name`, service-filter `service-filter-name`, or simple-filter `simple-filter-name` statement to a logical interface in the logical system.

The following configuration shows the hierarchy levels at which you can apply the statements:

```plaintext
[edit]
logical-systems logical-system-name {
    interfaces {
        interface-name {
            unit logical-unit-number {
                family family-name {
                    filter {
                        group group-name;
                        input filter-name;
                        input-list [ filter-names ];
                        output filter-name;
                        output-list [ filter-names ]
                    }
                    rpf-check { # For 'family inet' or 'family inet6' only.
                        fail-filter filter-name;
                        mode loose;
                    }
                    service { # For 'family inet' or 'family inet6' only.
                        input {
                            service-set service-set-name <service-filter service-filter-name>;
                            post-service-filter service-filter-name;
                        }
                        output {
                            service-set service-set-name <service-filter service-filter-name>;
                        }
                    } simple-filter { # For 'family inet' only.
                        input simple-filter-name;
                    }
                }
            }
        }
    }
}
```
Resolution of References from a Firewall Filter to Subordinate Objects

If a firewall filter defined in a logical system references a subordinate object (for example, a policer or prefix list), that subordinate object must be defined within the `firewall` stanza of the same logical system. For example, if a firewall filter configuration references a policer, the firewall filter and the policer must be configured under the same [edit logical-systems logical-system-name firewall] hierarchy level.

This rule applies even if the same policer is configured under the main firewall configuration or if the same policer is configured as part of a firewall in another logical system.
Valid Reference from a Firewall Filter to a Subordinate Object

In this example, the firewall filter `filter1` references the policer `pol1`. Both `filter1` and `pol1` are defined under the same firewall object. This configuration is valid. If `pol1` had been defined under another firewall object, the configuration would not be valid.

```
[edit]
logical systems {
  Is-A {
    firewall {
      policer pol1 {
        if-exceeding {
          bandwidth-limit 401k;
          burst-size-limit 50k;
        }
        then discard;
      }
      filter filter1 {
        term one {
          from {
            source-address 12.1.0.0/16;
          }
          then {
            reject host-unknown;
          }
        }
        term two {
          from {
            source-address 12.2.0.0/16;
          }
          then policer pol1;
        }
      }
    }
  }
}
```

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filters in Logical Systems Overview</td>
<td>1079</td>
</tr>
<tr>
<td>Guidelines for Configuring and Applying Firewall Filters in Logical Systems</td>
<td>1080</td>
</tr>
<tr>
<td>References from a Firewall Filter in a Logical System to Nonfirewall Objects</td>
<td>1086</td>
</tr>
</tbody>
</table>
References from a Firewall Filter in a Logical System to Nonfirewall Objects

IN THIS SECTION

- Resolution of References from a Firewall Filter to Nonfirewall Objects
- Valid Reference to a Nonfirewall Object Outside of the Logical System

Resolution of References from a Firewall Filter to Nonfirewall Objects

In many cases, a firewall configuration references objects outside the firewall configuration. As a general rule, the referenced object must be defined under the same logical system as the referencing object. However, there are cases when the configuration of the referenced object is not supported at the logical-systems logical-system-name hierarchy level.

Valid Reference to a Nonfirewall Object Outside of the Logical System

This example configuration illustrates an exception to the general rule that the objects referenced by a firewall filter in a logical system must be defined under the same logical system as the referencing object.

In the following scenario, the service filter inetsf1 is applied to IPv4 traffic associated with the service set fred at the logical interface fe-0/3/2.0, which is on an adaptive services interface.

- Service filter inetsf1 is defined in ls-B and references prefix list prefix1.
- Service set fred is defined at the main services hierarchy level, and the policy framework software searches the [edit services] hierarchy for the definition of the fred service set.

Because service rules cannot be configured in logical systems, firewall filter configurations in the [edit logical-systems logical-system logical-system-name] hierarchy are allowed to reference service sets outside the logical system hierarchy.

```
[edit]
  logical-systems {
    ls-B {
      interfaces {
        fe-0/3/2 {
```

unit 0 {
 family inet {
 service {
 input {
 service-set fred service-filter inetsf1;
 }
 }
 }
}

policy-options {
 prefix-list prefix1 {
 1.1.0.0/16;
 1.2.0.0/16;
 1.3.0.0/16;
 }
}

firewall { # Under logical-system 'ls-B'.
 family inet {
 filter filter1 {
 term one {
 from {
 source-address {
 12.1.0.0/16;
 }
 }
 }
 then {
 reject host-unknown;
 }
 }
 term two {
 from {
 source-address {
 12.2.0.0/16;
 }
 }
 then policer pol1;
 }
 }
 service-filter inetsf1 {
 term term1 {
 from {
 source-prefix-list {

prefix1;
}
}
}
then count prefix1;
}
}
}
policer pol1 {
if-exceeding {
bandwidth-limit 401k;
burst-size-limit 50k;
}
then discard;
}
}
}
End of logical systems configuration.
services { # Main services hierarchy level.
service-set fred {
max-flows 100;
interface-service {
service-interface sp-1/2/0.0;
}
}
}
}

RELATED DOCUMENTATION

- Firewall Filters in Logical Systems Overview | 1079
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems | 1080
- References from a Firewall Filter in a Logical System to Subordinate Objects | 1084
- References from a Nonfirewall Object in a Logical System to a Firewall Filter | 1089
References from a Nonfirewall Object in a Logical System to a Firewall Filter

In this section

- Resolution of References from a Nonfirewall Object to a Firewall Filter | 1089
- Invalid Reference to a Firewall Filter Outside of the Logical System | 1090
- Valid Reference to a Firewall Filter Within the Logical System | 1092
- Valid Reference to a Firewall Filter Outside of the Logical System | 1094

Resolution of References from a Nonfirewall Object to a Firewall Filter

If a nonfirewall filter object in a logical system references an object in a firewall filter configured in a logical system, the reference is resolved using the following logic:

- If the nonfirewall filter object is configured in a logical system that includes firewall filter configuration statements, the policy framework software searches the [edit logical-systems logical-system-name firewall] hierarchy level. Firewall filter configurations that belong to other logical systems or to the main [edit firewall] hierarchy level are not searched.

- If the nonfirewall filter object is configured in a logical system that does not include any firewall filter configuration statements, the policy framework software searches the firewall configurations defined at the [edit firewall] hierarchy level.
Invalid Reference to a Firewall Filter Outside of the Logical System

This example configuration illustrates an unresolvable reference from a nonfirewall object in a logical system to a firewall filter.

In the following scenario, the stateless firewall filters \texttt{filter1} and \texttt{fred} are applied to the logical interface \texttt{fe-0/3/2.0} in the logical system \texttt{ls-C}.

- Filter \texttt{filter1} is defined in \texttt{ls-C}.
- Filter \texttt{fred} is defined in the main firewall configuration.

Because \texttt{ls-C} contains firewall filter statements (for \texttt{filter1}), the policy framework software resolves references to and from firewall filters by searching the [edit logical systems ls-C firewall] hierarchy level. Consequently, the reference from \texttt{fe-0/3/2.0} in the logical system to \texttt{fred} in the main firewall configuration cannot be resolved.

```
[edit]
logical-systems {
    ls-C {
        interfaces {
            fe-0/3/2 {
                unit 0 {
                    family inet {
                        filter {
                            input-list [ filter1 fred ];
                        }
                    }
                }
            }
            firewall { # Under logical system 'ls-C'.
                family inet {
                    filter filter1 {
                        term one {
                            from {
                                source-address 12.1.0.0/16;
                            }
                            then {
                                reject host-unknown;
                            }
                        }
                        term two {
                            from {
                                source-address 12.2.0.0/16;
                            }
                        }
                    }
                }
            }
        }
    }
}
```
then policer pol1;
}
}
}
policer pol1 {
 if-exceeding {
 bandwidth-limit 401k;
 burst-size-limit 50k;
 }
 then discard;
}
}
}
}
} # End of logical systems
firewall { # Under the main firewall hierarchy level
 family inet {
 filter fred {
 term one {
 from {
 source-address 11.1.0.0/16;
 }
 then {
 log;
 reject host-unknown;
 }
 }
 }
 }
}
} # End of main firewall configurations.
Valid Reference to a Firewall Filter Within the Logical System

This example configuration illustrates resolvable references from a nonfirewall object in a logical system to two firewall filters.

In the following scenario, the stateless firewall filters filter1 and fred are applied to the logical interface fe-0/3/2.0 in the logical system ls-C.

- Filter filter1 is defined in ls-C.
- Filter fred is defined in ls-C and also in the main firewall configuration.

Because ls-C contains firewall filter statements, the policy framework software resolves references to and from firewall filters by searching the [edit logical systems ls-C firewall] hierarchy level. Consequently, the references from fe-0/3/2.0 in the logical system to filter1 and fred use the stateless firewall filters configured in ls-C.

```plaintext
[edit]
logical-systems {
  ls-C {
    interfaces {
      fe-0/3/2 {
        unit 0 {
          family inet {
            filter {
              input-list [ filter1 fred ];
            }
          }
        }
      }
    }
  }
}
firewall { # Under logical system 'ls-C'.
  family inet {
    filter filter1 {
      term one {
        from {
          source-address 12.1.0.0/16;
        }
        then {
          reject host-unknown;
        }
      }
      term two {
        from {
          source-address 12.2.0.0/16;
        }
      }
  }
```
then policer pol1;
 }
}

filter fred [# This 'fred' is in 'ls-C'.
 term one {
 from {
 source-address 10.1.0.0/16;
 }
 then {
 log;
 reject host-unknown;
 }
 }
}

policer pol1 {
 if-exceeding {
 bandwidth-limit 401k;
 burst-size-limit 50k;
 }
 then discard;
}
}
}
} # End of logical systems configurations.

firewall [# Main firewall filter hierarchy level
 family inet {
 filter fred {
 term one {
 from {
 source-address 11.1.0.0/16;
 }
 then {
 log;
 reject host-unknown;
 }
 }
 }
 }
} # End of main firewall configurations.
Valid Reference to a Firewall Filter Outside of the Logical System

This example configuration illustrates resolvable references from a nonfirewall object in a logical system to two firewall filters.

In the following scenario, the stateless firewall filters filter1 and fred are applied to the logical interface "fe-0/3/2.0" in the logical system ls-C.

- Filter filter1 is defined in the main firewall configuration.
- Filter fred is defined in the main firewall configuration.

Because ls-C does not contain any firewall filter statements, the policy framework software resolves references to and from firewall filters by searching the [edit firewall] hierarchy level. Consequently, the references from "fe-0/3/2.0" in the logical system to filter1 and fred use the stateless firewall filters configured in the main firewall configuration.

```
[edit]
logical-systems {
    ls-C {
        interfaces {
            fe-0/3/2 {
                unit 0 {
                    family inet {
                        filter {
                            input-list [ filter1 fred ];
                        }
                    }
                }
            }
        }
    }
} # End of logical systems configuration.
firewall { # Main firewall hierarchy level.
    family inet {
        filter filter1 {
            term one {
                from {
                    source-address 12.1.0.0/16;
                }
                then {
                    reject host-unknown;
                }
            }
            term two {
                from {
```
source-address 12.2.0.0/16;
}
then policer pol1;
}
}

filter fred {
 term one {
 from {
 source-address 11.1.0.0/16;
 }
 then {
 log;
 reject host-unknown;
 }
 }
}
}

policer pol1 {
 if-exceeding {
 bandwidth-limit 701k;
 burst-size-limit 70k;
 }
 then discard;
}
} # End of main firewall configurations.

RELATED DOCUMENTATION

- [Firewall Filters in Logical Systems Overview](#) | 1079
- [Guidelines for Configuring and Applying Firewall Filters in Logical Systems](#) | 1080
- [References from a Firewall Filter in a Logical System to Subordinate Objects](#) | 1084
- [References from a Firewall Filter in a Logical System to Nonfirewall Objects](#) | 1086
Filter-based forwarding (FBF), which is also called Policy Based Routing (PBR), provides a simple but powerful way to route IP traffic to different interfaces on the basis of Layer-3 or Layer-4 parameters.

FBF works by using match conditions in a firewall filter to select certain traffic and then direct it to a given routing instance that points to the desired next hop. To ensure the next hop is resolvable, interface routes from the main routing table are shared via RIB group with the routing table(s) specified in the routing instance(s).

Match conditions can include the source or destination IP address, source or destination port, IP protocol, DSCP value, TCP flag, ICMP type, and packet length.

Requirements

This example has the following hardware and software requirements:

- MX Series 5G Universal Routing Platform as the routing device with the firewall filter configured.
- Junos OS Release 13.3 or later running on the routing device with the firewall filter configured.

Overview

This example shows the configuration settings you need to set up filter-based forwarding on a single device. Figure 53 on page 1097 shows the ingress and egress interfaces on an MX Series router and illustrates the logical flow of events as packets traverse the device.
A firewall filter called `webFilter` is attached to the ingress interface, `fe-0/0/0`. Packets arriving over the interface are evaluated against the match conditions specified in the filter, the logic of which directs HTTP and HTTPS traffic to a routing instance called `webtraffic`. This routing instance accomplishes three things: first, it establishes a routing table called `webtraffic.inet.0`; second, it lets you define a static route and next hop; and third, lets you configure the instance for forwarding traffic to the next hop (here, 192.0.2.2 on interface `fe-0/0/1`).

Term 2 in the firewall filter, `then accept`, specifies that all non-matching traffic take a different path. We define a static route with next hop of 203.0.113.2 to have this traffic egress the device via `fe-0/0/2`. The route is automatically installed in the master routing table, `inet.0`.

The last (logical) step in setting up FBF is to ensure that both routes are resolvable. The RIB group (`FBF-rib` in this example) makes it so interface-routes from `inet.0` can be shared with `webtraffic.inet.0`.

For examples that focus on a specific use case or multi-device topologies, see the Related Topics.

Configuration

CLI Quick Configuration

Both copy-paste and step-by-step instructions for creating filter-based forwarding on a single device are provided.

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the `[edit]` hierarchy level.

Configure a device for filter-based forwarding
set interfaces fe-0/0/0 unit 0 family inet address 198.51.100.1/24
set interfaces fe-0/0/0 unit 0 family inet filter input webFilter
set interfaces fe-0/0/1 unit 0 family inet address 192.0.2.1/24
set interfaces fe-0/0/2 unit 0 family inet address 203.0.113.1/24
set firewall family inet filter webFilter term 1 from destination-port http
set firewall family inet filter webFilter term 1 from destination-port https
set firewall family inet filter webFilter term 1 then routing-instance webtraffic
set firewall family inet filter webFilter term 2 then accept
set routing-instances webtraffic routing-options static route 0.0.0.0/0 next-hop 192.0.2.2
set routing-instances webtraffic instance-type forwarding
set routing-options static route 0.0.0.0/0 next-hop 203.0.113.2
set routing-options rib-groups FBF-rib import-rib inet.0
set routing-options rib-groups FBF-rib import-rib webtraffic.inet.0
set routing-options interface-routes rib-group inet FBF-rib

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the device:

1. Configure the inbound interface and attach the webFilter firewall filter to it.

 [edit interfaces fe-0/0/0 unit 0 family inet]
 user@device# set filter input webFilter
 user@device# set address 198.51.100.1/24

2. Configure the outbound interfaces, one for Web traffic and the other for all other traffic.

 [edit interfaces]
 user@device# set fe-0/0/1 unit 0 family inet address 192.0.2.1/24
 user@device# set fe-0/0/2 unit 0 family inet address 203.0.113.1/24

3. Configure the firewall filter to pass Web traffic to the webtraffic routing instance and all other traffic to 203.0.113.1.

 [edit firewall family inet filter webFilter]
 user@device# set term 1 from destination-port http
user@device# set term 1 from destination-port https
user@device# set term 1 then routing-instance webtraffic
user@device# set term 2 then accept

4. Optional: Monitor traffic handling of the firewall filter by adding a counter:

[edit interfaces fe-0/0/0 unit 0 family inet]
user@device# set firewall family inet filter webFilter term 1 then count webtraffic-count

5. Create the webtraffic routing instance and configure it to forward Web traffic to fe-0/0/1.

[edit routing-instances webtraffic]
user@device# set routing-options static route 0.0.0.0/0 next-hop 192.0.2.2
user@device# set instance-type forwarding

6. Create a route for non-Web traffic (the route is automatically installed in the inet.0 routing table).

[edit routing-options]
user@device# set static route 0.0.0.0/0 next-hop 203.0.113.2

7. Create a RIB group called FBF-rib, and configure it so inet.0 shares interface routes with webtraffic.inet.0, and then associate a routing table group with the routing device's interfaces, and specify routing table groups into which interface routes are imported.

[edit routing-options]
user@device# set rib-groups FBF-rib import-rib inet.0
user@device# set rib-groups FBF-rib import-rib webtraffic.inet.0

8. Associate a routing table group with the routing device's interfaces, and specify routing table groups into which interface routes are imported.

[edit routing-options]
user@device# set interface-routes rib-group inet FBF-rib

Results
From configuration mode, confirm your configuration by entering the show firewall, show routing-instances, show routing-options, and show interfaces, commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.
If you are done configuring the device, enter **commit** from configuration mode.

```
user@device# show interfaces fe-0/0/0
unit 0 {
    family inet {
        filter {
            input webFilter;
        }
        address 198.51.100.1/24;
    }
}
user@device# show interfaces fe-0/0/1
unit 0 {
    family inet {
        address 192.0.2.1/24;
    }
}
user@device# show interfaces fe-0/0/2
unit 0 {
    family inet {
        address 203.0.113.1/24;
    }
}
user@device# show firewall
family inet {
    filter webFilter {
        term 1 {
            from {
                destination-port [ http https ];
            }
            then {
                routing-instance webtraffic;
            }
        }
        term 2 {
            then accept;
        }
    }
}
user@device# show routing-options
interface-routes {
    rib-group inet FBF-rib;
}
```
static {
 route 0.0.0.0/0 next-hop 203.0.113.2;
}
rib-groups {
 FBF-rib {
 import-rib [inet.0 webtraffic.inet.0];
 }
}

user@device# show routing-instances
webtraffic {
 instance-type forwarding;
 routing-options {
 static {
 route 0.0.0.0/0 next-hop 192.0.2.2;
 }
 }
}

RELATED DOCUMENTATION

- Understanding Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1330
- Configuring Filter-Based Forwarding
- Understanding Filter-Based Forwarding | 1618
- Using Filter-Based Forwarding to Select Traffic to Be Secured
- Example: Configuring Filter-Based Forwarding on the Source Address | 1317
- Understanding RIB Groups

Example: Configuring Filter-Based Forwarding on Logical Systems

IN THIS SECTION
- Requirements | 1102
- Overview | 1102
- Configuration | 1104
- Verification | 1111
This example shows how to configure filter-based forwarding within a logical system. The filter classifies packets to determine their forwarding path within the ingress routing device.

Requirements

In this example, no special configuration beyond device initialization is required.

Overview

Filter-based forwarding is supported for IP version 4 (IPv4) and IP version 6 (IPv6).

Use filter-based forwarding for service provider selection when customers have Internet connectivity provided by different ISPs yet share a common access layer. When a shared media (such as a cable modem) is used, a mechanism on the common access layer looks at Layer 2 or Layer 3 addresses and distinguishes between customers. You can use filter-based forwarding when the common access layer is implemented using a combination of Layer 2 switches and a single router.

With filter-based forwarding, all packets received on an interface are considered. Each packet passes through a filter that has match conditions. If the match conditions are met for a filter and you have created a routing instance, filter-based forwarding is applied to a packet. The packet is forwarded based on the next hop specified in the routing instance. For static routes, the next hop can be a specific LSP.

NOTE: Source-class usage filter matching and unicast reverse-path forwarding checks are not supported on an interface configured with filter-based forwarding (FBF).

To configure filter-based forwarding, perform the following tasks:

- Create a match filter on an ingress router or switch. To specify a match filter, include the `filter filter-name` statement at the [edit firewall] hierarchy level. A packet that passes through the filter is compared against a set of rules to classify it and to determine its membership in a set. Once classified, the packet is forwarded to a routing table specified in the accept action in the filter description language. The routing table then forwards the packet to the next hop that corresponds to the destination address entry in the table.

- Create routing instances that specify the routing table(s) to which a packet is forwarded, and the destination to which the packet is forwarded at the [edit routing-instances] or [edit logical-systems logical-system-name routing-instances] hierarchy level. For example:

```plaintext
[edit]
routing-instances {
  routing-table-name1 {
    instance-type forwarding;
  }
```

Create a routing table group that adds interface routes to the forwarding routing instances used in filter-based forwarding (FBF), as well as to the default routing instance inet.0. This part of the configuration resolves the routes installed in the routing instances to directly connected next hops on that interface. Create the routing table group at the [edit routing-options] or [edit logical-systems logical-system-name routing-options] hierarchy level.

NOTE: Specify inet.0 as one of the routing instances that the interface routes are imported into. If the default instance inet.0 is not specified, interface routes are not imported into the default routing instance.

This example shows a packet filter that directs customer traffic to a next-hop router in the domains, SP 1 or SP 2, based on the packet's source address.

If the packet has a source address assigned to an SP 1 customer, destination-based forwarding occurs using the sp1-route-table.inet.0 routing table. If the packet has a source address assigned to an SP 2 customer, destination-based forwarding occurs using the sp2-route-table.inet.0 routing table. If a packet does not match either of these conditions, the filter accepts the packet, and destination-based forwarding occurs using the standard inet.0 routing table.

One way to make filter-based forwarding work within a logical system is to configure the firewall filter on the logical system that receives the packets. Another way is to configure the firewall filter on the main router and then reference the logical system in the firewall filter. This example uses the second approach. The specific routing instances are configured within the logical system. Because each routing instance has its own routing table, you have to reference the routing instances in the firewall filter, as well. The syntax looks as follows:
[edit firewall filter filter-name term term-name]
user@host# set then logical-system logical-system-name routing-instance routing-instance-name

Figure 54 on page 1104 shows the topology used in this example.

On Logical System P1, an input filter classifies packets received from Logical System PE3 and Logical System PE4. The packets are routed based on the source addresses. Packets with source addresses in the 10.1.1.0/24 and 10.1.2.0/24 networks are routed to Logical System PE1. Packets with source addresses in the 10.2.1.0/24 and 10.2.2.0/24 networks are routed to Logical System PE2.

Figure 54: Logical Systems with Filter-Based Forwarding

To establish connectivity, OSPF is configured on all of the interfaces. For demonstration purposes, loopback interface addresses are configured on the routing devices to represent networks in the clouds.

The "CLI Quick Configuration" on page 1104 section shows the entire configuration for all of the devices in the topology. The "Configuring the Routing Instances on the Logical System P1" on page 1107 and "Configuring the Firewall Filter on the Main Router" on page 1106 sections shows the step-by-step configuration of the ingress routing device, Logical System P1.

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall filter classify-customers term sp1-customers from source-address 10.1.1.0/24
set firewall filter classify-customers term sp1-customers from source-address 10.1.2.0/24
set firewall filter classify-customers term sp1-customers then log
set firewall filter classify-customers term sp1-customers then logical-system P1 routing-instance sp1-route-table
set firewall filter classify-customers term sp2-customers from source-address 10.2.1.0/24
```
set firewall filter classify-customers term sp2-customers from source-address 10.2.2.0/24
set firewall filter classify-customers term sp2-customers then log
set firewall filter classify-customers term sp2-customers then logical-system P1 routing-instance sp2-route-table
set firewall filter classify-customers term default then accept
set logical-systems P1 interfaces lt-1/2/0 unit 10 encapsulation ethernet
set logical-systems P1 interfaces lt-1/2/0 unit 10 peer-unit 9
set logical-systems P1 interfaces lt-1/2/0 unit 10 family inet filter input classify-customers
set logical-systems P1 interfaces lt-1/2/0 unit 10 family inet address 172.16.0.10/30
set logical-systems P1 interfaces lt-1/2/0 unit 13 encapsulation ethernet
set logical-systems P1 interfaces lt-1/2/0 unit 13 peer-unit 14
set logical-systems P1 interfaces lt-1/2/0 unit 13 family inet address 172.16.0.13/30
set logical-systems P1 interfaces lt-1/2/0 unit 17 encapsulation ethernet
set logical-systems P1 interfaces lt-1/2/0 unit 17 peer-unit 18
set logical-systems P1 interfaces lt-1/2/0 unit 17 family inet address 172.16.0.17/30
set logical-systems P1 protocols ospf rib-group fbfgroup
set logical-systems P1 protocols ospf area 0.0.0.0 interface all
set logical-systems P1 protocols ospf area 0.0.0.0 interface fxp0.0 disable
set logical-systems P1 routing-instances sp1-route-table instance-type forwarding
set logical-systems P1 routing-instances sp1-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.13
set logical-systems P1 routing-instances sp2-route-table instance-type forwarding
set logical-systems P1 routing-instances sp2-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.17
set logical-systems P1 routing-options rib-groups fbfgroup import-rib inet.0
set logical-systems P1 routing-options rib-groups fbfgroup import-rib sp1-route-table.inet.0
set logical-systems P1 routing-options rib-groups fbfgroup import-rib sp2-route-table.inet.0
set logical-systems P2 interfaces lt-1/2/0 unit 2 encapsulation ethernet
set logical-systems P2 interfaces lt-1/2/0 unit 2 peer-unit 1
set logical-systems P2 interfaces lt-1/2/0 unit 2 family inet address 172.16.0.2/30
set logical-systems P2 interfaces lt-1/2/0 unit 6 encapsulation ethernet
set logical-systems P2 interfaces lt-1/2/0 unit 6 peer-unit 5
set logical-systems P2 interfaces lt-1/2/0 unit 6 family inet address 172.16.0.6/30
set logical-systems P2 interfaces lt-1/2/0 unit 9 encapsulation ethernet
set logical-systems P2 interfaces lt-1/2/0 unit 9 peer-unit 10
set logical-systems P2 interfaces lt-1/2/0 unit 9 family inet address 172.16.0.9/30
set logical-systems P2 protocols ospf area 0.0.0.0 interface all
set logical-systems P2 protocols ospf area 0.0.0.0 interface fxp0.0 disable
set logical-systems PE1 interfaces lt-1/2/0 unit 14 encapsulation ethernet
set logical-systems PE1 interfaces lt-1/2/0 unit 14 peer-unit 13
set logical-systems PE1 interfaces lt-1/2/0 unit 14 family inet address 172.16.0.14/30
set logical-systems PE1 interfaces lo0 unit 3 family inet address 172.16.1.1/32
set logical-systems PE1 protocols ospf area 0.0.0.0 interface all
set logical-systems PE1 protocols ospf area 0.0.0.0 interface fxp0.0 disable
set logical-systems PE2 interfaces lt-1/2/0 unit 18 encapsulation ethernet

Configuring the Firewall Filter on the Main Router

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the firewall filter on the main router:

1. Configure the source addresses for SP1 customers.

```plaintext
[edit firewall filter classify-customers term sp1-customers]
user@host# set from source-address 10.1.1.0/24
user@host# set from source-address 10.1.2.0/24
```

2. Configure the actions that are taken when packets are received with the specified source addresses.

To track the action of the firewall filter, a log action is configured. The sp1-route-table.inet.0 routing table on Logical System P1 routes the packets.

```plaintext
[edit firewall filter classify-customers term sp1-customers]
user@host# set then log
user@host# set then logical-system P1 routing-instance sp1-route-table
```
3. Configure the source addresses for SP2 customers.

```plaintext
[edit firewall filter classify-customers term sp2-customers]
user@host# set from source-address 10.2.1.0/24
user@host# set from source-address 10.2.2.0/24
```

4. Configure the actions that are taken when packets are received with the specified source addresses.

To track the action of the firewall filter, a log action is configured. The sp2-route-table.inet.0 routing table on Logical System P1 routes the packet.

```plaintext
[edit firewall filter classify-customers term sp2-customers]
user@host# set then log
user@host# set then logical-system P1 routing-instance sp2-route-table
```

5. Configure the action to take when packets are received from any other source address.

All of these packets are simply accepted and routed using the default IPv4 unicast routing table, inet.0.

```plaintext
[edit firewall filter classify-customers term default]
user@host# set then accept
```

Configuring the Routing Instances on the Logical System P1

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the routing instances on a logical system:

1. Configure the interfaces on the logical system.

```plaintext
[edit logical-systems P1 interfaces lt-1/2/0]
user@host# set unit 10 encapsulation ethernet
user@host# set unit 10 peer-unit 9
user@host# set unit 10 family inet address 172.16.0.10/30
user@host# set unit 13 encapsulation ethernet
user@host# set unit 13 peer-unit 14
user@host# set unit 13 family inet address 172.16.0.13/30
user@host# set unit 17 encapsulation ethernet
user@host# set unit 17 peer-unit 18
user@host# set unit 17 family inet address 172.16.0.17/30
```
2. Assign the **classify-customers** firewall filter to router interface lt-1/2/0.10 as an input packet filter.

```bash
[edit logical-systems P1 interfaces lt-1/2/0]
user@host# set unit 10 family inet filter input classify-customers
```

3. Configure connectivity, using either a routing protocol or static routing.

As a best practice, disable routing on the management interface.

```bash
[edit logical-systems P1 protocols ospf area 0.0.0.0]
user@host# set interface all
user@host# set interface fxp0.0 disable
```

4. Create the routing instances.

These routing instances are referenced in the **classify-customers** firewall filter.

The forwarding instance type provides support for filter-based forwarding, where interfaces are not associated with instances. All interfaces belong to the default instance, in this case Logical System P1.

```bash
[edit logical-systems P1 routing-instances]
user@host# set sp1-route-table instance-type forwarding
user@host# set sp2-route-table instance-type forwarding
```

5. Resolve the routes installed in the routing instances to directly connected next hops.

```bash
[edit logical-systems P1 routing-instances]
user@host# set sp1-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.13
user@host# set sp2-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.17
```

6. Group together the routing tables to form a routing table group.

The first routing table, inet.0, is the primary routing table, and the additional routing tables are the secondary routing tables.

The primary routing table determines the address family of the routing table group, in this case IPv4.

```bash
[edit logical-systems P1 routing-options]
user@host# set rib-groups fbf-group import-rib inet.0
user@host# set rib-groups fbf-group import-rib sp1-route-table.inet.0
user@host# set rib-groups fbf-group import-rib sp2-route-table.inet.0
```
7. Apply the routing table group to OSPF.

This causes the OSPF routes to be installed into all the routing tables in the group.

```
[edit logical-systems P1 protocols ospf]
user@host# set rib-group fbf-group
```

8. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results

Confirm your configuration by issuing the `show firewall` and `show logical-systems P1` commands.

```
user@host# show firewall
filter classify-customers {
    term sp1-customers {
        from {
            source-address {
                10.1.1.0/24;
                10.1.2.0/24;
            }
        }
        then {
            log;
            logical-system P1 routing-instance sp1-route-table;
        }
    }
    term sp2-customers {
        from {
            source-address {
                10.2.1.0/24;
                10.2.2.0/24;
            }
        }
        then {
            log;
            logical-system P1 routing-instance sp2-route-table;
        }
    }
}
```

1109
user@host# show logical-systems P1
interfaces {
 lt-1/2/0 {
 unit 10 {
 encapsulation ethernet;
 peer-unit 9;
 family inet {
 filter {
 input classify-customers;
 }
 address 172.16.0.10/30;
 }
 }
 }
 unit 13 {
 encapsulation ethernet;
 peer-unit 14;
 family inet {
 address 172.16.0.13/30;
 }
 }
 unit 17 {
 encapsulation ethernet;
 peer-unit 18;
 family inet {
 address 172.16.0.17/30;
 }
 }
}
protocols {
 ospf {
 rib-group fbf-group;
 area 0.0.0.0 {
 interface all;
 interface fxp0.0 {
 disable;
 }
 }
 }
}
Verification

Confirm that the configuration is working properly.

Pinging with Specified Source Addresses

Purpose
Send some ICMP packets across the network to test the firewall filter.

Action
1. Log in to Logical System PE3.

```plaintext
user@host> set cli logical-system PE3
Logical system: PE3
```

2. Run the ping command, pinging the lo0.3 interface on Logical System PE1.
The address configured on this interface is 172.16.1.1.

Specify the source address 10.1.2.1, which is the address configured on the lo0.1 interface on Logical System PE3.

user@host:PE3> ping 172.16.1.1 source 10.1.2.1

PING 172.16.1.1 (172.16.1.1): 56 data bytes
64 bytes from 172.16.1.1: icmp_seq=0 ttl=62 time=1.444 ms
64 bytes from 172.16.1.1: icmp_seq=1 ttl=62 time=2.094 ms
^C
--- 172.16.1.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.444/1.769/2.094/0.325 ms

user@host:PE3> set cli logical-system PE4

Logical system: PE4

4. Run the ping command, pinging the lo0.4 interface on Logical System PE2.

The address configured on this interface is 172.16.2.2.

Specify the source address 10.2.1.1, which is the address configured on the lo0.2 interface on Logical System PE4.

user@host:PE4> ping 172.16.2.2 source 10.2.1.1

PING 172.16.2.2 (172.16.2.2): 56 data bytes
64 bytes from 172.16.2.2: icmp_seq=0 ttl=62 time=1.473 ms
64 bytes from 172.16.2.2: icmp_seq=1 ttl=62 time=1.407 ms
^C
--- 172.16.2.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.407/1.440/1.473/0.033 ms

Meaning
Sending these pings activates the firewall filter actions.

Verifying the Firewall Filter

Purpose
Make sure the firewall filter actions take effect.
Action

1. Log in to Logical System P1.

   ```
   user@host> set cli logical-system P1
   Logical system: P1
   ```

2. Run the `show firewall log` command on Logical System P1.

   ```
   user@host:P1> show firewall log
   Log :
   Time      Filter    Action Interface     Protocol        Src Addr     Dest Addr
   13:52:20  pfe       A      lt-1/2/0.10   ICMP            10.2.1.1     172.16.2.2
   13:52:19  pfe       A      lt-1/2/0.10   ICMP            10.2.1.1     172.16.2.2
   13:51:53  pfe       A      lt-1/2/0.10   ICMP            10.1.2.1     172.16.1.1
   13:51:52  pfe       A      lt-1/2/0.10   ICMP            10.1.2.1     172.16.1.1
   ```

RELATED DOCUMENTATION

- Configuring Filter-Based Forwarding
- Copying and Redirecting Traffic with Port Mirroring and Filter-Based Forwarding
- Example: Configuring Filter-Based Forwarding on the Source Address
- Using Filter-Based Forwarding to Export Monitored Traffic to Multiple Destinations
- Filter-Based Forwarding Overview
Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods

IN THIS SECTION

- Requirements | 1114
- Overview | 1114
- Configuration | 1115
- Verification | 1117

This example shows how to configure a stateless firewall filter that protects against ICMP denial-of-service attacks on a logical system.

Requirements

In this example, no special configuration beyond device initialization is required.

Overview

This example shows a stateless firewall filter called protect-RE that polices ICMP packets. The `icmp-policer` limits the traffic rate of the ICMP packets to 1,000,000 bps and the burst size to 15,000 bytes. Packets that exceed the traffic rate are discarded.

The policer is incorporated into the action of a filter term called `icmp-term`.

In this example, a ping is sent from a directly connected physical router to the interface configured on the logical system. The logical system accepts the ICMP packets if they are received at a rate of up to 1 Mbps (bandwidth-limit). The logical system drops all ICMP packets when this rate is exceeded. The `burst-size-limit` statement accepts traffic bursts up to 15 Kbps. If bursts exceed this limit, all packets are dropped. When the flow rate subsides, ICMP packets are again accepted.

Figure 55 on page 1115 shows the topology used in this example.
Figure 55: Logical System with a Stateless Firewall

Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```
set logical-systems LS1 interfaces so-0/0/2 unit 0 family inet policer input icmp-policer
set logical-systems LS1 interfaces so-0/0/2 unit 0 family inet address 10.0.45.2/30
set logical-systems LS1 firewall family inet filter protect-RE term icmp-term from protocol icmp
set logical-systems LS1 firewall family inet filter protect-RE term icmp-term then policer icmp-policer
set logical-systems LS1 firewall family inet filter protect-RE term icmp-term then accept
set logical-systems LS1 firewall policer icmp-policer if-exceeding bandwidth-limit 1m
set logical-systems LS1 firewall policer icmp-policer if-exceeding burst-size-limit 15k
set logical-systems LS1 firewall policer icmp-policer then discard
```

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure an ICMP firewall filter on a logical system:

1. Configure the interface on the logical system.

```
[edit]
user@host# set logical-systems LS1 interfaces so-0/0/2 unit 0 family inet address 10.0.45.2/30
```
2. Explicitly enable ICMP packets to be received on the interface.

```
[edit]
user@host# set logical-systems LS1 firewall family inet filter protect-RE term icmp-term from protocol icmp
user@host# set logical-systems LS1 firewall family inet filter protect-RE term icmp-term then accept
```

3. Create the policer.

```
[edit]
user@host# set logical-systems LS1 firewall policer icmp-policer if-exceeding bandwidth-limit 1m
user@host# set logical-systems LS1 firewall policer icmp-policer if-exceeding burst-size-limit 15k
user@host# set logical-systems LS1 firewall policer icmp-policer then discard
```

4. Apply the policer to a filter term.

```
[edit]
user@host# set logical-systems LS1 firewall family inet filter protect-RE term icmp-term then policer icmp-policer
```

5. Apply the policer to the logical system interface.

```
[edit]
user@host# set logical-systems LS1 interfaces so-0/0/2 unit 0 family inet policer input icmp-policer
```

6. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results

Confirm your configuration by issuing the `show logical-systems LS1` command.

```
user@host# show logical-systems LS1
interfaces {
  so-0/0/2 {
    unit 0 {
      family inet {
```
Verification

Confirm that the configuration is working properly.

Verifying That Ping Works Unless the Limits Are Exceeded

Purpose
Make sure that the logical system interface is protected against ICMP-based DoS attacks.

Action
Log in to a system that has connectivity to the logical system and run the **ping** command.

```
user@R2> ping 10.0.45.2
```
Meaning
When you send a normal ping, the packet is accepted. When you send a ping packet that exceeds the filter limit, the packet is discarded.

RELATED DOCUMENTATION

Example: Creating an Interface on a Logical System

Example: Configuring a Stateless Firewall Filter to Protect a Logical System Against ICMP Floods

This example shows how to configure a stateless firewall filter that protects against ICMP denial-of-service attacks on a logical system.
Requirements

In this example, no special configuration beyond device initialization is required.

Overview

This example shows a stateless firewall filter called protect-RE that polices ICMP packets. The `icmp-policer` limits the traffic rate of the ICMP packets to 1,000,000 bps and the burst size to 15,000 bytes. Packets that exceed the traffic rate are discarded.

The policer is incorporated into the action of a filter term called `icmp-term`.

In this example, a ping is sent from a directly connected physical router to the interface configured on the logical system. The logical system accepts the ICMP packets if they are received at a rate of up to 1 Mbps (bandwidth-limit). The logical system drops all ICMP packets when this rate is exceeded. The `burst-size-limit` statement accepts traffic bursts up to 15 Kbps. If bursts exceed this limit, all packets are dropped. When the flow rate subsides, ICMP packets are again accepted.

Figure 55 on page 1115 shows the topology used in this example.

Figure 56: Logical System with a Stateless Firewall

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set logical-systems LS1 interfaces ge-0/0/2 unit 0 family inet policer input icmp-policer
set logical-systems LS1 interfaces ge-0/0/2 unit 0 family inet address 10.0.45.2/30
```
Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure an ICMP firewall filter on a logical system:

1. Configure the interface on the logical system.

   ```plaintext
   [edit]
   user@host# set logical-systems LS1 interfaces ge-0/0/2 unit 0 family inet address 10.0.45.2/30
   ```

2. Explicitly enable ICMP packets to be received on the interface.

   ```plaintext
   [edit]
   user@host# set logical-systems LS1 firewall family inet filter protect-RE term icmp-term from protocol icmp
   user@host# set logical-systems LS1 firewall family inet filter protect-RE term icmp-term then accept
   ```

3. Create the policer.

   ```plaintext
   [edit]
   user@host# set logical-systems LS1 firewall policer icmp-policer if-exceeding bandwidth-limit 1m
   user@host# set logical-systems LS1 firewall policer icmp-policer if-exceeding burst-size-limit 15k
   user@host# set logical-systems LS1 firewall policer icmp-policer then discard
   ```

4. Apply the policer to a filter term.

   ```plaintext
   [edit]
   user@host# set logical-systems LS1 firewall family inet filter protect-RE term icmp-term then policer icmp-policer
   ```
5. Apply the policer to the logical system interface.

```plaintext
[edit]
user@host# set logical-systems LS1 interfaces ge-0/0/2 unit 0 family inet policer input icmp-policer
```

6. If you are done configuring the device, commit the configuration.

```plaintext
[edit]
user@host# commit
```

Results

Confirm your configuration by issuing the `show logical-systems LS1` command.

```plaintext
user@host# show logical-systems LS1
interfaces {
  ge-0/0/2 {
    unit 0 {
      family inet {
        policer {
          input icmp-policer;
        }
        address 10.0.45.2/30;
      }
    }
  }
  firewall {
    family inet {
      filter protect-RE {
        term icmp-term {
          from {
            protocol icmp;
          }
          then {
            policer icmp-policer;
            accept;
          }
        }
      }
      policer icmp-policer {
    }
```
if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 15k;
} then discard;
}

Verification

Confirm that the configuration is working properly.

Verifying That Ping Works Unless the Limits Are Exceeded

Purpose
Make sure that the logical system interface is protected against ICMP-based DoS attacks.

Action
Log in to a system that has connectivity to the logical system and run the `ping` command.

```
user@R2> ping 10.0.45.2
PING 10.0.45.2 (10.0.45.2): 56 data bytes
64 bytes from 10.0.45.2: icmp_seq=0 ttl=64 time=1.316 ms
64 bytes from 10.0.45.2: icmp_seq=1 ttl=64 time=1.277 ms
64 bytes from 10.0.45.2: icmp_seq=2 ttl=64 time=1.269 ms
```

```
user@R2> ping 10.0.45.2 size 20000
PING 10.0.45.2 (10.0.45.2): 20000 data bytes
^C
--- 10.0.45.2 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss
```

Meaning
When you send a normal ping, the packet is accepted. When you send a ping packet that exceeds the filter limit, the packet is discarded.

RELATED DOCUMENTATION
Unsupported Firewall Filter Statements for Logical Systems

Table 66 on page 1123 shows statements that are supported at the [edit firewall] hierarchy level but not at the [edit logical-systems logical-system-name firewall] hierarchy level.

Table 66: Unsupported Firewall Statements for Logical Systems

<table>
<thead>
<tr>
<th>Statement</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting-profile</td>
<td>[edit] logical-systems { ls1 { firewall { family inet { filter myfilter { accounting-profile fw-profile; ... term accept-all { then { count counter1; accept; } } } } } } }</td>
<td>In this example, the <code>accounting-profile</code> statement is not allowed because the accounting profile <code>fw-profile</code> is configured under the [edit accounting-options] hierarchy.</td>
</tr>
<tr>
<td>hierarchical-policer</td>
<td>[edit] logical-systems { lr1 { firewall { hierarchical-policer { ... } } } } }</td>
<td>In this example, the <code>hierarchical policer</code> statement requires a class-of-service configuration, which is not supported under logical systems.</td>
</tr>
</tbody>
</table>
Table 66: Unsupported Firewall Statements for Logical Systems (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
</table>
| load-balance-group | [edit]
logical-systems {
 ls1 {
 firewall {
 load-balance-group lb-group {
 next-hop-group nh-group;
 }
 }
 }
} | This configuration is not allowed because the `next-hop-group nh-group` statement must be configured at the `[edit forwarding-options next-hop-group]` hierarchy level—outside the `[edit logical-systems logical-system-name firewall]` hierarchy.

Currently, the `forwarding-options dhcp-relay` statement is the only forwarding option supported for logical systems. |

| virtual-channel | [edit]
logical-systems {
 ls1 {
 firewall {
 family inet {
 filter foo {
 term one {
 from {
 source-address 10.1.0.0/16;
 }
 then {
 virtual-channel sammy;
 }
 }
 }
 }
 }
 }
} | This configuration is not allowed because the virtual channel `sammy` refers to an object defined at the `[edit class-of-service]` hierarchy level, and class of service is not supported for logical systems.

NOTE:

The `virtual-channel` statement is supported for J Series devices only, provided the firewall filter is configured outside of a logical-system. |
Unsupported Actions for Firewall Filters in Logical Systems

Table 67 on page 1125 describes the firewall filter actions that are supported at the [edit firewall] hierarchy level, but not supported at the [edit logical-systems logical-system-name firewall] hierarchy level.

Table 67: Unsupported Actions for Firewall Filters in Logical Systems

<table>
<thead>
<tr>
<th>Firewall Filter Action</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminating Actions Not Supported in a Logical System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>logical-system</td>
<td>[edit]logical-systems {ls1 {firewall {family inet {filter foo {term one {from {source-address 10.1.0.0/16;}}then {logical-system fred;}}}}}}</td>
<td>Because the logical-system action refers to fred—a logical system defined outside the local logical system—, this action is not supported.</td>
</tr>
<tr>
<td>Nonterminating Actions Not Supported in a Logical System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firewall Filter Action</td>
<td>Example</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **ipsec-sa** | [edit]
logical-systems {
 ls1 {
 firewall {
 family inet {
 filter foo {
 term one {
 from {
 source-address 10.1.0.0/16;
 }
 }
 }
 }
 }
 }
} | Because the *ipsec-sa* action modifier references *barney*—a security association defined outside the local logical system—this action is not supported. |
| **next-hop-group** | [edit]
logical-systems {
 ls1 {
 firewall {
 family inet {
 filter foo {
 term one {
 from {
 source-address 10.1.0.0/16;
 }
 }
 }
 }
 }
 }
} | Because the *next-hop-group* action refers to *fred*—an object defined at the *forwarding-options next-hop-group* hierarchy level—this action is not supported. |
Table 67: Unsupported Actions for Firewall Filters in Logical Systems (continued)

<table>
<thead>
<tr>
<th>Firewall Filter Action</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-mirror</td>
<td>[edit] logical-systems { ls1 { firewall { family inet { filter foo { term one { from { source-address 10.1.0.0/16; } then { port-mirror; } } } } } } }</td>
<td>Because the port-mirror action relies on a configuration defined at the [edit forwarding-options port-mirroring] hierarchy level, this action is not supported.</td>
</tr>
<tr>
<td>sample</td>
<td>[edit] logical-systems { ls1 { firewall { family inet { filter foo { term one { from { source-address 10.1.0.0/16; } then { sample; } } } } } }</td>
<td>In this example, the sample action depends on the sampling configuration defined under the [edit forwarding-options] hierarchy. Therefore, the sample action is not supported.</td>
</tr>
</tbody>
</table>
Table 67: Unsupported Actions for Firewall Filters in Logical Systems (continued)

<table>
<thead>
<tr>
<th>Firewall Filter Action</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>syslog</td>
<td>[edit]</td>
<td>In this example, there must be at least one system log (system syslog file filename) with the firewall facility enabled for the icmp-syslog filter's logs to be stored. Because this firewall configuration relies on a configuration outside the logical system, the syslog action modifier is not supported.</td>
</tr>
</tbody>
</table>

```plaintext
[edit]
logical-systems {
  ls1 {
    firewall {
      family inet {
        filter icmp-syslog {
          term icmp-match {
            from {
              address {
                192.168.207.222/32;
              }
              protocol icmp;
            }
            then {
              count packets;
              syslog;
              accept;
            }
          }
        }
        term default {
          then accept;
        }
      }
    }
  }
}
```

RELATED DOCUMENTATION

- Firewall Filters in Logical Systems Overview | 1079
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems | 1080
- Unsupported Firewall Filter Statements for Logical Systems | 1123
- Introduction to Logical Systems
- Logical Systems Operations and Restrictions
Filter-Based Forwarding for Routing Instances

You can use stateless firewall filters in routing instances to control how packets travel in a network for IPv4 and IPv6 traffic. This is called filter-based forwarding.

You can define a firewall filtering term that directs matching packets to a specified routing instance. This type of filtering can be configured to route specific types of traffic through a firewall or other security device before the traffic continues on its path. To configure a stateless firewall filter to direct traffic to a routing instance, configure a term with the `routing-instance routing-instance-name` terminating action at the `[edit firewall family <inet | inet6>]` hierarchy level to specify the routing instance to which matching packets will be forwarded. You can apply a forwarding table filter to a routing instance of type forwarding and also to the default routing instance `inet.0`. To configure the filter to direct traffic to the master routing instance, use the `routing-instance default` statement at the `[edit firewall family <inet | inet6>]` hierarchy level.

The following limitations apply to filter-based forwarding table configured on routing instances:

- You cannot configure any of the following actions in a firewall filtering term when the filtering term contains the `routing-instance routing-instance-name` terminating action:
 - `count counter-name`
 - `discard`
 - `forwarding-class class-name`
 - `log`
 - `loss-priority (high | medium-high | low)`
 - `policer policer-name`
 - `port-mirror`
 - `reject message-type`
 - `syslog`
 - `three-color-policer (single-rate | two-rate) policer-name`

- You cannot configure the `fragment-flags number` match condition in the filter term.
- You cannot attach a filter that is either default or physical interface-specific.
- You cannot attach a filter to the egress direction of routing instances.
- IPv6 filter-based forwarding does not support the following L4 matches:
 - `source-port`
 - `destination-port`
Although you can configure forwarding of packets from one VRF to another VRF, you cannot configure forwarding from a VRF to the global routing instance.

The maximum number of routing instances supported is 64, which is the same as the maximum number of virtual routers supported. Forwarding packets to the global table (default VRF) is not supported for filter-based forwarding.

NOTE: Filter-based forwarding on the interface will not work when source MAC address filter is configured because the source MAC address filter takes higher precedence over filter-based forwarding.

RELATED DOCUMENTATION

Example: Configuring Filter-Based Forwarding on the Source Address | 1317

Forwarding Table Filters for Routing Instances on ACX Series Routers

Forwarding table filter is a mechanism by which all the packets forwarded by a certain forwarding table are subjected to filtering and if a packet matches the filter condition, the configured action is applied on the packet. You can use the forwarding table filter mechanism to apply a filter on all interfaces associated with a single routing instance with a simple configuration. You can apply a forwarding table filter to a routing instance of type forwarding and also to the default routing instance inet.0. To configure a forwarding table filter, include the filter filter-name statement at the [edit firewall family <inet | inet6>] hierarchy level.

The following limitations apply to forwarding table filters configured on routing instances:

- You cannot attach the same filter to more than one routing instance.
- You cannot attach the same filter at both the [edit interfaces interface-name family <inet | inet6> filter input filter-name] and [edit routing-instances instance-name forwarding-options family <inet | inet6> filter input filter-name] hierarchy level.
- You cannot attach a filter that is either interface-specific or a physical interface filter.
- You cannot attach a filter to the egress direction of routing instances.
Configuring Forwarding Table Filters

Forwarding table filters are defined the same as other firewall filters, but you apply them differently:

- Instead of applying forwarding table filters to interfaces, you apply them to forwarding tables, each of which is associated with a routing instance and a virtual private network (VPN).
- Instead of applying input and output filters by default, you can apply an input forwarding table filter only.

All packets are subjected to the input forwarding table filter that applies to the forwarding table. A forwarding table filter controls which packets the router accepts and then performs a lookup for the forwarding table, thereby controlling which packets the router forwards on the interfaces.

When the router receives a packet, it determines the best route to the ultimate destination by looking in a forwarding table, which is associated with the VPN on which the packet is to be sent. The router then forwards the packet toward its destination through the appropriate interface.

NOTE: For transit packets exiting the router through the tunnel, forwarding table filtering is not supported on the interfaces you configure as the output interface for tunnel traffic.

A forwarding table filter allows you to filter data packets based on their components and to perform an action on packets that match the filter; it essentially controls which bearer packets the router accepts and forwards. To configure a forwarding table filter, include the `firewall` statement at the [edit] hierarchy level:

```
[edit]
filer {
    family family-name {
        filter filter-name {
            term term-name {
                from {
                    match-conditions;
                }
                then {
                    action;
                    action-modifiers;
                }
            }
        }
    }
}
```
family-name is the family address type: IPv4 (inet), IPv6 (inet6), Layer 2 traffic (bridge), or MPLS (mpls).

term-name is a named structure in which match conditions and actions are defined.

match-conditions are the criteria against which a bearer packet is compared; for example, the IP address of a source device or a destination device. You can specify multiple criteria in a match condition.

action specifies what happens if a packet matches all criteria; for example, the gateway GPRS support node (GGSN) accepting the bearer packet, performing a lookup in the forwarding table, and forwarding the packet to its destination; discarding the packet; and discarding the packet and returning a rejection message.

action-modifiers are actions that are taken in addition to the GGSN accepting or discarding a packet when all criteria match; for example, counting the packets and logging a packet.

To create a forwarding table, include the instance-type statement with the forwarding option at the [edit routing-instances instance-name] hierarchy level:

```plaintext
[edit]
routing-instances instance-name {
    instance-type forwarding;
}
```

To apply a forwarding table filter to a VPN routing and forwarding (VRF) table, include the filter and input statements at the [edit routing-instance instance-name forwarding-options family family-name] hierarchy level:

```plaintext
[edit routing-instances instance-name]
instance-type forwarding;
forwarding-options {
    family family-name {
        filter {
            input filter-name;
        }
    }
}
```

To apply a forwarding table filter to a forwarding table, include the filter and input statements at the [edit forwarding-options family family-name] hierarchy level:
To apply a forwarding table filter to the default forwarding table `inet.0`, which is not associated with a specific routing instance, include the `filter` and `input` statements at the `[edit forwarding-options family inet]` hierarchy level:

```
[edit forwarding-options family inet]
filter {
    input filter-name;
}
```

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Guidelines for Applying Standard Firewall Filters | 753
- Applying Forwarding Table Filters
Accounting for Firewall Filters Overview

Juniper Networks devices can collect various kinds of data about traffic passing through the device. You can set up one or more accounting profiles that specify some common characteristics of this data, including the following:

- Fields used in the accounting records.
- Number of files that the routing platform retains before discarding, and the number of bytes per file.
- Polling period that the system uses to record the data

There are several types of accounting profiles: interface, firewall filter, source class and destination class usage, and Routing Engine. If you apply the same profile name to both a firewall filter and an interface, it causes an error.

RELATED DOCUMENTATION

- Example: Configuring Statistics Collection for a Firewall Filter | 1142
System Logging Overview

The Junos OS generates system log messages (also called syslog messages) to record system events that occur on the device. Events consist of routine operations, failure and error conditions, and critical conditions that might require urgent resolution. This system logging utility is similar to the UNIX syslogd utility.

Each Junos OS system log message belongs to a message category, called a facility, that reflects the hardware- or software-based source of the triggering event. A group of messages belonging to the same facility are either generated by the same software process or concern a similar hardware condition or user activity (such as authentication attempts). Each system log message is also preassigned a severity, which indicates how seriously the triggering event affects router (or switch) functions. Together, the facility and severity of an event are known as the message priority. The content of a syslog message identifies the Junos OS process that generates the message and briefly describes the operation or error that occurred.

By default, syslog messages that have a severity of info or more serious are written to the main system log file messages in the /var/log directory of the local Routing Engine. To configure global settings and facility-specific settings that override these default values, you can include statements at the [edit system syslog] hierarchy level.

For all syslog facilities or for a specified facility, you can configure the syslog message utility to redirect messages of a specified severity to a specified file instead of to the main system log file. You can also configure the syslog message utility to write syslog messages of a specified severity, for all syslog facilities or for a specified facility, to additional destinations. In addition to writing syslog messages to a log file, you can write syslog messages to the terminal sessions of any logged-in users, to the router (or switch) console, or to a remote host or the other Routing Engine.

At the global level—for all system logging messages, regardless of facility, severity, or destination—you can override the default values for file-archiving properties and the default timestamp format.

RELATED DOCUMENTATION

System Logging of Events Generated for the Firewall Facility	1136
Firewall Filter Logging Actions	1139
Example: Configuring Logging for a Firewall Filter Term	1149

System Logging of Events Generated for the Firewall Facility

System log messages generated for firewall filter actions belong to the firewall facility. Just as you can for any other Junos OS system logging facility, you can direct firewall facility syslog messages to one or more specific destinations: to a specified file, to the terminal session of one or more logged in users (or to all
users), to the router (or switch) console, or to a remote host or the other Routing Engine on the router (or switch).

When you configure a syslog message destination for `firewall` facility syslog messages, you include a statement at the `[edit system syslog]` hierarchy level, and you specify the `firewall` facility name together with a severity level. Messages from the `firewall` that are rated at the specified level or more severe are logged to the destination.

System log messages with the `DFWD_` prefix are generated by the firewall process (`dfwd`), which manages compilation and downloading of Junos OS firewall filters. System log messages with the `PFE_FW_` prefix are messages about firewall filters, generated by the Packet Forwarding Engine controller, which manages packet forwarding functions. For more information, see the System Log Explorer.

Table 68 on page 1137 lists the system log destinations you can configure for the `firewall` facility.

Table 68: Syslog Message Destinations for the Firewall Facility

<table>
<thead>
<tr>
<th>Destination</th>
<th>Description</th>
<th>Configuration Statements Under [edit system syslog]</th>
</tr>
</thead>
</table>
| **File** | Configuring this option keeps the `firewall` syslog messages out of the main system log file. To include priority and facility with messages written to the file, include the `explicit-priority` statement. To override the default standard message format, which is based on a UNIX system log format, include the `structured-data` statement. When the `structured-data` statement is included, other statements that specify the format for messages written to the file are ignored (the `explicit-priority` statement at the `[edit system syslog file filename]` hierarchy level and the `time-format` statement at the `[edit system syslog]` hierarchy level). | `file filename {`
` firewall severity;`
` allow-duplicates;`
` archive archive-options;`
` explicit-priority;`
` structured-data;`
` }`
` allow-duplicates;`
` archive archive-options;`
` time-format (option);` |
| **Terminal session** | Configuring this option causes a copy of the `firewall` syslog messages to be written to the specified terminal sessions. Specify one or more user names, or specify * for all logged in users. | `user (username | *) {`
` firewall severity;`
` }`
` time-format (option);` |
Table 68: Syslog Message Destinations for the Firewall Facility (continued)

<table>
<thead>
<tr>
<th>Destination</th>
<th>Description</th>
<th>Configuration Statements Under [edit system syslog]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (or switch) console</td>
<td>Configuring this option causes a copy of the firewall syslog messages to be written to the router (or switch) console.</td>
<td><code>console {</code> <code>firewall severity;</code> <code>}</code> <code>time-format (option);</code></td>
</tr>
<tr>
<td>Remote host or the other Routing Engine</td>
<td>Configuring this option causes a copy of the firewall syslog messages to be written to the specified remote host or to the other Routing Engine. To override the default alternative facility for forwarding firewall syslog messages to a remote machine (local3), include the <code>facility-override firewall</code> statement. To include priority and facility with messages written to the file, include the <code>explicit-priority</code> statement.</td>
<td>`host (hostname</td>
</tr>
</tbody>
</table>

By default, the timestamp recorded in a standard-format system log message specifies the month, date, hour, minute, and second when the message was logged, as in the example:

```
Sep 07 08:00:10
```

To include the year, the millisecond, or both in the timestamp for all system logging messages, regardless of the facility, include one of the following statement at the [edit system syslog] hierarchy level:

- `time-format year;`
- `time-format millisecond;`
- `time-format year millisecond;`

The following example illustrates the format for a timestamp that includes both the millisecond (401) and the year (2010):

```
Sep 07 08:00:10.401.2010
```
Firewall Filter Logging Actions

For IPv4 and IPv6 firewall filters, you can configure the filter to write a summary of matching packet headers to the log or syslog by specifying either the syslog or log action. The main difference between the two is the permanence of the record. Logs are only buffered in memory, and when that buffer is full, the oldest records are replaced with new ones as they come in. Syslogs, on the other hand, can be saved to disk or forwarded to a remote syslog server. In both cases, a summary of the packet header is logged (not a copy of the packet itself). Service filters and simple filters do not support either the log or syslog action.

NOTE: Both the syslog and log actions can consume significant CPU and/or disk space on the device. Juniper recommends that you off-load logs by writing them to a remote syslog server, and that you constrain logging by using it for diagnostics only.

Syslog

As noted, system logs can be written to disk and/or sent to a remote server. Saved logs are written to the /var/log directory. You can view a list of all available log files on the device by running the show log command without options. Note, that within a given log file, the firewall action logs may be interspersed with event messages.
The following **syslog** configuration shows system logs being sent to a remote server at 172.27.1.1, and also save them to a file named “firewall” on the local device.

```
host@device-RE0# show system syslog
host 172.27.1.1 {
  firewall any;
}
<...>
file firewall {
  firewall any;
}
```

To view system logs, run the **show syslog message** command.

To view the contents of a given system log file, run either the **show log filename** or the **file show /var/log/filename** command.

To clear system log file contents, run the **clear log filename** command. You can include the **all** option to delete all saved logs, including records being written to the current log file.

Configuration details are shown here:

```
firewall {
  family {
    filter filter-name {
      from {
        match-conditions;
      }
      then {
        ...
        syslog;
        terminating-action;
      }
    }
  }
}
```

Log

The **log** action writes log information to a buffer. There is no option for writing logs to a remote server, or for writing them to disk. Once the available buffer is full, new logs will replace the oldest, so a historical record is not kept. Logs are cleared whenever the device or PFE is restarted.

Configuration details are shown here:
To view the logs, run the `show firewall log` command.

Log Details

The following shows what kind of information is typically included in syslog and log entries:

```bash
user@host> show log messages_firewall_any

Mar 20 08:08:45 hostname feb FW: ge-1/1/0.0 A icmp 192.168.207.222 192.168.207.223 0 0 (1 packets)
```

The fields are explained here:

- **Date and Time**—Date and time at which the packet was received (not shown in the default).
- **Hostname**—Name of the device on which the match occurred.
- **Interface**—Physical interface that the packet traversed.
- **Filter action.** In the example above, it is A.
 - **A**—Accept (or next term)
 - **D**—Discard
 - **R**—Reject
- **Protocol**—Packet protocol. May be a name or number, and may also include the source and destination ports. In the example above, the protocol is ICMP, which may then include the ICMP type and code.
- **Source address**—Source IP address of the packet.
- **Destination address**—Destination IP address of the packet.
• **Source port**—Source port of the packet (TCP and UDP packets only). In the example above, the port is 0.

• **Destination port**—Destination port of the packet (TCP and UDP packets only). In the example above, the port is 0.

• **Packets in sample interval**—This example show only one matching packet was detected in the sample interval (about a second). If packets arrive at faster rate, the system log automatically compresses the information so that less output is generated.

RELATED DOCUMENTATION

- System Logging Overview | 1136
- System Logging of Events Generated for the Firewall Facility | 1136
- Example: Configuring Logging for a Firewall Filter Term | 1149
- System log messages with the DFWD_ prefix, described in the System Log Explorer
- System log messages with the PFE_FW_* prefix, described in the System Log Explorer

Example: Configuring Statistics Collection for a Firewall Filter

IN THIS SECTION

- Requirements | 1143
- Overview | 1143
- Configuration | 1143
- Verification | 1148
This example shows how to configure and apply a firewall filter that collects data according to parameters specified in an associated accounting profile.

Requirements

Firewall filter accounting profiles are supported for all traffic types except family any.

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you create a firewall filter accounting profile and apply it to a firewall filter. The accounting profile specifies how frequently to collect packet and byte count statistics and the name of the file to which the statistics are written. The profile also specifies that statistics are to be collected for three firewall filter counters.

Topology

The firewall filter accounting profile filter_acctg_profile specifies that statistics are collected every 60 minutes, and the statistics are written to the file /var/log/ff_accounting_file. Statistics are collected for counters named counter1, counter2, and counter3.

The IPv4 firewall filter named my_firewall_filter increments a counter for each of three filter terms. The filter is applied to logical interface ge-0/0/1.0.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration
To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set accounting-options filter-profile filter_acctg_profile file ff_accounting_file
set accounting-options filter-profile filter_acctg_profile interval 60
set accounting-options filter-profile filter_acctg_profile counters counter1
dataccounting-options filter-profile filter_acctg_profile counters counter2
set firewall family inet filter my_firewall_filter accounting-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term term1 from protocol ospf
dataccounting-options filter-profile filter_acctg_profile counters counter3
set firewall family inet filter my_firewall_filter term term1 then count counter1
dataccounting-options filter-profile filter_acctg_profile
dataccounting-options filter-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term term1 then discard
dataccounting-options filter-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term term2 from source-address 10.108.0.0/16
dataccounting-options filter-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term term2 then count counter2
dataccounting-options filter-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term term2 then discard
dataccounting-options filter-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term accept-all then count counter3
dataccounting-options filter-profile filter_acctg_profile
set firewall family inet filter my_firewall_filter term accept-all then accept
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input my_firewall_filter
```

Configure an Accounting Profile

Step-by-Step Procedure

To configure an accounting profile:

1. Create the accounting profile `filter_acctg_profile`.

   ```plaintext
   [edit]
   user@host# edit accounting-options filter-profile filter_acctg_profile
   ```

2. Configure the accounting profile to filter and collect packet and byte count statistics every 60 minutes and write them to the `/var/log/ff_accounting_file` file.

   ```plaintext
   [edit accounting-options filter-profile filter_acctg_profile]
   user@host# set file ff_accounting_file
   user@host# set interval 60
   ```

3. Configure the accounting profile to collect filter profile statistics (packet and byte counts) for three counters.

   ```plaintext
   [edit accounting-options filter-profile filter_acctg_profile]
   user@host# set counters counter1
   ```
Configure a Firewall Filter That References the Accounting Profile

Step-by-Step Procedure

To configure a firewall filter that references the accounting profile:

1. Create the firewall filter `my_firewall_filter`.

```
[edit]
user@host# edit firewall family inet filter my_firewall_filter
```

2. Apply the filter-accounting profile `filter_acctg_profile` to the firewall filter.

```
[edit firewall family inet filter my_firewall_filter]
user@host# set accounting-profile filter_acctg_profile
```

3. Configure the first filter term and counter.

```
[edit firewall family inet filter my_firewall_filter]
user@host# set term term1 from protocol ospf
user@host# set term term1 then count counter1
user@host# set term term1 then discard
```

4. Configure the second filter term and counter.

```
[edit firewall family inet filter my_firewall_filter]
user@host# set term term2 from source-address 10.108.0.0/16
user@host# set term term2 then count counter2
user@host# set term term2 then discard
```

5. Configure the third filter term and counter.

```
[edit firewall family inet filter my_firewall_filter]
user@host# set term accept-all then count counter3
user@host# set term accept-all then accept
```
Apply the Firewall Filter to an Interface

Step-by-Step Procedure
To apply the firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the firewall filter.

   ```
   [edit]
   user@host# edit interfaces ge-0/0/1 unit 0 family inet
   ```

2. Configure the interface address for the logical interface.

   ```
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set address 10.1.2.3/30
   ```

3. Apply the firewall filter to the logical interface.

   ```
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set filter input my_firewall_filter
   ```

Confirm Your Candidate Configuration

Step-by-Step Procedure
To confirm your candidate configuration:

1. Confirm the configuration of the accounting profile by entering the `show accounting-options` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
   [edit]
   user@host# show accounting-options
   filter-profile filter_acctg_profile {
     file ff_accounting_file;
     interval 60;
     counters {
       counter1;
       counter2;
       counter3;
     }
   }
   ```
2. Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
    filter my_firewall_filter {
        accounting-profile filter_acctg_profile;
        term term1 {
            from {
                protocol ospf;
            }
            then {
                count counter1;
                discard;
            }
        }
        term term2 {
            from {
                source-address {
                    10.108.0.0/16;
                }
            }
            then {
                count counter2;
                discard;
            }
        }
        term accept-all {
            then {
                count counter3;
                accept;
            }
        }
    }
}
```

3. Confirm the configuration of the interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
```
Clear the Counters and Commit Your Candidate Configuration

Step-by-Step Procedure

To clear the counters and commit your candidate configuration:

1. From operational command mode, use the `clear firewall all` command to clear the statistics for all firewall filters.

 To clear only the counters incremented in this example, include the name of the firewall filter.


   ```
   [edit]
   user@host> clear firewall filter my_firewall_filter
   ```

2. Commit your candidate configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

To verify that the filter is applied to the logical interface, run the `show interfaces` command with the `detail` or `extensive` output level.

To verify that the three counters are collected separately, run the `show firewall filter my_firewall_filter` command.

```
user@host> show firewall filter my_firewall_filter
```
RELATED DOCUMENTATION

| Accounting for Firewall Filters Overview | 1135 |

Example: Configuring Logging for a Firewall Filter Term

IN THIS SECTION

- Requirements | 1149
- Overview | 1149
- Configuration | 1150
- Verification | 1154

This example shows how to configure a firewall filter to log packet headers.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a firewall filter that logs and counts ICMP packets that have 192.168.207.222 as either their source or destination.
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set system syslog file messages_firewall_any firewall any
set system syslog file messages_firewall_any archive no-world-readable
set firewall family inet filter icmp_syslog term icmp_match from address 192.168.207.222/32
set firewall family inet filter icmp_syslog term icmp_match from protocol icmp
set firewall family inet filter icmp_syslog term icmp_match then count packets
set firewall family inet filter icmp_syslog term icmp_match then syslog
set firewall family inet filter icmp_syslog term icmp_match then accept
set firewall family inet filter icmp_syslog term default_term then accept
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input icmp_syslog
```

Configure the Syslog Messages File for the Firewall Facility

Step-by-Step Procedure

To configure a syslog messages file for the firewall facility:

1. Configure a messages file for all syslog messages generated for the firewall facility.

```plaintext
user@host# set system syslog file messages_firewall_any firewall any
```
2. Restrict permission to the archived firewall facility syslog files to the root user and users who have the Junos OS maintenance permission.

```
user@host# set system syslog file messages_firewall_any archive no-world-readable
```

Configure the Firewall Filter

Step-by-Step Procedure

To configure the firewall filter `icmp_syslog` that logs and counts ICMP packets that have `192.168.207.222` as either their source or destination:

1. Create the firewall filter `icmp_syslog`.

```
[edit]
user@host# edit firewall family inet filter icmp_syslog
```

2. Configure matching on the ICMP protocol and an address.

```
[edit firewall family inet filter icmp_syslog]
user@host# set term icmp_match from address 192.168.207.222/32
user@host# set term icmp_match from protocol icmp
```

3. Count, log,, and accept matching packets.

```
[edit firewall family inet filter icmp_syslog]
user@host# set term icmp_match then count packets
user@host# set term icmp_match then syslog
user@host# set term icmp_match then accept
```

4. Accept all other packets.

```
[edit firewall family inet filter icmp_syslog]
user@host# set term default_term then accept
```

Apply the Firewall Filter to a Logical Interface

Step-by-Step Procedure
To apply the firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the firewall filter.

```
[edit]
user@host# edit interfaces ge-0/0/1 unit 0 family inet
```

2. Configure the interface address for the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set address 10.1.2.3/30
```

3. Apply the firewall filter to the logical interface.

```
[edit interfaces ge-0/0/1 unit 0 family inet]
user@host# set filter input icmp_syslog
```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the syslog message file for the `firewall` facility by entering the `show system` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show system
syslog {
    file messages_firewall_any {
        firewall any;
        archive no-world-readable;
    }
}
```

2. Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
```
3. Confirm the configuration of the interface by entering the \texttt{show interfaces} configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

4. If you are done configuring the device, commit your candidate configuration.
Verification

To confirm that the configuration is working properly, enter the show log filter command:

```
user@host> show log messages_firewall_any
```

```
Mar 20 08:03:11 hostname feb FW: so-0/1/0.0   A icmp 192.168.207.222
192.168.207.223   0   0 (1 packets)
```

This output file contains the following fields:

- **Date and Time**—Date and time at which the packet was received (not shown in the default).
- **Filter action**:
 - A—Accept (or next term)
 - D—Discard
 - R—Reject
- **Protocol**—Packet's protocol name or number.
- **Source address**—Source IP address in the packet.
- **Destination address**—Destination IP address in the packet.

NOTE: If the protocol is ICMP, the ICMP type and code are displayed. For all other protocols, the source and destination ports are displayed.

The last two fields (both zero) are the source and destination TCP/UDP ports, respectively, and are shown for TCP or UDP packets only. This log message indicates that only one packet for this match has been detected in about a 1-second interval. If packets arrive faster, the system log function compresses the information so that less output is generated, and displays an output similar to the following:

```
user@host> show log messages_firewall_any
```

```
**RELATED DOCUMENTATION**

- System Logging Overview | 1136
- Firewall Filter Logging Actions | 1139
- System log messages with the DFWD_ prefix, described in the System Log Explorer
- System log messages with the PFE_FW_* prefix, described in the System Log Explorer
Attaching Multiple Firewall Filters to a Single Interface

For a firewall filter to work, you must apply it to at least one Layer 3 interface. To do this, include the filter statement when configuring a logical interface at the [edit interfaces] hierarchy level:

```
[edit interfaces]
user@switch# set interface-name unit logical-unit-number family (inet | inet6) filter (input | output) filter-name
```

In the input statement, specify a firewall filter to be evaluated when packets are received on the interface. Input filters applied to a loopback interface affect only traffic destined for the Routing Engine.

In the output statement, specify a filter to be evaluated when packets exit the interface.
NOTE: When you create a loopback interface, it is important to apply an ingress filter to it so the Routing Engine is protected. We recommend that when you apply a filter to the loopback interface lo0, you include the `apply-groups` statement. Doing so ensures that the filter is automatically inherited on every loopback interface, including lo0 and other loopback interfaces.

RELATED DOCUMENTATION

| Configuring Firewall Filters | 1601 |

Configuring Firewall Filters

You can configure firewall filters in a switch to control traffic that enters or exits Layer 3 (routed) interfaces. To use a firewall filter, you must configure the filter and then apply it to a Layer 3 interface.

- Configuring a Firewall Filter | 1158
- Applying a Firewall Filter to a Layer 3 (Routed) Interface | 1160

Configuring a Firewall Filter

To configure a firewall filter:

1. Configure the family address type, filter name, term name, and at least one match condition—for example, match on packets that contain a specific source address:

   ```
 [edit]
 user@switch# set firewall family (inet | inet6) filter ingress-port-filter term t1 from source-address 192.0.2.14
   ```

   Specify the family address type `inet` for IPv4 or `inet6` for IPv6.

   The filter and term names can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. Each filter name must be unique. A filter can contain one or more terms, and each term name must be unique within a filter.

2. Configure additional match conditions. For example, match on packets that contain a specific source port:

   ```
 [edit firewall family inet filter ingress-port-filter term t1 from]
   ```
user@switch# set source-port 80

You can specify one or more match conditions in a single from statement. For a match to occur, the packet must match all the conditions in the term. The from statement is optional, but if included in a term, it cannot be empty. If you omit the from statement, all packets are considered to match.

3. If you want to apply a firewall filter to multiple interfaces and be able to see counters specific to each interface, configure the interface-specific option:

   [edit firewall family inet filter ingress-port-filter]
   user@switch# set interface-specific

4. In each firewall filter term, specify the actions to take if the packet matches all the conditions in that term. You can specify an action and action modifiers:
   • To specify a filter action, for example, to discard packets that match the conditions of the filter term:

   [edit firewall family inet filter ingress-port-filter term t1 then]
   user@switch# set discard

   You can specify no more than one action (accept, discard, reject, routing-instance, or vlan) per term.
   • To specify action modifiers, for example, to count and classify packets to a forwarding class. For example:

   [edit firewall family inet filter ingress-port-filter term t1 then]
   user@switch# set count counter-one
   user@switch# set loss-priority high

   If you omit the then statement or do not specify an action, packets that match all the conditions in the from statement are accepted. However, you should always explicitly configure an action in the then statement. You can include no more than one action statement, but you can use any combination of action modifiers. For an action or action modifier to take effect, all conditions in the from statement must match.

   NOTE: Implicit discard is also applicable to a firewall filter applied to the loopback interface, lo0.
NOTE: For the complete list of match conditions, actions, and action modifiers, see “Firewall Filter Match Conditions and Actions” on page 1526. Note that on the OCX1100 switch you can use only those match conditions that are valid for IPv4 and IPv6 interfaces.

Applying a Firewall Filter to a Layer 3 (Routed) Interface

To apply a firewall filter to a Layer 3 interface:

1. Provide a meaningful description of the firewall filter in the configuration of the interface to which the filter will be applied:

   [edit]
   user@switch# set interfaces xe-0/0/1 description "filter to count and monitor traffic on layer 3 interface"

2. You can apply firewall filters to filter packets that enter or exit a Layer 3 interface:
   - To apply a firewall filter to filter packets that enter a Layer 3 interface:

     [edit]
     user@switch# set interfaces xe-0/0/1 unit 0 family inet filter input ingress-router-filter

   - To apply a firewall filter to filter packets that exit a Layer 3 interface:

     [edit]
     user@switch# set interfaces xe-0/0/2 unit 0 family inet filter output egress-router-filter

NOTE: You can apply only one filter to an interface for a given direction (ingress or egress).

RELATED DOCUMENTATION

| Overview of Firewall Filters | 772 |
| Firewall Filter Match Conditions and Actions | 1526 |
| Verifying That Firewall Filters Are Operational | 758 |
| Monitoring Firewall Filter Traffic | 759 |
| Configuring Port Mirroring |
The Challenge: Simplify Large-Scale Firewall Filter Administration

Typically, you apply a single firewall filter to an interface in the input or output direction or both. This approach might not be practical, however, when you have a router (or switch) configured with many, even hundreds of interfaces. In an environment of this scale, you want the flexibility of being able to modify filtering terms common to multiple interfaces without having to reconfigure the filter of every affected interface.

In general, the solution is to apply an effectively “chained” structure of multiple stateless firewall filters to a single interface. You partition your filtering terms into multiple firewall filters configured so that you can apply a unique filter to each router (or switch) interface but also apply common filters to multiple router (or switch) interfaces as required. The Junos OS policy framework provides two options for managing the application of multiple separate firewall filters to individual router (or switch) interfaces. One option is to apply multiple filters as a single input list or output list. The other option is to reference a stateless firewall filter from within the term of another stateless firewall filter.

A Solution: Configure Nested References to Firewall Filters

The most structured way to avoid configuring duplicate filtering terms common to multiple firewall filters is to configure multiple firewall filters so that each filter includes the shared filtering terms by referencing a separate filter that contains the common filtering terms. The Junos OS uses the filter terms—in the order in which they appear in the filter definition—to evaluate packets that transit the interface. If you need to modify filtering terms shared across multiple interfaces, you only need to modify one firewall filter.

NOTE: Similar to the alternative approach (applying a list of firewall filters), configuring a nested firewall filter combines multiple firewall filters into a new firewall filter definition.
Configuration of Nested Firewall Filters

Configuring a nested firewall filter for each router (or switch) interface involves separating shared packet-filtering rules from interface-specific packet-filtering rules as follows:

- For each set of packet-filtering rules common across multiple interfaces, configure a separate firewall filter that contains the shared filtering terms.
- For each router (or switch) interface, configure a separate firewall filter that contains:
  - All the filtering terms unique to that interface.
  - An additional filtering term that includes a filter reference to the firewall filter that contains the common filtering terms.

Application of Nested Firewall Filters to a Router or Switch Interface

Applying nested firewall filters is no different from applying an unnested firewall filter. For each interface, you can include an input or output statement (or both) within the filter stanza to specify the appropriate nested firewall filter.

Applying nested firewall filters to an interface, the shared filtering terms and the interface-specific firewall filters are applied through a single nested firewall filter that includes other filters through the filter statement within a separate filtering term.

RELATED DOCUMENTATION

Guidelines for Nesting References to Multiple Firewall Filters | 1162
Example: Nesting References to Multiple Firewall Filters | 1177

Guidelines for Nesting References to Multiple Firewall Filters

IN THIS SECTION

- Statement Hierarchy for Configuring Nested Firewall Filters | 1163
- Filter-Defining Terms and Filter-Referencing Terms | 1163
- Types of Filters Supported in Nested Configurations | 1164
- Number of Filter References in a Single Filter | 1164
- Depth of Filter Nesting | 1164
Statement Hierarchy for Configuring Nested Firewall Filters

To reference a filter from within a filter, include the `filter filter-name` statement as a separate filter term:

```
firewall firewall-name {
 family family-name {
 filter filter-name {
 term term-name {
 filter filter-name;
 }
 }
 }
}
```

You can include the firewall configuration at one of the following hierarchy levels:

- `[edit]`
- `[edit logical-systems logical-system-name]`

Filter-Defining Terms and Filter-Referencing Terms

You cannot configure a firewall filter term that both references another firewall filter and defines a match condition or action. If a firewall filter term includes the `filter` statement, then it cannot also include the `from` or `then` statement.

For example, the firewall filter term `term term1` in the configuration is not valid:

```
[edit]
firewall {
 family inet {
 filter filter_1 {
 term term1 {
 filter filter_2;
 from {
 source-address 172.16.1.1/32;
 }
 then {
 accept;
 }
 }
 }
 }
}
```
In order for term_1 to be a valid filter term, you must either remove the filter_2 statement or remove both the from and then stanzas.

Types of Filters Supported in Nested Configurations

Nested configurations of firewall filters support firewall filters only. You cannot use service filters or simple filters in a nested firewall filter configuration.

Number of Filter References in a Single Filter

The total number of filters referenced from within a filter cannot exceed 256.

Depth of Filter Nesting

The Junos OS supports a single level of firewall filter nesting. If filter_1 references filter_2, you cannot configure a filter that references a filter that references filter_1.

RELATED DOCUMENTATION

- Understanding Multiple Firewall Filters in a Nested Configuration | 1161
- Example: Nesting References to Multiple Firewall Filters | 1177

Understanding Multiple Firewall Filters Applied as a List

IN THIS SECTION

- The Challenge: Simplify Large-Scale Firewall Filter Administration | 1165
- A Solution: Apply Lists of Firewall Filters | 1165
- Configuration of Multiple Filters for Filter Lists | 1165
- Application of Filter Lists to a Router Interface | 1166
- Interface-Specific Names for Filter Lists | 1166
- How Filter Lists Evaluate Packets When the Matched Term Includes Terminating or Next Term Actions | 1167
- How Filter Lists Evaluate Packets When the List Includes Protocol-Independent and IP Firewall Filters | 1168
This topic covers the following information:

The Challenge: Simplify Large-Scale Firewall Filter Administration

Typically, you apply a single firewall filter to an interface in the input or output direction or both. However, this approach might not be practical when you have a device configured with many interfaces. In large environments, you want the flexibility of being able to modify filtering terms common to multiple interfaces without having to reconfigure the filter of every affected interface.

In general, the solution is to apply an effectively "chained" structure of multiple firewall filters to a single interface. You partition your filtering terms into multiple firewall filters that each perform a filtering task. You can then choose which filtering tasks you want to perform for a given interface and apply the filtering tasks to that interface. In this way, you only manage the configuration for a filtering task in a single firewall filter.

The Junos OS policy framework provides two options for managing the application of multiple separate firewall filters to individual router interfaces. One option is to apply multiple filters as a single input list or output list. The other option is to reference a firewall filter from within the term of another firewall filter. This option is not supported on the PTX10003 router.

A Solution: Apply Lists of Firewall Filters

The most straightforward way to avoid configuring duplicate filtering terms common to multiple firewall filters is to configure multiple firewall filters and then apply a customized list of filters to each interface. The Junos OS uses the filters—in the order in which they appear in the list—to evaluate packets that transit the interface. If you need to modify filtering terms shared across multiple interfaces, you only need to modify one firewall filter that contains those terms.

Configuration of Multiple Filters for Filter Lists

Configuring firewall filters to be applied in unique lists for each router interface involves separating shared packet-filtering rules from interface-specific packet-filtering rules as follows:

- **Unique filters**—For each set of packet-filtering rules unique to a specific interface, configure a separate firewall filter that contains only the filtering terms for that interface.

- **Shared filters**—For each set of packet-filtering rules common across two or more interfaces, consider configuring a separate firewall filter that contains the shared filtering terms.

**TIP:** When planning for a large number firewall filters to be applied using filter lists, administrators often organize the shared filters by filtering criteria, by the services to which customers subscribe, or by the purposes of the interfaces.
Application of Filter Lists to a Router Interface

Applying a list of firewall filters to an interface is a matter of selecting the filters that meet the packet-filtering requirements of that interface. For each interface, you can include an input-list or output-list statement (or both) within the filter stanza to specify the relevant filters in the order in which they are to be used:

- Include any filters that contain common filtering terms relevant to the interface.
- Include the filter that contain only the filtering terms unique to the interface.

Interface-Specific Names for Filter Lists

Because a filter list is configured under an interface, the resulting concatenated filter is interface-specific.

NOTE: When a filter list is configured under an interface, the resulting concatenated filter is interface-specific, regardless whether the firewall filters in the filter list are configured as interface-specific or not. Furthermore, the instantiation of interface-specific firewall filters not only creates separate instances of any firewall filter counters, but also separate instances of any policer actions. Any policers applied through an action specified in the firewall filter configuration are applied separately to each interface in the interface group.

The system-generated name of an interface-specific filter consists of the full interface name followed by either '-i' for an input filter list or '-o' for an output filter list.

- **Input filter list name**—For example, if you use the input-list statement to apply a chain of filters to logical interface ge-1/3/0.0, the Junos OS uses the following name for the filter:

  ge-1/3/0.0-i

- **Output filter list name**—For example, if you use the output-list statement to apply a chain of filters to logical interface fe-0/1/2.0, the Junos OS uses the following name for the filter:

  fe-0/1/2.0-o

NOTE: For Junos OS Evolved, the filter names are different. For example, if the filters are bound to the inet family, the filters are named ge-1/3/0/0-inet-i and fe-0/1/2.0-inet-o.
You can use the interface-specific name of a filter list when you enter a Junos OS operational mode command that specifies a firewall filter name.

**How Filter Lists Evaluate Packets When the Matched Term Includes Terminating or Next Term Actions**

The device evaluates a packet against the filters in a list sequentially, beginning with the first filter in the list until either a terminating action occurs or the packet is implicitly discarded.

*Table 69 on page 1167* describes how a firewall filter list evaluates a packet based on whether the matched term specifies a terminating action and the *next term* action. The *next term* action is neither a terminating action nor a nonterminating action but a *flow control* action.

**Table 69: Firewall Filter List Behavior**

<table>
<thead>
<tr>
<th>Firewall Filter Actions Included in the Matched Term</th>
<th>Term Description</th>
<th>Packet-Filtering Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminating</td>
<td>next term</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>—</td>
<td>The matched term includes a terminating action (such as <em>discard</em>) but not the <em>next term</em> action</td>
</tr>
<tr>
<td>—</td>
<td>Yes</td>
<td>The matched term includes the <em>next term</em> action, but it does not include any terminating actions.</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>The matched term includes neither the <em>next term</em> action nor any terminating actions.</td>
</tr>
</tbody>
</table>

For information about terminating actions, see “Firewall Filter Terminating Actions” on page 804.
NOTE: You cannot configure the next term action with a terminating action in the same firewall filter term.

How Filter Lists Evaluate Packets When the List Includes Protocol-Independent and IP Firewall Filters

On a single interface associated with a protocol-independent (family any) firewall filter and a protocol-specific (family inet or family inet6) firewall filter simultaneously, the protocol-independent firewall filter executes first.

The terminating action of the first filter determines whether the second filter also evaluates the packet:

- If the first filter terminates by executing the accept action, the second filter also evaluates the packet.
- If the first filter terminates without any terms matching the packet (an implicit discard action), the second filter also evaluates the packet.
- If the first filter terminates by executing an explicit discard action, the second filter does not evaluate the packet.

The PTX10003 router does not support a combination of protocol-independent and other filters in filter-lists.

RELATED DOCUMENTATION

| How Standard Firewall Filters Evaluate Packets | 738 |
| Guidelines for Applying Multiple Firewall Filters as a List | 1168 |
| Example: Applying Lists of Multiple Firewall Filters | 1170 |

Guidelines for Applying Multiple Firewall Filters as a List

IN THIS SECTION

- Statement Hierarchy for Applying Lists of Multiple Firewall Filters | 1169
- Filter Input Lists and Output Lists for Router or Switch Interfaces | 1169
- Types of Filters Supported in Lists | 1170
- Restrictions on Applying Filter Lists for MPLS or Layer 2 CCC Traffic | 1170
Statement Hierarchy for Applying Lists of Multiple Firewall Filters

To apply a single filter to the input or output direction of a router (or switch) logical interface, you include the `input filter-name` or `output filter-name` statement under the `filter` stanza for a protocol family.

To apply a list of multiple filters to the input or output direction of a router (or switch) logical interface, include the `input-list [ filter-names ]` or `output-list [ filter-names ]` statement under the `filter` stanza for a protocol family:

```
interfaces {
 interface-name {
 unit logical-unit-number {
 family family-name {
 filter {
 ...filter-options...
 input-list [filter-names];
 output-list [filter-names];
 }
 }
 }
 }
}
```

You can include the interface configuration at one of the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]

NOTE: (PTX10003) The router does not support `output-list` filter binding on the loopback address (lo0) or management interface.

Filter Input Lists and Output Lists for Router or Switch Interfaces

When applying a list of firewall filters as a list, the following limitations apply:

- You can specify up to 16 firewall filters for a filter input list.
- You can specify up to 16 firewall filters for a filter output list.
Types of Filters Supported in Lists

Lists of multiple firewall filters applied to a router (or switch) interface support standard stateless firewall filters only. You cannot apply lists containing service filters or simple filters to a router (or switch) interface.

Restrictions on Applying Filter Lists for MPLS or Layer 2 CCC Traffic

NOTE: These restrictions do not apply to the PTX10003 router. The router only supports applying filter lists on IPv4 (inet) or IPv6 (inet6) traffic.

When applying firewall filters that evaluate MPLS traffic (family mpls) or Layer 2 circuit cross-connection traffic (family ccc), you can use the input-list [filter-names] and output-list [filter-names] statements for all interfaces except the following:

- Management and internal Ethernet (fxp) interfaces
- Loopback (lo0) interfaces
- USB modem (umd) interfaces

RELATED DOCUMENTATION

- Understanding Multiple Firewall Filters Applied as a List | 1164
- Example: Applying Lists of Multiple Firewall Filters | 1170

Example: Applying Lists of Multiple Firewall Filters
This example shows how to apply lists of multiple firewall filters.

**Requirements**

Before you begin, be sure that you have:

- Installed your router or switch, and supported PIC, DPC, or MPC and performed the initial router or switch configuration.
- Configured basic Ethernet in the topology.
- Configured a logical interface to run the IP version 4 (IPv4) protocol (family inet) and configured the logical interface with an interface address. This example uses logical interface `ge-1/3/0.0` configured with the IP address `172.16.1.2/30`.

**NOTE:** For completeness, the configuration section of this example includes setting an IP address for logical interface `ge-1/3/0.0`.

- Verified that traffic is flowing in the topology and that ingress and egress IPv4 traffic is flowing through logical interface `ge-1/3/0.0`.
- Verified that you have access to the remote host that is connected to this router's or switch's logical interface `ge-1/3/0.0`.

**Overview**

In this example, you configure three IPv4 firewall filters and apply each filter directly to the same logical interface by using a list.

**Topology**

This example applies the following firewall filters as a list of input filters at logical interface `ge-1/3/0.0`. Each filter contains a single term that evaluates IPv4 packets and accepts packets based on the value of the destination port field in the TCP header:

- Filter `filter_FTP` matches on the FTP port number (21).
- Filter `filter_SSH` matches on the SSH port number (22).
- Filter `filter_Telnet` matches on the Telnet port number (23).

If an inbound packet does not match any of the filters in the input list, the packet is discarded.
NOTE: The Junos OS uses filters in a list in the order in which the filter names appear in the list. In this simple example, the order is irrelevant because all of the filters specify the same action.

Any of the filters can be applied to other interfaces, either alone (using the input or output statement) or in combination with other filters (using the input-list or output-list statement). The objective is to configure multiple “minimalist” firewall filters that you can reuse in interface-specific filter lists.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter filter_FTP term 0 from protocol tcp
set firewall family inet filter filter_FTP term 0 from destination-port 21
set firewall family inet filter filter_FTP term 0 then count pkts_FTP
set firewall family inet filter filter_FTP term 0 then accept
set firewall family inet filter filter_SSH term 0 from protocol tcp
set firewall family inet filter filter_SSH term 0 from destination-port 22
set firewall family inet filter filter_SSH term 0 then count pkts_SSH
set firewall family inet filter filter_SSH term 0 then accept
set firewall family inet filter filter_Telnet term 0 from protocol tcp
set firewall family inet filter filter_Telnet term 0 from destination-port 23
set firewall family inet filter filter_Telnet term 0 then count pkts_Telnet
set firewall family inet filter filter_Telnet term 0 then accept
set firewall family inet filter filter_discard term 1 then count pkts_discarded
set firewall family inet filter filter_discard term 1 then discard
set interfaces ge-1/3/0 unit 0 family inet address 172.16.1.2/30
```
Configure Multiple IPv4 Firewall Filters

Step-by-Step Procedure

To configure the IPv4 firewall filters:

1. Navigate the CLI to the hierarchy level at which you configure IPv4 firewall filters.

   [edit]
   user@host# edit firewall family inet

2. Configure the first firewall filter to count and accept packets for port 21.

   [edit firewall family inet]
   user@host# set filter filter_FTP term 0 from protocol tcp
   user@host# set filter filter_FTP term 0 from destination-port 21
   user@host# set filter filter_FTP term 0 then count pkts_FTP
   user@host# set filter filter_FTP term 0 then accept

3. Configure the second firewall filter to count and accept packets for port 22.

   [edit firewall family inet]
   user@host# set filter filter_SSH term 0 from protocol tcp
   user@host# set filter filter_SSH term 0 from destination-port 22
   user@host# set filter filter_SSH term 0 then count pkt_SSH
   user@host# set filter filter_SSH term 0 then accept

4. Configure the third firewall filter to count and accept packets from port 23.

   [edit firewall family inet]
   user@host# set filter filter_Telnet term 0 from protocol tcp
   user@host# set filter filter_Telnet term 0 from destination-port 23
   user@host# set filter filter_Telnet term 0 then count pkts_Telnet
   user@host# set filter filter_Telnet term 0 then accept
5. Configure the last firewall filter to count the discarded packets.

```
[edit firewall family inet]
user@host# set filter filter_discard term 1 then count pkts_discarded
user@host# set filter filter_discard term 1 then discard
```

**Apply the Filters to a Logical Interface as an Input List and an Output List**

**Step-by-Step Procedure**

To apply the six IPv4 firewall filters as a list of input filters and a list of output filters:

1. Navigate the CLI to the hierarchy level at which you apply IPv4 firewall filters to logical interface `ge-1/3/0.0`.

```
[edit]
user@host# edit interfaces ge-1/3/0 unit 0 family inet
```

2. Configure the IPv4 protocol family for the logical interface.

```
[edit interfaces ge-1/3/0 unit 0 family inet]
user@host# set address 172.16.1.2/30
```

3. Apply the filters as a list of input filters.

```
[edit interfaces ge-1/3/0 unit 0 family inet]
user@host# set filter input-list [filter_FTP filter_SSH filter_Telnet filter_discard]
```

**Confirm and Commit Your Candidate Configuration**

**Step-by-Step Procedure**

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the firewall filters by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
 filter filter_FTP {
```
term 0 {
  from {
    protocol tcp;
    destination-port 21;
  }
  then {
    count pkts_FTP;
    accept;
  }
}
}
filter filter_SSH {
  term 0 {
    from {
      protocol tcp;
      destination-port 22;
    }
    then {
      count pkts_SSH;
      accept;
    }
  }
}
filter filter_Telnet {
  term 0 {
    from {
      protocol tcp;
      destination-port 23;
    }
    then {
      count pkts_Telnet;
      accept;
    }
  }
}
filter filter_discard {
  term 1 {
    then {
      count pkts_discarded;
      discard;
    }
  }
}
}
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-1/3/0 {
 unit 0 {
 family inet {
 filter {
 input-list [filter_FTP filter_SSH filter_Telnet filter_discard];
 }
 address 172.16.1.2/30;
 }
 }
}
```

3. If you are done configuring the device, commit your candidate configuration.

```plaintext
[edit]
user@host# commit
```

Verification

**IN THIS SECTION**

- **Verifying That Inbound Packets Are Accepted Only If Destined for the FTP, SSH or Telnet Port** | 1176

Confirm that the configuration is working properly.

**Verifying That Inbound Packets Are Accepted Only If Destined for the FTP, SSH or Telnet Port**

**Purpose**

Verify that all three filters are active for the logical interface.

**Action**
To verify that input packets are accepted according to the three filters:

1. From the remote host that is connected to this router's (or switch's) logical interface `ge-1/3/0.0`, send a packet with destination port number 21 in the header. The packet should be accepted.

2. From the remote host that is connected to this router's (or switch's) logical interface `ge-1/3/0.0`, send a packet with destination port number 22 in the header. The packet should be accepted.

3. From the remote host that is connected to this router's (or switch's) logical interface `ge-1/3/0.0`, send a packet with destination port number 23 in the header. The packet should be accepted.

4. From the remote host that is connected to this router's (or switch's) logical interface `ge-1/3/0.0`, send a packet with a destination port number other than 21, 22, or 23. The packet should be discarded.

5. To display counter information for the list of filters applied to the input at `ge-1/3/0.0-i` enter the `show firewall filter ge-1/3/0.0-i` operational mode command. The command output displays the number of bytes and packets that match filter terms associated with the following counters:

   - `pkts_FTP-ge-1/3/0.0-i`
   - `pkts_SSH-ge-1/3/0.0-i`
   - `pkts_Telnet-ge-1/3/0.0-i`
   - `pkts_discard-ge-1/3/0.0-i`

RELATED DOCUMENTATION

- Understanding Multiple Firewall Filters Applied as a List  | 1164
- Guidelines for Applying Multiple Firewall Filters as a List  | 1168

Example: Nesting References to Multiple Firewall Filters
This example shows how to configure nested references to multiple firewall filters.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.

**Overview**

In this example, you configure a firewall filter for a match condition and action combination that can be shared among multiple firewall filters. You then configure two firewall filters that reference the first firewall filter. Later, if the common filtering criteria needs to be changed, you would modify only the one shared firewall filter configuration.

**Topology**

The *common_filter* firewall filter discards packets that have a UDP source or destination port field number of 69. Both of the two additional firewall filters, *filter1* and *filter2*, reference the *common_filter*.

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

**CLI Quick Configuration**

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter common_filter term common_term from protocol udp
set firewall family inet filter common_filter term common_term from port tftp
set firewall family inet filter common_filter term common_term then discard
set firewall family inet filter filter1 term term1 filter common-filter
set firewall family inet filter filter1 term term2 from address 192.168.0.0/16
set firewall family inet filter filter1 term term2 then reject
```
Configure the Nested Firewall Filters

Step-by-Step Procedure

To configure two nested firewall filters that share a common filter:

1. Navigate the CLI to the hierarchy level at which you configure IPv4 firewall filters.

   ```
 [edit]
 user@host# edit firewall family inet
   ```

2. Configure the common filter that will be referenced by multiple other filters.

   ```
 [edit firewall family inet]
 user@host# set filter common_filter term common_term from protocol udp
 user@host# set filter common_filter term common_term from port tftp
 user@host# set filter common_filter term common_term then discard
   ```

3. Configure a filter that references the common filter.

   ```
 [edit firewall family inet]
 user@host# set filter filter1 term term1 filter common-filter
 user@host# set filter filter1 term term2 from address 192.168.0.0/16
 user@host# set filter filter1 term term2 then reject
   ```

4. Configure a second filter that references the common filter.

   ```
 [edit firewall family inet]
 user@host# set filter filter2 term term1 filter common-filter
 user@host# set filter filter2 term term2 from protocol udp
 user@host# set filter filter2 term term2 from port bootps
 user@host# set filter filter2 term term2 then accept
   ```
Apply Both Nested Firewall Filters to Interfaces

Step-by-Step Procedure
To apply both nested firewall filters to logical interfaces:

1. Apply the first nested filter to a logical interface input.

```
[edit]
user@host# set interfaces ge-0/0/0 unit 0 family inet address 10.1.0.1/24
user@host# set interfaces ge-0/0/0 unit 0 family inet filter input filter1
```

2. Apply the second nested filter to a logical interface input.

```
[edit]
user@host# set interfaces ge-0/0/3 unit 0 family inet address 10.1.3.1/24
user@host# set interfaces ge-0/0/0 unit 0 family inet filter input filter2
```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure
To confirm and then commit your candidate configuration:

1. Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
 filter common_filter {
 term common_term {
 from {
 protocol udp;
 port tftp;
 }
 then {
 discard;
 }
 }
 }
 filter filter1 {
 term term1 {
 filter common-filter;
 }
 }
}
```
2. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```bash
[edit]
user@host# show interfaces
ge-0/0/0 {
 unit 0 {
 family inet {
 filter {
 input filter1;
 }
 address 10.1.0.1/24;
 }
 }
}
ge-0/0/3 {
```
3. If you are done configuring the device, commit your candidate configuration.

[edit]
user@host# commit

Verification

To confirm that the configuration is working properly, enter the `show firewall filter filter1` and `show firewall filter filter2` operational mode commands.

RELATED DOCUMENTATION

- Understanding Multiple Firewall Filters in a Nested Configuration | 1161
- Guidelines for Nesting References to Multiple Firewall Filters | 1162

Example: Filtering Packets Received on an Interface Set

IN THIS SECTION

- Requirements | 1183
- Overview | 1183
- Configuration | 1184
- Verification | 1190
This example shows how to configure a standard stateless firewall filter to match packets tagged for a particular interface set.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.

**Overview**

In this example, you apply a stateless firewall filter to the input of the router or switch loopback interface. The firewall filter includes a term that matches packets tagged for a particular interface set.

**Topology**

You create the firewall filter `L2_filter` to apply rate limits to the protocol-independent traffic received on the following interfaces:

- fe-0/0/0.0
- fe-1/0/0.0
- fe-1/1/0.0

**NOTE:** The interface type in this topic is just an example. The fe- interface type is not supported by EX Series switches.

First, for protocol-independent traffic received on `fe-0/0/0.0`, the firewall filter term `t1` applies policer `p1`.

For protocol-independent traffic received on any other Fast Ethernet interfaces, firewall filter term `t2` applies policer `p2`. To define an interface set that consists of all Fast Ethernet interfaces, you include the `interface-set interface-set-name interface-name` statement at the `[edit firewall]` hierarchy level. To define a packet-matching criteria based on the interface on which a packet arrives to a specified interface set, you configure a term that uses the `interface-set` firewall filter match condition.

Finally, for any other protocol-independent traffic, firewall filter term `t3` applies policer `p3`. 
Configuration

IN THIS SECTION

- Configuring the Interfaces for Which the Stateless Firewall Filter Terms Take Rate-Limiting Actions | 1185
- Configuring the Stateless Firewall Filter That Rate-Limits Protocol-Independent Traffic Based on the Interfaces on Which Packets Arrive | 1186
- Applying the Stateless Firewall Filter to the Routing Engine Input Interface | 1189

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces fe-0/0/0 unit 0 family inet address 10.1.1.1/30
set interfaces fe-1/0/0 unit 0 family inet address 10.2.2.1/30
set interfaces fe-1/1/0 unit 0 family inet address 10.4.4.1/30
set firewall policer p1 if-exceeding bandwidth-limit 5m
set firewall policer p1 if-exceeding burst-size-limit 10m
set firewall policer p1 then discard
set firewall policer p2 if-exceeding bandwidth-limit 40m
set firewall policer p2 if-exceeding burst-size-limit 100m
set firewall policer p2 then discard
set firewall policer p3 if-exceeding bandwidth-limit 600m
set firewall policer p3 if-exceeding burst-size-limit 1g
set firewall policer p3 then discard
set firewall interface-set ifset fe-*
set firewall family any filter L2_filter term t1 from interface fe-0/0/0.0
set firewall family any filter L2_filter term t1 then count c1
set firewall family any filter L2_filter term t1 then policer p1
set firewall family any filter L2_filter term t2 from interface-set ifset
set firewall family any filter L2_filter term t2 then count c2
set firewall family any filter L2_filter term t2 then policer p2
set firewall family any filter L2_filter term t3 then count c3
set firewall family any filter L2_filter term t3 then policer p3
set interfaces lo0 unit 0 family inet address 172.16.1.157/30
```
Configuring the Interfaces for Which the Stateless Firewall Filter Terms Take Rate-Limiting Actions

Step-by-Step Procedure

To configure the interfaces for which the stateless firewall filter terms take rate-limiting actions:

1. Configure the logical interface whose input traffic will be matched by the first term of the firewall filter.

   ```
 [edit]
 user@host# set interfaces fe-0/0/0 unit 0 family inet address 10.1.1.1/30
   ```

2. Configure the logical interfaces whose input traffic will be matched by the second term of the firewall filter.

   ```
 [edit]
 user@host# set interfaces fe-1/0/0 unit 0 family inet address 10.2.2.1/30
 user@host# set interfaces fe-1/1/0 unit 0 family inet address 10.4.4.1/30
   ```

3. If you are done configuring the device, commit the configuration.

   ```
 [edit]
 user@host# commit
   ```

Results

Confirm the configuration of the router (or switch) transit interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
Configuring the Stateless Firewall Filter That Rate-Limits Protocol-Independent Traffic Based on the Interfaces on Which Packets Arrive

Step-by-Step Procedure

To configure the standard stateless firewall L2_filter that uses policers (p1, p2, and p3) to rate-limit protocol-independent traffic based on the interfaces on which the packets arrive:

1. Configure the firewall statements.

```
[edit]
user@host# edit firewall
```

2. Configure the policer `p1` to discard traffic that exceeds a traffic rate of 5m bps or a burst size of 10m bytes.

```
[edit firewall]
user@host# set policer p1 if-exceeding bandwidth-limit 5m
user@host# set policer p1 if-exceeding burst-size-limit 10m
user@host# set policer p1 then discard
```

3. Configure the policer `p2` to discard traffic that exceeds a traffic rate of 40m bps or a burst size of 100m bytes.

```
[edit firewall]
user@host# set policer p2 if-exceeding bandwidth-limit 40m
user@host# set policer p2 if-exceeding burst-size-limit 100m
user@host# set policer p2 then discard
```
4. Configure the policer p3 to discard traffic that exceeds a traffic rate of \textbf{600m} bps or a burst size of \textbf{1g} bytes.

   ```
   [edit firewall]
   user@host# set policer p3 if-exceeding bandwidth-limit 600m
   user@host# set policer p3 if-exceeding burst-size-limit 1g
   user@host# set policer p3 then discard
   ```

5. Define the interface set ifset to be the group of all Fast Ethernet interfaces on the router.

   ```
   [edit firewall]
   user@host# set interface-set ifset fe-*
   ```

6. Create the stateless firewall filter \textbf{L2_filter}.

   ```
   [edit firewall]
   user@host# edit family any filter L2_filter
   ```

7. Configure filter term \textbf{t1} to match IPv4, IPv6, or MPLS packets received on interface \textbf{fe-0/0/0.0} and use policer \textbf{p1} to rate-limit that traffic.

   ```
   [edit firewall family any filter L2_filter]
   user@host# set term t1 from interface-fe-0/0/0.0
   user@host# set term t1 then count c1
   user@host# set term t1 then policer p1
   ```

8. Configure filter term \textbf{t2} to match packets received on interface-set \textbf{ifset} and use policer \textbf{p2} to rate-limit that traffic.

   ```
   [edit firewall family any filter L2_filter]
   user@host# set term t2 from interface-set ifset
   user@host# set term t2 then count c2
   user@host# set term t2 then policer p2
   ```

9. Configure filter term \textbf{t3} to use policer \textbf{p3} to rate-limit all other traffic.

   ```
   [edit firewall family any filter L2_filter]
   user@host# set term t3 then count c3
   ```
10. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results

Confirm the configuration of the stateless firewall filter and the policers referenced as firewall filter actions by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
family any {
    filter L2_filter {
        term t1 {
            from {
                interface fe-0/0/0.0;
            }
            then {
                policer p1;
                count c1;
            }
        }
        term t2 {
            from {
                interface-set ifset;
            }
            then {
                policer p2;
                count c2;
            }
        }
        term t3 {
            then {
                policer p3;
                count c3;
            }
        }
    }
}
```
Applying the Stateless Firewall Filter to the Routing Engine Input Interface

Step-by-Step Procedure
To apply the stateless firewall filter to the Routing Engine input interface:

1. Apply the stateless firewall filter to the Routing Engine interface in the input direction.

```
[edit]
user@host# set interfaces lo0 unit 0 family inet address 172.16.1.157/30
user@host# set interfaces lo0 unit 0 filter input L2_filter
```

2. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# commit
```

Results
Confirm the application of the firewall filter to the Routing Engine input interface by entering the `show interfaces` command again. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
user@host# show interfaces
fe-0/0/0 {
    ... 
}
fe-1/0/0 {
    ... 
}
fe-1/1/0 {
    ... 
}
lo0 {
    unit 0 {
        filter {
            input L2_filter;
        }
        family inet {
            address 172.16.1.157/30;
        }
    }
}
```

Verification

To confirm that the configuration is working properly, use the `show firewall filter L2_filter` operational mode command to monitor traffic statistics about the firewall filter and three counters.

RELATED DOCUMENTATION

- Understanding How to Use Standard Firewall Filters | 723
- Filtering Packets Received on an Interface Set Overview | 1197
Attaching a Single Firewall Filter to Multiple Interfaces

In this chapter:

- Interface-Specific Firewall Filter Instances Overview | 1191
- Interface-Specific Firewall Filter Instances Overview | 1194
- Filtering Packets Received on a Set of Interface Groups Overview | 1196
- Filtering Packets Received on an Interface Set Overview | 1197
- Example: Configuring Interface-Specific Firewall Filter Counters | 1198
- Example: Configuring a Stateless Firewall Filter on an Interface Group | 1204

Interface-Specific Firewall Filter Instances Overview

In this section:

- Instantiation of Interface-Specific Firewall Filters | 1191
- Interface-Specific Names for Firewall Filter Instances | 1192
- Interface-Specific Firewall Filter Counters | 1193
- Interface-Specific Firewall Filter Policers | 1193

Instantiation of Interface-Specific Firewall Filters

On T Series, M120, M320, MX Series routers, and EX Series switches, you can enable the Junos OS to automatically create an interface-specific instance of a firewall filter for each interface to which you apply the filter. If you enable interface-specific instantiation of a firewall filter and then apply that filter to multiple interfaces, any count actions or policer actions configured in the filter terms act on the traffic stream entering or exiting each individual interface, regardless of the sum of traffic on the multiple interfaces.

You can enable this option per firewall filter by including the interface-specific statement in the filter configuration.
NOTE: On T Series, M120, M320, MX Series routers, and EX Series switches, interfaces are distributed among multiple packet-forwarding components.

Interface-specific firewall filtering is not supported on M Series routers other than the M120 and M320 routers. If you apply a firewall filter to multiple interfaces on an M Series router other than the M120 or M320 routers, the filter acts on the sum of traffic entering or exiting those interfaces.

Interface-specific firewall filtering is supported for standard stateless firewall filters and for service filters. Interface-specific instances are not supported for simple filters.

Interface-Specific Names for Firewall Filter Instances

When the Junos OS creates a separate instance of a firewall filter for a logical interface, the instance is associate with an interface-specific name. The system-generated name of a firewall filter instance consists of the name of the configured filter followed by a hyphen ('-'), the full interface name, and either '-i' for an input filter instance or '-o' for an output filter instance.

• **Input filter instance name**—For example, if you apply the interface-specific firewall filter `filter_s_tcp` to the input at logical interface `at-1/1/1.0`, the Junos OS instantiates an interface-specific filter instance with the following system-generated name:

  ```
  filter_s_tcp-at-1/1/1.0-i
  ```

• **Output filter instance name**—For example, if you apply the interface-specific firewall filter `filter_s_tcp` to the output at logical interface `ge-2/2/2.2`, the Junos OS instantiates an interface-specific filter instance with the following system-generated name:

  ```
  count_s_tcp-ge-2/2/2.2-o
  ```

You can use the interface-specific name of a filter instance when you enter a Junos OS operational mode command that specifies a stateless firewall filter name.

TIP: When you configure a firewall filter with interface-specific instances enabled, we recommend you limit the filter name to 52 bytes in length. This is because firewall filter names are restricted to 64 bytes in length. If a system-generated filter instance name exceeds this maximum length, the policy framework software might reject the instance name.
Interface-Specific Firewall Filter Counters

Instantiation of interface-specific firewall filters causes the Packet Forwarding Engine to maintain any counters for the firewall filter separately for each interface. You specify interface-specific counters per firewall filter term by specifying the `count counter-name` non-terminating action.

The system-generated name of an interface-specific firewall filter counter consists of the name of the configured counter followed by a hyphen ('-'), the full interface name, and either '-i' for an input filter instance or '-o' for an output filter instance.

- **Interface-specific input filter counter name**—For example, suppose you configure the filter counter `count_tcp` for an interface-specific firewall filter. If the filter is applied to the input at logical interface `at-1/1/1.0`, the Junos OS creates the following system-generated counter name:

 count_tcp-at-1/1/1.0-i

- **Interface-specific output filter counter name**—For example, suppose you configure the filter counter `count_udp` for an interface-specific firewall filter. If the filter is applied to the output at logical interface `ge-2/2/2.2`, the Junos OS creates the following system-generated counter name:

 count_udp-ge-2/2/2.2-o

Interface-Specific Firewall Filter Policers

Instantiation of interface-specific firewall filters not only creates separate instances of any firewall filter counters but also creates separate instances of any policer actions. Any policers applied through an action specified in the firewall filter configuration are applied separately to each interface in the interface group. You specify interface-specific policers per firewall filter term by specifying the `policer policer-name` non-terminating action.

RELATED DOCUMENTATION

- Example: Configuring Interface-Specific Firewall Filter Counters | 1198
Interface-Specific Firewall Filter Instances Overview

IN THIS SECTION

- Instantiation of Interface-Specific Firewall Filters | 1194
- Interface-Specific Names for Firewall Filter Instances | 1195
- Interface-Specific Firewall Filter Counters | 1195
- Interface-Specific Firewall Filter Policers | 1196

Instantiation of Interface-Specific Firewall Filters

On T Series, M120, M320, and MX Series routers, you can enable the Junos OS to automatically create an interface-specific instance of a firewall filter for each interface to which you apply the filter. If you enable interface-specific instantiation of a firewall filter and then apply that filter to multiple interfaces, any count actions or policer actions configured in the filter terms act on the traffic stream entering or exiting each individual interface, regardless of the sum of traffic on the multiple interfaces.

You can enable this option per firewall filter by including the interface-specific statement in the filter configuration.

NOTE: On T Series, M120, M320, and MX Series routers, interfaces are distributed among multiple packet-forwarding components.

Interface-specific firewall filtering is not supported on M Series routers other than the M120 and M320 routers. If you apply a firewall filter to multiple interfaces on an M Series router other than the M120 or M320 routers, the filter acts on the sum of traffic entering or exiting those interfaces.

Interface-specific firewall filtering is supported for standard stateless firewall filters and for service filters. Interface-specific instances are not supported for simple filters.

NOTE: A firewall filter cannot be both interface-specific and interface-shared.
Interface-Specific Names for Firewall Filter Instances

When the Junos OS creates a separate instance of a firewall filter for a logical interface, the instance is associate with an interface-specific name. The system-generated name of a firewall filter instance consists of the name of the configured filter followed by a hyphen ('-'), the full interface name, and either '-i' for an input filter instance or '-o' for an output filter instance.

- **Input filter instance name**—For example, if you apply the interface-specific firewall filter `filter_s_tcp` to the input at logical interface `at-1/1/1.0`, the Junos OS instantiates an interface-specific filter instance with the following system-generated name:

  ```
  filter_s_tcp-at-1/1/1.0-i
  ```

- **Output filter instance name**—For example, if you apply the interface-specific firewall filter `filter_s_tcp` to the output at logical interface `so-2/2/2.2`, the Junos OS instantiates an interface-specific filter instance with the following system-generated name:

  ```
  count_s_tcp-so-2/2/2.2-o
  ```

You can use the interface-specific name of a filter instance when you enter a Junos OS operational mode command that specifies a stateless firewall filter name.

TIP: When you configure a firewall filter with interface-specific instances enabled, we recommend you limit the filter name to 52 bytes in length. This is because firewall filter names are restricted to 64 bytes in length. If a system-generated filter instance name exceeds this maximum length, the policy framework software might reject the instance name.

Interface-Specific Firewall Filter Counters

Instantiation of interface-specific firewall filters causes the Packet Forwarding Engine to maintain any counters for the firewall filter separately for each interface. You specify interface-specific counters per firewall filter term by specifying the `count counter-name` non-terminating action.

The system-generated name of an interface-specific firewall filter counter consists of the name of the configured counter followed by a hyphen ('-'), the full interface name, and either '-i' for an input filter instance or '-o' for an output filter instance.
• **Interface-specific input filter counter name**—For example, suppose you configure the filter counter `count_tcp` for an interface-specific firewall filter. If the filter is applied to the input at logical interface `at-1/1/1.0`, the Junos OS creates the following system-generated counter name:

```
count_tcp-at-1/1/1.0-i
```

• **Interface-specific output filter counter name**—For example, suppose you configure the filter counter `count_udp` for an interface-specific firewall filter. If the filter is applied to the output at logical interface `so-2/2/2.2`, the Junos OS creates the following system-generated counter name:

```
count_udp-so-2/2/2.2-o
```

Interface-Specific Firewall Filter Policers

Instantiation of interface-specific firewall filters not only creates separate instances of any firewall filter counters but also creates separate instances of any policer actions. Any policers applied through an action specified in the firewall filter configuration are applied separately to each interface in the interface group. You specify interface-specific policers per firewall filter term by specifying the `policer policer-name` non-terminating action.

RELATED DOCUMENTATION

| Example: Configuring Interface-Specific Firewall Filter Counters | 1198 |

Filtering Packets Received on a Set of Interface Groups Overview

You can configure a firewall filter term that matches packets tagged for a specified `interface group` or set of interface groups. An interface group consists of one or more logical interfaces with the same group number. Packets received on an interface in an interface group are tagged as being part of that group.

NOTE: EX9200 switches do not support `interface groups`. Use the `interface-set` configuration command as a workaround.

For standard stateless firewall filters, you can filter packets received on an interface group for IPv4, IPv6, virtual private LAN service (VPLS), Layer 2 circuit cross-connection (CCC), and Layer 2 bridging traffic. For service filters, you can filter packets received on an interface group for either IPv4 or IPv6 traffic.
NOTE: You can also configure a firewall filter term that matches on packets tagged for a specified interface set. For more information, see “Filtering Packets Received on an Interface Set Overview” on page 1197.

RELATED DOCUMENTATION

Example: Configuring a Stateless Firewall Filter on an Interface Group | 1204

Filtering Packets Received on an Interface Set Overview

You can configure a standard stateless firewall filter term that matches packets tagged for a specified interface set. An interface set groups two or more physical or logical interfaces into a single interface-set name. You can filter packets received on an interface set for protocol-independent, IPv4, IPv6, MPLS, VPLS, or bridging traffic.

NOTE: You can also configure a standard stateless firewall filter term or a service filter term that matches on packets tagged for a specified interface group. For more information, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196.

RELATED DOCUMENTATION

Example: Configuring a Rate-Limiting Filter Based on Destination Class | 1073
Example: Filtering Packets Received on an Interface Set | 1182
Example: Configuring Interface-Specific Firewall Filter Counters

This example shows how to configure and apply an interface-specific standard stateless firewall filter.

Requirements

Interface-specific stateless firewall filters are supported on T Series, M120, M320, and MX Series routers only.

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you create an interface-specific stateless firewall filter that counts and accepts packets with source or destination addresses in a specified prefix and the IP protocol type field set to a specific value.

Topology

You configure the interface-specific stateless firewall filter filter_s_tcp to count and accept packets with IP source or destination addresses in the 10.0.0.0/12 prefix and the IP protocol type field set to tcp (or the numeric value 6).

The name of the firewall filter counter is count_s_tcp.

You apply the firewall filter to multiple logical interfaces:

- at-1/1/1.0 input
- so-2/2/2.2 output

Applying the filter to these two interfaces results in two instances of the filter: filter_s_tcp-at-1/1/1.0-i and filter_s_tcp-so-2/2/2.2-o, respectively.
Configuration

IN THIS SECTION

- Configure the Interface-Specific Firewall Filter | 1199
- Apply the Interface-Specific Firewall Filter to Multiple Interfaces | 1200
- Confirm Your Candidate Configuration | 1200
- Clear the Counters and Commit Your Candidate Configuration | 1202

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet filter filter_s_tcp interface-specific
set firewall family inet filter filter_s_tcp term 1 from address 10.0.0.0/12
set firewall family inet filter filter_s_tcp term 1 from protocol tcp
set firewall family inet filter filter_s_tcp term 1 then count count_s_tcp
set firewall family inet filter filter_s_tcp term 1 then accept
set interfaces at-1/1/1 unit 0 family inet filter input filter_s_tcp
set interfaces so-2/2/2 unit 2 family inet filter filter_s_tcp
```

Configure the Interface-Specific Firewall Filter

Step-by-Step Procedure

To configure the interface-specific firewall filter:

1. Create the IPv4 firewall filter `filter_s_tcp`.

```
[edit]
user@host# edit firewall family inet filter filter_s_tcp
```
2. Enable interface-specific instances of the filter.

```bash
[edit firewall family inet filter filter_s_tcp]
user@host# set interface-specific
```

3. Configure the match conditions for the term.

```bash
[edit firewall family inet filter filter_s_tcp]
user@host# set term 1 from address 10.0.0.0/12
user@host# set term 1 from protocol tcp
```

4. Configure the actions for the term.

```bash
[edit firewall family inet filter filter_s_tcp]
user@host# set term 1 then count count_s_tcp
user@host# set term 1 then accept
```

Apply the Interface-Specific Firewall Filter to Multiple Interfaces

Step-by-Step Procedure
To apply the filter `filter_s_tcp` to logical interfaces `at-1/1/1.0` and `so-2/2/2.2`:

1. Apply the interface-specific filter to packets received on logical interface `at-1/1/1.0`.

```bash
[edit]
user@host# set interfaces at-1/1/1 unit 0 family inet filter input filter_s_tcp
```

2. Apply the interface-specific filter to packets transmitted from logical interface `so-2/2/2.2`.

```bash
[edit]
user@host# set interfaces so-2/2/2 unit 2 family inet filter filter_s_tcp
```

Confirm Your Candidate Configuration

Step-by-Step Procedure
To confirm your candidate configuration:

1. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
    filter filter_s_tcp {
        interface-specific;
        term 1 {
            from {
                address {
                    10.0.0.0/12;
                } protocol tcp;
            }
            then {
                count count_s_tcp;
                accept;
            }
        }
    }
}
```

2. Confirm the configuration of the interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces
at-1/1/1 {
    unit 0
    family inet {
        filter {
            input filter_s_tcp;
        }
    }
}
so-2/2/2 {
    unit 2
}
```
Clear the Counters and Commit Your Candidate Configuration

Step-by-Step Procedure

To clear the counters and commit your candidate configuration:

1. From operational command mode, use the `clear firewall all` command to clear the statistics for all firewall filters.

 To clear only the counters used in this example, include the interface-specific filter instance names:

   ```
   [edit]
   user@host> clear firewall filter filter_s_tcp-at-1/1/1.0-i
   user@host> clear firewall filter filter_s_tcp-so-2/2/2.2-o
   ```

2. Commit your candidate configuration.

   ```
   [edit]
   user@host# commit
   ```

Verification

IN THIS SECTION

- Verifying That the Filter Is Applied to Each of the Multiple Interfaces | 1203
- Verifying That the Counters Are Collected Separately by Interface | 1204

Confirm that the configuration is working properly.
Verifying That the Filter Is Applied to Each of the Multiple Interfaces

Purpose
Verify that the filter is applied to each of the multiple interfaces.

Action
Run the `show interfaces` command with the `detail` or `extensive` output level.

1. Verify that the filter is applied to the input for `at-1/1/1.0`:

   ```
   user@host> show interfaces at-1/1/1 detail
   Physical interface: at-1/1/1, Enabled, Physical link is Up
   Interface index: 300, SNMP ifIndex: 194, Generation: 183
   ...
   Logical interface at-1/1/1.0 (Index 64) (SNMP ifIndex 204) (Generation 5)
   Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-SNAP
   ...
   Protocol inet, MTU: 4470, Generation: 13, Route table: 0
   Flags: Sendbcast-pkt-to-re
   Input Filters: filter_s_tcp-at-1/1/1.0-i,,,,,
   ```

2. Verify that the filter is applied to the output for `so-2/2/2.2`:

   ```
   user@host> show interfaces so-2/2/2 detail
   Physical interface: so-2/2/2, Enabled, Physical link is Up
   Interface index: 129, SNMP ifIndex: 502, Generation: 132
   ...
   Logical interface so-2/2/2.2 (Index 70) (SNMP ifIndex 536) (Generation 135)
   Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP
   ...
   Protocol inet, MTU: 4470, Generation: 146, Route table: 0
   Flags: Sendbcast-pkt-to-re
   Output Filters: filter_s_tcp-so-2/2/2.2-o,,,,,
Verifying That the Counters Are Collected Separately by Interface

Purpose
Make sure that the `count_s_tcp` counters are collected separately for the two logical interfaces.

Action
Run the `show firewall` command.

```
user@host> show firewall filter filter_s_tcp
```

```
Filter: filter_s_tcp
Counters:
Name Bytes Packets
count_s_tcp-at-1/1/1.0-i 420 5
count_s_tcp-so-2/2/2.2-o 8888 101
```

RELATED DOCUMENTATION

- Interface-Specific Firewall Filter Instances Overview | 1194

Example: Configuring a Stateless Firewall Filter on an Interface Group

Firewall filters are essential for securing a network and simplifying network management. In Junos OS, you can configure a stateless firewall filters to control the transit of data packets through the system and to manipulate packets as necessary. Applying a stateless firewall filter to an interface group helps to filter packets transiting through each interface in the interface group. This example shows how to configure a standard stateless firewall filter to match packets tagged for a particular interface group.
Requirements

This example uses the following hardware and software components:

- Any two Juniper Networks routers or switches that are physically or logically connected to each other through interfaces belonging to a routing instance
- Junos OS Release 7.4 or later

Overview

You can apply a stateless firewall filter to an interface group to apply it across all the interfaces in the interface group. This helps you to manage the packet filtering on various interfaces simultaneously.

In this example, you configure two router or switch interfaces to belong to the interface group. You also configure a stateless firewall filter with three terms. In term term1, the filter matches packets that have been tagged as received on that interface group and contain an ICMP protocol tag. The filter counts, logs, and rejects packets that match the conditions. In term term2, the filter matches packets that contain the ICMP protocol tag. The filter counts, logs, and accepts all packets that match the condition. In term term3, the filter counts all the transit packets.

By applying the firewall filter to the routing instance, you can simultaneously apply the filtering mechanism on all the interfaces in the interface group. For this to happen, all the interfaces in the interface group must belong to a single routing instance.

NOTE: When you apply a firewall filter to a loopback interface, the interface filters all the packets destined to the Routing Engine.

Figure 57: Configuring a Stateless Firewall Filter on an Interface Group

CLI Quick Configuration shows the configuration for all of the devices in Figure 57 on page 1205. The section Step-by-Step Procedure describes the steps on Device R1.
Configuration

CLI Quick Configuration
To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

Device R0

```
set interfaces ge-0/0/0 unit 0 family inet address 172.16.17.1/30
set interfaces ge-0/0/1 unit 0 family inet address 172.16.19.1/30
set interfaces ge-0/0/2 unit 0 family inet address 20.1.1.1/30
set interfaces lo0 unit 0 family inet address 10.0.0.1/32
```

Device R1

```
set firewall family inet filter filter_if_group term term1 from interface-group 1
set firewall family inet filter filter_if_group term term1 from protocol icmp
set firewall family inet filter filter_if_group term term1 then count if_group_counter1
set firewall family inet filter filter_if_group term term1 then log
set firewall family inet filter filter_if_group term term1 then reject
set firewall family inet filter filter_if_group term term2 from protocol icmp
set firewall family inet filter filter_if_group term term2 then count if_group_counter2
set firewall family inet filter filter_if_group term term2 then log
set firewall family inet filter filter_if_group term term2 then accept
set firewall family inet filter filter_if_group term term3 then default
set interfaces ge-0/0/0 unit 0 family inet filter group 1
set interfaces ge-0/0/0 unit 0 family inet address 172.16.17.2/30
set interfaces ge-0/0/1 unit 0 family inet address 172.16.19.2/30
set interfaces ge-0/0/2 unit 0 family inet filter group 1
set interfaces ge-0/0/2 unit 0 family inet address 20.1.1.2/30
set interfaces lo0 unit 0 family inet address 20.0.0.1/32
set forwarding-options family inet filter input filter_if_group
```
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the stateless firewall filter `filter_if_group` on an interface group:

1. Create the stateless firewall filter `filter_if_group`.

   ```
 [edit firewall]
 user@R1# edit family inet filter filter_if_group
   ```

2. Configure the interfaces and assign two interfaces to interface group 1.

   ```
 [edit interfaces]
 user@R1# set ge-0/0/0 unit 0 family inet filter group 1
 user@R1# set ge-0/0/0 unit 0 family inet address 172.16.17.2/30
 user@R1# set ge 0/0/1 unit 0 family inet address 172.16.19.2/30
 user@R1# set ge-0/0/2 unit 0 family inet filter group 1
 user@R1# set ge-0/0/2 unit 0 family inet address 20.1.1.2/30
 user@R1# set lo0 unit 0 family inet address 20.0.0.1/32
   ```

3. Configure term `term1` to match packets received on interface group 1 and with the ICMP protocol.

   ```
 [edit firewall]
 user@R1# set family inet filter filter_if_groupterm term1 from interface-group 1
 user@R1# set family inet filter filter_if_groupterm term1 from protocol icmp
   ```

4. Configure term `term1` to count, log, and reject all the matching packets.

   ```
 [edit firewall]
 user@R1# set family inet filter filter_if_group term term1 then count if_group_counter1
 user@R1# set family inet filter filter_if_group term term1 then log
 user@R1# set family inet filter filter_if_group term term1 then reject
   ```
5. Configure term **term2** to match packets with the ICMP protocol.

```
[edit firewall]
user@R1# set family inet filter filter_if_group term term2 from protocol icmp
```

6. Configure term **term2** to count, log, and accept all the matching packets.

```
[edit firewall]
user@R1# set family inet filter filter_if_group term term2 then count if_group_counter2
user@R1# set family inet filter filter_if_group term term2 then log
user@R1# set family inet filter filter_if_group term term2 then accept
```

7. Configure term **term3** to count all the transit packets.

```
[edit firewall]
user@R1# set family inet filter filter_if_group term term3 then count default
```

8. Apply the firewall filter to the router's (or switch's) interface group by applying it to the routing instance.

```
[edit]
user@R1# set forwarding-options family inet filter input filter_if_group
```

9. If you are done configuring the device, commit your candidate configuration.

```
[edit]
user@host# commit
```

**Results**

From configuration mode, confirm your configuration by issuing the `show interfaces`, `show firewall`, and `show forwarding-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@R1# show interfaces
ge-0/0/0 {
 unit 0 {
```
family inet {
    filter {
        group 1;
    }
    address 172.16.17.2/30;
}
}
ge-0/0/1 {
    unit 0 {
        family inet {
            address 172.16.19.2/30;
        }
    }
}
ge-0/0/2 {
    unit 0 {
        family inet {
            filter {
                group 1;
            }
            address 20.1.1.2/30;
        }
    }
}
lo0 {
    unit 0 {
        family inet {
            address 20.0.0.1/32;
        }
    }
}

[edit]
user@R1# show firewall
family inet {
    filter filter_if_group {
        term term1 {
            from {
                interface-group 1;
                protocol icmp;
            }
            then {
                count if_group_counter1;
            }
        }
    }
}
log;
   reject;
}
}
term term2 {
   from {
      protocol icmp;
   }
   then {
      count if_group_counter2;
      log;
      accept;
   }
}
}
term term3 {
   then count default;
}
}
}

[edit]
user@R1# show forwarding-options
family inet {
   filter {
      input filter_if_group;
   }
}
}

Verification

IN THIS SECTION

- Verifying the Configuration of the Interfaces | 1210
- Verifying Stateless Firewall Filter Configuration | 1212

Confirm that the configuration is working properly.

Verifying the Configuration of the Interfaces

Purpose
Verify that the interfaces are properly configured.

**Action**
To display the state of the interfaces, use the `show interfaces terse` operational mode command.

**Device R0**

```
user@R0> show interfaces terse
```

```
+-----------------+------------+----------+----------+---------------+
| Interface | Admin | Link | Proto | Local |
| ge-0/0/0 | up | up | | |
| ge-0/0/0.0 | up | up | inet | 172.16.17.1/30|
| | | | | multiservice |
| ge-0/0/1 | up | up | | |
| ge-0/0/1.0 | up | up | inet | 172.16.19.1/30|
| | | | | multiservice |
| ge-0/0/2 | up | up | | |
| ge-0/0/2.0 | up | up | inet | 20.1.1.1/30 |
| | | | | multiservice |
| lo0 | up | up | | |
| lo0.0 | up | up | inet | 10.0.0.1 --> 0/0
```

**Device R1**

```
user@R1> show interfaces terse
```

```
+-----------------+------------+----------+----------+---------------+
| Interface | Admin | Link | Proto | Local |
| ge-0/0/0 | up | up | | |
| ge-0/0/0.0 | up | up | inet | 172.16.17.2/30|
| | | | | multiservice |
| ge-0/0/1 | up | up | | |
| ge-0/0/1.0 | up | up | inet | 172.16.19.2/30|
| | | | | multiservice |
| ge-0/0/2 | up | up | | |
| ge-0/0/2.0 | up | up | inet | 20.1.1.2/30 |
| | | | | multiservice |
```

**Meaning**
All the interfaces on Devices R0 and R1 are physically connected and up. The interface group 1 on Device R1 consists of two interfaces, namely ge-0/0/0.0 and ge-0/0/2.0.
Verifying Stateless Firewall Filter Configuration

**Purpose**
Verify that the firewall filter match conditions are configured properly.

**Action**
- To display the firewall filter counters, enter the `show firewall filter filter_if_group` operational mode command.

```
user@R1> show firewall filter filter_if_group
```

<table>
<thead>
<tr>
<th>Filter: filter_if_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>default</td>
</tr>
<tr>
<td>if_group_counter1</td>
</tr>
<tr>
<td>if_group_counter2</td>
</tr>
</tbody>
</table>

- To display the local log of packet headers for packets evaluated by the firewall filter, enter the `show firewall log` operational mode command.

```
user@R1> show firewall log
```

<table>
<thead>
<tr>
<th>Log:</th>
<th>Time</th>
<th>Filter</th>
<th>Action</th>
<th>Interface</th>
<th>Protocol</th>
<th>Src Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22:27:33</td>
<td>pfe</td>
<td>A</td>
<td>lo0.0</td>
<td>ICMP</td>
<td>20.1.1.2</td>
</tr>
<tr>
<td></td>
<td>22:27:33</td>
<td>pfe</td>
<td>R</td>
<td>ge-0/0/2.0</td>
<td>ICMP</td>
<td>20.1.1.1</td>
</tr>
<tr>
<td></td>
<td>22:27:32</td>
<td>pfe</td>
<td>A</td>
<td>lo0.0</td>
<td>ICMP</td>
<td>20.1.1.2</td>
</tr>
<tr>
<td></td>
<td>22:27:32</td>
<td>pfe</td>
<td>R</td>
<td>ge-0/0/2.0</td>
<td>ICMP</td>
<td>20.1.1.1</td>
</tr>
<tr>
<td></td>
<td>22:27:31</td>
<td>pfe</td>
<td>A</td>
<td>lo0.0</td>
<td>ICMP</td>
<td>20.1.1.2</td>
</tr>
<tr>
<td></td>
<td>22:27:31</td>
<td>pfe</td>
<td>R</td>
<td>ge-0/0/2.0</td>
<td>ICMP</td>
<td>20.1.1.1</td>
</tr>
<tr>
<td></td>
<td>22:27:30</td>
<td>pfe</td>
<td>A</td>
<td>lo0.0</td>
<td>ICMP</td>
<td>20.1.1.2</td>
</tr>
<tr>
<td></td>
<td>22:27:30</td>
<td>pfe</td>
<td>R</td>
<td>ge-0/0/2.0</td>
<td>ICMP</td>
<td>20.1.1.1</td>
</tr>
<tr>
<td></td>
<td>22:27:29</td>
<td>pfe</td>
<td>A</td>
<td>lo0.0</td>
<td>ICMP</td>
<td>20.1.1.2</td>
</tr>
</tbody>
</table>
To make sure that the firewall filters are active on interface group 1 on Device R1, use the `ping <address>` operational mode command on the CLI of Device R0.

```
user@R0> ping 172.16.17.2
PING 172.16.17.2 (172.16.17.2): 56 data bytes
36 bytes from 172.16.17.2: Communication prohibited by filter
 Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 f46b 0000 40 016239 172.16.17.1 172.16.17.2
```
To make sure that the firewall filter is not applied on an interface that is not in interface group 1, use the `ping <address>` operational mode command on the CLI of Device R0.

Meaning

The stateless firewall filter is applied to all interfaces in interface group 1. The term `term1` match condition in the stateless firewall filter counts, logs, and rejects packets that are received on or sent from the interfaces.
in interface group 1 and with a source ICMP protocol. The term **term2** match condition matches packets tagged with the ICMP protocol and counts, logs, and accepts those packets. The term **term3** match condition counts all the transit packets.

**RELATED DOCUMENTATION**

- Filtering Packets Received on a Set of Interface Groups Overview | 1196
Understanding Filter-Based Tunneling Across IPv4 Networks

Generic routing encapsulation (GRE) in its simplest form is the encapsulation of any network layer protocol over any other network layer protocol to connect disjointed networks that lack a native routing path between them. It is a connectionless and stateless Layer 3 encapsulation protocol, and it offers no mechanisms for reliability, flow control, or sequencing.

GRE tunneling is initiated with standard firewall filter actions. Traffic flows through the tunnel provided that the tunnel destination is routable. For MX series routers, this feature is also supported in logical systems.
For MX Series 5G Universal Routing Platforms, when you configure GRE tunneling with firewall filters, you do not need to create tunnel interfaces on Tunnel Services physical interface cards (PICs) or on MPC3E Modular Port Concentrators (MPCs). Instead, PFEs on the Modular Interface Cards (MICs) or MPCs handle the GRE payload encapsulation and decapsulation and provide the tunnel services to the relevant interfaces. As such, a pair of MX Series routers can be installed as provider edge (PE) routers to provide connectivity to customer edge (CE) routers on two disjoint networks.

For PTX Series routers, network services must be set to enhanced-mode for filter-based GRE tunneling to work. For more information on filter based tunneling on the PTX, see tunnel-end-point.

**Ingress Firewall Filter on the Ingress PE Router**

On the ingress PE router, you configure a tunnel definition that specifies a unidirectional GRE tunnel. For MX series routers with a MIC or MPC ingress logical interface, you attach an encapsulating firewall filter. The firewall filter action references a tunnel definition and initiates the encapsulation of matched packets. The encapsulation process attaches an IPv4 header and a GRE header to the payload packet and then forwards the resulting GRE packet to the filter-specified tunnel.

**Egress Firewall Filter on the Egress PE Router**

On the egress PE router, you attach a de-encapsulating firewall filter to the input of all MIC or MPC logical interfaces that are advertised addresses for the router. The firewall filter initiates the de-encapsulation of GRE protocol packets. De-encapsulation removes the inner GRE header and then forwards the original payload packet to its original destination on the destination customer network. If the action specifies an optional routing instance, route lookup is performed using that secondary table instead of the primary table.

**Characteristics of Filter-Based Tunneling Across IPv4 Networks**

Filter-based tunnels across IPv4 networks are unidirectional. They transport transit packets only, and they do not require tunnel interfaces.

**Unidirectional Tunneling**

To use filter-based GRE tunnels, start by attaching standard firewall filters at the input of each tunnel endpoint (at both the ingress PE router and the egress PE router). At the input to the ingress PE router, you apply an encapsulating firewall filter. At the input to the egress PE router, apply a de-encapsulating firewall filter.

**Bidirectional Tunneling**

For bidirectional GRE tunneling, you can use the same pair of PE routers, but you must configure a second tunnel in the reverse direction.

**Transit Traffic Payloads**

A filter-based GRE IPv4 tunnel can transport unicast or multicast transit traffic payloads only. Filter-initiated encapsulation and decapsulation operations execute on PFEs for Ethernet logical interfaces and aggregated Ethernet interfaces. This design enables more efficient use of PFE bandwidth as compared to GRE tunneling
using tunnel interfaces. Routing protocol sessions cannot be configured on top of the firewall based tunnels.

The PFEs operate in the forwarding plane to process packets by forwarding them between input and output interfaces using a locally stored forwarding table, which is a local copy of the information from the Routing Engine (RE).

On the other hand, REs operate in the control plane to handle system management, user access to the router, and processes for routing protocols, router interface control, and some chassis component control. The Junos OS architecture separates the functions of these planes to enable flexibility of platform support and scalability of platform performance. Ingress control packets are directed to the control plane where the GRE encapsulation and de-encapsulation processes of the PFEs are not available.

Although you can apply firewall filters to loopback addresses, GRE encapsulating and de-encapsulating firewall filter actions are not supported on router loopback interfaces.

**Compact Configuration for Multiple GRE Tunnels**

Firewall filters support a wide variety of match criteria and, by extension, the ability to terminate multiple GRE tunnels that match criteria specified in a single firewall filter definition. By creating multiple tunnels, each with its own set of match conditions, you can create tunnels that do not interfere with customer GRE packets or with one another and that re-inject packets to separate routing tables after de-encapsulation.

**Tunneling with Firewall Filters and Tunneling with Tunnel Interfaces**

Tunneling with tunnel interfaces supports both router control traffic and transit traffic, as well as encryption. Tunneling with firewall filters does not. However, tunneling with firewall filters does provide benefits in performance and scaling.

**Forwarding Performance**

Filter-based tunneling across IPv4 networks enables more efficient use of PFE bandwidth as compared to GRE tunneling using tunnel interfaces. Encapsulation, de-encapsulation, and route lookup are packet header-processing activities that, for firewall filter-based tunneling, are performed on the PFE. Consequently, the encapsulator never needs to send payload packets to a separate tunnel interface (which might reside on a PIC in a different slot than the interface that receives payload packets).

**RELATED DOCUMENTATION**

Interfaces That Support Filter-Based Tunneling Across IPv4 Networks	1223
Components of Filter-Based Tunneling Across IPv4 Networks	1225
Firewall Filter Terminating Actions	804
tunnel-end-point	2183
Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling	1230
The Layer 2 Tunneling Protocol (L2TP) is a client-server protocol that allows the Point-to-Point Protocol (PPP) to be tunneled across a network. L2TP encapsulates Layer 2 packets, such as PPP, for transmission across a network. An L2TP access concentrator (LAC), configured on an access device, receives packets from a remote client and forwards them to an L2TP network server (LNS) on a remote network. L2TPv3 defines the base control protocol and encapsulation for tunneling multiple Layer 2 connections between two IPv6 nodes. The significant differences between L2TPv2 and L2TPv3 include the following:

- Separation of all PPP-related AVPs and references, which enables the inclusion of a portion of the L2TP data header that was specific to the needs of PPP.
- Transition from a 16-bit Session ID and Tunnel ID to a 32-bit Session ID and Control Connection ID respectively.
- Extension of the tunnel authentication mechanism to cover the entire control message rather than just a portion of certain messages.

L2TPv3 is supported for IPv6 only.

For firewall filters, only data plane L2TPv3 encapsulation/decapsulation is supported.

L2TP is comprised of two types of messages, control messages and data messages (sometimes referred to as control packets and data packets respectively). Control messages are used in the establishment, maintenance, and clearing of control connections and sessions. These messages utilize a reliable control channel within L2TP to guarantee delivery. Data messages are used to encapsulate the L2 traffic being carried over the L2TP session.

You can configure an IPv4 network to transport IPv4, IPv6, or MPLS transit traffic by using GRE tunneling protocol mechanisms initiated by two standard firewall filter actions. This feature is also supported in logical systems. When you configure L2TP tunneling with firewall filters, you do not need to create tunnel interfaces on Tunnel Services physical interface cards (PICs) or on MPC3E Modular Port Concentrators (MPCs). Instead, Packet Forwarding Engines provide tunnel services to Ethernet logical interfaces or aggregated Ethernet interfaces hosted on Modular Interface Cards (MICs) or MPCs in MX Series 5G Universal Routing Platforms.
Two MX Series routers installed as provider edge (PE) routers provide connectivity to customer edge (CE) routers on two disjoint networks. MIC or MPC interfaces on the PE routers perform L2TP IPv4 encapsulation and de-encapsulation of payloads. After decapsulation, packets are sent to the local interface of a routing table specified in the action, or to the default routing table, based on the protocol field of the L2TP header. However, an L2TP packet can optionally be sent across the fabric with a token equal to an output interface index to perform Layer 2 cross-connect. You can specify the output interface specifier to be used for the L2TP packet to be sent by including the `decapsulate l2tp output-interface interface-name cookie l2tpv3-cookie` statement at the `[edit firewall family family-name filter filter-name term term-name then]` hierarchy level.

During decapsulation, the inner header must be Ethernet for L2TP tunnels. Forwarding class by default is applied before the firewall and it is not preserved for the decapsulated packet (by using the `forwarding-class class-name` statement at the `[edit firewall family family-name]` hierarchy level, which is a nonterminating filter action). However, you can specify the forwarding class that the packet must be classified against by including the filter action for a decapsulated packet by using the `decapsulate l2tp forwarding-class class-name` statement at the `[edit firewall family family-name filter filter-name term term-name then]` hierarchy level.

The following field definitions are defined for use in all L2TP Session Header encapsulations.

- The Session ID field is a 32-bit field containing a non-zero identifier for a session. L2TP sessions are named by identifiers that have local significance only. The same logical session will be given different Session IDs by each end of the control connection for the life of the session. When the L2TP control connection is used for session establishment, Session IDs are selected and exchanged as Local Session ID AVPs during the creation of a session. The Session ID alone provides the necessary context for all further packet processing, including the presence, size, and value of the Cookie, the type of L2-Specific Sublayer, and the type of payload being tunneled.

- The optional Cookie field contains a variable-length value (maximum 64 bits) used to check the association of a received data message with the session identified by the Session ID. The Cookie field must be set to the configured or signaled random value for this session. The Cookie provides an additional level of guarantee that a data message has been directed to the proper session by the Session ID. A well-chosen Cookie might prevent inadvertent misdirection of random packets with recently reused Session IDs or for Session IDs subject to packet corruption. The Cookie might also provide protection against some specific malicious packet insertion attacks. When the L2TP control connection is used for session establishment, random Cookie values are selected and exchanged as Assigned Cookie AVPs during session creation.

A session is a logical connection created between the LAC and the LNS when an end-to-end PPP connection is established between a remote system and the LNS. There is a one-to-one relationship between established L2TP sessions and their associated PPP connections. A tunnel is an aggregation of one or more L2TP sessions.

Starting with Junos OS Release 15.1, decapsulation of IP packets that are sent through an L2TP tunnel with standard firewall filter match conditions and actions specified is performed using a Layer 3 lookup.
In Junos OS release 14.2 and earlier, decapsulation of traffic over an L2TP tunnel with firewall filter actions configured is performed using Layer 2 interface properties.

**Unidirectional Tunneling**

Filter-based L2TP tunnels across IPv4 networks are unidirectional. They transport transit packets only, and they do not require tunnel interfaces. Although you can apply firewall filters to loopback addresses, GRE encapsulating and de-encapsulating firewall filter actions are not supported on router loopback interfaces. Filter-initiated encapsulation and decapsulation operations of L2TP packets execute on Packet Forwarding Engines for Ethernet logical interfaces and aggregated Ethernet interfaces. This design enables more efficient use of Packet Forwarding Engine bandwidth as compared to GRE tunneling using tunnel interfaces. Routing protocol sessions cannot be configured on top of the firewall based tunnels.

**Tunnel Security**

Filter-based tunneling across IPv4 networks is not encrypted. If you require secure tunneling, you must use IP Security (IPsec) encryption, which is not supported on MIC or MPC interfaces. However, Multiservices DPC (MS-DPC) interfaces on MX240, MX480, and MX960 routers support IPsec tools for configuring manual or dynamic security associations (SAs) for encryption of data traffic as well as traffic destined to or originating at the Routing Engine.

**Forwarding Performance**

Filter-based tunneling across IPv4 networks enables more efficient use of Packet Forwarding Engine bandwidth as compared to L2TP tunneling using tunnel interfaces. Encapsulation, de-encapsulation, and route lookup are packet header-processing activities that, for firewall filter-based tunneling, are performed on the Junos Trio chipset-based Packet Forwarding Engine. Consequently, the encapsulator never needs to send payload packets to a separate tunnel interface (which might reside on a PIC in a different slot than the interface that receives payload packets).

**Forwarding Scalability**

Forwarding L2TP traffic with tunnel interfaces requires traffic to be sent to a slot that hosts the tunnel interfaces. When you use tunnel interfaces to forward GRE traffic, this requirement limits the amount of traffic that can be forwarded per GRE tunnel destination address. As an example, suppose you want to send 100 Gbps of L2TP traffic from Router A to Router B and you have only 10 Gbps interfaces. To ensure that your configuration does not encapsulate all the traffic on the same board going to the same 10 Gbps interface, you must distribute the traffic across multiple encapsulation points.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Starting with Junos OS Release 15.1, decapsulation of IP packets that are sent through an L2TP tunnel with standard firewall filter match conditions and actions specified is performed using a Layer 3 lookup.</td>
</tr>
<tr>
<td>14.2</td>
<td>In Junos OS release 14.2 and earlier, decapsulation of traffic over an L2TP tunnel with firewall filter actions configured is performed using Layer 2 interface properties.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Interfaces That Support Filter-Based Tunneling Across IPv4 Networks
- Components of Filter-Based Tunneling Across IPv4 Networks
- Firewall Filter Terminating Actions
- tunnel-end-point
- Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling

Interfaces That Support Filter-Based Tunneling Across IPv4 Networks

IN THIS SECTION

- Interfaces on MX240, MX480, MX960, MX2010, and MX2020 Routers
- Interfaces on MX5, MX10, MX40, and MX80 Routers
- CLI Commit Check for Filter-Based Tunneling Across IPv4 Networks

You can attach IPv4 encapsulation and de-encapsulation firewall filters to the input of Ethernet logical interfaces or aggregated Ethernet interfaces hosted on Modular Interface Cards (MICs) or Modular Port Concentrators (MPCs) in MX Series routers.
NOTE: Filter-based generic routing encapsulation (GRE) tunneling is supported on PTX Series routers only when network services is set to enhanced-mode. For more information, see enhanced-mode.

Interfaces on MX240, MX480, MX960, MX2010, and MX2020 Routers

On MX240, MX480, MX960, MX2010, and MX2020 routers, firewall filter actions for IPv4 tunneling are supported on Ethernet logical interfaces or aggregated Ethernet interfaces configured on the following types of ports:

- Ports on MICs that insert into slots in MPCs, which have two Packet Forwarding Engines.
- Ports on a 16-port 10-Gigabit Ethernet MPC (MPC-3D-16XGE-SFPP), a specialized fixed-configuration MPC that has four Packet Forwarding Engines and contains no slots for MICs.

For these physical interfaces, Trio chipset-based Packet Forwarding Engine processes operate in fabric mode to provide forwarding and storage functions and lookup and processing functions between Ethernet interfaces and the routing fabric of the chassis.

For information about MPCs, see MX Series MPC Overview and MPCs Supported by MX Series Routers. For information about MICs, see MX Series MIC Overview and MICs Supported by MX Series Routers.

Interfaces on MX5, MX10, MX40, and MX80 Routers

On the MX Series midrange family of routers (MX5, MX10, MX40, and MX80 routers), firewall filter actions for IPv4 tunneling are supported on Ethernet logical interfaces and aggregated Ethernet interfaces configured on ports on a built-in MIC or on MICs that install into dedicated slots in the router chassis.

- The MX80 router—available as a modular (MX80) or fixed (MX80-48T) chassis—has a built-in 4-port 10-Gigabit Ethernet MIC. The modular chassis has two dedicated slots for MICs. The fixed chassis has 48 built-in tri-rate (10/100/1000Base-T) RJ-45 ports in place of two front-pluggable MIC slots.
- On the MX40 router, only the first two of the four built-in 10-Gigabit Ethernet MIC ports are enabled. As with the modular MX80, the two front-pluggable MIC slots are enabled and support dual-wide MICs that span the two slots.
- The MX5 and MX10 routers are pre-populated with a front-pluggable 20-port Gigabit Ethernet MIC with SFP, and none of the four built-in 10-Gigabit Ethernet MIC ports is enabled. The MX10 supports MICs in both front-pluggable slots, but the MX5 supports MICs in the second slot only.

For more information, see MX5, MX10, MX40, and MX80 Modular Interface Card Description.

The MX Series midrange routers have no switching fabric, and the single Packet Forwarding Engine resides on the base board of the chassis and operates in standalone mode. In standalone mode, the Packet
Forwarding Engine provides—in addition to forwarding and storage functions and lookup and processing functions—hierarchical queuing, congestion management, and granular statistical functions.

**CLI Commit Check for Filter-Based Tunneling Across IPv4 Networks**

If you commit a configuration that attaches an encapsulating or de-encapsulating firewall filter to an interface that does not support filter-based tunneling across IPv4 networks, a system event writes a syslog warning message that the interface does not support the filter.

**RELATED DOCUMENTATION**

- Understanding Filter-Based Tunneling Across IPv4 Networks | 1217
- Components of Filter-Based Tunneling Across IPv4 Networks | 1225
- Firewall Filter Terminating Actions | 804
- tunnel-end-point | 2183
- Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling | 1230

**Components of Filter-Based Tunneling Across IPv4 Networks**

**IN THIS SECTION**

- Topology of Filter-Based Tunneling Across IPv4 Networks | 1225
- Terminology at the Network Layer Protocols Level | 1227
- Terminology at the Ingress PE Router | 1227
- Terminology at the Egress PE Router | 1228
- GRE Protocol Format for Filter-Based Tunneling Across IPv4 Networks | 1228

**Topology of Filter-Based Tunneling Across IPv4 Networks**

**NOTE:** Filter-based generic routing encapsulation (GRE) tunneling is supported on PTX Series routers only when network services is set to `enhanced-mode`. For more information, see `enhanced-mode`. 
Figure 58 on page 1226 shows the path of passenger protocol packets from customer network C1 as they are transported across a service provider IPv4 network to customer network C2.

Figure 58: Unidirectional Filter-Based Tunnel Across an IPv4 Network

In this example topology, C1 and C2 are disjoint networks that lack a native routing path between them. The IPv4 transport network is configured with a unidirectional generic routing encapsulation (GRE) tunnel from PE1 to PE2 using firewall filters and without requiring tunnel interfaces. The GRE tunnel from PE1 to PE2 provides a logical path from C1 to C2 across the IPv4 transport network.

**Routing of GRE Packets Across the Tunnel**

Traffic flows through the tunnel provided that PE2 is routable from PE1. Routing paths from PE1 to PE2 can be provided by static routes manually added to routing tables or by static or dynamic route-sharing protocols.

**Routing of Passenger Protocol Packets from PE2 to C2**

By default, PE2 forwards packets based on interface routes (direct routes) imported from the primary routing table. As an option, the de-encapsulating filter can specify that the Packet Forwarding Engine uses an alternate routing table to forward payload packets to the destination customer network. Specify the alternate routing table in a routing instance installed with routes into C2, then use a routing information base (RIB) group definition to share the primary routes with the alternate routes. A RIB group specifies the sharing of routing information (including routes learned from peers, local routes resulting from the application of protocol policies to the learned routes, and the routes advertised to peers) of multiple routing tables.
Terminology at the Network Layer Protocols Level

In filter-based tunneling across an IPv4 network, the network-layer protocols are described in the following terms:

**passenger protocol**—The type of protocol (IPv4, IPv6, or MPLS) used by the networks that are connected by a GRE tunnel. Packets that are encapsulated and routed across the transport network are *payload packets*.

**encapsulation protocol**—The type of network layer protocol (GRE) used to encapsulate passenger protocol packets so that the resulting GRE packets can be carried over the transport protocol network as the packet payload.

**transport protocol**—The type of protocol (IPv4) used by the network that routes passenger protocol packets through a GRE tunnel. The transport protocol is also called the *delivery protocol*.

Terminology at the Ingress PE Router

In filter-based tunneling across an IPv4 network, an egress PE router is described in the following terms:

**encapsulator**—A PE router that receives packets from a passenger protocol source network, adds an encapsulation protocol (GRE) header and a transport protocol (IPv4) header to this payload, and forwards the resulting GRE packet to the GRE tunnel. This ingress node is also known as the *tunnel source*.

**encapsulating interface**—On the encapsulator, an Ethernet logical interface or an aggregated Ethernet interface configured on a customer-facing interface hosted on a MIC or an MPC. The encapsulating interface receives passenger protocol packets from a CE router. For more information, see "Interfaces That Support Filter-Based Tunneling Across IPv4 Networks" on page 1223.

**encapsulation filter**—On the encapsulator, a firewall filter that you apply to the input of the encapsulating interface. The encapsulating filter action causes the Packet Forwarding Engine to use information in the specified tunnel template to encapsulate matched packets and forward the resulting GRE packets.

**tunnel source interface**—On the encapsulator, one or more core-facing egress interfaces to the tunnel.

**tunnel template**—On the encapsulator, a named CLI construct that defines the characteristics of a tunnel:

- Transport protocol family (IPv4).
- IP address or address range of tunnel-facing egress interfaces on the encapsulator.
- IP address or address range of tunnel-facing ingress interfaces on the de-encapsulator (the egress PE router).
- Encapsulation protocol (GRE).
Terminology at the Egress PE Router

In filter-based tunneling across IPv4 networks, an egress PE router is described in the following terms:

**de-encapsulator**—A PE router that receives GRE packets routed through a filter-based GRE tunnel, removes the transport protocol header and GRE header, and forwards the resulting payload protocol packets to the destination network CE router. The de-encapsulator node is also known as a *de-encapsulating tunnel endpoint* or the *tunnel destination*.

**de-encapsulating interfaces**—On the de-encapsulator, any Ethernet logical interface or aggregated Ethernet interface configured on any core-facing ingress interface that can receive GRE packets from a GRE tunnel. The underlying physical interface must be hosted on a MIC or an MPC. For more information, see "Interfaces That Support Filter-Based Tunneling Across IPv4 Networks" on page 1223.

**de-encapsulation filter**—On the de-encapsulator, a firewall filter that causes the Packet Forwarding Engine to de-encapsulate matched GRE packets and then forward the original passenger protocol packets to destination network CE routers.

GRE packets transported through a single GRE tunnel can arrive at the de-encapsulator node on any of multiple ingress interfaces, depending on how routing is configured. Therefore, you must apply the de-encapsulation firewall filter to the input of every core-facing interface that is an advertised address for the de-encapsulator.

GRE Protocol Format for Filter-Based Tunneling Across IPv4 Networks

In filter-based tunneling across IPv4 networks, the encapsulating interface is an *RFC 1701-compliant transmitter* and the de-encapsulating interfaces are *RFC 1701-compliant receivers*. The packet encapsulation structure implemented in this feature uses a GRE header format that complies with informational RFC 1701, *Generic Routing Encapsulation (GRE)*, October 1994, and with standards track RFC 2784, *Generic Routing Encapsulation (GRE)*, March 2000.

**Packet Encapsulation Structure**

Filter-based tunneling encapsulates the original passenger protocol packet in an outer shell. For filter-based tunneling across IPv4 networks, the shell adds 24 bytes or 28 bytes of overhead, including 20 bytes of IPv4 header. Figure 59 on page 1229 shows the structure of a passenger protocol packet (the GRE payload) with a GRE header and IPv4 header attached.
As specified in RFC 1701, five GRE flag bits indicate whether a particular GRE header includes any optional fields (Checksum, Offset, Key, Sequence Number, and Routing). Of the five optional fields, filter-based GRE IPv4 tunneling uses the Key field only.

**GRE Header Format**

Figure 60 on page 1229 shows the format of the variable-size GRE header used for filter-based tunneling across IPv4 networks, with bit 0 the most significant bit and bit 15 the least significant bit.

The first two octets encode GRE flags, as described in Table 70 on page 1229.

The 2-octet Protocol Type field contains the value 0x0800 to specify the EtherType value for the IPv4 protocol.

The 4-octet Key field is included only if the Key Present bit is set to 1. The Key field carries the key value of the tunnel defined on the encapsulator. If the GRE tunnel definition specifies a key, the Packet Forwarding Engine for the encapsulating endpoint sets the Key Present bit and adds the Key to the GRE header.

Table 70: GRE Flag Values for Filter-Based Tunneling Across IPv4 Networks

<table>
<thead>
<tr>
<th>Bit Offset and Field Name</th>
<th>Transmitted Value for Filter-Based GRE Tunneling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C = Checksum Present</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>R = Routing Present</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>K = Key Present</td>
</tr>
<tr>
<td></td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

Figure 59: Encapsulation Structure for Filter-Based Tunneling Across an IPv4 Network
Table 70: GRE Flag Values for Filter-Based Tunneling Across IPv4 Networks (continued)

<table>
<thead>
<tr>
<th>Bit Offset and Field Name</th>
<th>Transmitted Value for Filter-Based GRE Tunneling</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>S = Sequence Number Present</td>
</tr>
<tr>
<td>4</td>
<td>s = Strict Source Route</td>
</tr>
<tr>
<td>5 - 7</td>
<td>Recur = Recursion Control information</td>
</tr>
<tr>
<td>8 - 12</td>
<td>Flags = Flag bits</td>
</tr>
<tr>
<td>13 - 15</td>
<td>Ver = Version number</td>
</tr>
</tbody>
</table>

When the Packet Forwarding Engine performs encapsulation for a keyed GRE IPv4 tunnel, the process constructs the first two octets of the GRE header as Ox0000. When the Packet Forwarding Engine performs encapsulation for a non-keyed GRE IPv4 tunnel, the process constructs the first two octets of the GRE header as Ox2000.

RELATED DOCUMENTATION

- Understanding Filter-Based Tunneling Across IPv4 Networks | 1217
- Interfaces That Support Filter-Based Tunneling Across IPv4 Networks | 1223
- Firewall Filter Terminating Actions | 804
- tunnel-end-point | 2183
- Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling | 1230

Example: Transporting IPv6 Traffic Across IPv4 Using Filter-Based Tunneling

IN THIS SECTION

- Requirements | 1231
- Overview | 1232
- Configuration | 1235
- Verification | 1246
This example shows how to configure a unidirectional generic routing encapsulation (GRE) tunnel to transport IPv6 unicast transit traffic across an IPv4 transport network. To provide network connectivity to the two disjoint IPv6 networks, two MX Series 5G Universal Routing Platforms are configured with interfaces that can originate and understand both IPv4 and IPv6 packets. The configuration does not require the creation of tunnel interfaces on Tunnel Services physical interface cards (PICs) or on MPC3E Modular Port Concentrators (MPCs). Instead, you attach firewall filters to Ethernet logical interfaces hosted on Modular Interface Cards (MICs) or MPCs in the two MX Series routers.

**NOTE:** Filter-based GRE tunneling is supported on PTX Series routers only when network services is set to **enhanced-mode**. For more information, see **enhanced-mode**.

**Requirements**

This example uses the following Juniper Networks hardware and Junos OS software:

- **Transport network**—An IPv4 network running Junos OS Release 12.3R2 or later.
- **PE routers**—Two MX80 routers installed as provider edge (PE) routers that connect the IPv4 network to two disjoint IPv6 networks that require a logical path from one network to the other.
- **Encapsulating interface**—On the encapsulator (the ingress PE router), one Ethernet logical interface configured on the built-in 10-Gigabit Ethernet MIC.
- **De-encapsulating interfaces**—On the de-encapsulator (the egress PE router), Ethernet logical interfaces configured on three ports of the built-in 10-Gigabit Ethernet MIC.

Before you begin configuring this example:

1. On each PE router, use the **show chassis fpc pic-status** operational mode command to determine which router line cards support filter-based GRE IPv4 tunneling and then use the **interfaces** configuration statement to configure encapsulating and de-encapsulating interfaces.
   - At PE1, the encapsulator, configure **one encapsulating interface** on a supported line card.
   - At PE2, the de-encapsulator, configure **three de-encapsulating interfaces** on a supported line card.

2. Check that IPv4 routing protocols are enabled across the network to support routing paths from the encapsulator to the de-encapsulator.

Configure routing information by manually adding static routes to route tables or by configuring static or dynamic route-sharing protocols. For more information, see **Transport and Internet Protocols Feature Guide for Routing Devices**.
3. At PE1, ping the PE2 IPv4 loopback address to verify that the de-encapsulator is reachable from the encapsulator.

4. At PE2, ping the CE2 router IPv6 loopback address to verify that the destination customer edge router is reachable from the de-encapsulator.

IPv6 routing paths from PE2 to CE2 can be provided by static routes manually added to routing tables or by static or dynamic route-sharing protocols.

- By default, PE2 forwards packets based on interface routes (direct routes) imported from the primary routing table.
- As an option, the de-encapsulating filter can specify that the Packet Forwarding Engine uses an alternate routing table to forward payload packets to the destination customer network. In an optional configuration task in this example, you specify an alternate routing table by installing static routes from PE2 to C1 in the routing instance blue. You configure the routing information base (RIB) group blue_group to specify that the route information of inet6.0 is shared with blue.inet6.0, then you associate the PE2 interfaces with routes stored in both the default routes and the routing instance.

Overview

In this example you configure a unidirectional filter-based GRE IPv4 tunnel from Router PE1 to Router PE2, providing a logical path from IPv6 network C1 to IPv6 network C2.

**NOTE:** To enable bidirectional filter-based GRE tunneling, you must configure a second tunnel in the reverse direction.

As an optional task in this example, you can create a RIB group, which specifies the sharing of routing information (including routes learned from peers, local routes resulting from the application of protocol policies to the learned routes, and the routes advertised to peers) of multiple routing tables.

**Topology**

Figure 61 on page 1233 shows the path of IPv6 traffic transported from network C1 to network C2, across an IPv4 transport network using a filter-based tunnel from PE1 to PE2 and without requiring tunnel interfaces.
Table 71 on page 1234 summarizes the configuration of Router PE1 as the encapsulator. Table 72 on page 1235 summarizes the configuration of Router PE2 as the de-encapsulator.
<table>
<thead>
<tr>
<th>Component</th>
<th>CLI Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encapsulator</td>
<td>Device name: PE1 10.255.1.1 2001:db8::1</td>
<td>MX80 router installed as an ingress PE router. PE1 connects the IPv4 network the customer edge router CE1 in the IPv6 source network C1.</td>
</tr>
<tr>
<td>Encapsulating interface</td>
<td>Interface name: xe-0/0/0.0 IPv4 address: 10.0.1.10/30 IPv6 address: ::10.34.1.10/120</td>
<td>Customer-facing logical interface hosted on a 10-Gigabit Ethernet MIC. CE1 sends this interface IPv6 traffic that originates at end-user hosts and is destined for applications or hosts on the IPv6 destination network C2.</td>
</tr>
<tr>
<td>Encapsulation filter</td>
<td>Filter name: gre_encap_1</td>
<td>IPv6 firewall filter whose action causes the Packet Forwarding Engine to encapsulate matched packets using the specified tunnel characteristics. Encapsulation consists of adding a GRE header, adding an IPv4 packet header, and then forwarding the resulting GRE packet through the GRE IPv4 tunnel.</td>
</tr>
<tr>
<td>Tunnel source interface</td>
<td>Interface name: xe-0/0/2.0 IPv4 address: 10.0.1.12</td>
<td>Core-facing egress interface to the tunnel.</td>
</tr>
<tr>
<td>GRE tunnel template</td>
<td>Tunnel name: tunnel_1</td>
<td>Defines the GRE IPv4 tunnel from Router PE1 (10.255.1.1) to Router PE2 (10.255.2.2), using the tunneling protocol supported on IPv4 (gre).</td>
</tr>
</tbody>
</table>
Table 72: De-Encapsulator Components on PE2

<table>
<thead>
<tr>
<th>Component</th>
<th>CLI Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-encapsulator</td>
<td>Device name: IPv4 loopback: PE2 10.255.2.2 IPv6 loopback: 2001:fc3::2</td>
<td>MX80 router installed as an egress PE router to receive GRE packets forwarded from ingress router PE1 across a GRE IPv4 tunnel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De-encapsulating</td>
<td>Interface name: IPv4 address: xe-0/0/0.0 10.0.2.24/30</td>
<td>Core-facing ingress logical interfaces hosted on 10-Gigabit Ethernet MICs. The interfaces receive GRE packets routed through the GRE IPv4 tunnel from PE1.</td>
</tr>
<tr>
<td>interfaces</td>
<td>Interface name: IPv4 address: xe-0/0/1.0 10.0.2.21/30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interface name: IPv4 address: xe-0/0/2.0 10.0.2.22/30</td>
<td></td>
</tr>
<tr>
<td>De-encapsulation</td>
<td>Filter name: gre_decap_1</td>
<td>IPv4 firewall filter that applies the <strong>decapsulate</strong> action to GRE packets. The filter action causes the Packet Forwarding Engine to de-encapsulate matched packets.</td>
</tr>
<tr>
<td>filter</td>
<td></td>
<td>De-encapsulation consists of removing the outer GRE header and then forwarding the inner IPv6 payload packet to its original destination on the destination IPv6 network by performing destination lookup on the default routing table.</td>
</tr>
<tr>
<td>Tunnel egress interface</td>
<td>Interface name: IPv4 address: xe-0/0/3.0 10.0.2.23/30</td>
<td>Customer-facing interface though which the router forwards de-encapsulated IPv6 packets to the destination IPv6 network C2.</td>
</tr>
<tr>
<td></td>
<td>IPv6 address:</td>
<td></td>
</tr>
</tbody>
</table>

**Configuration**

**IN THIS SECTION**

- Configuring PE1 to Encapsulate IPv6 Packets | 1237
- Configuring PE2 to De-Encapsulate GRE Packets | 1240
- Optional: Configuring PE2 with an Alternate Routing Table | 1244
To transport IPv6 packets from CE1 to CE2 across an IPv4 transport network using a filter-based tunnel from PE1 to PE2 and without configuring tunnel interfaces, perform these tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the `[edit]` hierarchy level.

**Configuring PE1 to Encapsulate IPv6 Packets**

```
set interfaces lo0 unit 0 family inet address 10.255.1.1
set interfaces lo0 unit 0 family inet6 address 2001:db8::1
set interfaces xe-0/0/0 unit 0 family inet address 10.0.1.10/30
set interfaces xe-0/0/0 unit 0 family inet6 address 2001::10.34.1.10/120
set interfaces xe-0/0/0 unit 0 family inet6 filter input gre_encap_1
set interfaces xe-0/0/2 unit 0 family inet address 10.0.1.12/30
set firewall family inet6 filter gre_encap_1 term t1 then count c_gre_encap_1
set firewall family inet6 filter gre_encap_1 term t1 then encapsulate tunnel_1
set firewall tunnel-end-point tunnel_1 ipv4 source-address 10.255.1.1
set firewall tunnel-end-point tunnel_1 ipv4 destination-address 10.255.2.2
set firewall tunnel-end-point tunnel_1 gre
```

**Configuring PE2 to De-Encapsulate GRE Packets**

```
set interfaces lo0 unit 0 family inet address 10.255.2.2
set interfaces lo0 unit 0 family inet6 address 2001:fc3::2
set interfaces xe-0/0/0 unit 0 family inet address 10.0.2.20/30
set interfaces xe-0/0/1 unit 0 family inet address 10.0.2.21/30
set interfaces xe-0/0/2 unit 0 family inet address 10.0.2.22/30
set interfaces xe-0/0/3 unit 0 family inet address 10.0.2.23/30
set interfaces xe-0/0/3 unit 0 family inet6 address ::20.34.2.23/120
set forwarding-options family inet filter input gre_decap_1
set firewall family inet filter gre_decap_1 term t1 from source-address 10.255.1.1/32
```
set firewall family inet filter gre_decap_1 term t1 from destination-address 10.255.2.2/32
set firewall family inet filter gre_decap_1 term t1 then count c_gre_decap_1
set firewall family inet filter gre_decap_1 term t1 then decapsulate gre

**Optional: Configuring PE2 with an Alternate Routing Table**

set routing-instances blue instance-type forwarding
set routing-instances blue routing-options rib blue.inet6.0 static route 0::/0 next-hop fec0:0:2003::2
set routing-options passive
set routing-options rib inet6.0
set routing-options rib-groups blue_group import-rib inet6.0
set routing-options rib-groups blue_group import-rib blue.inet6.0
set routing-options interface-routes rib-group inet6 blue_group
set firewall family inet filter gre_decap_1 term t1 then decapsulate gre

**Routing Instance Blue**

**Configuring PE1 to Encapsulate IPv6 Packets**

**Step-by-Step Procedure**

To configure Router PE1 to encapsulate IPv6 packets arriving from CE1:

1. Configure the router loopback addresses.

   ```
 [edit]
 user@PE1# set interfaces lo0 unit 0 family inet address 10.255.1.1
 user@PE1# set interfaces lo0 unit 0 family inet6 address 2001:db8::1
   ```

2. Configure the encapsulating interface IPv4 and IPv6 addresses and attach the encapsulating filter to the IPv6 input.

   ```
 [edit]
 user@PE1# set interfaces xe-0/0/0 unit 0 family inet address 10.0.1.10/30
 user@PE1# set interfaces xe-0/0/0 unit 0 family inet6 address ::10.34.1.10/128
 user@PE1# set interfaces xe-0/0/0 unit 0 family inet6 filter input gre_encap_1
   ```
3. Configure the core-facing egress interface to the tunnel.

```
[edit]
user@PE2# set interfaces xe-0/0/2 unit 0 family inet address 10.0.1.12/30
```

4. Define an IPv6 firewall filter that causes the Packet Forwarding Engine to encapsulate all packets.

```
[edit]
user@PE1# set firewall family inet6 filter gre_encap_1 term t1 then count c_gre_encap_1
user@PE1# set firewall family inet6 filter gre_encap_1 term t1 then encapsulate tunnel_1
```

**NOTE:** The `encapsulate` firewall filter action is a *terminating* filter action. A filter-terminating action halts all evaluation of a firewall filter for a specific packet. The router performs the specified action, and no additional terms are examined.

5. Define a GRE IPv4 tunnel template named tunnel_1 that specifies the host IP addresses of the one tunnel source interface and three tunnel destination interfaces.

```
[edit]
user@PE1# set firewall tunnel-end-point tunnel_1 ipv4 source-address 10.255.1.1
user@PE1# set firewall tunnel-end-point tunnel_1 ipv4 destination-address 10.255.2.2
user@PE1# set firewall tunnel-end-point tunnel_1 gre
```

**NOTE:** You can tunnel multiple but distinct flows from 10.0.1.10 (the tunnel source interface on PE1) to 10.0.2.20 – 10.0.2.22 (the de-encapsulating interfaces on PE2) if you use the GRE option *key number* to uniquely identify each tunnel.

6. If you are done configuring the device, commit the configuration.

```
[edit]
user@PE1# commit
```

Results
From configuration mode, confirm your configuration by entering the show firewall and show interfaces commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Router PE1**

Confirm the firewall filter and tunnel template on the encapsulator.

```
user@PE2# show firewall
family inet6 {
 filter gre_encap_1 {
 term t1 {
 then {
 count c_gre_encap_1;
 encapsulate tunnel_1;
 }
 }
 }
}
tunnel-end-point tunnel_1 {
 ipv4 {
 source-address 10.255.1.1;
 destination-address 10.255.2.2;
 }
 gre;
}
```

**Router PE1**

Confirm the interfaces on the encapsulator.

```
user@PE1# show interfaces
lo0 {
 unit 0 {
 family inet {
 address 10.255.1.1;
 }
 family inet6 {
 address 2001:db8::1;
 }
 }
}
```
Configuring PE2 to De-Encapsulate GRE Packets

Step-by-Step Procedure
To configure Router PE2 to de-encapsulate GRE packets arriving from the IPv4 tunnel:

1. Configure the router loopback address.

[edit]
user@PE2# set interfaces lo0 unit 0 family inet address 10.255.2.2
user@PE2# set interfaces lo0 unit 0 family inet6 address 2001:fc3::2

2. Configure the de-encapsulating interfaces.

[edit]
user@PE2# set interfaces xe-0/0/0 unit 0 family inet address 10.0.2.20/30
user@PE2# set interfaces xe-0/0/1 unit 0 family inet address 10.0.2.21/30
user@PE2# set interfaces xe-0/0/2 unit 0 family inet address 10.0.2.22/30
3. Configure the customer-facing egress interface to CE2.

```
[edit]
user@PE2# set interfaces xe-0/0/3 unit 0 family inet address 10.0.2.23/30
user@PE2# set interfaces xe-0/0/3 unit 0 family inet6 address ::20.34.2.23/120
```

4. Apply the ingress de-encapsulating firewall filter to all forwarded packets.

```
[edit]
user@PE2# set forwarding-options family inet filter input gre_decap_1
```


Define an IPv4 filter that de-encapsulates and forwards all GRE packets.

```
[edit]
user@PE2# set firewall family inet filter gre_decap_1
```

6. Configure term `t1` to match packets transported across the tunnel `tunnel_1` defined on Router PE1. The tunnel sends packets from Router PE1 (configured with IPv4 loopback address 10.255.1.1) to Router PE2 (configured with IPv4 loopback address 10.255.2.2).

```
[edit firewall family inet filter gre_decap_1]
user@PE2# set term t1 from source-address 10.255.1.1
user@PE2# set term t1 from destination-address 10.255.2.2
```

7. Configure term `t1` to count and de-encapsulate matched packets.

```
[edit firewall family inet filter gre_decap_1]
user@PE2# set term t1 then count c_gre_decap_1
user@PE2# set term t1 then decapsulate gre
```

If the de-encapsulating filter action `decapsulate` references the blue routing instance, make sure that the routing instance is configured and that the RIB group `blue_group` defines the sharing of the alternate routes into the primary table.
8. If you are done configuring the device, commit the configuration.

```plaintext
[edit]
user@PE2# commit
```

**Results**

From configuration mode, confirm your configuration by entering the `show firewall`, `show forwarding-options`, and `show interfaces` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Router PE2**

Confirm the firewall filter on the de-encapsulator.

```plaintext
user@PE2# show firewall
family inet {
 filter gre_decap_1 {
 term t1 {
 from {
 source-address 10.255.1.1;
 destination-address 10.255.2.2;
 }
 then {
 count c_gre_decap_1;
 decapsulate gre routing-instance blue;
 }
 }
 }
}
```

**NOTE:** If the de-encapsulating filter action `decapsulate` references the blue routing instance, make sure that the routing instance is configured and that the RIB group `blue_group` defines the sharing of the alternate routes into the primary table.

**Router PE2**
Confirm the forwarding options (for attaching the de-encapsulating firewall filter to all input forwarded packets) on the de-encapsulator.

```plaintext
user@PE2# show forwarding-options
forwarding-options {
 family inet {
 filter {
 input gre_decap_1;
 }
 }
}
```

**Router PE2**

Confirm the interfaces on the de-encapsulator.

```plaintext
user@PE2# show interfaces
lo0 {
 unit 0 {
 family inet {
 address 10.255.2.2;
 }
 family inet6 {
 address 2001:fc3::2;
 }
 }
}
xe-0/0/0 {
 unit 0 {
 family inet {
 address 10.0.2.20/30;
 filter input gre_decap_1;
 }
 }
}
xe-0/0/1 {
 unit 0 {
 family inet {
 address 10.0.2.21/30;
 filter input gre_decap_1;
 }
 }
}
```
Optional: Configuring PE2 with an Alternate Routing Table

Step-by-Step Procedure
To configure Router PE2 with an alternate routing table:

1. Configure the routing instance **blue**, and add static routes to CE2.

```plaintext
[edit]
user@PE2# set routing-instances blue instance-type forwarding
user@PE2# set routing-instances blue routing-options rib blue.inet6.0 static route 0::/0 next-hop fec0:0:2003::2
```

The Junos OS software generates the routing table **blue.inet6.0** using the routing information learned within the instance.

2. Enable routes to remain in routing and forwarding tables, even if the routes become inactive. This allows a static route to remain in the table if the next hop is unavailable.

```plaintext
[edit]
```
3. Create a RIB group by explicitly creating the default routing table.

4. Define the RIB group **blue_group**.

5. Associate the router interfaces with routing information specified by the RIB group.

6. If you are done configuring the device, commit the configuration.

**Results**

From configuration mode, confirm your configuration by entering the `show firewall`, `show routing-instances`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

**Router PE2**

If you configured an alternate routing table on Router PE2, confirm the routing instance configuration.
instance-type forwarding;
routing-options {
    static route 0::/0 next-hop fec0:0:2003::2;
}
}

Router PE2

If you configured an alternate routing table on Router PE2, confirm the RIB group and direct routing configurations.

```
user@PE2# show routing-options
interface-routes {
 rib-group blue_group;
}
passive;
rib inet6.0;
rib-groups {
 blue_group {
 import-rib [inet6.0 blue.inet6.0];
 }
}
```

Verification

IN THIS SECTION

- Verifying Routing Information | 1247
- Verifying Encapsulation on PE1 | 1248
- Verifying De-Encapsulation on PE2 | 1249

Confirm that the configurations are working properly.
Verifying Routing Information

Purpose
Verify that the direct routes include the alternate routing table information.

Action
To perform the verification:

1. (Optional) To verify the routing instance blue on PE2, use the `show route instance` operational mode command to display the primary table and number of routes for that routing instance.

   ```
 user@PE2> show route instance blue summary

 Instance Type
 Primary RIB Active/holddown/hidden
 blue forwarding
 blue.inet6.0 2/0/0
   ```

2. (Optional) To view the routing table associated with the routing instance blue on PE2, use the `show route table` operational mode command

   ```
 user@PE2> show route table blue.inet6.0

 blue.inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

 *[Direct/0] 00:02:26
 > via lo0.0

 fe80::2a0:a50f:fc64:e032/128
 *[Direct/0] 00:02:26
 > via lo0.0
   ```

3. (Optional) To verify that the alternate routes from routing instance blue have been imported to the PE2 forwarding table, use the `show route forwarding-table` operational mode command to display the contents of the router forwarding table and the routing instance forwarding table.

   ```
 user@PE2> show route forwarding-table blue

 Routing table: blue.inet

 Internet:
 Destination Type RcRef Next hop Type Index NhRef Netif
 default perm 0 0 rjct 689 1
 0.0.0.0/32 perm 0 0 dscd 687 1
   ```
Verifying Encapsulation on PE1

Purpose
Verify the encapsulating interface on PE1.

Action
To perform the verification:

1. Use the `show interfaces filters` operational mode command to verify that the encapsulating firewall filter is attached to the ingress of the encapsulating interface.

```
user@PE1> show interfaces filters xe-0/0/0.0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-0/0/0.0</td>
<td>up</td>
<td>down</td>
<td>inet6</td>
<td>gre_encap_1</td>
<td></td>
</tr>
</tbody>
</table>
```

2. Use the `show interfaces` operational mode command to verify that the encapsulating interface is receiving packets.

```
user@PE1> show interfaces xe-0/0/0.0 detail | filter "Ingress traffic"
```

...
Ingress traffic statistics at Packet Forwarding Engine:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>bytes</td>
<td>6970299398</td>
</tr>
<tr>
<td>Input</td>
<td>packets</td>
<td>81049992</td>
</tr>
<tr>
<td>Drop</td>
<td>bytes</td>
<td>0</td>
</tr>
<tr>
<td>Drop</td>
<td>packets</td>
<td>0</td>
</tr>
</tbody>
</table>

3. Use the `show firewall filter` operational mode command to verify that ingress passenger protocol traffic triggers the encapsulating filter.

```
user@PE1> show firewall filter gre_encap_1
```

<table>
<thead>
<tr>
<th>Filter: gre_encap_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>c_gre_encap_1</td>
</tr>
</tbody>
</table>

Meaning

If the encapsulating filter is attached to the encapsulating interface, and the encapsulating interface receives passenger protocol traffic, and the firewall filter statistics show that ingress passenger protocol traffic is being encapsulated, then GRE packets are being forwarded through the tunnel.

Verifying De-Encapsulation on PE2

Purpose

Verify the de-encapsulating interfaces on PE2.

Action

To perform the verification:

1. On PE1, use the `ping` operational mode command to verify that PE2 is reachable.

```
user@PE1> ping 10.255.2.2
```

PING 10.255.2.2 (10.255.2.2): 56 data bytes
64 bytes from 10.255.2.2: icmp_seq=0 ttl=64 time=0.576 ms
64 bytes from 10.255.2.2: icmp_seq=1 ttl=64 time=0.269 ms
^C [abort]

2. On PE2, use the `show interfaces filter` operational mode command to verify that the de-encapsulating firewall filter is attached to the ingress of the de-encapsulating interfaces.

```
user@PE2> show interfaces filter | match xe-
```
Table

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-0/0/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>gre_decap_1</td>
<td></td>
</tr>
<tr>
<td>xe-0/0/1.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>gre_decap_1</td>
<td></td>
</tr>
<tr>
<td>xe-0/0/2.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>gre_decap_1</td>
<td></td>
</tr>
</tbody>
</table>

3. On PE2, use the `show interfaces` operational mode command to verify that the de-encapsulating interfaces are receiving packets.

```bash
user@PE2> show interfaces xe-0/0/0.0 detail | filter "Ingress traffic"
```

Physical interface: xe-0/0/0, Enabled, Physical link is Up

...
Ingress traffic statistics at Packet Forwarding Engine:

- Input bytes: 6970299398 0 bps
- Input packets: 81049992 0 pps
- Drop bytes: 0 0 bps
- Drop packets: 0 0 pps

...

```bash
user@PE2> show interfaces xe-0/0/1.0 detail | filter "Ingress traffic"
```

Physical interface: xe-0/0/2, Enabled, Physical link is Up

...

```bash
user@PE2> show interfaces xe-0/0/2.0 detail | filter "Ingress traffic"
```

Physical interface: xe-0/0/2, Enabled, Physical link is Up

...

Depending on how routing is configured and which links are up and which links are down, some of the de-encapsulating interfaces might not be receiving packets although the tunnel is operating properly.

4. On PE2, use the `show firewall filter` operational mode command to verify that ingress GRE traffic triggers the de-encapsulating filter.

```bash
user@PE2> show firewall filter gre_decap_1
```

Filter: gre_decap_1
Counters:
Meaning
The verification confirms the following operational states and activities of the encapsulator:

- PE2 is reachable from the PE1.
- The de-encapsulating filter is attached to the input of all de-encapsulating interfaces.
- The de-encapsulator is receiving traffic at de-encapsulating interfaces as expected.
- GRE packets received at the de-encapsulating interfaces trigger the de-encapsulating firewall filter action.

RELATED DOCUMENTATION

- Understanding Filter-Based Tunneling Across IPv4 Networks | 1217
- Interfaces That Support Filter-Based Tunneling Across IPv4 Networks | 1223
- Components of Filter-Based Tunneling Across IPv4 Networks | 1225
- Firewall Filter Terminating Actions | 804
- tunnel-end-point | 2183
- clear firewall | 2662
- show chassis fpc
- show firewall | 2667
- show firewall log | 2685
- show interfaces (Aggregated Ethernet)
- show interfaces
- show route forwarding-table | 2479
- Junos OS Support for IPv4 Routing Protocols
- Junos OS Support for IPv6 Routing Protocols
CHAPTER 22

Configuring Service Filters

IN THIS CHAPTER

- Service Filter Overview | 1253
- How Service Filters Evaluate Packets | 1255
- Guidelines for Configuring Service Filters | 1257
- Guidelines for Applying Service Filters | 1259
- Example: Configuring and Applying Service Filters | 1263
- Service Filter Match Conditions for IPv4 or IPv6 Traffic | 1269
- Service Filter Nonterminating Actions | 1280
- Service Filter Terminating Actions | 1281

Service Filter Overview

IN THIS SECTION

- Services | 1253
- Service Rules | 1254
- Service Rule Refinement | 1254
- Service Filter Counters | 1254

Services

The Adaptive Services Physical Interface Cards (PICs), Multiservices PICs, and Multiservices Dense Port Concentrators (DPCs) provide adaptive services interfaces. Adaptive services interfaces enable you to coordinate a special range of services on a single PIC or DPC by configuring a set of services and applications.
NOTE: Service filters are not supported on T4000 routers.

Service Rules

A service set is an optional definition you can apply to the traffic at an adaptive services interface. A service set enables you to configure combinations of directional rules and default settings that control the behavior of each service in the service set.

Service Rule Refinement

When you apply a service set to the traffic at an adaptive services interface, you can optionally use service filters to refine the target of the set of services and also to process traffic. Service filters enable you to manipulate traffic by performing packet filtering to a defined set of services on an adaptive services interface before the traffic is delivered to its destination. You can apply a service filter to traffic before packets are accepted for input or output service processing or after packets return from input service processing.

Service Filter Counters

Like standard firewall filters, service filters support counting of matched packets. When you display counters for a service filter, however, the syntax for specifying the filter name includes the name of the service set to which the service filter is applied.

- To enable counting of the packets matched by a service filter term, specify the `count counter-name` nonterminating action in that term.
- To display counters for service filters, use the `show firewall filter filter-name <counter counter-name>` operational mode command, and specify the `filter-name` as follows:

```
__service-service-set-name:service-filter-name
```

For example, suppose you configure a service filter named `out_filter` with a counter named `out_counter` and apply that service filter to a logical interface to direct certain packets for processing by the output services associated with the service set `nat_set`. In this scenario, the syntax for using the `show firewall` operational mode command to display the counter is as follows:

```
[edit]
user@host> show firewall filter __service-nat_set:out_filter counter out_counter
```
How Service Filters Evaluate Packets

FOR A SERVICE FILTER THAT CONSISTS OF A SINGLE TERM, THE POLICY FRAMEWORK SOFTWARE EVALUATES A PACKET AS FOLLOWS:

- If the packet matches all the conditions, the actions are taken.
- If the packet matches all the conditions and no actions are specified, the packet is accepted.
- If the packet does not match all the conditions, it is discarded.
Service Filters That Contain Multiple Terms

For a service filter that consists of multiple terms, the policy framework software evaluates a packet against the terms in the filter sequentially, beginning with the first term in the filter, until either the packet matches all the conditions in one of the terms or there are no more terms in the filter.

- If the packet matches all the conditions in a term, the actions in that term are performed and evaluation of the packet ends at that term. Any subsequent terms in the filter are not used.
- If the packet does not match all the conditions in the term, evaluation of the packet proceeds to the next term in the filter.

Service Filter Terms That Do Not Contain Any Match Conditions

For service filters with a single term and for filters with multiple terms, if a term does not contain any match conditions, the actions are taken on any packet evaluated.

Service Filter Terms That Do Not Contain Any Actions

If a term does not contain any actions, and if the packet matches the conditions in the term, the packet is accepted.

Service Filter Default Action

Each service filter has an implicit skip action at the end of the filter, which is equivalent to including the following example term explicit_skip as the final term in the service filter:

```
term explicit_skip {
    then skip;
}
```

By default, if a packet matches none of the terms in a service filter, the packet bypasses service processing.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Service Filter Overview</th>
<th>1253</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidelines for Configuring Service Filters</td>
<td>1257</td>
</tr>
<tr>
<td>Guidelines for Applying Service Filters</td>
<td>1259</td>
</tr>
<tr>
<td>Example: Configuring and Applying Service Filters</td>
<td>1263</td>
</tr>
</tbody>
</table>
Guidelines for Configuring Service Filters

IN THIS SECTION

- Statement Hierarchy for Configuring Service Filters | 1257
- Service Filter Protocol Families | 1258
- Service Filter Names | 1258
- Service Filter Terms | 1258
- Service Filter Match Conditions | 1258
- Service Filter Terminating Actions | 1258

Statement Hierarchy for Configuring Service Filters

To configure a service filter, include the `service-filter service-filter-name` statement at the `[edit firewall family (inet | inet6)]` hierarchy level:

```plaintext
[edit]
firewall {
    family (inet | inet6) {
        service-filter service-filter-name {
            term term-name {
                from {
                    match-conditions;
                }
                then {
                    actions;
                }
            }
        }
    }
}
```

Individual statements supported under the `service-filter service-filter-name` statement are described separately in this topic and are illustrated in the example of configuring and applying a service filter.
Service Filter Protocol Families

You can configure service filters to filter IPv4 traffic (family inet) and IPv6 traffic (family inet6) only. No other protocol families are supported for service filters.

Service Filter Names

Under the family inet or family inet6 statement, you can include service-filter service-filter-name statements to create and name service filters. The filter name can contain letters, numbers, and hyphens (-) and be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

Service Filter Terms

Under the service-filter service-filter-name statement, you can include term term-name statements to create and name filter terms.

- You must configure at least one term in a firewall filter.
- You must specify a unique name for each term within a firewall filter. The term name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").
- The order in which you specify terms within a firewall filter configuration is important. Firewall filter terms are evaluated in the order in which they are configured. By default, new terms are always added to the end of the existing filter. You can use the insert configuration mode command to reorder the terms of a firewall filter.

Service Filter Match Conditions

Service filter terms support only a subset of the IPv4 and IPv6 match conditions that are supported for standard stateless firewall filters.

If you specify an IPv6 address in a match condition (the address, destination-address, or source-address match conditions), use the syntax for text representations described in RFC 4291, IP Version 6 Addressing Architecture. For more information about IPv6 addresses, see "IPv6 Overview" in the Junos OS Routing Protocols Library.

Service Filter Terminating Actions

When configuring a service filter term, you must specify one of the following filter-terminating actions:

- service
- skip
NOTE: These actions are unique to service filters.

Service filter terms support only a subset of the IPv4 and IPv6 nonterminating actions that are supported for standard stateless firewall filters:

- `count counter-name`
- `log`
- `port-mirror`
- `sample`

Service filters do not support the `next` action.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Service Filter Overview</th>
<th>1253</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Service Filters Evaluate Packets</td>
<td>1255</td>
</tr>
<tr>
<td>Guidelines for Applying Service Filters</td>
<td>1259</td>
</tr>
<tr>
<td>Service Filter Match Conditions for IPv4 or IPv6 Traffic</td>
<td>1269</td>
</tr>
<tr>
<td>Service Filter Terminating Actions</td>
<td>1281</td>
</tr>
<tr>
<td>Service Filter Nonterminating Actions</td>
<td>1280</td>
</tr>
<tr>
<td>Example: Configuring and Applying Service Filters</td>
<td>1263</td>
</tr>
</tbody>
</table>

Guidelines for Applying Service Filters

IN THIS SECTION

- Restrictions for Adaptive Services Interfaces | 1260
- Statement Hierarchy for Applying Service Filters | 1260
- Associating Service Rules with Adaptive Services Interfaces | 1261
- Filtering Traffic Before Accepting Packets for Service Processing | 1261
- Postservice Filtering of Returning Service Traffic | 1262
Restrictions for Adaptive Services Interfaces

The following restrictions apply to adaptive services interfaces and service filters.

Adaptive Services Interfaces

You can apply a service filter to IPv4 or IPv6 traffic associated with a service set at an adaptive services interface only. Adaptive services interfaces are supported for the following hardware only:

- Adaptive Services (AS) PICs on M Series and T Series routers
- Multiservices (MS) PICs on M Series and T Series routers
- MS DPCs on MX Series routers and EX Series switches
- MS MPCs and MICs on MX Series routers

System Logging to a Remote Host from M Series Routers

Logging of adaptive services interfaces messages to an external server by means of the fxp0 or em0 port is not supported on M Series routers. The architecture does not support system logging traffic out of a management interface. Instead, access to an external server is supported on a Packet Forwarding Engine interface.

Statement Hierarchy for Applying Service Filters

You can enable packet filtering of IPv4 or IPv6 traffic before a packet is accepted for input or output service processing. To do this, apply a service filter to the adaptive services interface input or output in conjunction with an interface service set.

You can also enable packet filtering of IPv4 or IPv6 traffic that is returning to the Packet Forwarding Engine after input service processing completes. To do this, apply a post-service filter to the adaptive services interface input.

The following configuration shows the hierarchy levels at which you can apply the service filters to adaptive services interfaces:

```
[edit]
interfaces {
  interface-name {
    unit unit-number {
      family (inet | inet6) {
        service {
          input {
            service-set service-set-name service-filter service-filter-name;
            post-service-filter service-filter-name;
          }
        }
      }
      output {
```

Associating Service Rules with Adaptive Services Interfaces

To define and group the service rules be applied to an adaptive services interface, you define an interface service set by including the `service-set service-set-name` statement at the `[edit services]` hierarchy level.

To apply an interface service set to the input and output of an adaptive services interface, you include the `service-set service-set-name` at the following hierarchy levels:

- `[edit interfaces interface-name unit unit-number input]`
- `[edit interfaces interface-name unit unit-number output]`

If you apply a service set to one direction of an adaptive services interface but do not apply a service set to the other direction, an error occurs when you commit the configuration.

The adaptive services PIC performs different actions depending on whether the packet is sent to the PIC for input service or for output service. For example, you can configure a single service set to perform Network Address Translation (NAT) in one direction and destination NAT (dNAT) in the other direction.

Filtering Traffic Before Accepting Packets for Service Processing

To filter IPv4 or IPv6 traffic before accepting packets for input or output service processing, include the `service-set service-set-name service-filter service-filter-name` at one of the following interfaces:

- `[edit interfaces interface-name unit unit-number family (inet | inet6) service input]`
- `[edit interfaces interface-name unit unit-number family (inet | inet6) service output]`

For the `service-set-name`, specify a service set configured at the `[edit services service-set]` hierarchy level. The service set retains the input interface information even after services are applied, so that functions such as filter-class forwarding and destination class usage (DCU) that depend on input interface information continue to work.

The following requirements apply to filtering inbound or outbound traffic before accepting packets for service processing:

- You configure the same service set on the input and output sides of the interface.
• If you include the **service-set** statement without an optional **service-filter** definition, the Junos OS assumes the match condition is true and selects the service set for processing automatically.

• The service filter is applied only if a service set is configured and selected.

You can include more than one service set definition on each side of an interface. The following guidelines apply:

• If you include multiple service sets, the router (or switch) software evaluates them in the order in which they appear in the configuration. The system executes the first service set for which it finds a match in the service filter and ignores the subsequent definitions.

• A maximum of six service sets can be applied to an interface.

• When you apply multiple service sets to an interface, you must also configure and apply a service filter to the interface.

Postservice Filtering of Returning Service Traffic

As an option to filtering of IPv4 or IPv6 input service traffic, you can apply a service filter to IPv4 or IPv6 traffic that is returning to the services interface after the service set is executed. To apply a service filter in this manner, include the **post-service-filter service-filter-name** statement at the [edit interfaces interface-name unit unit-number family (inet | inet6) service input] hierarchy level.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Service Filter Overview</th>
<th>1253</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Service Filters Evaluate Packets</td>
<td>1255</td>
</tr>
<tr>
<td>Guidelines for Configuring Service Filters</td>
<td>1257</td>
</tr>
<tr>
<td>Example: Configuring and Applying Service Filters</td>
<td>1263</td>
</tr>
<tr>
<td>Adaptive Services Overview</td>
<td></td>
</tr>
<tr>
<td>Configuring Service Sets to be Applied to Services Interfaces</td>
<td></td>
</tr>
<tr>
<td>Configuring Service Rules</td>
<td></td>
</tr>
</tbody>
</table>
Example: Configuring and Applying Service Filters

This example shows how to configure and apply service filters.

Requirements

This example uses the logical interface `xe-0/1/0.0` on any of the following hardware components:

- Adaptive Services (AS) PIC on an M Series or T Series router
- Multiservices (MS) PIC on an M Series or T Series router
- Multiservices (MS) DPC on an MX Series router
- EX Series switch

Before you begin, make sure that you have:

- Installed your supported router (or switch) and PICs or DPCs and performed the initial router (or switch) configuration.
- Configured basic Ethernet in the topology, and verified that traffic is flowing in the topology and that IPv4 traffic is flowing through logical interface `xe-0/1/0.0`.
- Configured the service set `vrf_svcs` with service input and output rules and default settings for services at a service interface.

For guidelines for configuring service sets, see Configuring Service Sets to be Applied to Services Interfaces.

Overview

In this example, you create three types of service filters for IPv4 traffic: one input service filter, one postservice input filter, and one output service filter.
Topology
You apply the input service filter and postservice input filter to input traffic at logical interface xe-0/1/0.0, and you apply the output service filter to the output traffic at the same logical interface.

- Filtering IPv4 traffic before it is accepted for input service processing—At logical interface xe-0/1/0.0, you use the service filter in_filter_presvc to filter IPv4 input traffic before the traffic can be accepted for processing by services associated with service set vrf_svcs. The in_filter_presvc service filter counts packets sent from ICMP port 179, directs these packets to the input services associated with the service set vrf_svcs, and discards all other packets.

- Filtering IPv4 traffic after it has completed input service processing—At logical interface xe-0/1/0.0, you use the service filter in_filter_postsvc to filter traffic that is returning to the services interface after the input service set in_filter_presvc is executed. The in_filter_postsvc service filter counts packets sent from ICMP port 179 and then discards them.

- Filtering IPv4 traffic before it is accepted for output service processing—At logical interface xe-0/1/0.0, you use the service-filter out_filter_presvc to filter IPv4 output traffic before the traffic can be accepted for processing by the services associated with service set vrf_svcs. The out_filter_presvc service filter counts packets destined for TCP port 179 and then directs the packets to the output services associated with the service set vrf_svcs.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration
To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet service-filter in_filter_presvc term t1 from protocol tcp
set firewall family inet service-filter in_filter_presvc term t1 from source-port bgp
set firewall family inet service-filter in_filter_presvc term t1 then count svc_in_pkts
```
Configuring the Three Service Filters

Step-by-Step Procedure

To configure the three service filters:

1. Configure the input service filter.

 [edit]
 user@host# edit firewall family inet service-filter in_filter_presvc

 [edit firewall family inet service-filter in_filter_presvc]
 user@host# set term t1 from protocol tcp
 user@host# set term t1 from source-port bgp
 user@host# set term t1 then count svc_in_pkts
 user@host# set term t1 then service

2. Configure the postservice input filter.

 [edit]
 user@host# edit firewall family inet service-filter in_filter_postsvc

 [edit firewall family inet service-filter in_filter_postsvc]
 user@host# set term t2 from protocol tcp
 user@host# set term t2 from source-port bgp
 user@host# set term t2 then count svc_in_pkts
 user@host# set term t2 then skip
3. Configure the output service filter.

```
[edit]
user@host# edit firewall family inet service-filter out_filter_presvc

[edit firewall family inet service-filter out_filter_presvc]
user@host# set term t3 from protocol icmp
user@host# set term t3 from destination-port bgp
user@host# set term t3 then count svc_out_pkts
user@host# set term t3 then service
```

Results

Confirm the configuration of the input and output service filters and the postservice input filter by entering the `show firewall` command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
  service-filter in_filter_presvc {
    term t1 {
      from {
        protocol tcp;
        source-port bgp;
      }
      then {
        count svc_in_pkts;
        service;
      }
    }
  }
  service-filter in_filter_postsvc {
    term t2 {
      from {
        protocol tcp;
        source-port bgp;
      }
      then {
        count svc_in_pkts_rtn;
        skip;
      }
    }
  }
}
```
service-filter out_filter_presvc {
 term t3 {
 from {
 protocol icmp;
 destination-port bgp;
 }
 then {
 count svc_out_pkts;
 service;
 }
 }
}

Applying the Three Service Filters

Step-by-Step Procedure

To apply the three service filters:

1. Access the IPv4 protocol on the input interface xe-0/1/0.0.

 [edit]
 user@host# edit interfaces xe-0/1/0 unit 0 family inet

2. Apply the input service filter and the postservice input filter.

 [edit interfaces xe-0/1/0 unit 0 family inet]
 user@host# set service input service-set vrf_svcs service-filter in_filter_presvc
 user@host# set service input post-service-filter in_filter_postsvc
 user@host# set service output service-set vrf_svcs service-filter out_filter_presvc

Results

Confirm the configuration of the interfaces by entering the show interfaces configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

 [edit]
 user@host# show interfaces
 xe-0/1/0 {
 unit 0 {
 family inet {

When you are done configuring the device, commit your candidate configuration.

Verification

IN THIS SECTION

- Verifying That Inbound Traffic Is Filtered Before Input Service | 1268
- Verifying That Inbound Traffic Is Filtered After Input Service Processing | 1269
- Verifying That Outbound Traffic Is Filtered Before Output Service Processing | 1269

Confirm that the configuration is working properly.

Verifying That Inbound Traffic Is Filtered Before Input Service

Purpose

Verify that inbound packets sent from TCP port 179 are sent for processing by the input services associated with the service set `vrf_svcs`.

Action

Display the count of packets sent for processing by the input services associated with the service set `vrf_svcs`.

```bash
[edit]
user@host> show firewall filter in_filter_presvc-vrf_svcs counter svc_in_pkts
```
Verifying That Inbound Traffic Is Filtered After Input Service Processing

Purpose
Verify that inbound packets sent from TCP port 179 are returned from processing by the input services associated with the service set vrf_svcs.

Action
Display the count of packets returned from processing by the input services associated with the service set vrf_svcs.

[edit]
user@host> show firewall filter in_filter_postsvc-vrf_svcs counter svc_in_pkts_rtn

Verifying That Outbound Traffic Is Filtered Before Output Service Processing

Purpose
Verify that outbound packets sent to ICMP port 179 are sent for processing by the output services associated with the service set vrf_svcs.

Action
Display the count of packets sent for processing by the output services associated with the service set vrf_svcs.

[edit]
user@host> show firewall filter out_filter_presvc-vrf_svcs counter svc_out_pkts

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Service Filter Overview</th>
<th>1253</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Service Filters Evaluate Packets</td>
<td>1255</td>
</tr>
<tr>
<td>Guidelines for Configuring Service Filters</td>
<td>1257</td>
</tr>
<tr>
<td>Guidelines for Applying Service Filters</td>
<td>1259</td>
</tr>
</tbody>
</table>

Service Filter Match Conditions for IPv4 or IPv6 Traffic

Service filters support only a subset of the stateless firewall filter match conditions for IPv4 and IPv6 traffic. Table 73 on page 1270 describes the service filter match conditions.
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>address address</td>
<td>Match the IP source or destination address field.</td>
<td>familyinet, familyinet6</td>
</tr>
<tr>
<td>address address except</td>
<td>Do not match the IP source or destination address field.</td>
<td>familyinet, familyinet6</td>
</tr>
<tr>
<td>ah-spi spi-value</td>
<td>(M Series routers, except M120 and M320) Match on the IPsec authentication header (AH) security parameter index (SPI) value.</td>
<td>familyinet</td>
</tr>
<tr>
<td>ah-spi-except spi-value</td>
<td>(M Series routers, except M120 and M320) Do not match on the IPsec AH SPI value.</td>
<td>familyinet</td>
</tr>
</tbody>
</table>
| destination-address address | Match the IP destination address field.
You cannot specify both the address and destination-address match conditions in the same term. | familyinet, familyinet6 |
| destination-address address except | Do not match the IP destination address field.
You cannot specify both the address and destination-address match conditions in the same term. | familyinet, familyinet6 |
Table 73: Service Filter Match Conditions for IPv4 or IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>Match the UDP or TCP destination port field.</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td>You cannot specify both the port and destination-port match</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td>conditions in the same term.</td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition for IPv4 traffic, we recommend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that you also configure the protocol udp or protocol tcp match</td>
<td></td>
</tr>
<tr>
<td></td>
<td>statement in the same term to specify which protocol is being used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>on the port.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition for IPv6 traffic, we recommend</td>
<td></td>
</tr>
<tr>
<td></td>
<td>that you also configure the next-header udp or next-header tcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>match condition in the same term to specify which protocol is being</td>
<td></td>
</tr>
<tr>
<td></td>
<td>used on the port.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following</td>
<td></td>
</tr>
<tr>
<td></td>
<td>text synonyms (the port numbers are also listed): afs (1483), bgp (179),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biff (512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(760), kshell (544), ldap (389), ldp (646), login (513), mobileip-agent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>netbios-ssn (139), nfsd (2049), nntp (119), ntalk (518), ntp (123), pop3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(110), pptp (1723), printer (515), radacct (1813), radius (1812), rip (520),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rkinits (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
<td></td>
</tr>
<tr>
<td>destination-port-except</td>
<td>Do not match the UDP or TCP destination port field. For details, see the</td>
<td>• family inet</td>
</tr>
<tr>
<td>number</td>
<td>destination-port match description.</td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td>Do not match the UDP or TCP destination port field. For details, see the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>destination-port match description.</td>
<td></td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>Match the list of destination prefixes. The prefix list is defined at the</td>
<td>• family inet</td>
</tr>
<tr>
<td>name</td>
<td>[edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 73: Service Filter Match Conditions for IPv4 or IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>esp-spi value</td>
<td>Match the IPsec encapsulating security payload (ESP) SPI value. Specify a single value or a range of values. You can specify a value in hexadecimal, binary, or decimal form. To specify the value in hexadecimal form, include 0x as a prefix. To specify the value in binary form, include b as a prefix.</td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family inet6</td>
</tr>
<tr>
<td>esp-spi-except value</td>
<td>Do not match the IPsec ESP SPI value or range of values. For details, see the esp-spi match condition.</td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>family inet6</td>
</tr>
<tr>
<td>first-fragment</td>
<td>Match if the packet is the first fragment of a fragmented packet. Do not match if the packet is a trailing fragment of a fragmented packet. The first fragment of a fragmented packet has a fragment offset value of 0.</td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td>This match condition is an alias for the bit-field match condition fragment-offset 0 match condition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To match both first and trailing fragments, you can use two terms that specify different match conditions: first-fragment and is-fragment.</td>
<td></td>
</tr>
<tr>
<td>forwarding-class</td>
<td>Match one or more of the following specified packet forwarding classes:</td>
<td>family inet</td>
</tr>
<tr>
<td></td>
<td>• assured-forwarding</td>
<td>family inet6</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• expedited-forwarding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• user-defined-name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For information about forwarding classes and router-internal output queues, see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Protocol Families</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| **forwarding-class-except** | Do not match one or more of the following specified packet forwarding classes:
 - assured-forwarding
 - best-effort
 - expedited-forwarding
 - network-control
 - user-defined-name | • family inet
 • family inet6 |
| **fragment-flags number** | (Ingress only) Match the three-bit IP fragmentation flags field in the IP header.
In place of the numeric field value, you can specify one of the following keywords (the field values are also listed):
dont-fragment (0x4), more-fragments (0x2), or reserved (0x8). | • family inet |
| **fragment-offset number** | Match the 13-bit fragment offset field in the IP header. The value is the offset, in 8-byte units, in the overall datagram message to the data fragment. Specify a numeric value, a range of values, or a set of values. An offset value of 0 indicates the first fragment of a fragmented packet.

 The **first-fragment** match condition is an alias for the **fragment-offset 0** match condition.

 To match both first and trailing fragments, you can use two terms that specify different match conditions (**first-fragment** and **is-fragment**). | • family inet |
| **fragment-offset-except number** | Do not match the 13-bit fragment offset field. | • family inet |
| **interface-group group-number** | Match the interface group (set of one or more logical interfaces) on which the packet was received. For **group-number**, specify a value from 0 through 255.
For information about configuring interface groups, see “Filtering Packets Received on a Set of Interface Groups Overview” on page 1196. | • family inet
 • family inet6 |
| **interface-group-except group-number** | Do not match the interface group on which the packet was received. For details, see the **interface-group** match condition. | • family inet
 • family inet6 |
Table 73: Service Filter Match Conditions for IPv4 or IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-options values</td>
<td></td>
<td>family inet • family inet</td>
</tr>
</tbody>
</table>
Match Condition | Description | Protocol Families
--- | --- | ---
Match the 8-bit IP option field, if present, to the specified value or list of values.

In place of a numeric value, you can specify one of the following text synonyms (the option values are also listed):
loose-source-route (131), *record-route* (7), *router-alert* (148),
security (130), *stream-id* (136), *strict-source-route* (137), or *
timestamp* (68).

To match *any* value for the IP option, use the text synonym *any*. To match on *multiple* values, specify the list of values within square brackets ('[' and ']'). To match a *range* of values, use the value specification [*value1-value2*].

For example, the match condition *ip-options [0-147]* matches on an IP options field that contains the *loose-source-route*, *record-route*, or *security* values, or any other value from 0 through 147. However, this match condition does not match on an IP options field that contains only the *router-alert* value (148).

For most interfaces, a filter term that specifies an *ip-option* match on one or more *specific* IP option values (a value other than *any*) causes packets to be sent to the Routing Engine so that the kernel can parse the IP option field in the packet header.

- For a firewall filter term that specifies an *ip-option* match on one or more specific IP option values, you cannot specify the *count*, *log*, or *syslog* nonterminating actions unless you also specify the *discard* terminating action in the same term. This behavior prevents double-counting of packets for a filter applied to a transit interface on the router (or switch).
- Packets processed on the kernel might be dropped in case of a system bottleneck. To ensure that matched packets are instead sent to the Packet Forwarding Engine (where packet processing is implemented in hardware), use the *ip-options any* match condition.

The 10-Gigabit Ethernet Modular Port Concentrator (MPC), 60-Gigabit Ethernet MPC, 60-Gigabit Queuing Ethernet MPC, 60-Gigabit Ethernet Enhanced Queuing MPC on MX Series routers and EX Series switches are capable of parsing the IP option field of the IPv4 packet header. This capability is supported on EX Series switches also. For interfaces configured on those MPCs, *all* packets that are matched using the *ip-options* match condition are sent to...
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the Packet Forwarding Engine for processing.</td>
<td></td>
</tr>
<tr>
<td>ip-options-except</td>
<td>Do not match the IP option field to the specified value or list of values. For details about specifying the values, see the ip-options match condition.</td>
<td>• family inet</td>
</tr>
<tr>
<td>values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>is-fragment</td>
<td>Match if the packet is a trailing fragment of a fragmented packet. Do not match the first fragment of a fragmented packet.</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td>This match condition is an alias for the bit-field match condition fragment-offset 0 except bits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: To match both first and trailing fragments, you can use two terms that specify different match conditions (first-fragment and is-fragment).</td>
<td></td>
</tr>
<tr>
<td>loss-priority</td>
<td>Match one or more of the following specified packet loss priority (PLP) levels:</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td>• low</td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td>• medium-low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• medium-high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The PLP is used by schedulers in conjunction with the random early discard (RED) algorithm to control packet discard during periods of congestion. For information about PLP, see Managing Congestion by Setting Packet Loss Priority for Different Traffic Flows and Overview of Assigning Service Levels to Packets Based on Multiple Packet Header Fields.</td>
<td></td>
</tr>
<tr>
<td>loss-priority-except</td>
<td>Do not match one or more of the following specified packet loss priority (PLP) levels:</td>
<td>• family inet</td>
</tr>
<tr>
<td></td>
<td>• low</td>
<td>• family inet6</td>
</tr>
<tr>
<td></td>
<td>• medium-low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• medium-high</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• high</td>
<td></td>
</tr>
</tbody>
</table>
Table 73: Service Filter Match Conditions for IPv4 or IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>port number</td>
<td>Match the UDP or TCP source or destination port field. If you configure this match condition, you cannot configure the destination-port match condition or the source-port match condition in the same term. If you configure this match condition for IPv4 traffic, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port. If you configure this match condition for IPv6 traffic, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port. In place of the numeric value, you can specify one of the text synonyms listed under destination-port.</td>
<td>• family inet
 • family inet6</td>
</tr>
<tr>
<td>port-except number</td>
<td>Do not match the UDP or TCP source or destination port field. For details, see the port match condition.</td>
<td>• family inet
 • family inet6</td>
</tr>
<tr>
<td>prefix-list prefix-list-name</td>
<td>Match the prefixes of the source or destination address fields to the prefixes in the specified list. The prefix list is defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
<td>• family inet
 • family inet6</td>
</tr>
<tr>
<td>protocol number</td>
<td>Match the IP protocol type field. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41), ospf (89), pim (103), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
<td>• family inet
 –</td>
</tr>
<tr>
<td>protocol-except number</td>
<td>Do not match the IP protocol type field. For details, see the protocol match condition.</td>
<td>• family inet</td>
</tr>
<tr>
<td>source-address address</td>
<td>Match the IP source address. You cannot specify both the address and source-address match conditions in the same term.</td>
<td>• family inet
 • family inet6</td>
</tr>
</tbody>
</table>
Table 73: Service Filter Match Conditions for IPv4 or IPv6 Traffic (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
</table>
| source-address address except | Do not match the IP source address. You cannot specify both the address and source-address match conditions in the same term. | • family inet
• family inet6 |
| source-port number | Match the UDP or TCP source port field. You cannot specify the port and source-port match conditions in the same term. | • family inet
• family inet6 |
| | If you configure this match condition for IPv4 traffic, we recommend that you also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port. | |
| | If you configure this match condition for IPv6 traffic, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port. | |
| | In place of the numeric value, you can specify one of the text synonyms listed with the destination-port number match condition. | |
| source-port-except number | Do not match the UDP or TCP source port field. For details, see the source-port match condition. | • family inet
• family inet6 |
| source-prefix-list name | Match source prefixes in the specified list. Specify the name of a prefix list defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level. | • family inet
• family inet6 |
Table 73: Service Filter Match Conditions for IPv4 or IPv6 Traffic *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
</table>
| **tcp-flags value** | Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header. To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:
 - **fin** (0x01)
 - **syn** (0x02)
 - **rst** (0x04)
 - **push** (0x08)
 - **ack** (0x10)
 - **urgent** (0x20)
 In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet. You can string together multiple flags using the bit-field logical operators. For combined bit-field match conditions, see the **tcp-established** and **tcp-initial** match conditions.
If you configure this match condition for IPv4 traffic, we recommend that you also configure the **protocol tcp** match statement in the same term to specify that the TCP protocol is being used on the port.
If you configure this match condition for IPv6 traffic, we recommend that you also configure the **next-header tcp** match condition in the same term to specify that the TCP protocol is being used on the port. | • family inet
• family inet6 |

NOTE: If you specify an IPv6 address in a match condition (the **address**, **destination-address**, or **source-address** match conditions), use the syntax for text representations described in RFC 4291, *IP Version 6 Addressing Architecture*. For more information about IPv6 addresses, see "IPv6 Overview" in the *Junos OS Routing Protocols Library*.

RELATED DOCUMENTATION

- Service Filter Overview | 1253
Service Filter Nonterminating Actions

Service filters support different sets of terminating actions for each protocol family.

NOTE: Service filters do not support the next term action.

Table 74 on page 1280 describes the nonterminating actions you can configure in a service filter term.

Table 74: Nonterminating Actions for Service Filters

<table>
<thead>
<tr>
<th>Nonterminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>count counter-name</td>
<td>Count the packet in the named counter.</td>
<td>• inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet6</td>
</tr>
<tr>
<td>log</td>
<td>Log the packet header information in a buffer within the Packet Forwarding</td>
<td>• inet</td>
</tr>
<tr>
<td></td>
<td>Engine. You can access this information by issuing the show firewall log</td>
<td>• inet6</td>
</tr>
<tr>
<td></td>
<td>command at the command-line interface (CLI).</td>
<td></td>
</tr>
<tr>
<td>port-mirror</td>
<td>Port-mirror the packet based on the specified family. Supported on M120</td>
<td>• inet</td>
</tr>
<tr>
<td></td>
<td>routers, M320 routers configured with Enhanced III FPCs, MX Series routers,</td>
<td>• inet6</td>
</tr>
<tr>
<td></td>
<td>and EX Series switches only.</td>
<td></td>
</tr>
<tr>
<td>sample</td>
<td>Sample the packet.</td>
<td>• inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet6</td>
</tr>
</tbody>
</table>
Service Filter Terminating Actions

Service filters support different sets of terminating actions than standard stateless firewall filters or simple filters.

NOTE: Service filters do not support the **next term** action.

Table 75 on page 1281 describes the terminating actions you can configure in a service filter term.

Table 75: Terminating Actions for Service Filters

<table>
<thead>
<tr>
<th>Terminating Action</th>
<th>Description</th>
<th>Protocol Families</th>
</tr>
</thead>
<tbody>
<tr>
<td>service</td>
<td>Direct the packet to service processing.</td>
<td>• inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet6</td>
</tr>
<tr>
<td>skip</td>
<td>Let the packet bypass service processing.</td>
<td>• inet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• inet6</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Service Filter Overview | 1253
- Guidelines for Configuring Service Filters | 1257
- Example: Configuring and Applying Service Filters | 1263
- Service Filter Match Conditions for IPv4 or IPv6 Traffic | 1269
- Service Filter Nonterminating Actions | 1280
Configuring Simple Filters

IN THIS CHAPTER

- Simple Filter Overview | 1283
- How Simple Filters Evaluate Packets | 1284
- Guidelines for Configuring Simple Filters | 1285
- Guidelines for Applying Simple Filters | 1289
- Example: Configuring and Applying a Simple Filter | 1291

Simple Filter Overview

Simple filters are supported on Gigabit Ethernet intelligent queuing 2 (IQ2) and Enhanced Queuing Dense Port Concentrator (DPC) interfaces only.

Simple filters are recommended for metropolitan Ethernet applications.

RELATED DOCUMENTATION

- How Simple Filters Evaluate Packets | 1284
- Guidelines for Configuring Simple Filters | 1285
- Guidelines for Applying Simple Filters | 1289
- Example: Configuring and Applying a Simple Filter | 1291
How Simple Filters Evaluate Packets

IN THIS SECTION

- Simple Filters That Contain a Single Term | 1284
- Simple Filters That Contain Multiple Terms | 1284
- Simple Filter Terms That Do Not Contain Any Match Conditions | 1284
- Simple Filter Terms That Do Not Contain Any Actions | 1285
- Simple Filter Default Action | 1285

Simple Filters That Contain a Single Term

For a simple filter that consists of a single term, the policy framework software evaluates a packet as follows:

- If the packet matches all the conditions, the actions are taken.
- If the packet matches all the conditions and no actions are specified, the packet is accepted.
- If the packet does not match all the conditions, it is discarded.

Simple Filters That Contain Multiple Terms

For a simple filter that consists of multiple terms, the policy framework software evaluates a packet against the terms in the filter sequentially, beginning with the first term in the filter, until either the packet matches all the conditions in one of the terms or there are no more terms in the filter.

- If the packet matches all the conditions in a term, the actions in that term are performed and evaluation of the packet ends at that term. Any subsequent terms in the filter are not used.
- If the packet does not match all the conditions in the term, evaluation of the packet proceeds to the next term in the filter.

Simple Filter Terms That Do Not Contain Any Match Conditions

For simple filters with a single term and for filters with multiple terms, if a term does not contain any match conditions, the actions are taken on any packet evaluated.
Simple Filter Terms That Do Not Contain Any Actions

If a simple filter term does not contain any actions, and if the packet matches the conditions in the term, the packet is accepted.

Simple Filter Default Action

Each simple filter has an implicit discard action at the end of the filter, which is equivalent to including the following example term explicit_discard as the final term in the simple filter:

```
term explicit_discard {
    then discard;
}
```

By default, if a packet matches none of the terms in a simple filter, the packet is discarded.

RELATED DOCUMENTATION

Simple Filter Overview | 1283
Guidelines for Configuring Simple Filters | 1285
Guidelines for Applying Simple Filters | 1289
Example: Configuring and Applying a Simple Filter | 1291

Guidelines for Configuring Simple Filters

IN THIS SECTION

- Statement Hierarchy for Configuring Simple Filters | 1286
- Simple Filter Protocol Families | 1286
- Simple Filter Names | 1286
- Simple Filter Terms | 1286
- Simple Filter Match Conditions | 1287
- Simple Filter Terminating Actions | 1289
- Simple Filter Nonterminating Actions | 1289
Statement Hierarchy for Configuring Simple Filters

To configure a simple filter, include the `simple-filter simple-filter-name` statement at the `[edit firewall family inet]` hierarchy level.

```
[edit]
firewall {
    family inet {
        simple-filter simple-filter-name {
            term term-name {
                from {
                    match-conditions;
                }
                then {
                    actions;
                }
            }
        }
    }
}
```

Individual statements supported under the `simple-filter simple-filter-name` statement are described separately in this topic and are illustrated in the example of configuring and applying a simple filter.

Simple Filter Protocol Families

You can configure simple filters to filter IPv4 traffic (`family inet`) only. No other protocol family is supported for simple filters.

Simple Filter Names

Under the `family inet` statement, you can include `simple-filter simple-filter-name` statements to create and name simple filters. The filter name can contain letters, numbers, and hyphens (-) and be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

Simple Filter Terms

Under the `simple-filter simple-filter-name` statement, you can include `term term-name` statements to create and name filter terms.

- You must configure at least one term in a firewall filter.
You must specify a unique name for each term within a firewall filter. The term name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

The order in which you specify terms within a firewall filter configuration is important. Firewall filter terms are evaluated in the order in which they are configured. By default, new terms are always added to the end of the existing filter. You can use the `insert` configuration mode command to reorder the terms of a firewall filter.

Simple filters do not support the `next term` action.

Simple Filter Match Conditions

Simple filter terms support only a subset of the IPv4 match conditions that are supported for standard stateless firewall filters.

Unlike standard stateless firewall filters, the following restrictions apply to simple filters:

- On MX Series routers with the Enhanced Queuing DPC and on EX Series switches, simple filters do not support the `forwarding-class` match condition.

- Simple filters support only one `source-address` and one `destination-address` prefix for each filter term. If you configure multiple prefixes, only the last one is used.

- Simple filters do not support multiple source addresses and destination addresses in a single term. If you configure multiple addresses, only the last one is used.

- Simple filters do not support negated match conditions, such as the `protocol-except` match condition or the `exception` keyword.

- Simple filters support a range of values for `source-port` and `destination-port` match conditions only. For example, you can configure `source-port 400-500` or `destination-port 600-700`.

- Simple filters do not support noncontiguous mask values.

Table 76 on page 1287 lists the simple filter match conditions.

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>Match IP destination address.</td>
</tr>
</tbody>
</table>
Table 76: Simple Filter Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>TCP or UDP destination port field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure</td>
</tr>
<tr>
<td></td>
<td>the protocol match statement to determine which protocol is being used</td>
</tr>
<tr>
<td></td>
<td>on the port.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text</td>
</tr>
<tr>
<td></td>
<td>aliases (the port numbers are also listed): afs (1483), bgp (179),</td>
</tr>
<tr>
<td></td>
<td>biff (512), boots (67), cmsg (514), cmsgvser (2401), dhcp</td>
</tr>
<tr>
<td></td>
<td>(67), domain (53), eklogin (2105), ekshell (2106), exec (512),</td>
</tr>
<tr>
<td></td>
<td>finger (79), ftp (21), ftp-data (20), http (80), https</td>
</tr>
<tr>
<td></td>
<td>(443), ident (113), imap (143), kerberos-sec (88), klogin</td>
</tr>
<tr>
<td></td>
<td>(543), kpasswd (761), krb-prop (754), krbupdate (760), kshell</td>
</tr>
<tr>
<td></td>
<td>(544), ldap (389), login (513), mobileip-agent (434), **mobilip-</td>
</tr>
<tr>
<td></td>
<td>mn** (435), msdp (639), netbios-dgm (138), netbios-ns (137),</td>
</tr>
<tr>
<td></td>
<td>netbios-sdn (139), nfsd (2049), nttp (119), ntalk (518),</td>
</tr>
<tr>
<td></td>
<td>ntp (123), popt (110), popt (1723), printer (515), radacct</td>
</tr>
<tr>
<td></td>
<td>(1813), radius (1812), rip (520), rkit (2108), sntp (25),</td>
</tr>
<tr>
<td></td>
<td>snmp (161), snmptrap (162), snpp (444), socks (1080),</td>
</tr>
<tr>
<td></td>
<td>ssh (22), snrnc (111), syslog (514), tacacs-ds (65), talk</td>
</tr>
<tr>
<td></td>
<td>(517), telnet (23), tftp (69), timed (525), who (513), or</td>
</tr>
<tr>
<td></td>
<td>xdmcp (177).</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Match the forwarding class of the packet.</td>
</tr>
<tr>
<td></td>
<td>Specify assured-forwarding, best-effort, expedited-forwarding, or</td>
</tr>
<tr>
<td></td>
<td>network-control.</td>
</tr>
<tr>
<td></td>
<td>For information about forwarding classes and router-internal output queues,</td>
</tr>
<tr>
<td></td>
<td>see Understanding How Forwarding Classes Assign Classes to Output Queues.</td>
</tr>
<tr>
<td>protocol number</td>
<td>IP protocol field. In place of the numeric value, you can specify one of the</td>
</tr>
<tr>
<td></td>
<td>following text aliases (the field values are also listed): ah (51),</td>
</tr>
<tr>
<td></td>
<td>dstopt (60), egp (8), esp (50), fragment (44), gre (47),</td>
</tr>
<tr>
<td></td>
<td>hop-by-hop (0), icmp (1), icmpv6 (58), icmpv6 (58), igmp</td>
</tr>
<tr>
<td></td>
<td>(2), ipv6 (41), ospf (89), pim (103), rsdp (46), sctp (132),</td>
</tr>
<tr>
<td></td>
<td>tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td>source-address ip-source-address</td>
<td>Match the IP source address.</td>
</tr>
<tr>
<td>source-port number</td>
<td>Match the UDP or TCP source port field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure</td>
</tr>
<tr>
<td></td>
<td>the protocol match statement to determine which protocol is being used</td>
</tr>
<tr>
<td></td>
<td>on the port.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric field, you can specify one of the text aliases listed for</td>
</tr>
<tr>
<td></td>
<td>destination-port.</td>
</tr>
</tbody>
</table>
Simple Filter Terminating Actions

Simple filters do not support explicitly configurable terminating actions, such as accept, reject, and discard. Terms configured in a simple filter always accept packets.

Simple filters do not support the next action.

Simple Filter Nonterminating Actions

Simple filters support only the following nonterminating actions:

- **forwarding-class** (forwarding-class | assured-forwarding | best-effort | expedited-forwarding | network-control)

 NOTE: On the MX Series routers and EX Series switches with the Enhanced Queuing DPC, the forwarding class is not supported as a from match condition.

- **loss-priority** (high | low | medium-high | medium-low)

 Simple filters do not support actions that perform other functions on a packet (such as incrementing a counter, logging information about the packet header, sampling the packet data, or sending information to a remote host using the system log functionality).

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Simple Filter Overview</th>
<th>1283</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Simple Filters Evaluate Packets</td>
<td>1284</td>
</tr>
<tr>
<td>Guidelines for Applying Simple Filters</td>
<td>1289</td>
</tr>
<tr>
<td>Example: Configuring and Applying a Simple Filter</td>
<td>1291</td>
</tr>
</tbody>
</table>

Guidelines for Applying Simple Filters

IN THIS SECTION

- Statement Hierarchy for Applying Simple Filters | 1290
- Restrictions for Applying Simple Filters | 1290
Statement Hierarchy for Applying Simple Filters

You can apply a simple filter to the IPv4 ingress traffic at a logical interface by including the `simple-filter input simple-filter-name` statement at the `[edit interfaces interface-name unit unit-number family inet]` hierarchy level.

```plaintext
[edit]
interfaces {
  interface-name {
    unit logical-unit-number {
      family inet {
        simple-filter {
          input filter-name;
        }
      }
    }
  }
}
```

Restrictions for Applying Simple Filters

You can apply a simple filter to the ingress IPv4 traffic at a logical interface configured on the following hardware only:

- Gigabit Ethernet intelligent queuing (IQ2) PICs installed on M120, M320, or T Series routers.
- Enhanced Queuing Dense Port Concentrators (EQ DPCs) installed on MX Series routers and EX Series switches.

The following additional restrictions pertain to applying simple filters:

- Simple filters are not supported on Modular Port Concentrator (MPC) interfaces, including Enhanced Queuing MPC interfaces.
- Simple filters are not supported for interfaces in an aggregated-Ethernet bundle.
- You can apply simple filters to family inet traffic only. No other protocol family is supported.
- You can apply simple filters to ingress traffic only. Egress traffic is not supported.
- You can apply only a single simple filter to a supported logical interface. Input lists are not supported.

RELATED DOCUMENTATION

| Simple Filter Overview | 1283 |
This example shows how to configure a simple filter.

Requirements

This example uses one of the following hardware components:

- One Gigabit Ethernet intelligent queuing (IQ2) PIC installed on an M120, M320, or T Series router
- One Enhanced Queuing Dense Port Concentrator (EQ DPC) installed on an MX Series router or an EX Series switch

Before you begin, make sure that you have:

- Installed your supported router (or switch) and PIC or DPC and performed the initial router (or switch) configuration.
- Configured basic Ethernet in the topology, and verified that traffic is flowing in the topology and that ingress IPv4 traffic is flowing into logical interface ge-0/0/1.0.

Overview

This simple filter sets the loss priority to low for TCP traffic with source address 172.16.1.1, sets the loss priority to high for HTTP (Web) traffic with source addresses in the 172.16.4.0/8 range, and sets the loss priority to low for all traffic with destination address 172.16.6.6.
Topology

The simple filter is applied as an input filter (arriving packets are checking for destination address 6.6.6.6, not queued output packets) on interface ge-0/0/1.0.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall family inet simple-filter sf_classify_1 term 1 from source-address 172.16.1.1/32
set firewall family inet simple-filter sf_classify_1 term 1 from protocol tcp
set firewall family inet simple-filter sf_classify_1 term 1 then loss-priority low
set firewall family inet simple-filter sf_classify_1 term 2 from source-address 172.16.4.0/8
set firewall family inet simple-filter sf_classify_1 term 2 from protocol tcp
set firewall family inet simple-filter sf_classify_1 term 2 from source-port http
set firewall family inet simple-filter sf_classify_1 term 2 then loss-priority high
set firewall family inet simple-filter sf_classify_1 term 3 from destination-address 6.6.6.6/32
set firewall family inet simple-filter sf_classify_1 term 3 then loss-priority low
set firewall family inet simple-filter sf_classify_1 term 3 then forwarding-class best-effort
set interfaces ge-0/0/1 unit 0 family inet simple-filter input sf_classify_1
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
```

Configuring the Simple Firewall Filter

Step-by-Step Procedure
To configure the simple filter:

1. Create the simple filter `sf_classify_1`.

   ```
   [edit]
   user@host# edit firewall family inet simple-filter sf_classify_1
   ```

2. Configure classification of TCP traffic based on the source IP address.

   ```
   [edit firewall family inet simple-filter sf_classify_1]
   user@host# set term 1 from source-address 172.16.1.1/32
   user@host# set term 1 from protocol tcp
   user@host# set term 1 then loss-priority low
   ```

3. Configure classification of HTTP traffic based on the source IP address.

   ```
   [edit firewall family inet simple-filter sf_classify_1]
   user@host# set term 2 from source-address 172.16.4.0/8
   user@host# set term 2 from protocol tcp
   user@host# set term 2 from source-port http
   user@host# set term 2 then loss-priority high
   ```

4. Configure classification of other traffic based on the destination IP address.

   ```
   [edit firewall family inet simple-filter sf_classify_1]
   user@host# set term 3 from destination-address 6.6.6.6/32
   user@host# set term 3 then loss-priority low
   user@host# set term 3 then forwarding-class best-effort
   ```

Results

Confirm the configuration of the simple filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
  simple-filter sf_classify_1 {
    term 1 {
```
Applying the Simple Filter to the Logical Interface Input

Step-by-Step Procedure
To apply the simple filter to the logical interface input:

1. Configure the logical interface to which you will apply the simple filter.

   ```
   [edit]
   user@host# edit interfaces ge-0/0/1 unit 0 family inet
   ```

2. Configure the interface address for the logical interface.

   ```
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set address 10.1.2.3/30
   ```

3. Apply the simple filter to the logical interface input.

   ```
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set simple-filter input sf_classify_1
   ```

Results

Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
[edit]
user@host# show interfaces
ge-0/0/1 {
  unit 0 {
    family inet {
      simple-filter {
        input sf_classify_1;
      }
      address 10.1.2.3/30;
    }
  }
}
```

When you are done configuring the device, commit your candidate configuration.
Verification

IN THIS SECTION
- Displaying the Mapping of Forwarding Class Maps and Names to Queue Numbers | 1296
- Displaying CoS Queue Counters for the Interface | 1296
- Displaying CoS Queue Counter Details for the Physical Interface | 1297

Confirm that the configuration is working properly.

Displaying the Mapping of Forwarding Class Maps and Names to Queue Numbers

Purpose
Display the mapping of forwarding class names to queue numbers.

Action
Enter the `show class-of-service forwarding-class` operational mode command.

```
[edit]
user@host> show class-of-service forwarding-class
```

For information about the command output, see “`show class-of-service forwarding-class`” in the CLI Explorer.

Displaying CoS Queue Counters for the Interface

Purpose
Verify that the class-of-service (CoS) queue counters for the interface reflect the simple filter applied to the logical interface.

Action
Enter the `show interfaces` command for the physical interface on which the simple filter is applied, and specify `detail` or `extensive` output level.

```
[edit]
user@host> show interfaces ge-0/0/1 detail
```

In the **Physical interface** section, under **Ingress queues**, the **Queue counters** section displays ingress queue counters for each forwarding class.
For more detailed information about the command output, see “show interfaces” in the CLI Explorer.

Displaying CoS Queue Counter Details for the Physical Interface

Purpose
Verify that the CoS queue counter details for the physical interface reflect the simple filter applied to the logical interface.

Action
Enter the `show interfaces queue` command for the physical interface on which the simple filter is applied, and specify the `ingress` option.

```
[edit]
user@host> show interfaces queue ge-0/0/1 ingress
```

For information about the command output, see "show interfaces queue" in the CLI Explorer.

RELATED DOCUMENTATION

- Simple Filter Overview | 1283
- How Simple Filters Evaluate Packets | 1284
- Guidelines for Configuring Simple Filters | 1285
- Guidelines for Applying Simple Filters | 1289
CHAPTER 24

Configuring Layer 2 Firewall Filters

IN THIS CHAPTER

- Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances | 1299
- Example: Configuring Filtering of Frames by MAC Address | 1300
- Example: Configuring Filtering of Frames by IEEE 802.1p Bits | 1302
- Example: Configuring Filtering of Frames by Packet Loss Priority | 1303
- Example: Configuring Policing and Marking of Traffic Entering a VPLS Core | 1305
- Understanding Firewall Filters on OVSDB-Managed Interfaces | 1308
- Example: Applying a Firewall Filter to OVSDB-Managed Interfaces | 1309

Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances

Juniper Networks MX Series 5G Universal Routing Platforms support firewall filters for the bridge and vpls protocol families. You configure these firewall filters to control traffic within bridge domains and VPLS instances. This topic explores some of the ways that filters can be used in a Layer 2 environment to control traffic.

MX Series router firewall filters can be applied to:

- Input interfaces
- Output interfaces
- Input to the Layer 2 forwarding table

You use a firewall filter after taking the following two steps:

1. You configure any policers and the firewall filter at the [edit firewall] hierarchy level.

2. You apply the properly configured firewall filter to an interface or bridge domain.
NOTE: If the chassis is running in Enhanced IP mode, a single shared filter instance is created for a filter applied across bridge domains. Otherwise, separate filter instances are created for each bridge domain that the filter is applied to.

RELATED DOCUMENTATION

- Example: Configuring Policing and Marking of Traffic Entering a VPLS Core | 1305
- Example: Configuring Filtering of Frames by MAC Address | 1300
- Example: Configuring Filtering of Frames by IEEE 802.1p Bits | 1302
- Example: Configuring Filtering of Frames by Packet Loss Priority | 1303

Example: Configuring Filtering of Frames by MAC Address

This example firewall filter finds frames with a certain source MAC address (88:05:00:29:3c:de/48), then counts and silently discards them. For more information about configuring firewall filter match conditions, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide. The filter is applied to the VLAN configured as vlan100200 as an input filter on Router 1.

NOTE: This example does not present exhaustive configuration listings for all routers in the figures. However, you can use this example with a broader configuration strategy to complete the MX Series router network Ethernet Operations, Administration, and Maintenance (OAM) configurations.

To configure filtering of frames by MAC address:

1. Configure `evil-mac-address`, the firewall filter:

```
[edit firewall]
family bridge {
    filter evil-mac-address {
        term one {
            from {
                source-mac-address 88:05:00:29:3c:de/48;
            }
        }
    }
```
2. Apply **evil-mac-address** as an input filter to **vlan100200** on Router 1:

```conf
[edit routing-instances]
virtual-switch-R1-1 {
  bridge-domains {
    vlan100200 {
      domain-type bridge;
      forwarding-options {
        filter {
          input evil-mac-address;
        }
      }
    }
  }
}
```

RELATED DOCUMENTATION

- Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances | 1299
- Example: Configuring Policing and Marking of Traffic Entering a VPLS Core | 1305
- Example: Configuring Filtering of Frames by IEEE 802.1p Bits | 1302
- Example: Configuring Filtering of Frames by Packet Loss Priority | 1303
Example: Configuring Filtering of Frames by IEEE 802.1p Bits

For the bridge and vpls protocol families only, MX Series router firewall filters can be configured to provide matching on IEEE 802.1p priority bits in packets with VLAN tagging:

- To configure a firewall filter term that includes matching on IEEE 802.1p learned VLAN priority (in the outer VLAN tag), use the learn-vlan-1p-priority or learn-vlan-1p-priority-except match condition.
- To configure a firewall filter term that includes matching on IEEE 802.1p user priority (in the inner VLAN tag), use the user-vlan-1p-priority or user-vlan-1p-priority-except match condition.

For more detailed information about configuring firewall filters and configuring filter match conditions for Layer 2 bridging traffic on the MX Series routers, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

NOTE: Layer 2 bridging is supported only on the MX Series routers. For more information about how to configure Layer 2 bridging, see the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

This example Layer 2 bridging firewall filter finds any incoming frames with an IEEE 802.1p learned VLAN priority level of either 1 or 2, and then classifies the packet in the best-effort default forwarding class.

NOTE: This example does not present exhaustive configuration listings for all routers in the figures. However, you can use this example with a broader configuration strategy to complete the MX Series router network Ethernet Operations, Administration, and Maintenance (OAM) configurations.

To configure filtering of frames by IEEE 802.1p bits:

1. Configure the firewall filter filter-learn-vlan-configure-forwarding:

```plaintext
[edit firewall]
family bridge {
    filter filter-learn-vlan-configure-forwarding {
        term 0 {
            from {
                learn-vlan-1p-priority [1 2];
            }
            then forwarding-class best-effort;
        }
    }
}
```
2. Apply the firewall filter `filter-learn-vlan-configure-forwarding` as an input filter to `ge-0/0/0`:

```
[edit interfaces]
ge-0/0/0 {
  unit 0 {
    family bridge {
      filter {
        input filter-learn-vlan-configure-forwarding;
      }
    }
  }
}
```

RELATED DOCUMENTATION

Understanding Firewall Filters Used to Control Traffic Within Bridge Domains and VPLS Instances	1299
Example: Configuring Policing and Marking of Traffic Entering a VPLS Core	1305
Example: Configuring Filtering of Frames by MAC Address	1300
Example: Configuring Filtering of Frames by Packet Loss Priority	1303

Example: Configuring Filtering of Frames by Packet Loss Priority

To configure an MX Series router firewall filter to provide matching on the packet loss priority (PLP) level carried in the frame, use the `loss-priority` or `loss-priority-except` match condition. Packet loss priority matching is available for all protocols. For more detailed information about configuring firewall filters and configuring filter match conditions for Layer 2 bridging traffic on the MX Series routers, see the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

NOTE: Layer 2 bridging is supported only on the MX Series routers. For more information about how to configure Layer 2 bridging, see the *Junos OS Routing Protocols Library*.

This example Layer 2 bridging firewall filter finds any incoming frames with a packet loss priority (PLP) level of `medium-high`, and then classifies the packet in the `expedited-forwarding` default forwarding class.
NOTE: This example does not present exhaustive configuration listings for all routers in the figures. However, you can use this example with a broader configuration strategy to complete the MX Series router network Ethernet Operations, Administration, and Maintenance (OAM) configurations.

To configure filtering of frames by packet loss priority:

1. Configure the firewall filter **filter-plp-configure-forwarding**:

   ```
   [edit firewall]
   family bridge {
     filter filter-plp-configure-forwarding {
       term 0 {
         from {
           loss-priority medium-high;
         }
         then forwarding-class expedited-forwarding;
       }
     }
   }
   ```

2. Configure a Layer 2 bridging domain **bd** for the **ge-0/0/0** interface (that has already been configured at the [edit interfaces] hierarchy level):

   ```
   [edit bridge-domains]
   bd {
     domain-type bridge {
       interface ge-0/0/0;
     }
   }
   ```

3. Apply the filter **filter-plp-configure-forwarding** as an input filter to the **ge-0/0/0** interface:

   ```
   [edit interfaces]
   ge-0/0/0 {
     unit 0 {
       family bridge {
         filter {
           input filter-plp-configure-forwarding;
         }
       }
     }
   }
   ```
Example: Configuring Policing and Marking of Traffic Entering a VPLS Core

This example firewall filter allows a service provider to limit the aggregate broadcast traffic entering the virtual private LAN service (VPLS) core. The broadcast, unknown unicast, and non-IP multicast traffic received from one of the service provider’s customers on a logical interface has a policer applied. The service provider has also configured a two-rate, three-color policer to limit the customer’s IP multicast traffic. For more information on the configuration of policers, see the *Class of Service Feature Guide (Routers and EX9200 Switches)*.

The position of the router is shown in Figure 62 on page 1305.

Figure 62: Policing and Marking Traffic Entering a VPLS Core

There are four major parts to the configuration:

- The policer for broadcast, unknown unicast, and non-IP multicast traffic. This example marks the loss priority as high if this type of traffic exceeds 50 Kbps.
- The two-rate, three-color policer for IP multicast traffic. This example configures a committed information rate (CIR) of 4 Mbps, a committed burst size of 256 Kbytes, a peak information rate of 4.1 Mbps, and a peak burst size of 256 Kbytes (the same as the CIR).
• The filter that applies the two policers to VPLS.
• The application of the filter to the customer interface configuration as an input filter.

NOTE: This example does not present exhaustive configuration listings for all routers in the figures. However, you can use this example with a broader configuration strategy to complete the MX Series router network Ethernet Operations, Administration, and Maintenance (OAM) configurations.

To configure policing and marking of traffic entering a VPLS core:

1. Configure `policer bcast-unknown-unicast-non-ip-mcast-policer`, a firewall policer to limit the aggregate broadcast, unknown unicast, and non-IP multicast to 50 kbps:

   ```
   [edit firewall]
   policer bcast-unknown-unicast-non-ip-mcast-policer {
     if-exceeding {
       bandwidth-limit 50k;
       burst-size-limit 150k;
     }
     then loss-priority high;
   }
   ```

2. Configure `three-color-policer ip-multicast-traffic-policer`, a three-color policer to limit the IP multicast traffic:

   ```
   [edit firewall]
   three-color-policer ip-multicast-traffic-policer {
     two-rate {
       color-blind;
       committed-information-rate 4m;
       committed-burst-size 256k;
       peak-information-rate 4100000;
       peak-burst-size 256k;
     }
   }
   ```
3. Configure **customer-1**, a firewall filter that uses the two policers to limit and mark customer traffic. The first term marks the IP multicast traffic based on the destination MAC address, and the second term polices the broadcast, unknown unicast, and non-IP multicast traffic:

```plaintext
[edit firewall]
family vpls {
  filter customer-1 {
    term t0 {
      from {
        destination-mac-address {
          01:00:5e:00:00:00/24;
        }
      }
      then {
        three-color-policer {
          two-rate ip-multicast-traffic-policer;
        }
        forwarding-class expedited-forwarding;
      }
    }
    term t1 {
      from {
        traffic-type [ broadcast unknown-unicast multicast ];
      }
      then policer bcast-unknown-unicast-non-ip-mcast-policer;
    }
  }
}
```

4. Apply the firewall filter as an input filter to the customer interface at **ge-2/1/0**:

```plaintext
[edit interfaces]
ge-2/1/0 {
  vlan-tagging;
  encapsulation flexible-ethernet-services;
  unit 5 {
    encapsulation vlan-vpls;
    vlan-id 9;
    family vpls {
      filter {
        input customer-1;
      }
    }
  }
}
```
Understanding Firewall Filters on OVSDB-Managed Interfaces

When you use a Contrail controller to manage VXLANs on a QFX switch (through the Open vSwitch Database—OVSDB—management protocol), the VXLAN interfaces are automatically configured with the `flexible-vlan-tagging` and `encapsulation extended-vlan-bridge` statements. Starting with Junos OS Release 14.1X53-D30, you can create `family ethernet-switching` logical units (subinterfaces) on these interfaces. This enables you to apply Layer 2 (`family ethernet-switching`) firewall filters to these subinterfaces, which means that you apply firewall filters to OVSDB-managed interfaces. These filters support all the same match conditions and actions as any other Layer 2 filter.

WARNING: Firewall filters are the only supported configuration items on `family ethernet-switching` subinterfaces of OVSDB-managed interfaces. Layer 2 (port) filters are the only allowed filters.

Because a Contrail controller can create subinterfaces dynamically, you need to apply firewall filters in such a way that the filters will apply to subinterfaces whenever the controller creates them. You accomplish this by using configuration groups to configure and apply the firewall filters. See "Example: Applying a Firewall Filter to OVSDB-Managed Interfaces" on page 1309 for more information.
Example: Applying a Firewall Filter to OVSDB-Managed Interfaces

Starting with Junos OS Release 14.1X53-D30, you can create family ethernet-switching logical units (subinterfaces) on VXLAN interfaces managed by a Contrail controller. (The controller and switch communicate through the Open vSwitch Database—OVSDB—management protocol). This support enables you to apply Layer 2 (family ethernet-switching) firewall filters to these subinterfaces, which means that you apply firewall filters to OVSDB-managed interfaces. Because a Contrail controller can create subinterfaces dynamically, you need to apply firewall filters in such a way that the filters will apply to subinterfaces whenever the controller creates them. You accomplish this by using configuration groups to configure and apply the firewall filters. (You must use configuration groups for this purpose—that is, you cannot apply a firewall filter directly to these subinterfaces.)

NOTE: Firewall filters are the only supported configuration items on family ethernet-switching subinterfaces of OVSDB-managed interfaces. Layer 2 (port) filters are the only allowed filters.

Requirements

This example uses the following hardware and software components:

- A QFX5100 switch
- Junos OS Release 14.1X53-D30 or later
Overview

This example assumes that interfaces xe-0/0/0 and xe-0/0/1 on the switch are VXLAN interfaces managed by a Contrail controller, which means that the controller has applied the `flexible-vlan-tagging` and `encapsulation extended-vlan-bridge` statements to these interfaces. You want to apply a firewall filter that accepts traffic from the Web to any subinterfaces that the controller creates dynamically. To apply a firewall filter Layer 2 (port) firewall filter to any dynamically created subinterfaces, you must create and apply the filter as shown in this example.

Configuration

IN THIS SECTION

- [xref target has no title]

To configure a firewall filter to be automatically applied to subinterfaces created dynamically by a Contrail controller, perform these tasks:

CLI Quick Configuration

```
[edit]
set groups vxlan-filter-group interfaces xe-0/0/0 unit <*> family ethernet-switching filter input vxlan-filter
set groups vxlan-filter-group interfaces xe-0/0/1 unit <*> family ethernet-switching filter input vxlan-filter
set groups vxlan-filter-group firewall family ethernet-switching filter vxlan-filter term t1 from
destination-port 80
set groups vxlan-filter-group firewall family ethernet-switching filter vxlan-filter term t1 then accept
set apply-groups vxlan-filter-group
```

Step-by-Step Procedure
1. Create configuration group `vxlan-filter-group` to apply firewall filter `vxlan-filter` to any subinterface of interface xe-0/0/0. The filter applies to any subinterface because you specify `unit <*>`:

```text
[edit]
user@switch# set groups vxlan-filter-group interfaces xe-0/0/0 unit <*> family ethernet-switching filter input vxlan-filter
```

2. Create the same configuration for interface xe-0/0/1:

```text
[edit]
user@switch# set groups vxlan-filter-group interfaces xe-0/0/1 unit <*> family ethernet-switching filter input vxlan-filter
```

3. Configure the group to include a family `ethernet-switching` filter that matches on outgoing traffic to the web:

```text
[edit]
user@switch# set groups vxlan-filter-group firewall family ethernet-switching filter vxlan-filter term t1 from destination-port 80
```

4. Configure the group to accept the traffic that matches the filter:

```text
[edit]
user@switch# set groups vxlan-filter-group firewall family ethernet-switching filter vxlan-filter term t1 then accept
```

5. Apply the group to enable its configuration:

```text
[edit]
user@switch# set apply-groups vxlan-filter-group
```

RELATED DOCUMENTATION

- *Understanding Junos OS Configuration Groups*
- *Overview of Firewall Filters* | 1516
- *Understanding VXLANs*
- *Understanding the OVSDB Protocol Running on Juniper Networks Devices*
- *Example: Applying a Policer to OVSDB-Managed Interfaces* | 1759
CHAPTER 25

Configuring Firewall Filters for Forwarding, Fragments, and Policing

IN THIS CHAPTER

- Filter-Based Forwarding Overview | 1313
- Firewall Filters That Handle Fragmented Packets Overview | 1315
- Stateless Firewall Filters That Reference Policers Overview | 1316
- Example: Configuring Filter-Based Forwarding on the Source Address | 1317
- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1329

Filter-Based Forwarding Overview

IN THIS SECTION

- Filters That Classify Packets or Direct Them to Routing Instances | 1313
- Input Filtering to Classify and Forward Packets Within the Router or Switch | 1314
- Output Filtering to Forward Packets to Another Routing Table | 1315
- Restrictions for Applying Filter-Based Forwarding | 1315

Firewall filters can be used to block specific packets. They can also be used to affect how specific packets are forwarded.

Filters That Classify Packets or Direct Them to Routing Instances

For IPv4 or IPv6 traffic only, you can use stateless firewall filters in conjunction with forwarding classes and routing instances to control how packets travel in a network. This is called filter-based forwarding (FBF).
You can define a filtering term that matches incoming packets based on source address and then classifies matching packets to a specified forwarding class. This type of filtering can be configured to grant certain types of traffic preferential treatment or to improve load balancing. To configure a stateless firewall filter to classify packets to a forwarding class, configure a term with the *nonterminating action forwarding-class class-name*.

You can also define a filtering term that directs matching packets to a specified routing instance. This type of filtering can be configured to route specific types of traffic through a firewall or other security device before the traffic continues on its path. To configure a stateless firewall filter to direct traffic to a routing instance, configure a term with the *terminating action routing-instance routing-instance-name <topology topology-name>* to specify the routing instance to which matching packets will be forwarded.

NOTE: Unicast Reverse Path Forwarding (uRPF) check is compatible with FBF actions. uRPF check is processed for source address checking before any FBF actions are enabled for static and dynamic interfaces. This applies to both IPv4 and IPv6 families.

To forward traffic to the master routing instance, reference *routing-instance default* in the firewall configuration, as shown here:

```plaintext
[edit firewall]
family inet {
    filter test {
        term 1 {
            then {
                routing-instance default;
            }
        }
    }
}
```

NOTE: Do not reference *routing-instance master*. This does not work.

Input Filtering to Classify and Forward Packets Within the Router or Switch

You can configure filters to classify packets based on source address and specify the forwarding path the packets take within the router or switch by configuring a filter on the ingress interface.

For example, you can use this filter for applications to differentiate traffic from two clients that have a common access layer (for example, a Layer 2 switch) but are connected to different Internet service
providers (ISPs). When the filter is applied, the router or switch can differentiate the two traffic streams and direct each to the appropriate network. Depending on the media type the client is using, the filter can use the source IP address to forward the traffic to the corresponding network through a tunnel. You can also configure filters to classify packets based on IP protocol type or IP precedence bits.

Output Filtering to Forward Packets to Another Routing Table

You can also forward packets based on output filters by configuring a filter on the egress interfaces. In the case of port mirroring, it is useful for port-mirrored packets to be distributed to multiple monitoring PICs and collection PICs based on patterns in packet headers. FBF on the port-mirroring egress interface must be configured.

Packets forwarded to the output filter have been through at least one route lookup when an FBF filter is configured on the egress interface. After the packet is classified at the egress interface by the FBF filter, it is redirected to another routing table for further route lookup.

Restrictions for Applying Filter-Based Forwarding

An interface configured with filter-based forwarding does not support source-class usage (SCU) filter matching or source-class and destination-class usage (SCU/DCU) accounting.

RELATED DOCUMENTATION

- Example: Configuring Filter-Based Forwarding on the Source Address | 1317
- Example: Configuring Filter-Based Forwarding on Logical Systems | 1101

Firewall Filters That Handle Fragmented Packets Overview

You can create stateless firewall filters that handle fragmented packets destined for the Routing Engine. By applying these policies to the Routing Engine, you protect against the use of IP fragmentation as a means to disguise TCP packets from a firewall filter.

For example, consider an IP packet that is fragmented into the smallest allowable fragment size of 8 bytes (a 20-byte IP header plus an 8-byte payload). If this IP packet carries a TCP packet, the first fragment (fragment offset of 0) that arrives at the device contains only the TCP source and destination ports (first 4 bytes), and the sequence number (next 4 bytes). The TCP flags, which are contained in the next 8 bytes of the TCP header, arrive in the second fragment (fragment offset of 1).

See RFC 1858, *Security Considerations for IP Fragment Filtering*.
Stateless Firewall Filters That Reference Policers Overview

Policing, or rate limiting, is an important component of firewall filters that lets you limit the amount of traffic that passes into or out of an interface.

A firewall filter that references a policer can provide protection from denial-of-service (DOS) attacks. Traffic that exceeds the rate limits configured for the policer is either discarded or marked as lower priority than traffic that conforms to the configured rate limits. Packets can be marked for a lower priority by being set to a specific output queue, set to a specific packet loss priority (PLP) level, or both. When necessary, low-priority traffic can be discarded to prevent congestion.

A policer specifies two types of rate limits on traffic:

- Bandwidth limit—The average traffic rate permitted, specified as a number of bits per second.
- Maximum burst size—The packet size permitted for bursts of data that exceed the bandwidth limit.

Policing uses an algorithm to enforce a limit on average bandwidth while allowing bursts up to a specified maximum value. You can use policing to define specific classes of traffic on an interface and apply a set of rate limits to each class. After you name and configure a policer, it is stored as a template. You can then apply the policer in an interface configuration or, to rate-limit packet-filtered traffic only, in a firewall filter configuration.

For an IPv4 firewall filter term only, you can also specify a prefix-specific action as a nonterminating action that applies a policer to the matched packets. A prefix-specific action applies additional matching criteria on the filter-matched packets based on specified address prefix bits and then associates the matched packets with a counter and policer instance for that filter term or for all terms in the firewall filter.

To apply a policer or a prefix action to packet-filtered traffic, you can use the following firewall filter nonterminating actions:

- `policer policer-name`
- `three-color-policer (single-rate | two-rate) policer-name`
- `prefix-action action-name`

NOTE: The packet lengths that a policer considers depends on the address family of the firewall filter. See “Understanding the Frame Length for Policing Packets” on page 1678.
Example: Configuring Filter-Based Forwarding on the Source Address

This example shows how to configure filter-based forwarding (FBF), which is sometimes also called Policy Based Routing (PBR). The filter classifies packets to determine their forwarding path within the ingress routing device.

Filter-based forwarding is supported for IP version 4 (IPv4) and IP version 6 (IPv6).

Requirements

No special configuration beyond device initialization is required for this example.

Overview

In this example, we use FBF for service provider selection when customers have Internet connectivity provided by different ISPs yet share a common access layer. When a shared media (such as a cable modem) is used, a mechanism on the common access layer looks at Layer 2 or Layer 3 addresses and distinguishes between customers. You can use filter-based forwarding when the common access layer is implemented using a combination of Layer 2 switches and a single router.

With FBF, all packets received on an interface are considered. Each packet passes through a filter that has match conditions. If the match conditions are met for a filter and you have created a routing instance, FBF is applied to the packet. The packet is forwarded based on the next hop specified in the routing instance. For static routes, the next hop can be a specific LSP.
To configure FBF, perform the following tasks:

- Create a match filter on the ingress device. To specify a match filter, include the `filter filter-name` statement at the `[edit firewall]` hierarchy level. A packet that passes through the filter is compared against a set of rules to classify it and to determine its membership in a set. Once classified, the packet is forwarded to a routing table specified in the accept action in the filter description language. The routing table then forwards the packet to the next hop that corresponds to the destination address entry in the table.

- Create routing instances that specify the routing table(s) to which a packet is forwarded, and the destination to which the packet is forwarded at the `[edit routing-instances]` hierarchy level. For example:

  ```
  [edit]
  routing-instances {
    routing-table-name1 {
      instance-type forwarding;
      routing-options {
        static {
          route 0.0.0.0/0 next-hop 172.16.0.14;
        }
      }
    }
    routing-table-name2 {
      instance-type forwarding;
      routing-options {
        static {
          route 0.0.0.0/0 next-hop 172.16.0.18;
        }
      }
    }
  }
  ```

- Create a RIB group to share interface routes with the forwarding routing instances used in filter-based forwarding (FBF). This part of the configuration resolves the routes installed in the routing instances to directly connected next hops on that interface. Create the routing table group at the `[edit routing-options]` hierarchy level.

  ```
  [edit]
  routing-options {
    interface-routes {
  ```
This example shows a packet filter that directs customer traffic to a next-hop router in the domains, SP1 or SP2, based on the packet’s source address.

If the packet has a source address assigned to an SP1 customer, destination-based forwarding occurs using the sp1-route-table.inet.0 routing table. If the packet has a source address assigned to an SP2 customer, destination-based forwarding occurs using the sp2-route-table.inet.0 routing table. If a packet does not match either of these conditions, the filter accepts the packet, and destination-based forwarding occurs using the standard inet.0 routing table.

Figure 63 on page 1320 shows the topology used in this example.

On Device P1, an input filter classifies packets received from Device PE3 and Device PE4. The packets are routed based on the source addresses. Packets with source addresses in the 10.1.1.0/24 and 10.1.2.0/24 networks are routed to Device PE1. Packets with source addresses in the 10.2.1.0/24 and 10.2.2.0/24 networks are routed to Device PE2.
To establish connectivity, OSPF is configured on all of the interfaces. For demonstration purposes, loopback interface addresses are configured on the routing devices to represent networks in the clouds.

The "CLI Quick Configuration" on page 1320 section shows the entire configuration for all of the devices in the topology. The "Configuring Filter-Based Forwarding on Device P1" on page 1323 section shows the step-by-step configuration of the ingress routing device, Device P1.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device P1

```
set firewall filter classify-customers term sp1-customers from source-address 10.1.1.0/24
set firewall filter classify-customers term sp1-customers from source-address 10.1.2.0/24
set firewall filter classify-customers term sp1-customers then log
set firewall filter classify-customers term sp1-customers then routing-instance sp1-route-table
set firewall filter classify-customers term sp2-customers from source-address 10.2.1.0/24
set firewall filter classify-customers term sp2-customers from source-address 10.2.2.0/24
set firewall filter classify-customers term sp2-customers then log
set firewall filter classify-customers term sp2-customers then routing-instance sp2-route-table
```
set firewall filter classify-customers term default then accept
set interfaces fe-1/2/0 unit 0 family inet filter input classify-customers
set interfaces fe-1/2/0 unit 0 family inet address 172.16.0.10/30
set interfaces fe-1/2/1 unit 0 family inet address 172.16.0.13/30
set interfaces fe-1/2/2 unit 0 family inet address 172.16.0.17/30
set protocols ospf rib-group fb-f-group
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
set routing-instances sp1-route-table instance-type forwarding
set routing-instances sp1-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.14
set routing-instances sp2-route-table instance-type forwarding
set routing-instances sp2-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.18
set routing-options interface-routes rib-group fb-f-group
set routing-options rib-groups fb-f-group import-rib inet.0
set routing-options rib-groups fb-f-group import-rib sp1-route-table.inet.0
set routing-options rib-groups fb-f-group import-rib sp2-route-table.inet.0

Device P2

set interfaces fe-1/2/0 unit 0 family inet address 172.16.0.2/30
set interfaces fe-1/2/1 unit 0 family inet address 172.16.0.6/30
set interfaces fe-1/2/2 unit 0 family inet address 172.16.0.9/30
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable

Device PE1

set interfaces fe-1/2/0 unit 0 family inet address 172.16.0.14/30
set interfaces lo0 unit 0 family inet address 172.16.1.1/32
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable

Device PE2
Device PE3

```
set interfaces fe-1/2/0 unit 0 family inet address 172.16.0.1/30
set interfaces lo0 unit 0 family inet address 10.1.1.0/32
set interfaces lo0 unit 0 family inet address 10.1.2.0/32
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
```

Device PE4

```
set interfaces fe-1/2/0 unit 0 family inet address 172.16.0.5/30
set interfaces lo0 unit 0 family inet address 10.2.1.0/32
set interfaces lo0 unit 0 family inet address 10.2.2.0/32
set protocols ospf area 0.0.0.0 interface all
set protocols ospf area 0.0.0.0 interface fxp0.0 disable
```

Configuring the Firewall Filter on P1

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the firewall filter on the main router or switch:

1. Configure the source addresses for SP1 customers.

   ```
   [edit firewall filter classify-customers term sp1-customers]
   user@host# set from source-address 10.1.1.0/24
   user@host# set from source-address 10.1.2.0/24
   ```
2. Configure the actions that are taken when packets are received with the specified source addresses; they are logged, and they are passed to the sp1-route-table routing instance for routing via the sp1-route-table.inet.0 routing table.

```plaintext
[edit firewall filter classify-customers term sp1-customers]
user@host# set then log
user@host# set then routing-instance sp1-route-table
```

3. Configure the source addresses for SP2 customers.

```plaintext
[edit firewall filter classify-customers term sp2-customers]
user@host# set from source-address 10.2.1.0/24
user@host# set from source-address 10.2.2.0/24
```

4. Configure the actions that are taken when packets are received with the specified source addresses; they are logged, and they are passed to the sp2-route-table routing instance for routing via the sp2-route-table.inet.0 routing table.

```plaintext
[edit firewall filter classify-customers term sp2-customers]
user@host# set then log
user@host# set then routing-instance sp2-route-table
```

5. Configure the action to take when packets are received from any other source address; they are accepted and routed using the default IPv4 unicast routing table, inet.0.

```plaintext
[edit firewall filter classify-customers term default]
user@host# set then accept
```

Configuring Filter-Based Forwarding on Device P1

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the routing instances:

1. Configure the interfaces.

```plaintext
[edit interfaces fe-1/2/0]
```
2. Assign the **classify-customers** firewall filter to router interface fe-1/2/0.0 as an input packet filter.

   ```
   [edit interfaces fe-1/2/0]
   user@host# set unit 0 family inet filter input classify-customers
   ```

3. Configure connectivity, using either a routing protocol or static routing.

 As a best practice, disable routing on the management interface.

   ```
   [edit protocols ospf area 0.0.0.0]
   user@host# set interface all
tempuser@host# set interface fxp0.0 disable
   ```

4. Create the routing instances that are referenced in the **classify-customers** firewall filter. The forwarding instance type provides support for filter-based forwarding, where interfaces are not associated with instances.

   ```
   [edit routing-instances]
   user@host# set sp1-route-table instance-type forwarding
   user@host# set sp2-route-table instance-type forwarding
   ```

5. For each routing instance, define a default route to forward traffic to the specified next hop (PE1 and PE2 in this example).

   ```
   [edit routing-instances ]
   user@host# set sp1-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.14
   user@host# set sp2-route-table routing-options static route 0.0.0.0/0 next-hop 172.16.0.18
   ```
6. Associate the routing tables to form a routing table group. The first routing table, inet.0, is the primary routing table, and the others are secondary routing tables. The primary routing table determines the address family of the routing table group, in this case IPv4.

 [edit routing-options]
 user@host# set rib-groups fbf-group import-rib inet.0
 user@host# set rib-groups fbf-group import-rib sp1-route-table.inet.0
 user@host# set rib-groups fbf-group import-rib sp2-route-table.inet.0

7. Specify the fbf-group routing table group within the OSPF configuration to install OSPF routes into the three routing tables.

 [edit protocols ospf]
 user@host# set rib-group fbf-group

8. Commit the configuration when you are done.

 [edit]
 user@host# commit

Results

Confirm your configuration by issuing the show interfaces, show firewall, show protocols, show routing-instances, and show routing-options commands.

 user@host# show interfaces
 fe-1/2/0 {
 unit 0 {
 family inet {
 filter {
 input classify-customers;
 }
 address 172.16.0.10/30;
 }
 }
 }
 fe-1/2/1 {
 unit 0 {
 family inet {
 address 172.16.0.13/30;
 }
 }
 }
fe-1/2/2 {
 unit 0 {
 family inet {
 address 172.16.0.17/30;
 }
 }
}

user@host# show firewall
filter classify-customers {
 term sp1-customers {
 from {
 source-address {
 10.1.1.0/24;
 10.1.2.0/24;
 }
 }
 then {
 log;
 routing-instance sp1-route-table;
 }
 }
 term sp2-customers {
 from {
 source-address {
 10.2.1.0/24;
 10.2.2.0/24;
 }
 }
 then {
 log;
 routing-instance sp2-route-table;
 }
 }
 term default {
 then accept;
 }
}

user@host# show protocols
1326
ospf {
 rib-group fbf-group;
 area 0.0.0.0 {
 interface all;
 interface fxp0.0 {
 disable;
 }
 }
}

user@host# show routing-instances
sp1-route-table {
 instance-type forwarding;
 routing-options {
 static {
 route 0.0.0.0/0 next-hop 172.16.0.14;
 }
 }
}

sp2-route-table {
 instance-type forwarding;
 routing-options {
 static {
 route 0.0.0.0/0 next-hop 172.16.0.18;
 }
 }
}

user@host# show routing-options
rib-groups {
 fbf-group {
 import-rib [inet.0 sp1-route-table.inet.0 sp2-route-table.inet.0];
 }
}

Verification

Confirm that the configuration is working properly.

Pinging with Specified Source Addresses

Purpose
Send some ICMP packets across the network to test the firewall filter.
Action
1. Run the ping command, pinging the lo0.0 interface on Device PE1.

 The address configured on this interface is 172.16.1.1.

 Specify the source address 10.1.2.1, which is the address configured on the lo0.0 interface on Device PE3.

 user@PE3> ping 172.16.1.1 source 10.1.2.1

 PING 172.16.1.1 (172.16.1.1): 56 data bytes
 64 bytes from 172.16.1.1: icmp_seq=0 ttl=62 time=1.444 ms
 64 bytes from 172.16.1.1: icmp_seq=1 ttl=62 time=2.094 ms
 ^C
 --- 172.16.1.1 ping statistics ---
 2 packets transmitted, 2 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 1.444/1.769/2.094/0.325 ms

2. Run the ping command, pinging the lo0.0 interface on Device PE2.

 The address configured on this interface is 172.16.2.2.

 Specify the source address 10.2.1.1, which is the address configured on the lo0.0 interface on Device PE4.

 user@PE4> ping 172.16.2.2 source 10.2.1.1

 PING 172.16.2.2 (172.16.2.2): 56 data bytes
 64 bytes from 172.16.2.2: icmp_seq=0 ttl=62 time=1.473 ms
 64 bytes from 172.16.2.2: icmp_seq=1 ttl=62 time=1.407 ms
 ^C
 --- 172.16.2.2 ping statistics ---
 2 packets transmitted, 2 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 1.407/1.440/1.473/0.033 ms

Meaning
Sending these pings activates the firewall filter actions.

Verifying the Firewall Filter

Purpose
Make sure the firewall filter actions take effect.

Action
1. Run the show firewall log command on Device P1.

 user@P1> show firewall log
<table>
<thead>
<tr>
<th>Time</th>
<th>Filter</th>
<th>Action</th>
<th>Interface</th>
<th>Protocol</th>
<th>Src Addr</th>
<th>Dest Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:52:20</td>
<td>pfe</td>
<td>A</td>
<td>fe-1/2/0.0</td>
<td>ICMP</td>
<td>10.2.1.1</td>
<td>172.16.2.2</td>
</tr>
<tr>
<td>13:52:19</td>
<td>pfe</td>
<td>A</td>
<td>fe-1/2/0.0</td>
<td>ICMP</td>
<td>10.2.1.1</td>
<td>172.16.2.2</td>
</tr>
<tr>
<td>13:51:53</td>
<td>pfe</td>
<td>A</td>
<td>fe-1/2/0.0</td>
<td>ICMP</td>
<td>10.1.2.1</td>
<td>172.16.1.1</td>
</tr>
<tr>
<td>13:51:52</td>
<td>pfe</td>
<td>A</td>
<td>fe-1/2/0.0</td>
<td>ICMP</td>
<td>10.1.2.1</td>
<td>172.16.1.1</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring Filter-Based Forwarding
- Copying and Redirecting Traffic with Port Mirroring and Filter-Based Forwarding
- Using Filter-Based Forwarding to Export Monitored Traffic to Multiple Destinations

Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address

In This Section

- Understanding Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1330
- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface | 1332
- Example: Configuring Filter-Based Forwarding to a Specific Destination IP Address | 1337
Understanding Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address

Policy-based routing (also known as filter-based forwarding) refers to the use of firewall filters that are applied to an interface to match certain IP header characteristics and to route only those matching packets differently than the packets would normally be routed.

Starting in Junos OS Release 12.2, you can use `then next-interface`, `then next-ip`, or `then next-ip6` as an action in a firewall filter. From specific match conditions, IPv4 and IPv6 addresses or an interface name can be specified as the response action to a match.

The set of match conditions can be as follows:

- Layer-3 properties (for example, the source or destination IP address or the TOS byte)
- Layer-4 properties (for example, the source or destination port)

The route for the given IPv4 or IPv6 address has to be present in the routing table for policy-based routing to take effect. Similarly, the route through the given interface has to be present in the forwarding table for `next-interface` action to take effect. This can be achieved by configuring an interior gateway protocol (IGP), such as OSPF or IS-IS, to advertise Layer 3 routes.

The firewall filter matches the conditions and forwards the packet to one of the following:

- An IPv4 address (using the `next-ip` firewall filter action)
- An IPv6 address (using the `next-ip6` firewall filter action)
- An interface (using the `next-interface` firewall filter action)

Suppose, for example, that you want to offer services to your customers, and the services reside on different servers. An example of a service might be hosted DNS or hosted FTP. As customer traffic arrives at the Juniper Networks routing device, you can use filter-based forwarding to send traffic to the servers by applying a match condition on a MAC address or an IP address or simply an incoming interface and send the packets to a certain outgoing interface that is associated with the appropriate server. Some of your destinations might be IPv4 or IPv6 addresses, in which case the `next-ip` or `next-ip6` action is useful.

Optionally, you can associate the outgoing interfaces or IP addresses with routing instances.

For example:

```plaintext
firewall {
    filter filter1 {
        term t1 {
            from {
                source-address {
                    10.1.1.3/32;
                }
            }
        }
    }
}
```
routing-instances {
 rins1 {
 instance-type virtual-router;
 interface xe-0/1/0.1;
 }
 rins2 {
 instance-type virtual-router;
 interface xe-0/1/0.2;
 }
}

SEE ALSO

- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface | 1332
- Firewall Filter Nonterminating Actions | 795
Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface

IN THIS SECTION
- Requirements | 1332
- Overview | 1332
- Configuration | 1333
- Verification | 1336

This example shows how to use then next-interface as an action in a firewall filter.

Requirements
This example has the following hardware and software requirements:

- MX Series 5G Universal Routing Platform as the routing device with the firewall filter configured.
- Junos OS Release 12.2 running on the routing device with the firewall filter configured.
- The filter with the next-interface (or next-ip) action can only be applied to an interface that is hosted on a Trio MPC. If you apply the filter to an I-chip based DPC, the commit operation fails.
- The outgoing interface referred to in the next-interface interface-name action can be hosted on a Trio MPC or an I-chip based DPC.

Overview
In this example, Device R1 has two loopback interface addresses configured: 172.16.1.1 and 172.16.2.2.

On Device R2, a firewall filter has multiple terms configured. Each term matches one of the source addresses in incoming traffic, and routes the traffic to specified outgoing interfaces. The outgoing interfaces are configured as VLAN-tagged interfaces between Device R2 and Device R3.

IS-IS is used for connectivity among the devices.

Figure 64 on page 1332 shows the topology used in this example.

Figure 64: Filter-Based Forwarding to Specified Outgoing Interfaces

[Diagram of network topology showing interfaces and addresses]
This example shows the configuration on Device R2.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R2

```
set interfaces ge-2/1/0 unit 0 family inet filter input filter1
set interfaces ge-2/1/0 unit 0 family inet address 10.0.0.10/30
set interfaces ge-2/1/0 unit 0 description to-R1
set interfaces ge-2/1/0 unit 0 family iso
set interfaces ge-2/1/1 vlan-tagging
set interfaces ge-2/1/1 description to-R3
set interfaces ge-2/1/1 unit 0 vlan-id 1001
set interfaces ge-2/1/1 unit 0 family inet address 10.0.0.13/30
set interfaces ge-2/1/1 unit 0 family iso
set interfaces ge-2/1/1 unit 1 vlan-id 1002
set interfaces ge-2/1/1 unit 1 family inet address 10.0.0.25/30
set interfaces ge-2/1/1 unit 1 family iso
set interfaces lo0 unit 0 family inet address 10.255.4.4/32
set interfaces lo0 unit 0 family iso address 49.0001.0404.00
set firewall family inet filter filter1 term t1 from source-address 172.16.1.1/32
set firewall family inet filter filter1 term t1 then next-interface ge-2/1/1.0
set firewall family inet filter filter1 term t2 from source-address 172.16.2.2/32
set firewall family inet filter filter1 term t2 then next-interface ge-2/1/1.1
set protocols isis interface all level 1 disable
set protocols isis interface f xp0.0 disable
set protocols isis interface lo0.0
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the interfaces.
2. Configure the firewall filter.

```
[edit firewall family inet filter filter1]
user@R2# set term t1 from source-address 172.16.1.1/32
user@R2# set term t1 then next-interface ge-2/1/1.0
user@R2# set term t2 from source-address 172.16.2.2/32
user@R2# set term t2 then next-interface ge-2/1/1.1
```

3. Enable IS-IS on the interfaces.

```
[edit protocols is-is]
user@R2# set interface all level 1 disable
user@R2# set interface fxp0.0 disable
user@R2# set interface lo0.0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show firewall`, and `show protocols` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
user@R2# show interfaces
ge-2/1/0 {
  unit 0 {
    description to-R1;
  }
```
family inet {
 filter {
 input filter1;
 }
 address 10.0.0.10/30;
}
family iso;
}

ge-2/1/1 {
 description to-R3;
 vlan-tagging;
 unit 0 {
 vlan-id 1001;
 family inet {
 address 10.0.0.13/30;
 }
 family iso;
 }
 unit 1 {
 vlan-id 1002;
 family inet {
 address 10.0.0.25/30;
 }
 family iso;
 }
}

lo0 {
 unit 0 {
 family inet {
 address 10.255.4.4/32;
 }
 family iso {
 address 49.0001.0010.0000.0404.00;
 }
 }
}

user@R2# show firewall
family inet {
 filter filter1 {
 term t1 {
 from {
 source-address {

172.16.1.1/32;
}
}
then {
 next-interface {
 ge-2/1/1.0;
 }
}

term t2 {
 from {
 source-address {
 172.16.2.2/32;
 }
 }
 then {
 next-interface {
 ge-2/1/1.1;
 }
 }
}

user@R2# show protocols
isis {
 interface all {
 level 1 disable;
 }
 interface fxp0.0 {
 disable;
 }
 interface lo0.0;
}

If you are done configuring the device, enter commit from configuration mode.

Verification

Confirm that the configuration is working properly.

Checking the Paths Used

Purpose

Make sure that the expected paths are used when sending traffic from Device R1 to Device R4.

Action
On Device R1, enter the `traceroute` command.

```
user@R1> traceroute 10.255.6.6 source 172.16.1.1

traceroute to 10.255.6.6 (10.255.6.6) from 172.16.1.1, 30 hops max, 40 byte packets
1  10.0.0.10 (10.0.0.10)  0.976 ms  0.895 ms  0.815 ms
2  10.0.0.14 (10.0.0.14)  0.868 ms  0.888 ms  0.813 ms
3  10.255.6.6 (10.255.6.6)  1.715 ms  1.442 ms  1.382 ms
```

```
user@R1> traceroute 10.255.6.6 source 172.16.2.2

traceroute to 10.255.6.6 (10.255.6.6) from 172.16.2.2, 30 hops max, 40 byte packets
1  10.0.0.10 (10.0.0.10)  0.973 ms  0.907 ms  0.782 ms
2  10.0.0.26 (10.0.0.26)  0.844 ms  0.890 ms  0.852 ms
3  10.255.6.6 (10.255.6.6)  1.384 ms  1.516 ms  1.462 ms
```

Meaning
The output shows that the second hop changes, depending on the source address used in the `traceroute` command.

To verify this feature, a traceroute operation is performed on Device R1 to Device R4. When the source IP address is 172.16.1.1, packets are forwarded out the ge-2/1/1.0 interface on Device R2. When the source IP address is 172.16.2.2, packets are forwarded out the ge-2/1/1.1 interface on Device R2.

SEE ALSO
- Understanding Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1330
- Example: Configuring Filter-Based Forwarding to a Specific Destination IP Address | 1337
- Firewall Filter Nonterminating Actions | 795

Example: Configuring Filter-Based Forwarding to a Specific Destination IP Address

IN THIS SECTION
- Requirements | 1338
- Overview | 1338
This example shows how to use then next-ip as an action in a firewall filter.

Requirements

This example has the following hardware and software requirements:

- MX Series 5G Universal Routing Platform as the routing device with the firewall filter configured.
- Junos OS Release 12.2 running on the routing device with the firewall filter configured.
- The filter with the next-interface (or next-ip) action can only be applied to an interface that is hosted on a Trio MPC. If you apply the filter to an I-chip based DPC, the commit operation fails.
- The outgoing interface referred to in the next-interface interface-name action can be hosted on a Trio MPC or an I-chip based DPC.

Overview

In this example, Device R2 has two routing instances that are interconnected with physical links. Traffic from certain sources is required to be directed across the upper link for inspection by a traffic optimizer, which acts transparently on the IP layer. When the traffic optimizer fails, the traffic moves to the lower link. Flows in direction R1>R3 and R3>R1 follow identical paths.

Figure 65 on page 1338 shows the topology used in this example.

Figure 65: Filter-Based Forwarding to Specified Outgoing Interfaces

On Device R2, a firewall filter is applied to interface ge-1/0/8 in the input direction. The second term matches the specific source addresses 10.0.0.0/24, and routes the traffic to address 192.168.0.3. This address resolves to next-hop 192.168.20.2. If the link connected to interface ge-1/1/0 goes down, the address 192.168.0.3 will resolve to next-hop 192.168.30.2.
On Device R2, a firewall filter is applied to interface ge-1/0/0 in the input direction. The second term matches the specific destination addresses 10.0.0.0/24, and routes the traffic to address 192.168.0.2. This address resolves to next-hop 192.168.20.1. If the link connected to interface ge-1/3/8 goes down, the address 192.168.0.2 will resolve to next-hop 192.168.30.1.

NOTE: The address configured using the `next-ip` action is not automatically resolved. On Ethernet interfaces, it is assumed that the configured address is resolved using a routing protocol or static routes.

Internal BGP (iBGP) is used between Device R2-VR1 and Device R2-VR2. External BGP (eBGP) is used between Device R1 and Device R2-VR1, as well as between Device R2-VR2 and Device R3.

BGP operations proceed as follows:

- R2-VR1 learns 10/8 from R1, and 0/0 from R2-VR2.
- R2-VR2 learns 0/0 from R3, and 10/8 from R2-VR1.
- R1 advertises 10/8, and receives 0/0 from R2-VR1.
- R3 advertises 0/0, and receives 10/8 from R2-VR2.

The firewall filter applied to Device R2 needs to allow control-plane traffic for the directly connected interfaces, in this case the EBGP sessions.

This example shows the configuration on Device R2.

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces lo0 unit 0 family inet address 10.0.0.1/32
set interfaces lo0 unit 0 family inet address 10.1.0.1/32
set interfaces ge-1/0/8 unit 0 family inet address 192.168.10.1/24
set routing-options autonomous-system 64501
set protocols bgp group eBGP neighbor 192.168.10.2 peer-as 64502
set protocols bgp group eBGP export Announce10
set policy-options policy-statement Announce10 term 1 from route-filter 10.0.0.0/8 exact
```
set policy-options policy-statement Announce10
term 1 then accept
set policy-options policy-statement Announce10
term 2 then reject

Device R2

set interfaces ge-1/0/8 unit 0 family inet address 192.168.10.2/24
set interfaces ge-1/0/8 unit 0 family inet filter input SteerSrcTrafficOptimizer
set interfaces ge-1/1/0 unit 0 family inet address 192.168.20.1/24
set interfaces ge-1/1/1 unit 0 family inet address 192.168.30.1/24
set routing-instances VR1 instance-type virtual-router
set routing-instances VR1 interface ge-1/0/8.0
set routing-instances VR1 interface ge-1/1/0.0
set routing-instances VR1 interface ge-1/1/1.0
set routing-instances VR1 routing-options static route 192.168.0.3 next-hop 192.168.20.2
set routing-instances VR1 routing-options static route 192.168.0.3 qualified-next-hop 192.168.30.2 metric 100
set routing-instances VR1 routing-options autonomous-system 64502
set routing-instances VR1 protocols bgp group eBGP neighbor 192.168.10.1 peer-as 64501
set routing-instances VR1 protocols bgp group iBGP neighbor 192.168.30.2 peer-as 64502
set routing-instances VR1 protocols bgp group iBGP neighbor 192.168.30.2 export AcceptExternal
set firewall family inet filter SteerSrcTrafficOptimizer term 0 from source-address 192.168.10.0/24
set firewall family inet filter SteerSrcTrafficOptimizer term 0 then accept
set firewall family inet filter SteerSrcTrafficOptimizer term 1 from source-address 10.0.0.0/24
set firewall family inet filter SteerSrcTrafficOptimizer term 1 then next-ip 192.168.0.3 routing-instance VR1
set firewall family inet filter SteerSrcTrafficOptimizer term 2 from source-address 10.0.0.0/8
set firewall family inet filter SteerSrcTrafficOptimizer term 2 then accept
set interfaces ge-1/0/0 unit 0 family inet address 192.168.40.1/24
set interfaces ge-1/0/0 unit 0 family inet filter input SteerDstTrafficOptimizer
set interfaces ge-1/3/8 unit 0 family inet address 192.168.20.2/24
set interfaces ge-1/3/9 unit 0 family inet address 192.168.30.2/24
set routing-instances VR2 instance-type virtual-router
set routing-instances VR2 interface ge-1/0/0.0
set routing-instances VR2 interface ge-1/3/8.0
set routing-instances VR2 interface ge-1/3/9.0
set routing-instances VR2 routing-options static route 192.168.0.2/32 next-hop 192.168.20.1
set routing-instances VR2 routing-options static route 192.168.0.2/32 qualified-next-hop 192.168.30.1 metric 100
set routing-instances VR2 routing-options autonomous-system 64502
set routing-instances VR2 protocols bgp group eBGP neighbor 192.168.40.2 peer-as 64503
Device R3

```
set interfaces lo0 unit 0 family inet address 10.11.0.1/32
set interfaces ge-1/0/0 unit 0 family inet address 192.168.40.2/24
set routing-options autonomous-system 64503
set protocols bgp group eBGP neighbor 192.168.40.1 peer-as 64502
set protocols bgp group eBGP export Announce0
set policy-options policy-statement Announce0 term 1 from route-filter 0.0.0.0/0 exact
set policy-options policy-statement Announce0 term 1 then accept
set policy-options policy-statement Announce0 term 2 then reject
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R2:

1. Configure the interfaces.

```
[edit interfaces]
user@R2# set ge-1/0/8 unit 0 family inet address 192.168.10.2/24
user@R2# set ge-1/0/8 unit 0 family inet filter input SteerSrcTrafficOptimizer
user@R2# set ge-1/1/0 unit 0 family inet address 192.168.20.1/24
user@R2# set ge-1/1/1 unit 0 family inet address 192.168.30.1/24
user@R2# set ge-1/0/0 unit 0 family inet address 192.168.40.1/24
user@R2# set ge-1/0/0 unit 0 family inet filter input SteerDstTrafficOptimizer
```
2. Configure the routing instance.

```
[edit routing-instances]
user@R2# set VR1 instance-type virtual-router
user@R2# set VR1 interface ge-1/0/8.0
user@R2# set VR1 interface ge-1/1/0.0
user@R2# set VR1 interface ge-1/1/1.0
user@R2# set VR2 instance-type virtual-router
user@R2# set VR2 interface ge-1/0/0.0
user@R2# set VR2 interface ge-1/3/8.0
user@R2# set VR2 interface ge-1/3/9.0
```

3. Configure the static and BGP routing.

```
[edit routing-instances]
user@R2# set VR1 routing-options static route 192.168.0.3 next-hop 192.168.20.2
user@R2# set VR1 routing-options static route 192.168.0.3 qualified-next-hop 192.168.30.2 metric 100
user@R2# set VR1 routing-options autonomous-system 64502
user@R2# set VR1 protocols bgp group eBGP neighbor 192.168.10.1 peer-as 64501
user@R2# set VR1 protocols bgp group iBGP neighbor 192.168.30.2 peer-as 64502
user@R2# set VR1 protocols bgp group iBGP neighbor 192.168.30.2 export AcceptExternal
user@R2# set VR2 routing-options static route 192.168.0.2/32 next-hop 192.168.20.1
user@R2# set VR2 routing-options static route 192.168.0.2/32 qualified-next-hop 192.168.30.1 metric 100
user@R2# set VR2 routing-options autonomous-system 64502
user@R2# set VR2 protocols bgp group eBGP neighbor 192.168.40.2 peer-as 64503
user@R2# set VR2 protocols bgp group iBGP neighbor 192.168.30.1 peer-as 64502
user@R2# set VR2 protocols bgp group iBGP neighbor 192.168.30.1 export AcceptExternal
```

4. Configure the firewall filters.

```
[edit firewall family inet]
user@R2# set filter SteerSrcTrafficOptimizer term 0 from source-address 192.168.10.0/24
user@R2# set filter SteerSrcTrafficOptimizer term 0 then accept
user@R2# set filter SteerSrcTrafficOptimizer term 1 from source-address 10.0.0.0/24
user@R2# set filter SteerSrcTrafficOptimizer term 1 then next-ip 192.168.0.3 routing-instance VR1
user@R2# set filter SteerSrcTrafficOptimizer term 2 from source-address 10.0.0.0/8
user@R2# set filter SteerSrcTrafficOptimizer term 2 then accept
user@R2# set filter SteerDstTrafficOptimizer term 0 from source-address 192.168.40.0/24
```
5. Configure the routing policy.

[edit policy-options policy-statement AcceptExternal term 1]
user@R2# set from route-type external
user@R2# set term 1 then accept

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show firewall`, and `show protocols` commands. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

user@R2# show interfaces
ge-1/0/0 {
 unit 0 {
 family inet {
 filter {
 input SteerDstTrafficOptimizer;
 }
 address 192.168.40.1/24;
 }
 }
}
ge-1/0/8 {
 unit 0 {
 family inet {
 filter {
 input SteerSrcTrafficOptimizer;
 }
 address 192.168.10.2/24;
 }
 }
}
ge-1/1/0 {
 unit 0 {
 family inet {
 address 192.168.20.1/24;
 }
 }
}
user@R2# show firewall

family inet {
 filter SteerSrcTrafficOptimizer {
 term 0 {
 from {
 source-address {
 192.168.10.0/24;
 }
 }
 then accept;
 }
 term 1 {
 from {
 source-address {
 10.0.0.0/24;
 }
 }
 then {
 next-ip 192.168.0.3/32 routing-instance VR1;
 }
 }
 }
}
user@R2# show policy-options
policy-statement AcceptExternal {
 term 1 {
 from {
 source-address {
 10.0.0.0/8;
 }
 }
 then accept;
 }
 term 2 {
 from {
 destination-address {
 10.0.0.0/24;
 }
 }
 then {
 next-ip 192.168.0.2/32 routing-instance VR2;
 }
 }
 term 3 {
 from {
 destination-address {
 10.0.0.0/8;
 }
 }
 then accept;
 }
}
from route-type external;
then accept;
}
}

user@R2# show routing-instances
VR1{
 instance-type virtual-router;
 interface ge-1/0/8.0;
 interface ge-1/1/0.0;
 interface ge-1/1/1.0;
 routing-options {
 static {
 route 192.168.0.3/32 {
 next-hop 192.168.20.2;
 qualified-next-hop 192.168.30.2 {
 metric 100;
 }
 }
 }
 autonomous-system 64502;
 }
 protocols {
 bgp {
 group eBGP {
 neighbor 192.168.10.1 {
 peer-as 64501;
 }
 }
 group iBGP {
 neighbor 192.168.30.2 {
 export NextHopSelf;
 peer-as 64502;
 }
 }
 }
 }
}
VR2{
 instance-type virtual-router;
 interface ge-1/0/0.0;
 interface ge-1/3/8.0;
 interface ge-1/3/9.0;
 routing-options {
If you are done configuring the device, enter `commit` from configuration mode.

Verification
Confirm that the configuration is working properly.

Checking the Paths Used

Purpose
Make sure that the expected paths are used when sending traffic from Device R1 to Device R3.

Action
On Device R1, enter the `traceroute` command before and after the link failure

Before Failure of the Traffic Optimizer

```
user@R1> traceroute 10.11.0.1 source 10.0.0.1
```
traceroute to 10.11.0.1 (10.11.0.1) from 10.0.0.1, 30 hops max, 40 byte packets
1 192.168.10.2 (192.168.10.2) 0.519 ms 0.403 ms 0.380 ms
2 192.168.20.2 (192.168.20.2) 0.404 ms 0.933 ms 0.402 ms
3 10.11.0.1 (10.11.0.1) 0.709 ms 0.656 ms 0.644 ms

user@R1> traceroute 10.11.0.1 source 10.1.0.1

traceroute to 10.11.0.1 (10.11.0.1) from 10.1.0.1, 30 hops max, 40 byte packets
1 192.168.10.2 (192.168.10.2) 0.524 ms 0.396 ms 0.380 ms
2 192.168.30.2 (192.168.30.2) 0.412 ms 0.410 ms 0.911 ms
3 10.11.0.1 (10.11.0.1) 0.721 ms 0.639 ms 0.659 ms

After Failure of the Traffic Optimizer

user@R1> traceroute 10.11.0.1 source 10.0.0.1

traceroute to 10.11.0.1 (10.11.0.1) from 10.0.0.1, 30 hops max, 40 byte packets
1 192.168.10.2 (192.168.10.2) 0.506 ms 0.400 ms 0.378 ms
2 192.168.30.2 (192.168.30.2) 0.426 ms 0.413 ms 2.429 ms
3 10.11.0.1 (10.11.0.1) 10.868 ms 0.662 ms 0.647 ms

user@R1> traceroute 10.11.0.1 source 10.1.0.1

traceroute to 10.11.0.1 (10.11.0.1) from 10.1.0.1, 30 hops max, 40 byte packets
1 192.168.10.2 (192.168.10.2) 0.539 ms 0.411 ms 0.769 ms
2 192.168.30.2 (192.168.30.2) 0.426 ms 0.413 ms 2.429 ms
3 10.11.0.1 (10.11.0.1) 10.868 ms 0.662 ms 0.647 ms

Meaning
The output shows that the second hop changes, depending on the source address used in the traceroute command.

To verify this feature, a traceroute operation is performed on Device R1 to Device R3. When the source IP address is 10.0.0.1, packets are forwarded out the ge-1/1/0.0 interface on Device R2. When the source IP address is 10.1.0.1, packets are forwarded out the ge-1/1/1.0 interface on Device R2.

When the link between ge-1/1/0 and ge-1/3/8 fails, packets with source IP address 10.0.0.1 are forwarded out the ge-1/1/1.0 interface on Device R2.
SEE ALSO

- Understanding Filter-Based Forwarding to a Specific Outgoing Interface or Destination IP Address | 1330
- Example: Configuring Filter-Based Forwarding to a Specific Outgoing Interface | 1332
- Firewall Filter Nonterminating Actions | 795

RELATED DOCUMENTATION

- Example: Configuring Filter-Based Forwarding on Logical Systems | 1101
- Example: Configuring Filter-Based Forwarding on the Source Address | 1317
- Firewall Filter Nonterminating Actions | 795
CHAPTER 26

Configuring Firewall Filters (EX2300, EX3400, EX4300 Series Switches)

IN THIS CHAPTER

- Firewall Filters for EX Series Switches Overview | 1352
- Understanding Planning of Firewall Filters | 1355
- Understanding Firewall Filter Match Conditions | 1359
- Understanding How Firewall Filters Control Packet Flows | 1365
- Understanding How Firewall Filters Are Evaluated | 1366
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches | 1368
- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches | 1383
- Support for Match Conditions and Actions for Loopback Firewall Filters on Switches | 1451
- Configuring Firewall Filters (CLI Procedure) | 1455
- Understanding How Firewall Filters Test a Packet's Protocol | 1466
- Understanding Filter-Based Forwarding for EX Series Switches | 1467
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Example: Configuring a Firewall Filter on a Management Interface on an EX Series Switch | 1493
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1497
- Example: Applying Firewall Filters to Multiple Supplicants on Interfaces Enabled for 802.1X or MAC RADIUS Authentication | 1503
- Verifying That Policers Are Operational | 1509
- Troubleshooting Firewall Filters | 1510
Firewall filters provide rules that define whether to permit, deny, or forward packets that are transiting an interface on a Juniper Networks EX Series Ethernet Switch from a source address to a destination address. You configure firewall filters to determine whether to permit, deny, or forward traffic before it enters or exits a port, VLAN, or Layer 3 (routed) interface to which the firewall filter is applied. To apply a firewall filter, you must first configure the filter and then apply it to an port, VLAN, or Layer 3 interface.

You can apply firewall filters to network interfaces, aggregated Ethernet interfaces (also known as link aggregation groups (LAGs)), loopback interfaces, management interfaces, virtual management Ethernet interfaces (VMEs), and routed VLAN interfaces (RVIs). For information on EX Series switches that support a firewall filter on these interfaces, see EX Series Switch Software Features Overview.

An ingress firewall filter is a filter that is applied to packets that are entering a network. An egress firewall filter is a filter that is applied to packets that are exiting a network. You can configure firewall filters to subject packets to filtering, class-of-service (CoS) marking (grouping similar types of traffic together, and treating each type of traffic as a class with its own level of service priority), and traffic policing (controlling the maximum rate of traffic sent or received on an interface).

Firewall Filter Types

The following firewall filter types are supported for EX Series switches:

- Port (Layer 2) firewall filter—Port firewall filters apply to Layer 2 switch ports. You can apply port firewall filters in both ingress and egress directions on a physical port.

- VLAN firewall filter—VLAN firewall filters provide access control for packets that enter a VLAN, are bridged within a VLAN, or leave a VLAN. You can apply VLAN firewall filters in both ingress and egress directions on a VLAN. VLAN firewall filters are applied to all packets that are forwarded to or forwarded from the VLAN.

- Router (Layer 3) firewall filter—You can apply a router firewall filter in both ingress and egress directions on Layer 3 (routed) interfaces and routed VLAN interfaces (RVIs). You can apply a router firewall filter in the ingress direction on the loopback interface (lo0) also. Firewall filters configured on loopback interfaces are applied only to packets that are sent to the Routing Engine CPU for further processing.
You can apply port, VLAN, or router firewall filters to both IPv4 and IPv6 traffic on these switches:

- EX2200 switch
- EX3300 switch
- EX3200 switch
- EX4200 switch
- EX4300 switch
- EX4500 switch
- EX4550 switch
- EX6200 switch
- EX8200 switch

For information on firewall filters supported on different switches, see "Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches" on page 1383.

Firewall Filter Components

In a firewall filter, you first define the family address type (ethernet-switching, inet, or inet6), and then you define one or more terms that specify the filtering criteria (specified as terms with match conditions) and the action (specified as actions or action modifiers) to take if a match occurs.

The maximum number of terms allowed per firewall filter for EX Series switches is:

- 512 for EX2200 switches
- 1436 for EX3300 switches

NOTE: On EX3300 switches, if you add and delete filters with a large number of terms (on the order of 1000 or more) in the same commit operation, not all the filters are installed. You must add filters in one commit operation, and delete filters in a separate commit operation.

- 7,042 for EX3200 and EX4200 switches—as allocated by the dynamic allocation of ternary content addressable memory (TCAM) for firewall filters.
- On EX4300 switches, the following maximum number of terms are supported for ingress and egress traffic, for firewall filers configured on a port, VLAN and Layer 3 interface:
 - For ingress traffic:
 - 3500 terms for firewall filters configured on a port
 - 3500 terms for firewall filters configured on a VLAN
• 7000 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 3500 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

For egress traffic:
• 512 terms for firewall filters configured on a port
• 256 terms for firewall filters configured on a VLAN
• 512 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 512 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

NOTE: You can configure the maximum number of terms only when you configure one type of firewall filter (port, VLAN, or router (Layer 3) firewall filter) on the switch, and when storm control is not enabled on any interface in the switch.

• 1200 for EX4500 and EX4550 switches
• 1400 for EX6200 switches
• 32,768 for EX8200 switches

NOTE: The on-demand dynamic allocation of the shared space TCAM in EX8200 switches is achieved by assigning free space blocks to firewall filters. Firewall filters are categorized into two different pools. Port and VLAN filters are pooled together (the memory threshold for this pool is 22K) while router firewall filters are pooled separately (the threshold for this pool is 32K). The assignment happens based on the filter pool type. Free space blocks can be shared only among the firewall filters belonging to the same filter pool type. An error message is generated when you try to configure a firewall filter beyond the TCAM threshold.

Each term consists of the following components:

• **Match conditions**—Specify the values or fields that the packet must contain. You can define various match conditions, including the IP source address field, IP destination address field, Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) source port field, IP protocol field, Internet Control Message Protocol (ICMP) packet type, TCP flags, and interfaces.

• **Action**—Specifies what to do if a packet matches the match conditions. Possible actions are to accept or discard the packet or to send the packet to a specific virtual routing interface. In addition, packets can be counted to collect statistical information. If no action is specified for a term, the default action is to accept the packet.

• **Action modifier**—Specifies one or more actions for the switch if a packet matches the match conditions. You can specify action modifiers such as count, mirror, rate limit, and classify packets.
Firewall Filter Processing

The order of the terms within a firewall filter configuration is important. Packets are tested against each term in the order in which the terms are listed in the firewall filter configuration. For information on how firewall filters process packets, see “Understanding How Firewall Filters Are Evaluated” on page 1366.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Planning of Firewall Filters</td>
<td>1355</td>
</tr>
<tr>
<td>Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches</td>
<td>1368</td>
</tr>
<tr>
<td>Understanding How Firewall Filters Are Evaluated</td>
<td>1366</td>
</tr>
<tr>
<td>Understanding Firewall Filter Match Conditions</td>
<td>1359</td>
</tr>
<tr>
<td>Understanding the Use of Policers in Firewall Filters</td>
<td>1950</td>
</tr>
<tr>
<td>Understanding Filter-Based Forwarding for EX Series Switches</td>
<td>1467</td>
</tr>
<tr>
<td>Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches</td>
<td>1467</td>
</tr>
<tr>
<td>Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches</td>
<td>1497</td>
</tr>
</tbody>
</table>

Understanding Planning of Firewall Filters

Before you create a firewall filter and apply it to an interface, determine what you want the firewall filter to accomplish and how to use its match conditions and actions to achieve your goals. You must understand how packets are matched to match conditions, the default and configured actions of the firewall filter, and proper placement of the firewall filter.

You can configure and apply no more than one firewall filter per port, VLAN, or router interface, per direction. The following limits apply for the number of firewall filter terms allowed per filter on various switch models:

- On EX3300 switches, the number of terms per filter cannot exceed 1436.
- On EX3200 and EX4200 switches, the number of terms per filter cannot exceed 7042.
- On EX2300 switches, the following maximum number of terms are supported for ingress and egress traffic, for firewall filters configured on a port, VLAN and Layer 3 interface:
 - For ingress traffic:
 - 256 terms for firewall filters configured on a port
 - 256 terms for firewall filters configured on a VLAN
• 256 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 256 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

For egress traffic:
• 512 terms for firewall filters configured on a port
• 128 terms for firewall filters configured on a VLAN
• 512 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 512 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

On EX3400 switches, the following maximum number of terms are supported for ingress and egress traffic, for firewall filters configured on a port, VLAN and Layer 3 interface:

For ingress traffic:
• 512 terms for firewall filters configured on a port
• 512 terms for firewall filters configured on a VLAN
• 512 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 512 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

For egress traffic:
• 512 terms for firewall filters configured on a port
• 256 terms for firewall filters configured on a VLAN
• 1024 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 1024 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

On EX4300 switches, the following maximum number of terms are supported for ingress and egress traffic, for firewall filters configured on a port, VLAN and Layer 3 interface:

For ingress traffic:
• 3500 terms for firewall filters configured on a port
• 3500 terms for firewall filters configured on a VLAN
• 7000 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
• 3500 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

NOTE: The ternary content addressable memory (TCAM) limit for ingress traffic on the EX4300 switch is 256 entries.

• For egress traffic:
- 512 terms for firewall filters configured on a port
- 256 terms for firewall filters configured on a VLAN
- 512 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
- 512 terms for firewall filters configured on Layer 3 interfaces for IPv6 traffic

NOTE: You can configure the maximum number of terms only when you configure one type of firewall filter (port, VLAN, or router (Layer 3) firewall filter) on the switch, and when storm control is not enabled on any interface in the switch.

- On EX4500 and EX4550 switches, the number of terms per filter cannot exceed 1200.
- On EX6200 switches, the number of terms per filter cannot exceed 1400.
- On EX8200 switches, the number of terms per filter cannot exceed 32,768.

In addition, try to be conservative in the number of terms (rules) that you include in each firewall filter because a large number of terms requires longer processing time during a commit and also can make firewall filter testing and troubleshooting more difficult. Similarly, applying firewall filters across many switch and router interfaces can make testing and troubleshooting the rules of those filters difficult.

Before you configure and apply firewall filters, answer the following questions for each of those firewall filters:

1. What is the purpose of the firewall filter?
 For example, you can use a firewall filter to limit traffic to source and destination MAC addresses, specific protocols, or certain data rates or to prevent denial of service (DoS) attacks.

2. What are the appropriate match conditions?
 a. Determine the packet header fields that the packet must contain for a match. Possible fields include:
 - Layer 2 header fields—Source and destination MAC addresses, dot1q tag, Ethernet type, and VLAN
 - Layer 3 header fields—Source and destination IP addresses, protocols, and IP options (IP precedence, IP fragmentation flags, TTL type)
 - TCP header fields—Source and destination ports and flags
 - ICMP header fields—Packet type and code
 b. Determine the port, VLAN, or router interface on which the packet was received.

3. What are the appropriate actions to take if a match occurs?
 Possible actions to take if a match occurs are accept, discard, and forward to a routing instance.
4. What additional action modifiers might be required?

Determine whether additional actions are required if a packet matches a match condition; for example, you can specify an action modifier to count, analyze, or police packets.

5. On what interface should the firewall filter be applied?

Start with the following basic guidelines:

- If all the packets entering a port need to be exposed to filtering, then use port firewall filters.
- If all the packets that are bridged need filtering, then use VLAN firewall filters.
- If all the packets that are routed need filtering, then use router firewall filters.

Before you choose the interface on which to apply a firewall filter, understand how that placement can impact traffic flow to other interfaces. In general, apply a firewall filter that filters on source and destination IP addresses, IP protocols, or protocol information—such as ICMP message types, and TCP and UDP port numbers—nearest to the source devices. However, typically apply a firewall filter that filters only on a source IP address nearest to the destination devices. When applied too close to the source device, a firewall filter that filters only on a source IP address could potentially prevent that source device from accessing other services that are available on the network.

NOTE: Egress firewall filters do not affect the flow of locally generated control packets from the Routing Engine.

6. In which direction should the firewall filter be applied?

You can apply firewall filters to ports on the switch to filter packets that are entering a port. You can apply firewall filters to VLANs, and Layer 3 (routed) interfaces to filter packets that are entering or exiting a VLAN or routed interface. Typically, you configure different sets of actions for traffic entering an interface than you configure for traffic exiting an interface.

RELATED DOCUMENTATION

- Firewall Filters for EX Series Switches Overview | 1352
- Understanding the Use of Policers in Firewall Filters | 1950
- Understanding How Firewall Filters Are Evaluated | 1366
- Understanding Filter-Based Forwarding for EX Series Switches | 1467
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
Understanding Firewall Filter Match Conditions

Before you define terms for firewall filters, you must understand how the match conditions that you specify in a term are handled and how to specify various types of match conditions to achieve the desired filtering results. A match condition consists of a string (called a match statement) that defines the match condition. Match conditions are the values or fields that a packet must contain.

Filter Match Conditions

In the from statement of a firewall filter term, you specify the packet conditions that trigger the action in one of the then statements: then with various options, then interface or then vlan. All conditions in the from statement must match for the action to be taken. The order in which you specify match conditions is not important, because a packet must match all the conditions in a term for a match to occur.

If you specify no match conditions in a term, that term matches all packets.

An individual condition in a from statement cannot contain a list of values. For example, you cannot specify numeric ranges or multiple source or destination addresses.

Individual conditions in a from statement cannot be negated. A negated condition is an explicit mismatch.
Numeric Filter Match Conditions

Numeric filter conditions match packet fields that are identified by a numeric value, such as port and protocol numbers. For numeric filter match conditions, you specify a keyword that identifies the condition and a single value that a field in a packet must match.

You can specify the numeric value in one of the following ways:

- **Single number**—A match occurs if the value of the field matches the number. For example:

  ```
  source-port 25;
  ```

- **Text synonym for a single number**—A match occurs if the value of the field matches the number that corresponds to the synonym. For example:

  ```
  source-port http;
  ```

To specify more than one value in a filter term, you enter each value in its own match statement, which is a string that defines a match condition. For example, a match occurs in the following term if the value of `vlan` is 10 or 30.

```
[edit firewall family family-name filter filter-name term term-name from]
  vlan 10;
  vlan 30;
```

The following restrictions apply to numeric filter match conditions:

- You cannot specify a range of values.

- You cannot specify a list of comma-separated values.

- You cannot exclude a specific value in a numeric filter match condition. For example, you cannot specify a condition that would match only if the match condition was not equal to a given value.

Interface Filter Match Conditions

Interface filter match conditions can match interface name values in a packet. For interface filter match conditions, you specify the name of the interface, for example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set interface ge-0/0/1
```
Port and VLAN interfaces do not use logical unit numbers. However, a firewall filter that is applied to a router interface can specify the logical unit number in the interface filter match condition, for example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set interface ge-0/1/0.0
```

You can include the * wildcard as part of the interface name, for example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set interface ge-0/*/1
user@switch#  set interface ge-0/1/*
user@switch#  set interface ge-*
```

IP Address Filter Match Conditions

Address filter match conditions can match prefix values in a packet, such as IP source and destination prefixes. For address filter match conditions, you specify a keyword that identifies the field and one prefix of that type that a packet must match.

You specify the address as a single prefix. A match occurs if the value of the field matches the prefix. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set destination-address 10.2.1.0/28;
```

Each prefix contains an implicit 0/0 except statement, which means that any prefix that does not match the prefix that is specified is explicitly considered not to match.

To specify the address prefix, use the notation prefix/prefix-length. If you omit prefix-length, it defaults to /32. For example:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set destination-address 10
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  show destination-address

10.0.0.0/32;
```
To specify more than one IP address in a filter term, you enter each address in its own match statement. For example, a match occurs in the following term if the value of the source-address field matches either of the following source-address prefixes:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set source-address 10.0.0.0/8
user@switch#  set source-address 10.1.0.0/16
```

MAC Address Filter Match Conditions

MAC address filter match conditions can match source and destination MAC address values in a packet. For MAC address filter match conditions, you specify a keyword that identifies the field and one value of that type that a packet must match.

You can specify the MAC address as six hexadecimal bytes in the following formats:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set destination-mac-address 0011.2233.4455

[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set destination-mac-address 00:11:22:33:44:55

[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set destination-mac-address 001122334455
```

To specify more than one MAC address in a filter term, you enter each MAC address in its own match statement. For example, a match occurs in the following term if the value of the source-mac-address field matches either of the following addresses.

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch#  set source-mac-address 00:11:22:33:44:55
user@switch#  set source-mac-address 00:11:22:33:20:15
```
Bit-Field Filter Match Conditions

Bit-field filter conditions match packet fields if particular bits in those fields are or are not set. You can match the IP options, TCP flags, and IP fragmentation fields. For bit-field filter match conditions, you specify a keyword that identifies the field and tests to determine that the option is present in the field.

To specify the bit-field value to match, enclose the value in double quotation marks. For example, a match occurs if the RST bit in the TCP flags field is set:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "rst"
```

Typically, you specify the bits to be tested by using keywords. Bit-field match keywords always map to a single bit value. You also can specify bit fields as hexadecimal or decimal numbers.

To match multiple bit-field values, use the logical operators, which are described in Table 37 on page 777. The operators are listed in order from highest precedence to lowest precedence. Operations are left-associative.

Table 77: Logical Operators for Matching Multiple Bit-Field Operators

<table>
<thead>
<tr>
<th>Logical Operators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Negation.</td>
</tr>
<tr>
<td>&</td>
<td>Logical AND.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To negate a match, precede the value with an exclamation point. For example, a match occurs only if the RST bit in the TCP flags field is not set:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "!rst"
```

In the following example of a logical AND operation, a match occurs if the packet is the initial packet on a TCP session:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "syn&!ack"
```
In the following example of a logical OR operation, a match occurs if the packet is not the initial packet on a TCP session:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags "syn|ack"
```

For a logical OR operation, you can specify a maximum of two match conditions in a single term. If you need to match more than two bit-field values in a logical OR operation, configure the same match condition in consecutive terms with additional bit-field values. In the following example, the two terms configured match the SYN, ACK, FIN, or RST bit in the TCP flags field:

```
[edit firewall family family-name filter filter-name term term-name1 from]
user@switch# set tcp-flags "syn|ack"

[edit firewall family family-name filter filter-name term term-name2 from]
user@switch# set tcp-flags "fin|rst"
```

You can use text synonyms to specify some common bit-field matches. You specify these matches as a single keyword. In the following example of a text synonym, a match occurs if the packet is the initial packet on a TCP session:

```
[edit firewall family family-name filter filter-name term term-name from]
user@switch# set tcp-flags tcp-initial
```

RELATED DOCUMENTATION

- Firewall Filters for EX Series Switches Overview | 1352
- Understanding How Firewall Filters Test a Packet's Protocol | 1466
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1497
- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
Understanding How Firewall Filters Control Packet Flows

Juniper Networks EX Series Ethernet Switches support firewall filters that allow you to control flows of data packets and local packets. **Data packets** are chunks of data that transit the switch as they are forwarded from a source to a destination. **Local packets** are chunks of data that are destined for or sent by the switch. Local packets usually contain routing protocol data, data for IP services such as Telnet or SSH, and data for administrative protocols such as the Internet Control Message Protocol (ICMP).

You create firewall filters to protect your switch from excessive traffic transiting the switch to a network destination or destined for the Routing Engine on the switch. Firewall filters that control local packets can also protect your switch from external incidents such as denial-of-service (DoS) attacks.

Firewall filters affect packet flows entering into or exiting from the switch's interfaces:

- **Ingress firewall filters** affect the flow of data packets that are received by the switch's interfaces. The Packet Forwarding Engine handles this flow. When a switch receives a data packet on an interface, the switch determines where to forward the packet by looking in the forwarding table for the best route (Layer 2 switching, Layer 3 routing) to a destination. Data packets are forwarded to their destination through an outgoing interface. Locally destined packets are forwarded to the Routing Engine.

- **Egress firewall filters** affect the flow of data packets that are transmitted from the switch's interfaces but do not affect the flow of locally generated control packets from the Routing Engine. The Packet Forwarding Engine handles the flow of data packets that are transmitted from the switch, and egress firewall filters are applied here. The Packet Forwarding Engine also handles the flow of control packets from the Routing Engine.

Figure 48 on page 721 illustrates the application of ingress and egress firewall filters to control the flow of packets through the switch.

Figure 66: Application of Firewall Filters to Control Packet Flow
1. Ingress firewall filter applied to control locally destined packets that are received on the switch's interfaces and are destined for the Routing Engine.

2. Ingress firewall filter applied to control incoming packets on the switch's interfaces.

3. Egress firewall filter applied to control packets that are transiting the switch's interfaces.

RELATED DOCUMENTATION

- Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches | 1368
- Understanding How Firewall Filters Are Evaluated | 1366

Understanding How Firewall Filters Are Evaluated

A firewall filter consists of one or more terms, and the order of the terms within a firewall filter is important. Before you configure firewall filters, you should understand how Juniper Networks EX Series Ethernet Switches evaluate the terms within a firewall filter and how packets are evaluated against the terms.

When a firewall filter consists of a single term, the filter is evaluated as follows:

- If the packet matches all the conditions, the action in the `then` statement is taken.
- If the packet matches all the conditions, and no action is specified in the `then` statement, the default action `accept` is taken.

When a firewall filter consists of more than one term, the firewall filter is evaluated sequentially:

1. The packet is evaluated against the conditions in the `from` statement in the first term.

2. If the packet matches all the conditions in the term, the action in the `then` statement is taken and the evaluation ends. Subsequent terms in the filter are not evaluated.

3. If the packet does not match all the conditions in the term, the packet is evaluated against the conditions in the `from` statement in the second term.

 This process continues until either the packet matches the conditions in the `from` statement in one of the subsequent terms or there are no more terms in the filter.

4. If a packet passes through all the terms in the filter without a match, the packet is discarded.
Figure 50 on page 781 shows how an EX Series switch evaluates the terms within a firewall filter.

Figure 67: Evaluation of Terms Within a Firewall Filter

![Diagram of firewall filter evaluation]

If a term does not contain a **from** statement, the packet is considered to match and the action in the **then** statement of the term is taken.

If a term does not contain a **then** statement, or if an action has not been configured in the **then** statement, and the packet matches the conditions in the **from** statement of the term, the packet is accepted.

Every firewall filter contains an implicit **deny** statement at the end of the filter, which is equivalent to the following explicit filter term:

```plaintext
term implicit-rule {
  then discard;
}
```

Consequently, if a packet passes through all the terms in a filter without matching any conditions, the packet is discarded. If you configure a firewall filter that has no terms, all packets that pass through the filter are discarded.

RELATED DOCUMENTATION

- Firewall Filters for EX Series Switches Overview | 1352
- Understanding Firewall Filter Match Conditions | 1359
Understanding Firewall Filter Processing Points for Bridged and Routed Packets on EX Series Switches

Juniper Networks EX Series Ethernet Switches are multilayered switches that provide Layer 2 switching and Layer 3 routing. You apply firewall filters at multiple processing points in the packet forwarding path on EX Series switches. At each processing point, the action to be taken on a packet is determined based on the results of the lookup in the switch’s forwarding table. A table lookup determines which exit port on the switch to use to forward the packet.

For both bridged unicast packets and routed unicast packets, firewall filters are evaluated and applied hierarchically. First, a packet is checked against the port firewall filter, if present. If the packet is permitted, it is then checked against the VLAN firewall filter, if present. If the packet is permitted, it is then checked against the router firewall filter, if present. The packet must be permitted by the router firewall filter before it is processed.

Figure 68 on page 1369 shows the various firewall filter processing points in the packet forwarding path in a multilayered switching platform.
Figure 68: Firewall Filter Processing Points in the Packet Forwarding Path

For a multicast packet that results in replications, an egress firewall filter is applied to each copy of the packet based on its corresponding egress VLAN.

For Layer 2 (bridged) unicast packets, the following firewall filter processing points apply:

- Ingress port firewall filter
- Ingress VLAN firewall filter
- Egress port firewall filter
- Egress VLAN firewall filter

For Layer 3 (routed and multilayer-switched) unicast packets, the following firewall filter processing points apply:

- Ingress port firewall filter
- Ingress VLAN firewall filter (Layer 2 CoS)
- Ingress router firewall filter (Layer 3 CoS)
- Egress router firewall filter
- Egress VLAN firewall filter
Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches

When you define a firewall filter for an EX Series switch, you define filtering criteria (terms, with match conditions) for the packets and an action (and, optionally, an action modifier) for the switch to take if the packets match the filtering criteria. You can define a firewall filter to monitor IPv4, IPv6, or non-IP traffic.

This topic describes in detail the various match conditions, actions, and action modifiers that you can define in a firewall filter. For information about support for match conditions on various EX Series switches, see “Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches” on page 1383.

Firewall Filter Elements

A firewall filter configuration contains a term, a match condition, an action, and, optionally, an action modifier. Table 78 on page 1371 describes each element in a firewall filter configuration.
Table 78: Elements of a Firewall Filter Configuration

<table>
<thead>
<tr>
<th>Element Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Defines the filtering criteria for the packets. Each term in the firewall filter consists of match conditions and an action. You can define a single term or multiple terms in the firewall filter. If you define multiple terms, each term must have a unique name.</td>
</tr>
<tr>
<td>Match condition</td>
<td>Consists of a string (called a match statement) that defines the match condition. Match conditions are the values or fields that a packet must contain. You can define a single match condition or multiple match conditions for a term. You can also opt not to define a match condition. If no match conditions are specified for a term, all packets are matched by default.</td>
</tr>
<tr>
<td>Action</td>
<td>Specifies the action that the switch takes if a packet matches all the criteria specified in the match conditions.</td>
</tr>
<tr>
<td>Action modifier</td>
<td>Specifies one or more actions that the switch takes if a packet matches the match conditions for the specific term.</td>
</tr>
</tbody>
</table>

Match Conditions Supported on Switches

Based on the type of traffic that you want to monitor, you can configure a firewall filter to monitor IPv4, IPv6, or non-IP traffic. When you configure a firewall filter to monitor a particular type of traffic, ensure that you specify match conditions that are supported for that type of traffic. For information about match conditions supported for a specific type of traffic and switches on which they are supported, see "Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches" on page 1383.

Table 79 on page 1371 describes all the match conditions that are supported for firewall filters on EX Series Switches.

Table 79: Firewall Filter Match Conditions Supported on EX Series Switches

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address ip-address</td>
<td>IP destination address field, which is the address of the final destination node.</td>
</tr>
<tr>
<td>ip-destination-address ip-address</td>
<td>IP destination address field, which is the address of the final destination node.</td>
</tr>
<tr>
<td>ip6-destination-address ip-address</td>
<td>IP destination address field, which is the address of the final destination node.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>destination-mac-address mac-address</td>
<td>Destination media access control (MAC) address of the packet. You can define a destination MAC address with a prefix, such as destination-mac-address 00:01:02:03:04:05/24. If no prefix is specified, the default value 48 is used.</td>
</tr>
<tr>
<td>destination-port number</td>
<td>TCP or UDP destination port field. Typically, you specify this match condition in conjunction with the protocol or ip-protocol match condition to determine which protocol is used on the port. For number, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), login (513), mobileip-agent (434), mobilip-mm (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsm (2049), nntp (119), ntl (518), ntp (123), pop3 (110), pptp (1723), printer (515), radacct (1813),radius (1812), rip (520), rkit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs-cs (65), talk (517), telnet (23), tftp (69), timed (525), who (513), xdmcp (177), zephyr-clt (2103), zephyr-hm (2104)</td>
</tr>
<tr>
<td>destination-prefix-list prefix-list</td>
<td>IP destination prefix list field. You can define a list of IP address prefixes under a prefix-list alias for frequent use. You define this match condition at the [edit policy-options] hierarchy level.</td>
</tr>
<tr>
<td>dot1q-tag number</td>
<td>The tag field in the Ethernet header. The tag values range from 1 through 4095. The dot1q-tag match condition and the vlan match condition are mutually exclusive.</td>
</tr>
<tr>
<td>user-vlan-id number</td>
<td>The tag field in the Ethernet header. The tag values range from 1 through 4095. The user-vlan-id match condition and the learn-vlan-id match condition are mutually exclusive.</td>
</tr>
</tbody>
</table>
Table 79: Firewall Filter Match Conditions Supported on EX Series Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| dot1q-user-priority number | User-priority field of the tagged Ethernet packet. User-priority values can range from 0 through 7. For number, you can specify one of the following text synonyms (the field values are also listed):
 - background (1)—Background
 - best-effort (0)—Best effort
 - controlled-load (4)—Controlled load
 - excellent-load (3)—Excellent load
 - network-control (7)—Network control reserved traffic
 - standard (2)—Standard or spare
 - video (5)—Video
 - voice (6)—Voice |
| user-vlan-1p-priority number | User-priority field of the tagged Ethernet packet. User-priority values can range from 0 through 7. For number, you can specify one of the following text synonyms (the field values are also listed):
 - background (1)—Background
 - best-effort (0)—Best effort
 - controlled-load (4)—Controlled load
 - excellent-load (3)—Excellent load
 - network-control (7)—Network control reserved traffic
 - standard (2)—Standard or spare
 - video (5)—Video
 - voice (6)—Voice |
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp number</td>
<td>Specifies the Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant six bits of this byte form the DSCP. You can specify DSCP in hexadecimal, binary, or decimal form. For number, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>• ef (46)—as defined in RFC 2598, An Expedited Forwarding PHB.</td>
</tr>
<tr>
<td></td>
<td>• af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38) These four classes, with three drop precedences in each class, are defined for 12 code points in RFC 2597, Assured Forwarding PHB Group.</td>
</tr>
<tr>
<td>ether-type value</td>
<td>Ethernet type field of a packet. The value specifies what protocol is being transported in the Ethernet frame. For value, you can specify one of the following text synonyms:</td>
</tr>
<tr>
<td></td>
<td>• aarp—EtherType value AARP (0x80F3)</td>
</tr>
<tr>
<td></td>
<td>• appletalk—EtherType value AppleTalk (0x809B)</td>
</tr>
<tr>
<td></td>
<td>• arp—EtherType value ARP (0x0806)</td>
</tr>
<tr>
<td></td>
<td>• ipv4—EtherType value IPv4 (0x0800)</td>
</tr>
<tr>
<td></td>
<td>• ipv6—EtherType value IPv6 (0x08DD)</td>
</tr>
<tr>
<td></td>
<td>• mpls multicast—EtherType value MPLS multicast (0x8848)</td>
</tr>
<tr>
<td></td>
<td>• mpls unicast—EtherType value MPLS unicast (0x8847)</td>
</tr>
<tr>
<td></td>
<td>• oam—EtherType value OAM (0x88A8)</td>
</tr>
<tr>
<td></td>
<td>• ppp—EtherType value PPP (0x880B)</td>
</tr>
<tr>
<td></td>
<td>• pppoe-discovery—EtherType value PPPoE Discovery Stage (0x8863)</td>
</tr>
<tr>
<td></td>
<td>• pppoe-session—EtherType value PPPoE Session Stage (0x8864)</td>
</tr>
<tr>
<td></td>
<td>• sna—EtherType value SNA (0x80D5)</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The following match conditions are not supported when ether-type is set to ipv6:</td>
</tr>
<tr>
<td></td>
<td>• dscp</td>
</tr>
<tr>
<td></td>
<td>• fragment-flags</td>
</tr>
<tr>
<td></td>
<td>• is-fragment</td>
</tr>
<tr>
<td></td>
<td>• precedence or ip-precedence</td>
</tr>
<tr>
<td></td>
<td>• protocol or ip-protocol</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>fragment-flags</td>
<td>IP fragmentation flags, specified in symbolic or hexadecimal formats. You can specify one of the following options:</td>
</tr>
<tr>
<td></td>
<td>• dont-fragment (0x4000)</td>
</tr>
<tr>
<td></td>
<td>• more-fragments (0x2000)</td>
</tr>
<tr>
<td></td>
<td>• reserved (0x8000)</td>
</tr>
<tr>
<td>icmp-code number</td>
<td>ICMP code field. This value or option provides more specific information than icmp-type. Because the value’s meaning depends upon the associated icmp-type, you must specify icmp-type along with icmp-code. For number, you can specify one of the following text synonyms (the field values are also listed). The options are grouped by the ICMP type with which they are associated:</td>
</tr>
<tr>
<td></td>
<td>• parameter-problem—ip-header-bad (0), required-option-missing (1)</td>
</tr>
<tr>
<td></td>
<td>• redirect—redirect-for-host (1), redirect-for-network (0), redirect-for-tos-and-host (3), redirect-for-tos-and-net (2)</td>
</tr>
<tr>
<td></td>
<td>• time-exceeded—ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-transit (0)</td>
</tr>
<tr>
<td></td>
<td>• unreachable—communication-prohibited-by-filtering (13), destination-host-prohibited (10), destination-host-unknown (7), destination-network-prohibited (9), destination-network-unknown (6), fragmentation-needed (4), host-precedence-violation (14), host-unreachable (1), host-unreachable-for-TOS (12), network-unreachable (0), network-unreachable-for-TOS (11), port-unreachable (3), precedence-cutoff-in-effect (15), protocol-unreachable (2), source-host-isolated (8), source-route-failed (5)</td>
</tr>
<tr>
<td>icmp-type number</td>
<td>ICMP packet type field. Typically, you specify this match condition in conjunction with the protocol or ip-protocol match condition to determine which protocol is being used on the port. For number, you can specify one of the following text synonyms (the field values are also listed):</td>
</tr>
<tr>
<td></td>
<td>echo-reply (0), echo-request (8), info-reply (16), info-request (15), mask-request (17), mask-reply (18), parameter-problem (12), redirect (5), router-advertisement (9), router-solicit (10), source-quench (4), time-exceeded (11), timestamp (13), timestamp-reply (14), unreachable (3)</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **interface interface-name** | Interface on which the packet is received. You can specify the wildcard character (*) as part of an interface name.

NOTE: The interface match condition is not supported for egress traffic on an EX8200 Virtual Chassis. |
| **ip-options** | Presence of the options field in the IP header. |
| **ip-version** | Version of the IP protocol for port and VLAN firewall filters. The value for version can be ipv4 or ipv6.

For match_condition(s), you can specify one or more of the following match conditions:
- destination-address, ip-destination-address, or ip6-destination-address
- destination-port
- destination-prefix-list
- dscp
- fragment-flags
- icmp-code
- icmp-type
- is-fragment
- precedence or ip-precedence
- protocol or ip-protocol
- source-address or ip-source-address
- source-port
- source-prefix-list
- tcp-established
- tcp-flags
- tcp-initial |
| **is-fragment** | If the packet is a trailing fragment, this match condition does not match the first fragment of a fragmented packet. Use two terms to match both first and trailing fragments.

NOTE: Due to a limitation on the EX2300, EX3400, and EX4300 switches, this match condition does not match the last fragment of a fragmented packet when applied to “family ethernet-switching.” |
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2-encap-type llc-non-snap</td>
<td>Match on logical link control (LLC) layer packets for non-Subnet Access Protocol (SNAP) Ethernet Encapsulation type.</td>
</tr>
</tbody>
</table>
| next-header bytes | 8-bit protocol field that identifies the type of header immediately following the IPv6 header. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
  ```
  ah (51), dstops (60), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (1), igmp (2), ipip (4), ipv6 (41), no-next-header (59), ospf (89), pim (103), routing (43), rsvp (46), sctp (132), tcp (6), udp (17), vrrp (112)
  ``` |
| packet-length bytes | Length of the received packet, in bytes. The length refers only to the IP packet, including the packet header, and does not include any Layer 2 encapsulation overhead. |
| precedence precedence | IP precedence. For precedence, you can specify one of the following text synonyms (the field values are also listed):
  ```
  critical-ecp (5), flash (3), flash-override (4), immediate (2), internet-control (6), net-control (7), priority (1), routine (0)
  ``` |
| ip-precedence precedence | IP precedence. For precedence, you can specify one of the following text synonyms (the field values are also listed):
  ```
  critical-ecp (5), flash (3), flash-override (4), immediate (2), internet-control (6), net-control (7), priority (1), routine (0)
  ``` |
| protocol list of protocol | IPv4 protocol value. For protocols, you can specify one of the following text synonyms:
  ```
  egp (8), esp (50), gre (47), icmp (1), igmp (2), ipip (4), ospf (89), pim (103), rsvp (46), tcp (6), udp (17)
  ``` |
| ip-protocol list of protocol | IPv4 protocol value. For protocols, you can specify one of the following text synonyms:
  ```
  egp (8), esp (50), gre (47), icmp (1), igmp (2), ipip (4), ospf (89), pim (103), rsvp (46), tcp (6), udp (17)
  ``` |
Table 79: Firewall Filter Match Conditions Supported on EX Series Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-address ip-address</td>
<td>IP source address field, which is the address of the source node sending the packet. For IPv6, the source-address field is 128 bits in length. The filter description syntax supports the text representations for IPv6 addresses that are described in RFC 2373, IP Version 6 Addressing Architecture.</td>
</tr>
<tr>
<td>ip-source-address (ip-address</td>
<td>ip6-address)</td>
</tr>
<tr>
<td>source-mac-address mac-address</td>
<td>Source MAC address.</td>
</tr>
<tr>
<td></td>
<td>You can define a source MAC address with a prefix, such as source-mac-address 00:01:02:03:04:05/24. If no prefix is specified, the default value 48 is used.</td>
</tr>
<tr>
<td>source-port number</td>
<td>TCP or UDP source-port field. Typically, you specify this match in conjunction with the protocol or ip-protocol match condition to determine which protocol is being used on the port. For number, you can specify one of the text synonyms listed under destination-port.</td>
</tr>
<tr>
<td>source-prefix-list prefix-list</td>
<td>IP source prefix list field.</td>
</tr>
<tr>
<td></td>
<td>You can define a list of IP address prefixes under a prefix-list alias for frequent use. You define this match condition at the [edit policy-options] hierarchy level.</td>
</tr>
<tr>
<td>tcp-established</td>
<td>TCP packets of an established TCP connection. This condition matches packets other than the first packet of a connection. tcp-established is a synonym for the bit names "(ack</td>
</tr>
<tr>
<td></td>
<td>tcp-established does not implicitly check whether the protocol is TCP. To do so, specify the next-header tcp match condition.</td>
</tr>
</tbody>
</table>
Table 79: Firewall Filter Match Conditions Supported on EX Series Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| tcp-flags (flags tcp-initial) | One or more TCP flags:
 - bit-name—fin, syn, rst, push, ack, urgent
 - logical operators—& (logical AND), | (logical OR), ! (negation)
 - numerical value—0x01 through 0x20
 - text synonym—tcp-initial
 To specify multiple flags, use logical operators. |
| tcp-initial | Matches the first TCP packet of a connection. tcp-initial is a synonym for the bit names "(syn&!ack)".
 tcp-initial does not implicitly check whether the protocol is TCP. To do so, specify the protocol tcp or ip-protocol tcp match condition. |
| traffic-class number | Specifies the DSCP code point for a packet. | |
| ttl value | TTL type to match. The value ranges from 1 through 255. |
| vlan (vlan-name | vlan-id) | The VLAN that is associated with the packet. For vlan-id, you can specify either the VLAN ID or a VLAN range. The vlan match condition and the dot1q-tag match condition are mutually exclusive. |
| learn-vlan-id (vlan-name | vlan-id) | The VLAN that is associated with the packet. For vlan-id, you can specify either the VLAN ID or a VLAN range. The vlan match condition and the user-vlan-id match condition are mutually exclusive. |

Actions for Firewall Filters

You can define an action for the switch to take if a packet matches the filtering criteria defined in a match condition. Table 80 on page 1379 describes the actions supported in a firewall filter configuration.

Table 80: Actions for Firewall Filters

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet.</td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently without sending an Internet Control Message Protocol (ICMP) message.</td>
</tr>
</tbody>
</table>
Table 80: Actions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| reject *message-type* | Discard a packet, and send the ICMPv4 message (type 3) **destination unreachable**. You can log the rejected packets if you configure the **syslog** action modifier.

You can specify one of the following message codes: administratively-prohibited (default), bad-host-tos, bad-network-tos, host-prohibited, host-unknown, host-unreachable, network-prohibited, network-unknown, network-unreachable, port-unreachable, precedence-cutoff, precedence-violation, protocol-unreachable, source-host-isolated, source-route-failed, tcp-reset.

If you specify tcp-reset, a TCP reset is returned if the packet is a TCP packet. Otherwise nothing is returned.

If you do not specify a message type, the ICMP notification **destination unreachable** is sent with the default message **communication administratively filtered**. |
| **routing-instance** **routing-instance-name** | Forward matched packets to a virtual routing instance.

NOTE: EX4200 switches do not support firewall-filter-based redirection to the default routing instance. |
| **vlan vlan-name** | Forward matched packets to a specific VLAN. Ensure that you specify the VLAN name or VLAN ID and not a VLAN range, because the **vlan** action does not support the **vlan-range** option.

NOTE: If you have defined a VLAN that is enabled for dot1q tunneling, then that particular VLAN is not supported as an action (using the **vlan vlan-name** action) for an ingress VLAN firewall filter. |

Action Modifiers for Firewall Filters

In addition to the actions described in **Table 80 on page 1379**, you can define action modifiers in a firewall filter configuration for a switch if packets match the filtering criteria defined in the match condition.
Table 81 on page 1381 describes the action modifiers supported in a firewall filter configuration.
<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
</table>
| analyzer analyzer-name | Mirror port traffic to a specified destination port or VLAN that is connected to a protocol analyzer application. Mirroring copies all packets seen on one switch port to a network monitoring connection on another switch port. The analyzer name must be configured under [edit ethernet-switching-options analyzer].
NOTE: analyzer is not a supported action modifier for a management interface.
NOTE: On EX4500 switches, you can configure only one analyzer and include it in a firewall filter. If you configure multiple analyzers, you cannot include any one of those analyzers in a firewall filter. |
| dscp number | Change the DSCP value for matched packets to the DSCP value specified with this action modifier. number specifies the Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most significant six bits of this byte form the DSCP.
You can specify DSCP in hexadecimal, binary, or decimal form.
For number, you can specify one of the following text synonyms (the field values are also listed):
• ef (46)—as defined in RFC 2598, An Expedited Forwarding PHB.
• af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38)
These four classes, with three drop precedences in each class, are defined for 12 code points in RFC 2597, Assured Forwarding PHB Group. |
| count counter-name | Count the number of packets that pass this filter, term, or policer. A policer enables you to specify rate limits on traffic that enters an interface on a switch.
NOTE: On EX4300 switches, you can configure the same number of counters and policers as the number of terms in the ternary content addressable memory (TCAM). |
| forwarding-class class | Classify the packet in one of the following forwarding classes:
• assured-forwarding
• best-effort
• expedited-forwarding
• network-control |
| interface interface-name | Forward the traffic to the specified interface bypassing the switching lookup. |
Table 81: Action Modifiers for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>Log the packet's header information in the Routing Engine. To view this information, issue the <code>show firewall log</code> command in the CLI.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the log or the syslog action modifier is configured along with a vlan action or an interface action modifier, the events might not be logged. However, the redirect interface functionality works as expected.</td>
</tr>
<tr>
<td>loss-priority</td>
<td>Set the packet loss priority (PLP).</td>
</tr>
<tr>
<td>policer policer-name</td>
<td>Apply rate limits to the traffic.</td>
</tr>
<tr>
<td></td>
<td>You can specify a policer in a firewall filter only for ingress traffic on a port, VLAN, and router.</td>
</tr>
<tr>
<td></td>
<td>NOTE: A counter for a policer is not supported on EX8200 switches.</td>
</tr>
<tr>
<td></td>
<td>NOTE: On EX4300 switches, you can configure the same number of counters and policers as the number of terms in the TCAM.</td>
</tr>
<tr>
<td>port-mirror</td>
<td>Mirror packets to the interface defined in the [edit forwarding-options analyzer] hierarchy.</td>
</tr>
<tr>
<td>port-mirror-instance instance-name</td>
<td>Mirror packets to the instance defined in the [edit forwarding-options analyzer] hierarchy.</td>
</tr>
<tr>
<td>syslog</td>
<td>Log an alert for this packet. You can specify that the log be sent to a server for storage and analysis.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If the log or the syslog action modifier is configured along with a vlan action or an interface action modifier, the events might not be logged. However, the redirect interface functionality works as expected.</td>
</tr>
<tr>
<td>three-color-policer</td>
<td>Apply a three-color policer.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches | 1383
- Understanding Firewall Filter Match Conditions | 1359
- Firewall Filter Configuration Statements Supported by Junos OS for EX Series Switches | 2123
Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches

IN THIS SECTION
- Firewall Filter Types and Their Bind Points | 1384
- Support for IPv4 and IPv6 Firewall Filters on Switches | 1384
- Platform Support for Match Conditions for IPv4 Traffic | 1385
- Platform Support for Match Conditions for IPv6 Traffic | 1408
- Platform Support for Match Conditions for Non-IP Traffic | 1423
- Platform Support for Actions for IPv4 Traffic | 1424
- Platform Support for Actions for IPv6 Traffic | 1428
- Platform Support for Action Modifiers for IPv4 Traffic | 1431
- Platform Support for Action Modifiers for IPv6 Traffic | 1441

After you define a firewall filter on an EX Series switch, you must associate the filter to a bind point so that the filter can filter the packets that enter or exit the bind point. Port firewall filters, VLAN firewall filters, and Layer 3 (or router) firewall filters are the different types of firewall filters you can apply on a switch, depending on the bind points the filters are associated with. While a port firewall filter applies to Layer 2 interfaces, a VLAN firewall filter applies to packets that enter or leave a VLAN and also to packets that are bridged within a VLAN. A Layer 3 firewall filter applies to Layer 3 (routed) interfaces and routed VLAN interfaces (RVIs).

NOTE: If you want to control the traffic that enters the Routing Engine of the switch, you must configure a firewall filter on the loopback interface (lo0) of the switch. For information about match conditions, actions, and action modifiers supported on the loopback interface of a switch, see “Support for Match Conditions and Actions for Loopback Firewall Filters on Switches” on page 1451.
This topic describes the supported switches and bind points for match conditions, actions, and action modifiers for firewall filters supported on EX Series switches. For descriptions of the match conditions, actions, and action modifiers, see “Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches” on page 1370. For information about the EX4600 switch, see Firewall Filter Match Conditions and Actions.

Firewall Filter Types and Their Bind Points

You can apply a firewall filter at specific bind points to filter IPv4, IPv6, or non-IP traffic. See the remaining sections in this topic for information about support on individual switches for different traffic types.

Table 82 on page 1384 lists the firewall filter types and their associated bind points that are supported on the switches.

Table 82: Bind Points Associated with Firewall Filter Types

<table>
<thead>
<tr>
<th>Bind Points</th>
<th>Firewall Filter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports (Layer 2 interfaces)</td>
<td>Port firewall filter</td>
</tr>
<tr>
<td>VLANs</td>
<td>VLAN firewall filter</td>
</tr>
<tr>
<td>Layer 3 interfaces (Layer 3 (routed) interfaces or routed VLAN interfaces (RVIs)</td>
<td>Router firewall filter</td>
</tr>
</tbody>
</table>

Support for IPv4 and IPv6 Firewall Filters on Switches

On EX2200, EX2300/EX3400, EX3200/EX4200, EX3300, EX4500, and EX6200 switches port and VLAN filters on IPv6 traffic can match only layer 2 header fields. On an EX8200 switch, port and VLAN traffic can match on layer 3 and layer 4 header fields, in addition to layer 2 header fields, of IPv6 traffic. On an EX4300 switch, port and VLAN filters on IPv6 traffic can match layer 3 and layer 4 header fields.

Table 83 on page 1384 briefly summarizes the support for IPv4 and IPv6 firewall filters on different switches. The support for port, VLAN, and router firewall filters on different switches is further discussed in the subsequent sections in this topic.

Table 83: Support for IPv4 and IPv6 Firewall Filters on Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Support for IPv4 Firewall Filter</th>
<th>Support for IPv6 Firewall Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX2200</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EX2300 and EX3400</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 83: Support for IPv4 and IPv6 Firewall Filters on Switches (continued)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Support for IPv4 Firewall Filter</th>
<th>Support for IPv6 Firewall Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX3200 and EX4200</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EX3300</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EX4300</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EX4500</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EX6200</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EX8200</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Platform Support for Match Conditions for IPv4 Traffic

You can define port, VLAN, and router firewall filters for ingress and egress IPv4 traffic on all EX Series switches. Table 84 on page 1386 summarizes the support for match conditions on different bind points for ingress and egress IPv4 traffic on different switches.
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>ip-address</td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>ip-destination-address</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Not supported (EX2300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ports and VLANs (EX3400)</td>
</tr>
</tbody>
</table>
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-mac-address</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>mac-address</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>destination-port number</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces (EX4300) Not supported (EX2300)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>--</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td><code>destination-prefix-list</code></td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td><code>prefix-list</code></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>dot1q-tag number</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>user-vlan-id number</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>dot1q-user-priority number</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>user-vlan-1p-priority number</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
</tbody>
</table>
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>dscp number</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Ingress</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ether-type value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td>fragment-flags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragment-flags</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>icmp-code number</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 Interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>icmp-type number</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Layer 3 Interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>interface interface-name</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>

NOTE: This match condition is not supported by firewall filters configured on ingress L3 interfaces and ingress VLAN interfaces when the interface to be matched is aggregate Ethernet (ae) interface.
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-options</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>ip-version</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>versionmatch_condition(s)</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Not supported (EX2300) Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>is-fragment</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

NOTE: Due to a limitation on the EX2300, EX3400, and EX4300 switches, this match condition does not match the last fragment of a fragmented packet when applied to a port or a VLAN.
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>precedence precedence</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>ip-precedence precedence</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>protocol list of protocols</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX2300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3400</td>
<td>Ports and VLANs</td>
</tr>
</tbody>
</table>

Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source-address</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ingress</td>
</tr>
<tr>
<td>ip-address</td>
<td>EX2300, EX3400</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200, EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>ip-source-address</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>ip-address</td>
<td>EX2300, EX3400</td>
<td>Ports and VLANs</td>
<td>Not supported (EX2300)</td>
</tr>
</tbody>
</table>
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-mac-address</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>mac-address</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>source-port number</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-prefix-list</code></td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>tcp-established</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>tcp-flags (flags tcp-initial)</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>tcp-initial</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 84: Firewall Filter Match Conditions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttl value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>**vlan (vlan-name</td>
<td>vlan-id)**</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>learn-vlan-id</td>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>vlan-id</td>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Platform Support for Match Conditions for IPv6 Traffic

Table 85 on page 1408 summarizes support for match conditions on different bind points for ingress and egress IPv6 traffic on different switches.

Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address ip-address</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip6-destination-address</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td></td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>ip-address</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td></td>
<td>Not supported (EX2300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td></td>
<td>Layer 3 (routed) interfaces only</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td></td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td></td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td></td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>mac-address</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td></td>
<td>Ports and VLANs</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-prefix-list</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces (EX2300)</td>
<td>Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 (routed) interfaces only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td>dot1q-tag number</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>user-vlan-id number</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>dot1q-user-priority</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>user-vlan-1p-priority</td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>ether-type</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td>(ipv6)value</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>icmp-code number</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported (EX2300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td>Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>icmp-type number</code></td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported (EX2300) Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td>interface-name</td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This match condition is not supported by firewall filters configured on ingress L3 interfaces and ingress VLAN interfaces when the interface to be matched is aggregate Ethernet (ae) interface.

<table>
<thead>
<tr>
<th>ip-version</th>
<th>EX2200</th>
<th>Not supported</th>
<th>Not supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>version match_condition(s)</td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>next-header bytes</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>packet-length bytes</td>
<td>EX2200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td><code>source-address</code> <code>ip-address</code></td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX2200 and EX3400</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td><code>ip6-source-address</code> <code>ip-address</code></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Not supported (EX2300) Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td><code>source-mac-address</code> <code>mac-address</code></td>
<td>EX2200</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>source-port number</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>

(continued)
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-prefix-list</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td>prefix-list</td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported (EX2300)</td>
<td>Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>tcp-established</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported (EX2300) Ports and VLANs (EX3400)</td>
</tr>
<tr>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>tcp-flags (flags</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>tcp-initial)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>tcp-initial</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>traffic-class number</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 85: Firewall Filter Match Conditions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Ingress</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>`vlan (vlan-id</td>
<td>vlan-name)`</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
<td></td>
</tr>
</tbody>
</table>

Platform Support for Match Conditions for Non-IP Traffic

You can define port, VLAN, and router firewall filters for ingress and egress non-IP traffic on all EX Series switches. Table 86 on page 1424 summarizes support for match conditions on different bind points for ingress and egress non-IP traffic on different switches.
Table 86: Firewall Filter Match Condition Supported for Non-IP Traffic on Switches

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>l2-encap-type llc-non-snap</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
<td></td>
</tr>
</tbody>
</table>

Platform Support for Actions for IPv4 Traffic

Table 87 on page 1425 summarizes the support for actions on different bind points for ingress and egress IPv4 traffic on different switches.
<table>
<thead>
<tr>
<th>Action</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 87: Firewall Filter Actions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>discard</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>reject message-type</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Table 87: Firewall Filter Actions Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>routing-instance</td>
<td>EX2200</td>
<td>Not supported</td>
</tr>
<tr>
<td>routing-instance-name</td>
<td>EX2300 and EX3400</td>
<td>Not supported (EX2300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
</tr>
</tbody>
</table>

vlan vlan-name	EX2200	Ports and VLANs	Not supported
	EX2300 and EX3400	Ports and VLANs	Not supported
	EX3200 and EX4200	Ports and VLANs	Not supported
	EX3300	Ports and VLANs	Not supported
	EX4300	Ports and VLANs	Not supported
	EX4500	Ports and VLANs	Ports
	EX6200	Ports and VLANs	Ports and VLANs
	EX8200	Ports and VLANs	Not supported

NOTE: Supported only when used in conjunction with the **interface** action modifier. On EX8200 Virtual Chassis, the **vlan** action is supported only for VLANs.
Platform Support for Actions for IPv6 Traffic

Table 88 on page 1428 summarizes the support for actions on different bind points for ingress and egress IPv6 traffic.

Table 88: Firewall Filter Actions Supported for IPv6 Traffic on Switches

<table>
<thead>
<tr>
<th>Action</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td>accept</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>Action</td>
<td>Switch</td>
<td>Supported Bind Points</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>discard</td>
<td>EX2200</td>
<td>Ports and VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td>reject message-type</td>
<td>EX2200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
</tr>
</tbody>
</table>
Table 88: Firewall Filter Actions Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
</tr>
<tr>
<td><code>routing-instance routing-instance-name</code></td>
<td>EX2200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported (EX2300) Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td><code>vlan vlan-name</code></td>
<td>EX2200</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANS</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANS</td>
</tr>
</tbody>
</table>

NOTE: Supported only when used in conjunction with the `interface` action modifier. On EX8200 Virtual Chassis, the `vlan` action is supported only for VLANS.
Platform Support for Action Modifiers for IPv4 Traffic

Table 89 on page 1431 summarizes support for action modifiers on different bind points for ingress and egress IPv4 traffic on different switches.

Table 89: Firewall Filter Action Modifiers Supported for IPv4 Traffic on Switches

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>analyzer</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Table 89: Firewall Filter Action Modifiers Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp</td>
<td>EX2200</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>count</td>
<td>EX2200</td>
<td>VLANs and Layer 3 interfaces (me0 interfaces only)</td>
<td>Layer 3 interfaces (me0 interfaces only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300</td>
<td>Ports, VLANs, and Layer 3 Interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>VLANs and Layer 3 interfaces (me0 and vme0 interfaces only)</td>
<td>Layer 3 interfaces (me0 and vme0 interfaces only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td>forwarding-class</td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td>class</td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
<td></td>
</tr>
</tbody>
</table>
Table 89: Firewall Filter Action Modifiers Supported for IPv4 Traffic on Switches *(continued)*

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td><code>interface-name</code></td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Ports and VLANs</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

NOTE: On EX8200 Virtual Chassis, the `interface` action modifier is supported only for VLANs.
<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>loss-priority (high</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>low)</td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>policer policer-name</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>port-mirror</td>
<td>EX2200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>port-mirror-instance</td>
<td>EX2200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>instance-name</td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported (EX2300) Ports, VLANs, and Layer 3 interfaces (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Table 89: Firewall Filter Action Modifiers Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>syslog</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Table 89: Firewall Filter Action Modifiers Supported for IPv4 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>three-color-policer</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interface</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Platform Support for Action Modifiers for IPv6 Traffic

Table 90 on page 1442 summarizes support for action modifiers on different bind points for ingress and egress IPv6 traffic.
Table 90: Firewall Filter Action Modifiers Supported for IPv6 Traffic on Switches

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>analyzer</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>dscp</td>
<td>EX2200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Ingress</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>count</td>
<td>EX2200</td>
<td>VLANs and Layer 3 interfaces (me0 and vme0 interfaces only)</td>
<td>Layer 3 interfaces (me0 and vme0 interfaces only)</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Layer 3 interfaces (me0 and vme0 interfaces only)</td>
<td>Layer 3 interfaces (me0 and vme0 interfaces only)</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Ingress</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>interface</td>
<td>EX2200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td>interface-name</td>
<td>EX2300 and EX3400</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports and VLANs</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

NOTE: On EX8200 Virtual Chassis, the `interface` action modifier is supported only for VLANs.
<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>**loss-priority (high</td>
<td>EX2200</td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>low)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EX2300 and EX3400</td>
<td></td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>EX3200 and EX4200</td>
<td></td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>EX3300</td>
<td></td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>EX4300</td>
<td></td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>EX4500</td>
<td></td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td>EX6200</td>
<td></td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>EX8200</td>
<td></td>
<td>Ports, VLANS, and Layer 3 interfaces</td>
<td>Ports and Layer 3 interfaces</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td>Egress</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>policer policer-name</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Layer 3 interfaces</td>
<td>Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td>port-mirror</td>
<td>EX2200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported (EX2300)</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
<td>Not supported (EX3400)</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Action Modifier</td>
<td>Switch</td>
<td>Supported Bind Points</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| **port-mirror-instance**
| **instance-name** | EX2200 | Not supported |
| | EX2300 and EX3400 | Ports, VLANs, and Layer 3 interfaces |
| | EX3200 and EX4200 | Not supported |
| | EX3300 | Not supported |
| | EX4300 | Ports, VLANs, and Layer 3 interfaces |
| | EX6200 | Not supported |
| | EX8200 | Not supported |
Table 90: Firewall Filter Action Modifiers Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
<th>Egress</th>
</tr>
</thead>
<tbody>
<tr>
<td>syslog</td>
<td>EX2200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Ports, VLAN, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
<td>Not supported</td>
</tr>
</tbody>
</table>
Table 90: Firewall Filter Action Modifiers Supported for IPv6 Traffic on Switches (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Switch</th>
<th>Supported Bind Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>three-color-policer</td>
<td>EX2200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX2300 and EX3400</td>
<td>Ports, VLANs, and Layer 3 interfaces</td>
</tr>
<tr>
<td></td>
<td>EX3200 and EX4200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX3300</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX4300</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>EX4500</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX6200</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>EX8200</td>
<td>Not Supported</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Support for Match Conditions and Actions for Loopback Firewall Filters on Switches | 1451
- Understanding Firewall Filter Match Conditions | 1359
- Firewall Filter Configuration Statements Supported by Junos OS for EX Series Switches | 2123
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1497

Support for Match Conditions and Actions for Loopback Firewall Filters on Switches

On EX Series Ethernet switches, a loopback interface is a gateway for all the control traffic that enters the Routing Engine of the switch. If you want to monitor this control traffic, you must configure a firewall filter on the loopback interface (lo0). Loopback firewall filters are applied only to packets that are sent to the
Routing Engine CPU for further processing. Therefore, you can apply a firewall filter only in the ingress direction on the loopback interface.

Each term in a firewall filter consists of match conditions and an action. Match conditions are the values or fields that a packet must contain. You can define multiple, single, or no match conditions. If no match conditions are specified for the term, all packets are matched by default. The string that defines a match condition is called a match statement. The action is the action that the switch takes if a packet matches the match conditions for the specific term. Action modifiers are optional and specify one or more actions that the switch takes if a packet matches the match conditions for the specific term.

The following tables list match conditions, actions, and action modifiers that are supported for a firewall filter configured on a loopback interface on a switch:

- Table 91 on page 1452
- Table 92 on page 1454
- Table 93 on page 1454

For information on match conditions, actions, and action modifiers supported for a firewall filter configured on a network interface, see "Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches" on page 1383.

Table 91: Match Conditions for Firewall Filters on Loopback Interfaces for IPv4 and IPv6 Traffic—Support per Switch

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>EX2200</th>
<th>EX3200, EX4200</th>
<th>EX3300</th>
<th>EX4500</th>
<th>EX6200</th>
<th>EX8200</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>destination-port</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>dscp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>icmp-code</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>icmp-type</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>interface</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>is-fragment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>packet-length</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>

Match conditions for IPv4 traffic:
Table 91: Match Conditions for Firewall Filters on Loopback Interfaces for IPv4 and IPv6 Traffic—Support per Switch (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>EX2200</th>
<th>EX3200, EX4200</th>
<th>EX3300</th>
<th>EX4500</th>
<th>EX6200</th>
<th>EX8200</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>protocol</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>source-address</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>source-port</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>source-prefix-list</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Match conditions for IPv6 traffic:

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>EX2200</th>
<th>EX3200, EX4200</th>
<th>EX3300</th>
<th>EX4500</th>
<th>EX6200</th>
<th>EX8200</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip6-destination-address</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>destination-port</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>icmp-code</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>icmp-type</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>interface</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>next-header</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>packet-length</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>source-address</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>source-port</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>source-prefix-list</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>tcp-established</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>tcp-flags</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>tcp-initial</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 91: Match Conditions for Firewall Filters on Loopback Interfaces for IPv4 and IPv6 Traffic—Support per Switch (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>EX2200</th>
<th>EX3200, EX4200</th>
<th>EX3300</th>
<th>EX4500</th>
<th>EX6200</th>
<th>EX8200</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic-class</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 92: Actions for Firewall Filters on Loopback Interfaces for IPv4 and IPv6 Traffic—Support per Switch

<table>
<thead>
<tr>
<th>Action</th>
<th>EX2200</th>
<th>EX3200, EX4200</th>
<th>EX3300</th>
<th>EX4500</th>
<th>EX6200</th>
<th>EX8200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions for IPv4 traffic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>accept</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>discard</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Actions for IPv6 traffic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>accept</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>discard</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 93: Action Modifiers for Firewall Filters on Loopback Interfaces for IPv4 and IPv6 Traffic—Support per Switch

<table>
<thead>
<tr>
<th>Action</th>
<th>EX2200</th>
<th>EX3200, EX4200</th>
<th>EX3300</th>
<th>EX4500</th>
<th>EX6200</th>
<th>EX8200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action modifiers for IPv4 traffic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>count</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>forwarding-class</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>loss-priority</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Action modifiers for IPv6 traffic:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>count</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>forwarding-class</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>loss-priority</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>
NOTE: On EX8200 switches, if an implicit or explicit discard action is configured on a loopback interface for IPv4 traffic, next hop resolve packets are accepted and allowed to pass through the switch. However, for IPv6 traffic, you must explicitly configure a rule to allow the neighbor discovery IPv6 resolve packets to pass through the switch.

RELATED DOCUMENTATION

Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches	1370
Platform Support for Firewall Filter Match Conditions, Actions, and Action Modifiers on EX Series Switches	1383
Understanding Firewall Filter Match Conditions	1359
Understanding How Firewall Filters Are Evaluated	1366
Understanding How Firewall Filters Test a Packet's Protocol	1466
Understanding the Use of Policers in Firewall Filters	1950

Configuring Firewall Filters (CLI Procedure)

You configure firewall filters on EX Series switches to control traffic that enters ports on the switch or enters and exits VLANs on the network and Layer 3 (routed) interfaces. To configure a firewall filter you must configure the filter and then apply it to a port, VLAN, or Layer 3 interface.

- Configuring a Firewall Filter | 1455
- Configuring a Term Specifically for IPv4 or IPv6 Traffic | 1460
- Applying a Firewall Filter to a Port on a Switch | 1461
- Applying a Firewall Filter to a Management Interface on a Switch | 1462
- Applying a Firewall Filter to a VLAN on a Network | 1464
- Applying a Firewall Filter to a Layer 3 (Routed) Interface | 1465

Configuring a Firewall Filter

Before you can apply a firewall filter to a port, VLAN, or Layer 3 interface, you must configure a firewall filter with the required details, such as type of family for the firewall filter, firewall filter name, and match conditions. A match condition in the firewall filter configuration can contain multiple terms that define the criteria for the match condition. For each term, you must specify an action to be performed if a packet
matches the conditions in the term. For information on different match conditions and actions, see "Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches" on page 1370.

To configure a firewall filter:

1. Configure the family address type for the firewall filter:

 - For a firewall filter that is applied to a port or VLAN, specify the family address type `ethernet-switching` to filter Layer 2 (Ethernet) packets and Layer 3 (IP) packets, for example:

     ```
     [edit firewall]
     user@switch# set family ethernet-switching
     ```

 - For a firewall filter that is applied to a Layer 3 (routed) interface:
 - To filter IPv4 packets, specify the family address type `inet`, for example:

       ```
       [edit firewall]
       user@switch# set family inet
       ```

 - To filter IPv6 packets, specify the family address type `inet6`, for example:

       ```
       [edit firewall]
       user@switch# set family inet6
       ```

 NOTE: You can configure firewall filters for both IPv4 and IPv6 traffic on the same Layer 3 interface.

2. Specify the filter name:

   ```
   [edit firewall family ethernet-switching]
   user@switch# set filter ingress-port-filter
   ```

 The filter name can contain letters, numbers, and hyphens (-) and can have a maximum of 64 characters. Each filter name must be unique.

3. If you want to apply a firewall filter to multiple interfaces and name individual firewall counters specific to each interface, configure the `interface-specific` option:

   ```
   [edit firewall family ethernet-switching filter ingress-port-filter]
   user@switch# set interface-specific
   ```

4. Specify a term name:
[edit firewall family ethernet-switching filter ingress-port-filter]
user@switch# set term term-one

The term name can contain letters, numbers, and hyphens (-) and can have a maximum of 64 characters. A firewall filter can contain one or more terms. Each term name must be unique within a filter.
NOTE:
The maximum number of terms allowed per firewall filter for EX Series switches is:

• 512 for EX2200 switches
• 1,436 for EX3300 switches

NOTE: On EX3300 switches, if you add and delete filters with a large number of terms (on the order of 1000 or more) in the same commit operation, not all the filters are installed. You must add filters in one commit operation, and delete filters in a separate commit operation.

• 7,168 for EX3200 and EX4200 switches

• On EX4300 switches, following are the number of terms supported for ingress and egress traffic, for firewall filers configured on a port, VLAN and Layer 3 interface:

 • For ingress traffic:
 • 3,500 terms for firewall filters configured on a port
 • 3,500 terms for firewall filters configured on a VLAN
 • 7,000 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
 • 3,500 terms for firewall filers configured on Layer 3 interfaces for IPv6 traffic

 • For egress traffic:
 • 512 terms for firewall filters configured on a port
 • 256 terms for firewall filters configured on a VLAN
 • 512 terms for firewall filters configured on Layer 3 interfaces for IPv4 traffic
 • 512 terms for firewall filers configured on Layer 3 interfaces for IPv6 traffic

NOTE: You can configure these maximum number of terms only when you configure one type of firewall filter (Port, VLAN, or Router (Layer 3) firewall filter) on the switch, and when storm control is not enabled on all interfaces in the switch.

• 1,200 for EX4500 and EX4550 switches
• 1,400 for EX6200 switches
• 32,768 for EX8200 switches
If you attempt to configure a firewall filter that exceeds these limits, the switch returns an error message when you commit the configuration.

5. In each firewall filter term, specify the match conditions to use to match components of a packet.

To specify match conditions to match on packets that contain a specific source address and source port—for example:

[edit firewall family ethernet-switching filter ingress-port-filter term term-one]
user@switch# set from source-address 192.0.2.0
user@switch# set from source-port 80

You can specify one or more match conditions in a single from statement. For a match to occur, the packet must match all the conditions in the term.

The from statement is optional, but if included in a term, the from statement cannot be empty. If you omit the from statement, all packets are considered to match.

6. In each firewall filter term, specify the action to take if the packet matches all the conditions in that term.

You can specify an action and/or action modifiers:

- To specify a filter action, for example, to discard packets that match the conditions of the filter term:

 [edit firewall family ethernet-switching filter ingress-port-filter term term-one]
 user@switch# set then discard

 You can specify no more than one action per filter term.

- To specify an action modifier, for example, to count and classify packets in a forwarding class:

 [edit firewall family ethernet-switching filter ingress-port-filter term term-one]
 user@switch# set then count counter-one
 user@switch# set then forwarding-class expedited-forwarding

In a then statement, you can specify the following action modifiers:

- analyzer analyzer-name—Mirror port traffic to a specified destination port or VLAN that is connected to a protocol analyzer application. An analyzer must be configured under the ethernet-switching family address type. See Configuring Port Mirroring to Analyze Traffic (CLI Procedure).

- count counter-name—Count the number of packets that pass this filter term.
NOTE: We recommend that you configure a counter for each term in a firewall filter, so that you can monitor the number of packets that match the conditions specified in each filter term.

- **forwarding-class class**—Classify packets in a forwarding class.
- **loss-priority priority**—Set the priority for dropping a packet.
- **policer policer-name**—Apply rate limiting to the traffic.
- **interface interface-name**—Forward the traffic to the specified interface, bypassing the switching lookup.
- **log**—Log the packet's header information in the Routing Engine.

If you omit the **then** statement or do not specify an action, packets that match all the conditions in the **from** statement are accepted. However, you must always explicitly configure an action and/or action modifier in the **then** statement. You can include no more than one action, but you can use any combination of action modifiers. For an action or action modifier to take effect, all conditions in the **from** statement must match.

NOTE: Implicit discard is also applicable to a firewall filter applied to the loopback interface, lo0.

On Juniper Networks EX8200 Ethernet Switches, if an implicit or explicit **discard** action is configured on a loopback interface for IPv4 traffic, next hop resolve packets are accepted and allowed to pass through the switch. However, for IPv6 traffic, you must explicitly configure a rule to allow the next hop IPv6 resolve packets to pass through the switch.

Configuring a Term Specifically for IPv4 or IPv6 Traffic

To configure a term in a firewall filter configuration specifically for IPv4 traffic:

1. Verify that neither **ether-type ipv6** nor **ip-version ipv6** is specified in the term in the configuration. By default, a configuration that does not contain either **ether-type ipv6** or **ip-version ipv6** in a term applies to IPv4 traffic.

2. (Optional) Perform one of these tasks:
 - Define **ether-type ipv4** in a term in the configuration.
 - Define **ip-version ipv4** in a term in the configuration.
• Define both ether-type ipv4 and ip-version ipv4 in a term in the configuration.

• Verify that neither ether-type ipv6 nor ip-version ipv6 is specified in a term in the configuration—by default, a configuration that does not contain either ether-type ipv6 or ip-version ipv6 in a term applies to IPv4 traffic if it does not contain ether-type ipv6 or ip-version ipv6.

3. Ensure that other match conditions in the term are valid for IPv4 traffic.

To configure a term in a firewall filter configuration specifically for IPv6 traffic:

1. Perform one of these tasks:
 • Define ether-type ipv6 in a term in the configuration.
 • Define ip-version ipv6 in a term in the configuration.
 • Define both ether-type ipv6 and ip-version ipv4 in a term in the configuration.

 NOTE: By default, a configuration that does not contain either ether-type ipv6 or ip-version ipv6 in a term applies to IPv4 traffic.

2. Ensure that other match conditions in the term are valid for IPv6 traffic.

 NOTE: If the term contains either of the match conditions ether-type ipv6 or ip-version ipv6, with no other IPv6 match condition specified, all IPv6 traffic is matched.

 NOTE: To configure a firewall filter for both IPv4 and IPv6 traffic, you must include two separate terms, one for IPv4 traffic and the other for IPv6 traffic.

Applying a Firewall Filter to a Port on a Switch

You can apply a firewall filter to a port on a switch to filter ingress or egress traffic on the switch. When you configure the firewall filter, you can specify any match condition, action, and action modifiers specified in "Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches" on page 1370. The action specified in the match condition indicates the action for the matched packets in the ingress or egress traffic.

To apply a firewall filter to a port to filter ingress or egress traffic:
1. Specify the interface name and provide a meaningful description of the firewall filter and the interface to which the filter is applied:

[edit interfaces]
user@switch# set ge-0/0/1 description "filter to limit tcp traffic filter at trunk port for employee-vlan and voice-vlan applied on the interface"

NOTE: Providing the description is optional.

2. Specify the unit number and family address type for the interface:

[edit interfaces]
user@switch# set ge-0/0/1 unit 0 family ethernet-switching

For firewall filters that are applied to ports, the family address type must be ethernet-switching.

3. To apply a firewall filter to filter packets that are entering a port:

[edit interfaces]
user@switch# set ge-0/0/1 unit 0 family ethernet-switching filter input ingress-port-filter

To apply a firewall filter to filter packets that are exiting a port:

[edit interfaces]
user@switch# set ge-0/0/1 unit 0 family ethernet-switching filter output egress-port-filter

NOTE: You can apply no more than one firewall filter per port, per direction.

Applying a Firewall Filter to a Management Interface on a Switch

You can configure and apply a firewall filter to a management interface to control traffic that is entering or exiting the interface on a switch. You can use utilities such as SSH or Telnet to connect to the management interface over the network and then use management protocols such as SNMP to gather
statistical data from the switch. Similar to configuring a firewall filter on other types of interfaces, you can configure a firewall filter on a management interface using any match condition, action, and action modifier specified in "Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches" on page 1370 except for the following action modifiers:

- loss-priority
- forwarding-class

You can apply a firewall filter to the management Ethernet interface on any EX Series switch. You can also apply a firewall filter to the virtual management Ethernet (VME) interface on the EX4200 switch. For more information on the management Ethernet interface and the VME interface, see Interfaces Overview for Switches.

To apply a firewall filter on the management interface to filter ingress or egress traffic:

1. Specify the interface name and provide a meaningful description of the firewall filter and the interface to which the filter is applied:

 [edit interfaces]
 user@switch# set me0 description "filter to limit tcp traffic filter at management interface"

 NOTE: Providing the description is optional.

2. Specify the unit number and family address type for the management interface:

 [edit interfaces]
 user@switch# set me0 unit 0 family inet

 NOTE: For firewall filters that are applied to management interfaces, the family address type can be either inet or inet6.

3. To apply a firewall filter to filter packets that are entering a management interface:

 [edit interfaces]
 user@switch# set me0 unit 0 family inet filter input ingress-port-filter

 To apply a firewall filter to filter packets that are exiting a management interface:

 [edit interfaces]
 user@switch# set me0 unit 0 family inet filter output egress-port-filter
NOTE: You can apply no more than one firewall filter per management interface, per direction.

Applying a Firewall Filter to a VLAN on a Network

You can apply a firewall filter to a VLAN on a network to filter ingress or egress traffic on the network. To apply a firewall filter to a VLAN, specify the VLAN name and ID, and then apply the firewall filter to the VLAN. When you configure the firewall filter, you can specify any match condition, action, and action modifiers specified in “Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches” on page 1370. The action specified in the match condition indicates the action for the matched packets in the ingress or egress traffic.

To apply a firewall filter to a VLAN:

1. Specify the VLAN name and VLAN ID and provide a meaningful description of the firewall filter and the VLAN to which the filter is applied:

 [edit vlans]
 user@switch# set employee-vlan vlan-id 20 vlan-description "filter to rate limit traffic applied on employee-vlan"

 NOTE: Providing the description is optional.

2. Apply firewall filters to filter packets that are entering or exiting the VLAN:

 • To apply a firewall filter to filter packets that are entering the VLAN:

 [edit vlans]
 user@switch# set employee-vlan vlan-id 20 filter input ingress-vlan-filter

 (On EX4300 switches) To apply a firewall filter to filter packets that are entering the VLAN:

 [edit vlans]
 user@switch# set employee-vlan vlan-id 20 forwarding-options input ingress-vlan-filter

 • To apply a firewall filter to filter packets that are exiting the VLAN:

 [edit vlans]
 user@switch# set employee-vlan vlan-id 20 filter output egress-vlan-filter

 (On EX4300 switches) To apply a firewall filter to filter packets that are exiting the VLAN:
Applying a Firewall Filter to a Layer 3 (Routed) Interface

You can apply a firewall filter to a Layer 3 (routed) interface to filter ingress or egress traffic on the switch. When you configure the firewall filter, you can specify any match condition, action, and action modifiers specified in “Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches” on page 1370. The action specified in the match condition indicates the action for the matched packets in the ingress or egress traffic.

To apply a firewall filter to a Layer 3 interface on a switch:

1. Specify the interface name and provide a meaningful description of the firewall filter and the interface to which the filter is applied:

   ```
   [edit interfaces]
   user@switch# set ge-0/1/0 description "filter to count and monitor employee-vlan traffic applied on layer 3 interface"
   ```

 NOTE: Providing the description is optional.

2. Specify the unit number, family address type, and address for the interface:

   ```
   [edit interfaces]
   user@switch# set ge-0/1/0 unit 0 family inet address 10.10.10.1/24
   ```

 For firewall filters applied to Layer 3 interfaces, the family address type must be `inet` (for IPv4 traffic) or `inet6` (for IPv6 traffic).

3. You can apply firewall filters to filter packets that are entering or exiting a Layer 3 (routed) interface:

 • To apply a firewall filter to filter packets that are entering a Layer 3 interface:

     ```
     [edit interfaces]
     user@switch# set ge-0/1/0 unit 0 family inet address 10.10.10.1/24 filter input ingress-router-filter
     ```
• To apply a firewall filter to filter packets that are exiting a Layer 3 interface:

 [edit interfaces]
 user@switch# set ge-0/1/0 unit 0 family inet address 10.10.10.1/24 filter output
egress-router-filter

 NOTE: You can apply no more than one firewall filter per Layer 3 interface, per direction.

RELATED DOCUMENTATION

- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1497
- Example: Configuring a Firewall Filter on a Management Interface on an EX Series Switch | 1493
- Verifying That Firewall Filters Are Operational | 1627
- Monitoring Firewall Filter Traffic | 1628
- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955

Understanding How Firewall Filters Test a Packet's Protocol

When examining match conditions, Juniper Networks Junos operating system (Junos OS) for Juniper Networks EX Series Ethernet Switches tests only the field that is specified. The software does not implicitly test the IP header to determine whether a packet is an IP packet. Therefore, in some cases, you must specify protocol field match conditions in conjunction with other match conditions to ensure that the filters are performing the expected matches.

If you specify a protocol match condition or a match of the ICMP type or TCP flags field, there is no implied protocol match. For the following match conditions, you must explicitly specify the protocol match condition in the same term:

- **destination-port**—Specify the match protocol tcp or protocol udp.
- **source-port**—Specify the match protocol tcp or protocol udp.

If you do not specify the protocol when using the preceding fields, design your filters carefully to ensure that they perform the expected matches. For example, if you specify a match of destination-port ssh, the
switch deterministically matches any packets that have a value of 22 in the two-byte field that is two bytes beyond the end of the IP header without ever checking the IP protocol field.

RELATED DOCUMENTATION

Firewall Filters for EX Series Switches Overview	1352
Understanding Firewall Filter Match Conditions	1359
Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467

Understanding Filter-Based Forwarding for EX Series Switches

Administrators of Juniper Networks EX Series Ethernet Switches can use firewall filters in conjunction with virtual routing instances to specify different routes for packets to travel in their networks. To set up this feature, which is called filter-based forwarding, you specify a filter and match criteria and then specify the virtual routing instance to send packets to.

You might want to use filter-based forwarding to route specific types of traffic through a firewall or security device before the traffic continues on its path. You can also use filter-based forwarding to give certain types of traffic preferential treatment or to improve load balancing of switch traffic.

RELATED DOCUMENTATION

| Understanding Virtual Routing Instances on EX Series Switches |
| Firewall Filters for EX Series Switches Overview | 1352 |
| Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1497 |

Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches

IN THIS SECTION

- Requirements | 1468
- Overview | 1468
This example shows how to configure and apply firewall filters to control traffic that is entering or exiting a port on the switch, a VLAN on the network, and a Layer 3 interface on the switch. Firewall filters define the rules that determine whether to forward or deny packets at specific processing points in the packet flow.

Requirements

This example uses the following software and hardware components:

- Junos OS Release 9.0 or later for EX Series switches.
- Two Juniper Networks EX3200-48T switches: one to be used as an access switch, the other to be used as a distribution switch
- One Juniper Networks EX-UM-4SFP uplink module
- One Juniper Networks J-series router

Before you configure and apply the firewall filters in this example, be sure you have:

- An understanding of firewall filter concepts, policers, and CoS
- Installed the uplink module in the distribution switch. See Installing an Uplink Module in an EX3200 Switch.

Overview

This configuration example show how to configure and apply firewall filters to provide rules to evaluate the contents of packets and determine when to discard, forward, classify, count, and analyze packets that are destined for or originating from the EX Series switches that handle all voice-vlan, employee-vlan, and guest-vlan traffic. Table 94 on page 1469 shows the firewall filters that are configured for the EX Series switches in this example.
<table>
<thead>
<tr>
<th>Component</th>
<th>Purpose/Description</th>
</tr>
</thead>
</table>
| Port firewall filter, ingress-port-voip-class-limit-tcp-icmp | This firewall filter performs two functions:
- Assigns priority queuing to packets with a source MAC address that matches the phone MAC addresses. The forwarding class **expedited-forwarding** provides low loss, low delay, low jitter, assured bandwidth, and end-to-end service for all **voice-vlan** traffic.
- Performs rate limiting on packets that enter the ports for **employee-vlan**. The traffic rate for TCP and ICMP packets is limited to 1 Mbps with a burst size up to 30,000 bytes.
This firewall filter is applied to port interfaces on the access switch. |
| VLAN firewall filter, ingress-vlan-rogue-block | Prevents rogue devices from using HTTP sessions to mimic the gatekeeper device that manages call registration, admission, and call status for VoIP calls. Only TCP or UDP ports should be used; and only the gatekeeper uses HTTP. That is, all **voice-vlan** traffic on TCP ports should be destined for the gatekeeper device. This firewall filter applies to all phones on **voice-vlan**, including communication between any two phones on the VLAN and all communication between the gatekeeper device and VLAN phones.
This firewall filter is applied to VLAN interfaces on the access switch. |
| VLAN firewall filter, egress-vlan-watch-employee | Accepts **employee-vlan** traffic destined for the corporate subnet, but does not monitor this traffic. Employee traffic destined for the Web is counted and analyzed.
This firewall filter is applied to vlan interfaces on the access switch. |
| VLAN firewall filter, ingress-vlan-limit-guest | Prevents guests (non-employees) from talking with employees or employee hosts on **employee-vlan**. Also prevents guests from using peer-to-peer applications on **guest-vlan**, but allows guests to access the Web.
This firewall filter is applied to VLAN interfaces on the access switch. |
| Router firewall filter, egress-router-corp-class | Prioritizes **employee-vlan** traffic, giving highest forwarding-class priority to employee traffic destined for the corporate subnet.
This firewall filter is applied to a routed port (Layer 3 uplink module) on the distribution switch. |

Figure 69 on page 1470 shows the application of port, VLAN, and Layer 3 routed firewall filters on the switch.
Figure 69: Application of Port, VLAN, and Layer 3 Routed Firewall Filters

Network Topology

The topology for this configuration example consists of one EX-3200-48T switch at the access layer, and one EX-3200-48T switch at the distribution layer. The distribution switch’s uplink module is configured to support a Layer 3 connection to a J-series router.

The EX Series switches are configured to support VLAN membership. *Table 95 on page 1470* shows the VLAN configuration components for the VLANs.

Table 95: Configuration Components: VLANs

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>VLAN ID</th>
<th>VLAN Subnet and Available IP Addresses</th>
<th>VLAN Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>voice-vlan</td>
<td>10</td>
<td>192.0.2.0/28</td>
<td>Voice VLAN used for employee VoIP traffic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>192.0.2.1 through 192.0.2.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>192.0.2.15 is the subnet’s broadcast address</td>
<td></td>
</tr>
</tbody>
</table>

Egress VLAN-corp-class

Egress VLAN-watch-employee

Ingress VLAN-rogue-block

Ingress VLAN-limit-guest

Ingress-Port-voip-class-limit-top Corp
Table 95: Configuration Components: VLANs (continued)

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>VLAN ID</th>
<th>VLAN Subnet and Available IP Addresses</th>
<th>VLAN Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>employee-vlan</td>
<td>20</td>
<td>192.0.2.16/28 192.0.2.17 through 192.0.2.30 192.0.2.31 is the subnet’s broadcast address</td>
<td>VLAN standalone PCs, PCs connected to the network through the hub in VoIP telephones, wireless access points, and printers. This VLAN completely includes the voice VLAN. Two VLANs (voice-vlan and employee-vlan) must be configured on the ports that connect to the telephones.</td>
</tr>
<tr>
<td>guest-vlan</td>
<td>30</td>
<td>192.0.2.32/28 192.0.2.33 through 192.0.2.46 192.0.2.47 is the subnet’s broadcast address</td>
<td>VLAN for guests’ data devices (PCs). The scenario assumes that the corporation has an area open to visitors, either in the lobby or in a conference room, that has a hub to which visitors can plug in their PCs to connect to the Web and to their company's VPN.</td>
</tr>
<tr>
<td>camera-vlan</td>
<td>40</td>
<td>192.0.2.48/28 192.0.2.49 through 192.0.2.62 192.0.2.63 is the subnet’s broadcast address</td>
<td>VLAN for the corporate security cameras.</td>
</tr>
</tbody>
</table>

Ports on the EX Series switches support Power over Ethernet (PoE) to provide both network connectivity and power for VoIP telephones connecting to the ports. Table 96 on page 1472 shows the switch ports that are assigned to the VLANs and the IP and MAC addresses for devices connected to the switch ports:
Table 96: Configuration Components: Switch Ports on a 48-Port All-PoE Switch

<table>
<thead>
<tr>
<th>Switch and Port Number</th>
<th>VLAN Membership</th>
<th>IP and MAC Addresses</th>
<th>Port Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0, ge-0/0/1</td>
<td>voice-vlan, employee-vlan</td>
<td>IP addresses: 192.0.2.1 through 192.0.2.2</td>
<td>Two VoIP telephones, each connected to one PC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC addresses: 00.00.5E.00.53.01, 00.00.5E.00.53.02</td>
<td></td>
</tr>
<tr>
<td>ge-0/0/2, ge-0/0/3</td>
<td>employee-vlan</td>
<td>192.0.2.17 through 192.0.2.18</td>
<td>Printer, wireless access points</td>
</tr>
<tr>
<td>ge-0/0/4, ge-0/0/5</td>
<td>guest-vlan</td>
<td>192.0.2.34 through 192.0.2.35</td>
<td>Two hubs into which visitors can plug in their PCs. Hubs are located in an area open to visitors, such as a lobby or conference room</td>
</tr>
<tr>
<td>ge-0/0/6, ge-0/0/7</td>
<td>camera-vlan</td>
<td>192.0.2.49 through 192.0.2.50</td>
<td>Two security cameras</td>
</tr>
<tr>
<td>ge-0/0/9</td>
<td>voice-vlan</td>
<td>IP address: 192.0.2.14</td>
<td>Gatekeeper device. The gatekeeper manages call registration, admission, and call status for VoIP phones.</td>
</tr>
<tr>
<td>ge-0/1/0</td>
<td></td>
<td>IP address: 192.0.2.65</td>
<td>Layer 3 connection to a router; note that this is a port on the switch’s uplink module</td>
</tr>
</tbody>
</table>

Configuring an Ingress Port Firewall Filter to Prioritize Voice Traffic and Rate-Limit TCP and ICMP Traffic

To configure and apply firewall filters for port, VLAN, and router interfaces, perform these tasks:

CLI Quick Configuration

To quickly configure and apply a port firewall filter to prioritize voice traffic and rate-limit packets that are destined for the **employee-vlan** subnet, copy the following commands and paste them into the switch terminal window:

```plaintext
[edit]
```
set firewall policer tcp-connection-policer if-exceeding burst-size-limit 30k bandwidth-limit 1m

set firewall policer tcp-connection-policer then discard

set firewall policer icmp-connection-policer if-exceeding burst-size-limit 30k bandwidth-limit 1m

set firewall policer icmp-connection-policer then discard

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term voip-high from source-mac-address 00.00.5E.00.53.01

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term voip-high from source-mac-address 00.00.5E.00.53.02

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term voip-high from protocol udp

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term voip-high then forwarding-class expedited-forwarding

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term voip-high then loss-priority low

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term network-control from precedence net-control

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term network-control then forwarding-class network-control

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term network-control then loss-priority low

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term tcp-connection from destination-address 192.0.2.16/28

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term tcp-connection from protocol tcp

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term tcp-connection then policer tcp-connection-policer

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term tcp-connection then count tcp-counter

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term tcp-connection then forwarding-class best-effort
set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term tcp-connection then loss-priority high

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term icmp-connection from destination-address 192.0.2.16/28

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term icmp-connection from protocol icmp

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term icmp-connection then policer icmp-connection-policer

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term icmp-connection then count icmp-counter

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term icmp-connection then forwarding-class best-effort

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term icmp-connection then loss-priority high

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term best-effort then forwarding-class best-effort

set firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp term best-effort then loss-priority high

set interfaces ge-0/0/0 description "voice priority and tcp and icmp traffic rate-limiting filter at ingress port"

set interfaces ge-0/0/0 unit 0 family ethernet-switching filter input ingress-port-voip-class-limit-tcp-icmp

set interfaces ge-0/0/1 description "voice priority and tcp and icmp traffic rate-limiting filter at ingress port"

set interfaces ge-0/0/1 unit 0 family ethernet-switching filter input ingress-port-voip-class-limit-tcp-icmp

set class-of-service schedulers voice-high buffer-size percent 15

set class-of-service schedulers voice-high priority high

set class-of-service schedulers net-control buffer-size percent 10

set class-of-service schedulers net-control priority high

set class-of-service schedulers best-effort buffer-size percent 75
set class-of-service schedulers best-effort priority low
set class-of-service scheduler-maps ethernet-diffsrv-cos-map forwarding-class expedited-forwarding scheduler voice-high
set class-of-service scheduler-maps ethernet-diffsrv-cos-map forwarding-class network-control scheduler net-control
set class-of-service scheduler-maps ethernet-diffsrv-cos-map forwarding-class best-effort scheduler best-effort

Step-by-Step Procedure
To configure and apply a port firewall filter to prioritize voice traffic and rate-limit packets that are destined for the employee-vlan subnet:

1. Define the policers tcp-connection-policer and icmp-connection-policer:

 [edit]
 user@switch# set firewall policer tcp-connection-policer if-exceeding burst-size-limit 30k bandwidth-limit 1m
 user@switch# set firewall policer tcp-connection-policer then discard
 user@switch# set firewall policer icmp-connection-policer if-exceeding burst-size-limit 30k bandwidth-limit 1m
 user@switch# set firewall policer icmp-connection-policer then discard

2. Define the firewall filter ingress-port-voip-class-limit-tcp-icmp:

 [edit firewall]
 user@switch# set family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp

3. Define the term voip-high:

 [edit firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp]
 user@switch# set term voip-high from source-mac-address 00.00.5E.00.53.01
 user@switch# set term voip-high from source-mac-address 00.00.5E.00.53.02
 user@switch# set term voip-high from protocol udp
 user@switch# set term voip-high then forwarding-class expedited-forwarding
 user@switch# set term voip-high then loss-priority low

4. Define the term network-control:
5. Define the term `tcp-connection` to configure rate limits for TCP traffic:

```
[edit firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp]
user@switch# set term tcp-connection from destination-address 192.0.2.16/28
user@switch# set term tcp-connection from protocol tcp
user@switch# set term tcp-connection then policer tcp-connection-policer
user@switch# set term tcp-connection then count tcp-counter
user@switch# set term tcp-connection then forwarding-class best-effort
user@switch# set term tcp-connection then loss-priority high
```

6. Define the term `icmp-connection` to configure rate limits for ICMP traffic:

```
[edit firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp]
user@switch# set term icmp-connection from destination-address 192.0.2.16/28
user@switch# set term icmp-connection from protocol icmp
user@switch# set term icmp-connection then policer icmp-policer
user@switch# set term icmp-connection then count icmp-counter
user@switch# set term icmp-connection then forwarding-class best-effort
user@switch# set term icmp-connection then loss-priority high
```

7. Define the term `best-effort` with no match conditions for an implicit match on all packets that did not match any other term in the firewall filter:

```
[edit firewall family ethernet-switching filter ingress-port-voip-class-limit-tcp-icmp]
user@switch# set term best-effort then forwarding-class best-effort
user@switch# set term best-effort then loss-priority high
```

8. Apply the firewall filter `ingress-port-voip-class-limit-tcp-icmp` as an input filter to the port interfaces for `employee-vlan`:

```
[edit interfaces]
user@switch# set ge-0/0/0 description "voice priority and tcp and icmp traffic rate-limiting filter at ingress port"
```
user@switch# set ge-0/0/0 unit 0 family ethernet-switching filter input ingress-port-voip-class-limit-tcp-icmp
user@switch# set ge-0/0/1 description "voice priority and tcp and icmp traffic rate-limiting filter at ingress port"
user@switch# set ge-0/0/1 unit 0 family ethernet-switching filter input ingress-port-voip-class-limit-tcp-icmp

9. Configure the parameters that are desired for the different schedulers.

NOTE: When you configure parameters for the schedulers, define the numbers to match your network traffic patterns.

[edit class-of-service]
user@switch# set schedulers voice-high buffer-size percent 15
user@switch# set schedulers voice-high priority high
user@switch# set schedulers network—control (Obsoleted) buffer-size percent 10
user@switch# set schedulers network—control priority high
user@switch# set schedulers best-effort buffer-size percent 75
user@switch# set schedulers best-effort priority low

10. Assign the forwarding classes to schedulers with a scheduler map:

[edit class-of-service]
user@switch# set scheduler-maps ethernet-diffsrv-cos-map
user@switch# set scheduler-maps ethernet-diffsrv-cos-map forwarding-class expedited-forwarding scheduler voice-high
user@switch# set scheduler-maps ethernet-diffsrv-cos-map forwarding-class network-control scheduler net-control
user@switch# set scheduler-maps ethernet-diffsrv-cos-map forwarding-class best-effort scheduler best-effort

11. Associate the scheduler map with the outgoing interface:

[edit class-of-service]
user@switch# set interfaces ge-0/1/0 scheduler-map ethernet-diffsrv-cos-map

Results
Display the results of the configuration:
user@switch# show
firewall {
 policer tcp-connection-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 30k;
 }
 then {
 discard;
 }
 }
 policer icmp-connection-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 30k;
 }
 then {
 discard;
 }
 }
}
family ethernet-switching {
 filter ingress-port-voip-class-limit-tcp-icmp {
 term voip-high {
 from {
 destination-mac-address 00.00.5E.00.53.01;
 destination-mac-address 00.00.5E.00.53.02;
 protocol udp;
 }
 then {
 forwarding-class expedited-forwarding;
 loss-priority low;
 }
 }
 term network-control {
 from {
 precedence net-control ;
 }
 then {
 forwarding-class network-control;
 loss-priority low;
 }
 }
 term tcp-connection {
 from {

destination-address 192.0.2.16/28;
protocol tcp;
}
then {
policer tcp-connection-policer;
count tcp-counter;
forwarding-class best-effort;
loss-priority high;
}
}
term icmp-connection
 from {
 protocol icmp;
 }
then {
policer icmp-connection-policer;
count icmp-counter;
forwarding-class best-effort;
loss-priority high;
}
}
term best-effort {
 then {
 forwarding-class best-effort;
 loss-priority high;
 }
 }
}
}
}
}
}
}
}
}
}
}
i
ge-0/0/0 {
 description "voice priority and tcp and icmp traffic rate-limiting filter at ingress port";
 unit 0 {
 family ethernet-switching {
 filter {
 input ingress-port-voip-class-limit-tcp-icmp;
 }
 }
 }
}
ge-0/0/1 {
 description "voice priority and tcp and icmp traffic rate-limiting filter at ingress port";
 unit 0 {

Configuring a VLAN Ingress Firewall Filter to Prevent Rogue Devices from Disrupting VoIP Traffic

To configure and apply firewall filters for port, VLAN, and router interfaces, perform these tasks:

CLI Quick Configuration
To quickly configure a VLAN firewall filter on `voice-vlan` to prevent rogue devices from using HTTP sessions to mimic the gatekeeper device that manages VoIP traffic, copy the following commands and paste them into the switch terminal window:

```
[edit]
set firewall family ethernet-switching filter ingress-vlan-rogue-block term to-gatekeeper from destination-address 192.0.2.14

set firewall family ethernet-switching filter ingress-vlan-rogue-block term to-gatekeeper from destination-port 80

set firewall family ethernet-switching filter ingress-vlan-rogue-block term to-gatekeeper then accept

set firewall family ethernet-switching filter ingress-vlan-rogue-block term from-gatekeeper from source-address 192.0.2.14
```
set firewall family ethernet-switching filter ingress-vlan-rogue-block term from-gatekeeper from source-port 80

set firewall family ethernet-switching filter ingress-vlan-rogue-block term from-gatekeeper then accept

set firewall family ethernet-switching filter ingress-vlan-rogue-block term not-gatekeeper from destination-port 80

set firewall family ethernet-switching filter ingress-vlan-rogue-block term not-gatekeeper then count rogue-counter

set firewall family ethernet-switching filter ingress-vlan-rogue-block term not-gatekeeper then discard

set vlans voice-vlan description "block rogue devices on voice-vlan"

set vlans voice-vlan filter input ingress-vlan-rogue-block

Step-by-Step Procedure
To configure and apply a VLAN firewall filter on voice-vlan to prevent rogue devices from using HTTP to mimic the gatekeeper device that manages VoIP traffic:

1. Define the firewall filter ingress-vlan-rogue-block to specify filter matching on the traffic you want to permit and restrict:

 [edit firewall]
 user@switch# set family ethernet-switching filter ingress-vlan-rogue-block

2. Define the term to-gatekeeper to accept packets that match the destination IP address of the gatekeeper:

 [edit firewall family ethernet-switching filter ingress-vlan-rogue-block]
 user@switch# set term to-gatekeeper from destination-address 192.0.2.14
 user@switch# set term to-gatekeeper from destination-port 80
 user@switch# set term to-gatekeeper then accept

3. Define the term from-gatekeeper to accept packets that match the source IP address of the gatekeeper:

 [edit firewall family ethernet-switching filter ingress-vlan-rogue-block]
 user@switch# set term from-gatekeeper from source-address 192.0.2.14
 user@switch# set term from-gatekeeper from source-port 80
 user@switch# set term from-gatekeeper then accept

4. Define the term not-gatekeeper to ensure all voice-vlan traffic on TCP ports is destined for the gatekeeper device:

 [edit firewall family ethernet-switching filter ingress-vlan-rogue-block]
user@switch# set term not-gatekeeper from destination-port 80
user@switch# set term not-gatekeeper then count rogue-counter
user@switch# set term not-gatekeeper then discard

5. Apply the firewall filter ingress-vlan-rogue-block as an input filter to the VLAN interface for the VoIP telephones:

[edit]
user@switch# set vlans voice-vlan description "block rogue devices on voice-vlan"
user@switch# set vlans voice-vlan filter input ingress-vlan-rogue-block

Results
Display the results of the configuration:

```plaintext
count rogue-counter: 1482
```
Configuring a VLAN Firewall Filter to Count, Monitor, and Analyze Egress Traffic on the Employee VLAN

To configure and apply firewall filters for port, VLAN, and router interfaces, perform these tasks:

CLI Quick Configuration

A firewall filter is configured and applied to VLAN interfaces to filter employee-vlan egress traffic. Employee traffic destined for the corporate subnet is accepted but not monitored. Employee traffic destined for the Web is counted and analyzed.

To quickly configure and apply a VLAN firewall filter, copy the following commands and paste them into the switch terminal window:

```
[edit]
set firewall family ethernet-switching filter egress-vlan-watch-employee term employee-to-corp from destination-address 192.0.2.16/28
set firewall family ethernet-switching filter egress-vlan-watch-employee term employee-to-corp then accept
set firewall family ethernet-switching filter egress-vlan-watch-employee term employee-to-web from destination-port 80
set firewall family ethernet-switching filter egress-vlan-watch-employee term employee-to-web then count employee-web-counter
set firewall family ethernet-switching filter egress-vlan-watch-employee term employee-to-web then analyzer employee-monitor
set vlans employee-vlan description "filter at egress VLAN to count and analyze employee to Web traffic"
set vlans employee-vlan filter output egress-vlan-watch-employee
```
Step-by-Step Procedure

To configure and apply an egress port firewall filter to count and analyze employee-vlan traffic that is destined for the Web:

1. Define the firewall filter `egress-vlan-watch-employee`:

   ```
   [edit firewall]
   user@switch# set family ethernet-switching filter egress-vlan-watch-employee
   ```

2. Define the term `employee-to-corp` to accept but not monitor all employee-vlan traffic destined for the corporate subnet:

   ```
   [edit firewall family ethernet-switching filter egress-vlan-watch-employee]
   user@switch# set term employee-to-corp from destination-address 192.0.2.16/28
   user@switch# set term employee-to-corp then accept
   ```

3. Define the term `employee-to-web` to count and monitor all employee-vlan traffic destined for the Web:

   ```
   [edit firewall family ethernet-switching filter egress-vlan-watch-employee]
   user@switch# set term employee-to-web from destination-port 80
   user@switch# set term employee-to-web then count employee-web-counter
   user@switch# set term employee-to-web then analyzer employee-monitor
   ```

 NOTE: See Example: Configuring Port Mirroring for Local Monitoring of Employee Resource Use on EX Series Switches for information about configuring the employee-monitor analyzer.

4. Apply the firewall filter `egress-vlan-watch-employee` as an output filter to the port interfaces for the VoIP telephones:

   ```
   [edit]
   user@switch# set vlans employee-vlan description "filter at egress VLAN to count and analyze employee to Web traffic"
   user@switch# set vlans employee-vlan filter output egress-vlan-watch-employee
   ```

Results

Display the results of the configuration:

```
user@switch# show
```
Configuring a VLAN Firewall Filter to Restrict Guest-to-Employee Traffic and Peer-to-Peer Applications on the Guest VLAN

To configure and apply firewall filters for port, VLAN, and router interfaces, perform these tasks:

CLI Quick Configuration

In the following example, the first filter term permits guests to talk with other guests but not employees on `employee-vlan`. The second filter term allows guests Web access but prevents them from using peer-to-peer applications on `guest-vlan`.

```plaintext
firewall {
    family ethernet-switching {
        filter egress-vlan-watch-employee {
            term employee-to-corp {
                from {
                    destination-address 192.0.2.16/28
                }
                then {
                    accept;
                }
            }
            term employee-to-web {
                from {
                    destination-port 80;
                }
                then {
                    count employee-web-counter:
                    analyzer employee-monitor;
                }
            }
        }
    }
}
vlans {
    employee-vlan {
        description "filter at egress VLAN to count and analyze employee to Web traffic";
        filter {
            output egress-vlan-watch-employee;
        }
    }
}
```
To quickly configure a VLAN firewall filter to restrict guest-to-employee traffic, blocking guests from talking with employees or employee hosts on employee-vlan or attempting to use peer-to-peer applications on guest-vlan, copy the following commands and paste them into the switch terminal window:

```
[edit]
set firewall family ethernet-switching filter ingress-vlan-limit-guest term guest-to-guest from destination-address 192.0.2.33/28
set firewall family ethernet-switching filter ingress-vlan-limit-guest term guest-to-guest then accept
set firewall family ethernet-switching filter ingress-vlan-limit-guest term
no-guest-employee-no-peer-to-peer from destination-mac-address 00.05.5E.00.00.DF
set firewall family ethernet-switching filter ingress-vlan-limit-guest term
no-guest-employee-no-peer-to-peer then accept
set vlans guest-vlan description "restrict guest-to-employee traffic and peer-to-peer applications on guest VLAN"
set vlans guest-vlan filter input ingress-vlan-limit-guest
```

Step-by-Step Procedure

To configure and apply a VLAN firewall filter to restrict guest-to-employee traffic and peer-to-peer applications on guest-vlan:

1. Define the firewall filter ingress-vlan-limit-guest:

   ```
   [edit firewall]
   set firewall family ethernet-switching filter ingress-vlan-limit-guest
   ```

2. Define the term guest-to-guest to permit guests on the guest-vlan to talk with other guests but not employees on the employee-vlan:

   ```
   [edit firewall family ethernet-switching filter ingress-vlan-limit-guest]
   user@switch# set term guest-to-guest from destination-address 192.0.2.33/28
   user@switch# set term guest-to-guest then accept
   ```

3. Define the term no-guest-employee-no-peer-to-peer to allow guests on guest-vlan Web access but prevent them from using peer-to-peer applications on the guest-vlan.

 NOTE: The destination-mac-address is the default gateway, which for any host in a VLAN is the next-hop router.
4. Apply the firewall filter `ingress-vlan-limit-guest` as an input filter to the interface for `guest-vlan`:

```
[edit]
user@switch# set vlans guest-vlan description "restrict guest-to-employee traffic and peer-to-peer applications on guest VLAN"
user@switch# set vlans guest-vlan filter input ingress-vlan-limit-guest
```

Results

Display the results of the configuration:

```
user@switch# show
firewall {
  family ethernet-switching {
    filter ingress-vlan-limit-guest {
      term guest-to-guest {
        from {
          destination-address 192.0.2.33/28;
        }
        then {
          accept;
        }
      }
      term no-guest-employee-no-peer-to-peer {
        from {
          destination-mac-address 00.05.5E.00.00.DF;
        }
        then {
          accept;
        }
      }
    }
  }
}
vlans {
  guest-vlan {
    description "restrict guest-to-employee traffic and peer-to-peer applications on guest VLAN";
    filter {
      input ingress-vlan-limit-guest;
    }
  }
}
```
Configuring a Router Firewall Filter to Give Priority to Egress Traffic Destined for the Corporate Subnet

To configure and apply firewall filters for port, VLAN, and router interfaces, perform these tasks:

CLI Quick Configuration
To quickly configure a firewall filter for a routed port (Layer 3 uplink module) to filter employee-vlan traffic, giving highest forwarding-class priority to traffic destined for the corporate subnet, copy the following commands and paste them into the switch terminal window:

```
[edit]
set firewall family inet filter egress-router-corp-class term corp-expedite from destination-address 192.0.2.16/28
set firewall family inet filter egress-router-corp-class term corp-expedite then forwarding-class expedited-forwarding
set firewall family inet filter egress-router-corp-class term corp-expedite then loss-priority low
set firewall family inet filter egress-router-corp-class term not-to-corp then accept
set interfaces ge-0/1/0 description "filter at egress router to expedite destined for corporate network"
set ge-0/1/0 unit 0 family inet address 203.0.113.0
set interfaces ge-0/1/0 unit 0 family inet filter output egress-router-corp-class
```

Step-by-Step Procedure
To configure and apply a firewall filter to a routed port (Layer 3 uplink module) to give highest priority to employee-vlan traffic destined for the corporate subnet:

1. Define the firewall filter **egress-router-corp-class**:

   ```
   [edit]
   user@switch# set firewall family inet filter egress-router-corp-class
   ```

2. Define the term **corp-expedite**:

   ```
   [edit firewall]
   ```
3. Define the term not-to-corp:

 [edit firewall]
 user@switch# set family inet filter egress-router-corp-class term not-to-corp then accept

4. Apply the firewall filter egress-router-corp-class as an output filter for the port on the switch's uplink module, which provides a Layer 3 connection to a router:

 [edit interfaces]
 user@switch# set ge-0/1/0 description "filter at egress router to expedite employee traffic destined for corporate network"
 user@switch# set ge-0/1/0 unit 0 family inet address 203.0.113.0
 user@switch# set ge-0/1/0 unit 0 family inet filter output egress-router-corp-class

Results
Display the results of the configuration:

```
user@switch# show
firewall{
    family inet{
        filter egress-router-corp-class{
            term corp-expedite{
                from{
                    destination-address 192.0.2.16/28;
                }
                then{
                    forwarding-class expedited-forwarding;
                    loss-priority low;
                }
            }
            term not-to-corp{
                then{
                    accept;
                }
            }
        }
    }
}
```
Verifying that Firewall Filters and Policers are Operational

Purpose
Verify the operational state of the firewall filters and policers that are configured on the switch.

Action
Use the operational mode command:

```
user@switch> show firewall
```

Filter: ingress-port-voip-class-limit-tcp-icmp
Counters:
Name	Packets
Meaning

The `show firewall` command displays the names of the firewall filters, policers, and counters that are configured on the switch. The output fields show byte and packet counts for all configured counters and the packet count for all policers.

Verifying that Schedulers and Scheduler-Maps are Operational

Purpose

Verify that schedulers and scheduler-maps are operational on the switch.

Action

Use the operational mode command:

```
user@switch> show class-of-service scheduler-map
```

Scheduler map: default, Index: 2

Scheduler: default-be, Forwarding class: best-effort, Index: 20
 Transmit rate: 95 percent, Rate Limit: none, Buffer size: 95 percent,
 Priority: low
 Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
</tbody>
</table>

Scheduler: default-nc, Forwarding class: network-control, Index: 22
Transmit rate: 5 percent, Rate Limit: none, Buffer size: 5 percent, Priority: low

Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
</tbody>
</table>

Scheduler map: ethernet-diffsrv-cos-map, Index: 21657

Scheduler: best-effort, Forwarding class: best-effort, Index: 61257
Transmit rate: remainder, Rate Limit: none, Buffer size: 75 percent, Priority: low

Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
</tbody>
</table>

Scheduler: voice-high, Forwarding class: expedited-forwarding, Index: 3123
Transmit rate: remainder, Rate Limit: none, Buffer size: 15 percent, Priority: high

Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
</tbody>
</table>

Scheduler: net-control, Forwarding class: network-control, Index: 2451
Transmit rate: remainder, Rate Limit: none, Buffer size: 10 percent, Priority: high

Drop profiles:
<table>
<thead>
<tr>
<th>Loss priority</th>
<th>Protocol</th>
<th>Index</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>Low</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>non-TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
<tr>
<td>High</td>
<td>TCP</td>
<td>1</td>
<td>default-drop-profile</td>
</tr>
</tbody>
</table>

Meaning

Displays statistics about the configured schedulers and schedulers maps.
You can configure a firewall filter on a management interface on an EX Series switch to filter ingress or egress traffic on the management interface on the switch. You can use utilities such as SSH or Telnet to connect to the management interface over the network and then use management protocols such as SNMP to gather statistical data from the switch.

This example discusses how to configure a firewall filter on a management interface to filter SSH packets egressing from an EX Series switch:

Requirements

This example uses the following hardware and software components:

- One EX Series switch and one management PC
- Junos OS Release 10.4 or later for EX Series switches

Overview and Topology

In this example, a management PC establishes an SSH connection with the management interface on a switch to remotely manage the switch. The IP address configured for the management interface is
10.204.33.103/20. A firewall filter is configured on the management interface to count the number of packets egressing from a source SSH port on the management interface. When the management PC establishes the SSH session with the management interface, the management interface returns SSH packets to the management PC to confirm that the session is established. These SSH packets are filtered based on the match condition specified in the firewall filter before they are forwarded to the management PC. As these packets are generated from the source SSH port on the management interface, they fulfill the match condition specified for the management interface. The number of matched SSH packets provides a count of the number of packets that have traversed the management interface. A system administrator can use this information to monitor the management traffic and take any action if required.

Figure 70 on page 1494 shows the topology for this example in which a management PC establishes an SSH connection with the switch.

Figure 70: SSH Connection From a Management PC to an EX Series Switch

Configuration

To configure a firewall filter on a management interface, perform these tasks:

CLI Quick Configuration

To quickly create and configure a firewall filter on the management interface to filter SSH packets egressing from the management interface, copy the following commands and paste them into the switch terminal window:

```
[edit]
set firewall family inet filter mgmt_fil1 term t1 from source-port ssh
set firewall family inet filter mgmt_fil1 term t1 then count c1
set firewall family inet filter mgmt_fil1 term t2 then accept
set interfaces me0 unit 0 family inet filter output mgmt_fil1
```

Step-by-Step Procedure

To configure a firewall filter on the management interface to filter SSH packets:

1. Configure the firewall filter that matches SSH packets from the source port:
These statements set a counter \texttt{c1} to count the number of SSH packets that egress from the source SSH interface on the management interface.

2. Set the firewall filter for the management interface:

![Code]

\begin{verbatim}
[edit]
user@switch# set interfaces me0 unit 0 family inet filter output mgmt_fil1
\end{verbatim}

\textbf{NOTE:} You can also set the firewall filter for a VME interface.

\section*{Results}

Check the results of the configuration:

![Code]

\begin{verbatim}
[edit]
user@switch# show interfaces {
 me0 {
 unit 0 {
 family inet {
 filter {
 output mgmt_fil1;
 }
 address 10.93.54.6/24;
 }
 }
 }
 firewall {
 family inet {
 filter mgmt_fil1{
 term t1 {
 from {
 source-port ssh;
 then count c1;
 }
 }
 }
 }
\end{verbatim}
Verification

IN THIS SECTION

- Verifying That the Firewall Filter Is Configured on a Management Interface

To confirm that the configuration is working properly, perform these tasks:

Verifying That the Firewall Filter Is Configured on a Management Interface

Purpose
Verify that the firewall filter has been enabled on the management interface on the switch.

Action

1. Verify that the firewall filter is applied to the management interface:

   ```
   [edit]
   user@switch# show interfaces me0
   ```

   ```
   unit 0 {
   family inet {
   filter {
   output mgmt_fill;
   }
   address 10.204.33.103/20;
   }
   }
   }
   ```

2. Check the counter value that is associated with the firewall filter:

   ```
   user@switch> show firewall
   ```
3. From the management PC, establish a secure shell session with the switch:

 [user@management-pc ~]$ ssh user@10.204.33.103

4. Check counter values after SSH packets are generated from the switch in response to the secure shell session request by the management PC:

 user@switch> show firewall

 Filter: mgmt_fill
 Counters:
 Name Bytes Packets
 c1 3533 23

Meaning

The output indicates that the firewall filter has been applied to the management interface and the counter value indicates that 23 SSH packets were generated from the switch.

RELATED DOCUMENTATION

- Configuring Firewall Filters (CLI Procedure) | 1455
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467

Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches

IN THIS SECTION

- Requirements | 1498
- Overview and Topology | 1498
This example describes how to set up filter-based forwarding on EX Series switches or a QFX10000. You can configure filter-based forwarding by using a firewall filter to forward matched traffic to a specific virtual routing instance.

Requirements

This example applies to both EX Series switches running Junos OS Release 9.4 or later, and QFX10000 switches running Junos OS Release 15.1X53-D10 or later.

Overview and Topology

In this example, we create a firewall filter to match traffic being sent from one application server to another according to the destination address (192.168.0.1) of packets egressing the source application server. Matching packets are routed to a virtual routing instance which forwards the traffic to a security device, which then forwards the traffic on to the destination application server.

NOTE: Filter-based forwarding does not work with IPv6 interfaces on some Juniper switches.

Configuration

To configure filter-based forwarding:

CLI Quick Configuration

To use this example on your own device, copy the following commands into a text file, remove the line breaks, and change the necessary details to fit your configuration. Then copy and paste the commands into your CLI at the [edit] hierarchy level.

```
[edit]
set interfaces xe-0/0/0 unit 0 family inet address 10.1.0.1/24
set interfaces xe-0/0/3 unit 0 family inet address 10.1.3.1/24
set firewall family inet filter f1 term t1 from source-address 10.1.0.50/32
```
set firewall family inet filter f1 term t1 from protocol tcp

set interfaces xe-0/0/0 unit 0 family inet filter input f1

set routing-instances vrf01 instance-type virtual-router

set routing-instances vrf01 interface xe-0/0/3.0

set routing-instances vrf01 routing-options static route 192.168.0.1/24 next-hop 10.1.3.254

set firewall family inet filter f1 term t1 then routing-instance vrf01

Step-by-Step Procedure
To configure filter-based forwarding:

1. Configure an interface to connect to the application server:

 [edit interfaces]
 user@switch# set xe-0/0/0 unit 0 family inet address 10.1.0.1/24

2. Configure an interface to connect to the security device:

 [edit interfaces]
 user@switch# set xe-0/0/3 unit 0 family inet address 10.1.3.1/24

3. Create a firewall filter that matches packets based on the address of the application server that the traffic will be sent from. Also configure the filter so that it matches only TCP packets:

 [edit firewall]
 user@switch# set family inet filter f1 term t1 from source-address 10.1.0.50/32
 user@switch# set firewall family inet filter f1 term t1 from protocol tcp

4. Apply the filter to the interface that connects to the source application server and configure it to match incoming packets:

 [edit interfaces]
 user@switch# set xe-0/0/0 unit 0 family inet filter input f1

5. Create a virtual router:

 [edit]
 user@switch# set routing-instances vrf01 instance-type virtual-router

6. Associate the virtual router with the interface that connects to the security device:

 [edit routing-instances]
user@switch# set vrf01 interface xe-0/0/3.0

7. Configure the routing information for the virtual routing instance:

 [edit routing-instances]
user@switch# set vrf01 routing-options static route 192.168.0.1/24 next-hop 10.1.3.254

8. Set the filter to forward packets to the virtual router:

 [edit firewall]
user@switch# set family inet filter f1 term t1 then routing-instance vrf01

Results

Check the results of the configuration:

```
user@switch> show configuration
interfaces {
    xe-0/0/0 {
        unit 0 {
            family inet {
                filter {
                    input f1;
                }
                address 10.1.0.1/24;
            }
        }
    }
    xe-0/0/3 {
        unit 0 {
            family inet {
                address 10.1.3.1/24;
            }
        }
    }
}
firewall {
    family inet {
        filter f1 {
            term t1 {
                from {
                    source-address {
                        10.1.0.50/32;
                    }
                }
            }
        }
    }
```
Verifying That Filter-Based Forwarding Was Configured

Purpose
Verify that filter-based forwarding was properly enabled on the switch.

Action
1. Use the `show interfaces filters` command:

 user@switch> show interfaces filters xe-0/0/0.0
2. Use the `show route forwarding-table` command:

```
user@switch> show route forwarding-table
```

Routing table: default.inet

Internet:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>user</td>
<td>1</td>
<td>0:12:f2:21:cf:0</td>
<td>ucst</td>
<td>331</td>
<td>4</td>
<td>me0.0</td>
</tr>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>36</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.0.0.0/32</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>dscd</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>ifdn</td>
<td>0</td>
<td></td>
<td>rslv</td>
<td>613</td>
<td>1</td>
<td>xe-0/0/0.0</td>
</tr>
<tr>
<td>10.1.0.0/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.0.0</td>
<td>recv</td>
<td>611</td>
<td>1</td>
<td>xe-0/0/0.0</td>
</tr>
<tr>
<td>10.1.0.1/32</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.0.1/32</td>
<td>intf</td>
<td>0</td>
<td>10.1.0.1</td>
<td>locl</td>
<td>612</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.1.0.1/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.0.1</td>
<td>locl</td>
<td>612</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.1.0.255/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.0.255</td>
<td>bcst</td>
<td>610</td>
<td>1</td>
<td>xe-0/0/0.0</td>
</tr>
<tr>
<td>10.1.1.0/26</td>
<td>ifdn</td>
<td>0</td>
<td></td>
<td>rslv</td>
<td>583</td>
<td>1</td>
<td>vlan.0</td>
</tr>
<tr>
<td>10.1.1.0/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.1.0</td>
<td>recv</td>
<td>581</td>
<td>1</td>
<td>vlan.0</td>
</tr>
<tr>
<td>10.1.1.1/32</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.1/32</td>
<td>intf</td>
<td>0</td>
<td>10.1.1.1</td>
<td>locl</td>
<td>582</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.1.1.1/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.1.1</td>
<td>locl</td>
<td>582</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.1.1.63/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.1.63</td>
<td>bcst</td>
<td>580</td>
<td>1</td>
<td>vlan.0</td>
</tr>
<tr>
<td>255.255.255.255/32</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>bcst</td>
<td>32</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Routing table: vrf01.inet

Internet:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>559</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.0.0.0/32</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>dscd</td>
<td>545</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.3.0/24</td>
<td>ifdn</td>
<td>0</td>
<td></td>
<td>rslv</td>
<td>617</td>
<td>1</td>
<td>xe-0/0/3.0</td>
</tr>
<tr>
<td>10.1.3.0/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.3.0</td>
<td>recv</td>
<td>615</td>
<td>1</td>
<td>xe-0/0/3.0</td>
</tr>
<tr>
<td>10.1.3.1/32</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.0.1/24</td>
<td>user</td>
<td>0</td>
<td>10.1.3.254</td>
<td>recv</td>
<td>615</td>
<td>1</td>
<td>xe-0/0/3.0</td>
</tr>
<tr>
<td>192.168.0.1/24</td>
<td>user</td>
<td>0</td>
<td>10.1.3.254</td>
<td>ucst</td>
<td>616</td>
<td>2</td>
<td>xe-0/0/3.0</td>
</tr>
<tr>
<td>10.1.3.255/32</td>
<td>iddn</td>
<td>0</td>
<td>10.1.3.255</td>
<td>bcst</td>
<td>614</td>
<td>1</td>
<td>xe-0/0/3.0</td>
</tr>
<tr>
<td>224.0.0.0/4</td>
<td>perm</td>
<td>0</td>
<td></td>
<td></td>
<td>mcst</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>224.0.0.1/32</td>
<td>perm</td>
<td>0</td>
<td>224.0.0.1</td>
<td>mcst</td>
<td>529</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>255.255.255.255/32</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>bcst</td>
<td>543</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Routing table: default.iso
ISO:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 60 1

Routing table: vrf01.iso
ISO:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 600 1

Meaning
The output indicates that the filter was created on the interface and that the virtual routing instance is forwarding matching traffic to the correct IP address.

RELATED DOCUMENTATION

- Configuring Firewall Filters | 1601
- Understanding Filter-Based Forwarding | 1618
- Understanding Virtual Router Routing Instances

Example: Applying Firewall Filters to Multiple Supplicants on Interfaces Enabled for 802.1X or MAC RADIUS Authentication

IN THIS SECTION

- Requirements | 1504
- Overview and Topology | 1504
- Configuration | 1506
- Verification | 1508

On EX Series switches, firewall filters that you apply to interfaces enabled for 802.1X or MAC RADIUS authentication are dynamically combined with the per-user policies sent to the switch from the RADIUS server. The switch uses internal logic to dynamically combine the interface firewall filter with the user
policies from the RADIUS server and create an individualized policy for each of the multiple users or nonresponsive hosts that are authenticated on the interface.

This example describes how dynamic firewall filters are created for multiple supplicants on an 802.1X-enabled interface (the same principles shown in this example apply to interfaces enabled for MAC RADIUS authentication):

Requirements

This example uses the following hardware and software components:

- Junos OS Release 9.5 or later for EX Series switches
- One EX Series switch
- One RADIUS authentication server. The authentication server acts as the backend database and contains credential information for hosts (supplicants) that have permission to connect to the network.

Before you apply firewall filters to an interface for use with multiple supplicants, be sure you have:

- Set up a connection between the switch and the RADIUS server. See Example: Connecting a RADIUS Server for 802.1X to an EX Series Switch.
- Configured 802.1X authentication on the switch, with the authentication mode for interface ge-0/0/2 set to multiple. See Configuring 802.1X Interface Settings (CLI Procedure) and Example: Setting Up 802.1X for Single-Supplicant or Multiple-Supplicant Configurations on an EX Series Switch.
- Configured users on the RADIUS authentication server.

Overview and Topology

When the 802.1X configuration on an interface is set to multiple supplicant mode, the system dynamically combines interface firewall filter with the user policies sent to the switch from the RADIUS server during authentication and creates separate terms for each user. Because there are separate terms for each user authenticated on the interface, you can, as shown in this example, use counters to view the activities of individual users that are authenticated on the same interface.

When a new user (or a nonresponsive host) is authenticated on an interface, the system adds a term to the firewall filter associated with the interface, and the term (policy) for each user is associated with the MAC address of the user. The term for each user is based on the user-specific filters set on the RADIUS server and the filters configured on the interface. For example, as shown in Figure 71 on page 1505, when User1 is authenticated by the EX Series switch, the system creates the firewall filter **dynamic-filter-example**. When User2 is authenticated, another term is added to the firewall filter, and so on.
This is a conceptual model of the internal process—you cannot access or view the dynamic filter.

NOTE: If the firewall filter on the interface is modified after the user (or nonresponsive host) is authenticated, the modifications are not reflected in the dynamic filter unless the user is reauthenticated.

In this example, you configure a firewall filter to count the requests made by each endpoint authenticated on interface `ge-0/0/2` to the file server, which is located on subnet `192.0.2.16/28`, and set policer definitions to rate limit the traffic. *Figure 72 on page 1506* shows the network topology for this example.
To configure firewall filters for multiple supplicants on 802.1X-enabled interfaces:

Configuring Firewall Filters on Interfaces with Multiple Supplicants

CLI Quick Configuration

To quickly configure firewall filters for multiple supplicants on an 802.1X-enabled interface copy the following commands and paste them into the switch terminal window:

```
[edit]
set protocols dot1x authenticator interface ge-0/0/2 supplicant multiple
```
set firewall family ethernet-switching filter filter1 term term1 from destination-address 192.0.2.16/28
set firewall policer p1 if-exceeding bandwidth-limit 1m
set firewall policer p1 if-exceeding burst-size-limit 1k
set firewall family ethernet-switching filter filter1 term term1 then count counter1
set firewall family ethernet-switching filter filter1 term term2 then policer p1

Step-by-Step Procedure
To configure firewall filters on an interface enabled for multiple supplicants:

1. Configure interface ge-0/0/2 for multiple supplicant mode authentication:

 [edit protocols dot1x]
 user@switch# set authenticator interface ge-0/0/2 supplicant multiple

2. Set policer definition:

 user@switch# show policer p1 | display set
 set firewall policer p1 if-exceeding bandwidth-limit 1m
 set firewall policer p1 if-exceeding burst-size-limit 1k
 set firewall policer p1 then discard

3. Configure a firewall filter to count packets from each user and a policer that limits the traffic rate. As each new user is authenticated on the multiple supplicant interface, this filter term will be included in the dynamically created term for the user:

 [edit firewall family ethernet-switching]
 user@switch# set filter filter1 term term1 from destination-address 192.0.2.16/28
 user@switch# set filter filter1 term term1 then count counter1
 user@switch# set filter filter1 term term2 then policer p1

Results
Check the results of the configuration:

user@switch> show configuration

firewall {
 family ethernet-switching {
 filter filter1 {
 term term1 {
...
from {
 destination-address {
 192.0.2.16/28;
 }
}
then count counter1;
term term2 {
 from {
 destination-address {
 192.0.2.16/28;
 }
 }
 then policer p1;
}
policer p1 {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 1k;
 }
 then discard;
}
protocols {
 dot1x {
 authenticator
 interface ge-0/0/2 {
 supplicant multiple;
 }
 }
}
Verifying Firewall Filters on Interfaces with Multiple Supplicants

Purpose
Verify that firewall filters are functioning on the interface with multiple supplicants.

Action
1. Check the results with one user authenticated on the interface. In this case, the user is authenticated on ge-0/0/2:

```bash
user@switch> show dot1x firewall
Filter: dot1x_ge-0/0/2
Counters
counter1_dot1x_ge-0/0/2_user1 100
```

2. When a second user, User2, is authenticated on the same interface, ge-0/0/2, you can verify that the filter includes the results for both of the users authenticated on the interface:

```bash
user@switch> show dot1x firewall
Filter: dot1x-filter-ge-0/0/2
Counters
counter1_dot1x_ge-0/0/2_user1 100
counter1_dot1x_ge-0/0/2_user2 400
```

Meaning
The results displayed by the `show dot1x firewall` command output reflect the dynamic filter created with the authentication of each new user. User1 accessed the file server located at the specified destination address 100 times, while User2 accessed the same file server 400 times.

RELATED DOCUMENTATION

- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Filtering 802.1X Supplicants by Using RADIUS Server Attributes

Verifying That Policers Are Operational

Purpose
After you configure policers and include them in firewall filter configurations, you can perform the following tasks to verify that the policers configured on EX Series switches are working properly.
Action

Use the operational mode command to verify that the policers on the switch are working properly:

user@switch> show policer

Filter: egress-vlan-watch-employee
Filter: ingress-port-filter
Filter: ingress-port-voip-class-limit-tcp-icmp

Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-connection-policer</td>
<td>0</td>
</tr>
<tr>
<td>tcp-connection-policer</td>
<td>0</td>
</tr>
<tr>
<td>Filter: ingress-vlan-rogue-block</td>
<td></td>
</tr>
<tr>
<td>Filter: ingress-vlan-limit-guest</td>
<td></td>
</tr>
</tbody>
</table>

Meaning

The `show policer` command displays the names of all firewall filters and policers that are configured on the switch. For each policer that is specified in a filter configuration, the output field shows the current packet count for all packets that exceed the specified rate limits.

RELATED DOCUMENTATION

Configuring Policers to Control Traffic Rates (CLI Procedure)	1955
Configuring Firewall Filters (CLI Procedure)	1455
Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467
Monitoring Firewall Filter Traffic	1628

Troubleshooting Firewall Filters

Troubleshooting issues with firewall filters on EX Series switches:

1. A Firewall Filter Configuration Returns a “No Space Available in TCAM” Message | 1510

A Firewall Filter Configuration Returns a “No Space Available in TCAM” Message

Problem
Description: When a firewall filter configuration exceeds the amount of available ternary content addressable memory (TCAM) space, the switch returns the following system log (syslogd) message:

No space available in tcam.
Rules for filter filter-name will not be installed.

The switch returns this error message during the commit operation in the following instances:

• If the firewall filter that you have applied to a port, VLAN, or Layer 3 interface requires more than the amount of available TCAM space.

• If you delete and add large firewall filters in the same commit operation. In this case, the large firewall filter might not be deleted from the TCAM space, because of which there will be no TCAM space freed up for the new firewall filter to be added to it. In addition to the syslogd message, the following error message is displayed in the CLI:

fpc<device-id> dfw_grph_merge_dfw_bind: rules for filter filter-name will not be installed

However, in both these instances, the commit operation for the firewall filter configuration is completed in the CLI.

Solution

When a firewall filter configuration exceeds the amount of available TCAM table space, you must configure a new firewall filter with fewer filter terms or, if you had deleted and created a firewall filter with a large number of terms (on the order of 1000 or more), you must delete and add the large firewall filters in separate commit operations.

The first procedure (set of steps) in this Solution section tells you how to delete a firewall filter and its bind point and associate a new firewall filter with that existing bind point.

The second procedure in this Solution section tells you how to create a new firewall filter with fewer terms (without deleting the bind point) and bind the new firewall filter with the existing bind point, when you want to create a firewall filter with fewer terms. Do not use the second procedure if you need to replace one large firewall filter with another large firewall filter—you must delete the original large firewall filter and commit that delete operation, and then add the new large firewall filter.
To delete the firewall filter and its bind point and apply a new firewall filter to the same bind point:

1. Delete the firewall filter configuration and its bind points to ports, VLANs, or Layer 3 interfaces—for example:

 [edit]
 user@switch# delete firewall family ethernet-switching filter mini-filter-ingress-vlan
 user@switch# delete vlans voice-vlan description "filter to block rogue devices on voice-vlan"
 user@switch# delete vlans voice-vlan filter input mini-filter-ingress-vlan

2. Commit the operation:

 [edit]
 user@switch# commit

 NOTE: Use separate commit operations for deleting and adding large firewall filters.

3. Configure a firewall filter with fewer terms (if the error message appeared when you tried to create a new filter) or configure a large filter (if the error message appeared when you tried to delete and add large firewall filters)—for example:

 [edit]
 user@switch# set firewall family ethernet-switching filter new-filter-ingress-vlan ...

 NOTE: See "Firewall Filters for EX Series Switches Overview" on page 1352 to ascertain the maximum number of terms allowed for various firewall filters on EX Series switches.

4. Apply (bind) the new firewall filter to a port, VLAN, or Layer 3 interface—for example:

 [edit]
 user@switch# set vlans voice-vlan description "filter to block rogue devices on voice-vlan"
 user@switch# set vlans voice-vlan filter input new-filter-ingress-vlan

5. Commit the operation:

 [edit]
 user@switch# commit
To create a new firewall filter and attach it to the existing bind point:

1. Configure a firewall filter with fewer terms than the original filter:

 [edit]
 user@switch# set firewall family ethernet-switching filter new-filter-ingress-vlan...

2. Apply the firewall filter to the port, VLAN, or Layer 3 interfaces to overwrite the bind points of the original filter—for example:

 [edit]
 user@switch# set vlans voice-vlan description "smaller filter to block rogue devices on voice-vlan"
 user@switch# set vlans voice-vlan filter input new-filter-ingress-vlan

 As a bind point can be attached to only one firewall filter, this configuration detaches the bind point from the previous firewall filter that contained many terms and attaches the bind point to the new firewall filter.

3. Commit the operation:

 [edit]
 user@switch# commit

RELATED DOCUMENTATION

Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467
Verifying That Firewall Filters Are Operational	1627
Configuring Firewall Filters (CLI Procedure)	1455
CHAPTER 27

Configuring Firewall Filters (QFX Series Switches, EX4600 Switches, PTX Series Routers)

IN THIS CHAPTER

- Overview of Firewall Filters | 1516
- Understanding Firewall Filter Planning | 1519
- Planning the Number of Firewall Filters to Create | 1520
- Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches) | 1526
- Firewall Filter Match Conditions and Actions (QFX10000 Switches) | 1561
- Firewall Filter Match Conditions and Actions (PTX Series Routers) | 1577
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers | 1599
- Configuring Firewall Filters | 1601
- Applying Firewall Filters to Interfaces | 1608
- Overview of MPLS Firewall Filters on Loopback Interface | 1608
- Configuring MPLS Firewall Filters and Policers on Switches | 1610
- Configuring MPLS Firewall Filters and Policers | 1613
- Understanding How a Firewall Filter Tests a Protocol | 1616
- Understanding Firewall Filter Processing Points for Bridged and Routed Packets | 1616
- Understanding Filter-Based Forwarding | 1618
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1619
- Configuring a Firewall Filter to De-Encapsulate GRE Traffic | 1624
- Verifying That Firewall Filters Are Operational | 1627
- Monitoring Firewall Filter Traffic | 1628
- Troubleshooting Firewall Filter Configuration | 1630
Overview of Firewall Filters

IN THIS SECTION

- Where You Can Apply Filters | 1516
- What Makes up a Firewall Filter | 1517
- How Firewall Filters are Processed | 1517

Firewall filters, sometimes called *access control lists* (ACLs), provide rules that define whether to accept or discard packets that are transiting an interface. If a packet is accepted, you can configure more actions on the packet, such as class-of-service (CoS) marking (grouping similar types of traffic together and treating each type of traffic as a class with its own level of service priority) and traffic policing (controlling the maximum rate of traffic sent or received).

You can configure firewall filters to determine where to accept or discard a packet before it enters or exits a port, VLAN, Layer 2 CCC, Layer 3 (routed) interface, Routed VLAN interface (RVI), or MPLS interface.

An *ingress* (*input*) firewall filter is applied to packets that are entering an interface or VLAN, and an *egress* (*output*) firewall filter is applied to packets that are exiting an interface or VLAN.

Where You Can Apply Filters

After you configure the firewall filter, you can apply it to the following:

- **Port**—Filters Layer 2 traffic transiting system ports.
- **VLAN**—Filters and provides access control for Layer 2 packets that enter a VLAN, are bridged within a VLAN, or leave a VLAN.
- **Layer 3 (routed) interface**—Filters traffic on IPv4 and IPv6 interfaces, routed VLAN interfaces (RVI), and the loopback interface. The loopback interface filters traffic sent to the switch itself or generated by the switch.
- **Layer 2 CCC interface**—Filters Layer 2 circuit cross-connect (CCC) interfaces.
- **MPLS**—Filters MPLS interfaces.

You can also apply a firewall filter to a management interface (for example, me0) on a QFX and EX4600 standalone switch. You can’t apply a filter to a management interface on a QFX3000-G or QFX3000-M system.
NOTE: You can apply only one firewall filter to a port, VLAN, or Layer 2 CCC interface for a given direction. For example, for interface ge-0/0/6.0, you can apply one filter for the ingress direction and one for the egress direction.

- (QFX Series) Starting with Junos OS Release 13.2X51-D15, you can apply a filter to a loopback interface in the egress direction.
- (QFX10000) Starting with Junos OS Release 18.2R1, you can apply ingress and egress firewall filters with count and discard as policer actions on Layer 2 circuit interfaces.
- (QFX10002-36Q, QFX10002-72Q, QFX10002-60C, QFX10008, QFX10016, PTX10008, PTX10016) Starting with Junos OS Release 19.2R1, you can apply the interface, forwarding-class, and loss-priority match conditions in the egress direction on IPv4 and IPv6 interfaces.

What Makes up a Firewall Filter

When you configure a firewall filter, you define the family address type (ethernet-switching, inet (for IPv4), inet6 (for IPv6), circuit cross-connect (CCC), or MPLS), the filtering criteria (terms, with match conditions,) and the action to take if a match occurs.

Each term consists of the following

- Match condition—Values that a packet must contain to be considered a match. You can specify values for most fields in the IP, TCP, UDP, or ICMP headers. You can also match on interface names.
- Action—Action taken if a packet matches a match condition. You can configure a firewall filter to accept, discard, or reject a matching packet and then perform more actions, such as counting, classifying, and policing. The default action is accept.

How Firewall Filters are Processed

If there are multiple terms in a filter, the order of the terms is important. If a packet matches the first term, the switch takes the action defined by that term, and no other terms are evaluated. If the switch doesn't find a match between the packet and the first term, it compares the packet to the next term. If no match occurs between the packet and the second term, the system continues to compare the packet to each successive term in the filter until a match is found. If no terms are matched, the switch discards the packet by default.
Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>(QFX100002-36Q, QFX10002-72Q, QFX10002-60C, QFX10008, QFX10016, PTX10008, PTX10016) Starting with Junos OS Release 19.2R1, you can apply the interface, forwarding-class, and loss-priority match conditions in the egress direction on IPv4 and IPv6 interfaces.</td>
</tr>
<tr>
<td>18.2R1</td>
<td>(QFX100000) Starting with Junos OS Release 18.2R1, you can apply ingress and egress firewall filters with count and discard as policer actions on Layer 2 circuit interfaces.</td>
</tr>
<tr>
<td>13.2X51-D15</td>
<td>(QFX Series) Starting with Junos OS Release 13.2X51-D15, you can apply a filter to a loopback interface in the egress direction.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Understanding How Firewall Filters Are Evaluated | 780
- Understanding Firewall Filter Planning | 1519
- Planning the Number of Firewall Filters to Create | 1520
- Configuring Firewall Filters | 1601
- Configuring MPLS Firewall Filters and Policers | 1613
- Overview of Policers | 1940
- Understanding Firewall Filter Match Conditions | 782
- Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches) | 1526
- Firewall Filter Match Conditions and Actions (QFX10000 Switches) | 1561
Understanding Firewall Filter Planning

Before you create a firewall filter and apply it, determine what you want the filter to accomplish and how to use its match conditions and actions to achieve your goals. It is important that you understand how packets are matched, the default and configured actions of the firewall filter, and where to apply the firewall filter.

You can apply no more than one firewall filter per port, VLAN, or router interface per direction (input and output). For example, for a given port you can apply at most one filter in the input direction and one filter in the output direction. You should try to be conservative in the number of terms (rules) that you include in each firewall filter, because a large number of terms requires longer processing time during a commit operation and can make testing and troubleshooting more difficult.

Before you configure and apply firewall filters, answer the following questions for each of them:

1. What is the purpose of the filter?
 For example, the system can drop packets based on header information, rate-limit traffic, classify packets into forwarding classes, log and count packets, or prevent denial-of-service attacks.

2. What are the appropriate match conditions? Determine the packet header fields that the packet must contain for a match. Possible fields include:
 - Layer 2 header fields—Source and destination MAC addresses, 802.1Q tag, Ethernet type, or VLAN.
 - Layer 3 header fields—Source and destination IP addresses, protocols, and IP options (IP precedence, IP fragmentation flags, or TTL type).
 - TCP header fields—Source and destination ports and flags.
 - ICMP header fields—Packet type and code.

3. What are the appropriate actions to take if a match occurs?
 The system can accept, discard, or reject packets.

4. What additional action modifiers might be required?
 For example, you can configure the system to mirror (copy) packets to a specified port, count matching packets, apply traffic management, or police packets.

5. On what port, router interface, or VLAN should the firewall filter be applied?
 Start with the following basic guidelines:
 - If packets entering or leaving a Layer 2 interface (port) need to be filtered, apply the filter at the [edit family ethernet switching filter] hierarchy level. This is a port filter.
 - If packets entering or leaving any port in a specific VLAN need to be filtered, use a VLAN filter.
If packets entering or leaving a Layer 3 (routed) interface or routed VLAN interface (RVI) need to be filtered, use a router firewall filter. Apply the filter to the interface at the [edit family inet] hierarchy level. You can also apply a router firewall filter on a loopback interface.

Before you choose the interface or VLAN on which to apply a firewall filter, understand how that placement can affect traffic flow to other interfaces. In general, apply a filter close to the source device if the filter matches on source or destination IP addresses, IP protocols, or protocol information—such as ICMP message types, and TCP or UDP port numbers. However, you should apply a filter close to the destination device if the filter matches only on a source IP address. When you apply a filter too close to the source device, the filter could prevent that source device from accessing other services that are available on the network.

NOTE: Egress firewall filters do not affect the flow of locally generated control packets from the Routing Engine.

6. In which direction should the firewall filter be applied?

You typically configure different actions for traffic entering an interface than you configure for traffic exiting an interface.

7. How many filters should I create?

See “Planning the Number of Firewall Filters to Create” on page 1520 for information about how many firewall filters you can apply.

RELATED DOCUMENTATION

- Overview of Policers | 1940
- Understanding How Firewall Filters Are Evaluated | 780
- Configuring Firewall Filters | 1601

Planning the Number of Firewall Filters to Create
Maximum Number of Supported Firewall Filters

Table 36 on page 773 shows the maximum number of firewall filters that each switch supports. You can see how many filters are programmed on the switch, by entering the `show pfe filter hw summary` command.

NOTE: On QFX5220 switches, you need to use shell mode to see the number of firewall filters. To enter shell mode, enter the `start shell` command and type `cli-pfe` at the prompt to access PFE CLI mode.

Table 97: Maximum Number of Supported Firewall Filters

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>QFX3500, QFX3600</th>
<th>QFX5100, EX4600</th>
<th>QFX5120, EX4650</th>
<th>QFX5110</th>
<th>QFX5200, QFX5210, QFX5220</th>
<th>QFX10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress</td>
<td>768</td>
<td>1536</td>
<td>1536</td>
<td>6144</td>
<td>768</td>
<td>8192</td>
</tr>
<tr>
<td>Egress</td>
<td>1024</td>
<td>1024</td>
<td>2048</td>
<td>1024 or 2048</td>
<td>1024</td>
<td>512 (QFX5220)</td>
</tr>
</tbody>
</table>

The total number of filters are applied in aggregate. For example, on the QFX3500 and QFX3600 you can apply a total of 768 terms in the input direction and 1024 terms in the output direction. The actual number of filters that a switch supports depends on how the filters are stored in ternary content addressable memory (TCAM).

NOTE: Starting in Junos OS Release 19.1R1, you can increase the number of egress VLAN firewall filters on the QFX5110 from 1024 to 2048 by using the `egress-to-ingress` option. You include this option under the `from` statement at the `[edit firewall]` hierarchy.
NOTE: To create more than 512 egress VLAN filters, specify the first VLAN ID as 6, the second VLAN ID as 7, the third VLAN ID as 5 and so forth. Each VLAN that you configure increases by 1 and continues through VLAN ID 1029. If you want create fewer than 512 egress VLAN filters but want the total number of terms in those filters to be more than 512, make sure that you number your VLAN IDs this same way. If you don’t, the total number of allowed terms or filters will be less than 1024 and might stay at 512.

TCAM

Ternary content addressable memory (TCAM) for firewall filters is divided into slices that accommodate 256 terms. All terms in a memory slice must be in filters of the same type and applied in the same direction. A memory slice is reserved as soon as you commit a filter. For example, if you create a port filter and apply it in the input direction, a memory slice is reserved that only stores ingress port filters. If you create and apply only one ingress port filter and that filter has only one term, the rest of this slice is unused and is unavailable for other filter types.

Continuing with the above example for QFX3500 and QFX3600 switches, let’s say that you create and apply 256 ingress port filters with one term each so that one memory slice is filled. This leaves two more memory slices available for ingress filters. (Remember that the maximum number of ingress terms is 768.) If you then create and apply an ingress Layer 3 filter with one term, another memory slice is reserved for ingress Layer 3 filters. As before, the rest of the slice is unused and is unavailable for different filter types. At this point there is one memory slice available for any ingress filter type.

Now assume that you create and apply a VLAN ingress filter. The final memory slice is reserved for VLAN ingress filters. Memory allocation for ingress filters (once again assuming one term per filter) is:

- Slice 1: Filled with 256 ingress port filters. You cannot commit any more ingress port filters.
- Slice 2: Contains one ingress Layer 3 filter with one term. You can commit 255 more terms in ingress Layer 3 filters.
- Slice 3: Contains one ingress VLAN filter with one term. You can commit 255 more terms in ingress VLAN filters.

Here is another example for QFX3500 and QFX3600 switches. Assume that you create 257 ingress port filters with one term per filter—that is, you create one more term than a single memory slice can accommodate. When you apply the filters and commit the configuration, the filter memory allocation is:

- Slice 1: Filled with 256 ingress port filters. You cannot apply any more ingress port filters.
- Slice 2: Contains one ingress port filter. You can apply 255 more terms in ingress port filters.
- Slice 3: This slice is unassigned. You can create and apply 256 terms in ingress filters of any type (port, Layer 3, or VLAN), but all the filters must be of the same type.
NOTE: All of the above examples also apply to egress filters. The difference is that four memory slices are used because IPv4 and IPv6 Layer 3 filters are stored in separate slices. The memory slices for egress filters are the same size as those for ingress filters, so the maximum number of filters will be the same (1024).

Avoid Configuring too Many Filters

If you violate any of these restrictions and commit a configuration that is not in compliance, Junos OS rejects the excessive filters. For example, if you configure 300 ingress port filters and 300 ingress Layer 3 filters and try to commit the configuration, Junos OS does the following (again assuming one term per filter):

- Accepts the 300 ingress port filters (storing them in two memory slices).
- Accepts the first 256 ingress Layer 3 filters it processes (storing them in the third memory slice).
- Rejects the remaining 44 ingress Layer 3 filters.

NOTE: Make sure that you delete the excessive filters (for example, the remaining 44 ingress Layer 3 filters) from the configuration before you reboot the device. If you reboot a device that has a noncompliant configuration, it’s hard to predict which filters were installed after the reboot. Using the example above, the 44 ingress Layer 3 filters that were originally rejected might be installed, and 44 of the port filters that were originally accepted might be rejected.

Configuring TCAM Error Messages

If you are unable to install a firewall filter due to not enough TCAM space, you can configure your switch to display error messages the following ways:

- To send error messages to a syslog file, enter set system syslog file filename pfe emergency.
- To send error messages to the console, enter set system syslog console pfe emergency.
- To send error messages to an SSH terminal session, enter set system syslog user user-login pfe emergency.

Policers can Limit Egress Filters

On some switches, the number of egress policers that you configure can affect the total number of allowed egress firewall filters. (This does not apply to QFX10000 switches.) Every policer has two implicit counters that consume two entries in a 1024-entry TCAM that is used for counters, including counters that are
configured as action modifiers in firewall filter terms. (Policers consume two entries because one is used for green packets and one is used for nongreen packets regardless of policer type.) If the TCAM becomes full, you cannot commit any more egress firewall filters that have terms with counters. For example, if you configure and commit 512 egress policers (two-color, three-color, or a combination of both policer types), all of the memory entries for counters are used up. If later in your configuration file you insert additional egress firewall filters with terms that also include counters, none of the terms in those filters are committed because there is no available memory space for the counters.

Here are some more examples:

- Assume that you configure egress filters that include a total of 512 policers and no counters. Later in your configuration file you include another egress filter with 10 terms, 1 of which has a counter action modifier. None of the terms in this filter are committed because there is not enough TCAM space for the counter.

- Assume that you configure egress filters that include a total of 500 policers, so 1000 TCAM entries are occupied. Later in your configuration file you include the following two egress filters:
 - Filter A with 20 terms and 20 counters. All the terms in this filter are committed because there is enough TCAM space for all the counters.
 - Filter B comes after Filter A and has five terms and five counters. None of the terms in this filter are committed because there is not enough memory space for all the counters. (Five TCAM entries are required but only four are available.)

You can prevent this problem from occurring by ensuring that egress firewall filter terms with counter actions are placed earlier in your configuration file than terms that include policers. In this circumstance, Junos OS commits policers even if there is not enough TCAM space for the implicit counters. For example, assume the following:

- You have 1024 egress firewall filter terms with counter actions.

- Later in your configuration file you have an egress filter with 10 terms. None of the terms have counters but one has a policer action modifier.

You can successfully commit the filter with 10 terms even though there is not enough TCAM space for the implicit counters of the policer. The policer is committed without the counters.

Planning for Filter-Specific Policers

You can configure policers to be filter-specific. This means that Junos OS creates only one policer instance no matter how many times the policer is referenced. When you do this, rate limiting is applied in aggregate, so if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, the total bandwidth allowed by the filter is 1 Gbps. However, the behavior of a filter-specific policer is affected by how the firewall filter terms that reference the policer are stored in ternary content addressable memory (TCAM). If you create a filter-specific policer and reference it in multiple firewall filter terms, the policer allows more traffic than expected if the terms are stored in different TCAM slices. For
example, if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms that are stored in three separate memory slices, the total bandwidth allowed by the filter is 3 Gbps, not 1 Gbps.

To prevent this unexpected behavior from occurring, use the information about TCAM slices presented above to organize your configuration file so that all the firewall filter terms that reference a given filter-specific policer are stored in the same TCAM slice.

Planning for Filter-Based Forwarding

You can use firewall filters along with virtual routing instances to specify different routes for packets to travel in their networks. To set up this feature—called filter-based forwarding—you specify a filter and match criteria and then specify the virtual routing instance to send packets to. Filters used in this way also consume memory in an additional TCAM. See *Understanding FIP Snooping, FBF, and MVR Filter Scalability* for more information. The section *FBF Filter VFP TCAM Consumption* in this topic specifically addresses the number of supported filters when using filter-based forwarding.

WARNING: Filter-based forwarding does not work with IPv6 interfaces on some Juniper switches.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1R1</td>
<td>Starting in Junos OS Release 19.1R1, you can increase the number of egress VLAN firewall filters on the QFX5110 from 1024 to 2048 by using the egress-to-ingress option.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- [Understanding How Firewall Filters Are Evaluated](#) | [780]
- [Understanding Firewall Filter Planning](#) | [1519]
- [Configuring Firewall Filters](#) | [1601]
- [Understanding Filter-Based Forwarding](#) | [1618]
Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches)

IN THIS SECTION

- Firewall Filter Match Conditions and Actions | 1526
- Firewall Filter Match Conditions and Actions (QFX5220) | 1549

Firewall Filter Match Conditions and Actions

Each term in a firewall filter consists of *match conditions* and an *action*. Match conditions are the fields and values that a packet must contain to be considered a match. You can define single or multiple match conditions in *match statements*. You can also include no match statement, in which case the term matches all packets.

When a packet matches a filter, a switch takes the action specified in the term. In addition, you can specify action modifiers to count, mirror, rate-limit, and classify packets. If no match conditions are specified for the term, the switch accepts the packet by default.

This topic describes the various match conditions, actions, and action modifiers that you can define in a firewall filter on the QFX5100, QFX5200, and EX4600 line switches. It does not apply to QFX5220 or QFX10000 switches.

- Table 98 on page 1527 describes the match conditions you can specify when configuring a firewall filter. Some of the numeric range and bit-field match conditions allow you to specify a text synonym. To see a list of all the synonyms for a match condition, type `?` at the appropriate place in a statement.
- Table 99 on page 1545 shows the actions that you can specify in a term.
- Table 81 on page 1381 shows the action modifiers you can use to count, mirror, rate-limit, and classify packets.

For match conditions on specific switches, these limitations apply:

- On switches that do not support Layer 2 features, you can use only those match conditions that are valid for IPv4 and IPv6 interfaces.

 hv

- (QFX5100, QFX5110, and QFX5200 switches) When using filter-based forwarding on IPv6 interfaces, only these match conditions are supported (ingress direction only): `source-address, destination-address, source-prefix-list, destination-prefix-list, source-port, destination-port, hop-limit, icmp-type, and next-header`.
- (QFX5110 switches) When you enable, the egress-to-ingress option under the [edit firewall] hierarchy, only the accept, discard, and count actions are supported.

- (QFX5100 and QFX5110 switches) In an EVPN-VXLAN environment, only these match conditions are supported: source-address, destination-address, source-port, destination-port, ttl, ip-protocol, and user-vlan-id.

- (QFX5100 and QFX5200 line switches) You cannot apply a firewall filter in the egress direction on a EVPN-VXLAN IRB interface.

- (QFX5100 and QFX5110 switches) If using firewall filters to implement MAC filtering in an EVPN-VXLAN environment, see MAC Filtering, Storm Control, and Port Mirroring Support in an EVPN-VXLAN Environment for the supported match conditions.

- (QFX5100 and QFX5110 switches) For each firewall filter that you apply to a VXLAN, you can specify family ethernet-switching to filter Layer 2 (Ethernet) packets, or family inet to filter on IRB interfaces. You cannot apply a firewall filter in the egress direction on IRB interfaces.

Table 98: Supported Match Conditions for Firewall Filters

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp-type</td>
<td>ARP request packet or ARP reply packet.</td>
<td>Egress and ingress interfaces.</td>
</tr>
<tr>
<td>destination-address</td>
<td>IP destination address field, which is the address of the final destination node.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>ip-address</td>
<td></td>
<td>Egress IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>Destination media access control (MAC) address of the packet.</td>
<td>Ingress ports, VLANs and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>mac-address</td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destination-port value</code></td>
<td></td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP or UDP destination port field. Typically, you specify this match in conjunction with the protocol match statement. For the following well-known ports you can specify text synonyms (the port numbers are also listed):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspsserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), login (513), mobileip-agent (434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119), nttalk (518), ntp (123), pop3 (110), ppp (1723), printer (515), radacct (1813), radius (1812), rip (520), rkinit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs-ds (65), talk (517), telnet (23),</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>tftp (69), timed (525), who (513), xdmcp (177), zephyr-clt (2103), zephyr-hm (2104)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination-port range-optimize range</td>
<td>Match a range of TCP or UDP port ranges while using the available memory more efficiently. Using this condition allows you to configure more firewall filters than if you configure individual destination ports. (Not supported with filter-based forwarding.)</td>
<td>Ingress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>destination-prefix-list prefix-list</td>
<td>IP destination prefix list field. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the [edit policy-options] hierarchy level.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp value</td>
<td>Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most-significant 6 bits of this byte form the DSCP. You can specify DSCP in hexadecimal, binary, or decimal form. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td>• be—best effort (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ef (46)—as defined in RFC 3246, An Expedited Forwarding PHB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• af11 (10), af12 (12), af13 (14); af21 (18), af22 (20), af23 (22); af31 (26), af32 (28), af33 (30); af41 (34), af42 (36), af43 (38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>These four classes, with three drop precedences in each class, for a total of 12 code points, are defined in RFC 2597, Assured Forwarding PHB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs5</td>
<td></td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ether-type value</td>
<td>Ethernet type field of a packet. The EtherType value specifies what protocol is being transported in the Ethernet frame. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td>• aarp (0x80F3)—EtherType value AARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• appletalk (0x809B)—EtherType value AppleTalk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• arp (0x0806)—EtherType value ARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fcoe (0x8906)—EtherType value FCoE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fip (0x8914)—EtherType value FIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv4 (0x0800)—EtherType value IPv4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv6 (0x08DD)—EtherType value IPv6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mpls-multicast (0x8848)—EtherType value MPLS multicast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mpls-unicast (0x8847)—EtherType value MPLS unicast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• oam (0x88A8)—EtherType value OAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ppp (0x880B)—EtherType value PPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pppoe-discovery (0x8863)—EtherType value PPPoE Discovery Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pppoe-session (0x8864)—EtherType value PPPoE Session Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sna (0x80D5)—EtherType value SNA</td>
<td></td>
</tr>
<tr>
<td>egress-to-ingress</td>
<td>Include this option to increase the number of egress VLAN firewall filter terms from 1024 to 2048.</td>
<td>Egress VLAN IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp</td>
<td>Match on MPLS EXP bits.</td>
<td>Ingress MPLS interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress MPLS interfaces.</td>
</tr>
<tr>
<td>fragment-flags value</td>
<td>IP fragmentation flags. In place of the numeric value, you can specify one of the following text synonyms (the hexadecimal values are also listed):</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td>• is-fragment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dont-fragment (0x4000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• more-fragments (0x2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• reserved (0x8000)</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>icmp-code value</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
<td></td>
</tr>
</tbody>
</table>
ICMP code field. Because the meaning of the value depends upon the associated `icmp-type`, you must specify a value for `icmp-type` along with a value for `icmp-code`. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:

- **IPv4:**
 - parameter-problem—`ip-header-bad` (0), `required-option-missing` (1)
- **IPv6:**
 - parameter-problem—`ip6-header-bad` (0), `unrecognized-next-header` (1), `unrecognized-option` (2)
- **redirect**—`redirect-for-network` (0), `redirect-for-host` (1), `redirect-for-tos-and-net` (2), `redirect-for-tos-and-host` (3)
- **time-exceeded**—`ttl-eq-zero-during-reassembly` (1), `ttl-eq-zero-during-transit` (0)
- **IPv4:**
 - unreachable—`network-unreachable` (0), `host-unreachable` (1), `protocol-unreachable` (2), `port-unreachable` (3), `fragmentation-needed` (4), `source-route-failed` (5), `destination-network-unknown` (6), `destination-host-unknown` (7), `source-host-isolated` (8), `destination-network-prohibited` (9), `destination-host-prohibited` (10), `network-unreachable-for-TOS` (11), `host-unreachable-for-TOS` (12), `communication-prohibited-by-filtering` (13), `host-precedence-violation` (14),
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence-cutoff-in-effect (15)</td>
<td>• IPv6: unreachable—address-unreachable (3), administratively-prohibited (1), no-route-to-destination (0), port-unreachable (4)</td>
<td></td>
</tr>
<tr>
<td>hop-limit value</td>
<td>Match the specified hop limit or set of hop limits. Specify a single value or a range of values from 0 through 255.</td>
<td>Ingress and egress IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Not supported in the egress direction on the QFX3500, QFX3600, QFX5100, QFX5120, QFX5110, QFX5200, and QFX5210 switches.</td>
<td></td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type value</td>
<td>ICMP message type field. Typically, you specify this match in conjunction with the protocol match statement to determine which protocol is being used on the port. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPv4: echo-reply (0), destination unreachable (3), source-quench (4), redirect (5), echo-request (8), IPv4 (inet)-advertisement (9), IPv4 (inet)-solicit (10), time-exceeded (11), parameter-problem (12), timestamp (13), timestamp-reply (14), info-request (15), info-reply (16), mask-request (17), mask-reply (18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPv6: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), membership-query (130), membership-report (131), membership-termination (132), router-solicit (133), router-advertisement (134), neighbor-solicit (135), neighbor-advertisement (136), redirect (137), router-renumbering (138), node-information-request (139), node-information-reply (140)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also icmp-code variable.</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td><code>interface interface-name</code></td>
<td>Interface on which the packet is received, including the logical unit. You can include the wildcard character (*) as part of an interface name or logical unit.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>NOTE: An interface from which a packet is sent cannot be used as a match condition.</td>
<td></td>
</tr>
<tr>
<td><code>ip-destination-address address</code></td>
<td>IPv4 address that is the final destination node address for the packet.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td><code>ip6-destination-address address</code></td>
<td>IPv6 address that is the final destination node address for the packet.</td>
<td>Ingress ports and VLANs. (You cannot simultaneously apply a filter with this match criterion to a Layer 2 port and VLAN that includes that port.)</td>
</tr>
<tr>
<td><code>ip-options</code></td>
<td>Specify any to create a match if anything is specified in the options field in the IP header.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td><code>ip-precedence ip-precedence-field</code></td>
<td>IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00).</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td><code>ip-protocol number</code></td>
<td>IP protocol field.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td><code>ip-source-address address</code></td>
<td>IPv4 address of the source node sending the packet.</td>
<td>Ingress ports and VLANs.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip6-source-address address</td>
<td>IPv6 address of the source node sending the packet.</td>
<td>Ingress ports and VLANs. (You cannot simultaneously apply a filter with this match criterion to a Layer 2 port and VLAN that includes that port.)</td>
</tr>
<tr>
<td>ip-version address</td>
<td>IP version of the packet. Use this condition to match IPv4 or IPv6 header fields in traffic that arrives on a Layer 2 port or VLAN interface.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td>is-fragment</td>
<td>Using this condition causes a match if the More Fragments flag is enabled in the IP header or if the fragment offset is not zero.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>l2-encap-type llc-non-snap</td>
<td>Match on logical link control (LLC) layer packets for non-Subnet Access Protocol (SNAP) Ethernet Encapsulation type.</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
<tr>
<td>label</td>
<td>Match on MPLS label bits.</td>
<td>Ingress MPLS interfaces.</td>
</tr>
<tr>
<td>learn-vlan-id number</td>
<td>Matches the ID of a normal VLAN or the ID of the outer (service) VLAN (for Q-in-Q VLANs). The acceptable values are 1-4095.</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
</tbody>
</table>

NOTE: Not supported on QFX3600, QFX5100, QFX5110, QFX5120, QFX5200, QFX5210, and EX4600 switches. Use the user-vlan-id match condition to match the outer VLAN ID.
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>next-header</td>
<td>IPv4 or IPv6 protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):

hop-by-hop (0), icmp (1), icmp6 (58), igmp (2), ipip (4), tcp (6), egp (8), udp (17), ipv6 (41), routing (43), fragment (44), rsvp (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dstopts (60), ospf (89), pim (103), vrrp (112), sctp (132)
NOTE: Not supported on the QFX3500, QFX3600, QFX5100, QFX5110, QFX5200, and QFX5210 switches.</td>
<td>Ingress ports, VLANs, and IPv6 (inet6) interfaces.
Egress IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>packet-length</td>
<td>Packet length in bytes. You must enter a value between 0 and 65535.</td>
<td>Ingress ports, VLANs, IPv4 (inet), and IPv6 (inet6) interfaces.
Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>payload-protocol</td>
<td>IPv4 or IPv6 protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):

hop-by-hop (0), icmp (1), icmp6 (58), igmp (2), ipip (4), tcp (6), egp (8), udp (17), ipv6 (41), routing (43), fragment (44), rsvp (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dstopts (60), ospf (89), pim (103), vrrp (112), sctp (132)</td>
<td>Ingress ports, VLANs, and IPv6 (inet6) interfaces.
Egress IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>precedence value</td>
<td>IP precedence bits in the type-of-service (ToS) byte in the IP header. (This byte can also be used for the DiffServ DSCP.) In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):
• routine (0)
• priority (1)
• immediate (2)
• flash (3)
• flash-override (4)
• critical-ecp (5)
• internet-control (6)
• net-control (7)</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces.
Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>protocol type</td>
<td>IPv4 or IPv6 protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):
hop-by-hop (0), icmp (1), icmp6, igmp (2), ipip (4), tcp (6), egp (8), udp (17), ipv6 (41), routing (43), fragment (44), rsvp (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dstopts (60), ospf (89), pim (103), vrrp (112), sctp (132)</td>
<td>Ingress ports, VLANs and IPv4 (inet) interfaces.
Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>rat-type</td>
<td>Match the radio-access technology (RAT) type specified in the 8-bit Tech-Type field of Proxy Mobile IPv4 (PMIPv4) access technology type extension. The technology type specifies the access technology through which the mobile device is connected to the access network. Specify a single value, a range of values, or a set of values. You can specify a technology type as a numeric value from 0 through 255 or as a system keyword.</td>
<td>Egress and ingress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>tech-type-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numeric value 1 matches IEEE 802.3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numeric value 2 matches IEEE 802.11a/b/g.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numeric value 3 matches IEEE 802.16e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Numeric value 4 matches IEEE 802.16m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Text string eutran matches 4G.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Text string geran matches 2G.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Text string utran matches 3G.</td>
<td></td>
</tr>
<tr>
<td>sample</td>
<td>Sample the packet traffic. Apply this option only if you have enabled traffic sampling.</td>
<td>Egress and ingress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>source-address</td>
<td>IP source address field, which is the address of the node that sent the packet.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>ip-address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source-mac-address</td>
<td>Source media access control (MAC) address of the packet.</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
<tr>
<td>mac-address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-port value</td>
<td>TCP or UDP source port. Typically, you specify this match in conjunction with the <code>protocol</code> match statement. In place of the numeric field, you can specify one of the text synonyms listed under <code>destination-port</code>.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>source-port range-optimize range</td>
<td>Match a range of TCP or UDP port ranges while using the available memory more efficiently. Using this condition allows you to configure more firewall filters than if you configure individual source ports. (Not supported with filter-based forwarding.)</td>
<td>Ingress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>source-prefix-list prefix-list</td>
<td>IP source prefix list. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the <code>[edit policy-options]</code> hierarchy level.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>tcp-established</td>
<td>Matches packets of an established TCP three-way handshake connection (SYN, SYN-ACK, ACK). The only packet not matched is the first packet of the handshake since only the SYN bit is set. For this packet, you must specify <code>tcp-initial</code> as the match condition. When you specify <code>tcp-established</code>, the switch does not implicitly verify that the protocol is TCP. You must also specify the <code>protocol tcp</code> match condition.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-flags value</td>
<td>One or more TCP flags:</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>• ack (0x10)</td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td>• fin (0x01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• push (0x08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• rst (0x04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• syn (0x02)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• urgent (0x20)</td>
<td></td>
</tr>
<tr>
<td>tcp-initial</td>
<td>Match the first TCP packet of a connection. A match occurs when the TCP flag SYN is set and the TCP flag ACK is not set.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>When you specify tcp-initial, a switch does not implicitly verify that the protocol is TCP. You must also specify the protocol tcp match condition.</td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>traffic-class</td>
<td>8-bit field that specifies the class-of-service (CoS) priority of the packet. The traffic-class field is used to specify a DiffServ code point (DSCP) value. This field was previously used as the type-of-service (ToS) field in IPv4, and, the semantics of this field (for example, DSCP) are identical to those of IPv4.</td>
<td>Ingress ports, VLANs, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>You can specify one of the following text synonyms (the field values are also listed):</td>
<td>Egress IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>af32 (28), af33 (30), af41 (34), af42 (36), af43 (38), cs0 (0), cs1 (8), cs2 (16),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cs3 (24), cs4 (32), cs5 (40), cs6 (48), cs7 (56), ef (46)</td>
<td></td>
</tr>
<tr>
<td>ttl value</td>
<td>IP Time-to-live (TTL) field in decimal. The value can be 1-255.</td>
<td>Ingress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>
Table 98: Supported Match Conditions for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-vlan-1p-priority value</td>
<td>Matches the specified 802.1p VLAN priority in the range 0-7.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>user-vlan-id number</td>
<td>Matches the ID of the inner (customer) VLAN for a Q-in-Q VLAN. The acceptable values are 1-4095.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td>NOTE: QFX3600, QFX5100, QFX5110, QFX5120, QFX5200, QFX5210, EX4600, and EX4600 switches do not support the learn-vlan-id match condition, so use this match condition to match the ID of the outer VLAN on those switches.</td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>

Use **then** statements to define actions that should occur if a packet matches all conditions in a **from** statement. *Table 99 on page 1545* shows the actions that you can specify in a term. (If you do not include a **then** statement, the system accepts packets that match the filter.)

Table 99: Actions for Firewall Filters

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet. This is the default action for packets that match a term.</td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently without sending an Internet Control Message Protocol (ICMP) message.</td>
</tr>
</tbody>
</table>
Table 99: Actions for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reject message-type</td>
<td>Discard a packet and send a "destination unreachable" ICMPv4 message (type 3). To log rejected packets, configure the syslog action modifier. You can specify one of the following message types: administratively-prohibited (default), bad-host-tos, bad-network-tos, host-prohibited, host-unknown, host-unreachable, network-prohibited, network-unknown, network-unreachable, port-unreachable, precedence-cutoff, precedence-violation, protocol-unreachable, source-host-isolated, source-route-failed, or tcp-reset. If you specify tcp-reset, the system sends a TCP reset if the packet is a TCP packet; otherwise nothing is sent. If you do not specify a message type, the ICMP notification "destination unreachable" is sent with the default message "communication administratively filtered." NOTE: The reject action is supported on ingress interfaces only.</td>
</tr>
<tr>
<td>routing-instance instance-name</td>
<td>Forward matched packets to a virtual routing instance.</td>
</tr>
<tr>
<td>vlan VLAN-name</td>
<td>Forward matched packets to a specific VLAN. NOTE: The vlan action is supported on ingress interfaces only. NOTE: This action is not supported on OCX series switches.</td>
</tr>
</tbody>
</table>

You can also specify the action modifiers listed in Table 81 on page 1381 to count, mirror, rate-limit, and classify packets.

Table 100: Action Modifiers for Firewall Filters

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>analyzer analyzer-name</td>
<td>(Non-ELS platforms) Mirror traffic (copy packets) to an analyzer configured at the [edit ethernet-switching-options analyzer] hierarchy level. You can specify port mirroring for ingress port, VLAN, and IPv4 (inet) firewall filters only.</td>
</tr>
<tr>
<td>count counter-name</td>
<td>Count the number of packets that match the term.</td>
</tr>
</tbody>
</table>
Table 100: Action Modifiers for Firewall Filters (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>**decapsulate [gre</td>
<td>routing-instance]**</td>
</tr>
</tbody>
</table>
| **dscp value** | Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most-significant 6 bits of this byte form the DSCP.
You can specify DSCP in hexadecimal, binary, or decimal form.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
- **be**—best effort (default)
- **ef** (46)—as defined in RFC 3246, An Expedited Forwarding PHB.
- **af**11 (10), **af**12 (12), **af**13 (14); **af**21 (18), **af**22 (20), **af**23 (22); **af**31 (26), **af**32 (28), **af**33 (30); **af**41 (34), **af**42 (36), **af**43 (38)
These four classes, with three drop precedences in each class, for a total of 12 code points, are defined in RFC 2597, Assured Forwarding PHB.
- **cs**0, **cs**1, **cs**2, **cs**3, **cs**4, **cs**5, **cs**6, **cs**7, **cs**8
| **forwarding-class class** | Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:
- **best-effort**
- **fcoe**
- **mcast**
- **network-control**
- **no-loss**
NOTE: To configure a forwarding class, you must also configure loss priority.
<p>| interface | Switch the traffic to the specified interface without performing a lookup on it. This action is valid only when the filter is applied on ingress. |</p>
<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log</td>
<td>Log the packet’s header information in the Routing Engine. To view this information, enter the <code>show firewall log</code> operational mode command. NOTE: The log action modifier is supported on ingress interfaces only.</td>
</tr>
<tr>
<td>loss-priority (low</td>
<td>medium-low</td>
</tr>
<tr>
<td>policer policer-name</td>
<td>Send packets to a policer (for the purpose of applying rate limiting). You can specify a policer for ingress port, VLAN, IPv4 (inet), IPv6 (inet6), and MPLS filters. NOTE: The policer action modifier is not supported in combination with the loss-priority action.</td>
</tr>
<tr>
<td>port-mirror</td>
<td>(ELS platforms) Mirror traffic (copy packets) to an output interface configured in a port-mirroring instance at the [edit forwarding-options port-mirroring] hierarchy level. You can specify port mirroring for ingress port, VLAN, and IPv4 (inet) firewall filters only.</td>
</tr>
<tr>
<td>port-mirror-instance port-mirror-instance-name</td>
<td>(ELS platforms) Mirror traffic to a port-mirroring instance configured at the [edit forwarding-options port-mirroring] hierarchy level. You can specify port mirroring for ingress port, VLAN, and IPv4 (inet) firewall filters only. NOTE: This action modifier is not supported on OCX series switches.</td>
</tr>
<tr>
<td>syslog</td>
<td>Log an alert for this packet. NOTE: The syslog action modifier is supported on ingress interfaces only.</td>
</tr>
</tbody>
</table>
Table 100: Action Modifiers for Firewall Filters *(continued)*

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>three-color-policer three-color-policer-name</td>
<td>Send packets to a three-color policer (for the purpose of applying rate limiting). You can specify a three-color policer for ingress and egress port, VLAN, IPv4 (inet), IPv6 (inet6), and MPLS filters. NOTE: The policer action modifier is not supported in combination with the loss-priority action.</td>
</tr>
</tbody>
</table>

SEE ALSO

Firewall Filter Match Conditions and Actions (QFX5220)

This topic describes the supported firewall filter match conditions, actions, and action modifiers for the QFX5220-CD and QFX5220-128C switches.

Each term in a firewall filter consists of *match conditions* and an *action*. Match conditions are the fields and values that a packet must contain to be considered a match. You can define single or multiple match conditions in *match statements*. You can also include no match statement, in which case the term matches all packets.

When a packet matches a filter, a switch takes the action specified in the term. If no match conditions are applied, the switch accepts the packet by default.

- Table 101 on page 1549 shows the match conditions for IPv4 (*inet*) and IPv6 (*inet6*) interfaces, and the match conditions for ports and VLANs (*ethernet-switching*).
- Table 80 on page 1379 shows the actions and action modifiers that you can specify in a term.

NOTE: For match conditions, some of the numeric range and bit-field match conditions allow you to specify a text synonym. To see a list of all the synonyms for a match condition, type ? at the appropriate place in a statement.

Table 101: Supported Match Conditions (QFX5220 Switches)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp-type</td>
<td>ARP request packet or ARP reply packet.</td>
<td>Ingress and egress ports and VLANs.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>\texttt{destination ip-address}</td>
<td>IP destination address field, which is the address of the final destination node.</td>
<td>Ingress and egress IPv4 and IPv6 interfaces. Ingress ports and VLANs.</td>
</tr>
<tr>
<td>\texttt{destination mac-address}</td>
<td>Destination media access control (MAC) address of the packet.</td>
<td>Ingress and egress ports and VLANs.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td><code>destination-port</code> value</td>
<td>TCP or UDP destination port field. Typically, you specify this match in conjunction with the <code>protocol</code> match statement. For the following well-known ports you can specify text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), login (513), mobileip-agent (434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119), ntalk (518), ntp (123), pop3 (110), pptp (1723), printer (515), radacct (1813),radius (1812), rip (520), rkinit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), xdmcp (177), zephyr-clt (2103), zephyr-hm (2104)</td>
<td>Ingress and egress IPv4 interfaces. Ingress and egress IPv6 interfaces. Ingress ports and VLANs.</td>
</tr>
</tbody>
</table>
Table 101: Supported Match Conditions (QFX5220 Switches) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port</td>
<td>Match a range of TCP or UDP port ranges while using the available memory more efficiently. Using this condition allows you to configure more firewall filters than if you configure individual destination ports. (Not supported with filter-based forwarding.)</td>
<td>Ingress IPv4 interfaces.</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>IP destination prefix list field. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the [edit policy-options] hierarchy level.</td>
<td>Ingress and egress IPv4 and IPv6 interfaces. Ingress ports and VLANs.</td>
</tr>
</tbody>
</table>
| **dscp value** | Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most-significant 6 bits of this byte form the DSCP. You can specify DSCP in hexadecimal, binary, or decimal form. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
- be—best effort (default)
- ef (46)—as defined in RFC 3246, *An Expedited Forwarding PHB*.
- af11 (10), af12 (12), af13 (14); af21 (18), af22 (20), af23 (22); af31 (26), af32 (28), af33 (30); af41 (34), af42 (36), af43 (38)
These four classes, with three drop precedences in each class, for a total of 12 code points, are defined in RFC 2597, *Assured Forwarding PHB*.
- cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs5 | Ingress and egress IPv4 interfaces. Ingress ports and VLANs. |
Table 101: Supported Match Conditions (QFX5220 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ether-type value</td>
<td>Ethernet type field of a packet. The EtherType value specifies what protocol is being transported in the Ethernet frame. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td>Ingress and egress ports and VLANs.</td>
</tr>
<tr>
<td>• aarp (0x80F3)—EtherType value AARP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• appletalk (0x809B)—EtherType value AppleTalk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• arp (0x0806)—EtherType value ARP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• fcoe (0x8906)—EtherType value FCoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• fip (0x8914)—EtherType value FIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ipv4 (0x0800)—EtherType value IPv4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ipv6 (0x08DD)—EtherType value IPv6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mpls-multicast (0x8848)—EtherType value MPLS multicast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mpls-unicast (0x8847)—EtherType value MPLS unicast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• oam (0x88A8)—EtherType value OAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ppp (0x880B)—EtherType value PPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• pppoe-discovery (0x8863)—EtherType value PPPoE Discovery Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• pppoe-session (0x8864)—EtherType value PPPoE Session Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• sna (0x80D5)—EtherType value SNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 101: Supported Match Conditions (QFX5220 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
</table>
| icmp-code value | ICMP code field. Because the meaning of the value depends upon the associated icmp-type, you must specify a value for icmp-type along with a value for icmp-code. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:
 - IPv4: parameter-problem—ip-header-bad (0), required-option-missing (1)
 - IPv6: parameter-problem—ip6-header-bad (0), unrecognized-next-header (1), unrecognized-option (2)
 - redirect—redirect-for-network (0), redirect-for-host (1), redirect-for-tos-and-net (2), redirect-for-tos-and-host (3)
 - time-exceeded—ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-transit (0)
 - IPv4: unreachable—network-unreachable (0), host-unreachable (1), protocol-unreachable (2), port-unreachable (3), fragmentation-needed (4), source-route-failed (5), destination-network-unknown (6), destination-host-unknown (7), source-host-isolated (8), destination-network-prohibited (9), destination-host-prohibited (10), network-unreachable-for-TOS (11), host-unreachable-for-TOS (12), communication-prohibited-by-filtering (13), host-precedence-violation (14), precedence-cutoff-in-effect (15)
 - IPv6: unreachable—address-unreachable (3), administratively-prohibited (1), no-route-to-destination (0), port-unreachable (4) | Ingress and egress IPv4 interfaces.
 Ingress IPv6 interfaces.
 Ingress ports and VLANs. |
<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
</table>
| **icmp-type value** | ICMP message type field. Typically, you specify this match in along with the **protocol** match statement to determine which protocol is being used on the port. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): **IPv4:** echo-reply (0), destination-unreachable (3), source-quench (4), redirect (5), echo-request (8), IPv4 (inet)-advertisement (9), IPv4 (inet)-solicit (10), time-exceeded (11), parameter-problem (12), timestamp (13), timestamp-reply (14), info-request (15), info-reply (16), mask-request (17), mask-reply (18) **IPv6:** destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), membership-query (130), membership-report (131), membership-termination (132), router-solicit (133), router-advertisement (134), neighbor-solicit (135), neighbor-advertisement (136), redirect (137), router-renumbering (138), node-information-request (139), node-information-reply (140) See also **icmp-code variable.** | Ingress and egress IPv4 interfaces.
Ingress IPv6 interfaces.
Ingress ports and VLANs. |
| **interface interface-name** | Interface on which the packet is received, including the logical unit. You can include the wildcard character (*) as part of an interface name or logical unit.
NOTE: An interface from which a packet is sent cannot be used as a match condition. | Egress IPv4 interfaces. |
| **ip-destination-address address** | IPv4 address that is the final destination node address for the packet. | Ingress ports and VLANs. |
| **ip-options** | Specify any to create a match if anything is specified in the options field in the IP header. | Ingress IPv4 interfaces. |
| **ip-protocol number** | IP protocol field. | Ingress ports and VLANs. |
Table 101: Supported Match Conditions (QFX5220 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip precedence</td>
<td>IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00).</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td>ip-precedence</td>
<td>IPv4 address of the source node sending the packet.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td>ip-source-address</td>
<td>IP version of the packet. Use this condition to match IPv4 or IPv6 header fields in traffic that arrives on a Layer 2 port or VLAN interface.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td>ip-version</td>
<td>IPv4 or IPv6 protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed): hop-by-hop (0), icmp (1), icmp6 (58), igmp (2), ipip (4), tcp (6), egp (8), udp (17), ipv6 (41), routing (43), fragment (44), rsvp (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dstopts (60), ospf (89), pim (103), vrrp (112), sctp (132)</td>
<td>Ingress and egress IPv6 interfaces.</td>
</tr>
<tr>
<td>packet-length</td>
<td>Packet length in bytes. You must enter a value between 0 and 65535.</td>
<td>Ingress IPv4 and IPv6 interfaces.</td>
</tr>
<tr>
<td>precedence</td>
<td>IP precedence bits in the type-of-service (ToS) byte in the IP header. (This byte can also used for the DiffServ DSCP.) In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed): routine (0), priority (1), immediate (2), flash (3), flash-override (4), critical-ecp (5), internet-control (6), net-control (7)</td>
<td>Ingress and egress IPv4 interfaces.</td>
</tr>
</tbody>
</table>
Table 101: Supported Match Conditions (QFX5220 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol type</td>
<td>IP protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):</td>
<td>Ingress and egress IPv4 interfaces. Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td>hop-by-hop (0), icmp (1), icmp6, igmp (2), ipip (4), tcp (6), udp (17), ipv6 (41), routing (43), fragment (44), rsip (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dstopts (60), ospf (89), pim (103), vrrp (112), sctp (132)</td>
<td></td>
</tr>
<tr>
<td>source-address ip-address</td>
<td>IP source address field, which is the address of the node that sent the packet.</td>
<td>Ingress and egress IPv4 interfaces. Ingress IPv6 interfaces. Ingress ports and VLANs.</td>
</tr>
<tr>
<td>source-mac-address</td>
<td>Source media access control (MAC) address of the packet.</td>
<td>Ingress and egress ports and VLANs.</td>
</tr>
<tr>
<td>source-port value</td>
<td>TCP or UDP source port. Typically, you specify this match in conjunction with the protocol match statement. In place of the numeric field, you can specify one of the text synonyms listed under destination-port.</td>
<td>Ingress and egress IPv4 interfaces. Ingress IPv6 interfaces. Ingress ports and VLANs.</td>
</tr>
<tr>
<td>source-port range-optimize range</td>
<td>Match a range of TCP or UDP port ranges while using the available memory more efficiently. Using this condition allows you to configure more firewall filters than if you configure individual source ports. (Not supported with filter-based forwarding.)</td>
<td>Ingress IPv4 interfaces.</td>
</tr>
<tr>
<td>source-prefix-list prefix-list</td>
<td>IP source prefix list. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the [edit policy-options] hierarchy level.</td>
<td>Ingress and egress IPv4 interfaces. Ingress IPv6 interfaces. Ingress ports and VLANs.</td>
</tr>
</tbody>
</table>
Table 101: Supported Match Conditions (QFX5220 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
</table>
| tcp-flags value | TCP flags (only one value is supported):
 • ack (0x10)
 • fin (0x01)
 • push (0x08)
 • rst (0x04)
 • syn (0x02)
 • urgent (0x20) | Ingress and egress IPv4 interfaces.
 Ingress IPv6 interfaces.
 Ingress ports and VLANs. |
| traffic-class | 8-bit field that specifies the class-of-service (CoS) priority of the packet. The traffic-class field is used to specify a DiffServ code point (DSCP) value. This field was previously used as the type-of-service (ToS) field in IPv4, and, the semantics of this field (for example, DSCP) are identical to those of IPv4.
You can specify one of the following text synonyms (the field values are also listed):
af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38), cs0 (0), cs1 (8), cs2 (16), cs3 (24), cs4 (32), cs5 (40), cs6 (48), cs7 (56), ef (46) | Ingress and egress IPv6 interfaces. |
| ttl value | IP Time-to-live (TTL) field in decimal. The value can be 1-255. | Ingress and egress IPv4 interfaces. |
| user-vlan-id number | Matches the ID of the inner (customer) VLAN for a Q-in-Q VLAN. The acceptable values are 1-4095.
NOTE: The switches do not support the learn-vlan-id match condition, so use this match condition to match the ID of the outer VLAN on those switches. | Ingress and egress ports and VLANs. |
| user-vlan-priority value | Matches the specified 802.1p VLAN priority in the range 0-7. | Ingress and egress ports and VLANs. |

Use then statements to define actions that should occur if a packet matches all conditions in a from statement. **Table 80 on page 1379** shows the actions that you can specify in a term. (If you do not include a then statement, the system accepts packets that match the filter.)
NOTE: For egress IPv4 interfaces, IPv6 interfaces, and egress ports, you can only apply the accept, discard, and count actions. For egress VLANs, you can only apply the accept action.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet. This is the default action for packets that match a term.</td>
</tr>
<tr>
<td>apply-groups-except</td>
<td>Specify which groups not to inherit configuration data from. You can specify more than one group name.</td>
</tr>
<tr>
<td>count counter-name</td>
<td>Count the number of packets that match the term.</td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently without sending an Internet Control Message Protocol (ICMP) message.</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
</tr>
<tr>
<td></td>
<td>• fcoe</td>
</tr>
<tr>
<td></td>
<td>• mcast</td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
</tr>
<tr>
<td></td>
<td>• no-loss</td>
</tr>
<tr>
<td></td>
<td>NOTE: To configure a forwarding class, you must also configure loss priority.</td>
</tr>
<tr>
<td>log</td>
<td>Log the packet’s header information in the Routing Engine. To view this information, enter the <code>show firewall log</code> operational mode command.</td>
</tr>
<tr>
<td>loss-priority (low</td>
<td>medium-low</td>
</tr>
<tr>
<td></td>
<td>NOTE: The <code>loss-priority</code> action modifier is supported on ingress IPv4 interfaces only.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The <code>loss-priority</code> action modifier is not supported in combination with the <code>policer</code> action.</td>
</tr>
</tbody>
</table>
Table 102: Actions and Action Modifiers (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| **policer** *policer-name* | Send packets to a policer (for the purpose of applying rate limiting).
 NOTE: The *policer* action modifier is not supported in combination with the *loss-priority* action. |
| **port-mirror** | Mirror traffic (copy packets) to an output interface configured in a port-mirroring instance at the [edit forwarding-options port-mirroring] hierarchy level. |
| **port-mirror-instance** *port-mirror-instance-name* | Mirror traffic to a port-mirroring instance configured at the [edit forwarding-options port-mirroring] hierarchy level.
 You can specify port mirroring for ingress port, VLAN, and IPv4 (inet) firewall filters only. |
| **reject** *message-type* | Discard a packet and send a “destination unreachable” ICMPv4 message (type 3). To log rejected packets, configure the *syslog* action modifier.
 You can specify one of the following message types: administratively-prohibited (default), bad-host-tos, bad-network-tos, host-prohibited, host-unknown, host-unreachable, network-prohibited, network-unknown, network-unreachable, port-unreachable, precedence-cutoff, precedence-violation, protocol-unreachable, source-host-isolated, source-route-failed.
 If you do not specify a message type, the ICMP notification “destination unreachable” is sent with the default message “communication administratively filtered.”
 NOTE: The *reject* action is supported on ingress IPv4 interfaces only. |
| **three-color-policer** *three-color-policer-name* | Send packets to a three-color policer (for the purpose of applying rate limiting).
 NOTE: The *policer* action modifier is not supported in combination with the *loss-priority* action.
 NOTE: The *color-aware* and *color-blind* policers are not supported. By default, traffic is treated as *color-blind*. |
Table 102: Actions and Action Modifiers (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| `vlan VLAN-name` | Forward matched packets to a specific VLAN.
 NOTE: The `vlan` action is only supported on ingress ports and VLANs. |

SEE ALSO

- **Overview of Firewall Filters** | 772
- **Understanding How Firewall Filters Are Evaluated** | 780
- **Configuring Firewall Filters** | 1601
- **Overview of Policers** | 1940

Firewall Filter Match Conditions and Actions (QFX10000 Switches)

Each term in a firewall filter consists of *match conditions* and an *action*. Match conditions are the fields and values that a packet must contain to be considered a match. You can define single or multiple match conditions in *match statements*. You can also include no match statement, in which case the term matches all packets.

When a packet matches a filter, the switch takes the action specified in the term. In addition, you can specify action modifiers to count, mirror, rate-limit, and classify packets. If no match conditions are specified for the term, the switch accepts the packet by default.

This topic describes the various match conditions, actions, and action modifiers that you can define in firewall filters on QFX10000 switches. For similar information about other QFX switches, see "Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches)" on page 1526.

- **Table 103 on page 1562** describes the match conditions you can specify when configuring a firewall filter. Some of the numeric range and bit-field match conditions allow you to specify a text synonym. To see a list of all the synonyms for a match condition, type `?` at the appropriate place in a statement.

- **Table 104 on page 1575** shows the actions that you can specify in a term.

- **Table 105 on page 1576** shows the action modifiers you can use to count, mirror, rate-limit, and classify packets.
Table 103: Supported Match Conditions (QFX10000 Switches)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-address</td>
<td>IP destination address field, which is the address of the final destination node.</td>
<td>Ingress IPv4 (inet) interfaces and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>ip-address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>Destination media access control (MAC) address of the packet.</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
<tr>
<td>mac-address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Supported Match Conditions (QFX10000 Switches) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destination-port value</code></td>
<td></td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>TCP or UDP destination port field. Typically, you specify this match in conjunction with the <code>protocol</code> match statement. For the following well-known ports you can specify text synonyms (the port numbers are also listed):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspsvserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), login (513), mobileip-agent (434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119), ntalk (518), ntp (123), pop3 (110), pptp (1723), printer (515), radacct (1813), radius (1812), rip (520), rkinit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), xdmcp (177),</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Supported Match Conditions (QFX10000 Switches) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>destination-prefix-list</td>
<td>IP destination prefix list field. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the [edit policy-options] hierarchy level.</td>
<td></td>
</tr>
<tr>
<td>prefix-list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dscp value</td>
<td>Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most-significant 6 bits of this byte form the DSCP. You can specify DSCP in hexadecimal, binary, or decimal form. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports, VLANs, and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td>• be—best effort (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ef (46)—as defined in RFC 3246, An Expedited Forwarding PHB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• af11 (10), af12 (12), af13 (14);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• af21 (18), af22 (20), af23 (22);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• af31 (26), af32 (28), af33 (30);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• af41 (34), af42 (36), af43 (38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>These four classes, with three drop precedences in each class, for a total of 12 code points, are defined in RFC 2597, Assured Forwarding PHB.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs8</td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Supported Match Conditions (QFX10000 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>ether-type value</td>
<td>Ethernet type field of a packet. The EtherType value specifies what protocol is being transported in the Ethernet frame. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td>• aarp (0x80F3) — EtherType value AARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• appletalk (0x809B) — EtherType value AppleTalk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• arp (0x0806) — EtherType value ARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fcoe (0x8906) — EtherType value FCoE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fip (0x8914) — EtherType value FIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv4 (0x0800) — EtherType value IPv4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv6 (0x08DD) — EtherType value IPv6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mpls-multicast (0x8848) — EtherType value MPLS multicast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mpls-unicast (0x8847) — EtherType value MPLS unicast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• oam (0x88A8) — EtherType value OAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ppp (0x880B) — EtherType value PPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pppoe-discovery (0x8863) — EtherType value PPPoE Discovery Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• pppoe-session (0x8864) — EtherType value PPPoE Session Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sna (0x80D5) — EtherType value SNA</td>
<td></td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:</td>
<td>Egress IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fcoe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• no-loss</td>
<td></td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| fragment-flags \(value\) | IP fragmentation flags. In place of the numeric value, you can specify one of the following text synonyms (the hexadecimal values are also listed):
 - is-fragment
 - dont-fragment (0x4000)
 - more-fragments (0x2000)
 - reserved (0x8000) | Ingress ports, VLANs, and IPv4 (inet) interfaces. |
| hop-limit \(value\) | Match the specified hop limit or set of hop limits. Specify a single value or a range of values from 0 through 255. | Ingress and egress IPv6 (inet6) interfaces. |
Table 103: Supported Match Conditions (QFX10000 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{icmp-code value}</td>
<td>ICMP code field. Because the meaning of the value depends upon the associated \textit{icmp-type}, you must specify a value for \textit{icmp-type} along with a value for \textit{icmp-code}. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces</td>
</tr>
<tr>
<td>• IPv4: parameter-problem—ip-header-bad (0), required-option-missing (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IPv6: parameter-problem—ip6-header-bad (0), unrecognized-next-header (1), unrecognized-option (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• redirect—redirect-for-network (0), redirect-for-host (1), redirect-for-tos-and-net (2), redirect-for-tos-and-host (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• time-exceeded—ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-transit (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IPv4: unreachable—network-unreachable (0), host-unreachable (1), protocol-unreachable (2), port-unreachable (3), fragmentation-needed (4), source-route-failed (5), destination-network-unknown (6), destination-host-unknown (7), source-host-isolated (8), destination-network-prohibited (9), destination-host-prohibited (10), network-unreachable-for-TOS (11), host-unreachable-for-TOS (12), communication-prohibited-by-filtering (13), host-precedence-violation (14), precedence-cutoff-in-effect (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• IPv6: unreachable—address-unreachable (3), administratively-prohibited (1), no-route-to-destination (0), port-unreachable (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 103: Supported Match Conditions (QFX10000 Switches) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type value</td>
<td>ICMP message type field. Typically, you specify this match in conjunction with the protocol match statement to determine which protocol is being used on the port. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>IPv4: echo-reply (0), destination unreachable (3), source-quench (4), redirect (5), echo-request (8), IPv4 (inet)-advertisement (9), IPv4 (inet)-solicit (10), time-exceeded (11), parameter-problem (12), timestamp (13), timestamp-reply (14), info-request (15), info-reply (16), mask-request (17), mask-reply (18)</td>
<td>Egress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>IPv6: destination-unreachable (1), packet-too-big (2), time-exceeded (3), parameter-problem (4), echo-request (128), echo-reply (129), membership-query (130), membership-report (131), membership-termination (132), router-solicit (133), router-advertisement (134), neighbor-solicit (135), neighbor-advertisement (136), redirect (137), router-renumbering (138), node-information-request (139), node-information-reply (140)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also <code>icmp-code variable</code>.</td>
<td></td>
</tr>
<tr>
<td>interface interface-name</td>
<td>Interface on which the packet is received, including the logical unit. You can include the wildcard character (*) as part of an interface name or logical unit.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>NOTE: An interface from which a packet is sent cannot be used as a match condition.</td>
<td>Egress IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>ip-destination-address address</td>
<td>IPv4 address that is the final destination node address for the packet.</td>
<td>Ingress ports, egress ports, and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>ip-options</td>
<td>Specify any to create a match if anything is specified in the options field in the IP header.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>ip-precedence ip-precedence-field</td>
<td>IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00).</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
<tr>
<td>ip-protocol number</td>
<td>IP protocol field.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>ip-source-address address</td>
<td>IPv4 address of the source node sending the packet.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>ip-version address</td>
<td>IP version of the packet. Use this condition to match IPv4 or IPv6 header fields in traffic that arrives on a Layer 2 port or VLAN interface.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
<tr>
<td>is-fragment</td>
<td>Using this condition causes a match if the More Fragments flag is enabled in the IP header or if the fragment offset is not zero.</td>
<td>Ingress ports, VLANs, and IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Direction and Interface</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>learn-1p-priority number</td>
<td>Matches the specified IEEE 802.1p VLAN priority bits in the range 0-7.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
<tr>
<td>learn-vlan-id number</td>
<td>Matches the ID of a normal VLAN or the ID of the outer (service) VLAN (for Q-in-Q VLANs). To use filter memory most efficiently and maximize the number of possible filters, use this condition in addition to user-id when you want to match on the inner (customer) VLAN ID. The acceptable values are 1-4095.</td>
<td>Ingress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress ports and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>loss-priority *(low</td>
<td>medium-low</td>
<td>medium-high</td>
</tr>
<tr>
<td>next-header value</td>
<td>IPv4 or IPv6 protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed): hop-by-hop (0), icmp (1), icmp6 (58), igmp (2), ipip (4), tcp (6), egp (8), udp (17), ipv6 (41), routing (43), fragment (44), rsdp (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dsto (60), ospf (89), pim (103), vrrp (112), sctp (132)</td>
<td>Ingress IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>packet-length number</td>
<td>Packet length in bytes. You must enter a number between 0 and 65535.</td>
<td>Ingress ports, VLANs, IPv4 (inet), and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Egress IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>
Table 103: Supported Match Conditions (QFX10000 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
</table>

precedence value
IP precedence bits in the type-of-service (ToS) byte in the IP header. (This byte can also be used for the DiffServ DSCP.) In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):

- routine (0)
- priority (1)
- immediate (2)
- flash (3)
- flash-override (4)
- critical-ecp (5)
- internet-control (6)
- net-control (7)

protocol type
IPv4 or IPv6 protocol value. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed):

- hop-by-hop (0)
- icmp (1)
- icmp6 (2)
- ipip (4)
- tcp (6)
- egp (8)
- udp (17)
- ip6 (41)
- routing (43)
- fragment (44)
- rsvp (46)
- esp (50)
- ah (51)
- icm (58)
- no-next-header (59)
- dstopts (60)
- ospf (89)
- pim (103)
- vrrp (112)
- sctp (132)

source-address
IP source address field, which is the address of the node that sent the packet.

Ingress IPv4 (inet) interfaces and IPv6 (inet6) interfaces.

Egress IPv4 (inet) interfaces and IPv6 (inet6) interfaces.

Ingress IRB interface for EVPN/VXLAN fabric, where applicable.

source-mac-address
Source media access control (MAC) address of the packet.

Ingress ports and VLANs.

Egress ports and VLANs.
Table 103: Supported Match Conditions (QFX10000 Switches) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-port value</td>
<td>TCP or UDP source port. Typically, you specify this match in conjunction with the protocol match statement. In place of the numeric field, you can specify one of the text synonyms listed under destination-port.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>source-prefix-list prefix-list</td>
<td>IP source prefix list. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the [edit policy-options] hierarchy level.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>tcp-established</td>
<td>Match packets of an established TCP connection. This condition matches packets other than those used to set up a TCP connection—that is, three-way handshake packets are not matched. When you specify tcp-established, a switch does not implicitly verify that the protocol is TCP. You must also specify the protocol tcp match condition.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>tcp-flags value</td>
<td>One or more TCP flags: • ack (0x10) • fin (0x01) • push (0x08) • rst (0x04) • syn (0x02) • urgent (0x20)</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Direction and Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-initial</td>
<td>Match the first TCP packet of a connection. A match occurs when the TCP flag SYN is set and the TCP flag ACK is not set. When you specify tcp-initial, a switch does not implicitly verify that the protocol is TCP. You must also specify the protocol tcp match condition.</td>
<td>Ingress ports, VLANs, IPv4 (inet) interfaces, and IPv6 (inet6) interfaces. Egress IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>traffic-class value</td>
<td>8-bit field that specifies the class-of-service (CoS) priority of the packet. The traffic-class field is used to specify a DiffServ code point (DSCP) value. This field was previously used as the type-of-service (ToS) field in IPv4, and, the semantics of this field (for example, DSCP) are identical to those of IPv4. You can specify one of the following text synonyms (the field values are also listed): af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38), cs0 (0), cs1 (8), cs2 (16), cs3 (24), cs4 (32), cs5 (40), cs6 (48), cs7 (56), ef (46)</td>
<td>Ingress IPv6 (inet6) interfaces. Egress IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>ttl value</td>
<td>IP Time-to-live (TTL) field in decimal. The value can be 1-255.</td>
<td>Ingress IPv4 (inet) interfaces. Egress IPv4 (inet) interfaces. Ingress IRB interface for EVPN/VXLAN fabric, where applicable</td>
</tr>
<tr>
<td>user-vlan-id number</td>
<td>Matches the ID of the inner (customer) VLAN in a Q-in-Q VLAN. To use filter memory most efficiently and maximize the number of possible filters, use in combination with learn-vlan-id to match the outer (service) VLAN ID. The acceptable values are 1-4095.</td>
<td>Ingress ports and VLANs. Egress ports and VLANs.</td>
</tr>
</tbody>
</table>
Use **then** statements to define actions that should occur if a packet matches all conditions in a **from** statement. *Table 104 on page 1575* shows the actions that you can specify in a term. (If you do not include a **then** statement, the system accepts packets that match the filter.)

Table 104: Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet. This is the default action for packets that match a term.</td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently without sending an Internet Control Message Protocol (ICMP) message.</td>
</tr>
</tbody>
</table>
| reject message-type | Discard a packet and send a "destination unreachable" ICMPv4 message (type 3). To log rejected packets, configure the **syslog** action modifier. You can specify one of the following message types: *administratively-prohibited* (default), *bad-host-tos*, *bad-network-tos*, *host-prohibited*, *host-unknown*, *host-unreachable*, *network-prohibited*, *network-unknown*, *network-unreachable*, *port-unreachable*, *precedence-cutoff*, *precedence-violation*, *protocol-unreachable*, *source-host-isolated*, *source-route-failed*, or *tcp-reset*. If you specify **tcp-reset**, the system sends a TCP reset if the packet is a TCP packet; otherwise nothing is sent. If you do not specify a message type, the ICMP notification "destination unreachable" is sent with the default message "communication administratively filtered."

NOTE: The reject action is supported on ingress interfaces only. |
| routing-instance instance-name | Forward matched packets to a virtual routing instance. (The only supported instance type is **virtual-router**.) Packets can be forwarded to the default instance. |
| vlan VLAN-name | Forward matched packets to a specific VLAN. |

NOTE: The **vlan** action is supported on ingress interfaces only. **NOTE:** This action is not supported on OCX series switches.

You can also specify the action modifiers listed in *Table 105 on page 1576* to count, mirror, rate-limit, and classify packets.
Table 105: Action Modifiers

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count counter-name</td>
<td>Count the number of packets that match the term.</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
</tr>
<tr>
<td></td>
<td>• fcoe</td>
</tr>
<tr>
<td></td>
<td>• mcast</td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
</tr>
<tr>
<td></td>
<td>• no-loss</td>
</tr>
<tr>
<td></td>
<td>NOTE: To configure a forwarding class, you must also configure loss priority.</td>
</tr>
<tr>
<td>log</td>
<td>Log the packet's header information in the Routing Engine. To view this information, enter the show firewall log operational mode command.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The log action modifier is supported on ingress interfaces only.</td>
</tr>
<tr>
<td>**loss-priority (low</td>
<td>medium-low</td>
</tr>
<tr>
<td></td>
<td>NOTE: The loss-priority action modifier is supported on ingress interfaces only.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The loss-priority action modifier is not supported in combination with the policer action.</td>
</tr>
<tr>
<td>policer policer-name</td>
<td>Send packets to a policer (for the purpose of applying rate limiting).</td>
</tr>
<tr>
<td></td>
<td>You can specify a policer for ingress and egress port, VLAN, IPv4 (inet), and IPv6 (inet6) firewall filters.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The policer action modifier is not supported in combination with the loss-priority action.</td>
</tr>
<tr>
<td>port-mirror</td>
<td>(ELS platforms) Mirror traffic (copy packets) to an output interface configured in a port-mirroring instance at the [edit forwarding-options port-mirroring] hierarchy level.</td>
</tr>
<tr>
<td></td>
<td>You can specify port mirroring for ingress and egress port, VLAN, IPv4 (inet), and IPv6 (inet6) firewall filters.</td>
</tr>
</tbody>
</table>
Table 105: Action Modifiers (continued)

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-mirror-instance port-mirror-instance-name</td>
<td>(ELS platforms) Mirror traffic to a port-mirroring instance configured at the [edit forwarding-options port-mirroring] hierarchy level. You can specify port mirroring for ingress and egress port, VLAN, IPv4 (inet), and IPv6 (inet6) firewall filters. NOTE: the port-mirror-instance port-mirror-instance-name action modifier is supported on ingress interfaces only.</td>
</tr>
<tr>
<td>syslog</td>
<td>Log an alert for this packet. NOTE: The syslog action modifier is supported on ingress interfaces only.</td>
</tr>
<tr>
<td>three-color-policer three-color-policer-name</td>
<td>Send packets to a three-color policer (for the purpose of applying rate limiting). You can specify a three-color policer for ingress and egress port, VLAN, IPv4 (inet), and IPv6 (inet6) filters. NOTE: The policer action modifier is not supported in combination with the loss-priority action.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Overview of Firewall Filters | 772
- Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches) | 1526
- Configuring Firewall Filters | 1601
- Overview of Policers | 1940

Firewall Filter Match Conditions and Actions (PTX Series Routers)

IN THIS SECTION

- Firewall Filter Match Conditions and Actions (PTX10003) | 1578
- IPv6 Firewall Filter Match Conditions and Actions (PTX10001-20C) | 1592
Firewall Filter Match Conditions and Actions (PTX10003)

Each term in a firewall filter consists of match conditions and an action. Match conditions are the fields and values that a packet must contain to be considered a match. You can define single or multiple match conditions in match statements. You can also include no match statement, in which case the term matches all packets.

When a packet matches a filter, the router takes the action specified in the term. In addition, you can specify action modifiers to count, mirror, rate-limit, and classify packets. If no match conditions are specified for the term, the router accepts the packet by default.

- Table 103 on page 1562 describes the match conditions you can specify when configuring a firewall filter. Some of the numeric range and bit-field match conditions allow you to specify a text synonym. To see a list of all the synonyms for a match condition, type `?` at the appropriate place in a statement.
- Table 104 on page 1575 shows the actions and action modifiers that you can specify in a term.

NOTE
You can apply multiple firewall filters to a single interface as a single input list or output list (filter input-list and output-list). In this way, you only manage the configuration for a filtering task in a single firewall filter. This gives you flexibility in large environments when you have a device configured with many interfaces.

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>address address [except]</td>
<td>Match the source or destination address field unless the except option is included.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>destination-address address [except]</td>
<td>Match the destination address field unless the except option is included. You cannot specify both address and destination-address match conditions in the same term.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-port number</td>
<td>Match the UDP or TCP destination port field. You must also configure the <code>protocol udp</code> or <code>protocol tcp</code> match statement in the same term to specify which protocol is being used on the port. You cannot specify both the <code>port</code> and <code>destination-port</code> match conditions in the same term. In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514), cvspsv (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106), exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443), ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761), krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldp (646), login (513), mobileip-agent (434), mobilip-mn (435), msdp (639), netbios-dgm (138), netbios-ns (137), netbios-ssn (139), nfsp (2049), ntpl (119), ntalk (518), ntp (123), pop3 (110), pptp (1773), printer (515), radacct (1813), radius (1812), rip (520), rkinit (2108), smtp (25), snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22), sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517), telnet (23), tftp (69), timed (525), who (513), or xdmcp (177).</td>
<td>IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>destination-port-except number</td>
<td>Do not match the UDP or TCP destination port field. For details, see the <code>destination-port</code> match condition.</td>
<td>IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>destination-prefix-list name [except]</td>
<td>Match destination prefixes in a list unless the <code>except</code> option is included. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the <code>[edit policy-options]</code> hierarchy level.</td>
<td>IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
</table>
| **dscp number** | Match the Differentiated Services code point (DSCP). The DiffServ protocol uses the type-of-service (ToS) byte in the IP header. The most-significant 6 bits of this byte form the DSCP.
You can specify DSCP in hexadecimal, binary, or decimal form.
In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed):
 - **be**—best effort (default)
 - **ef (46)**—as defined in RFC 3246, An Expedited Forwarding PHB.
 - **af11 (10), af12 (12), af13 (14); af21 (18), af22 (20), af23 (22); af31 (26), af32 (28), af33 (30); af41 (34), af42 (36), af43 (38)**
These four classes, with three drop precedences in each class, for a total of 12 code points, are defined in RFC 2597, Assured Forwarding PHB.
 - **cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs5** | IPv4 (inet) and IPv6 (inet6) interfaces. |
| **dscp-except number** | Do not match on the DSCP number. For more information, see the dscp match condition. | IPv4 (inet) and IPv6 (inet6) interfaces. |
| **first-fragment** | Match if the packet is the first fragment of a fragmented packet. Do not match if the packet is a trailing fragment of a fragmented packet. The first fragment of a fragmented packet has a fragment offset value of 0.
This match condition is an alias for the bit-field match condition fragment-offset 0 match condition.
To match both first and trailing fragments, you can use two terms that specify different match conditions: first-fragment and is-fragment. | IPv4 (inet) interfaces. |
Table 106: Supported Match Conditions (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>forwarding-class class</td>
<td>Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:</td>
<td>IPv4 (inet), IPv6 (inet6), and MPLS interfaces.</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fcoe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• no-loss</td>
<td></td>
</tr>
<tr>
<td>forwarding-class-except class</td>
<td>Do not match the forwarding class of the packet. For details, see the forwarding-class match condition.</td>
<td>IPv4 (inet), IPv6 (inet6), and MPLS interfaces.</td>
</tr>
<tr>
<td>fragment-flags number</td>
<td>Match the three-bit IP fragmentation flags field in the IP header.</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric field value, you can specify one of the following keywords (the field values are also listed): dont- (0x4), more-s (0x2), or reserved (0x8).</td>
<td></td>
</tr>
<tr>
<td>fragment-offset value</td>
<td>Match the 13-bit fragment offset field in the IP header. The value is the offset, in 8-byte units, in the overall datagram message to the data fragment. Specify a numeric value, a range of values, or a set of values. An offset value of 0 indicates the first fragment of a fragmented packet. The first-fragment match condition is an alias for the fragment-offset 0 match condition. To match both first and trailing fragments, you can use two terms that specify different match conditions (first-fragment and is-fragment).</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>fragment-offset-except number</td>
<td>Do not match the 13-bit fragment offset field.</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-code message-code</td>
<td></td>
<td>IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match the ICMP message code field. If you configure this match condition, we recommend that you also configure the <code>next-header icmp</code> or <code>next-header icmp6</code> match condition in the same term. If you configure this match condition, you must also configure the <code>icmp-type message-type</code> match condition in the same term. An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>parameter-problem: ip-header-bad (0), required-option-missing (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>redirect: redirect-for-host (1), redirect-for-network (0), redirect-for-tos-and-host (3), redirect-for-tos-and-net (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time-exceeded: ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-transit (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unreachable: communication-prohibited-by-filtering (13), destination-host-prohibited (10), destination-host-unknown (7), destination-network-prohibited (9), destination-network-unknown (6), fragmentation-needed (4), host-precedence-violation (14), host-unreachable (1), host-unreachable-for-TOS (12), network-unreachable (0), network-unreachable-for-TOS (11),</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>port-unreachable (3), precedence-cutoff-in-effect (15), protocol-unreachable (2), source-host-isolated (8), source-route-failed (5)</td>
<td></td>
</tr>
<tr>
<td>icmp-code-except</td>
<td>Do not match the ICMP message code field. For details, see the icmp-code match condition.</td>
<td>IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>message-code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>icmp-type number</td>
<td>Match the ICMP message type field. You must also configure icmp or icmpv6 as protocol next-header match type in the same term.</td>
<td>IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): echo-reply (0), echo-request (8), info-reply (16), info-request (15), mask-request (17), mask-reply (18), parameter-problem (12), redirect (5), router-advertisement (9), router-solicit (10), source-quench (4), time-exceeded (11), timestamp (13), timestamp-reply (14), or unreachable (3).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also icmp-code variable.</td>
<td></td>
</tr>
<tr>
<td>icmp-type-except</td>
<td>Do not match the ICMP message type field. For details, see the icmp-type match condition.</td>
<td>IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>message-type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface interface-name</td>
<td>For ingress filters, match the interface on which the packet was received.</td>
<td>IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>For egress filters, match the interface on which the packet was sent.</td>
<td></td>
</tr>
<tr>
<td>interface-except number</td>
<td>Do not match the logical interface on which the packet was received. For details, see the interface match condition.</td>
<td>IPv4 (inet) interfaces, and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Supported Interfaces</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>is-fragment</td>
<td>Match if the packet is a trailing fragment of a fragmented packet. Do not match the first fragment of a fragmented packet.</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td></td>
<td>NOTE: To match both first and trailing fragments, you can use two terms that specify different match conditions (first-fragment and is-fragment).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For PTX10003 routers running Junos OS Evolved, all fragmented packets including the first fragment of fragmented packets will match on any firewall filter term containing an "is-fragment" match.</td>
<td></td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Match the packet loss priority (PLP).</td>
<td>IPv4 (inet), IPv6 (inet6), and MPLS interfaces.</td>
</tr>
<tr>
<td></td>
<td>Specify a single level or multiple levels: low, medium-low, medium-high, or high.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: The loss-priority action modifier is not supported in combination with the policer action.</td>
<td></td>
</tr>
<tr>
<td>loss-priority-except level</td>
<td>Do not match the PLP level. For details, see the loss-priority match condition.</td>
<td>IPv4 (inet), IPv6 (inet6), and MPLS interfaces.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Supported Interfaces</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>next-header header-type</td>
<td>Match the first 8-bit next header field in the packet. For IPv6, we recommend that you use the <code>payload-protocol</code> term rather than the <code>next-header</code> but either can be used. The <code>payload-protocol</code> provides the more reliable match condition because it uses the actual payload protocol to find a match. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): <code>ah</code> (51), <code>dstops</code> (60), <code>egp</code> (8), <code>esp</code> (50), <code>fragment</code> (44), <code>gre</code> (47), <code>hop-by-hop</code> (0), <code>icmp</code> (1), <code>icmipv6</code> (58), <code>icmpv6</code> (58), <code>igmp</code> (2), <code>ipip</code> (4), <code>ipv6</code> (41), <code>mobility</code> (135), <code>no-next-header</code> (59), <code>ospf</code> (89), <code>pim</code> (103), <code>routing</code> (43), <code>rsvp</code> (46), <code>sctp</code> (132), <code>tcp</code> (6), <code>udp</code> (17), or <code>vrrp</code> (112).</td>
<td>IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>next-header-except header-type</td>
<td>Do not match the 8-bit Next Header field that identifies the type of header between the IPv6 header and payload. For details, see the <code>next-header</code> match type.</td>
<td>IPv6 (inet6) interfaces</td>
</tr>
<tr>
<td>packet-length bytes</td>
<td>Match the length of the received packet, in bytes. The length refers only to the IP packet, including the packet header, and does not include any Layer 2 encapsulation overhead. You can also specify a range of values to be matched.</td>
<td>IPv4 (inet), and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>packet-length-except bytes</td>
<td>Do not match the length of the received packet, in bytes. For details, see the <code>packet-length</code> match type.</td>
<td>IPv4 (inet), and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>Match Condition</td>
<td>Description</td>
<td>Supported Interfaces</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>port number</td>
<td>Match the UDP or TCP source or destination port field. You must also configure the protocol udp or protocol tcp match statement in the same term to specify which protocol is being used on the port. You cannot configure the destination-port match condition or the source-port match condition in the same term. In place of the numeric value, you can specify one of the text synonyms listed under destination-port.</td>
<td>IPv4 (inet), and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>port-except number</td>
<td>Do not match either the source or destination UDP or TCP port field. For details, see the port match condition.</td>
<td>IPv4 (inet), and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>precedence ip-precedence-value</td>
<td>Match the IP precedence field. In place of the numeric field value, you can specify one of the following text synonyms (the field values are also listed): critical-ecp (0xa0), flash (0x60), flash-override (0x80), immediate (0x40), internet-control (0xc0), net-control (0xe0), priority (0x20), or routine (0x00). You can specify precedence in hexadecimal, binary, or decimal form.</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>precedence-except ip-precedence-value</td>
<td>Do not match the IP precedence field.</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>protocol number</td>
<td>Match the IPv4 protocol type field. In place of the numeric value, you can specify one of the following text synonyms (the numeric values are also listed): hop-by-hop (0), icmp (1), igmp (2), ipip (4), tcp (6), egp (8), udp (17), ipv6 (41), routing (43), fragment (44), rsvp (46), gre (47), esp (50), ah (51), icmp6 (58), no-next-header (59), dstopts (60), ospf (89), pim (103), vrrp (112), sctp (132)</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol-except number</td>
<td>Do not match the IP protocol type field. In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), icmipv6 (58), igmp (2), ipip (4), ipv6 (41), ospf (89), pim (103), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
<td>IPv4 (inet) interfaces.</td>
</tr>
<tr>
<td>source-address ip-address</td>
<td>IP source address field, which is the address of the node that sent the packet.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>source-address address [except]</td>
<td>Match the IP address of the source node sending the packet unless the except option is included. If the option is included, do not match the IP address of the source node sending the packet. You cannot specify both the address and source-address match conditions in the same term.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>source-port value</td>
<td>Match the TCP or UDP source port. You must also configure the protocol udp or protocol tcp match statement in the same term.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed with the destination-port number match condition.</td>
<td></td>
</tr>
<tr>
<td>source-port-except number</td>
<td>Do not match the UDP or TCP source port field. For details, see the source-port match condition.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>source-prefix-list prefix-list</td>
<td>IP source prefix list. You can define a list of IP address prefixes under a prefix-list alias for frequent use. Define this list at the [edit policy-options] hierarchy level.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-flags value</td>
<td>Match one or more of the low-order 6 bits in the 8-bit TCP flags field in the TCP header.</td>
<td>IPv4 (inet) interfaces and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td></td>
<td>To specify individual bit fields, you can specify the following text synonyms or hexadecimal values:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• fin (0x01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• syn (0x02)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• rst (0x04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• push (0x08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ack (0x10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• urgent (0x20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In a TCP session, the SYN flag is set only in the initial packet sent, while the ACK flag is set in all packets sent after the initial packet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You can string together multiple flags using the bit-field logical operators.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the protocol tcp match statement in the same term to specify that the TCP protocol is being used on the port.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For IPv4 traffic only, this match condition does not implicitly check whether the datagram contains the first fragment of a fragmented packet. To check for this condition for IPv4 traffic only, use the first-fragment match condition.</td>
<td></td>
</tr>
</tbody>
</table>
Table 106: Supported Match Conditions (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
<th>Supported Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic-class value</td>
<td>8-bit field that specifies the class-of-service (CoS) priority of the packet. The traffic-class field is used to specify a DiffServ code point (DSCP) value. This field was previously used as the type-of-service (ToS) field in IPv4, and, the semantics of this field (for example, DSCP) are identical to those of IPv4. You can specify one of the following text synonyms (the field values are also listed): af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38), cs0 (0), cs1 (8), cs2 (16), cs3 (24), cs4 (32), cs5 (40), cs6 (48), cs7 (56), ef (46)</td>
<td>IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>traffic-class-except number</td>
<td>Do not match the 8-bit field that specifies the CoS priority of the packet. For details, see the traffic-class match description.</td>
<td>IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>ttl number</td>
<td>Match the IPv4 or IPv6 time-to-live number. Specify a TTL value or a range of TTL values. For number, you can specify one or more values from 0 through 255.</td>
<td>IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
<tr>
<td>ttl-except number</td>
<td>Do not match on the IPv4 or IPv6 TTL number. For details, see the ttl match condition.</td>
<td>IPv4 (inet) and IPv6 (inet6) interfaces.</td>
</tr>
</tbody>
</table>

Use then statements to define actions that should occur if a packet matches all conditions in a from statement. Table 104 on page 1575 shows the actions that you can specify in a term. (If you do not include a then statement, the system accepts packets that match the filter.)

Table 107: Actions and Action Modifiers (PTX10003)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet. This is the default action for packets that match a term.</td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently without sending an Internet Control Message Protocol (ICMP) message.</td>
</tr>
</tbody>
</table>
Table 107: Actions and Action Modifiers (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count counter-name</td>
<td>Count the number of packets that match the term.</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:</td>
</tr>
<tr>
<td></td>
<td>- best-effort</td>
</tr>
<tr>
<td></td>
<td>- fcoe</td>
</tr>
<tr>
<td></td>
<td>- mcast</td>
</tr>
<tr>
<td></td>
<td>- network-control</td>
</tr>
<tr>
<td></td>
<td>- no-loss</td>
</tr>
<tr>
<td></td>
<td>NOTE: The forwarding-class action is supported on IPv4, IPv6, and MPLS interfaces.</td>
</tr>
<tr>
<td>log</td>
<td>Log the packet’s header information in the Routing Engine. To view this information, enter the show firewall log operational mode command.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The log action modifier is only supported on IPv4 and IPv6 ingress interfaces.</td>
</tr>
<tr>
<td>loss-priority level</td>
<td>Set the packet loss priority (PLP).</td>
</tr>
<tr>
<td>policer policer-name</td>
<td>Send packets to a policer (for the purpose of applying rate limiting). The PTX10003 supports two-color, single-rate three-color (srTCM), and two-rate three-color marker (trTCM) policers.</td>
</tr>
<tr>
<td></td>
<td>NOTE: The policer action modifier is not supported in combination with the loss-priority action.</td>
</tr>
</tbody>
</table>
Table 107: Actions and Action Modifiers (PTX10003) (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reject message-type</td>
<td>Discard a packet and send a "destination unreachable" ICMPv4 or ICMPv6 message (type 3). To log rejected packets, configure the syslog action modifier. You can specify one of the following message types: administratively-prohibited (default), bad-host-tos, bad-network-tos, host-prohibited, host-unknown, host-unreachable, network-prohibited, network-unknown, network-unreachable, port-unreachable, precedence-cutoff, precedence-violation, protocol-unreachable, source-host-isolated, source-route-failed. NOTE: The tcp-reset message type is not supported. If you do not specify a message type, the ICMP notification "destination unreachable" is sent with the default message "communication administratively filtered."</td>
</tr>
<tr>
<td>syslog</td>
<td>Log an alert for this packet.</td>
</tr>
<tr>
<td>routing-instance instance-name</td>
<td>Forward matched packets to a virtual routing instance. Packets can be forwarded to the default instance. Supportd on virtual-router and forwarding instance-types.</td>
</tr>
</tbody>
</table>

IPv6 Firewall Filter Match Conditions and Actions (PTX10001-20C)

This topic describes the IPv6 firewall filter match conditions, actions, and action modifiers for PTX10001-20C routers.

Each term in a firewall filter consists of **match conditions** and an **action**. Match conditions are the fields and values that a packet must contain to be considered a match. You can define single or multiple match conditions in **match statements**. You can also include the **no match statement**, in which case the term matches all packets.

When a packet matches a filter, the router takes the action specified in the term. You can also specify action modifiers to count, mirror, and classify packets. If no match conditions are specified for the term, the router accepts the packet by default.
NOTE: On PTX10001-20C routers, you can only apply a firewall filter on IPv6 interfaces in the ingress direction.

- Table 49 on page 832 describes the supported match conditions.
- Table 80 on page 1379 shows the actions that you can specify in a term. If you don't include a then statement, the system accepts packets that match the filter.
- Table 110 on page 1598 shows the action modifiers you can use to count, mirror, rate-limit, and classify packets.

Table 108: IPv6 Supported Match Conditions

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address address [except]</td>
<td>Match the IPv6 source or destination address field unless the except option is included. If the option is included, do not match the IPv6 source or destination address field.</td>
</tr>
<tr>
<td>apply-groups</td>
<td>Specify which groups to inherit configuration data from. You can specify more than one group name. You must list them in order of inheritance priority. The configuration data in the first group takes priority over the data in subsequent groups.</td>
</tr>
<tr>
<td>apply-groups-except</td>
<td>Specify which groups not to inherit configuration data from. You can specify more than one group name.</td>
</tr>
<tr>
<td>destination-address address [except]</td>
<td>Match the IPv6 destination address field unless the except option is included. If the option is included, do not match the IPv6 destination address field. You cannot specify both the address and destination-address match conditions in the same term.</td>
</tr>
</tbody>
</table>
Table 108: IPv6 Supported Match Conditions *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destination-port number</code></td>
<td>Match the UDP or TCP destination port field. You cannot specify both the port and destination-port match conditions in the same term. If you configure this match condition, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port. In place of the numeric value, you can specify one of the following text synonyms (the port numbers are also listed): <code>afs</code> (1483), <code>bgp</code> (179), <code>biff</code> (512), <code>bootpc</code> (68), <code>bootsps</code> (67), <code>cmd</code> (514), <code>cvspserver</code> (2401), <code>dhcp</code> (67), <code>domain</code> (53), <code>eklogin</code> (2105), <code>ekshell</code> (2106), <code>exec</code> (512), <code>finger</code> (79), <code>ftp</code> (21), <code>ftp-data</code> (20), <code>http</code> (80), <code>https</code> (443), <code>ident</code> (113), <code>imap</code> (143), <code>kerberos-sec</code> (88), <code>klogin</code> (543), <code>kpasswd</code> (761), <code>krb-prop</code> (754), <code>krbupdate</code> (760), <code>kshell</code> (544), <code>ldap</code> (389), <code>ldp</code> (646), <code>login</code> (513), <code>mobileip-agent</code> (434), <code>mobilip-mn</code> (435), <code>msdp</code> (639), <code>netbios-dgm</code> (138), <code>netbios-ns</code> (137), <code>netbios-ssn</code> (139), <code>nfsd</code> (2049), <code>nntp</code> (119), <code>ntalk</code> (518), <code>ntp</code> (123), <code>pop3</code> (110), <code>puppet</code> (1723), <code>printer</code> (515), <code>radacct</code> (1813), <code>radius</code> (1812), <code>rip</code> (520), <code>rkinit</code> (2108), <code>smtp</code> (25), <code>snmp</code> (161), <code>snmptrap</code> (162), <code>snmp</code> (444), <code>socks</code> (1080), <code>ssh</code> (22), <code>sunrpc</code> (111), <code>syslog</code> (514), <code>tacacs</code> (49), <code>tacacs-ds</code> (65), <code>talk</code> (517), <code>telnet</code> (23), <code>tftp</code> (69), <code>timed</code> (525), <code>who</code> (513), or <code>xdmcp</code> (177).</td>
</tr>
<tr>
<td><code>destination-port-except number</code></td>
<td>Do not match the UDP or TCP destination port field. For details, see the destination-port match condition.</td>
</tr>
<tr>
<td><code>destination-prefix-list prefix-list-name [except]</code></td>
<td>Match the IPv6 destination prefix to the specified list unless the except option is included. If the option is included, do not match the IPv6 destination prefix to the specified list. The prefix list is defined at the [edit policy-options prefix-list prefix-list-name] hierarchy level.</td>
</tr>
</tbody>
</table>
Table 108: IPv6 Supported Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-code message-code</td>
<td>Match the ICMP message code field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header icmp or next-header icmp6 match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>An ICMP message code provides more specific information than an ICMP message type, but the meaning of an ICMP message code is dependent on the associated ICMP message type.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed). The keywords are grouped by the ICMP type with which they are associated:</td>
</tr>
<tr>
<td></td>
<td>• parameter-problem: ip6-header-bad (0), unrecognized-next-header (1), unrecognized-option (2)</td>
</tr>
<tr>
<td></td>
<td>• time-exceeded: ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-transit (0)</td>
</tr>
<tr>
<td></td>
<td>• destination-unreachable: administratively-prohibited (1), address-unreachable (3), no-route-to-destination (0), port-unreachable (4)</td>
</tr>
<tr>
<td>icmp-code-except</td>
<td>Do not match the ICMP message code field. For details, see the icmp-code match condition.</td>
</tr>
<tr>
<td>message-code</td>
<td></td>
</tr>
<tr>
<td>message-type</td>
<td>Match the ICMP message type field.</td>
</tr>
<tr>
<td></td>
<td>You must also configure icmp or next-header icmp6 match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): certificate-path-advertisement (149), certificate-path-solicitation (148), destination-unreachable (1), echo-reply (129), echo-request (128), home-agent-address-discovery-reply (145), home-agent-address-discovery-request (144), inverse-neighbor-discovery-advertisement (142), inverse-neighbor-discovery-solicitation (141), membership-query (130), membership-report (131), membership-termination (132), mobile-prefix-advertisement-reply (147), mobile-prefix-solicitation (146), neighbor-advertisement (136), neighbor-solicit (135), node-information-reply (140), node-information-request (139), packet-too-big (2), parameter-problem (4), private-experimentation-100 (100), private-experimentation-101 (101), private-experimentation-200 (200), private-experimentation-201 (201), redirect (137), router-advertisement (134), router-renumbering (138), router-solicit (133), or time-exceeded (3).</td>
</tr>
<tr>
<td></td>
<td>For private-experimentation-201 (201), you can also specify a range of values within square brackets.</td>
</tr>
</tbody>
</table>
Table 108: IPv6 Supported Match Conditions (continued)

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type-except message-type</td>
<td>Do not match the ICMP message type field. For details, see the icmp-type match condition.</td>
</tr>
<tr>
<td>next</td>
<td>Continue to the next term in a filter.</td>
</tr>
<tr>
<td>next-header header-type</td>
<td>Match the first 8-bit Next Header field in the packet.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the following text synonyms (the field values are also listed): ah (51), dstops (60), egp (8), esp (50), fragment (44), gre (47), hop-by-hop (0), icmp (1), icmp6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41), mobility (135), no-next-header (59), ospf (89), pim (103), routing (43), rsvp (46), sctp (132), tcp (6), udp (17), or vrrp (112).</td>
</tr>
<tr>
<td></td>
<td>NOTE: next-header icmp6 and next-header icmpv6 match conditions perform the same function. next-header icmp6 is the preferred option. next-header icmpv6 is hidden in the Junos OS CLI.</td>
</tr>
<tr>
<td>next-header-except header-type</td>
<td>Do not match the 8-bit Next Header field that identifies the type of header between the IPv6 header and payload. For details, see the next-header match type.</td>
</tr>
<tr>
<td>port number</td>
<td>Match the UDP or TCP source or destination port field.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, you cannot configure the destination-port match condition or the source-port match condition in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the next-header udp or next-header tcp match condition in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed under destination-port.</td>
</tr>
<tr>
<td>port-except number</td>
<td>Do not match the UDP or TCP source or destination port field. For details, see the port match condition.</td>
</tr>
<tr>
<td>port-mirror instance-name</td>
<td>Port-mirror the packet.</td>
</tr>
<tr>
<td>port-mirror-instance instance-name</td>
<td>Port mirror a packet for an instance.</td>
</tr>
</tbody>
</table>
Table 108: IPv6 Supported Match Conditions *(continued)*

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prefix-list prefix-list-name</code></td>
<td>Match the prefixes of the source or destination address fields to the prefixes in the specified list unless the <code>except</code> option is included. If the option is included, do not match the prefixes of the source or destination address fields to the prefixes in the specified list.</td>
</tr>
<tr>
<td>[<code>except</code>]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The prefix list is defined at the <code>[edit policy-options prefix-list prefix-list-name]</code> hierarchy level.</td>
</tr>
<tr>
<td><code>sample</code></td>
<td>Sample the packet.</td>
</tr>
<tr>
<td><code>source-address address</code></td>
<td>Match the IPv6 address of the source node sending the packet unless the <code>except</code> option is included. If the option is included, do not match the IPv6 address of the source node sending the packet.</td>
</tr>
<tr>
<td>[<code>except</code>]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>You cannot specify both the <code>address</code> and <code>source-address</code> match conditions in the same term.</td>
</tr>
<tr>
<td><code>source-port number</code></td>
<td>Match the UDP or TCP source port field.</td>
</tr>
<tr>
<td></td>
<td>You cannot specify the <code>port</code> and <code>source-port</code> match conditions in the same term.</td>
</tr>
<tr>
<td></td>
<td>If you configure this match condition, we recommend that you also configure the <code>next-header udp</code> or <code>next-header tcp</code> match condition in the same term to specify which protocol is being used on the port.</td>
</tr>
<tr>
<td></td>
<td>NOTE: For Junos OS Evolved, you must configure the <code>next-header udp</code> or <code>next-header tcp</code> match statement in the same term.</td>
</tr>
<tr>
<td></td>
<td>In place of the numeric value, you can specify one of the text synonyms listed with the <code>destination-port number</code> match condition.</td>
</tr>
<tr>
<td><code>source-port-except number</code></td>
<td>Do not match the UDP or TCP source port field. For details, see the <code>source-port</code> match condition.</td>
</tr>
<tr>
<td><code>source-prefix-list name</code></td>
<td>Match the IPv6 address prefix of the packet source field unless the <code>except</code> option is included. If the option is included, do not match the IPv6 address prefix of the packet source field.</td>
</tr>
<tr>
<td>[<code>except</code>]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specify a prefix list name defined at the <code>[edit policy-options prefix-list prefix-list-name]</code> hierarchy level.</td>
</tr>
</tbody>
</table>
NOTE: If you specify an IPv6 address in a match condition (the address, destination-address, or source-address match conditions), use the syntax for text representations described in RFC 4291, IP Version 6 Addressing Architecture. For more information about IPv6 addresses, see IPv6 Overview and Supported IPv6 Standards.

Table 109: Actions for IPv6 Firewall Filters

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>Accept a packet. This is the default action for packets that match a term.</td>
</tr>
<tr>
<td>discard</td>
<td>Discard a packet silently without sending an Internet Control Message Protocol (ICMP) message.</td>
</tr>
</tbody>
</table>

Table 110: Action Modifiers for IPv6 Firewall Filters

<table>
<thead>
<tr>
<th>Action Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count counter-name</td>
<td>Count the number of packets that match the term.</td>
</tr>
<tr>
<td>forwarding-class class</td>
<td>Classify the packet in one of the following default forwarding classes, or in a user-defined forwarding class:</td>
</tr>
<tr>
<td></td>
<td>• best-effort</td>
</tr>
<tr>
<td></td>
<td>• fcoe</td>
</tr>
<tr>
<td></td>
<td>• mcast</td>
</tr>
<tr>
<td></td>
<td>• network-control</td>
</tr>
<tr>
<td></td>
<td>• no-loss</td>
</tr>
<tr>
<td>NOTE:</td>
<td>To configure a forwarding class, you must also configure loss priority.</td>
</tr>
<tr>
<td>loss-priority</td>
<td>Set the packet loss priority (PLP).</td>
</tr>
<tr>
<td>(low</td>
<td>medium-low</td>
</tr>
</tbody>
</table>
Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers

This topic provides a list of firewall and policier features available on PTX Packet Transport Routers and compares them with firewall and policing features on T Series routers.

Firewall Filters

Junos OS firewall and policing software on PTX Series Packet Transport Routers supports IPv4 filters, IPv6 filters, MPLS filters, CCC filters, interface policing, LSP policing, MAC filtering, ARP policing, L2 policing, and other features. Exceptions are noted below.

- PTX Series Packet Transport Routers do not support:
 - Egress Forwarding Table Filters
 - Forwarding Table Filters for MPLS/CCC
 - Family VPLS

- PTX Series Packet Transport Routers do not support nested firewall filters. The filter statement at the [edit firewall family family-name filter filter-name term term-name] hierarchy level is disabled.

- Because no service PICs are present in PTX Series Packet Transport Routers, service filters are not supported for both IPv4 and IPv6 traffic. The service-filter statement at [edit firewall family (inet | inet6)] hierarchy level is disabled.

- The PTX Series Packet Transport Routers exclude simple filters. These filters are supported on Gigabit Ethernet intelligent queuing (IQ2) and Enhanced Queuing Dense Port Concentrator (EQ DPC) interfaces only. The simple-filter statement at the [edit firewall family inet] hierarchy level is disabled.

- Physical interface filtering is not supported. The physical-interface-filter statement at the [edit firewall family family-name filter filter-name] hierarchy level is disabled.

- The prefix action feature is not supported on PTX Series Packet Transport Routers. The prefix-action statement at [edit firewall family inet] hierarchy level is disabled.

- On T Series routers, you can collect a variety of information about traffic passing through the device by setting up one or more accounting profiles that specify some common characteristics of the data. The PTX Series Packet Transport Routers do not support accounting configurations for firewall filters. The
accounting-profile statement at the [edit firewall family family-name filter filter-name] hierarchy level is disabled.

- The reject action is not supported on the loopback (lo0) interface. If you apply a filter to the lo0 interface and the filter includes a reject action, an error message appears.

- PTX Series Packet Transport Routers do not support aggregated ethernet logical interface match conditions. However, child link interface matching is supported.

- PTX Series Packet Transport Routers displays both counts if two different terms in a filter have the same match condition but they have different counts. T Series routers display one count only.

- PTX Series Packet Transport Routers do not have separate policer instances when a filter is bound to multiple interfaces. Use the interface-specific configuration statement to create the configuration.

- On PTX Series Packet Transport Routers, when an ingress interface has CCC encapsulation, packets coming in through the ingress CCC interface will not be processed by the egress filters.

- For CCC encapsulation, the PTX Series Packet Transport Routers append an extra 8 bytes for egress Layer 2 filtering. The T Series routers do not. Therefore, egress counters on PTX Series Packet Transport Routers show an extra eight bytes for each packet which impacts policer accuracy.

- On PTX Series Packet Transport Routers, output for the show pfe statistics traffic CLI command includes the packets discarded by DMAC and SMAC filtering. On T Series routers, the command output does not include these discarded packets because MAC filters are implemented in the PIC and not in the FPC.

- The last-fragment packet that goes through a PTX firewall cannot be matched by the is-fragment matching condition. This feature is supported on T Series routers.

A possible workaround on PTX Series Packet Transport Routers is to configure two separate terms with same the actions: one term contains a match to is-fragment and the other term contains a match to fragment-offset -except 0.

- On PTX Series Packet Transport Routers, MAC pause frames are generated when packet discards exceed 100 Mbps. This occurs only for frame sizes that are less than 105 bytes.

Traffic Policiers

Junos OS firewall and policing software on PTX Series Packet Transport Routers supports IPv4 filters, IPv6 filters, MPLS filters, CCC filters, interface policing, LSP policing, MAC filtering, ARP policing, L2 policing, and other features. Exceptions are noted below.

- PTX Series Packet Transport Routers support ARP policing. T Series routers do not.

- PTX Series Packet Transport Routers do not support LSP policing.

- PTX Series Packet Transport Routers do not support the hierarchical-policer configuration statement.

- PTX Series Packet Transport Routers do not support the interface-set configuration statement. This statement groups a number of interfaces into a single, named interface set.
• PTX Series Packet Transport Routers do not support the following policer types for both normal policers and three-color policers:

 • **logical-bandwidth-policer** — Policer uses logical interface bandwidth.

 • **physical-interface-policer** — Policer is a physical interface policer.

 • **shared-bandwidth-policer** — Share policer bandwidth among bundle links.

• When a policer action and forwarding-class, loss-priority actions are configured within the same rule (a *Multifield Classification*), the PTX Series Packet Transport Routers work differently than T Series routers. As shown below, you can configure two rules in the filter to make the PTX filter behave the same as the T Series filter:

PTX Series configuration:

```bash
rule-1 {
    match: {x, y, z}
    action: {forwarding-class, loss-prio, next}
}
rule-2 {
    match: {x, y, z}
    action: {policer}
}
```

T Series configuration:

```bash
rule-1 {
    match: {x, y, z}
    action: {forwarding-class, loss-prio, policer}
}
```

RELATED DOCUMENTATION

Routing Policies, Firewall Filters, and Traffic Policers Feature Guide

Configuring Firewall Filters

Follow the steps in the following sections to configure and apply a firewall filter on your switch.

• Configuring a Firewall Filter | 1602
• Configuring Enhanced Egress VLAN Firewall Filters (QFXS110 Switches) | 1604
Configuring a Firewall Filter

To configure a firewall filter:

1. Configure the family address type, filter name, term name, and at least one match condition—for example, match on packets that contain a specific source address.

 [edit]
 user@switch# set firewall family ethernet-switching filter ingress-port-filter term term-one from source-address 192.0.2.14

 - To filter Layer 2 traffic (port or VLAN), specify the family address type `ethernet-switching`.
 - To filter Layer 3 (routed) traffic, specify the family address type (`inet` for IPv4) or (`inet6` for IPv6).
 - To filter Layer 2 circuit interface traffic, specify the family address type `ccc`.

 The filter and term names can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. Each filter name must be unique. A filter can contain one or more terms, and each term name must be unique within a filter.

2. Configure additional match conditions. For example:

 In this configuration, the filter matches on Layer 2 packets that contain source port 80.

 [edit firewall family ethernet-switching filter ingress-port-filter term term-one from]
 user@switch# set source-port 80

 In this configuration, the filter matches on VLANs that contain interface ge-0/0/6.0.

 [edit firewall family inet filter ingress-interface-match-condition term term-one from]
 user@switch# set interface ge-0/0/6.0.

 You can specify one or more match conditions in a single `from` statement. For a match to occur, the packet must match all the conditions in the term. The `from` statement is optional, but if you include it in a term, it can’t be empty. If you omit the `from` statement, all packets are considered to match.
3. If you want to apply a firewall filter to multiple interfaces and be able to see counters specific to each
interface, configure the interface-specific option:

```
[edit firewall family ethernet-switching filter ingress-port-filter]
user@switch# set interface-specific
```

4. In each firewall filter term, specify the actions to take if the packet matches all the conditions in that
term. You can specify an action and action modifiers:

- To specify a filter action, for example, to discard packets that match the conditions of the filter term:

  ```
  [edit firewall family ethernet-switching filter ingress-port-filter term
  term-one then]
  user@switch# set discard
  ```

 You can specify only one action per term (accept, discard, reject, routing-instance, or vlan).

- To specify action modifiers, for example, to count and classify packets to a forwarding class:

  ```
  [edit firewall family ethernet-switching filter ingress-port-filter term
  term-one then]
  user@switch# set count counter-one
  user@switch# set forwarding-class expedited-forwarding
  user@switch# set loss-priority high
  ```

 You can specify any of the following action modifiers in a then statement:

 - **analyzer analyzer-name**—Mirror port traffic to a specified analyzer, which you must configure at
 the [ethernet-switching-options] level.

 - **count counter-name**—Count the number of packets that pass this filter term.

 NOTE: We recommend that you configure a counter for each term in a firewall filter, so
 that you can monitor the number of packets that match the conditions specified in each
 filter term.

 NOTE: On QFX3500 and QFX3600 switches, filters automatically count packets that were
dropped in the ingress direction because of cyclic redundancy check (CRC) errors.

- **forwarding-class class**—Assign packets to a forwarding class.

- **log**—Log the packet header information in the Routing Engine.
• **loss-priority priority**—Set the priority of dropping a packet.
• **policer policer-name**—Apply rate-limiting to the traffic.
• **syslog**—Log an alert for this packet.

If you omit the **then** statement or don’t specify an action, packets matching all the conditions in the **from** statement are accepted. But make sure that you always configure an action in the **then** statement. You can only include one action statement, but can use any combination of action modifiers. For an action or action modifier to take effect, all conditions in the **from** statement must match.

NOTE: The implicit **discard** action applicable to a firewall filter applied to the loopback interface, **lo0**.

Configuring Enhanced Egress VLAN Firewall Filters (QFX5110 Switches)

You can increase the number of egress VLAN firewall filters on the QFX5110 from 1024 to 2048 by using the **egress-to-ingress** option.

To do this, specify the family address type (**inet** for IPv4) or (**inet6** for IPv6), filter name, and term name. Include the **egress-to-ingress** option (under any term) and specify a match condition and action to take if a match occurs. Then apply the filter in the output direction on the physical interface.

The following is an example configuration:

```plaintext
set firewall family inet filter f1 term t1 from egress-to-ingress
set firewall family inet filter f1 term t1 from source-port 1500
set firewall family inet filter f1 term t1 then accept
set interfaces irb unit 100 family inet filter output f1
```

When you enable the **egress-to-ingress** option, these limitations apply:

- You can only apply a filter in the egress direction (traffic exiting the VLAN).
- Only **inet** and **inet6** protocol families are supported.
- Only **accept**, **discard**, and **count** actions are supported.
- You can’t apply egress firewall filters on encapsulated or decapsulated interfaces.
- Filters that have the same match conditions are not supported.
- Match conditions are programmed in the ingress firewall filter TCAM. This means that any counters attached to the filter counts traffic on any incoming VLANs.
Applying a Firewall Filter to a Port

To apply a firewall filter to a port:

1. Provide a meaningful and descriptive name for the firewall filter. The name is what you use to apply the filter to the port.

   ```
   [edit]
   user@switch# set interfaces ge-0/0/6 description "filter to limit tcp traffic at trunk port for employee-vlan"
   ```

2. Apply the filter to the interface, specifying the unit number, family address type (ethernet-switching), the direction of the filter (for packets entering the port), and the filter name:

   ```
   [edit]
   user@switch# set ge-0/0/6 unit 0 family ethernet-switching filter input ingress-port-filter
   ```

 NOTE: You can apply only one filter to a port in the ingress direction.

Applying a Firewall Filter to a VLAN

NOTE: VLAN firewall filters are not supported on QFX5100, QFX5100 Virtual Chassis, and QFX5110 switches in an EVPN-VXLAN environment.

To apply a firewall filter to a VLAN:

1. Provide a meaningful and descriptive name for the firewall filter. This name is what you use to apply the filter to the VLAN.

   ```
   [edit]
   user@switch# set vlans employee-vlan vlan-id 20 description "filter to block rogue devices on employee-vlan"
   ```

2. Apply firewall filters to filter packets entering or exiting the VLAN:

 - To apply a filter to match packets entering the VLAN:

     ```
     [edit]
     user@switch# set vlans employee-vlan vlan-id 20 filter input ingress-vlan-rogue-block
     ```
To apply a firewall filter to match packets exiting the VLAN:

```
[edit]
user@switch# set vlans employee-vlan vlan-id 20 filter output egress-vlan-filter
```

NOTE: You can apply only one filter to a VLAN for a given direction (ingress or egress).

Applying a Firewall Filter to a Layer 3 (Routed) Interface

You can apply a firewall filter to IPv4 and IPv6 interfaces, routed VLAN interfaces (RVI), and the loopback interface. These are all considered Layer 3 routed interfaces.

NOTE: (QFX5100 and QFX5110 switches) In an EVPN-VXLAN environment, you can use an IRB interface to provide layer 3 connectivity to the switch. To configure an IRB interface, see *Example: Configuring IRB Interfaces in an EVPN-VXLAN Environment to Provide Layer 3 Connectivity for Hosts in a Data Center*. You can then apply a firewall filter to the IRB interface by following the steps below (only the ingress direction is supported). For a list of supported match conditions, see "Firewall Filter Match Conditions and Actions" on page 1526.

To apply a firewall filter to a Layer 3 interface:

1. Provide a meaningful and descriptive name for the firewall filter. This name is what you use to apply the filter to the interface.

   ```
   [edit]
   user@switch# set interfaces ge-0/1/6 description "filter to count and monitor traffic on layer 3 interface"
   ```

2. Apply the firewall filters.

 - To filter packets entering the interface:

     ```
     [edit]
     user@switch# set interfaces ge-0/1/6 unit 0 family inet filter input ingress-router-filter
     ```

 - To filter packets exiting the interface:

     ```
     [edit]
     user@switch# set interfaces ge-0/1/6 unit 0 family inet filter output egress-router-filter
     ```
The family address type can either be (inet for IPv4) or (inet6 for IPv6).

NOTE: You can apply only one filter to an interface for a given direction (ingress or egress).

Applying a Firewall Filter to a Layer 2 CCC (QFX10000 Switches)

You can apply firewall filters with count and policer actions on Layer 2 circuit cross-connect (CCC) traffic on QFX10000 switches. This lets you count and monitor the policer activity set at the [edit firewall family ccc] hierarchy level.

In this example, count is the policer action.

```
set firewall policer traffic-cnt if-exceeding bandwidth-limit 1g
set firewall policer traffic-cnt if-exceeding burst-size-limit 100m
set firewall policer traffic-cnt then loss-priority low
set firewall family ccc filter srTCM-cnt term t1 then policer traffic-cnt
set firewall family ccc filter srTCM-cnt term t1 then count traffic-counter
```

In this example, discard is the policer action.

```
set firewall policer discard-traffic if-exceeding bandwidth-limit 1g
set firewall policer discard-traffic if-exceeding burst-size-limit 500m
set firewall policer discard-traffic then discard
set firewall family ccc filter srTCM1 term t1 then policer discard-traffic
```

RELATED DOCUMENTATION

- Overview of Firewall Filters | 1516
- Firewall Filter Match Conditions and Actions (QFX Series and EX4600 Switches) | 1526
- Firewall Filter Match Conditions and Actions (QFX10000 Switches) | 1561
- Verifying That Firewall Filters Are Operational | 758
- Monitoring Firewall Filter Traffic | 759
Applying Firewall Filters to Interfaces

For a firewall filter to work, you must apply it to at least one interface. To do this, include the `filter` statement when configuring a logical interface at the `[edit interfaces]` hierarchy level:

```
[edit interfaces]
user@switch# set interface-name unit logical-unit-number family family-name filter (input | output) filter-name
```

In the `input` statement, specify a firewall filter to be evaluated when packets are received on the interface. Input filters applied to a loopback interface affect only traffic destined for the Routing Engine.

In the `output` statement, specify a filter to be evaluated when packets exit the interface.

NOTE: When you create a loopback interface, it is important to apply an ingress filter to it so the Routing Engine is protected. We recommend that when you apply a filter to the loopback interface `lo0`, you include the `apply-groups` statement. Doing so ensures that the filter is automatically inherited on every loopback interface, including `lo0` and other loopback interfaces.

RELATED DOCUMENTATION

- Configuring Firewall Filters | 1601

Overview of MPLS Firewall Filters on Loopback Interface

Although all interfaces are important, the loopback interface might be the most important because it is the link to the Routing Engine, which runs and manages all the routing protocols. The loopback interface is a gateway for all the control traffic that enters the Routing Engine of the switch. You can control this traffic by configuring a firewall filter on the loopback interface (lo0) on `family mpls`. Loopback firewall filters affect only traffic destined for the Routing Engine CPU. You can apply a loopback firewall filter only in the `ingress` direction (packets entering the interface). Starting with Junos OS Release 19.2R1, you can apply an MPLS firewall filter to a loopback interface on a label switch router (LSR) on QFX5100, QFX5110, QFX5200, and QFX5210 switches.

When you configure an MPLS firewall filter, you define filtering criteria (`terms, with match conditions`) for the packets and an `action` for the switch to take if the packets match the filtering criteria. Because you apply the filter to a loopback interface, you must explicitly specify the time to live (TTL) match condition.
under **family mpls** and set its TTL value to 1 (\(\text{ttl}=1\)). The TTL is an 8-bit (IPv4) header field that signifies the remaining time an IP packet has left before its life ends and is dropped. You can also match packets with other MPLS qualifiers such as **label**, **exp**, Layer 4 **source port**, and Layer 4 **destination port**. For more information, see "Firewall Filter Match Conditions for MPLS Traffic" on page 899.

Benefits of Adding MPLS Firewall Filters on the Loopback Interface

- Protects the Routing Engine by ensuring that it accepts traffic only from trusted networks.
- Helps protect the Routing Engine from denial-of-service attacks.
- Gives you the flexibility to match packets on the source port and destination port. For example, if you run a traceroute, you can selectively filter traffic by choosing either TCP or UDP.

Guidelines and Limitations

- You can apply a loopback firewall filter only in the **ingress** direction.
- Only MPLS fields **label**, **exp**, **ttl=1** and Layer 4 fields **tcp** and **udp** port numbers are supported.
- Only **accept**, **discard**, and **count** actions are supported.
- You must explicitly specify **ttl=1** under **family mpls** to match on TLL packets.
- Filters applied on the loopback interface cannot be matched on the destination port (inner payload) of an IPv6 packet.
- You cannot apply a filter on packets that have more than two MPLS labels.
- You cannot specify a port range for TCP or UDP match conditions.
- Only 255 firewall terms are supported.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2R1</td>
<td>Starting with Junos OS Release 19.2R1, you can apply an MPLS firewall filter to a loopback interface on a label switch router (LSR) on QFX5100, QFX5110, QFX5200, and QFX5210 switches.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Configuring MPLS Firewall Filters and Policers on Switches | 1610
- **TTL Processing on Incoming MPLS Packets**
- packet-format-match | 2157
You can configure firewall filters to filter MPLS traffic. To use an MPLS firewall filter, you must first configure the filter and then apply it to an interface you have configured for forwarding MPLS traffic. You can also configure a policer for the MPLS filter to police (that is, rate-limit) the traffic on the interface to which the filter is attached.

When you configure an MPLS firewall filter, you define the filtering criteria (terms, with match conditions) and an action for the switch to take if the packets match the filtering criteria.

NOTE: You can only configure MPLS filters in the ingress direction. Egress MPLS firewall filters are not supported.

Configuring an MPLS Firewall Filter

To configure an MPLS firewall filter:

1. Configure the filter name, term name, and at least one match condition—for example, match on MPLS packets with EXP bits set to either 0 or 4:

```bash
[edit firewall family mpls]
user@switch# set filter ingress-exp-filter term term-one from exp 0,4
```

2. In each firewall filter term, specify the actions to take if the packet matches all the conditions in that term—for example, count MPLS packets with EXP bits set to either 0 or 4:
3. When you are finished, follow the steps below to apply the filter to an interface.

Applying an MPLS Firewall Filter to an MPLS Interface

To apply the MPLS firewall filter to an interface you have configured for forwarding MPLS traffic (using the `family mpls` statement at the `[edit interfaces interface-name unit unit-number]` hierarchy level):

```plaintext
[edit firewall family mpls filter ingress-exp-filter term term-one then]
user@switch# set count counter0
user@switch# set accept
```

NOTE: You can apply firewall filters only to filter MPLS packets that enter an interface.

1. Apply the firewall filter to an MPLS interface—for example, apply the firewall filter to interface xe-0/0/5:

```plaintext
[edit interfaces]
user@switch# set xe-0/0/5 unit 0 family mpls filter input ingress-exp-filter
```

2. Review your configuration and issue the `commit` command:

```plaintext
[edit interfaces]
user@switch# commit
commit complete
```

Applying an MPLS Firewall Filter to a Loopback Interface

To apply an MPLS firewall filter to a loopback interface (lo0):

1. First, specify the packet format by using the `packet-format-match` command. You must restart the PFE every time you configure this command.

2. Configure the firewall filter match conditions and actions as described in "Configuring an MPLS Firewall Filter" on page 1610. You must explicitly set the TTL match condition to `(ttl=1)`. You can also match packets with other MPLS qualifiers such as `label`, `exp`, and Layer 4 `source port`, and `destination port`.

3. Apply the filter to the loopback interface as an input filter.
4. Review your configuration and issue the **commit** command:

```
[edit interfaces]
user@switch# commit
commit complete
```

The following is an example configuration.

```
set groups lo_mpls_filter interfaces lo0 unit 0 family mpls filter input mpls_lo
set groups lo_mpls_filter firewall family mpls filter mpls_lo term mpls_lo_term from ttl 1
set groups lo_mpls_filter firewall family mpls filter mpls_lo term mpls_lo_term from ip-version ipv4 protocol udp source-port 10
set groups lo_mpls_filter firewall family mpls filter mpls_lo term mpls_lo_term from ip-version ipv4 protocol udp destination-port 11
set groups lo_mpls_filter firewall family mpls filter mpls_lo term mpls_lo_term then count c1
set groups lo_mpls_filter firewall family mpls filter mpls_lo term mpls_lo_term then accept
```

Configuring Policers for LSPs

Starting with Junos OS 13.2X51-D15, you can send traffic matched by an MPLS filter to a two-color policer or three-color policer. MPLS LSP policing allows you to control the amount of traffic forwarded through a particular LSP. Policing helps to ensure that the amount of traffic forwarded through an LSP never exceeds the requested bandwidth allocation. LSP policing is supported on regular LSPs, LSPs configured with DiffServ-aware traffic engineering, and multiclass LSPs. You can configure multiple policers for each multiclass LSP. For regular LSPs, each LSP policer is applied to all of the traffic traversing the LSP. The policer's bandwidth limitations become effective as soon as the total sum of traffic traversing the LSP exceeds the configured limit.

You configure the multiclass LSP and DiffServ-aware traffic engineering LSP policers in a filter. The filter can be configured to distinguish between the different class types and apply the relevant policer to each class type. The policers distinguish between class types based on the EXP bits.

You configure LSP policers under the **family any** filter. The **family any** filter is used because the policer is applied to traffic entering the LSP. This traffic might be from different families: IPv6, MPLS, and so on. You do not need to know what sort of traffic is entering the LSP, as long as the match conditions apply to all types of traffic.

When configuring MPLS LSP policers, be aware of the following limitations:
- LSP policers are supported for packet LSPs only.
- LSP policers are supported for unicast next hops only. Multicast next hops are not supported.
- The LSP policer runs before any output filters.
- Traffic sourced from the Routing Engine (for example, ping traffic) does not take the same forwarding path as transit traffic. This type of traffic cannot be policed.

RELATED DOCUMENTATION

- **MPLS Feature Support on QFX Series and EX4600 Switches**
- **Supported MPLS Scaling Values**
- **Overview of MPLS Firewall Filters on Loopback Interface** | 1608
- **Overview of Policers** | 1940

Configuring MPLS Firewall Filters and Policers

IN THIS SECTION

- Configuring MPLS Firewall Filters | 1613
- Examples: Configuring MPLS Firewall Filters | 1614
- Configuring Policers for LSPs | 1615

You can configure an MPLS firewall filter to count packets based on the EXP bits for the top-level MPLS label in a packet. You can also configure policers for MPLS LSPs.

The following sections discuss MPLS firewall filters and policers:

Configuring MPLS Firewall Filters

You can configure an MPLS firewall filter to count packets based on the EXP bits for the top-level MPLS label in a packet. You can then apply this filter to a specific interface on input or output. You can also configure a policer for the MPLS filter to police (that is, rate-limit) the traffic on the interface to which the filter is attached. You cannot apply MPLS firewall filters to loopback interfaces.
You can configure the following match conditions for MPLS filters at the `edit firewall family mpls filter filter-name term term-name from` hierarchy level:

- `exp`
- `label`

These `exp` match condition can accept EXP bits in the range 0 through 7. You can configure the following choices:

- A single EXP bit—for example, `exp 3`;
- Several EXP bits—for example, `exp 0, 4`;
- A range of EXP bits—for example, `exp [0-5]`;

The `label` match condition can accept a range of values from 0 to 1048575.

If you do not specify a match criterion (that is, you do not configure the `from` statement and use only the `then` statement with the `count` action keyword), all the MPLS packets passing through the interface on which the filter is applied will be counted.

You also can configure any of the following action keywords at the `edit firewall family mpls filter filter-name term term-name then` hierarchy level:

- `accept`
- `count`
- `discard`
- `policer`
- `three-color-policer`

Examples: Configuring MPLS Firewall Filters

The following examples illustrate how you might configure an MPLS firewall filter and then apply the filter to an interface. This filter is configured to count MPLS packets with EXP bits set to either 0 or 4.

The following shows a configuration for an MPLS firewall filter:
then {
 count counter0;
 accept;
}
}
}

Configuring Policers for LSPs

MPLS LSP policing allows you to control the amount of traffic forwarded through a particular LSP. Policing helps to ensure that the amount of traffic forwarded through an LSP never exceeds the requested bandwidth allocation. LSP policing is supported on regular LSPs, LSPs configured with DiffServ-aware traffic engineering, and multiclass LSPs. You can configure multiple policers for each multiclass LSP. For regular LSPs, each LSP policer is applied to all of the traffic traversing the LSP. The policer’s bandwidth limitations become effective as soon as the total sum of traffic traversing the LSP exceeds the configured limit.

You configure the multiclass LSP and DiffServ-aware traffic engineering LSP policers in a filter. The filter can be configured to distinguish between the different class types and apply the relevant policer to each class type. The policers distinguish between class types based on the EXP bits.

You configure LSP policers under the family any filter. The family any filter is used because the policer is applied to traffic entering the LSP. This traffic might be from different families: IPv6, MPLS, and so on. You do not need to know what sort of traffic is entering the LSP, as long as the match conditions apply to all types of traffic.

LSP Policer Limitations

When configuring MPLS LSP policers, be aware of the following limitations:

- LSP policers are supported for packet LSPs only.
- LSP policers are supported for unicast next hops only. Multicast next hops are not supported.
- LSP policers are not supported on aggregated interfaces.
- The LSP policer runs before any output filters.
- Traffic sourced from the Routing Engine (for example, ping traffic) does not take the same forwarding path as transit traffic. This type of traffic cannot be policed.

RELATED DOCUMENTATION

Overview of Policers | 1940
Understanding How a Firewall Filter Tests a Protocol

When examining match conditions in a firewall filter, a switch tests only the fields that you specify. It does not implicitly test any fields that you do not explicitly configure. For example, if you specify a match condition of `source-port ssh`, there is no implied test to determine if the protocol is TCP. In this case, the switch considers any packet that has a value of 22 (decimal) in the 2-byte field that follows a presumed IP header to be a match. To ensure that the term matches on TCP packets, you also specify an `ip-protocol tcp` match condition.

For the following match conditions, you should explicitly specify the protocol match condition in the same term:

- **destination-port**—Specify protocol `tcp` or protocol `udp`.
- **icmp-code**—Specify protocol `icmp` and `icmp-type`.
- **icmp-type**—Specify protocol `icmp` or protocol `icmp6`.
- **source-port**—Specify protocol `tcp` or protocol `udp`.
- **tcp-flags**—Specify protocol `tcp`.

RELATED DOCUMENTATION

| Understanding Firewall Filter Match Conditions | 782 |
| Configuring Firewall Filters | 1601 |

Understanding Firewall Filter Processing Points for Bridged and Routed Packets

You apply firewall filters at multiple processing points in the forwarding path. At each processing point, the action to be taken on a packet is determined by the configuration of the filter and the results of the lookup in the forwarding or routing table.

For both bridged (Layer 2) unicast packets and routed (Layer 3) unicast packets, firewall filters are applied in the prescribed order shown below (assuming that each filter is present and a packet is accepted by each one).
Bridged packets:
1. Ingress port filter
2. Ingress VLAN filter
3. Egress VLAN filter
4. Egress port filter

Routed packets:
1. Ingress port firewall filter
2. Ingress VLAN firewall filter (Layer 2 CoS)
3. Ingress router firewall filter (Layer 3 CoS)
4. Egress router firewall filter
5. Egress VLAN firewall filter
6. Egress port filter

NOTE: MAC learning occurs before filters are applied, so switches learn the MAC addresses of packets that are dropped by ingress filters.

RELATED DOCUMENTATION
- Overview of Firewall Filters | 1516
- Understanding How Firewall Filters Control Packet Flows | 720
- Configuring Firewall Filters | 1601
For IPv4 or IPv6 traffic, you can use firewall filters in conjunction with virtual routing instances to specify different routes for packets to travel in their networks. This feature is called filter-based forwarding (FBF), and is also known as policy-based routing (PBR).

You might want to use FBF to route specific types of traffic through a firewall or other security device before the traffic continues on its path. You can also use FBF to give certain types of traffic preferential treatment. For example, you might want to ensure that the highest-priority traffic is forwarded over a 40-Gigabit Ethernet link.

To set up FBF, you specify a firewall filter match condition and action and then specify the virtual routing instance to send packets to.

NOTE: You can create as many as 128 filters or terms that direct packets to a given virtual routing instance.

(QFX5100, QFX5110, QFX5200 switches) Starting in Junos OS Release 19.1R1, filter-based forwarding is supported on IPv6 interfaces (ingress direction only).

Benefits of Filter-Based Forwarding

- Allows you to have more control over load balancing than dynamic routing protocols typically provide.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1R1</td>
<td>(QFX5100, QFX5110, QFX5200 switches) Starting in Junos OS Release 19.1R1, filter-based forwarding is supported on IPv6 interfaces (ingress direction only).</td>
</tr>
</tbody>
</table>
Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches

This example describes how to set up filter-based forwarding on EX Series switches or a QFX10000. You can configure filter-based forwarding by using a firewall filter to forward matched traffic to a specific virtual routing instance.

Requirements

This example applies to both EX Series switches running Junos OS Release 9.4 or later, and QFX10000 switches running Junos OS Release 15.1X53-D10 or later.

Overview and Topology

In this example, we create a firewall filter to match traffic being sent from one application server to another according to the destination address (192.168.0.1) of packets egressing the source application server. Matching packets are routed to a virtual routing instance which forwards the traffic to a security device, which then forwards the traffic on to the destination application server.

NOTE: Filter-based forwarding does not work with IPv6 interfaces on some Juniper switches.
Configuration

To configure filter-based forwarding:

CLI Quick Configuration

To use this example on your own device, copy the following commands into a text file, remove the line breaks, and change the necessary details to fit your configuration. Then copy and paste the commands into your CLI at the [edit] hierarchy level.

[edit]

set interfaces xe-0/0/0 unit 0 family inet address 10.1.0.1/24
set interfaces xe-0/0/3 unit 0 family inet address 10.1.3.1/24
set firewall family inet filter f1 term t1 from source-address 10.1.0.50/32
set firewall family inet filter f1 term t1 from protocol tcp
set interfaces xe-0/0/0 unit 0 family inet filter input f1
set routing-instances vrf01 instance-type virtual-router
set routing-instances vrf01 interface xe-0/0/3.0
set routing-instances vrf01 routing-options static route 192.168.0.254/24 next-hop 10.1.3.254
set firewall family inet filter f1 term t1 then routing-instance vrf01

Step-by-Step Procedure

To configure filter-based forwarding:

1. Configure an interface to connect to the application server:

 [edit interfaces]
 user@switch# set xe-0/0/0 unit 0 family inet address 10.1.0.1/24

2. Configure an interface to connect to the security device:

 [edit interfaces]
 user@switch# set xe-0/0/3 unit 0 family inet address 10.1.3.1/24

3. Create a firewall filter that matches packets based on the address of the application server that the traffic will be sent from. Also configure the filter so that it matches only TCP packets:

 [edit firewall]
 user@switch# set family inet filter f1 term t1 from source-address 10.1.0.50/32
user@switch# set firewall family inet filter f1 term t1 from protocol tcp

4. Apply the filter to the interface that connects to the source application server and configure it to match incoming packets:

 [edit interfaces]
 user@switch# set xe-0/0/0 unit 0 family inet filter input f1

5. Create a virtual router:

 [edit]
 user@switch# set routing-instances vrf01 instance-type virtual-router

6. Associate the virtual router with the interface that connects to the security device:

 [edit routing-instances]
 user@switch# set vrf01 interface xe-0/0/3.0

7. Configure the routing information for the virtual routing instance:

 [edit routing-instances]
 user@switch# set vrf01 routing-options static route 192.168.0.1/24 next-hop 10.1.3.254

8. Set the filter to forward packets to the virtual router:

 [edit firewall]
 user@switch# set family inet filter f1 term t1 then routing-instance vrf01

Results

Check the results of the configuration:

```
user@switch> show configuration
interfaces {
    xe-0/0/0 {
        unit 0 {
            family inet {
                filter {
                    input f1;
                }
                address 10.1.0.1/24;
            }
        }
    }
}
```
xe-0/0/3 {
 unit 0 {
 family inet {
 address 10.1.3.1/24;
 }
 }
}

firewall {
 family inet {
 filter f1 {
 term t1 {
 from {
 source-address {
 10.1.0.50/32;
 }
 protocol tcp;
 }
 then {
 routing-instance vrf01;
 }
 }
 }
 }
}

routing-instances {
 vrf01 {
 instance-type virtual-router;
 interface xe-0/0/3.0;
 routing-options {
 static {
 route 192.168.0.1/24 next-hop 10.1.3.254;
 }
 }
 }
}

Verification

IN THIS SECTION

- Verifying That Filter-Based Forwarding Was Configured | 1623
To confirm that the configuration is working properly, perform these tasks:

Verifying That Filter-Based Forwarding Was Configured

Purpose
Verify that filter-based forwarding was properly enabled on the switch.

Action
1. Use the `show interfaces filters` command:

   ```
   user@switch> show interfaces filters xe-0/0/0.0
   ```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>xe-0/0/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>fil</td>
<td></td>
</tr>
</tbody>
</table>

2. Use the `show route forwarding-table` command:

   ```
   user@switch> show route forwarding-table
   ```

 Routing table: default.inet
 Internet:
 - **Destination**
 - **Type RtRef Next hop**
 - **Type Index NhRef Netif**
 - 0.0.0.0/32
 - perm
 - dscd
 - 34
 - 1
 - 10.1.0.0/24
 - ifdn
 - rslv
 - 613
 - 1 xe-0/0/0.0
 - 10.1.0.0/32
 - iddn
 - recv
 - 611
 - 1 xe-0/0/0.0
 - 10.1.0.1/32
 - user
 - rjct
 - 36
 - 3
 - 10.1.0.1/32
 - intf
 - locl
 - 612
 - 2
 - 10.1.0.255/32
 - iddn
 - bcst
 - 610
 - 1 xe-0/0/0.0
 - 10.1.1.0/26
 - ifdn
 - rslv
 - 583
 - 1 vlan.0
 - 10.1.1.0/32
 - iddn
 - recv
 - 581
 - 1 vlan.0
 - 10.1.1.1/32
 - user
 - rjct
 - 36
 - 3
 - 10.1.1.1/32
 - intf
 - locl
 - 582
 - 2
 - 10.1.1.1/32
 - iddn
 - locl
 - 582
 - 2
 - 10.1.1.63/32
 - iddn
 - bcst
 - 580
 - 1 vlan.0
 - 255.255.255.255/32
 - perm
 - bcst
 - 32
 - 1

Routing table: vrf01.inet
Internet:
- **Destination**
- **Type RtRef Next hop**
- **Type Index NhRef Netif**
- 0.0.0.0/32
 - perm
 - rjct
 - 559
 - 2
- 0.0.0.0/32
 - perm
 - dscd
 - 545
 - 1
Meaning

The output indicates that the filter was created on the interface and that the virtual routing instance is forwarding matching traffic to the correct IP address.

RELATED DOCUMENTATION

| Configuring Firewall Filters | 1601 |
| Understanding Filter-Based Forwarding | 1618 |

Understanding Virtual Router Routing Instances

Configuring a Firewall Filter to De-Encapsulate GRE Traffic

Generic routing encapsulation (GRE) provides a private, secure path for transporting packets through a network by encapsulating (or tunneling) the packets. GRE tunneling is performed by tunnel endpoints that encapsulate or de-encapsulate traffic.

You can use a firewall filter to de-encapsulate GRE traffic on the switch. This feature provides significant benefits in terms of scalability, performance, and flexibility because you don't need to create a tunnel
interface to perform the de-encapsulation. For example, you can terminate many tunnels from multiple source IP addresses with one firewall term.

NOTE: The EX4600, QFX5100 and OCX switches support as many as 512 GRE tunnels, including tunnels created with a firewall filter. That is, you can create a total of 512 GRE tunnels, regardless of which method you use.

1. Configuring a Filter to De-Encapsulate GRE Traffic | 1625
2. Applying the Filter to an Interface | 1626

Configuring a Filter to De-Encapsulate GRE Traffic

To configure a firewall filter to de-encapsulate GRE traffic:

1. Create an IPv4 firewall filter and (optionally) specify a source address for the tunnel:

 [edit]
 user@switch# set firewall family inet filter filter-name term term-name from source-address address

 You must create an IPv4 filter by using family inet because the outer header of a GRE packet must be IPv4. If you specify a source address, it should be an address on a device that will encapsulate traffic into GRE packets.

 NOTE: To terminate many tunnels from multiple source IP addresses with one firewall term, do not configure a source address. In this case, the filter will de-encapsulate any GRE packets received by the interface that you apply the filter to.

2. Specify a destination address for the tunnel:

 [edit]
 user@switch# set firewall family inet filter filter-name term term-name from destination-address address

 This should be an address on an interface of the switch on which you want the tunnel or tunnels to terminate and the GRE packets to be de-encapsulated. You should also configure this address as a tunnel endpoint on all the tunnel source routers that you want to form tunnels with the switch.

3. Specify that the filter should match and accept GRE traffic:
4. Specify that the filter should de-encapsulate GRE traffic:

```plaintext
[edit ]
user@switch# set firewall family inet filter filter-name term term-name from protocol gre
```

Based on the configuration you have performed so far, the switch forwards the de-encapsulated packets by comparing the inner header to the default routing table (`inet0`). If you want the switch to use a virtual routing instance to forward the de-encapsulated packets, perform the following steps:

5. Specify the name of the virtual routing instance:

```plaintext
[edit ]
user@switch# set firewall family inet filter filter-name term term-name then decapsulate routing-instance instance-name
```

6. Specify that the virtual routing instance is a virtual router:

```plaintext
[edit ]
user@switch# set routing-instances instance-name instance-type virtual-router
```

7. Specify the interfaces that belong to the virtual router:

```plaintext
[edit ]
user@switch# set routing-instances instance-name interface interface-name
```

Applying the Filter to an Interface

After you create the firewall filter, you must also apply it to an interface that will receive GRE traffic. Be sure to apply it in the input direction. For example, enter

```plaintext
[edit ]
user@switch# set interfaces interface-name unit logical-unit-number family inet filter input filter-name
```

Because the outer header of a GRE packet must be IPv4, you must apply the filter to an IPv4 interface and specify `family inet`.
Verifying That Firewall Filters Are Operational

Purpose
After you configure and apply firewall filters to ports, VLANs, or Layer 3 interfaces, you can perform the following task to verify that the firewall filters configured on EX Series switches are working properly.

Action
Use the operational mode command to verify that the firewall filters on the switch are working properly:

```
user@switch> show firewall
```

The `show firewall` command displays the names of all firewall filters, policers, and counters that are configured on the switch. For each counter that is specified in a filter configuration, the output field shows the byte count and packet count for the term in which the counter is specified. For each policer that is specified in a filter configuration, the output field shows the packet count for packets that exceed the specified rate limits.
Monitoring Firewall Filter Traffic

You can monitor firewall filter traffic on EX Series switches.

- Monitoring Traffic for All Firewall Filters and Policers That Are Configured on the Switch | 1628
- Monitoring Traffic for a Specific Firewall Filter | 1629
- Monitoring Traffic for a Specific Policer | 1629

Monitoring Traffic for All Firewall Filters and Policers That Are Configured on the Switch

Purpose
Perform the following task to monitor the number of packets and bytes that matched the firewall filters and monitor the number of packets that exceeded policer rate limits:

Action
Use the operational mode command:

```
user@switch> show firewall
```

Filter: egress-vlan-watch-employee

Counters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter-employee-web</td>
<td>3348</td>
<td>27</td>
</tr>
</tbody>
</table>

Filter: ingress-port-voip-class-limit-tcp-icmp

Counters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-counter</td>
<td>4100</td>
<td>49</td>
</tr>
</tbody>
</table>

Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-connection-policer</td>
<td>0</td>
</tr>
<tr>
<td>tcp-connection-policer</td>
<td>0</td>
</tr>
</tbody>
</table>

Filter: ingress-vlan-rogue-block
Filter: ingress-vlan-limit-guest

Meaning
The `show firewall` command displays the names of all firewall filters, polcers, and counters that are configured on the switch. The output fields show byte and packet counts for counters and packet count for polcers.

Monitoring Traffic for a Specific Firewall Filter

Purpose
Perform the following task to monitor the number of packets and bytes that matched a firewall filter and monitor the number of packets that exceeded the polcer rate limits.

Action
Use the operational mode command:

```
user@switch> show firewall filter ingress-vlan-rogue-block
```

<table>
<thead>
<tr>
<th>Filter: ingress-vlan-rogue-block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>rogue-counter</td>
</tr>
</tbody>
</table>

Meaning
The `show firewall filter filter-name` command displays the name of the firewall filter, the packet and byte count for all counters configured with the filter, and the packet count for all polcers configured with the filter.

Monitoring Traffic for a Specific Policer

Purpose
Perform the following task to monitor the number of packets that exceeded polcer rate limits:

Action
Use the operational mode command:

```
user@switch> show policer tcp-connection-policer
```
Filter: ingress-port-voip-class-limit-tcp-icmp

Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-connection-policer</td>
<td>0</td>
</tr>
</tbody>
</table>

Meaning

The `show policer policer-name` command displays the name of the firewall filter that specifies the policer-action and displays the number of packets that exceeded rate limits for the specified filter.

RELATED DOCUMENTATION

- Configuring Firewall Filters (CLI Procedure) | 1455
- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Verifying That Firewall Filters Are Operational | 1627

Troubleshooting Firewall Filter Configuration

Use the following information to troubleshoot your firewall filter configuration.

- Firewall Filter Configuration Returns a No Space Available in TCAM Message | 1631
- Filter Counts Previously Dropped Packet | 1632
- Matching Packets Not Counted | 1633
- Counter Reset When Editing Filter | 1634
- Cannot Include loss-priority and policer Actions in Same Term | 1634
- Cannot Egress Filter Certain Traffic Originating on QFX Switch | 1634
- Firewall Filter Match Condition Not Working with Q-in-Q Tunneling | 1635
- Egress Firewall Filters with Private VLANs | 1635
- Egress Filtering of L2PT Traffic Not Supported | 1636
- Cannot Drop BGP Packets in Certain Circumstances | 1636
- Invalid Statistics for Policer | 1636
- Policers can Limit Egress Filters | 1636
Firewall Filter Configuration Returns a No Space Available in TCAM Message

Problem
Description: When a firewall filter configuration exceeds the amount of available Ternary Content Addressable Memory (TCAM) space, the system returns the following syslogd message:

```
No space available in tcam.
Rules for filter filter-name will not be installed.
```

A switch returns this message during the commit operation if the firewall filter that has been applied to a port, VLAN, or Layer 3 interface exceeds the amount of space available in the TCAM table. The filter is not applied, but the commit operation for the firewall filter configuration is completed in the CLI module.

Solution
When a firewall filter configuration exceeds the amount of available TCAM table space, you must configure a new firewall filter with fewer filter terms so that the space requirements for the filter do not exceed the available space in the TCAM table.

You can perform either of the following procedures to correct the problem:

To delete the filter and its binding and apply the new smaller firewall filter to the same binding:

1. Delete the filter and its binding to ports, VLANs, or Layer 3 interfaces. For example:

   ```
   [edit]
   user@switch# delete firewall family ethernet-switching filter ingress-vlan-rogue-block
   user@switch# delete vlans employee-vlan description "filter to block rogue devices on employee-vlan"
   user@switch# delete vlans employee-vlan filter input ingress-vlan-rogue-block
   ```

2. Commit the changes:

   ```
   [edit]
   user@switch# commit
   ```

3. Configure a smaller filter with fewer terms that does not exceed the amount of available TCAM space. For example:

   ```
   [edit]
   user@switch# set firewall family ethernet-switching filter new-ingress-vlan-rogue-block ...
   ```

4. Apply (bind) the new firewall filter to a port, VLAN, or Layer 3 interface. For example:

   ```
   [edit]
   ```
user@switch# set vlans employee-vlan description "filter to block rogue devices on employee-vlan"
user@switch# set vlans employee-vlan filter input new-ingress-vlan-rogue-block

5. Commit the changes:

 [edit]
user@switch# commit

To apply a new firewall filter and overwrite the existing binding but not delete the original filter:

1. Configure a firewall filter with fewer terms than the original filter:

 [edit]
user@switch# set firewall family ethernet-switching filter new-ingress-vlan-rogue-block...

2. Apply the firewall filter to the port, VLAN, or Layer 3 interfaces to overwrite the binding of the original filter—for example:

 [edit]
user@switch# set vlans employee-vlan description "smaller filter to block rogue devices on employee-vlan"
user@switch# set vlans employee-vlan filter input new-ingress-vlan-rogue-block

 Because you can apply no more than one firewall filter per VLAN per direction, the binding of the original firewall filter to the VLAN is overwritten with the new firewall filter new-ingress-vlan-rogue-block.

3. Commit the changes:

 [edit]
user@switch# commit

NOTE: The original filter is not deleted and is still available in the configuration.

Filter Counts Previously Dropped Packet

Problem

Description: If you configure two or more filters in the same direction for a physical interface and one of the filters includes a counter, the counter will be incorrect if the following circumstances apply:

- You configure the filter that is applied to packets first to discard certain packets. For example, imagine that you have a VLAN filter that accepts packets sent to 10.10.1.0/24 addresses and implicitly discards
packets sent to any other addresses. You apply the filter to the admin VLAN in the output direction, and interface xe-0/0/1 is a member of that VLAN.

- You configure a subsequent filter to accept and count packets that are dropped by the first filter. In this example, you have a port filter that accepts and counts packets sent to 192.168.1.0/24 addresses that is also applied to xe-0/0/1 in the output direction.

The egress VLAN filter is applied first and correctly discards packets sent to 192.168.1.0/24 addresses. The egress port filter is applied next and counts the discarded packets as matched packets. The packets are not forwarded, but the counter displayed by the egress port filter is incorrect.

Remember that the order in which filters are applied depends on the direction in which they are applied, as indicated here:

Ingress filters:
1. Port (Layer 2) filter
2. VLAN filter
3. Router (Layer 3) filter

Egress filters:
1. Router (Layer 3) filter
2. VLAN filter
3. Port (Layer 2) filter

Solution
This is expected behavior.

Matching Packets Not Counted

Problem
Description: If you configure two egress filters with counters for a physical interface and a packet matches both of the filters, only one of the counters includes that packet.

For example:

- You configure an egress port filter with a counter for interface xe-0/0/1.
- You configure an egress VLAN filter with a counter for the admin VLAN, and interface xe-0/0/1 is a member of that VLAN.
- A packet matches both filters.
In this case, the packet is counted by only one of the counters even though it matched both filters.

Solution
This is expected behavior.

Counter Reset When Editing Filter

Problem
Description: If you edit a firewall filter term, the value of any counter associated with any term in the same filter is set to 0, including the implicit counter for any policer referenced by the filter. Consider the following examples:

• Assume that your filter has term1, term2, and term3, and each term has a counter that has already counted matching packets. If you edit any of the terms in any way, the counters for all the terms are reset to 0.

• Assume that your filter has term1 and term2. Also assume that term2 has a policer action modifier and the implicit counter of the policer has already counted 1000 matching packets. If you edit term1 or term2 in any way, the counter for the policer referenced by term2 is reset to 0.

Solution
This is expected behavior.

Cannot Include loss-priority and policer Actions in Same Term

Problem
Description: You cannot include both of the following actions in the same firewall filter term in a QFX Series switch:

• loss-priority

• policer

If you do so, you see the following error message when you attempt to commit the configuration: “cannot support policer action if loss-priority is configured.”

Solution
This is expected behavior.

Cannot Egress Filter Certain Traffic Originating on QFX Switch

Problem
Description: On a QFX Series switch, you cannot filter certain traffic with a firewall filter applied in the output direction if the traffic originates on the QFX switch. This limitation applies to control traffic for protocols such as ICMP (ping), STP, LACP, and so on.

Solution
This is expected behavior.

Firewall Filter Match Condition Not Working with Q-in-Q Tunneling

Problem

Description: If you create a firewall filter that includes a match condition of `dot1q-tag` or `dot1q-user-priority` and apply the filter on input to a trunk port that participates in a service VLAN, the match condition does not work if the Q-in-Q EtherType is not 0x8100. (When Q-in-Q tunneling is enabled, trunk interfaces are assumed to be part of the service provider or data center network and therefore participate in service VLANs.)

Solution

This is expected behavior. To set the Q-in-Q EtherType to 0x8100, enter the **set dot1q-tunneling ethertype 0x8100** statement at the [edit ethernet-switching-options] hierarchy level. You must also configure the other end of the link to use the same Ethertype.

Egress Firewall Filters with Private VLANs

Problem

Description: If you apply a firewall filter in the output direction to a primary VLAN, the filter also applies to the secondary VLANs that are members of the primary VLAN when the traffic egresses with the primary VLAN tag or isolated VLAN tag, as listed below:

- Traffic forwarded from a secondary VLAN trunk port to a promiscuous port (trunk or access)
- Traffic forwarded from a secondary VLAN trunk port that carries an isolated VLAN to a PVLAN trunk port.
- Traffic forwarded from a promiscuous port (trunk or access) to a secondary VLAN trunk port
- Traffic forwarded from a PVLAN trunk port. to a secondary VLAN trunk port
- Traffic forwarded from a community port to a promiscuous port (trunk or access)

If you apply a firewall filter in the output direction to a primary VLAN, the filter does not apply to traffic that egresses with a community VLAN tag, as listed below:

- Traffic forwarded from a community trunk port to a PVLAN trunk port
- Traffic forwarded from a secondary VLAN trunk port that carries a community VLAN to a PVLAN trunk port
- Traffic forwarded from a promiscuous port (trunk or access) to a community trunk port
- Traffic forwarded from a PVLAN trunk port. to a community trunk port

If you apply a firewall filter in the output direction to a community VLAN, the following behaviors apply:

- The filter is applied to traffic forwarded from a promiscuous port (trunk or access) to a community trunk port (because the traffic egresses with the community VLAN tag).
• The filter is applied to traffic forwarded from a community port to a PVLAN trunk port (because the traffic egresses with the community VLAN tag).

• The filter is not applied to traffic forwarded from a community port to a promiscuous port (because the traffic egresses with the primary VLAN tag or untagged).

Solution
These are expected behaviors. They occur only if you apply a firewall filter to a private VLAN in the output direction and do not occur if you apply a firewall filter to a private VLAN in the input direction.

Egress Filtering of L2PT Traffic Not Supported

Problem
Description: Egress filtering of L2PT traffic is not supported on the QFX3500 switch. That is, if you configure L2PT to tunnel a protocol on an interface, you cannot also use a firewall filter to filter traffic for that protocol on that interface in the output direction. If you commit a configuration for this purpose, the firewall filter is not applied to the L2PT-tunneled traffic.

Solution
This is expected behavior.

Cannot Drop BGP Packets in Certain Circumstances

Problem
Description: BGP packets with a time-to-live (TTL) value greater than 1 cannot be discarded using a firewall filter applied to a loopback interface or applied on input to a Layer 3 interface. BGP packets with TTL value of 1 or 0 can be discarded using a firewall filter applied to a loopback interface or applied on input to a Layer 3 interface.

Solution
This is expected behavior.

Invalid Statistics for Policer

Problem
Description: If you apply a single-rate two-color policer in more than 128 terms in a firewall filter, the output of the show firewall command displays incorrect data for the policer.

Solution
This is expected behavior.

Policers can Limit Egress Filters

Problem
Description: On some switches, the number of egress policers that you configure can affect the total number of allowed egress firewall filters. (This does not apply to QFX10000 switches.) Every policer has two implicit counters that consume two entries in a 1024-entry TCAM that is used for counters, including counters that are configured as action modifiers in firewall filter terms. (Policers consume two entries because one is used for green packets and one is used for nongreen packets regardless of policer type.) If the TCAM becomes full, you cannot commit any more egress firewall filters that have terms with counters. For example, if you configure and commit 512 egress policers (two-color, three-color, or a combination of both policer types), all of the memory entries for counters are used up. If later in your configuration file you insert additional egress firewall filters with terms that also include counters, none of the terms in those filters are committed because there is no available memory space for the counters.

Here are some additional examples:

• Assume that you configure egress filters that include a total of 512 policers and no counters. Later in your configuration file you include another egress filter with 10 terms, 1 of which has a counter action modifier. None of the terms in this filter are committed because there is not enough TCAM space for the counter.

• Assume that you configure egress filters that include a total of 500 policers, so 1000 TCAM entries are occupied. Later in your configuration file you include the following two egress filters:

 • Filter A with 20 terms and 20 counters. All the terms in this filter are committed because there is enough TCAM space for all the counters.

 • Filter B comes after Filter A and has five terms and five counters. None of the terms in this filter are committed because there is not enough memory space for all the counters. (Five TCAM entries are required but only four are available.)

Solution

You can prevent this problem by ensuring that egress firewall filter terms with counter actions are placed earlier in your configuration file than terms that include policers. In this circumstance, Junos OS commits policers even if there is not enough TCAM space for the implicit counters. For example, assume the following:

• You have 1024 egress firewall filter terms with counter actions.

• Later in your configuration file you have an egress filter with 10 terms. None of the terms have counters but one has a policer action modifier.

You can successfully commit the filter with 10 terms even though there is not enough TCAM space for the implicit counters of the policer. The policer is committed without the counters.

RELATED DOCUMENTATION

Understanding FIP Snooping, FBF, and MVR Filter Scalability
<table>
<thead>
<tr>
<th>Configuring Firewall Filters</th>
<th>1601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifying That Firewall Filters Are Operational</td>
<td>758</td>
</tr>
</tbody>
</table>
Configuring Firewall Filter Accounting and Logging (EX9200 Switches)

Example: Configuring Logging for a Stateless Firewall Filter Term

This example shows how to configure a standard stateless firewall filter to log packet headers.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

In this example, you use a stateless firewall filter that logs and counts ICMP packets that have 192.168.207.222 as either their source or destination.
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set system syslog file messages_firewall_any firewall any
set system syslog file messages_firewall_any archive no-world-readable
set firewall family inet filter icmp Syslog term icmp_match from address 192.168.207.222/32
set firewall family inet filter icmp Syslog term icmp_match from protocol icmp
set firewall family inet filter icmp Syslog term icmp_match then count packets
set firewall family inet filter icmp Syslog term icmp_match then log
set firewall family inet filter icmp Syslog term icmp_match then accept
set firewall family inet filter icmp Syslog term default_term then accept
set interfaces ge-0/0/1 unit 0 family inet address 10.1.2.3/30
set interfaces ge-0/0/1 unit 0 family inet filter input icmp_Syslog
```

Configure the Syslog Messages File for the Firewall Facility

Step-by-Step Procedure

To configure a syslog messages file for the **firewall** facility:

1. Configure a messages file for all syslog messages generated for the **firewall** facility.

   ```plaintext
   user@host# set system syslog file messages_firewall_any firewall any
   ```
2. Restrict permission to the archived **firewall** facility syslog files to the root user and users who have the Junos OS maintenance permission.

```
user@host# set system syslog file messages_firewall_any archive no-world-readable
```

Configure the Stateless Firewall Filter

Step-by-Step Procedure

To configure the stateless firewall filter **icmp_syslog** that logs and counts ICMP packets that have **192.168.207.222** as either their source or destination:

1. Create the stateless firewall filter **icmp_syslog**.

```
[edit]
user@host# edit firewall family inet filter icmp_syslog
```

2. Configure matching on the ICMP protocol and an address.

```
[edit firewall family inet filter icmp_syslog]
user@host# set term icmp_match from address 192.168.207.222/32
user@host# set term icmp_match from protocol icmp
```

3. Count, log,, and accept matching packets.

```
[edit firewall family inet filter icmp_syslog]
user@host# set term icmp_match then count packets
user@host# set term icmp_match then log
user@host# set term icmp_match then accept
```

4. Accept all other packets.

```
[edit firewall family inet filter icmp_syslog]
user@host# set term default_term then accept
```

Apply the Stateless Firewall Filter to a Logical Interface

Step-by-Step Procedure
To apply the stateless firewall filter to a logical interface:

1. Configure the logical interface to which you will apply the stateless firewall filter.

   ```
   [edit]
   user@host# edit interfaces ge-0/0/1 unit 0 family inet
   ```

2. Configure the interface address for the logical interface.

   ```
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set address 10.1.2.3/30
   ```

3. Apply the stateless firewall filter to the logical interface.

   ```
   [edit interfaces ge-0/0/1 unit 0 family inet]
   user@host# set filter input icmp_syslog
   ```

Confirm and Commit Your Candidate Configuration

Step-by-Step Procedure

To confirm and then commit your candidate configuration:

1. Confirm the configuration of the syslog message file for the firewall facility by entering the `show system` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
   [edit]
   user@host# show system
   syslog {
       file messages_firewall_any {
           firewall any;
           archive no-world-readable;
       }
   }
   ```

2. Confirm the configuration of the stateless firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

   ```
   [edit]
   ```
3. Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

4. If you are done configuring the device, commit your candidate configuration.
Verification

To confirm that the configuration is working properly, enter the show log filter command:

```
user@host> show log messages_firewall_any
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Hostname</th>
<th>Interface</th>
<th>Filter</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 20 08:03:11</td>
<td>host</td>
<td>feb FW: ge-0/1/0</td>
<td>A</td>
<td>icmp</td>
<td>192.168.207.222</td>
<td>192.168.207.223</td>
<td>0</td>
<td>0</td>
<td>(1 packets)</td>
<td>1</td>
</tr>
</tbody>
</table>

This output file contains the following fields:

- **Date and Time**—Date and time at which the packet was received (not shown in the default).
- **Filter action**:
 - A—Accept (or next term)
 - D—Discard
 - R—Reject
- **Protocol**—Packet's protocol name or number.
- **Source address**—Source IP address in the packet.
- **Destination address**—Destination IP address in the packet.

NOTE: If the protocol is ICMP, the ICMP type and code are displayed. For all other protocols, the source and destination ports are displayed.

The last two fields (both zero) are the source and destination TCP/UDP ports, respectively, and are shown for TCP or UDP packets only. This log message indicates that only one packet for this match has been detected in about a 1-second interval. If packets arrive faster, the system log function compresses the information so that less output is generated, and displays an output similar to the following:

```
user@host> show log filter
```
Using the CLI Editor in Configuration Mode

This topic describes some of the basic commands that you can use to enter configuration mode in the command-line interface (CLI) editor, navigate through the configuration hierarchy, get help, and commit or revert the changes that you make during the configuration session.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command/Statement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit Your Configuration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enter configuration mode.

When you first log in to the device, the device is in operational mode. You must explicitly enter configuration mode. When you do, the CLI prompt changes from `user@host>` to `user@host#` and the hierarchy level appears in square brackets.

```
configure
[edit]
user@host#  
```
<table>
<thead>
<tr>
<th>Task</th>
<th>Command/Statement</th>
<th>Example</th>
</tr>
</thead>
</table>
| Create a statement hierarchy. | edit hierarchy-level value | [edit]
user@host# edit security zones security-zone myzone
[edit security zones security-zone myzone]
user@host# |
| Create a statement hierarchy and set identifier values. | set hierarchy-level value | [edit]
user@host# set security zones security-zone myzone
[edit]
user@host# |

Navigate the Hierarchy

<table>
<thead>
<tr>
<th>Task</th>
<th>Command/Statement</th>
<th>Example</th>
</tr>
</thead>
</table>
| Navigate down to an existing hierarchy level. | edit hierarchy-level | [edit]
user@host# edit security zones
[edit security zones]
user@host# |
| Navigate up one level in the hierarchy. | up | [edit security zones]
user@host# up
[edit security]
user@host# |
| Navigate to the top of the hierarchy. | top | [edit security zones]
user@host# top
[edit]
user@host# |

Commit or Revert Changes

<table>
<thead>
<tr>
<th>Task</th>
<th>Command/Statement</th>
<th>Example</th>
</tr>
</thead>
</table>
| Commit your configuration. | commit | [edit]
user@host# commit
commit complete |
<table>
<thead>
<tr>
<th>Task</th>
<th>Command/Statement</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll back changes from the current session.</td>
<td>rollback</td>
<td>[edit]</td>
</tr>
<tr>
<td>Use the <code>rollback</code> command to revert all changes from the current configuration session. When you run the <code>rollback</code> command before exiting your session or committing changes, the software loads the most recently committed configuration onto the device. You must enter the <code>rollback</code> statement at the <code>edit</code> level in the hierarchy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host# rollback</td>
</tr>
<tr>
<td></td>
<td></td>
<td>load complete</td>
</tr>
<tr>
<td>Exit Configuration Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commit the configuration and exit configuration mode.</td>
<td>commit and-quit</td>
<td>[edit]</td>
</tr>
<tr>
<td>You must navigate to the top of the hierarchy using the <code><up></code> or <code><top></code> commands before you can exit configuration mode.</td>
<td></td>
<td>user@host# commit and-quit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host></td>
</tr>
<tr>
<td>Exit configuration mode without committing your configuration.</td>
<td>exit</td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host# exit</td>
</tr>
<tr>
<td>The configuration has been changed but not committed Exit with uncommitted changes?</td>
<td></td>
<td>[yes,no] (yes)</td>
</tr>
<tr>
<td>Get Help</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display a list of valid options for the current hierarchy level.</td>
<td>?</td>
<td>[edit.]</td>
</tr>
<tr>
<td>You must navigate to the top of the hierarchy using the <code><up></code> or <code><top></code> commands before you can exit configuration mode.</td>
<td></td>
<td>user@host# <code>edit security zones</code> ?</td>
</tr>
<tr>
<td>Possible completions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><[Enter]> Execute this command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> functional-zone Functional zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> security-zone Security zones</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipe through a command</td>
<td></td>
</tr>
<tr>
<td>[edit]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- *Understanding Junos OS CLI Configuration Mode*
Entering and Exiting the Junos OS CLI Configuration Mode

Displaying the Current Junos OS Configuration
Configuring Traffic Policers

Understanding Traffic Policers | 1651
Configuring Policer Rate Limits and Actions | 1713
Configuring Layer 2 Policers | 1723
Configuring Two-Color and Three-Color Traffic Policers at Layer 3 | 1763
Configuring Logical and Physical Interface Traffic Policers at Layer 3 | 1911
Configuring Policers on Switches | 1939
Understanding Traffic Policers

IN THIS CHAPTER

- Policer Implementation Overview | 1652
- ARP Policer Overview | 1655
- Example: Configuring ARP Policer | 1657
- Understanding the Benefits of Policers and Token Bucket Algorithms | 1661
- Determining Proper Burst Size for Traffic Policers | 1662
- Controlling Network Access Using Traffic Policing Overview | 1669
- Traffic Policer Types | 1674
- Order of Policer and Firewall Filter Operations | 1678
- Understanding the Frame Length for Policing Packets | 1678
- Supported Standards for Policing | 1679
- Hierarchical Policer Configuration Overview | 1680
- Packets-Per-Second (pps)-Based Policer Overview | 1682
- Guidelines for Applying Traffic Policers | 1683
- Policer Support for Aggregated Ethernet Interfaces Overview | 1684
- Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface | 1685
- Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers | 1693
- Hierarchical Policers on ACX Series Routers Overview | 1696
- Guidelines for Configuring Hierarchical Policers on ACX Series Routers | 1698
- Hierarchical Policer Modes on ACX Series Routers | 1699
- Processing of Hierarchical Policers on ACX Series Routers | 1705
- Actions Performed for Hierarchical Policers on ACX Series Routers | 1706
- Configuring Aggregate Parent and Child Policers on ACX Series Routers | 1708
Policer Implementation Overview

The Juniper Networks® Junos® operating system (Junos OS) supports three types of policers:

- **Single-rate two-color policer** — The most common policer. Single-rate means that there is only a single bandwidth and burst rate referenced in the policer. The two colors associated with this policer are red (nonconforming) and green (conforming).

- **Single-rate three-color policer** — Similar to the single-rate two-color policer with the addition of the color yellow. This type also introduces the committed information rate (CIR) and a committed burst rate (CBR).

- **Two-rate three-color policer** — Builds off of the single-rate three-color policer by adding a second rate tier. Two-rate means there is an upper bandwidth limit and associated burst size as well as a peak information rate (PIR) and a peak burst rate (PBS).

There are two types of token bucket algorithms that can be used, depending on the type of policer that is applied to network traffic. Single-rate two-color policers use the single token bucket algorithm to measure traffic flow conformance to a two-color policer rate limit. Single-rate three-color policers and two-rate three-color policers both use the dual token bucket algorithm to measure traffic flow conformance to a three-color policer rate. The main difference between these two token bucket algorithms is that the single token bucket algorithm allows bursts of traffic for short periods, whereas the dual token bucket algorithm allows more sustained bursts of traffic. (The remainder of this topic discusses the single token bucket algorithm.)

To configure a policer, you need to set two parameters:

- Bandwidth limit configured in bps (using the **bandwidth-limit** statement)
- Burst size configured in bytes (using the **burst-size-limit** statement)

NOTE: For single-rate two-color policers only, you can also specify the bandwidth limit as a percentage of either the physical interface port speed or the configured logical interface shaping rate by using the **bandwidth-percent percentage** statement. You cannot configure a policer to use bandwidth percentage for aggregate, tunnel, or software interfaces.

Use the following command to set the policer conditions:

```
user@router# set firewall policer <policer name> if-exceeding ?
```

Possible completions:
- <[Enter]> Execute this command
- + apply-groups Groups from which to inherit configuration data
- + apply-groups-except Don't inherit configuration data from these groups
The bandwidth limit parameter is used to determine the average rate limit applied to the traffic, while the burst-size parameter is used to allow for short periods of traffic bursting (back-to-back traffic at average rates that exceed the configured bandwidth limit). Once you apply a set of policer configuration settings (bandwidth limit and burst size), the configured values are adjusted to hardware programmable values. The conversion adjustment introduced is normally less than 1 percent of the configured bandwidth limit. This adjustment is needed because the software allows you to configure the bandwidth limit and burst size to any value within the specified ranges, but those values must be adjusted to the nearest value that can be programmed in the hardware.

The policer bandwidth limit configuration in the hardware is represented by two values: the credit update frequency and the credit size. The credit update frequency is used by the hardware to determine how frequently tokens (bits of unused bandwidth) are added to the token bucket. The credit size is based on the number of tokens that can fit in the token bucket. The MX Series, M120, M320 routers, and EX Series switches contain a set of credit update frequencies instead of having a single credit update frequency to minimize the adjustment difference from the configured bandwidth limit and to support a wide range of policer bandwidth rates (from 40 Kbps to 40 Gbps). One of the frequencies is used to program the policer (bandwidth limit and burst size) in the hardware.

The burst size is based on the overall traffic load and allows bursts of traffic to exceed the configured bandwidth limit. A policer with a large burst size effectively disables the configured bandwidth limit function, so the burst size must be relative to the configured bandwidth limit. You need to consider the traffic patterns in your network before determining the burst size. For more information about determining burst size, see “Determining Proper Burst Size for Traffic Policers” on page 1662.

The configured burst size is adjusted in the hardware to a value that is based on the configured bandwidth limit. The burst size extends the configured bandwidth limit for bursty traffic that exceeds the configured bandwidth limit.

When a policer is applied to the traffic at an interface, the initial capacity for traffic bursting is equal to the number of bytes specified in the `burst-size-limit` statement.

Figure 73 on page 1654 represents how a policer is implemented using the token bucket algorithm. The token allocator allocates tokens to the policer based on the configured bandwidth limit, which is the token size multiplied by the token arrival rate.

\[
\text{token size} \times \text{token arrival rate} = \text{policer rate (configured bandwidth limit)}
\]
When a packet arrives at an interface configured with a policer, tokens that represent the number of bits that correspond to the length of the packet are used (or “cashed in”) from the token bucket. If the token arrival rate is higher than the rate of traffic so that there are tokens not being used, the token bucket is filled to capacity, and arriving tokens “overflow” the bucket and are lost. The token bucket depth represents the single user-configured burst size for the policer.

If there are tokens in the token bucket and the incoming traffic rate is higher than the token rate (the configured policer rate, bandwidth limit), the traffic can use the tokens until the bucket is empty. The token consumption rate can be as high as the incoming traffic rate, which creates the burst of traffic shown in Figure 74 on page 1654.

By using the token bucket algorithm, the average bandwidth rate being allowed is close to the configured bandwidth limit while simultaneously supporting bursty traffic, as shown in Figure 74 on page 1654.
NOTE: The measured length of a packet changes according to the family type that the policer applies to. If the policer is applied under the family inet hierarchy, the policer considers only the IPv4 packet length. If the policer is applied under the family vpls hierarchy, the entire Ethernet frame (including the Ethernet MAC header) is included in the packet length.

The major factor that affects the policer shaping result is not the conversion adjustment, but the traffic pattern since most network traffic is not consistent and is not sent at a constant rate. Due to the fluctuation of the incoming traffic rate, some of the allocated tokens are not used. As a result, the shaped traffic rate is lower than you might expect, and the TCP connection behavior discussed in "Understanding the Benefits of Policers and Token Bucket Algorithms" on page 1661 is a typical example of this. To alleviate this effect of the lower shaped traffic rate, a proper burst size configuration is required.

RELATED DOCUMENTATION

| Understanding the Benefits of Policers and Token Bucket Algorithms | 1661 |
| Determining Proper Burst Size for Traffic Policers | 1662 |

ARP Policer Overview

Sending IP packets on a multiaccess network requires mapping from an IP address to a media access control (MAC) address (the physical or hardware address).

In an Ethernet environment, Address Routing Protocol (ARP) is used to map a MAC address to an IP address. ARP dynamically binds the IP address (the logical address) to the correct MAC address. Before IP unicast packets can be sent, ARP discovers the MAC address used by the Ethernet interface where the IP address is configured.

Hosts that use ARP maintain a cache of discovered Internet-to-Ethernet address mappings to minimize the number of ARP broadcast messages. To keep the cache from growing too large, an entry is removed if it is not used within a certain period of time. Before sending a packet, the host searches its cache for Internet-to-Ethernet address mapping. If the mapping is not found, the host sends an ARP request.

Starting in Junos OS Release 18.4R1, you can apply policers on ARP traffic on SRX Series devices. You can configure rate limiting for the policer by specifying the bandwidth and the burst-size limit. Packets exceeding the policer limits are discarded. The traffic to the Routing Engine is controlled by applying the policer on ARP traffic. Using policers helps prevent network congestion caused by broadcast storms.

You can use policers to specify rate limits on traffic. A firewall filter configured with a policer permits only traffic within a specified set of rate limits, thereby providing protection from denial-of-service (DoS) attacks.
Traffic that exceeds the rate limits specified by the policer is either discarded immediately or is marked as lower priority than traffic that is within the rate limits. The switch discards the lower-priority traffic when there is traffic congestion.

A policer applies two types of rate limits on traffic:

- **Bandwidth**—The number of bits per second permitted, on average
- **Maximum burst size**—The maximum size permitted for bursts of data that exceed the given bandwidth limit

Policing uses an algorithm to enforce a limit on average bandwidth while allowing bursts up to a specified maximum value. You can define specific classes of traffic on an interface and apply a set of rate limits to each class. After you name and configure a policer, it is stored as a template. You can then use the policer in a firewall filter configuration.

NOTE: On SRX5400, SRX5600, and SRX5800 devices, ARP policer actions are applied on the SPUs as well as on the Routing Engine. For example, SPU A handles 15000 packets of ARP traffic, and SPU B handles 5000 packets. A policer is configured as rate-limit 10K, discard and applied to the ARP protocol. As a result, SPU A discards 5000 packets of ARP traffic and forwards 10000 packets to the Routing Engine, and SPU B forwards 5000 packets of ARP the Routing Engine. The Routing Engine therefore receives a total of 15000 packets of ARP traffic.

Benefits of the ARP Policer

- Prevents network congestion caused by broadcast storms
- Protects Routing Engines on SRX Series devices that are impacted by broadcast storms
- Provides protection from denial-of-service (DoS) attacks

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4R1</td>
<td>Starting in Junos OS Release 18.4R1, you can apply policers on ARP traffic on SRX Series devices. You can configure rate limiting for the policer by specifying the bandwidth and the burst-size limit. Packets exceeding the policer limits are discarded. The traffic to the Routing Engine is controlled by applying the policer on ARP traffic. Using policers helps prevent network congestion caused by broadcast storms.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION
Example: Configuring ARP Policer

IN THIS SECTION

- Requirements | 1657
- Overview | 1657
- Configuration | 1658
- Verification | 1660

This example shows how to configure an Address Resolution Protocol (ARP) policer on SRX Series devices.

Requirements

This example uses the following hardware and software components:

- SRX Series device.
- Junos OS Release 18.4R1 or later.

Before you begin, see “ARP Policer Overview” on page 1655.

Overview

ARP is used to map a MAC address to an IP address. ARP dynamically binds the IP address (the logical address) to the correct MAC address. Before IP unicast packets can be sent, ARP discovers the MAC address used by the Ethernet interface where the IP address is configured. This feature is supported on all SRX Series devices. The traffic to the Routing Engine on the SRX Series device is controlled by applying the policer on ARP. This prevents network congestion caused by broadcast storms.

NOTE: A default arp policer named __default_arp_policer__ is used and shared by all ethernet interfaces with family inet configured, by default.
Configuration

IN THIS SECTION

- Configuring ARP Policer on Interface | 1658

This example shows how to configure rate limiting for the policer by specifying the bandwidth and the burst-size limit.

Configuring ARP Policer on Interface

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set firewall policer arp_limit if-exceeding bandwidth-limit 1m
set firewall policer arp_limit if-exceeding burst-size-limit 1m
set firewall policer arp_limit then discard
set interfaces ge-0/0/7 unit 0 family inet policer arp arp_limit
```

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure the ARP policer:

1. Specify the name of the policer.

   ```
   [edit firewall]
   user@host# set policer arp-limit
   ```

2. Configure rate limiting for the policer.

 - Specify the bandwidth limit in bits per second (bps) to control the traffic rate on an interface:

   ```
   [edit firewall policer arp_limit]
   user@host# set if-exceeding bandwidth-limit 1m
   ```

 The range for the bandwidth limit is 1 through 150,000 bps.
• Specify the burst-size limit (the maximum allowed burst size in bytes) to control the amount of traffic bursting:

```
[edit firewall policer arp_limit]
user@host# set if-exceeding burst-size-limit 1m
```

To determine the value for the burst-size limit, multiply the bandwidth of the interface on which the filter is applied by the amount of time to allow a burst of traffic at that bandwidth to occur:

\[
\text{burst size} = (\text{bandwidth}) \times (\text{allowable time for burst traffic})
\]

The range for the burst-size limit is 1 through 150,00 bytes.

3. Specify the policer action discard to discard packets that exceed the rate limits.

```
[edit firewall]
user@host# set policer arp_limit then discard
```

Discard is the only supported policer action.

4. Configure the interfaces.

```
user@host# set interfaces ge-0/0/7 unit 0 family inet policer arp_limit
```

Results
From configuration mode, confirm your configuration by entering the `show firewall` command. If the output does not display the intended configuration, repeat the instructions in this example to correct.

```
[edit]
user@host# show firewall
policer arp_limit {  
  if-exceeding {  
    bandwidth-limit 1m;  
    burst-size-limit 1m;  
  }  
  then discard;
}
[edit]
user@host# show interfaces
ge-0/0/7 {  
  unit 0 {  
    family inet {  
      policer {  
        arp arp_limit;
```
After you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Verifying the results of arp policer | 1660

To confirm that the configuration is working properly, perform these tasks:

Verifying the results of arp policer

Purpose
Verify the results of the Arp policer.

Action
From the top of the configuration in operational mode, enter the `show policer policer-name` command.

```
user@host> show policer arp_limit-ge-0/0/7.0-inet-arp
```

<table>
<thead>
<tr>
<th>Policers:</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>arp_limit-ge-0/0/7.0-inet-arp</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Meaning
The `show policer policer-name` command displays the names of all firewall filters and policers that are configured on the device.

RELATED DOCUMENTATION

- ARP Policer Overview | 1655
Understanding the Benefits of Policers and Token Bucket Algorithms

This topic describes some scenarios that demonstrate how difficult it is to control traffic that comes into your network without the help of policers and the token bucket algorithm. These scenarios assume that traffic is coming from a TCP-based connection. Depending on the number of TCP connections, policers can have different affects on rate limits.

This topic presents the following scenarios:

- **Scenario 1: Single TCP Connection on page 1661**
- **Scenario 2: Multiple TCP Connections on page 1661**

Scenario 1: Single TCP Connection

Figure 75 on page 1661 shows the traffic loading on an interface with a policer configured. When the traffic rate reaches the configured bandwidth limit (which results in a packet drop), a TCP slow-start mechanism reduces the traffic rate down to half of what it was. When the traffic rate rises again, the same cycle repeats.

Figure 75: Policer Behavior with a Single TCP Connection

The problem presented in this scenario is that some bandwidth is available, but it is not being used by the traffic. The unused bandwidth shown in Figure 75 on page 1661 is the result of an overall data throughput that is lower than the configured bandwidth value. This example is an extreme case because there is only a single TCP connection.

Scenario 2: Multiple TCP Connections

With multiple TCP connections or some background non-TCP-based traffic, there is less unused bandwidth, as depicted in Figure 76 on page 1662. However, the same issue of unused bandwidth still exists if all the TCP connections experience a drop when the aggregated traffic rate exceeds the configured bandwidth limit.
To reduce the problem of unused bandwidth in your network, you can configure a burst size.

RELATED DOCUMENTATION

- Policer Implementation Overview | 1652
- Determining Proper Burst Size for Traffic Policers | 1662

Determining Proper Burst Size for Traffic Policers

IN THIS SECTION

- Policer Burst Size Limit Overview | 1662
- Effect of Burst-Size Limit | 1663
- Two Methods for Calculating Burst-Size Limit | 1665
- Comparison of the Two Methods | 1665

Policer Burst Size Limit Overview

A policer burst-size limit controls the number of bytes of traffic that can pass unrestricted through a policed interface when a burst of traffic pushes the average transmit or receive rate above the configured bandwidth limit. The actual number of bytes of bursty traffic allowed to pass through a policed interface can vary from zero to the configured burst-size limit, depending on the overall traffic load.
By configuring a proper burst size, the effect of a lower shaped rate is alleviated. Use the `burst-size-limit` statement to configure the burst size.

NOTE: If you set the burst-size limit too low, too many packets will be subjected to rate limiting. If you set the burst-size limit too high, too few packets will be rate-limited.

Consider these two main factors when determining the burst size to use:

- The allowed duration of a blast of traffic on the line.
- The burst size is large enough to handle the maximum transmission unit (MTU) size of the packets.

The following general guidelines apply to choosing a policer burst-size limit:

- A burst-size limit should not be set lower than 10 times the MTU of the traffic on the interface to be policed.
- The amount of time to allow a burst of traffic at the full line rate of a policed interface should not be lower than 5 ms.
- The minimum and maximum values you can specify for a policer burst-size limit depends on the policer type (two-color or three-color).

BEST PRACTICE: The preferred method for choosing a burst-size limit is based on the line rate of the interface on which you apply the policer and the amount of time you want to allow a burst of traffic at the full line rate.

Effect of Burst-Size Limit

Bursty traffic requires a relatively large burst size so that extra tokens can be allocated into the token bucket for upcoming traffic to use.

Bursty Traffic Policed Without a Burst-Size Limit

Figure 77 on page 1664 shows an extreme case of bursty traffic where the opportunity to allocate tokens is missed, and the bandwidth goes unused because a large burst size is not configured.
Figure 77: Bursty Traffic Without Configured Burst Size (Excessive Unused Bandwidth)

Burst-Size Limit Configured to Match Bandwidth Limit and Flow Burstiness

Figure 78 on page 1664 depicts how bandwidth usage changes when a large burst size is configured to handle bursty traffic. The large burst size minimizes the amount of unused bandwidth because tokens are being allocated in between the bursts of traffic that can be used during traffic peaks. The burst size determines the depth of the token bucket.

Figure 78: Bursty Traffic with Configured Burst Size (Less Unused Bandwidth)

Burst-Size Limit That Depletes All Accumulated Tokens

Configuring a large burst size for the unused tokens creates another issue. If the burst size is set to a very large value, the burst of traffic can be transmitted from the interface at line rate until all the accumulated tokens in the token bucket are used up. This means that configuring a large burst size can allow too many packets to avoid rate limiting, which can lead to a traffic rate that exceeds the bandwidth limit for an extended period of time.

If the average rate is considered within 1 second, the rate is still below the configured bandwidth limit. However, the downstream device might not be able to handle bursty traffic, so some packets might be dropped.
Two Methods for Calculating Burst-Size Limit

For policers configured on MX Series, M120, and M320 routers, and EX Series switches, configurable burst-size limit values range from 1 ms through 600 ms of traffic at the policer rate (the configured bandwidth limit).

Because one burst size is not suitable for every traffic pattern, select the best burst size for an interface by performing experimental configurations. For your first test configuration, select the burst-size limit by using one of the calculation methods described in the next two sections.

Calculation Based on Interface Bandwidth and Allowable Burst Time

If the bandwidth of the policed interface is known, the preferred method for calculating the policer burst-size limit is based on the following values:

- **bandwidth**—Line rate of the policed interface (in bps units)
- **burst-period**—Allowable traffic-burst time (5 ms or longer)

To calculate policer bandwidth in bytes:

\[
\text{bandwidth} \times \text{burst-period} / 8
\]

Calculation Based on Interface Traffic MTU

If the bandwidth of the policed interface is unknown, calculate the policer burst-size limit based on the following value:

- **interface MTU**—Maximum transmission unit (in bytes) for the policed interface.

To calculate policer bandwidth in bytes:

\[
\text{interface MTU} \times 10
\]

Comparison of the Two Methods

Figure 79 on page 1666 illustrates the relationship between the policer rate (the configured bandwidth limit) and the effective burst-size limit for the two methods of calculating the best policer burst-size limit. For the method based on interface bandwidth and allowable burst time, the correlation is labeled 5 ms. For the method based on MTU size, the correlation is labeled 10 MTU.
For a policer burst-size limit calculated using the 5 ms method, the effective burst-size limit is proportional to the configured bandwidth limit. With a very low bandwidth limit, the effective burst-size limit might be so small that the policer rate-limits traffic more aggressively than desired. For example, a traffic “burst” consisting of two MTU-sized packets might be rate-limited. In this scenario, a policer burst-size limit calculated using the 10 MTU method appears to be a better choice.

10 x MTU Method for Selecting Initial Burst Size for Gigabit Ethernet with 100 Kbps Bandwidth

The following sequence illustrates the use of the 10 x MTU method for selecting an initial burst size for test configurations for a Gigabit Ethernet interface configured with a 100 Kbps bandwidth limit:

1. If you configure a 100 ms burst-size limit, the maximum amount of traffic allowed to pass through the interface unrestricted is 1250 bytes, calculated as follows:

\[
\frac{100,000 \text{ bps} \times 0.1 \text{ s}}{8 \text{ bits per byte}} = 1250 \text{ bytes}
\]

2. In theory, a 10 x MTU burst size would allow up to 15,000 bytes to pass unrestricted. However, the maximum configurable burst-size limit for MX Series, M120, and M320 routers is 600 ms of the bandwidth limit. If you configure the maximum burst-size limit of 600 ms of the bandwidth limit, the maximum amount of traffic allowed to pass through the interface unrestricted is 7500 bytes, calculated as follows:

\[
\frac{100,000 \text{ bps} \times 0.6 \text{ s}}{8 \text{ bits per byte}} = 7500 \text{ bytes}
\]
On a Gigabit Ethernet interface, a configured burst-size limit of 600 ms creates a burst duration of 60 μs at Gigabit Ethernet line rate, calculated as follows:

\[
\frac{7500 \text{ bytes}}{1 \text{ Gbps}} = \frac{60,000 \text{ bits}}{1,000,000,000 \text{ bps}} = 0.00006 \text{ s} = 60 \mu\text{s}
\]

3. If the downstream device is unable to handle the amount of bursty traffic allowed using the initial burst size configuration, reduce the burst-size limit until you achieve acceptable results.

5 ms Method for Selecting Initial Burst Size for Gigabit Ethernet Interface with 200 Mbps Bandwidth

The following sequence illustrates the use of the 5 ms method for selecting an initial burst size for test configurations for a Gigabit Ethernet interface configured with a 200 Mbps bandwidth limit. This example calculation shows how a larger burst-size limit can affect the measured bandwidth rate.

1. If you configure a 5 ms burst-size limit, the maximum amount of traffic allowed to pass through the interface unrestricted is 125,000 bytes (approximately 83 1500-byte packets), calculated as follows:

\[
\frac{200,000,000 \text{ bps} \times 0.005 \text{ s}}{8 \text{ bits per byte}} = 125,000 \text{ bytes}
\]

On a Gigabit Ethernet interface, a configured burst-size limit of 5 ms creates a burst duration of 1 ms at Gigabit Ethernet line rate, calculated as follows:

\[
\frac{125,000 \text{ bytes}}{1 \text{ Gbps}} = \frac{1,000,000 \text{ bits}}{1,000,000,000 \text{ bps}} = 0.001 \text{ s} = 1 \text{ ms}
\]

The average bandwidth rate in 1 second becomes 200 Mbps + 1 Mbps = 201 Mbps, which is a minimal increase over the configured bandwidth limit at 200 Mbps.

2. If you configure a 600 ms burst-size limit, the maximum amount of traffic allowed to pass through the interface unrestricted is 15 Mbytes (approximately 10,000 1500-byte packets), calculated as follows:

\[
\frac{200,000,000 \text{ bps} \times 0.6 \text{ s}}{8 \text{ bits per byte}} = 15 \text{ Mbytes}
\]
On a Gigabit Ethernet interface, a configured burst-size limit of 600 ms creates a burst duration of 120 ms at Gigabit Ethernet line rate, calculated as follows:

\[
\frac{15,000,000 \text{ bytes}}{8 \text{ bits per byte}} = \frac{120,000,000 \text{ bits}}{1 \text{ Gbps}} = 0.12 \text{ s} = 120 \text{ ms}
\]

The average bandwidth rate in 1 second becomes 200 Mbps + 120 Mbps = 320 Mbps, which is much higher than the configured bandwidth limit at 200 Mbps.

200 Mbps Bandwidth Limit, 5 ms Burst Duration

If a 200 Mbps bandwidth limit is configured with a 5 ms burst size, the calculation becomes 200 Mbps x 5 ms = 125 Kbytes, which is approximately 83 1500-byte packets. If the 200 Mbps bandwidth limit is configured on a Gigabit Ethernet interface, the burst duration is 125000 bytes / 1 Gbps = 1 ms at the Gigabit Ethernet line rate.

200 Mbps Bandwidth Limit, 600 ms Burst Duration

If a large burst size is configured at 600 ms with the bandwidth limit configured at 200 Mbps, the calculation becomes 200 Mbps x 600 ms = 15 Mbytes. This creates a burst duration of 120 ms at the Gigabit Ethernet line rate. The average bandwidth rate in 1 second becomes 200 Mbps + 15 Mbytes = 320 Mbps, which is much higher than the configured bandwidth limit at 200 Mbps. This example shows that a larger burst size can affect the measured bandwidth rate.

RELATED DOCUMENTATION

- Policer Implementation Overview | 1652
- Understanding the Benefits of Policers and Token Bucket Algorithms | 1661
Controlling Network Access Using Traffic Policing Overview

IN THIS SECTION

- Congestion Management for IP Traffic Flows | 1669
- Traffic Limits | 1670
- Traffic Color Marking | 1671
- Forwarding Classes and PLP Levels | 1672
- Policer Application to Traffic | 1673

Congestion Management for IP Traffic Flows

Traffic policing, also known as rate limiting, is an essential component of network access security that is designed to thwart denial-of-service (DoS) attacks. Traffic policing enables you to control the maximum rate of IP traffic sent or received on an interface and also to partition network traffic into multiple priority levels, also known as classes of service. A policer defines a set of traffic rate limits and sets consequences for traffic that does not conform to the configured limits. Packets in a traffic flow that do not conform to traffic limits are either discarded or marked with a different forwarding class or packet loss priority (PLP) level.

With the exception of policers configured to rate-limit aggregate traffic (all protocol families and logical interfaces configured on a physical interface), you can apply a policer to all IP packets in a Layer 2 or Layer 3 traffic flow at a logical interface.

With the exception of policers configured to rate-limit based on physical interface media rate, you can apply a policer to specific IP packets in a Layer 3 traffic flow at a logical interface by using a stateless firewall filter.

You can apply a policer to inbound or outbound interface traffic. Policers applied to inbound traffic help to conserve resources by dropping traffic that does not need to be routed through a network. Dropping inbound traffic also helps to thwart denial-of-service (DoS) attacks. Policers applied to outbound traffic control the bandwidth used.

NOTE: Traffic policers are instantiated on a per-PIC basis. Traffic policing does not work when the traffic for one local policy decision function (L-PDF) subscriber is distributed over multiple Multiservices PICs in an AMS group.
Traffic Limits

Junos OS policers use a token bucket algorithm to enforce a limit on an average transmit or receive rate of traffic at an interface while allowing bursts of traffic up to a maximum value based on the configured bandwidth limit and configured burst size. The token bucket algorithm offers more flexibility than a leaky bucket algorithm in that you can allow a specified traffic burst before starting to discard packets or apply a penalty such as packet output-queuing priority or packet-drop priority.

In the token-bucket model, the bucket represents the rate-limiting function of the policer. Tokens are added to the bucket at a fixed rate, but once the specified depth of the bucket is reached, tokens allocated after cannot be stored and used. Each token represents a “credit” for some number of bits, and tokens in the bucket are “cashed in” for the ability to transmit or receive traffic at the interface. When sufficient tokens are present in the bucket, a traffic flow continues unrestricted. Otherwise, packets might be dropped or else re-marked with a lower forwarding class, a higher packet loss priority (PLP) level, or both.

- The rate at which tokens are added to the bucket represents the highest average transmit or receive rate in bits per second allowed for a given service level. You specify this highest average traffic rate as the bandwidth limit of the policer. If the traffic arrival rate (or fixed bits-per-second) is so high that at some point insufficient tokens are present in the bucket, then the traffic flow is no longer conforming to the traffic limit. During periods of relatively low traffic (traffic that arrives at or departs from the interface at average rates below the token arrival rate), unused tokens accumulate in the bucket.

- The depth of the bucket in bytes controls the amount of back-to-back bursting allowed. You specify this factor as the burst-size limit of the policer. This second limit affects the average transmit or receive rate by limiting the number of bytes permitted in a transmission burst for a given interval of time. Bursts exceeding the current burst-size limit are dropped until there are sufficient tokens available to permit the burst to proceed.

Figure 80: Network Traffic and Burst Rates

As shown in the figure above, a UPC bar code is a good facsimile of what traffic looks like on the line; an interface is either transmitting (bursting at full rate) or it is not. The black lines represent periods of data transmission and the white space represents periods of silence when the token bucket can replenish.

Depending on the type of policer used, packets in a policed traffic flow that surpasses the defined limits might be implicitly set to a higher PLP level, assigned to a configured forwarding class or set to a configured
PLP level (or both), or simply discarded. If packets encounter downstream congestion, packets with a low PLP level are less likely to be discarded than those with a medium-low, medium-high, or high PLP level.

Traffic Color Marking

Based on the particular set of traffic limits configured, a policer identifies a traffic flow as belonging to one of either two or three categories that are similar to the colors of a traffic light used to control automobile traffic.

- **Single-rate two-color**—A two-color marking policer (or "policer" when used without qualification) meters the traffic stream and classifies packets into two categories of packet loss priority (PLP) according to a configured bandwidth and burst-size limit. You can mark packets that exceed the bandwidth and burst-size limit in some way, or simply discard them.

 A policer is most useful for metering traffic at the port (physical interface) level.

- **Single-rate three-color**—This type of policer is defined in RFC 2697, *A Single Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on the configured committed information rate (CIR), committed burst size (CBS), and the excess burst size (EBS). Traffic is marked as belonging to one of three categories (green, yellow, or red) based on whether the packets arriving are below the CBS (green), exceed the CBS (yellow) but not the EBS, or exceed the EBS (red).

 A single-rate three-color policer is most useful when a service is structured according to packet length and not peak arrival rate.

- **Two-rate three-color**—This type of policer is defined in RFC 2698, *A Two Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on the configured CIR and peak information rate (PIR), along with their associated burst sizes, the CBS and peak burst size (PBS). Traffic is marked as belonging to one of three categories (green, yellow, or red) based on whether the packets arriving are below the CIR (green), exceed the CIR (yellow) but not the PIR, or exceed the PIR (red).

 A two-rate three-color policer is most useful when a service is structured according to arrival rates and not necessarily packet length.

Policer actions are implicit or explicit and vary by policer type. The term *Implicit* means that Junos assigns the loss-priority automatically. *Table 111 on page 1672* describes the policer actions.
Table 111: Policer Actions

<table>
<thead>
<tr>
<th>Policer</th>
<th>Marking</th>
<th>Implicit Action</th>
<th>Configurable Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-rate two-color</td>
<td>Green (Conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (Nonconforming)</td>
<td>Assign low or high loss priority, assign a forwarding class, or discard on some platforms, you can assign medium-low or medium-high loss priority</td>
<td></td>
</tr>
<tr>
<td>Single-rate three-color</td>
<td>Green (Conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Yellow (Above the CIR and CBS)</td>
<td>Assign medium-high loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (Above the EBS)</td>
<td>Assign high loss priority</td>
<td>Discard</td>
</tr>
<tr>
<td>Two-rate three-color</td>
<td>Green (Conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Yellow (Above the CIR and CBS)</td>
<td>Assign medium-high loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (Above the PIR and PBS)</td>
<td>Assign high loss priority</td>
<td>Discard</td>
</tr>
</tbody>
</table>

Forwarding Classes and PLP Levels

A packet’s forwarding class assignment and PLP level are used by the Junos OS class of service (CoS) features. The Junos OS CoS features include a set of mechanisms that you can use to provide differentiated services when best-effort traffic delivery is insufficient. For router (and switch) interfaces that carry IPv4, IPv6, and MPLS traffic, you can configure CoS features to take in a single flow of traffic entering at the edge of your network and provide different levels of service across the network—internal forwarding and scheduling (queuing) for output—based on the forwarding class assignments and PLP levels of the individual packets.

NOTE: Forwarding-class or loss-priority assignments performed by a policer or a stateless firewall filter override any such assignments performed on the ingress by the CoS default IP precedence classification at all logical interfaces or by any configured behavior aggregate (BA) classifier that is explicitly mapped to a logical interface.
Based on CoS configurations, packets of a given forwarding class are transmitted through a specific output queue, and each output queue is associated with a transmission service level defined in a scheduler.

Based on other CoS configurations, when packets in an output queue encounter congestion, packets with higher loss-priority values are more likely to be dropped by the random early detection (RED) algorithm. Packet loss priority values affect the scheduling of a packet without affecting the packet's relative ordering within the traffic flow.

Policer Application to Traffic

After you have defined and named a policer, it is stored as a template. You can later use the same policer name to provide the same policer configuration each time you want to use it. This eliminates the need to define the same policer values more than once.

You can apply a policer to a traffic flow in either of two ways:

- You can configure a standard stateless firewall filter that specifies the policer **policer-name** nonterminating action or the three-color-policer (**single-rate | two-rate**) **policer-name** nonterminating action. When you apply the standard filter to the input or output at a logical interface, the policer is applied to all packets of the filter-specific protocol family that match the conditions specified in the filter configuration.

 With this method of applying a policer, you can define specific classes of traffic on an interface and apply traffic rate-limiting to each class.

- You can apply a policer directly to an interface so that traffic rate-limiting applies to all traffic on that interface, regardless of protocol family or any match conditions.

You can configure policers at the queue, logical interface, or Layer 2 (MAC) level. Only a single policer is applied to a packet at the egress queue, and the search for policers occurs in this order:

- Queue level
- Logical interface level
- Layer 2 (MAC) level

RELATED DOCUMENTATION

- Stateless Firewall Filter Overview | 722
- Traffic Policer Types | 1674
- Order of Policer and Firewall Filter Operations | 1678
- Packet Flow Through the Junos OS CoS Process Overview
Traffic Policer Types

IN THIS SECTION

- Single-Rate Two-Color Policers | 1674
- Three-Color Policers | 1675
- Hierarchical Policers | 1675
- Two-Color and Three-Color Policer Options | 1676

Single-Rate Two-Color Policers

You can use a single-rate two-color policer, or "policer" when used without qualification, to rate-limit a traffic flow to an average bits-per-second arrival rate (specified by the single specified bandwidth limit) while allowing bursts of traffic for short periods (controlled by the single specified burst-size limit). This type of policer categorizes a traffic flow as either green (conforming) or red (nonconforming). Packets in a green flow are implicitly set to a low loss priority and then transmitted. Packets in a red flow are handled according to actions specified in the policer configuration. Packets in a red flow can be marked—set to a specified forwarding class, set to a specified loss priority, or both—or they can be discarded.

A single-rate two-color policer is most useful for metering traffic at the port (physical interface) level.

Basic Single-Rate Two-Color Policer

You can apply a basic single-rate two-color policer to Layer 3 traffic in either of two ways: as an interface policer or as a firewall filter policer. You can apply the policer as an interface policer, meaning that you apply the policer directly to a logical interface at the protocol family level. If you want to apply the policer to selected packets only, you can apply the policer as a firewall filter policer, meaning that you reference the policer in a stateless firewall filter term and then apply the filter to a logical interface at the protocol family level.

Bandwidth Policer

A bandwidth policer is simply a single-rate two-color policer that is defined using a bandwidth limit specified as a percentage value rather than as an absolute number of bits per second. When you apply the policer (as an interface policer or as a firewall filter policer) to a logical interface at the protocol family level, the effective bandwidth limit is calculated based on either the physical interface media rate or the logical interface configured shaping rate.

Logical Bandwidth Policer

A logical bandwidth policer is a bandwidth policer for which the effective bandwidth limit is calculated based on the logical interface configured shaping rate. You can apply the policer as a firewall filter policer
only, and the firewall filter must be configured as an interface-specific filter. When you apply an
interface-specific filter to multiple logical interfaces on supported routing platforms, any count or policer
actions act on the traffic stream entering or exiting each individual interface, regardless of the sum of
traffic on the multiple interfaces.

Three-Color Policers

The Junos OS supports two types of three-color policers: single-rate and two-rate. The main difference
between a single-rate and a two-rate policer is that the single-rate policer allows bursts of traffic for short
periods, while the two-rate policer allows more sustained bursts of traffic. Single-rate policing is implemented
using a single token-bucket model, so that periods of relatively low traffic must occur between traffic
bursts to allow the token bucket to refill. Two-rate policing is implemented using a dual token-bucket
model, which allows bursts of traffic for longer periods.

Single-Rate Three-Color Policers

The single-rate three-color type of policer is defined in RFC 2697, A Single Rate Three Color Marker. You
use this type of policer to rate-limit a traffic flow to a single rate and three traffic categories (green, yellow,
and red). A single-rate three-color policer defines a committed bandwidth limit and burst-size limit plus an
excess burst-size limit. Traffic that conforms to the committed traffic limits is categorized as green
(conforming). Traffic that conforms to the bandwidth limit while allowing bursts of traffic as controlled by
the excess burst-size limit is categorized as yellow. All other traffic is categorized as red.

A single-rate three-color policer is most useful when a service is structured according to packet length,
not peak arrival rate.

Two-Rate Three-Color Policers

The two-rate three-color type of policer is defined in RFC 2698, A Two Rate Three Color Marker. You use
this type of policer to rate-limit a traffic flow to two rates and three traffic categories (green, yellow, and
red). A two-rate three-color policer defines a committed bandwidth limit and burst-size limit plus a peak
bandwidth limit and burst-size limit. Traffic that conforms to the committed traffic limits is categorized as green
(conforming). Traffic that exceeds the committed traffic limits but remains below the peak traffic
limits is categorized as yellow. Traffic that exceeds the peak traffic limits is categorized as red.

A two-rate three-color policer is most useful when a service is structured according to arrival rates and
not necessarily packet length.

Hierarchical Policers

You can use a hierarchical policer to rate-limit ingress Layer 2 traffic at a physical or logical interface and
apply different policing actions based on whether the packets are classified for expedited forwarding (EF)
or for a lower priority output queue. This feature is supported on SONET interfaces hosted on M40e,
M120, and M320 edge routers with incoming Flexible PIC Concentrators (FPCs) as SFPC and outgoing
FPCs as FFPC, and on T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs.
Two-Color and Three-Color Policer Options

IN THIS SECTION

- Logical Interface (Aggregate) Policers | 1676
- Physical Interface Policers | 1676
- Policers Applied to Layer 2 Traffic | 1677
- Multifield Classification | 1677

Both two-color and three-color policers can be configured with the following options:

Logical Interface (Aggregate) Policers

A logical interface policer—also called an aggregate policer—is a two-color or three-color policer that you can apply to multiple protocol families on the same logical interface without creating multiple instances of the policer. You apply a logical interface policer directly to a logical interface configuration (and not by referencing the policer in a stateless firewall filter and then applying the filter to the logical interface).

- You can apply the policer at the interface logical unit level to rate-limit all traffic types, regardless of the protocol family.

 When applied in this manner, the logical interface policer will be used by all traffic types (inet, inet6, etc.) and across all layers (layer 2, layer 3) no matter where the policer is attached on the logical interface.

- You can also apply the policer at the logical interface protocol family level, to rate-limit traffic for a specific protocol family.

You can apply a logical interface policer to unicast traffic only. For information about configuring a stateless firewall filter for flooded traffic, see "Applying Forwarding Table Filters" in the "Traffic Sampling, Forwarding, and Monitoring" section of the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide.

Physical Interface Policers

A physical interface policer is a two-color or three-color policer that applies to all logical interfaces and protocol families configured on a physical interface, even if the logical interfaces belong to different routing instances. You apply a physical interface policer to a logical interface at the protocol level through a physical interface filter only, but rate limiting is performed aggregately for all logical interfaces and protocol families configured on the underlying physical interface.

This feature enables you to use a single policer instance to perform aggregate policing for different protocol families and different logical interfaces on the same physical interface.
Policers Applied to Layer 2 Traffic

In addition to hierarchical policing, you can also apply single-rate two-color policers and three-color policers (both single-rate and two-rate) to Layer 2 input or output traffic. You must configure the two-color or three-color policer as a logical interface policer and reference the policer in the interface configuration at the logical unit level, and not at the protocol level. You cannot apply a two-color or three-color policer to Layer 2 traffic as a stateless firewall filter action.

Multifield Classification

Like behavior aggregate (BA) classification, which is sometimes referred to as class-of-service (CoS) value traffic classification, multifield classification is a method of classifying incoming traffic by associating each packet with a forwarding class, a packet loss priority level, or both. The CoS scheduling configuration assigns packets to output queues based on forwarding class. The CoS random early detection (RED) process uses the drop probability configuration, output queue fullness percentage, and packet loss priority to drop packets as needed to control congestion at the output stage.

BA classification and multifield classification use different fields of a packet to perform traffic classification. BA classification is based on a CoS value in the IP packet header. Multifield classification can be based on multiple fields in the IP packet header, including CoS values. Multifield classification is used instead of BA classification when you need to classify packets based on information in the packet other than the CoS values only. Multifield classification is configured using a stateless firewall filter term that matches on any packet header fields and associates matched packets with a forwarding class, a loss priority, or both. The forwarding class or loss priority can be set by a firewall filter action or by a policer referenced as a firewall filter action.

RELATED DOCUMENTATION

Controlling Network Access Using Traffic Policing Overview	1669
Order of Policer and Firewall Filter Operations	1678
Two-Color Policer Configuration Overview	1763
Three-Color Policer Configuration Overview	1877
Hierarchical Policer Configuration Overview	1680
Two-Color Policing at Layer 2 Overview	1735
Three-Color Policing at Layer 2 Overview	1737
Order of Policer and Firewall Filter Operations

You can apply both a traffic policer and a stateless firewall filter (with or without policing actions) to a single logical interface at the same time. In this case, the order of precedence of operations is such that policers applied directly to the logical interface are evaluated before input filters but after output filters.

- If an input firewall filter is configured on the same logical interface as a policer, the policer is executed first.
- If an output firewall filter is configured on the same logical interface as a policer, the firewall filter is executed first.

Figure 81 on page 1678 illustrates the order of policer and firewall filter processing at the same interface.

Figure 81: Incoming and Outgoing Policers and Firewall Filters

RELATED DOCUMENTATION

How Standard Firewall Filters Evaluate Packets	738
Comparison of Routing Policies and Firewall Filters	10
Two-Color Policer Configuration Overview	1763
Three-Color Policer Configuration Overview	1877
Hierarchical Policer Configuration Overview	1680

Understanding the Frame Length for Policing Packets

Table 112 on page 1678 describes the packet lengths that are considered when you use a traffic policer.

Table 112: Packet Lengths Considered for Traffic Policers

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Policing Packet Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>L3 frame including header</td>
</tr>
</tbody>
</table>
Table 112: Packet Lengths Considered for Traffic Policers (continued)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Policing Packet Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>L3 frame including header</td>
</tr>
<tr>
<td>IPv6</td>
<td>L3 frame including header</td>
</tr>
<tr>
<td>MPLS</td>
<td>L3 frame including header</td>
</tr>
<tr>
<td>VPLS</td>
<td>MAC</td>
</tr>
<tr>
<td>Bridge</td>
<td>MAC</td>
</tr>
<tr>
<td>CCC</td>
<td>MAC</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

Policer Overhead to Account for Rate Shaping in the Traffic Manager | 1866

Supported Standards for Policing

Three-color policers are part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment, which is described and defined in the following RFCs:

- RFC 2474, *Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers*
- RFC 2475, *An Architecture for Differentiated Service*
- RFC 2597, *Assured Forwarding PHB Group*
- RFC 2598, *An Expedited Forwarding PHB*
- RFC 2698, *A Two Rate Three Color Marker*

In a DiffServ environment, the most significant 6 bits of the type-of-service (ToS) octet in the IP header contain a value called the *Differentiated Services code point* (DSCP). Within the DSCP field, the most significant 3 bits are interpreted as the *IP precedence* field, which can be used to select different per-hop forwarding treatments for the packet.
Hierarchical Policer Configuration Overview

Hierarchically rate-limits Layer 2 ingress traffic for all protocol families. Cannot be applied to egress traffic, Layer 3 traffic, or at a specific protocol level of the interface hierarchy.

Supported on the following interfaces:

- SONET interfaces hosted on M40e, M120, and M320 edge routers with incoming FPCs as SFPC and outgoing FPCs as FFPC.
- SONET interfaces hosted on T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs.
- Ethernet interfaces on Gigabit Ethernet Intelligent Queuing 2 (IQ2) and Ethernet Enhanced IQ2 (IQ2E) PICs.
- MX Series routers with MPC or DPC.

Table 113 on page 1680 describes the hierarchy levels at which you can configure and apply hierarchical policers.

Table 113: Hierarchical Policer Configuration and Application Summary

<table>
<thead>
<tr>
<th>Policier Configuration</th>
<th>Layer 2 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical Policer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aggregate and premium policing components of a hierarchical policer:

```plaintext
[edit firewall]
  hierarchical-policer policer-name
    {
      aggregate {
        if-exceeding {
          bandwidth-limit bps;
          burst-size-limit bytes;
        }
      }
      then {
        discard;
        forwarding-class class-name;
        loss-priority supported-value;
      }
    }
```

Option A—Apply directly to Layer 2 input traffic on a physical interface:

```plaintext
[edit interfaces]
  interface-name {
    layer2-policer {
      input-hierarchical-policer policer-name;
    }
  }
```

Hierarchically rate-limit Layer 2 ingress traffic for all protocol families and logical interfaces configured on a physical interface.

Include the `layer2-policer` configuration statement at the `interface-name` hierarchy level.

NOTE: If you apply a hierarchical policer at a physical interface, you cannot also apply a hierarchical policer to any of the member logical interfaces.
Table 113: Hierarchical Policer Configuration and Application Summary (continued)

<table>
<thead>
<tr>
<th>Policier Configuration</th>
<th>Layer 2 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>premium {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>if-exceeding {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bandwidth-limit bps;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>burst-size-limit bytes;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>then {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>discard;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option B—Apply directly to Layer 2 input traffic on a logical interface.

```
[edit interfaces]
interface-name {
  unit unit-number {
    layer2-policer {
      input-hierarchical-policer policer-name;
    }
  }
}
```

Hierarchically rate-limit Layer 2 ingress traffic for all protocol families configured on a specific logical interface. Include the `layer2-policer` configuration statement at the `[edit interfaces interface-name unit unit-number]` hierarchy level.

NOTE: You must configure at least one protocol family for the logical interface.

RELATED DOCUMENTATION

- Hierarchical Policers | 1723
Packets-Per-Second (pps)-Based Policer Overview

In a modern network environment, both denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks are very common. Over time, these attacks have evolved from brute force types of attacks, where the attacker might try to overrun a connection’s available bandwidth with a vast amount of directed traffic to more low-and-slow attacks that use smaller packets, sent at a slower rate to target specific resources in order to deny service.

Traffic policers, both interface-based and filter-based, have been available to mitigate brute force types of DDoS attacks since Junos OS Release 9.6. These policers operate by limiting the traffic rate through a logical interface or by limiting the traffic rate as the "nonterminating action" on page 795 within a firewall filter.

In Junos OS Release 15.1 and earlier releases, there were two parameters available for policers: bandwidth and burst-size. The unit of measure for the bandwidth parameter is bits per second (bps), and the unit of measure for the burst-size parameter is bytes (B). See "Policer Bandwidth and Burst-Size Limits" on page 1713 for details. Policers defined within these parameters are not effective at stopping low-and-slow types of DDoS attacks.

Starting in Junos OS Release 16.1, traffic policers can be defined using packets per second (pps) with the pps-limit and packet-burst statements. The unit of measure for pps-limit is packets per second (pps), and the unit of measure for packet-burst is packets. These pps-based policers are more effective at mitigating low-and-slow types of DDoS attacks.

Policers configured with the if-exceeding-pps statement are applied in the same manner and in the same locations as bandwidth-based policers. Pps-based policers cannot be applied simultaneously with bandwidth-based policers. Only one policer can be applied at a time except for hierarchical policers, which allow the configuration of two policing actions based on traffic classification.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>if-exceeding-pps</th>
<th>2240</th>
</tr>
</thead>
<tbody>
<tr>
<td>pps-limit</td>
<td>2282</td>
</tr>
<tr>
<td>packet-burst</td>
<td>2257</td>
</tr>
</tbody>
</table>
Guidelines for Applying Traffic Policers

The following general guidelines pertain to applying traffic policers:

- Only one type of policer can be applied to the input or output of the same physical or logical interface. For example, you are not allowed to apply a policer and a hierarchical policer in the same direction at the same logical interface.

- Chaining of policers—that is, applying policers to both a port and the logical interfaces of that port—is not allowed.

- A maximum of 64 policers is supported per physical or logical interface, provided no behavior aggregate (BA) classification—traffic classification based on CoS values in the packet headers—is applied to the logical interface.

- The policer should be independent of BA classification. Without BA classification, all traffic on an interface is treated either as expedited forwarding (EF) or non-EF, based on the configuration. With BA classification, a physical or logical interface can support up to 64 policers. The interface might be a physical interface or logical interface.

- With BA classification, the miscellaneous traffic (the traffic not matching any of the BA classification DSCP/EXP bits) is policed as non-EF traffic. No separate policers are installed for this traffic.

- Policers can be applied to unicast packets only. For information about configuring a filter for flooded traffic, see Applying Forwarding Table Filters.

RELATED DOCUMENTATION

Two-Color Policer Configuration Overview	1763
Three-Color Policer Configuration Overview	1877
Hierarchical Policer Configuration Overview	1680
Policer Support for Aggregated Ethernet Interfaces Overview

Aggregated interfaces support single-rate policers, three-color marking policers, two-rate three-color marking policers, hierarchical policers, and percentage-based policers. By default, policer bandwidth and burst-size applied on aggregated bundles is not matched to the user-configured bandwidth and burst-size.

You can configure interface-specific policers applied on an aggregated Ethernet bundle or an aggregated SONET bundle to match the effective bandwidth and burst-size to user-configured values. The shared-bandwidth-policer statement is required to achieve this match behavior.

This capability applies to all interface-specific policers of the following types: single-rate policers, single-rate three-color marking policers, two-rate three-color marking policers, and hierarchical policers. Percentage-based policers match the bandwidth to the user-configured values by default, and do not require shared-bandwidth-policer configuration. The shared-bandwidth-policer statement causes a split in burst-size for percentage-based policers.

NOTE: This feature is supported on the following platforms: T Series routers (excluding T4000 Type 5 FPCs), M120, M10i, M7i (CFEB-E only), M320 (SFPC only), MX240, MX480, and MX960 with DPC, MIC, and MPC interfaces, and EX Series switches.

The following usage scenarios are supported:

- Interface policers used by the following configuration:

 [edit] interfaces (aeX | asX) unit unit-num family family policer [input | output | arp]

- Policers and three-color policers (both single-rate three-color marking and two-rate three-color marking) used inside interface-specific filters; that is, filters that have an interface-specific keyword and are used by the following configuration:

 [edit] interfaces (aeX | asX) unit unit-num family family filter [input | output]

- Common-edge service filters, which are derived from CLI-configured filters and thus inherit interface-specific properties. All policers and three-color policers used by these filters are also affected.

The following usage scenarios are not supported:

- Policers and three-color policers used inside filters that are not interface specific; such a filter is meant to be shared across multiple interfaces.

- Any implicit policers or policers that are part of implicit filters; for example, the default ARP policer applied to an aggregate Ethernet interface. Such a policer is meant to be shared across multiple interfaces.

- Prefix-specific action policers.
To configure this feature, include the `shared-bandwidth-policer` statement at the following hierarchy levels: `[edit firewall policer policer-name]`, `[edit firewall three-color-policer policer-name]`, or `[edit firewall hierarchical-policer policer-name]`.

** RELATED DOCUMENTATION **

| shared-bandwidth-policer | 2290 |

Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface

IN THIS SECTION

- Requirements | 1685
- Overview | 1685
- Configuration | 1686
- Verification | 1692

This example shows how to configure a single-rate two-color policer as a physical interface policer.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

A physical interface policer specifies rate-limiting for aggregate traffic, which encompasses all protocol families and logical interfaces configured on a physical interface, even if the interfaces belong to different routing instances.

You can apply a physical interface policer to Layer 3 input or output traffic only by referencing the policer from a stateless firewall filter that is configured for specific a specific protocol family (not for family any) and configured as a physical interface filter. You configure the filter terms with match conditions that select the types of packets you want to rate-limit, and you specify the physical interface policer as the action to apply to matched packets.
Topology

The physical interface policer in this example, **shared-policer-A**, rate-limits to 10,000,000 bps and permits a maximum burst of traffic of 500,000 bytes. You configure the policer to discard packets in nonconforming flows, but you could instead configure the policer to re-mark nonconforming traffic with a forwarding class, a packet loss priority (PLP) level, or both.

To be able to use the policer to rate-limit IPv4 traffic, you reference the policer from an IPv4 physical interface filter. For this example, you configure the filter to pass the policer IPv4 packets that meet either of the following match terms:

- Packets received through TCP and with the IP precedence fields **critical-ecp** (0xa0), **immediate** (0x40), or **priority** (0x20)
- Packets received through TCP and with the IP precedence fields **internet-control** (0xc0) or **routine** (0x00)

You could also reference the policer from physical interface filters for other protocol families.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces so-1/0/0 unit 0 family inet address 192.168.1.1/24
set interfaces so-1/0/0 unit 0 family vpls
set interfaces so-1/0/0 unit 0 family mpls
set firewall policer shared-policer-A physical-interface-policer
set firewall policer shared-policer-A if-exceeding bandwidth-limit 100m burst-size-limit 500k
```
set firewall policer shared-policer-A then discard
set firewall family inet filter ipv4-filter physical-interface-filter
set firewall family inet filter ipv4-filter term tcp-police-1 from precedence [critical-ecp immediate priority]
set firewall family inet filter ipv4-filter term tcp-police-1 from protocol tcp
set firewall family inet filter ipv4-filter term tcp-police-1 then policer shared-policer-A
set firewall family inet filter ipv4-filter term tcp-police-2 from precedence [internet-control routine]
set firewall family inet filter ipv4-filter term tcp-police-2 from protocol tcp
set firewall family inet filter ipv4-filter term tcp-police-2 then policer shared-policer-A
set interfaces so-1/0/0 unit 0 family inet filter input ipv4-filter

Configuring the Logical Interfaces on the Physical Interface

Step-by-Step Procedure

To configure the logical interfaces on the physical interface:

1. Enable configuration of logical interfaces.

 [edit]
 user@host# edit interfaces so-1/0/0

2. Configure protocol families on logical unit 0.

 [edit interfaces so-1/0/0]
 user@host# set unit 0 family inet address 192.168.1.1/24
 user@host# set unit 0 family vpls

3. Configure protocol families on logical unit 1.

 [edit interfaces so-1/0/0]
 user@host# set unit 1 family mpls

Results

Confirm the configuration of the firewall filter by entering the show interfaces configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

[edit]
user@host# show interfaces
so-1/0/0
Configuring a Physical Interface Policer

Step-by-Step Procedure

To configure a physical interface policer:

1. Enable configuration of the two-color policer.

   ```
   [edit]
   user@host# edit firewall policer shared-policer-A
   ```

2. Configure the type of two-color policer.

   ```
   [edit firewall policer shared-policer-A]
   user@host# set physical-interface-policer
   ```

3. Configure the traffic limits and the action for packets in a nonconforming traffic flow.

   ```
   [edit firewall policer shared-policer-A]
   user@host# set if-exceeding bandwidth-limit 100m burst-size-limit 500k
   user@host# set then discard
   ```

 For a physical interface filter, the actions you can configure for packets in a nonconforming traffic flow are to discard the packets, assign a forwarding class, assign a PLP value, or assign both a forwarding class and a PLP value.

Results
Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer shared-policer-A {
    physical-interface-policer;
    if-exceeding {
        bandwidth-limit 100m;
        burst-size-limit 500k;
    }
    then discard;
}
```

Configuring an IPv4 Physical Interface Filter

Step-by-Step Procedure

To configure a physical interface policer as the action for terms in an IPv4 physical interface policer:

1. Configure a standard stateless firewall filter under a specific protocol family.

```
[edit]
user@host# edit firewall family inet filter ipv4-filter
```

You cannot configure a physical interface firewall filter for `family any`.

2. Configure the filter as a physical interface filter so that you can apply the physical interface policer as an action.

```
[edit firewall family inet filter ipv4-filter]
user@host# set physical-interface-filter
```

3. Configure the first term to match IPv4 packets received through TCP with the IP precedence fields `critical-ecp`, `immediate`, or `priority` and to apply the physical interface policer as a filter action.

```
[edit firewall family inet filter ipv4-filter]
user@host# set term tcp-police-1 from precedence [ critical-ecp immediate priority ]
user@host# set term tcp-police-1 from protocol tcp
user@host# set term tcp-police-1 then policer shared-policer-A
```
4. Configure the first term to match IPv4 packets received through TCP with the IP precedence fields **internet-control** or **routine** and to apply the physical interface policer as a filter action.

```
[edit firewall family inet filter ipv4-filter]
user@host# set term tcp-police-2 from precedence [ internet-control routine ]
user@host# set term tcp-police-2 from protocol tcp
user@host# set term tcp-police-2 then policer shared-policer-A
```

Results

Confirm the configuration of the firewall filter by entering the **show firewall** configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
    filter ipv4-filter {
        physical-interface-filter;
        term tcp-police-1 {
            from {
                precedence [ critical-ecp immediate priority ];
                protocol tcp;
            }
            then policer shared-policer-A;
        }
        term tcp-police-2 {
            from {
                precedence [ internet-control routine ];
                protocol tcp;
            }
            then policer shared-policer-A;
        }
    }
}
policer shared-policer-A {
    physical-interface-policer;
    if-exceeding {
        bandwidth-limit 100m;
        burst-size-limit 500k;
    }
    then discard;
}
```
Applying the IPv4 Physical interface Filter to Reference the Physical Interface Policers

Step-by-Step Procedure

To apply the physical interface filter so it references the physical interface policers:

1. Enable configuration of IPv4 on the logical interface.

   ```
   [edit]
   user@host# edit interfaces so-1/0/0 unit 0 family inet
   ```

2. Apply the IPv4 physical interface filter in the input direction.

   ```
   [edit interfaces so-1/0/0 unit 0 family inet]
   user@host# set filter input ipv4-filter
   ```

Results

Confirm the configuration of the firewall filter by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

   ```
   [edit]
   user@host# show interfaces
   so-1/0/0 {
   unit 0 {
   family inet {
   filter {
   input ipv4-filter;
   }
   address 192.168.1.1/24;
   }
   family vpls;
   }
   unit 1 {
   family mpls;
   }
   }
   ```

If you are done configuring the device, enter `commit` from configuration mode.
Verification

IN THIS SECTION
- Displaying the Firewall Filters Applied to an Interface | 1692
- Displaying the Number of Packets Processed by the Policer at the Logical Interface | 1692

Confirm that the configuration is working properly.

Displaying the Firewall Filters Applied to an Interface

Purpose
Verify that the firewall filter `ipv4-filter` is applied to the IPv4 input traffic at logical interface `so-1/0/0.0`.

Action
Use the `show interfaces statistics` operational mode command for logical interface `so-1/0/0.0`, and include the `detail` option. In the `Protocol inet` section of the command output, the `Input Filters` field shows that the firewall filter `ipv4-filter` is applied in the input direction.

```
user@host> show interfaces statistics so-1/0/0 detail

Logical interface so-1/0/0.0 (Index 79) (SNMP ifIndex 510) (Generation 149)
  Flags: Hardware-Down Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP
  Protocol inet, MTU: 4470, Generation: 173, Route table: 0
  Flags: Sendbcast-pkt-to-re, Protocol-Down
  Input Filters: ipv4-filter
  Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
  Generation: 163
```

Displaying the Number of Packets Processed by the Policer at the Logical Interface

Purpose
Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

Action
Use the `show firewall` operational mode command for the filter you applied to the logical interface.

```
user@host> show firewall filter ipv4-filter
```
The command output displays the name of policer (shared-policer-A), the name of the filter term (police-1) under which the policer action is specified, and the number of packets that matched the filter term. This is only the number of out-of-specification (out-of-spec) packet counts, not all packets policed by the policer.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filter Match Conditions Based on Numbers or Text Aliases</td>
<td>875</td>
</tr>
<tr>
<td>Firewall Filter Match Conditions Based on Bit-Field Values</td>
<td>876</td>
</tr>
<tr>
<td>Firewall Filter Match Conditions Based on Address Fields</td>
<td>882</td>
</tr>
<tr>
<td>Firewall Filter Match Conditions Based on Address Classes</td>
<td>892</td>
</tr>
<tr>
<td>Two-Color Policer Configuration Overview</td>
<td>1763</td>
</tr>
<tr>
<td>Physical Interface Policer Overview</td>
<td>1928</td>
</tr>
</tbody>
</table>

Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers

This topic provides a list of firewall and policier features available on PTX Packet Transport Routers and compares them with firewall and policing features on T Series routers.

Firewall Filters

Junos OS firewall and policing software on PTX Series Packet Transport Routers supports IPv4 filters, IPv6 filters, MPLS filters, CCC filters, interface policing, LSP policing, MAC filtering, ARP policing, L2 policing, and other features. Exceptions are noted below.

- PTX Series Packet Transport Routers do not support:
 - Egress Forwarding Table Filters
 - Forwarding Table Filters for MPLS/CCC
• **Family VPLS**

 - PTX Series Packet Transport Routers do not support nested firewall filters. The `filter` statement at the `[edit firewall family family-name filter filter-name term term-name]` hierarchy level is disabled.

 - Because no service PICs are present in PTX Series Packet Transport Routers, service filters are not supported for both IPv4 and IPv6 traffic. The `service-filter` statement at `[edit firewall family (inet | inet6)]` hierarchy level is disabled.

 - The PTX Series Packet Transport Routers exclude simple filters. These filters are supported on Gigabit Ethernet intelligent queuing (IQ2) and Enhanced Queuing Dense Port Concentrator (EQ DPC) interfaces only. The `simple-filter` statement at the `[edit firewall family inet]` hierarchy level is disabled.

 - Physical interface filtering is not supported. The `physical-interface-filter` statement at the `[edit firewall family family-name filter filter-name]` hierarchy level is disabled.

 - The prefix action feature is not supported on PTX Series Packet Transport Routers. The `prefix-action` statement at `[edit firewall family inet]` hierarchy level is disabled.

 - On T Series routers, you can collect a variety of information about traffic passing through the device by setting up one or more accounting profiles that specify some common characteristics of the data. The PTX Series Packet Transport Routers do not support accounting configurations for firewall filters. The `accounting-profile` statement at the `[edit firewall family family-name filter filter-name]` hierarchy level is disabled.

 - The `reject` action is not supported on the loopback (lo0) interface. If you apply a filter to the lo0 interface and the filter includes a reject action, an error message appears.

 - PTX Series Packet Transport Routers do not support aggregated ethernet logical interface match conditions. However, child link interface matching is supported.

 - PTX Series Packet Transport Routers displays both counts if two different terms in a filter have the same match condition but they have different counts. T Series routers display one count only.

 - PTX Series Packet Transport Routers do not have separate policer instances when a filter is bound to multiple interfaces. Use the `interface-specific` configuration statement to create the configuration.

 - On PTX Series Packet Transport Routers, when an ingress interface has CCC encapsulation, packets coming in through the ingress CCC interface will not be processed by the egress filters.

 - For CCC encapsulation, the PTX Series Packet Transport Routers append an extra 8 bytes for egress Layer 2 filtering. The T Series routers do not. Therefore, egress counters on PTX Series Packet Transport Routers show an extra eight bytes for each packet which impacts policer accuracy.

 - On PTX Series Packet Transport Routers, output for the `show pfe statistics traffic` CLI command includes the packets discarded by DMAC and SMAC filtering. On T Series routers, the command output does not include these discarded packets because MAC filters are implemented in the PIC and not in the FPC.

 - The last-fragment packet that goes through a PTX firewall cannot be matched by the `is-fragment` matching condition. This feature is supported on T Series routers.
A possible workaround on PTX Series Packet Transport Routers is to configure two separate terms with same the actions: one term contains a match to `is-fragment` and the other term contains a match to `fragment-offset-except 0`.

- On PTX Series Packet Transport Routers, MAC pause frames are generated when packet discards exceed 100 Mbps. This occurs only for frame sizes that are less than 105 bytes.

Traffic Policier

Junos OS firewall and policing software on PTX Series Packet Transport Routers supports IPv4 filters, IPv6 filters, MPLS filters, CCC filters, interface policing, LSP policing, MAC filtering, ARP policing, L2 policing, and other features. Exceptions are noted below.

- PTX Series Packet Transport Routers support ARP policing. T Series routers do not.
- PTX Series Packet Transport Routers do not support LSP policing.
- PTX Series Packet Transport Routers do not support the `hierarchical-policer` configuration statement.
- PTX Series Packet Transport Routers do not support the `interface-set` configuration statement. This statement groups a number of interfaces into a single, named interface set.
- PTX Series Packet Transport Routers do not support the following policer types for both normal policers and three-color policers:
 - `logical-bandwidth-policer` — Policer uses logical interface bandwidth.
 - `physical-interface-policer` — Policer is a physical interface policer.
 - `shared-bandwidth-policer` — Share policer bandwidth among bundle links.
- When a policer action and forwarding-class, loss-priority actions are configured within the same rule (a `Multifield Classification`), the PTX Series Packet Transport Routers work differently than T Series routers. As shown below, you can configure two rules in the filter to make the PTX filter behave the same as the T Series filter:

PTX Series configuration:

```plaintext
rule-1 {
    match: [x, y, z]
    action: {forwarding-class, loss-prio, next}
}
rule-2 {
    match: [x, y, z]
    action: {policer}
}
```

T Series configuration:

```plaintext
rule-1 {
    match: [x, y, z]
    action: {forwarding-class, loss-prio, next}
}
rule-2 {
    match: [x, y, z]
    action: {policer}
}```
Hierarchical Policers on ACX Series Routers Overview

On ACX Series routers, two-level ingress hierarchical policing is supported. Single-level policers define a single bandwidth profile that is used by multiple traffic flows with different priorities. Two-level policers enable a single bandwidth profile to be optimally used for multiple traffic flows, based on bandwidth and priority needs of a network. Typically, multiple traffic flows can share a single policer instance. With single-level policers, you cannot administer the method using which the committed information rate (CIR) and the peak information rate (PIR) values specified in the bandwidth profile are shared across different flows. For example, in a certain network deployment, you might want an equal or even distribution of CIR across the individual flows. In such a scenario, you cannot accomplish this requirement using single-level policers and need to configure aggregate or hierarchical policers.

NOTE: Hierarchical policers is not applicable on ACX5048 and ACX5096 routers.

Hierarchical policers control the sharing of an aggregate traffic rate across multiple micro-flows, which constitute the aggregate flow or the macro-flow. Micro-flows are defined and matched using firewall filter rules and the action of these rules point to a macro-policer. This macro-policer or aggregate policer determines the amount of aggregate bandwidth that can be used by the micro-flows that are associated with it. You can control the bandwidth to be utilized among the micro-flows in different ways.

NOTE: The hierarchical policing mechanism on ACX routers is different from the hierarching policing capability supported on MX Series routers. On MX Series routers, with a hierarchical policer, only one child or subordinate policer can be configured under a parent, top-level policer, whereas on ACX Series routers, you can aggregate and specify multiple child policers under a single parent policer. The hierarchical policing methodology on ACX routers is also called aggregate policing.
Policers are used to enforce bandwidth profiles on the transmitted traffic. A bandwidth profile is configured for each user based on the service level agreement (SLA) and the subscription plan that has been requested by the user from the service or enterprise provider. A bandwidth profile is defined using the following parameters:

- Committed information rate (CIR) denoted in bits per second (bps).
- Committed burst size (CBS) denoted in bytes.
- Excess information rate (EIR) denoted in bps.
- Excess burst size (EBS) denoted in bytes.
- Color mode (CM) can contain only one of two possible values, color-blind or color-aware. In color-aware mode, the local router can assign a higher packet loss priority, but cannot assign a lower packet loss priority. In color-blind mode, the local router ignores the preclassification of packets and can assign a higher or lower packet loss priority.

A policer is then used to enforce the bandwidth profile and perform different actions, depending on whether a certain packet confirms to the attributes in the bandwidth profile or does not satisfy the values in the configured bandwidth profile. Hierarchical policers can be considered to be an alternative technique for hierarchical queuing and shaping. However, a few differences exist between the operations that a hierarchical policer performs when matched against the processes that a hierarchical scheduler performs.

Hierarchical scheduler enables fine-grained bandwidth sharing in terms of percentages of the available bandwidth, whereas hierarchical policing only enables a coarse-grained bandwidth sharing based on the absolute micro-flow values of CIR and EIR. Hierarchical policing enables the packet loss priority (PLP) and also the forwarding class to be modified in certain cases, depending on whether the packet is confirming, exceeding, or violating the particular bandwidth profile. Hierarchical scheduler does not cause any modifications to the PLP or forwarding class values of a packet. Modifications are performed only for violating packets.

ACX routers do not support hierarchical queuing and shaping. Ingress hierarchical policers can work in conjunction with ingress, egress, or both ingress and egress hierarchical queues. For example, a two-level ingress hierarchical policer combined with a two-level egress queuing framework results in a four-level CoS capability.

**RELATED DOCUMENTATION**

| Guidelines for Configuring Hierarchical Policers on ACX Series Routers | 1698 |
| Hierarchical Policer Modes on ACX Series Routers | 1699 |
| Processing of Hierarchical Policers on ACX Series Routers | 1705 |
| Actions Performed for Hierarchical Policers on ACX Series Routers | 1706 |
| Configuring Aggregate Parent and Child Policers on ACX Series Routers | 1708 |
Guidelines for Configuring Hierarchical Policers on ACX Series Routers

Keep the following points in mind when you configure hierarchical or aggregate policers:

- You cannot specify the same policer as both a child policer and a parent policer.
- The child policers of a hierarchical policer use the same resources as normal policers. Therefore, the maximum number of child policers and normal policers in the system for bridge domains and IPv4 services is as follows:
  - **Family Bridge**
    - A group of 124 entries of policers shared with other family-bridge filters.
    - A maximum of approximately 62 policers when no other family-bridge filters with the count action for the firewall filter.
    - Along with 62 policers, you can configure up to 62 family-bridge filters without the count action for the firewall filter.
  - **Family inet**
    - A group of 250 entries of policers shared with other family-inet filters.
    - A maximum of about 125 policers when no other family-inet filters with the count action.
    - Along with 125 policers, you can define up to 62 family-inet filters without the count action.
- The hierarchical policer supports the same policer ranger and burst size behavior as normal policers.
- You must configure the same hierarchical policer mode for all child policers that refer or link with the same parent policer instance.
- You cannot use the same policer template as both a normal policer and a child policer.
- You cannot use the same base policer settings as both a normal policer and an aggregate or hierarchical policer.
- You cannot use the filter-specific statement at the [edit firewall policer policer-name] hierarchy level to instantiate an aggregate policer. Instead, the instantiation of the policer is performed by including the aggregate statement at the [edit firewall policer policer-name] hierarchy level.
- All the child policers of a certain aggregate policer must contain the same definitions of settings or attributes.
- All the policer instantiation formats are supported for the aggregate policer.
- Ingress two-level hierarchical policing is supported on all ACX routers.
- All the supported match conditions for filters used with normal policers are supported with micro-flow policers.
• You can configure up to 32 hierarchical policer instances. You can configure up to 32 child policers per macro policer instance.

• You can configure hierarchical policers on aggregated Ethernet interfaces.

**NOTE:** Hierarchical policers is not applicable on ACX5048 and ACX5096 routers.

### RELATED DOCUMENTATION

- Hierarchical Policers on ACX Series Routers Overview | 1696
- Hierarchical Policer Modes on ACX Series Routers | 1699
- Processing of Hierarchical Policers on ACX Series Routers | 1705
- Actions Performed for Hierarchical Policers on ACX Series Routers | 1706
- Configuring Aggregate Parent and Child Policers on ACX Series Routers | 1708

### Hierarchical Policer Modes on ACX Series Routers

The method in which the micro-flow policer determines and manages the share of the aggregate bandwidth for the micro-flow is defined by the hierarchical policer mode. ACX routers support the following three hierarchical policer modes. You can configure the mode or type of the policer for each hierarchical policer instance.

**NOTE:** Hierarchical policer is not applicable on ACX5048 and ACX5096 routers.

#### Guarantee Mode

This mode, also called bandwidth-guarantee mode, is used when the micro-flow policer is used to specify that a portion of the aggregate parent policer bandwidth is guaranteed for its micro-flow. When this micro-flow contains no traffic, then amount allocated for this micro-flow out of the aggregate bandwidth is used by the other micro-flows that are transmitting traffic with a size-limit or bandwidth that is higher than their respective guaranteed bandwidth rates.

Consider a sample scenario in which the maximum allowed rate or peak information rate (PIR) for a user is 140 Mbps. A total of four services or applications called expedited forwarding (EF), Gold, Silver and
Bronze are defined for the guaranteed bandwidth mode of policer with a CIR of 50 Mbps, 40 Mbps, 30 Mbps, and 20 Mbps respectively. For example, if 140 Mbps of traffic is received for each of the four services, then the permitted traffic rates are 50, 40, 30 and 20 Mbps respectively. If 150 Mbps of Gold traffic is received, only 140 Mbps is permitted for Gold traffic.

All the child policers must be of single-rate, single-bucket, and two-color modes for bandwidth guarantee mode of hierarchical policer. This combination of attributes is also called floor mode. The micro-flow policer value specifies the minimum guaranteed bandwidth (CIR) for the micro-flow. The macro-flow policer value specifies the maximum allowed bandwidth (PIR) for all the flows. The sum or the cumulative value of all CIR values of the configured micro-flows must be less than or equal to the macro-flow PIR. The burst size of macro-flow must be greater than the sum of the aggregate of the burst size of all the child policers and the largest MTU of the physical interface among all the physical interfaces of the logical interfaces or interface families to which the child policers are attached.

Consider a sample configuration that has two child policers aggregated by a parent PIR in bandwidth-guarantee mode. PIRs for the children policers and the parent policer are configured. When two flows, flow 1 and flow 2, transmit traffic at a rate that exceeds the configured PIR values, then the share of the parent PIR is adjusted to permit traffic for the child policers based on their priorities defined for the flows, while the bandwidth is maintained.

Policers use a token bucket algorithm to enforce a limit on an average transmit or receive rate of traffic at an interface while allowing bursts of traffic up to a maximum value based on the configured bandwidth limit and configured burst size. The token bucket algorithm offers more flexibility than a leaky bucket algorithm in that you can allow a specified traffic burst before starting to discard packets or apply a penalty such as packet output-queuing priority or packet-drop priority. Following are the main components of the token bucket algorithm:

- The bucket represents a rate-limiting function of the policer on the interface input or output traffic.
- Each token in the bucket represents a “credit” for some number of bits, and tokens in the bucket are “cashed in” for the ability to receive or transmit traffic that conforms to a rate limit configured for the policer.
- The token arrival rate is a periodic allocation of tokens into the token bucket that is calculated from the configured bandwidth limit.
- The token bucket depth defines the capacity of the bucket in bytes. Tokens that are allocated after the bucket reaches capacity are not able to be stored and used.

An arriving packet complies with the bandwidth-guarantee mode if tokens are present in the peak burst size (PBS) of either the parent policer or the committed burst size (CBS) of the child policer. If sufficient tokens are not present in the PBS or CBS of either of the parent or child policers respectively, the packet does not conform to the guarantee mode of the hierarchical policer working. In such a case, the child
policer rate is guaranteed for the member flows. The following table describes the different scenarios of color-coding for micro-flow and macro-flow policers and the resultant color or priority that is assigned:

<table>
<thead>
<tr>
<th>Micro-Color</th>
<th>Macro-Color</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Green</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

**Peak Mode**

This mode, also called bandwidth-protection mode, is used when the micro-flow policer is used to specify the maximum amount of the aggregate parent policer bandwidth that the micro-flow can use. This mode is used to protect a given micro-flow from starving the other flows. Even when the other micro-flows contain no traffic (the available aggregate bandwidth rate is greater than the rate of the particular micro-flow, the micro-flow cannot use more than the rate configured on its micro-flow policer.

Consider a sample scenario in which the total maximum allowed rate (PIR) for a user is 100 Mbps. A total of four services or applications called expedited forwarding (EF), Gold, Silver and Bronze are defined for the peak or bandwidth-restriction mode of the policer with PIR values of 50 Mbps, 40 Mbps, 30 Mbps, and 20 Mbps respectively. Such a setting is used in topologies in which you want to prevent a certain subscriber or user from utilizing an increased share of the macro-flow or the parent CIR for real-time applications, such as video-on-demand (VoD) or voice over IP (VoIP). For example, if only 100 Mbps of EF packets are received, the permitted bandwidth rate for the traffic is 50 Mbps. When 100 Mbps of traffic is received for each of the four services, then the aggregate allowed traffic is 100 Mbps, in which the rates are as follows for the different services:

- Less than or equal to 50 Mbps for EF traffic
- Less than or equal to 40 Mbps for Gold traffic
- Less than or equal to 30 Mbps for Silver traffic
- Less than or equal to 20 Mbps for Bronze traffic

All the child policers must be of single-rate, single-bucket, and two-color types for bandwidth-protection or peak mode of the hierarchical policer. The micro-flow policer value specifies the maximum allowed bandwidth (PIR) for the micro-flow. The macro-flow policer value specifies the maximum allowed bandwidth (PIR) for all the flows. The sum of the PIR values of the micro-flows must be greater than or equal to the PIR values of the child policers. The macro-flow burst-size must be greater than or equal to that of the micro-flow with the largest burst-size.
Consider a sample configuration that has two child policers aggregated by a parent PIR in bandwidth-guarantee mode. PIRs for the children policers and the parent policer are configured. When two flows, flow 1 and flow 2, transmit traffic at a rate that exceeds the configured PIR values, then the share of the parent PIR is adjusted to permit traffic for the child policers based on their priorities defined for the flows, while the bandwidth is restricted to maintain the minimum or committed rates of traffic flows.

An arriving packet complies with the bandwidth-guarantee mode if tokens are present in the peak burst size (PBS) of both the child policer and the parent policer. If sufficient tokens are not present in the PBS of both the policers, the packet does not conform to the peak mode of the hierarchical policer working. In such a case, the child policer rate is the maximum allowed rate or PIR for the member flows. The following table describes the different scenarios of color-coding for micro-flow and macro-flow policers and the resultant color or priority that is assigned:

<table>
<thead>
<tr>
<th>Micro-Color</th>
<th>Macro-Color</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Green</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

**Hybrid Mode**

This mode, which is a combination of the bandwidth-guarantee and bandwidth-protection modes, enables the capabilities of bandwidth restriction and the per-flow bandwidth moderation to be accomplished simultaneously. Bandwidth-guarantee or bandwidth-restriction mode controls the guaranteed rates for a given micro-flow. However, it does not administer or manage the manner in which the excess aggregate bandwidth can be shared among the micro-flows. A certain micro-flow can potentially use all the excess aggregate bandwidth starving the other micro-flows of any excess bandwidth.

Bandwidth-protection or peak mode controls the amount of bandwidth that a particular micro-flow can consume, thereby protecting other flows from being starved. However, it does not specify any guaranteed rates for the micro-flows. For example, if micro-flow rates for flows f1, f2 and f3 are 50 Mbps, 60 Mbps, 50 Mbps respectively, and the aggregate rate is 70 Mbps, it is possible that f1 and f2 flows might be provided 50 Mbps and 20 Mbps respectively, with no bandwidth allocated for f3.

Hybrid mode implements the benefits of the peak and guaranteed modes to overcome their individual limitations. In hybrid mode, the micro-flow policer specifies two rates, CIR and EIR, for the micro-flow. The CIR specifies the guaranteed portion out of the total macro-flow bandwidth for a micro-flow, and the PIR specifies the maximum portion of the total macro-flow bandwidth for a micro-flow. This mechanism is analogous to CIR functioning in guarantee mode and EIR functioning in peak mode, thereby combining...
the advantages of both models. In hybrid mode, both color-aware and color-blind modes are supported for child policers.

Child policers operate in compliance with the RFC 4115 mode of two-rate three color markers. Normal two-rate three color markers on ACX routers operate in compliance with the RFC2698 mode.

Consider a sample configuration in which the maximum allowed rate for a user is 140 Mbps. A total of four services or applications called expedited forwarding (EF), Gold, Silver and Bronze are defined for the hybrid mode of the policer with PIR values of 55 Mbps, 60 Mbps, 130 Mbps, and 140 Mbps respectively. The defined CIR values are 50 Mbps, 40 Mbps, 30 Mbps, and 20 Mbps for EF, Gold, Silver, and Bronze services respectively. For example, when 140 Mbps of traffic is received for each of the four services, then the permitted green-colored traffic is 50, 40, 30 and 20 Mbps respectively for the four services. If only 140 Mbps of EF traffic is received, 50 Mbps of EF traffic as green and 5 Mbps of EF traffic as yellow are permitted. In the same scenario, assume the macro-policer rate to be 26 Mbps. Also, assume two child policers in color-aware mode, namely, child policer-1 with a CIR of 10 Mbps and an EIR of 10 Mbps. Child policer-2 has a CIR of 15 Mbps and an EIR of 5 Mbps. When flow-1 is a 100 Mbps stream of yellow traffic, and flow-2 is an 100 Mbps stream of green traffic, the output of this policer hierarchy is as follows:

- Flow-1 has 0 Mbps of green traffic and has less than or equal to 5 Mbps of yellow traffic.
- Flow-2 has 10 Mbps of green traffic and has greater than or equal to 10 Mbps of yellow traffic.
- The sum of yellow traffic is less than or equal to 11 Mbps.

Consider a sample configuration that has two child policers aggregated by a parent PIR in hybrid mode. PIRs for the children policers and the parent policer are configured. When two flows, flow 1 and flow 2, transmit traffic at a rate that exceeds the configured PIR values, then the share of the parent PIR is adjusted to permit traffic for the child policers while the child PIR values are preserved for the two flows.

Hybrid mode of working of the aggregate or hierarchical policer supports two rates (CIR and PIR) and three colors for micro-flows. On ACX routers, for hybrid type of the policer, the micro-policer must be of type modified-trtcm as defined in RFC 4115. Both color-blind and color-aware modes are supported for child policers. Macro policer must be a single rate, single bucket, two color policer with the sum of the CIR values of the micro-flows being less than the PIR value of the macro-flow, and the cumulative value of all the PIR values of the micro-flows being greater than the PIR value of the macro-flow. When micro-flow traffic is less than the CIR value of the micro-flow CIR, the policer causes either the micro-flow CIR to be maintained or PIR to be achieved. When micro-flow traffic is greater than the CIR value of the micro-flow, the micro-flow CIR is guaranteed. Micro-flow excess rates are shared based on the available macro-flow bandwidth with the limitation of the excess information rate distributed for the micro-flows being implemented by the micro-flow PIR. The CBS of the macro-flow must be greater than or equal to the aggregate of the micro-flow CBS. The excess burst size (EBS) of the macro-flow must be greater than or equal to that of the micro-flow with the largest EBS.

An arriving packet complies with the hybrid mode if tokens are present in the committed burst size (CBS) of the child policer. The packet does not comply with hybrid mode if tokens are present in both the EBS of the child policer and the PBS of the parent policer. When a packet does not satisfy the hybrid mode of
working of a policer, the CIR of the child policer is guaranteed for the member traffic flows and the PIR value of the child policer is the maximum permitted rate for the member flows. The following table describes the different scenarios of color-coding for micro-flow and macro-flow policers and the resultant color or priority that is assigned:

<table>
<thead>
<tr>
<th>Micro-Color</th>
<th>Macro-Color</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Yellow</td>
<td>Green</td>
<td>Yellow</td>
</tr>
<tr>
<td>Yellow</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

Hierarchical Policers on ACX Series Routers Overview | 1696
Guidelines for Configuring Hierarchical Policers on ACX Series Routers | 1698
Processing of Hierarchical Policers on ACX Series Routers | 1705
Actions Performed for Hierarchical Policers on ACX Series Routers | 1706
Configuring Aggregate Parent and Child Policers on ACX Series Routers | 1708
### Processing of Hierarchical Policers on ACX Series Routers

Hierarchical policer provisions a controlled sharing of an aggregate among micro-flows. For example, a hierarchical policer is used to share the bandwidth of a certain subscriber or user across different CoS settings of that user. Assume that the user is configured to connect using a logical interface, and the CoS functionality is configured using DiffServ code point (DSCP) in the traversed packet. The user is assigned an aggregate bandwidth of 140 Mbps. This consolidated bandwidth must be distributed and shared amongst the four supported CoS settings represented by DSCP values of 11, 12, 21, and 22 respectively in the order of 50 Mbps, 40 Mbps, 30 Mbps and 20 Mbps. To obtain this behavior, you must perform the following configurations:

- **Configure micro-flows**—A micro-flow is characterized by all packets that pass through the same micro policer (or child policer) instance. To enable this configuration, packets must be classified as micro-flows by using filters to match the packets, and the action of the filter to refer to the macro policer. You can group and combine packets matching multiple different filters or terms into a single micro-flow by specifying the same policer instance across the different filters and terms. These settings are identical to the configuration required to associate a single-level policer with a filter.

- **Assign child policers to the aggregate policer**—This step is additional, from the procedure to create a single-level policer, to configure a hierarchical policer. You must link or associate the child policers to the parent or aggregate policer. You can perform this linking by specifying at each child policer by using the `aggregate-policing aggregate-policer-name` statement at the `[edit firewall policer policer-name] hierarchy level.

**NOTE:** Hierarchical policer is not applicable on ACX5048 and ACX5096 routers.

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical Policers on ACX Series Routers Overview</td>
<td>1696</td>
</tr>
<tr>
<td>Guidelines for Configuring Hierarchical Policers on ACX Series Routers</td>
<td>1698</td>
</tr>
<tr>
<td>Hierarchical Policer Modes on ACX Series Routers</td>
<td>1699</td>
</tr>
<tr>
<td>Actions Performed for Hierarchical Policers on ACX Series Routers</td>
<td>1706</td>
</tr>
<tr>
<td>Configuring Aggregate Parent and Child Policers on ACX Series Routers</td>
<td>1708</td>
</tr>
</tbody>
</table>
Actions Performed for Hierarchical Policers on ACX Series Routers

The hierarchical parent policer impacts the packet loss priority (PLP) of the child policer. The PLP-based actions defined in the then statement of the are performed, based on the PLP derived from the combined processing of the child and parent policers. The then statement defined in the parent policer is not effective. This section contains the following topics that describe the methods of instantiation of aggregate or hierarchical policers and child or normal policers.

NOTE: Hierarchical policer is not applicable on ACX5048 and ACX5096 routers.

Instantiation Methods for Child and Aggregate Policers

In the Junos OS, a certain policer configuration or a policer template is used to create multiple instances of the policer in the hardware using the template attributes such as the CIR, PIR, CBS, and PBS values specified in the template. You need not create multiple policer configurations with the same attributes for effective management by using aggregate policers.

Instantiation Methods for Child Policers or Normal Policers

For a normal policer or a child policer, if you specify a filter-specific attribute for a policer by entering the `filter-specific` statement at the `[edit firewall policer policer-name]` or `[edit logical-systems logical-system-name firewall policer policer-name]` hierarchy level, when you specify a ‘filter-specific’ clause, a single policer instance is used by all terms (within the same firewall filter) that reference the policer. For example, if a filter F1 contains terms T1 and T2, they refer to the same policer, say P1. If you configure the policer P1 as a filter-specific type, the same policer instance on the device is referred by both the terms T1 and T2. In this case, F1 is attached to a logical interface named IFL1, which is configured on the physical interface named IFD1.

By default, a policer operates in term-specific mode so that, for a given firewall filter, the Junos OS creates a separate policer instance for every filter term that references the policer. This operation is the default instantiation mode if you do not configure the `filter-specific` statement. For example, consider a filter F1 that has two terms, T1 and T2. Both these terms refer to the same policer, namely P1. With a term-specific mode of the policer, two policer instances are created on the device, one each for terms T1 and T2.

Instantiation Methods for Aggregate Policers

The following modes of operations are possible for aggregate policers.
- Global—Shares the same parent policer across all the child policer instances in the system.

- Physical interface-specific—Shares the same parent policer across all the child policer instances of a certain physical interface. This mode is not supported on ACX routers.

- Filter-specific—Shares the same parent policer across all the child policer instances of the same filter. This mode is not supported on ACX routers.

- Interface-specific—Shares the same parent policer across all the child policer instances of the same logical interface. This mode is not supported on ACX routers.

You can include the **aggregate global** statement at the [edit firewall policer policer-template-name] hierarchy level to define an aggregate policer to be shared or applicable across all of the child policer instances in the router. You can include the aggregate parent statement at the [edit firewall policer policer-template-name] hierarchy level to define an aggregate policer as the parent policer. The following statement does not take effect for aggregate policers: **set firewall policer policer-template-name filter-specific**.

Consider a sample deployment in which an aggregate policer named P3 is configured. P1 and P2 are child policers. T1, T2, T3, and T4 are terms. F1 and F2 are filters. Logical interfaces, IFL1 and IFL2, are created on the underlying physical interfaces, IFD1 and IFD2 in this configuration. Interface address families are correspondingly created on the interfaces as IFF1 and IFF2.

If you configure an interface-specific filter, term-specific child policer, and the aggregate policer as the global policer, a single instance of P3 is created and associated with the child policers, P1 and P2. Two instances each of P1 and P2 are created, one for T1 within F1 and the other for T2 within F1. The two instances each of P1 and P2 are associated with IFL1 and IFL2, which in turn are bound to IFF1 and IFF2.

If you configure an interface-specific filter, term-specific or filter-specific child policer, and the aggregate policer is physical interface-specific policer, two instances of P3 are created. One instance of P3 contains two child policer instances of P1. P1 contains the filter F1 and term T1 to be applied to IFL1 and IFL2. The other instance of P3 contains two child policer instances of P1. P1 contains F1 and T1 to be applied to another two logical interfaces, IFL3 and IFL4.

If you configure an interface-specific filter, term-specific child policer, and interface-specific aggregate policer, two instances of P3 are created. Each P3 instance contains two P1 instances. One P1 instance contains F1 and T1 for IFF1 to be applied to IFL1. The other P1 instance contains F2 for IFF2 to be applied to IFL1. The other P3 instance contains two P1 instances. Here, one P1 contains F1 and T1 for IFF3 and the other P1 contains F2 and T1 for IFF4 to be applied on IFL2.

If you configure an interface-specific filter, term-specific child policer, and filter-specific aggregate policer, two P3 instances are created. Each P3 contains two P1 instances. One P1 contains P1, T1, F1 IFF1, applied to IFL1. The other P1 contains P1, T2, F1, IFF1, applied to IFL1. The third P1 contains P1, T3, F2, IFF2, applied to IFL1. The last P1 contains P1, T4, F2, IFF2, applied to IFL1.
Configuring Aggregate Parent and Child Policers on ACX Series Routers

On ACX Series routers, two-level ingress hierarchical policing is supported. Single-level policers define a single bandwidth profile. You must first define the child or subordinate policers and associate or link them with the aggregate parent policer, which is globally applicable for the entire system. You can configure the mode of hierarchical or aggregate policing for the child policers, such as peak mode, guarantee mode, or hybrid mode of policing.

**NOTE:** Hierarchical policer is not applicable on ACX5048 and ACX5096 routers.

**NOTE:** The hierarchical policing mechanism on ACX routers is different from the hierarching policing capability supported on MX Series routers. On MX Series routers, with a hierarchical policer, only one child or subordinate policer can be configured under a parent, top-level policer, whereas on ACX Series routers, you can aggregate and specify multiple child policers under a single parent policer under the [edit firewall] hierarchy level. The hierarchical policing methodology on ACX routers is also called aggregate policing. The `hierarchical-policer` statement and its sub-statements at the [edit firewall] hierarchy level that are supported on MX Series routers are not available for ACX Series routers.

To configure child or micro policers for an aggregate parent policer and associate the parent policer with the child policers:

1. Configure one normal policer as a child policer and specify the aggregate policing mode.

   ```
 user@host# set policer mi_pol_1 if-exceeding bandwidth-limit 25m
 user@host# set policer mi_pol_1 if-exceeding burst-size-limit 3k
 user@host# set policer mi_pol_1 if-exceeding aggregate-policing policer mi_pol_x aggregate-sharing-mode peak;
   ```
2. Configure another normal policer as a child policer and specify the aggregate policing mode. The *aggregate-sharing-mode* option is a Packet Forwarding Engine statement.

   ```
 user@host# set policer mi_pol_1 then discard
   ```

   ```
 user@host# set policer mi_pol_2 if-exceeding bandwidth-limit 30m
 user@host# set policer mi_pol_2 if-exceeding burst-size-limit 30k
 user@host# set policer mi_pol_2 if-exceeding aggregate-policing policer mi_pol_x aggregate-sharing-mode peak;
 user@host# set policer mi_pol_2 then discard
   ```

3. Define the aggregate parent policer as the global policer for the system. The *aggregate-sharing-mode* option is a Packet Forwarding Engine statement.

   ```
 user@host# set policer mi_pol_x if-exceeding bandwidth-limit 55m
 user@host# set policer mi_pol_x if-exceeding burst-size-limit 35k
 user@host# set policer mi_pol_x aggregate global
   ```

4. Verify the settings of all policer templates configured by using the `show filter policer template` command.

   ```
 user@host# show filter policer template
 AppType Template name Bw limit-bits/sec Burst-bytes Action Options
 ------- ------------- ----------------- ----------- --------------
 0 mi_pol_1 25000000 3000 DROP
 Aggregate Child of mi_pol_x mode=2
 0 mi_pol_2 30000000 30000 DROP
 Aggregate Child of mi_pol_x mode=2
 0 mi_pol_x 55000000 35000 DROP
 Aggregate Parent
   ```

5. View the configured policer instances that are linked to the aggregate parent policer by using the `show filter aggregate-policer` command.

   ```
 user@host# show filter aggregate-policer p1
 CHILDREN
   ```
#1) [UNI1_filtermi_pol_trtcm1-t2] CBS[1000]kB; CIR[10000]kbps; CBS[2000]kB; PIR[30000]kbps; Agg mode = 3;
#2) [UNI2_filtermi_pol_trtcm2-t2] CBS[1000]kB; CIR[15000]kbps; CBS[2000]kB; PIR[35000]kbps; Agg mode = 3;

**PARENT**

| [p1] | PBS[3000]kB; PIR[38000]kbps; |
| Sum child CIR[25000]kbps; CBS[2000]kB; |
| Sum child PIR[65000]kbps; PBS[4000]kB; |
| Max child CIR[15000]kbps; CBS[1000]kB; |
| Max child PIR[35000]kbps; PBS[2000]kB; |

**RESULTS**

---

**STATUS = OK**

The **show filter policer template** and **show filter aggregate-policer** CLI commands need to be run at the PFE level. To go to the PFE level, you need to:

1. **Enter the start shell CLI command.**
   
   user@host> start shell

2. **Establish a vty session by entering the vty shell command followed by the executable name for the component. For example, vty feb0.**
   
   user@host% vty feb0

3. **Type the show filter policer ... CLI command.**

**RELATED DOCUMENTATION**

- Hierarchical Policers on ACX Series Routers Overview | 1696
- Guidelines for Configuring Hierarchical Policers on ACX Series Routers | 1698
- Hierarchical Policer Modes on ACX Series Routers | 1699
- Processing of Hierarchical Policers on ACX Series Routers | 1705
Actions Performed for Hierarchical Policers on ACX Series Routers | 1706
Configuring Policer Rate Limits and Actions

Table 114 on page 1713 lists each of the Junos OS policer types supported. For each policer type, the table summarizes the bandwidth limits and burst-size limits used to rate-limit traffic.

Table 114: Policer Bandwidth Limits and Burst-Size Limits

<table>
<thead>
<tr>
<th>Policer Type</th>
<th>Bandwidth Limits</th>
<th>Burst-Size Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single-Rate Two-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines a single rate limit: a bandwidth limit and an allowed burst size for conforming traffic.</td>
<td>bandwidth-limit bps;</td>
<td>burst-size-limit bytes;</td>
</tr>
<tr>
<td>For a single-rate two-color policer only, you can specify the bandwidth limit as a percentage value from 1 through 100 instead of as an absolute number of bits per second. The effective bandwidth limit is calculated as a percentage of either the physical interface media rate or the logical interface configured shaping rate.</td>
<td>M. and T Series routers: 8000..100000000000</td>
<td>M. MX, and T Series routers: 1500..100000000000</td>
</tr>
<tr>
<td></td>
<td>8000..18446744073709551615</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bandwidth-percent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1..100 percent</td>
<td></td>
</tr>
<tr>
<td><strong>Single-Rate Three-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines a single rate limit: a bandwidth limit and an allowed burst size for conforming traffic.</td>
<td>committed-information-rate bps;</td>
<td>committed-burst-size bytes;</td>
</tr>
<tr>
<td></td>
<td>M, MX, and T Series routers:</td>
<td></td>
</tr>
</tbody>
</table>
Table 114: Policer Bandwidth Limits and Burst-Size Limits (continued)

<table>
<thead>
<tr>
<th>Policer Type</th>
<th>Bandwidth Limits</th>
<th>Burst-Size Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Also defines a second, larger burst size. This second burst size is used to differentiate between two categories of nonconforming traffic (yellow or red).</td>
<td>M and T Series routers: 1500..100000000000</td>
<td>1500..100000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>excess-burst-size bytes; M, MX, and T Series routers: 1500..100000000000</td>
</tr>
</tbody>
</table>

**Two-Rate Three-Color Policer**

Defines a committed rate limit: a bandwidth limit and an allowed burst size for conforming traffic.

Also defines a peak rate limit: a second, larger burst size and a second, higher bandwidth limit. These additional rate-limit components are used to differentiate between two categories of nonconforming traffic (yellow or red).

<table>
<thead>
<tr>
<th>Policer Type</th>
<th>Bandwidth Limits</th>
<th>Burst-Size Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>committed-information-rate bps;</td>
<td>M and T Series routers: 1500..100000000000</td>
<td>committed-burst-size bytes; M, MX, and T Series routers: 1500..100000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak-information-rate bps;</td>
<td>M and T Series routers: 1500..100000000000</td>
<td>peak-burst-size bytes; M, MX, and T Series routers: 1500..100000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Hierarchical Policer**

Defines two policers, each with a bandwidth limit and an allowed burst size for conforming traffic. Different policing actions are applied based on whether the packets are classified for expedited forwarding (EF) or for a lower priority.

Rate-limits ingress Layer 2 traffic at a SONET physical or logical interface hosted on supported routing platforms only.

<table>
<thead>
<tr>
<th>Policer Type</th>
<th>Bandwidth Limits</th>
<th>Burst-Size Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bandwidth-limit bps;</td>
<td>M40e, M120, and M320 (with FFPC and SFPC) edge routers and T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs: 32000..50000000000</td>
<td>burst-size-limit bytes; M40e, M120, and M320 (with FFPC and SFPC) edge routers and T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs: 1500..2147450880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**RELATED DOCUMENTATION**

- Policer Color-Marking and Actions | 1715
Policer Color-Marking and Actions

Table 115 on page 1715 lists each of the Junos OS policer types supported. For each policer type, the table summarizes the color-marking criteria used to categorize a traffic flow and, for each color, the actions taken on packets in that type of traffic flow.

Table 115: Implicit and Configurable Policer Actions Based on Color Marking

<table>
<thead>
<tr>
<th>Policer Rate Limits and Color Marking</th>
<th>Implicit Action</th>
<th>Configurable Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single-Rate Two-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Bandwidth limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Burst size</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Green</strong></td>
<td>Set PLP to low</td>
<td></td>
</tr>
<tr>
<td>Conforms to rate and burst size limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Red</strong></td>
<td>-</td>
<td>● Discard the packet.</td>
</tr>
<tr>
<td>Exceeds rate and burst size limits</td>
<td></td>
<td>● Assign to a forwarding class.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Set PLP to low or high.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On some platforms, you can also set the PLP to medium-low or medium-high.</td>
</tr>
<tr>
<td><strong>Single-Rate Three-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Committed information rate (CIR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Committed burst size (CBS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Excess burst size (EBS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Green</strong></td>
<td>Set PLP to low</td>
<td></td>
</tr>
<tr>
<td>Conforms to the CIR and CBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Yellow</strong></td>
<td>Set PLP to medium-high</td>
<td></td>
</tr>
<tr>
<td>Exceeds the CIR and CBS but conforms to the EBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Red</strong></td>
<td>Set PLP to high</td>
<td>● Discard the packet.</td>
</tr>
<tr>
<td>Exceeds the EBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 115: Implicit and Configurable Policer Actions Based on Color Marking (continued)

<table>
<thead>
<tr>
<th>Policier Rate Limits and Color Marking</th>
<th>Implicit Action</th>
<th>Configurable Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Two-Rate Three-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Committed information rate (CIR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Committed burst size (CBS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Peak information rate (PIR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Peak burst size (PBS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Implicit Action</th>
<th>Configurable Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Green</strong></td>
<td>Conforms to the CIR and CBS</td>
<td>Set PLP to low</td>
<td>–</td>
</tr>
<tr>
<td><strong>Yellow</strong></td>
<td>Exceeds the CIR and CBS, but conforms to the PIR</td>
<td>Set PLP to medium-high</td>
<td>–</td>
</tr>
<tr>
<td><strong>Red</strong></td>
<td>Exceeds the PIR and PBS</td>
<td>Set PLP to high</td>
<td>• Discard the packet.</td>
</tr>
</tbody>
</table>

**Hierarchical Policer**

**Aggregate policer**

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Implicit Action</th>
<th>Configurable Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Green</strong></td>
<td>Conforms to rate limits</td>
<td>Set PLP to low</td>
<td>–</td>
</tr>
</tbody>
</table>
| **Red** | Exceeds rate limits | – | • Discard the packet.  
• Assign to a forwarding class.  
• Set PLP to low or high.  
On some platforms, you can also set the PLP to medium-low or medium-high. |

**Premium policer**

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>Implicit Action</th>
<th>Configurable Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bandwidth limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Burst size</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When you apply traffic policing to the input or output traffic at an interface, the rate limits and actions specified in the policer configuration are used to enforce a limit on the average throughput rate at the interface while also allowing bursts of traffic up to a maximum number of bytes based on the overall traffic load. Junos OS policers measure traffic-flow conformance to a policing rate limit by using a *token bucket algorithm*. An algorithm based on a single token bucket allows burst of traffic for short periods, whereas an algorithm based dual token buckets allows more sustained bursts of traffic.
Single Token Bucket Algorithm

A single-rate two-color policer limits traffic throughput at an interface based on how the traffic conforms to rate-limit values specified in the policer configuration. Similarly, a hierarchical policer limits traffic throughput at an interface based on how aggregate and premium traffic subflows conform to aggregate and premium rate-limit values specified in the policer configuration. For both two-color policer types, packets in a conforming traffic flow are categorized as green, and packets in a non-conforming traffic flow are categorized as red.

The single token bucket algorithm measures traffic-flow conformance to a two-color policer rate limit as follows:

- The token arrival rate represents the single bandwidth limit configured for the policer. You can specify the bandwidth limit as an absolute number of bits per second by including the bandwidth-limit bps statement. Alternatively, for single-rate two-color policers only, you can use the bandwidth-percent percentage statement to specify the bandwidth limit as a percentage of either the physical interface port speed or the configured logical interface shaping rate.
- The token bucket depth represents the single burst size configured for the policer. You specify the burst size by including the burst-size-limit bytes statement.
- If the bucket is filled to capacity, arriving tokens "overflow" the bucket and are lost.

When the bucket contains insufficient tokens for receiving or transmitting the traffic at the interface, packets might be dropped or else re-marked with a lower forwarding class, a higher packet loss priority (PLP) level, or both.

Conformance Measurement for Two-Color Marking

In two-color-marking policing, a traffic flow whose average arrival or departure rate does not exceed the token arrival rate (bandwidth limit) is considered conforming traffic. Packets in a conforming traffic flow (categorized as green traffic) are implicitly marked with a packet loss priority (PLP) level of low and then passed through the interface.

For a traffic flow whose average arrival or departure rate exceeds the token arrival rate, conformance to a two-color policer rate limit depends on the tokens in the bucket. If sufficient tokens remain in the bucket, the flow is considered conforming traffic. If the bucket does not contain sufficient tokens, the flow is considered non-conforming traffic. Packets in a non-conforming traffic flow (categorized as red traffic) are handled according to policing actions. Depending on the configuration of the two-color policer, packets might be implicitly discarded; or the packets might be re-marked with a specified forwarding class, a specified PLP, or both, and then passed through the interface.
NOTE: The number of tokens remaining in the bucket at any given time is a function of the token bucket depth and the overall traffic load.

The token bucket is initially filled to capacity, and so the policer allows an initial traffic burst (back-to-back traffic at average rates that exceed the token arrival rate) up to the size of the token bucket depth.

During periods of relatively low traffic (traffic that arrives at or departs from the interface at average rates below the token arrival rate), unused tokens accumulate in the bucket, but only up to the configured token bucket depth.

RELATED DOCUMENTATION

| Dual Token Bucket Algorithms |

IN THIS SECTION

- Token Bucket Concepts | 1720
- Guaranteed Bandwidth for Three-Color Marking | 1720
- Nonconformance Measurement for Single-Rate Three-Color Marking | 1720
- Nonconformance Measurement for Two-Rate Three-Color Marking | 1720

Two-Color Policer Configuration Overview | 1763
Hierarchical Policer Configuration Overview | 1680
Policer Color-Marking and Actions | 1715
bandwidth-limit (Hierarchical Policer) | 2199
bandwidth-limit (Policer) | 2201
bandwidth-percent | 2203
burst-size-limit (Hierarchical Policer) | 2207
burst-size-limit (Policer) | 2209
Token Bucket Concepts

When you apply traffic policing to the input or output traffic at an interface, the rate limits and actions specified in the policer configuration are used to enforce a limit on the average throughput rate at the interface while also allowing bursts of traffic up to a maximum number of bytes based on the overall traffic load. Junos OS policers measure traffic-flow conformance to a policing rate limit by using a token bucket algorithm. An algorithm based on a single token bucket allows burst of traffic for short periods, whereas an algorithm based dual token buckets allows more sustained bursts of traffic.

Guaranteed Bandwidth for Three-Color Marking

A committed information rate (CIR) defines the guaranteed bandwidth for traffic arriving at or departing from the interface under normal line conditions. A flow of traffic at an average rate that conforms to the CIR is categorized green, and packets in a green flow are implicitly marked with low packet loss priority (PLP) and then passed through the interface. During periods of relatively low traffic (traffic that arrives at or departs from the interface at average rates below the CIR), any unused bandwidth capacity accumulates in the first token bucket, but only up to a configured number of bytes. If any unused bandwidth capacity overflows the first bucket, the excess accumulates in a second token bucket.

The committed burst size (CBS) defines the maximum number of bytes for which unused amounts of the guaranteed bandwidth can be accumulated in the first token bucket. A burst of traffic at an average rate that exceeds the CIR is also categorized as green provided that sufficient unused bandwidth capacity is available in the first token bucket.

Nonconformance Measurement for Single-Rate Three-Color Marking

Single-rate three-color policer configurations specify a second burst size—the excess burst size (EBS)—that defines the maximum number of bytes for which the second token bucket can accumulate unused bandwidth that overflows from the first bucket.

A traffic flow is categorized yellow if its average rate exceeds the CIR and the available bandwidth capacity accumulated in the first bucket if sufficient unused bandwidth capacity is available in the second token bucket. Packets in a yellow flow are implicitly marked with medium-high PLP and then passed through the interface.

A traffic flow is categorized red its average rate exceeds the CIR and the available bandwidth capacity accumulated in the second bucket. Packets in a red flow are implicitly marked with high PLP and then either passed through the interface or optionally discarded.

Nonconformance Measurement for Two-Rate Three-Color Marking

Two-rate three-color policer configurations include a second rate limit—the peak-information-rate (PIR)—that you set to the expected average data rate for traffic arriving at or departing from the interface under peak conditions.
Two-rate three-color policer configurations also include a second burst size—the peak burst size (PBS)—that defines the maximum number of bytes for which the second token bucket can accumulate unused peak bandwidth capacity. During periods of relatively little peak traffic (traffic that arrives at or departs from the interface at average rates that exceed the PIR), any unused peak bandwidth capacity accumulates in the second token bucket, but only up to the maximum number of bytes specified by the PBS.

A traffic flow is categorized yellow if it exceeds the CIR and the available committed bandwidth capacity accumulated in the first token bucket but conforms to the PIR. Packets in a yellow flow are implicitly marked with medium-high PLP and then passed through the interface.

A traffic flow is categorized red if it exceeds the PIR and the available peak bandwidth capacity accumulated in the second token bucket. Packets in a red flow are implicitly marked with high PLP and then either passed through the interface or optionally discarded.

RELATED DOCUMENTATION

| Three-Color Policer Configuration Overview | 1877 |
| Policer Color-Marking and Actions | 1715 |
| committed-burst-size | 2217 |
| committed-information-rate | 2221 |
| excess-burst-size | 2225 |
| peak-burst-size | 2262 |
| peak-information-rate | 2266 |
CHAPTER 31

Configuring Layer 2 Policers

IN THIS CHAPTER

- Hierarchical Policers | 1723
- Configuring a Policer Overhead | 1733
- Two-Color and Three-Color Policers at Layer 2 | 1734
- Layer 2 Traffic Policing at the Pseudowire Overview | 1747
- Configuring a Two-Color Layer 2 Policer for the Pseudowire | 1748
- Configuring a Three-Color Layer 2 Policer for the Pseudowire | 1749
- Applying the Policers to Dynamic Profile Interfaces | 1750
- Attaching Dynamic Profiles to Routing Instances | 1752
- Using Variables for Layer 2 Traffic Policing at the Pseudowire Overview | 1753
- Configuring a Policer for the Complex Configuration | 1753
- Creating a Dynamic Profile for the Complex Configuration | 1755
- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration | 1756
- Verifying Layer 2 Traffic Policers on VPLS Connections | 1757
- Understanding Policers on OVSDB-Managed Interfaces | 1758
- Example: Applying a Policer to OVSDB-Managed Interfaces | 1759

Hierarchical Policers

IN THIS SECTION

- Hierarchical Policer Overview | 1724
- Example: Configuring a Hierarchical Policer | 1725
Hierarchical Policier Overview

You can use a hierarchical policer to rate-limit ingress Layer 2 traffic at a physical or logical interface and apply different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority.

Hierarchical policing is supported on M40e, M120, and M320 edge routers with incoming Flexible PIC Concentrators (FPCs) as SFPC and outgoing FPCs as FFPC, and on MX Series, T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs.

You can apply hierarchical policing to a logical interface.

A hierarchical policer configuration defines two policers—one for EF traffic only and another for non-EF traffic—that function in a hierarchical manner:

- **Premium policer**—You configure the premium policer with traffic limits for high-priority EF traffic only: a guaranteed bandwidth and a corresponding burst-size limit. EF traffic is categorized as nonconforming when its average arrival rate exceeds the guaranteed bandwidth and its average packet size exceeds the premium burst-size limit. For a premium policer, the only configurable action for nonconforming traffic is to discard the packets.

- **Aggregate policer**—You configure the aggregate policer with an aggregate bandwidth (to accommodate both high-priority EF traffic up to the guaranteed bandwidth and normal-priority non-EF traffic) and a burst-size limit for non-EF traffic only. Non-EF traffic is categorized as nonconforming when its average arrival rate exceeds the amount of aggregate bandwidth not currently consumed by EF traffic and its average packet size exceeds the burst-size limit defined in the aggregate policer. For an aggregate policer, the configurable actions for nonconforming traffic are to discard the packets, assign a forwarding class, or assign a packet loss priority (PLP) level.

**NOTE:** You must configure the bandwidth limit of the premium policer at or below the bandwidth limit of the aggregate policer. If the two bandwidth limits are equal, then non-EF traffic passes through the interface unrestricted only while no EF traffic arrives at the interface.

EF traffic is guaranteed the bandwidth specified as the premium bandwidth limit, while non-EF traffic is rate-limited to the amount of aggregate bandwidth not currently consumed by the EF traffic. Non-EF traffic is rate-limited to the entire aggregate bandwidth only while no EF traffic is present.

For example, suppose that you configure a hierarchical policer with the following components:

- Premium policer with bandwidth limit set to 2 Mbps, burst-size limit set to 3000 bytes, and nonconforming action set to discard packets.

- Aggregate policer with bandwidth limit set to 10 Mbps, burst-size limit set to 3000 bytes, and nonconforming action set to discard packets.
EF traffic is guaranteed a bandwidth of 2 Mbps. Bursts of EF traffic—EF traffic that arrives at the interface at rates above 2 Mbps—can also pass through the interface provided sufficient tokens are available in the 3000-byte bucket. When no tokens are available for a burst of non-EF traffic, packets are rate-limited using policing actions for the premium policer.

Non-EF traffic is metered to a bandwidth limit that ranges between 8 Mbps and 10 Mbps, depending on the average arrival rate of the EF traffic. Bursts of non-EF traffic—non-EF traffic that arrives at the interface at rates above the current limit for non-EF traffic—also pass through the interface provided sufficient tokens are available in the 3000-byte bucket. When non-EF traffic exceeds the currently allowed bandwidth or when no tokens are available for a burst of non-EF traffic, packets are rate-limited using policing actions for the aggregate policer.

SEE ALSO

Hierarchical Policer Configuration Overview | 1680
Example: Configuring a Hierarchical Policer | 1725

Example: Configuring a Hierarchical Policer

This example shows how to configure a hierarchical policer and apply the policer to ingress Layer 2 traffic at a logical interface on a supported platform.

Requirements
Before you begin, be sure that your environment meets the following requirements:

• The interface on which you apply the hierarchical policer is a SONET interface hosted on one of the following routing platforms:
  • M40e, M120, or M320 edge router with incoming FPCs as SFPC and outgoing FPCs as FFPC.
  • MX Series, T320, T640, or T1600 core router with Enhanced Intelligent Queuing (IQE) PICs.
• No other policer is applied to the input of the interface on which you apply the hierarchical policer.
You are aware that, if you apply the hierarchical policer to logical interface on which an input filter is also applied, the policer is executed first.

**Overview**

In this example, you configure a hierarchical policer and apply the policer to ingress Layer 2 traffic at a logical interface.

**Topology**

You apply the policer to the SONET logical interface `so-1/0/0.0`, which you configure for IPv4 and VPLS traffic. When you apply the hierarchical policer to that logical interface, both IPv4 and VPLS traffic is hierarchically rate-limited.

You also configure the logical interface `so-1/0/0.1` for MPLS traffic. If you choose to apply the hierarchical policer to physical interface `so-1/0/0`, hierarchical policing would apply to IPv4 and VPLS traffic at `so-1/0/0.0` and to MPLS traffic at `so-1/0/0.1`.

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces so-1/0/0 unit 0 family inet address 192.168.1.1/24
set interfaces so-1/0/0 unit 0 family vpls
set interfaces so-1/0/0 unit 1 family mpls
set class-of-service forwarding-classes class fc0 queue-num 0 priority high policing-priority premium
set class-of-service forwarding-classes class fc1 queue-num 1 priority low policing-priority normal
set class-of-service forwarding-classes class fc2 queue-num 2 priority low policing-priority normal
set class-of-service forwarding-classes class fc3 queue-num 3 priority low policing-priority normal
```
set firewall hierarchical-policer policer1 aggregate if-exceeding bandwidth-limit 300m burst-size-limit 30k
set firewall hierarchical-policer policer1 aggregate then forwarding-class fc1
set firewall hierarchical-policer policer1 premium if-exceeding bandwidth-limit 100m burst-size-limit 50k
set firewall hierarchical-policer policer1 premium then discard
set interfaces so-1/0/0 unit 0 layer2-policer input-hierarchical-policer policer1

**Defining the Interfaces**

**Step-by-Step Procedure**

To define the interfaces:

1. Enable configuration of the physical interface.

   ![edit]
   user@host# edit interfaces so-1/0/0

2. Configure logical unit 0.

   ![edit interfaces so-1/0/0]
   user@host# set unit 0 family inet address 192.168.1.1/24
   user@host# set unit 0 family vpls

   If you apply a Layer 2 policer to this logical interface, you must configure at least one protocol family.

3. Configure logical unit 1.

   ![edit interfaces so-1/0/0]
   user@host# set unit 1 family mpls

**Results**

Confirm the configuration of the interfaces by entering the `show interfaces` configuration command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

![edit]
user@host# show interfaces
so-1/0/0 {}
   unit 0 {
      family inet {
         address 192.168.1.1/24;
Defining the Forwarding Classes

Step-by-Step Procedure
To define the forwarding classes referenced as aggregate policer actions:

1. Enable configuration of the forwarding classes.

```
[edit]
user@host# edit class-of-service forwarding-classes
```

2. Define the forwarding classes.

```
[edit class-of-service forwarding-classes]
user@host# set class fc0 queue-num 0 priority high policing-priority premium
user@host# set class fc1 queue-num 1 priority low policing-priority normal
user@host# set class fc2 queue-num 2 priority low policing-priority normal
user@host# set class fc3 queue-num 3 priority low policing-priority normal
```

Results
Confirm the configuration of the forwarding classes referenced as aggregate policer actions by entering the `show class-of-service` configuration command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show class-of-service
forwarding-classes {
 class fc0 queue-num 0 priority high policing-priority premium;
 class fc1 queue-num 1 priority low policing-priority normal;
 class fc2 queue-num 2 priority low policing-priority normal;
 class fc3 queue-num 3 priority low policing-priority normal;
}
```
**Configuring the Hierarchical Policier**

**Step-by-Step Procedure**

To configure a hierarchical policer:

1. Enable configuration of the hierarchical policer.

   ```
 [edit]
 user@host# edit firewall hierarchical-policer policer1
   ```

2. Configure the aggregate policer.

   ```
 [edit firewall hierarchical-policer policer1]
 user@host# set aggregate if-exceeding bandwidth-limit 300m burst-size-limit 30k
 user@host# set aggregate then forwarding-class fc1
   ```

   For the aggregate policer, the configurable actions for a packet in a nonconforming flow are to discard the packet, change the loss priority, or change the forwarding class.

3. Configure the premium policer.

   ```
 [edit firewall hierarchical-policer policer1]
 user@host# set premium if-exceeding bandwidth-limit 100m burst-size-limit 50k
 user@host# set premium then discard
   ```

   The bandwidth limit for the premium policer must not be greater than that of the aggregate policer.

   For the premium policer, the only configurable action for a packet in a nonconforming traffic flow is to discard the packet.

**Results**

Confirm the configuration of the hierarchical policer by entering the `show firewall` configuration command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
hierarchical-policer policer1 {
 aggregate {
 if-exceeding {
 bandwidth-limit 300m;
 burst-size-limit 30k;
 }
 }
}
Applying the Hierarchical Policer to Layer 2 Ingress Traffic at a Physical or Logical Interface

Step-by-Step Procedure

To hierarchically rate-limit Layer 2 ingress traffic for IPv4 and VPLS traffic only on logical interface so-1/0/0.0, reference the policer from the logical interface configuration:

1. Enable configuration of the logical interface.

```
[edit]
user@host# edit interfaces so-1/0/0 unit 0
```

When you apply a policer to Layer 2 traffic at a logical interface, you must define at least one protocol family for the logical interface.

2. Apply the policer to the logical interface.

```
[edit]
user@host# set layer2-policer input-hierarchical-policer policer1
```

Alternatively, to hierarchically rate-limit Layer 2 ingress traffic for all protocol families and for all logical interfaces configured on physical interface so-1/0/0, you could reference the policer from the physical interface configuration.

Results
Confirm the configuration of the hierarchical policer by entering the `show interfaces` configuration command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
so-1/0/0 {
    unit 0 {
        layer2-policer {
            input-hierarchical-policer policer1;
        }
        family inet {
            address 192.168.1.1/24;
        }
        family vpls;
    }
    unit 1 {
        family mpls;
    }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Displaying Traffic Statistics and Policers for the Logical Interface | 1731
- Displaying Statistics for the Policier | 1732

Confirm that the configuration is working properly.

Displaying Traffic Statistics and Policers for the Logical Interface

Purpose

Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

Action
Use the `show interfaces` operational mode command for logical interface `so-1/0/0.0`, and include the `detail` or `extensive` option. The command output section for Traffic statistics lists the number of bytes and packets received and transmitted on the logical interface, and the Protocol inet section contains a Policer field that would list the policer `policer1` as an input or output policer as follows:

- Input: `policer1-so-1/0/0.0-inet-i`
- Output: `policer1-so-1/0/0.0-inet-o`

In this example, the policer is applied to logical interface traffic in the input direction only.

Displaying Statistics for the Policer

Purpose
Verify the number of packets evaluated by the policer.

Action
Use the `show policer` operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer `policer1`, the input and output policer names are displayed as follows:

- `policer1-so-1/0/0.0-inet-i`
- `policer1-so-1/0/0.0-inet-o`

The `-inet-i` suffix denotes a policer applied to IPv4 input traffic, while the `-inet-o` suffix denotes a policer applied to IPv4 output traffic. In this example, the policer is applied to input traffic only.

SEE ALSO

- Hierarchical Policer Configuration Overview | 1680
- Hierarchical Policer Overview | 1724

RELATED DOCUMENTATION

- Hierarchical Policer Configuration Overview | 1680
- Guidelines for Applying Traffic Policers | 1683
Configuring a Policer Overhead

Configuring a policer overhead allows you to control the rate of traffic sent or received on an interface. When you configure a policer overhead, the configured policer overhead value (bytes) is added to the length of the final Ethernet frame. This calculated length of frame is used to determine the policer or the rate limit action. Therefore, the policer overhead enables you to control the rate of traffic sent or received on an interface. You can configure the policer overhead to rate-limit queues and Layer 2 and MAC policers. The policer overhead and the shaping overhead can be configured simultaneously on an interface.

This feature is supported on M Series and T Series routers with IQ2 PICs or IQ2E PICs, and on MX Series DPCs.

To configure a policer overhead for controlling the rate of traffic sent or received on an interface:

1. In the [edit chassis] hierarchy level in configuration mode, create the interface on which to add the policer overhead to input or output traffic.

   ```
   [edit chassis]
   user@host# edit fpc fpc pic pic
   ```

 For example:

   ```
   [edit chassis]
   user@host# edit fpc 0 pic 1
   ```

2. Configure the policer overhead to control the input or output traffic on the interface. You could use either statement or both the statements for this configuration.

   ```
   [edit chassis fpc fpc pic pic]
   user@host# set ingress-policer-overhead bytes;
   user@host# set egress-policer-overhead bytes;
   ```

 For example:

   ```
   [edit chassis fpc 0 pic 1]
   user@host# set ingress-policer-overhead 10;
   user@host# set egress-policer-overhead 20;
   ```

3. Verify the configuration:
[edit chassis]
user@host# show
fpc 0 {
 pic 1 {
 ingress-policer-overhead 10;
 egress-policer-overhead 20;
 }
}

NOTE: When the configuration for the policer overhead bytes on a PIC is changed, the PIC goes offline and then comes back online. In addition, the configuration in the CLI is on a per-PIC basis and, therefore, applies to all the ports on the PIC.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>egress-policer-overhead</th>
<th>2223</th>
</tr>
</thead>
<tbody>
<tr>
<td>ingress-policer-overhead</td>
<td></td>
</tr>
</tbody>
</table>

Two-Color and Three-Color Policers at Layer 2

IN THIS SECTION

- Two-Color Policing at Layer 2 Overview | 1735
- Three-Color Policing at Layer 2 Overview | 1737
- Example: Configuring a Three-Color Logical Interface (Aggregate) Policer | 1739
Two-Color Policing at Layer 2 Overview

IN THIS SECTION
- Guidelines for Configuring Two-Color Policing of Layer 2 Traffic | 1735
- Statement Hierarchy for Configuring a Two-Color Policer for Layer 2 Traffic | 1735
- Statement Hierarchy for Applying a Two-Color Policer to Layer 2 Traffic | 1736

Guidelines for Configuring Two-Color Policing of Layer 2 Traffic
The following guidelines apply to two-color policing of Layer 2 traffic:

- You can apply a two-color policer to ingress or egress Layer 2 traffic at a logical interface hosted on a Gigabit Ethernet interface (ge-) or a 10-Gigabit Ethernet interface (xe-) only.
- A single logical interface supports Layer 2 policing in both directions.
- You can apply a two-color policer to Layer 2 traffic as a logical interface policer only. You cannot apply a two-color policer to Layer 2 traffic as a stateless firewall filter action.
- You can apply a two-color policer to Layer 2 traffic by referencing the policer in the interface configuration at the logical unit level, and not at the protocol level.

For information about configuring three-color policing of Layer 2 traffic, see “Three-Color Policing at Layer 2 Overview” on page 1737.

Statement Hierarchy for Configuring a Two-Color Policer for Layer 2 Traffic
To enable a single-rate two-color policer to rate-limit Layer 2 traffic, include the logical-interface-policer statement in the policer configuration.

```firewall
policer policer-name {
  logical-interface-policer;
  if-exceeding {
    (bandwidth-limit bps | bandwidth-percent percentage);
    burst-size-limit bytes;
  }
  then {
    discard;
    forwarding-class class-name;
    loss-priority (high | low | medium-high | medium-low);
  }
}
```
You can include the configuration at the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]

Statement Hierarchy for Applying a Two-Color Policier to Layer 2 Traffic

To apply a logical interface policer to Layer 2 traffic, include the `layer2-policer input-policer policer-name` statement or the `layer2-policer output-policer policer-name` statement to a supported logical interface. Use the `input-policer` or `output-policer` statements to apply a two-color policer at Layer 2.

```c
interfaces {
    (ge-fpc/pic/port | xe-fpc/pic/port) {
        unit unit-number {
            layer2-policer {
                input-policer policer-name;
                output-policer policer-name;
            }
        }
    }
}
```

You can include the configuration at the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]

SEE ALSO

- `logical-interface-policer`
- *Example: Configuring a Two-Color Logical Interface (Aggregate) Policier*
Three-Color Policing at Layer 2 Overview

Guidelines for Configuring Three-Color Policing of Layer 2 Traffic

The following guidelines apply to three-color policing of Layer 2 traffic:

- You can apply a three-color policer to Layer 2 traffic at a logical interface hosted on a Gigabit Ethernet interface (ge-) or a 10-Gigabit Ethernet interface (xe-) only.
- A single logical interface supports Layer 2 policing in both directions.
- You can apply a three-color policer to Layer 2 traffic as a logical interface policer only. You cannot apply a two-color policer to Layer 2 traffic as a stateless firewall filter action.
- You can apply a three-color policer to Layer 2 traffic by referencing the policer in the interface configuration at the logical unit level, and not at the protocol level.
- You can apply a color-aware three-color policer to Layer 2 traffic in the egress direction only, but you apply a color-blind three-color policer to Layer 2 traffic in either direction.

For information about configuring two-color policing of Layer 2 traffic, see “Two-Color Policing at Layer 2 Overview” on page 1735.

Statement Hierarchy for Configuring a Three-Color Policer for Layer 2 Traffic

To enable a single-rate or two-rate three-color policer to rate-limit Layer 2 traffic, include the logical-interface-policer statement in the three-color-policer configuration.
You can include the configuration at the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]

Statement Hierarchy for Applying a Three-Color Policer to Layer 2 Traffic

To apply a logical interface policer to Layer 2 traffic, include the `layer2-policer` statement for a supported logical interface at the logical unit level. Use the `input-three-color policer-name` statement or `output-three-color policer-name` statement to specify the direction of the traffic to be policed.

SEE ALSO

- Example: Configuring a Three-Color Logical Interface (Aggregate) Policer | 1739
Example: Configuring a Three-Color Logical Interface (Aggregate) Policer

This example shows how to configure a two-rate three-color color-blind policer as a logical interface (aggregate) policer and apply the policer directly to Layer 2 input traffic at a supported logical interface.

Requirements

Before you begin, make sure that the logical interface to which you apply the three-color logical interface policer is hosted on a Gigabit Ethernet interface (ge-) or a 10-Gigabit Ethernet interface (xe-) on an MX Series router.

Overview

A two-rate three-color policer meters a traffic flow against a bandwidth limit and burst-size limit for guaranteed traffic, plus a second set of bandwidth and burst-size limits for peak traffic. Traffic that conforms to the limits for guaranteed traffic is categorized as green, and nonconforming traffic falls into one of two categories:

- Nonconforming traffic that does not exceed the bandwidth and burst-size limits for peak traffic is categorized as yellow.
- Nonconforming traffic that exceeds the bandwidth and burst-size limits for peak traffic is categorized as red.

A logical interface policer defines traffic rate-limiting rules that you can apply to multiple protocol families on the same logical interface without creating multiple instances of the policer.
NOTE: You apply a logical interface policer directly to a logical interface at the logical unit level, and not by referencing the policer in a stateless firewall filter and then applying the filter to the logical interface at the protocol family level.

Topology

In this example, you configure the two-rate three-color policer **trTCM2-cb** as a color-blind logical interface policer and apply the policer to incoming Layer 2 traffic on logical interface **ge-1/3/1.0**.

NOTE: When using a three-color policer to rate-limit Layer 2 traffic, color-aware policing can be applied to egress traffic only.

The policer defines guaranteed traffic rate limits such that traffic that conforms to the bandwidth limit of 40 Mbps with a 100 KB allowance for traffic bursting (based on the token-bucket formula) is categorized as green. As with any policed traffic, the packets in a green flow are implicitly set to a **low** loss priority and then transmitted.

Nonconforming traffic that falls within the peak traffic limits of a 60 Mbps bandwidth limit and a 200 KB allowance for traffic bursting (based on the token-bucket formula) is categorized as yellow. The packets in a yellow traffic flow are implicitly set to a **medium-high** loss priority and then transmitted.

Nonconforming traffic that exceeds the peak traffic limits are categorized as red. The packets in a red traffic flow are implicitly set to a **high** loss priority. In this example, the optional policer action for red traffic (**loss-priority high then discard**) is configured, so packets in a red traffic flow are discarded instead of transmitted.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:
CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces ge-1/3/1 vlan-tagging
set interfaces ge-1/3/1 unit 0 vlan-id 100
set interfaces ge-1/3/1 unit 0 family inet address 10.10.10.1/30
set interfaces ge-1/3/1 unit 1 vlan-id 101
set interfaces ge-1/3/1 unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
set firewall three-color-policer trTCM2-cb logical-interface-policer
set firewall three-color-policer trTCM2-cb two-rate color-blind
set firewall three-color-policer trTCM2-cb two-rate committed-information-rate 40m
set firewall three-color-policer trTCM2-cb two-rate committed-burst-size 100k
set firewall three-color-policer trTCM2-cb two-rate peak-information-rate 60m
set firewall three-color-policer trTCM2-cb two-rate peak-burst-size 200k
set firewall three-color-policer trTCM2-cb action loss-priority high then discard
set interfaces ge-1/3/1 unit 0 layer2-policer input-three-color trTCM2-cb
```

Configuring the Logical Interfaces

Step-by-Step Procedure

To configure the logical interfaces:

1. Enable configuration of the interface.

 [edit]
 user@host# edit interfaces ge-1/3/1

2. Configure single tagging.

 [edit interfaces ge-1/3/1]
 user@host# set vlan-tagging

3. Configure logical interface ge-1/3/1.0.

 [edit interfaces ge-1/3/1]
 user@host# set 0 vlan-id 100
 user@host# set 0 family inet address 10.10.10.1/30
4. Configure logical interface `ge-1/3/1.0`.

```
[edit interfaces ge-1/3/1]
user@host# set unit 1 vlan-id 101
user@host# set unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
```

Results

Confirm the configuration of the logical interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 { 
   vlan-tagging;
   unit 0 { 
      vlan-id 100;
      family inet { 
         address 10.10.10.1/30;
      }
   }
   unit 1 { 
      vlan-id 101;
      family inet { 
         address 20.20.20.1/30 { 
            arp 20.20.20.2 mac 00:00:11:22:33:44;
         }
      }
   }
}
```

Configuring the Two-Rate Three-Color Policer as a Logical Interface Policer

Step-by-Step Procedure

To configure the two-rate three-color policer as a logical interface policer:

1. Enable configuration of a three-color policer.

```
[edit]
user@host# edit firewall three-color-policer trTCM2-cb
```
2. Specify that the policer is a logical interface (aggregate) policer.

 [edit firewall three-color-policer trTCM2-cb]
 user@host# set logical-interface-policer

 A logical interface policer rate-limits traffic based on a percentage of the media rate of the physical interface underlying the logical interface to which the policer is applied, and the policer is applied directly to the interface rather than referenced by a firewall filter.

3. Specify that the policer is two-rate and color-blind.

 [edit firewall three-color-policer trTCM2-cb]
 user@host# set two-rate color-blind

 A color-aware three-color policer takes into account any coloring markings that might have been set for a packet by another traffic policer configured at a previous network node, and any preexisting color markings are used in determining the appropriate policing action for the packet.

 Because you are applying this three-color policer applied to input at Layer 2, you must configure the policer to be color-blind.

4. Specify the policer traffic limits used to classify a green traffic flow.

 [edit firewall three-color-policer trTCM2-cb]
 user@host# set two-rate committed-information-rate 40m
 user@host# set two-rate committed-burst-size 100k

5. Specify the additional policer traffic limits used to classify a yellow or red traffic flow.

 [edit firewall three-color-policer trTCM2-cb]
 user@host# set two-rate peak-information-rate 60m
 user@host# set two-rate peak-burst-size 200k

6. (Optional) Specify the configured policer action for packets in a red traffic flow.

 [edit firewall three-color-policer trTCM2-cb]
 user@host# set action loss-priority high then discard

 In color-aware mode, the three-color policer configured action can increase the packet loss priority (PLP) level of a packet, but never decrease it. For example, if a color-aware three-color policer meters
a packet with a medium PLP marking, it can raise the PLP level to high, but cannot reduce the PLP level to low.

Results
Confirm the configuration of the three-color policer by entering the **show firewall** configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
three-color-policer trTCM2-cb {
  logical-interface-policer;
  action {
    loss-priority high then discard;
  }
  two-rate {
    color-blind;
    committed-information-rate 40m;
    committed-burst-size 100k;
    peak-information-rate 60m;
    peak-burst-size 200k;
  }
}
```

Applying the Three-Color Policier to the Layer 2 Input at the Logical Interface

Step-by-Step Procedure
To apply the three-color policer to the Layer 2 input at the logical interface:

1. Enable application of Layer 2 logical interface policers.

```
[edit]
user@host# edit interfaces ge-1/3/1 unit 0
```

2. Apply the three-color logical interface policer to a logical interface input.

```
[edit interfaces ge-1/3/1 unit 0]
user@host# set layer2-policerinput-three-color trTCM2-cb
```

Results
Confirm the configuration of the logical interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
[edit]
user@host# show interfaces
ge-1/3/1 {
  vlan-tagging;
  unit 0 {
    vlan-id 100;
    layer2-policer {
      input-three-color trTCM2-cb;
    }
    family inet {
      address 10.10.10.1/30;
    }
  }
  unit 1 {
    vlan-id 101;
    family inet {
      address 20.20.20.1/30 {
        arp 20.20.20.2 mac 00:00:11:22:33:44;
      }
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Displaying Traffic Statistics and Policers for the Logical Interface | 1745
- Displaying Statistics for the Policer | 1746

Confirm that the configuration is working properly.

Displaying Traffic Statistics and Policers for the Logical Interface

Purpose
Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

Action

Use the `show interfaces` operational mode command for logical interface `ge-1/3/1.0`, and include the `detail` or `extensive` option. The command output section for `Traffic statistics` lists the number of bytes and packets received and transmitted on the logical interface, and the `Protocol inet` section contains a `Policer` field that would list the policer `trTCM2-cb` as an input or output policer as follows:

- **Input**: `trTCM2-cb-ge-1/3/1.0-log_int-i`
- **Output**: `trTCM2-cb-ge-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to in the input direction only.

Displaying Statistics for the Policer

Purpose

Verify the number of packets evaluated by the policer.

Action

Use the `show policer` operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer `trTCM2-cb`, the input and output policer names are displayed as follows:

- `trTCM2-cb-ge-1/3/1.0-log_int-i`
- `trTCM2-cb-e-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

SEE ALSO

Logical Interface (Aggregate) Policer Overview	1911
Example: Configuring a Two-Color Logical Interface (Aggregate) Policer	1912
Three-Color Policing at Layer 2 Overview	1737
layer2-policer	2244 statement
logical-interface-policer	2250 statement
three-color-policer (Configuring)	2297 statement
Layer 2 Traffic Policing at the Pseudowire Overview

This feature limits traffic that is sent over the core by policing traffic at the Layer 2 pseudowire level. It uses dynamic profiles to attach two- or three-color polices to pseudowire logical interfaces. You apply the dynamic profiles to core-facing egress interfaces so that they can police unicast, multicast, and broadcast traffic that is going over the MPLS core network.

NOTE: Pseudowire policer statistics collected by the Routing Engine, kernel, and Packet Forwarding Engine can be displayed on the Routing Engine when you execute the `show interfaces` command.

Figure 82 on page 1747 shows an MX Series 5G Universal Routing Platform configured as a provider edge (PE) router. It communicates with other PE routers over pseudowires. It can aggregate both unicast and multicast traffic and send it over pseudowires. To limit traffic over the pseudowires, you can set up polices on each pseudowire that faces the MPLS core network.

Figure 82: Limiting Traffic to the Core Using Layer 2 Policers at the Pseudowire Level

NOTE: This feature is supported only on pseudowire logical interfaces at the egress. It is not supported on tunnel interfaces.
Configuring a Two-Color Layer 2 Policer for the Pseudowire

For the basic configuration of Layer 2 policers for pseudowires, create a two-color policer.

To configure a two-color policer:

1. Create a two-color policer.

   ```
   [edit firewall]
   user@host# edit policer 2color-l2-policer
   ```

2. Specify that the policer is to be used on a logical interface.

   ```
   [edit firewall policer 2color-l2-policer]
   user@host# set logical-interface-policer
   ```

3. Configure the policer.

   ```
   [edit firewall policer 2color-l2-policer]
   user@host# edit if-exceeding
   [edit firewall policer 2color-l2-policer if-exceeding]
   user@host# set bandwidth-limit 30m
   user@host# set burst-size-limit 300k
   ```

4. Set the action that the policer takes to loss-priority and specify that the packet loss priority (PLP) is high.

   ```
   [edit firewall policer 2color-l2-policer]
   user@host# set then loss-priority high
   ```

RELATED DOCUMENTATION

- Layer 2 Traffic Policing at the Pseudowire Overview | 1747
- Configuring a Three-Color Layer 2 Policer for the Pseudowire | 1749
- Applying the Policers to Dynamic Profile Interfaces | 1750
Configuring a Three-Color Layer 2 Policer for the Pseudowire

For the basic configuration of Layer 2 policers for pseudowires, create a three-color policer. This scenario shows a two-rate three-color-marking (trTCM) policer.

To configure a three-color policer:

1. Create a three-color policer.

```
[edit firewall]
user@host# edit three-color-policer trTCM-policer
```

2. Specify that the policer is to be used on a logical interface.

```
[edit firewall three-color-policer trTCM-policer]
user@host# set logical-interface-policer
```

3. Set the action for the policer.

```
[edit firewall three-color-policer trTCM-policer]
user@host# set action loss-priority high then discard
```

4. Specify that the policer is a two-rate policer and configure the policer.

```
[edit firewall three-color-policer trTCM-policer]
user@host# edit two-rate
user@host# set color-aware
user@host# set committed-information-rate 10m
user@host# set committed-burst-size 50m
user@host# set committed-burst-size 150k
user@host# set peak-information-rate 50m
user@host# set peak-burst-size 450k
```
Applying the Policers to Dynamic Profile Interfaces

This configuration shows how to apply policers to a dynamic profile.

Before you can apply policers, you need to have configured your policers as described in:

- Configuring a Three-Color Layer 2 Policer for the Pseudowire on page 1749
- Configuring a Two-Color Layer 2 Policer for the Pseudowire on page 1748

To configure the dynamic profiles:

1. Create a dynamic profile for the three-color policer.

   ```
   [edit dynamic-profiles]
   user@host# edit pw-trTCM-policer
   ```

2. Create a dynamic profile interface that has a dynamic underlying interface unit.

   ```
   [edit dynamic-profiles pw-trTCM-policer]
   user@host# edit interfaces $junos-interface-ifd-name unit $junos-underlying-interface-unit
   ```

3. Specify that VPLS is the protocol family.

   ```
   [edit dynamic-profiles pw-trTCM-policer interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]
   user@host# set family vpls
   ```

4. Assign the three-color policer to the dynamic profile.

   ```
   [edit dynamic-profiles pw-trTCM-policer interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]
   user@host# set layer2-policer output-three-color trTCM-policer
   ```
5. Create a dynamic profile for the two-color policer.

```
[edit dynamic-profiles]
user@host# edit pw-2color-l2-policer
```

6. Create a dynamic profile interface that has a dynamic underlying interface unit.

```
[edit dynamic-profiles pw-2color-l2-policer]
user@host# edit interfaces $junos-interface-ifd-name unit $junos-underlying-interface-unit
```

7. Specify that VPLS is the protocol family.

```
[edit dynamic-profiles pw-2color-l2-policer interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]
user@host# set family vpls
```

8. Assign the two-color policer to the dynamic profile.

```
[edit dynamic-profiles pw-2color-l2-policer interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]
user@host# set layer2-policer output-policer 2color-l2-policer
```

RELATED DOCUMENTATION

- Layer 2 Traffic Policing at the Pseudowire Overview | 1747
- Configuring a Three-Color Layer 2 Policer for the Pseudowire | 1749
- Configuring a Two-Color Layer 2 Policer for the Pseudowire | 1748
- Attaching Dynamic Profiles to Routing Instances | 1752
Attaching Dynamic Profiles to Routing Instances

To bind the dynamic profile to the pseudowire, attach it to a routing instance. The routing instance can be a VPLS instance type or a virtual switch instance type. You can attach dynamic profiles to the routing instance at the VPLS protocol level, at the mesh-group level, or at the neighbor level.

Because this feature is not supported on tunnel interfaces, for VPLS routing interfaces, you must include the `no-tunnel-services` statement at the `[edit routing-instances routing-instance-name protocols vpls]` hierarchy level.

- To attach the dynamic profile at the VPLS protocol level:

  ```
  [edit routing-instances]
  user@host# edit green protocols vpls associate-profile
  [edit routing-instances green protocols vpls associate-profile]
  user@host# set pw-2color-l2-policer
  ```

- To attach the dynamic profile at the mesh-group level:

  ```
  [edit routing-instances]
  user@host# edit green protocols vpls mesh-group lata-1 associate-profile
  [edit routing-instances green protocols vpls mesh-group lata-1 associate-profile]
  user@host# set pw-trTCM-policer
  ```

- To attach the dynamic profile at the neighbor level:

  ```
  [edit routing-instances]
  user@host# edit green protocols vpls mesh-group lata-1 neighbor 10.10.1.1 associate-profile
  [edit routing-instances green protocols vpls mesh-group lata-1 neighbor 10.10.1.1 associate-profile]
  user@host# set pw-2color-l2-policer
  ```

RELATED DOCUMENTATION

- Layer 2 Traffic Policing at the Pseudowire Overview | 1747
- Configuring a Three-Color Layer 2 Policer for the Pseudowire | 1749
- Configuring a Two-Color Layer 2 Policer for the Pseudowire | 1748
- Applying the Policers to Dynamic Profile Interfaces | 1750
Using Variables for Layer 2 Traffic Policing at the Pseudowire Overview

To reduce the number of dynamic profiles needed to police traffic at the core, you can use a variable for the output policer in your dynamic profiles. The variable that you define is called `junos-layer2-output-policer`. The variable is a placeholder that gets filled in when the dynamic profile obtains the value from the routing instance.

To use variables for policers for Layer 2 pseudowires:

1. Create policers.

2. Create a dynamic profile and add a profile variable set to the dynamic profile.

3. In the profile variable set, assign a value to the `junos-layer2-output-policer` variable. This value is the name of one of your policers.

4. In the dynamic profile interface configuration at the `[edit dynamic-profiles profile-name interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]` hierarchy, assign `junos-layer2-output-policer` as one of your Layer 2 policers.

5. When you attach the dynamic profile to a routing instance, assign the profile variable set that you configured in the dynamic profile as the `associate-profile` value.

6. Attach the dynamic profile and the profile variable set to the routing instance.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Layer 2 Traffic Policing at the Pseudowire Overview</th>
<th>1747</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a Policer for the Complex Configuration</td>
<td>1753</td>
</tr>
<tr>
<td>Creating a Dynamic Profile for the Complex Configuration</td>
<td>1755</td>
</tr>
<tr>
<td>Attaching Dynamic Profiles to Routing Instances for the Complex Configuration</td>
<td>1756</td>
</tr>
</tbody>
</table>

Configuring a Policer for the Complex Configuration

For the complex configuration of Layer 2 policers for pseudowires, create a two-color policer.

To configure a two-color policer:

1. Create a two-color policer.
2. Specify that the policer is to be used on a logical interface.

```bash
[edit firewall]
user@host# edit policer 10m-policer

[edit firewall policer 10m-policer]
user@host# set logical-interface-policer
```

3. Configure the policer.

```bash
[edit firewall policer 10m-policer]
user@host# edit if-exceeding
[edit firewall policer 10m-policer if-exceeding]
user@host# set bandwidth-limit 10m
user@host# set burst-size-limit 100k
```

4. Set the action that the policer takes to loss-priority and specify that the packet loss priority (PLP) is high.

```bash
[edit firewall policer 10m-policer]
user@host# set then loss-priority high
```

RELATED DOCUMENTATION

- Layer 2 Traffic Policing at the Pseudowire Overview | 1747
- Using Variables for Layer 2 Traffic Policing at the Pseudowire Overview | 1753
- Creating a Dynamic Profile for the Complex Configuration | 1755
- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration | 1756
Creating a Dynamic Profile for the Complex Configuration

For this configuration, the dynamic profile defines a profile variable set and then assigns the variable to the output policer.

To configure dynamic profiles:

1. Create a dynamic profile.

 [edit dynamic-profiles]
 user@host# edit pw-policer

2. Create a profile variable set and define the `junos-layer2-output-policer` variable. In this scenario, set the variable to the `10m-policer`.

 [edit dynamic-profiles pw-policer]
 user@host# edit profile-variable-set pw-policer-var-set
 user@host# set junos-layer2-output-policer 10m-policer

3. Create a dynamic profile interface that has a dynamic underlying interface unit.

 [edit dynamic-profiles pw-policer]
 user@host# edit interfaces $junos-interface-ifd-name $junos-underlying-interface-unit

4. Assign the `junos-layer2-output-policer` variable to the two-color output policer.

 [edit dynamic-profiles pw-policer interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]
 user@host# set layer2-policer output-policer $junos-layer2-output-policer

5. Specify that VPLS is the protocol family.

 [edit dynamic-profiles pw-2color-l2-policer interfaces "$junos-interface-ifd-name" unit "$junos-underlying-interface-unit"]
 user@host# set family vpls

RELATED DOCUMENTATION

Layer 2 Traffic Policing at the Pseudowire Overview | 1747
Attaching Dynamic Profiles to Routing Instances for the Complex Configuration

To bind the dynamic profile to the pseudowire, attach it to a routing instance. When your dynamic profile contains variables, you assign one of the profile variable sets that you configured in your dynamic profile when you associate the profile with the routing instance.

The routing instance can be a VPLS instance type or a virtual switch instance type. You can attach the dynamic profile and the profile variable set to the routing instance at the VPLS protocol level, at the mesh-group level, or at the neighbor level.

Because this feature is not supported on tunnel interfaces, for VPLS routing interfaces, you must include the no-tunnel-services statement at the [edit routing-instances routing-instance-name protocols vpls] hierarchy level.

- To attach the dynamic profile and the profile variable set at the VPLS protocol level:

  ```
  [edit routing-instances]
  user@host# edit green protocols vpls associate-profile
  [edit routing-instances green protocols vpls associate-profile]
  user@host# set profile-variable-set pw-policer
  user@host# set profile-variable-set pw-policer-var-set
  ```

- To attach the dynamic profile and the profile variable set at the mesh-group level:

  ```
  [edit routing-instances]
  user@host# edit green protocols vpls mesh-group lata-1 associate-profile
  [edit routing-instances green protocols vpls mesh-group lata-1 associate-profile]
  user@host# set profile-variable-set pw-policer
  user@host# set profile-variable-set pw-policer-var-set
  ```

- To attach the dynamic profile and the profile variable set at the neighbor level:

  ```
  [edit routing-instances]
  user@host# edit green protocols vpls mesh-group lata-1 neighbor 10.10.1.1 associate-profile
  [edit routing-instances green protocols vpls mesh-group lata-1 neighbor 10.10.1.1 associate-profile]
  user@host# profile-variable-set pw-policer
  ```
Verifying Layer 2 Traffic Policers on VPLS Connections

Purpose
Display VPLS connections to verify that the dynamic profile is running on the Layer 2 VPN connection.

Action

```
user@host> show vpls connections
```

Layer-2 VPN connections:

```
... 
Instance: vpls-10gige
Local site: 10Gige-PE (2)
connection-site Type St Time last up # Up trans
1 rmt Up Mar 28 21:27:57 2010 1
Remote PE: 10.10.1.1, Negotiated control-word: No
Incoming label: 262145, Outgoing label: 262146
Local interface: lsi.1048576, Status: Up, Encapsulation: VPLS
Dynamic profile: pw-policer
    Description: Intf - vpls vpls-10gige local site 2 remote site 1
```

Meaning
The Dynamic profile field displays the policer that is currently running on the VPLS connection.

RELATED DOCUMENTATION
Understanding Policers on OVSDB-Managed Interfaces

When you use a Contrail controller to manage VXLANs on a QFX switch (through the Open vSwitch Database—OVSD—the management protocol), the VXLAN interfaces are automatically configured with the `flexible-vlan-tagging` and `encapsulation extended-vlan-bridge` statements. Starting with Junos OS Release 14.1X53-D30, you can create `family ethernet-switching` logical units (subinterfaces) on VXLAN interfaces. This enables you to apply firewall filters with the action `three-color-policer` to these subinterfaces, which means that you can apply two-rate three-color markers (policers) to OVSDB-managed interfaces. See “Example: Applying a Policier to OVSDB-Managed Interfaces” on page 1759 for information about how to configure policers on VXLAN interfaces managed by a Contrail controller.

NOTE: Firewall filters are the only supported configuration items on `family ethernet-switching` subinterfaces of OVSDB-managed interfaces. Two-rate three-color markers are the only supported policers.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1X53-D30</td>
<td>Starting with Junos OS Release 14.1X53-D30, you can create <code>family ethernet-switching</code> logical units (subinterfaces) on VXLAN interfaces.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Example: Applying a Policier to OVSDB-Managed Interfaces | 1759
- Overview of Policers | 1940
- Understanding VXLANs
- Understanding the OVSDB Protocol Running on Juniper Networks Devices
- Understanding Firewall Filters on OVSDB-Managed Interfaces | 1308
Example: Applying a Policer to OVSDB-Managed Interfaces

IN THIS SECTION
- Requirements | 1759
- Overview | 1759
- Configuration | 1760

Starting with Junos OS Release 14.1X53-D30, you can create family ethernet-switching logical units (subinterfaces) on VXLAN interfaces managed by a Contrail controller. (The controller and switch communicate through the Open vSwitch Database—OVSDB—management protocol). This support enables you to apply firewall filters with the action three-color-policer to these subinterfaces, which means that you can apply two-rate three-color markers (policers) to OVSDB-managed interfaces.

Because a Contrail controller can create subinterfaces dynamically, you need to apply firewall filters in such a way that the filters will apply to subinterfaces whenever the controller creates them. You accomplish this by using configuration groups to configure and apply the firewall filters. (You must use configuration groups for this purpose—that is, you cannot apply a firewall filter directly to these subinterfaces.)

NOTE: Firewall filters are the only supported configuration items on family ethernet-switching subinterfaces of OVSDB-managed interfaces. Two-rate three-color markers are the only supported policers.

Requirements

This example uses the following hardware and software components:

- A QFX5100 switch
- Junos OS Release 14.1X53-D30 or later

Overview

This example assumes that interfaces xe-0/0/0 and xe-0/0/1 on the switch are VXLAN interfaces managed by a Contrail controller, which means that the controller has applied the flexible-vlan-tagging and encapsulation extended-vlan-bridge statements to these interfaces. To apply a firewall filter Layer 2 (port)
firewall filter with a policer action to any subinterfaces that the controller creates dynamically, you must create and apply the filter as shown in this example.

NOTE: As shown in the example, all of the statements must be part of a configuration group when you want to apply a firewall filter (and policer) to an OVSDB-managed subinterface.

Configuration

To configure a firewall filter with a policer action to be automatically applied to subinterfaces created dynamically by a Contrail controller, perform these tasks:

CLI Quick Configuration

[edit]

set groups vxlan-policer-group interfaces xe-0/0/0 unit <*> family ethernet-switching filter input vxlan-filter

set groups vxlan-policer-group interfaces xe-0/0/1 unit <*> family ethernet-switching filter input vxlan-filter

set groups vxlan-policer-group firewall three-color-policer vxlan-policer action loss-priority high then discard

set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate color-blind

set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate committed-burst-size 2m

set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate committed-information-rate 100m

set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate peak-burst-size 4m

set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate peak-information-rate 100m

set groups vxlan-policer-group firewall family ethernet-switching filter vxlan-filter term t1 then three-color-policer two-rate vxlan-policer

set apply-groups vxlan-policer-group

Step-by-Step Procedure
1. Create configuration group `vxlan-policer-group` to apply firewall filter `vxlan-filter` to any subinterface of interface xe-0/0/0. The filter applies to any subinterface because you specify `unit <*>`:

[edit]
user@switch# set groups vxlan-policer-group interfaces xe-0/0/0 unit <*> family ethernet-switching filter input vxlan-filter

2. Create the same configuration for interface xe-0/0/1:

[edit]
user@switch# set groups vxlan-policer-group interfaces xe-0/0/1 unit <*> family ethernet-switching filter input vxlan-filter

3. Configure the policer to discard packets with high loss priority. (Junos OS assigns high loss priority to packets that exceed the peak information rate and the peak burst size.) As with the interface configuration, you must also configure the policer to be part of a configuration group.

[edit]
user@switch# set groups vxlan-policer-group firewall three-color-policer vxlan-policer action loss-priority high then discard

4. Configure the policer to be color blind, which means that it ignores any preclassification of packets and can assign a higher or lower packet loss priority.

[edit]
user@switch# set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate color-blind

5. Configure the policer to allow incoming traffic to burst a maximum of 2 megabytes above the committed information rate and still be marked with low packet loss priority (green).

[edit]
user@switch# set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate committed-burst-size 2m

6. Configure the policer to allow guaranteed bandwidth of 100 megabytes under normal line conditions. This is the average rate up threshold under which packets are marked with low packet loss priority (green).

[edit]
user@switch# set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate committed-information-rate 100m
7. Configure the policer to allow incoming packets to burst a maximum of 4 megabytes above the peak information rate and still be marked with medium-high packet loss priority (yellow). Packets that exceed the peak burst size are marked with high packet loss priority (red).

[edit]
user@switch# set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate peak-burst-size 4m

8. Configure the policer to allow a maximum achievable rate of 100 megabytes. Packets that exceed the committed information rate but are below the peak information rate are marked with medium-high packet loss priority (yellow). Packets that exceed the peak information rate are marked with high packet loss priority (red).

[edit]
user@switch# set groups vxlan-policer-group firewall three-color-policer vxlan-policer two-rate peak-information-rate 100m

9. Configure the firewall filter vxlan-filter to send matching packets (all packets, because there is no from statement) to the policer:

[edit]
user@switch# set groups vxlan-policer-group firewall family ethernet-switching filter vxlan-filter term t1 then three-color-policer two-rate vxlan-policer

10. Apply the group to enable its configuration:

[edit]
user@switch# set apply-groups vxlan-policer-group

RELATED DOCUMENTATION

Understanding Junos OS Configuration Groups
Overview of Firewall Filters | 1516
Overview of Policers | 1940
Understanding VXLANs
Understanding the OVSDB Protocol Running on Juniper Networks Devices
Understanding Policers on OVSDB-Managed Interfaces | 1758
Configuring Two-Color and Three-Color Traffic Policers at Layer 3

IN THIS CHAPTER

- Two-Color Policer Configuration Overview | 1763
- Basic Single-Rate Two-Color Policers | 1770
- Bandwidth Policers | 1795
- Filter-Specific Counters and Policers | 1807
- Prefix-Specific Counting and Policing Actions | 1822
- Multifield Classification | 1842
- Policer Overhead to Account for Rate Shaping in the Traffic Manager | 1866
- Three-Color Policer Configuration Overview | 1877
- Three-Color Policer Configuration Guidelines | 1881
- Basic Single-Rate Three-Color Policers | 1885
- Basic Two-Rate Three-Color Policers | 1893
- Example: Configuring a Two-Rate Three-Color Policer | 1902

Two-Color Policer Configuration Overview

Table 116 on page 1764 describes the hierarchy levels at which you can configure and apply single-rate two-color policers to Layer 3 traffic. For information about applying single-rate two-color policers to Layer 2 traffic, see “Two-Color Policing at Layer 2 Overview” on page 1735.
Table 116: Two-Color Policer Configuration and Application Overview

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
</table>

Single-Rate Two-Color Policer

Defines traffic rate limiting that you can apply to Layer 3 protocol-specific traffic at a logical interface. Can be applied as an interface policer or as a firewall filter policer.

Basic policer configuration:

```
[edit firewall]
policer policer-name {
  if-exceeding {
    bandwidth-limit bps;
    burst-size-limit bytes;
  }
  then {
    discard;
    forwarding-class class-name;
    loss-priority supported-value;
  }
}
```

Method A—Apply as an interface policer at the protocol family level:

```
[edit interfaces]
interface-name {
  unit unit-number {
    family family-name {
      policer {
        input policer-name;
        output policer-name;
      }
    }
  }
}
```

Method B—Apply as a firewall filter policer at the protocol family level:

```
[edit firewall]
family family-name {
  filter filter-name {
    interface-specific; # (*)
    from {
      ... match-conditions ...
    }
    then {
      policer policer-name;
    }
  }
}

[edit interfaces]
interface-name {
  unit unit-number {
    family family-name {
      filter {
        input filter-name;
        output filter-name;
      }
    }
  }
}
```

Policer configuration:

- Use `bandwidth-limit bps` to specify an absolute value.

Firewall filter configuration (*):

- If applying to multiple interfaces, include the `interface-specific` statement to create unique policers and counters for each interface.

Interface policer verification:

- Use the `show interfaces (detail | extensive)` operational mode command.

Firewall filter policer verification:

- Use the `show interfaces (detail | extensive)` operational mode command.

- Use the `show firewall filter filter-name` operational mode command.
Table 116: Two-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>... protocol-configuration ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>
Table 116: Two-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policier Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
</table>

Bandwidth Policer

Defines traffic rate limiting that you can apply to Layer 3 protocol-specific traffic at a logical interface, but the bandwidth limit is specified as a percentage value. Bandwidth can be based on physical interface line rate (the default) or the logical interface shaping rate. Can be applied as an interface policer or as a firewall filter policer where the filter is either interface-specific or a physical interface filter.

Bandwidth policer configuration:

```plaintext
[edit firewall]
policer policer-name {
  logical-bandwidth-policer;
  if-exceeding { 
    bandwidth-percent (1..100);
    burst-size-limit bytes;
  }
  then { 
    discard;
    forwarding-class class-name;
    loss-priority supported-value;
  }
}
```

Method A—Apply as an interface policer at the protocol family level:

```plaintext
[edit interfaces]
interface-name {
  unit unit-number {
    family family-name {
      policer {
        input policer-name;
        output policer-name;
      }
      then { basisonapercentageof }
      discard; the physical interface 
      media rate.}
    }
  }
}
```

Method B—Apply as a firewall filter policer at the protocol family level:

```plaintext
[edit firewall]
family family-name {
  filter filter-name {
    interface-specific;
    from {
      ... match-conditions ...
    }
    then {
      policer policer-name;
    }
  }
}
[edit interfaces]
interface-name {
  unit unit-number {
    family family-name {
```
<table>
<thead>
<tr>
<th>Policier Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>filter {</td>
<td>• Use the show policer operational mode command.</td>
</tr>
<tr>
<td></td>
<td>input filter-name;</td>
<td>Firewall filter policer verification:</td>
</tr>
<tr>
<td></td>
<td>output filter-name;</td>
<td>• Use the show interfaces (detail</td>
</tr>
<tr>
<td></td>
<td>}</td>
<td>• Use the show firewall filter filter-name operational mode command.</td>
</tr>
<tr>
<td></td>
<td>... protocol-configuration ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
</tbody>
</table>
Table 116: Two-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Interface (Aggregate) Policer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines traffic rate limiting that you can apply to multiple protocol families on the same logical interface without creating multiple instances of the policer. Can be applied directly to a logical interface configuration only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logical interface policer configuration:

```plaintext
[edit firewall]
policer policer-name {
  logical-interface-policer;
  if-exceeding {
    bandwidth-limit bps;
    burst-size-limit bytes;
  }
  then {
    discard;
    forwarding-class class-name;
    loss-priority supported-value;
  }
}
```

Apply as an interface policer only:

```plaintext
[edit interfaces]
interface-name {
  unit unit-number {
    policer { # All protocols
      input policer-name;
      output policer-name;
    }
    family family-name {
      policer { # One protocol
        input policer-name;
        output policer-name;
      }
    }
  }
}
```

Policer configuration:

- Include the **logical-interface-policer** statement.

Two options for interface policer application:

- To rate-limit all traffic types, regardless of the protocol family, apply the logical interface policer at the logical unit level.
- To rate-limit traffic of a specific protocol family, apply the logical interface policer at the protocol family level.

Interface policer verification:

- Use the **show interfaces** (detail | extensive) operational mode command.
- Use the **show policer** operational mode command.
Table 116: Two-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
</table>

Physical Interface Policier

Defines traffic rate limiting that applies to all logical interfaces and protocol families configured on a physical interface, even if the interfaces belong to different routing instances. Can be applied as a firewall filter policer referenced from a physical interface filter only.

Physical interface policer configuration:

```plaintext
[edit firewall]
policer policer-name {
    physical-interface-policer;
    if-exceeding {
        bandwidth-limit bps;
        burst-size-limit bytes;
    }
    then {
        discard;
        forwarding-class class-name;
        loss-priority supported-value;
    }
}
```

Apply as a firewall filter policer referenced from a physical interface filter that you apply at the protocol family level:

```plaintext
[edit firewall]
family family-name {
    filter filter-name {
        physical-interface-filter;
        from {
            ... match-conditions ...
        }
        then {
            policer policer-name;
        }
    }
}
```

Policer configuration:

- Include the `physical-interface-policer` statement.

Firewall filter configuration:

- Include the `physical-interface-filter` statement.

Application:

- Apply the filter to the input or output of a logical interface at the protocol family level.

Firewall filter policer verification:

- Use the `show interfaces (detail | extensive)` operational mode command.
- Use the `show firewall filter filter-name` operational mode command.

 RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Basic Single-Rate Two-Color Policers</th>
<th>1770</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth Policers</td>
<td>1795</td>
</tr>
</tbody>
</table>
Basic Single-Rate Two-Color Policers

IN THIS SECTION

- Single-Rate Two-Color Policer Overview | 1770
- Example: Limiting Inbound Traffic at Your Network Border by Configuring an Ingress Single-Rate Two-Color Policer | 1771
- Example: Configuring Interface and Firewall Filter Policers at the Same Interface | 1782

Single-Rate Two-Color Policer Overview

Single-rate two color policing enforces a configured rate of traffic flow for a particular service level by applying implicit or configured actions to traffic that does not conform to the limits. When you apply a single-rate two-color policer to the input or output traffic at an interface, the policer meters the traffic flow to the rate limit defined by the following components:

- **Bandwidth limit**—The average number of bits per second permitted for packets received or transmitted at the interface. You can specify the bandwidth limit as an absolute number of bits per second or as a percentage value from 1 through 100. If a percentage value is specified, the effective bandwidth limit is calculated as a percentage of either the physical interface media rate or the logical interface configured shaping rate.

- **Packets per second (pps) limit (MX Series with MPC only)**—The average number of packets per second permitted for packets received or transmitted at the interface. You specify the pps limit as an absolute number of packets per second.

- **Burst-size limit**—The maximum size permitted for bursts of data.

- **Packet burst limit**—

 For a traffic flow that conforms to the configured limits (categorized as green traffic), packets are implicitly marked with a packet loss priority (PLP) level of low and are allowed to pass through the interface unrestricted.
For a traffic flow that exceeds the configured limits (categorized as red traffic), packets are handled according to the traffic-policing actions configured for the policer. The action might be to discard the packet, or the action might be to re-mark the packet with a specified forwarding class, a specified PLP, or both, and then transmit the packet.

To rate-limit Layer 3 traffic, you can apply a two-color policer in the following ways:

- Directly to a logical interface, at a specific protocol level.
- As the action of a standard stateless firewall filter that is applied to a logical interface, at a specific protocol level.

To rate-limit Layer 2 traffic, you can apply a two-color policer as a logical interface policer only. You cannot apply a two-color policer to Layer 2 traffic through a firewall filter.

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Example: Limiting Inbound Traffic at Your Network Border by Configuring an Ingress Single-Rate Two-Color Policer | 1771
- Example: Configuring Interface and Firewall Filter Policers at the Same Interface | 1782

Example: Limiting Inbound Traffic at Your Network Border by Configuring an Ingress Single-Rate Two-Color Policer

This example shows you how to configure an ingress single-rate two-color policer to filter incoming traffic. The policer enforces the class-of-service (CoS) strategy for in-contract and out-of-contract traffic. You can apply a single-rate two-color policer to incoming packets, outgoing packets, or both. This example applies the policer as an input (ingress) policer. The goal of this topic is to provide you with an introduction to policing by using a example that shows traffic policing in action.
Policers use a concept known as a token bucket to allocate system resources based on the parameters defined for the policer. A thorough explanation of the token bucket concept and its underlying algorithms is beyond the scope of this document. For more information about traffic policing, and CoS in general, refer to QOS-Enabled Networks—Tools and Foundations by Miguel Barreiros and Peter Lundqvist. This book is available at many online booksellers and at www.juniper.net/books.

Requirements

To verify this procedure, this example uses a traffic generator. The traffic generator can be hardware-based or it can be software running on a server or host machine.

The functionality in this procedure is widely supported on devices that run Junos OS. The example shown here was tested and verified on MX Series routers running Junos OS Release 10.4.

Overview

Single-rate two-color policing enforces a configured rate of traffic flow for a particular service level by applying implicit or configured actions to traffic that does not conform to the limits. When you apply a single-rate two-color policer to the input or output traffic at an interface, the policer meters the traffic flow to the rate limit defined by the following components:

- **Bandwidth limit**—The average number of bits per second permitted for packets received or transmitted at the interface. You can specify the bandwidth limit as an absolute number of bits per second or as a percentage value from 1 through 100. If a percentage value is specified, the effective bandwidth limit is calculated as a percentage of either the physical interface media rate or the logical interface configured shaping rate.

- **Burst-size limit**—The maximum size permitted for bursts of data. Burst sizes are measured in bytes. We recommend two formulas for calculating burst size:

 \[
 \text{Burst size} = \text{bandwidth} \times \text{allowable time for burst traffic} / 8
 \]

 Or

 \[
 \text{Burst size} = \text{interface mtu} \times 10
 \]

 For information about configuring the burst size, see “Determining Proper Burst Size for Traffic Policers” on page 1662.

NOTE: There is a finite buffer space for an interface. In general, the estimated total buffer depth for an interface is about 125 ms.

For a traffic flow that conforms to the configured limits (categorized as green traffic), packets are implicitly marked with a packet loss priority (PLP) level of low and are allowed to pass through the interface unrestricted.
For a traffic flow that exceeds the configured limits (categorized as red traffic), packets are handled according to the traffic-policing actions configured for the policer. This example discards packets that burst over the 15 KBps limit.

To rate-limit Layer 3 traffic, you can apply a two-color policer in the following ways:

- Directly to a logical interface, at a specific protocol level.
- As the action of a standard stateless firewall filter that is applied to a logical interface, at a specific protocol level. This is the technique used in this example.

To rate-limit Layer 2 traffic, you can apply a two-color policer as a logical interface policer only. You cannot apply a two-color policer to Layer 2 traffic through a firewall filter.

CAUTION: You can choose either bandwidth-limit or bandwidth percent within the policer, as they are mutually exclusive. You cannot configure a policer to use bandwidth percent for aggregate, tunnel, and software interfaces.

In this example, the host is a traffic generator emulating a webserver. Devices R1 and R2 are owned by a service provider. The webserver is accessed by users on Device Host2. Device Host1 will be sending traffic with a source TCP HTTP port of 80 to the users. A single-rate two-color policer is configured and applied to the interface on Device R1 that connects to Device Host1. The policer enforces the contractual bandwidth availability made between the owner of the webserver and the service provider that owns Device R1 for the web traffic that flows over the link that connects Device Host1 to Device R1.

In accordance with the contractual bandwidth availability made between the owner of the webserver and the service provider that owns Devices R1 and R2, the policer will limit the HTTP port 80 traffic originating from Device Host1 to using 700 Mbps (70 percent) of the available bandwidth with an allowable burst rate of 10 x the MTU size of the gigabit Ethernet interface between the host Device Host1 and Device R1.

NOTE: In a real-world scenario you would probably also rate limit traffic for a variety of other ports such as FTP, SFTP, SSH, TELNET, SMTP, IMAP, and POP3 because they are often included as additional services with web hosting services.

NOTE: You need to leave some additional bandwidth available that is not rate limited for network control protocols such as routing protocols, DNS, and any other protocols required to keep network connectivity operational. This is why the firewall filter has a final accept condition on it.
Topology

This example uses the topology in Figure 83 on page 1774.

Figure 83: Single-Rate Two-Color Policer Scenario

![Topology Diagram]

Figure 84 on page 1774 shows the policing behavior.

Figure 84: Traffic Limiting in a Single-Rate Two-Color Policer Scenario

![Traffic Limiting Diagram]

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device R1

```plaintext
set interfaces ge-2/0/5 description to-Host
set interfaces ge-2/0/5 unit 0 family inet address 172.16.70.2/30
set interfaces ge-2/0/5 unit 0 family inet filter input mf-classifier
```
set interfaces ge-2/0/8 description to-R2
set interfaces ge-2/0/8 unit 0 family inet address 10.50.0.1/30
set interfaces lo0 unit 0 description looback-interface
set interfaces lo0 unit 0 family inet address 192.168.13.1/32
set firewall policer discard if-exceeding bandwidth-limit 700m
set firewall policer discard if-exceeding burst-size-limit 15k
set firewall policer discard then discard
set firewall family inet filter mf-classifier term t1 from protocol tcp
set firewall family inet filter mf-classifier term t1 from port 80
set firewall family inet filter mf-classifier term t1 then policer discard
set firewall family inet filter mf-classifier term t2 then accept
set protocols ospf area 0.0.0.0 interface ge-2/0/5.0 passive
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface ge-2/0/8.0

Device R2

set interfaces ge-2/0/8 description to-R1
set interfaces ge-2/0/8 unit 0 family inet address 10.50.0.2/30
set interfaces ge-2/0/7 description to-Host
set interfaces ge-2/0/7 unit 0 family inet address 172.16.80.2/30
set interfaces lo0 unit 0 description looback-interface
set interfaces lo0 unit 0 family inet address 192.168.14.1/32
set protocols ospf area 0.0.0.0 interface ge-2/0/7.0 passive
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ospf area 0.0.0.0 interface ge-2/0/8.0

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

[edit interfaces]
user@R1# set ge-2/0/5 description to-Host
user@R1# set ge-2/0/5 unit 0 family inet address 172.16.70.2/30
2. Apply the firewall filter to interface ge-2/0/5 as an input filter.

```text
[edit interfaces ge-2/0/5 unit 0 family inet]
user@R1# set filter input mf-classifier
```

3. Configure the policer to rate-limit to a bandwidth of 700 Mbps and a burst size of 15000 KBps for HTTP traffic (TCP port 80).

```text
[edit firewall policer discard]
user@R1# set if-exceeding bandwidth-limit 700m
user@R1# set if-exceeding burst-size-limit 15k
```

4. Configure the policer to discard packets in the red traffic flow.

```text
[edit firewall policer discard]
user@R1# set then discard
```

5. Configure the two conditions of the firewall to accept all TCP traffic to port HTTP (port 80).

```text
[edit firewall family inet filter mf-classifier]
user@R1# set term t1 from protocol tcp
user@R1# set term t1 from port 80
```

6. Configure the firewall action to rate-limit HTTP TCP traffic using the policer.

```text
[edit firewall family inet filter mf-classifier]
user@R1# set term t1 then policer discard
```

7. At the end of the firewall filter, configure a default action that accepts all other traffic. Otherwise, all traffic that arrives on the interface and is not explicitly accepted by the firewall is discarded.
8. Configure OSPF.

```
[edit protocols ospf]
user@R1# set area 0.0.0.0 interface ge-2/0/7.0 passive
user@R1# set area 0.0.0.0 interface lo0.0 passive
user@R1# set area 0.0.0.0 interface ge-2/0/8.0
```

Step-by-Step Procedure

To configure Device R2:

1. Configure the device interfaces.

```
[edit interfaces]
user@R1# set ge-2/0/8 description to-R1
user@R1# set ge-2/0/7 description to-Host
user@R1# set lo0 unit 0 description looback-interface
user@R1# set ge-2/0/8 unit 0 family inet address 10.50.0.2/30
user@R1# set ge-2/0/7 unit 0 family inet address 172.16.80.2/30
user@R1# set lo0 unit 0 family inet address 192.168.14.1/32
```

2. Configure OSPF.

```
[edit protocols ospf]
user@R1# set area 0.0.0.0 interface ge-2/0/7.0 passive
user@R1# set area 0.0.0.0 interface lo0.0 passive
user@R1# set area 0.0.0.0 interface ge-2/0/8.0
```

Results

From configuration mode, confirm your configuration by entering the `show interfaces`, `show firewall`, and `show protocols ospf` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@R1# show interfaces
ge-2/0/5 {
    description to-Host;
    unit 0 {
```
family inet {
 filter {
 input mf-classifier;
 }
 address 172.16.70.2/30;
}
}
}
ge-2/0/8 {
 description to-R2;
 unit 0 {
 family inet {
 address 10.50.0.1/30;
 }
 }
}
}
lo0 {
 unit 0 {
 description looback-interface;
 family inet {
 address 192.168.13.1/32;
 }
 }
}
}

user@R1# show firewall
family inet {
 filter mf-classifier {
 term t1 {
 from {
 protocol tcp;
 port 80;
 }
 then policer discard;
 }
 term t2 {
 then accept;
 }
 }
 policer discard {
 if-exceeding {
 bandwidth-limit 700m;
 burst-size-limit 15k;
 }
 }
}
then discard;

user@R1# show protocols ospf
area 0.0.0.0 {
 interface ge-2/0/5.0 {
 passive;
 }
 interface lo0.0 {
 passive;
 }
 interface ge-2/0/8.0;
}

If you are done configuring Device R1, enter commit from configuration mode.

user@R2# show interfaces
ge-2/0/7 {
 description to-Host;
 unit 0 {
 family inet {
 address 172.16.80.2/30;
 }
 }
}
ge-2/0/8 {
 description to-R1;
 unit 0 {
 family inet {
 address 10.50.0.2/30;
 }
 }
}
lo0 {
 unit 0 {
 description looback-interface;
 family inet {
 address 192.168.14.1/32;
 }
 }
}
user@R2# show protocols ospf
area 0.0.0.0 {
 interface ge-2/0/7.0 {
 passive;
 }
 interface lo0.0 {
 passive;
 }
 interface ge-2/0/8.0;
}

If you are done configuring Device R2, enter commit from configuration mode.

Verification

IN THIS SECTION

- Clearing the Counters | 1780
- Sending TCP Traffic into the Network and Monitoring the Discards | 1780

Confirm that the configuration is working properly.

Clearing the Counters

Purpose
Confirm that the firewall counters are cleared.

Action
On Device R1, run the clear firewall all command to reset the firewall counters to 0.

user@R1> clear firewall all

Sending TCP Traffic into the Network and Monitoring the Discards

Purpose
Make sure that the traffic of interest that is sent is rate-limited on the input interface (ge-2/0/5).

Action
1. Use a traffic generator to send 10 TCP packets with a source port of 80.

 The -s flag sets the source port. The -k flag causes the source port to remain steady at 80 instead of incrementing. The -c flag sets the number of packets to 10. The -d flag sets the packet size.
The destination IP address of 172.16.80.1 belongs to Device Host 2 that is connected to Device R2. The user on Device Host 2 has requested a webpage from Device Host 1 (the webserver emulated by the traffic generator on Device Host 1). The packets that being rate-limited are sent from Device Host 1 in response to the request from Device Host 2.

NOTE: In this example the policer numbers are reduced to a bandwidth limit of 8 Kbps and a burst size limit of 1500 KBps to ensure that some packets are dropped during this test.

```
[root@host]# hping 172.16.80.1 -c 10 -s 80 -k -d 300

[User@Host]# hping 172.16.80.1 -c 10 -s 80 -k -d 350
HPING 172.16.80.1 (eth1 172.16.80.1): NO FLAGS are set, 40 headers + 350 data bytes
len=46 ip=172.16.80.1 ttl=62 DF id=0 sport=0 flags=RA seq=0 win=0 rtt=0.5 ms
.
.
--- 172.16.80.1 hping statistic ---
10 packets transmitted, 6 packets received, 40% packet loss
round-trip min/avg/max = 0.5/3000.8/7001.3 ms
```

2. On Device R1, check the firewall counters by using the `show firewall` command.

```
user@R1> show firewall

User@R1# run show firewall

Filter: __default_bpdu_filter__

Filter: mf-classifier
Policers:
Name Bytes Packets
discard-t1 1560 4
```

Meaning
In Steps 1 and 2 the output from both devices shows that 4 packets were discarded. This means that there was at least 8 Kbps of green (in-contract HTTP port 80) traffic and that the 1500 KBps burst option for red out-of-contract HTTP port 80 traffic was exceeded.

SEE ALSO

Example: Configuring Interface and Firewall Filter Policers at the Same Interface

This example shows how to configure three single-rate two-color policers and apply the policers to the IPv4 input traffic at the same single-tag virtual LAN (VLAN) logical interface.

Requirements
No special configuration beyond device initialization is required before configuring this example.

Overview
In this example, you configure three single-rate two-color policers and apply the policers to the IPv4 input traffic at the same single-tag VLAN logical interface. Two policers are applied to the interface through a firewall filter, and one policer is applied directly to the interface.

You configure one policer, named `p-all-1m-5k-discard`, to rate-limit traffic to 1 Mbps with a burst size of 5000 bytes. You apply this policer directly to IPv4 input traffic at the logical interface. When you apply a policer directly to protocol-specific traffic at a logical interface, the policer is said to be applied as an interface policer.
You configure the other two policers to allow burst sizes of 500 KB, and you apply these policers to IPv4 input traffic at the logical interface by using an IPv4 standard stateless firewall filter. When you apply a policer to protocol-specific traffic at a logical interface through a firewall filter action, the policer is said to be applied as a firewall-filter policer.

- You configure the policer named **p-icmp-500k-500k-discard** to rate-limit traffic to 500 Kbps with a burst size of 500 K bytes by discarding packets that do not conform to these limits. You configure one of the firewall filter terms to apply this policer to Internet Control Message Protocol (ICMP) packets.

- You configure the policer named **p-ftp-10p-500k-discard** to rate-limit traffic to a 10 percent bandwidth with a burst size of 500 KB by discarding packets that do not conform to these limits. You configure another firewall-filter term to apply this policer to File Transfer Protocol (FTP) packets.

A policer that you configure with a bandwidth limit expressed as a percentage value (rather than as an absolute bandwidth value) is called a bandwidth policer. Only single-rate two-color policers can be configured with a percentage bandwidth specification. By default, a bandwidth policer rate-limits traffic to the specified percentage of the line rate of the physical interface underlying the target logical interface.

Topology

You configure the target logical interface as a single-tag VLAN logical interface on a Fast Ethernet interface operating at 100 Mbps. This means that the policer you configure with the 10-percent bandwidth-limit (the policer that you apply to FTP packets) rate-limits the FTP traffic on this interface to 10 Mbps.

NOTE: In this example, you do not configure the bandwidth policer as a *logical-bandwidth policer*. Therefore, the percentage is based on the physical media rate rather than on the configured shaping rate of the logical interface.

The firewall filter that you configure to reference two of the policers must be configured as an interface-specific filter. Because the policer that is used to rate-limit FTP packets specifies the bandwidth limit as a percentage value, the firewall filter that references this policer must be configured as an interface-specific filter. Thus, if this firewall filter were to be applied to multiple interfaces instead of just the Fast Ethernet interface in this example, unique policers and counters would be created for each interface to which the filter is applied.

Configuration
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then past the commands into the CLI at the [edit] hierarchy level.

```
set interfaces fe-0/1/1 vlan-tagging
set interfaces fe-0/1/1 unit 0 vlan-id 100
set interfaces fe-0/1/1 unit 0 family inet address 10.20.15.1/24
set interfaces fe-0/1/1 unit 1 vlan-id 101
set interfaces fe-0/1/1 unit 1 family inet address 10.20.240.1/24
set firewall policer p-all-1m-5k-discard if-exceeding bandwidth-limit 1m
set firewall policer p-all-1m-5k-discard if-exceeding burst-size-limit 5k
set firewall policer p-all-1m-5k-discard then discard
set firewall policer p-ftp-10p-500k-discard if-exceeding bandwidth-percent 10
set firewall policer p-ftp-10p-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-ftp-10p-500k-discard then discard
set firewall policer p-icmp-500k-500k-discard if-exceeding bandwidth-limit 500k
set firewall policer p-icmp-500k-500k-discard if-exceeding burst-size-limit 500k
set firewall policer p-icmp-500k-500k-discard then discard
set firewall family inet filter filter-ipv4-with-limits interface-specific
set firewall family inet filter filter-ipv4-with-limits term t-ftp from protocol tcp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from protocol ftp
set firewall family inet filter filter-ipv4-with-limits term t-ftp from protocol ftp-data
set firewall family inet filter filter-ipv4-with-limits term t-ftp then policer p-ftp-10p-500k-discard
set firewall family inet filter filter-ipv4-with-limits term t-icmp from protocol icmp
set firewall family inet filter filter-ipv4-with-limits term t-icmp then policer p-icmp-500k-500k-discard
set firewall family inet filter filter-ipv4-with-limits term catch-all then accept
set interfaces fe-0/1/1 unit 1 family inet filter input filter-ipv4-with-limits
set interfaces fe-0/1/1 unit 1 family inet policer input p-all-1m-5k-discard
```

Configuring the Single-Tag VLAN Logical Interface

Step-by-Step Procedure

To configure the single-tag VLAN logical interface:

1. Enable configuration of the Fast Ethernet interface.

    ```
    [edit]
    user@host# edit interfaces fe-0/1/1
    ```
2. Enable single-tag VLAN framing.

```
[edit interfaces fe-0/1/1]
user@host# set vlan-tagging
```

3. Bind VLAN IDs to the logical interfaces.

```
[edit interfaces fe-0/1/1]
user@host# set unit 0 vlan-id 100
user@host# set unit 1 vlan-id 101
```

4. Configure IPv4 on the single-tag VLAN logical interfaces.

```
[edit interfaces fe-0/1/1]
user@host# set unit 0 family inet address 10.20.15.1/24
user@host# set unit 1 family inet address 10.20.240.1/24
```

Results

Confirm the configuration of the VLAN by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
fe-0/1/1 {
  vlan-tagging;
  unit 0 {
    vlan-id 100;
    family inet {
      address 10.20.15.1/24;
    }
  }
  unit 1 {
    vlan-id 101;
    family inet {
      address 10.20.240.1/24;
    }
  }
}
```
Configuring the Three Policers

Step-by-Step Procedure
To configure the three policers:

1. Enable configuration of a two-color policer that discards packets that do not conform to a bandwidth of 1 Mbps and a burst size of 5000 bytes.

 NOTE: You apply this policer directly to all IPv4 input traffic at the single-tag VLAN logical interface, so the packets will not be filtered before being subjected to rate limiting.

   ```plaintext
   [edit]
   user@host# edit firewall policer p-all-1m-5k-discard
   ```

2. Configure the first policer.

   ```plaintext
   [edit firewall policer p-all-1m-5k-discard]
   user@host# set if-exceeding bandwidth-limit 1m
   user@host# set if-exceeding burst-size-limit 5k
   user@host# set then discard
   ```

3. Enable configuration of a two-color policer that discards packets that do not conform to a bandwidth specified as "10 percent" and a burst size of 500,000 bytes.

 You apply this policer only to the FTP traffic at the single-tag VLAN logical interface.

 You apply this policer as the action of an IPv4 firewall filter term that matches FTP packets from TCP.

   ```plaintext
   [edit firewall policer p-all-1m-5k-discard]
   user@host# up
   [edit]
   user@host# edit firewall policer p-ftp-10p-500k-discard
   ```

4. Configure policing limits and actions.

   ```plaintext
   [edit firewall policer p-ftp-10p-500k-discard]
   user@host# set if-exceeding bandwidth-percent 10
   user@host# set if-exceeding burst-size-limit 500k
   ```
Because the bandwidth limit is specified as a percentage, the firewall filter that references this policer must be configured as an interface-specific filter.

NOTE: If you wanted this policer to rate-limit to 10 percent of the logical interface configured shaping rate (rather than to 10 percent of the physical interface media rate), you would need to include the `logical-bandwidth-policer` statement at the [edit firewall policer p-all-1m-5k-discard] hierarchy level. This type of policer is called a *logical-bandwidth policer*.

5. Enable configuration of the IPv4 firewall filter policer for ICMP packets.

```
[edit firewall policer p-ftp-10p-500k-discard]
user@host# up

[edit]
user@host# edit firewall policer p-icmp-500k-500k-discard
```

6. Configure policing limits and actions.

```
[edit firewall policer p-icmp-500k-500k-discard]
user@host# set if-exceeding bandwidth-limit 500k
user@host# set if-exceeding burst-size-limit 500k
user@host# set then discard
```

Results

Confirm the configuration of the policers by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall policer p-all-1m-5k-discard {
    if-exceeding {
        bandwidth-limit 1m;
        burst-size-limit 5k;
    }
    then discard;
```
Configuring the IPv4 Firewall Filter

Step-by-Step Procedure

To configure the IPv4 firewall filter:

1. Enable configuration of the IPv4 firewall filter.

```
[edit]
user@host# edit firewall family inet filter filter-ipv4-with-limits
```

2. Configure the firewall filter as interface-specific.

```
[edit firewall family inet filter filter-ipv4-with-limits]
user@host# set interface-specific
```

The firewall filter must be interface-specific because one of the policers referenced is configured with a bandwidth limit expressed as a percentage value.

3. Enable configuration of a filter term to rate-limit FTP packets.

```
[edit firewall family inet filter filter-ipv4-with-limits]
user@host# edit term t-ftp

[edit firewall family inet filter filter-ipv4-with-limits term t-ftp]
user@host# set from protocol tcp
user@host# set from port [ ftp ftp-data ]
```
FTP messages are sent over TCP port 20 (ftp) and received over TCP port 21 (ftp-data).

4. Configure the filter term to match FTP packets.

   ```
   [edit firewall family inet filter filter-ipv4-with-limits term t-ftp]
   user@host# set then policer p-ftp-10p-500k-discard
   ```

5. Enable configuration of a filter term to rate-limit ICMP packets.

   ```
   [edit firewall family inet filter filter-ipv4-with-limits term t-ftp]
   user@host# up
   [edit firewall family inet filter filter-ipv4-with-limits]
   user@host# edit term t-icmp
   ```

6. Configure the filter term for ICMP packets

   ```
   [edit firewall family inet filter filter-ipv4-with-limits term t-icmp]
   user@host# set from protocol icmp
   user@host# set then policer p-icmp-500k-500k-discard
   ```

7. Configure a filter term to accept all other packets without policing.

   ```
   [edit firewall family inet filter filter-ipv4-with-limits term t-icmp]
   user@host# up
   [edit firewall family inet filter filter-ipv4-with-limits]
   user@host# set term catch-all then accept
   ```

Results

Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
family inet {filter filter-ipv4-with-limits {
```
interface-specific;
term t-ftp {
 from {
 protocol tcp;
 port [ftp ftp-data];
 } then policer p-ftp-10p-500k-discard;
}
term t-icmp {
 from {
 protocol icmp;
 } then policer p-icmp-500k-500k-discard;
}
term catch-all {
 then accept;
}
}
}
policer p-all-1m-5k-discard {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 5k;
 } then discard;
}
policer p-ftp-10p-500k-discard {
 if-exceeding {
 bandwidth-percent 10;
 burst-size-limit 500k;
 } then discard;
}
policer p-icmp-500k-500k-discard {
 if-exceeding {
 bandwidth-limit 500k;
 burst-size-limit 500k;
 } then discard;
}

Applying the Interface Policer and Firewall Filter Policers to the Logical Interface

Step-by-Step Procedure
To apply the three policers to the VLAN:

1. Enable configuration of IPv4 on the logical interface.

   ```
   [edit]
   user@host# edit interfaces fe-0/1/1 unit 1 family inet
   ```

2. Apply the firewall filter policers to the interface.

   ```
   [edit interfaces fe-0/1/1 unit 1 family inet]
   user@host# set filter input filter-ipv4-with-limits
   ```

3. Apply the interface policer to the interface.

   ```
   [edit interfaces fe-0/1/1 unit 1 family inet]
   user@host# set policer input p-all-1m-5k-discard
   ```

 Input packets at `fe-0/1/1.0` are evaluated against the interface policer before they are evaluated against the firewall filter policers. For more information, see "Order of Policer and Firewall Filter Operations" on page 1678.

Results

Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Displaying Policers Applied Directly to the Logical Interface | 1792
- Displaying Statistics for the Policier Applied Directly to the Logical Interface | 1793
- Displaying the Policers and Firewall Filters Applied to an Interface | 1793
- Displaying Statistics for the Firewall Filter Policers | 1794

Confirm that the configuration is working properly.

**Displaying Policers Applied Directly to the Logical Interface**

**Purpose**

Verify that the interface policer is evaluated when packets are received on the logical interface.

**Action**

Use the `show interfaces policers` operational mode command for logical interface `fe-0/1/1.1`. The command output section for the `Proto` column and `Input Policer` column shows that the policer `p-all-1m-5k-discard` is evaluated when packets are received on the logical interface.

```
user@host> show interfaces policers fe-0/1/1.1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>fe-0/1/1.1</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>p-all-1m-5kdiscard-fe-0/1/1.1-inet-i</td>
</tr>
</tbody>
</table>
```

In this example, the interface policer is applied to logical interface traffic in the input direction only.
Displaying Statistics for the Policer Applied Directly to the Logical Interface

Purpose
Verify the number of packets evaluated by the interface policer.

Action
Use the `show policer` operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction.

```
user@host> show policer p-all-1m-5k-discard-fe-0/1/1.1-inet-i
```

<table>
<thead>
<tr>
<th>Policers:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Bytes</td>
<td>Packets</td>
</tr>
<tr>
<td>p-all-1m-5k-discard-fe-0/1/1.1-inet-i</td>
<td>200</td>
<td>5</td>
</tr>
</tbody>
</table>

Displaying the Policers and Firewall Filters Applied to an Interface

Purpose
Verify that the firewall filter `filter-ipv4-with-limits` is applied to the IPv4 input traffic at logical interface `fe-0/1/1.1`.

Action
Use the `show interfaces statistics` operational mode command for logical interface `fe-0/1/1.1`, and include the `detail` option. Under the Protocol inet section of the command output section, the Input Filters and Policer lines display the names of filter and policer applied to the logical interface in the input direction.

```
user@host> show interfaces statistics fe-0/1/1.1 detail
```

Logical interface fe-0/1/1.1 (Index 83) (SNMP ifIndex 545) (Generation 153)
Flags: SNMP-Traps 0x4000 VLAN-Tag [ 0x8100.100 ] Encapsulation: ENET2
Traffic statistics:
  Input  bytes  :  0
  Output bytes :  46
  Input  packets:  0
  Output packets: 1
Local statistics:
  Input  bytes  :  0
  Output bytes :  46
  Input  packets:  0
  Output packets: 1
Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Protocol inet, MTU: 1500, Generation: 176, Route table: 0
Flags: Sendbcast-pkt-to-re
Input Filters: filter-ipv4-with-limits-fe-0/1/1.1-i
Policer: Input: p-all-1m-5k-discard-fe-0/1/1.1-inet-i
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 10.20.130/24, Local: 10.20.130.1, Broadcast: 10.20.130.255,
  Generation: 169

In this example, the two firewall filter policers are applied to logical interface traffic in the input direction only.

**Displaying Statistics for the Firewall Filter Policers**

**Purpose**
Verify the number of packets evaluated by the firewall filter policers.

**Action**
Use the `show firewall` operational mode command for the filter you applied to the logical interface.

[edit]

user@host> show firewall filter filter-ipv4-with-limits-fe-0/1/1.1-i

<table>
<thead>
<tr>
<th>Policer</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-ftp-10p-500k-discard-t-ftp-fe-0/1/1.1-i</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p-icmp-500k-500k-discard-t-icmp-fe-0/1/1.1-i</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The command output displays the names of the policers (**p-ftp-10p-500k-discard** and **p-icmp-500k-500k-discard**), combined with the names of the filter terms (**t-ftp** and **t-icmp**, respectively) under which the policer action is specified. The policer-specific output lines display the number of packets that matched the filter term. This is only the number of out-of-specification (out-of-spec) packet counts, not all packets policed by the policer.
Bandwidth Policers

IN THIS SECTION

- Bandwidth Policer Overview | 1795
- Example: Configuring a Logical Bandwidth Policer | 1797

Bandwidth Policer Overview

For a single-rate two-color policer only, you can specify the bandwidth limit as a percentage value from 1 through 100 instead of as an absolute number of bits per second. This type of two-color policer, called a bandwidth policer, rate-limits traffic to a bandwidth limit that is calculated as a percentage of either the physical interface media rate or the logical interface configured shaping rate.

Guidelines for Configuring a Bandwidth Policer

The following guidelines apply to configuring a bandwidth policer:

- To specify a percentage bandwidth limit, you include the bandwidth-percent percentage statement in place of the bandwidth-limit bps statement.
• By default, a bandwidth policer calculates the percentage bandwidth limit based on the physical interface port speed. To configure a bandwidth policer to calculate the percentage bandwidth limit based on the configured logical interface shaping rate instead, include the logical-bandwidth-policer statement at the [edit firewall policer policer-name] hierarchy level. This type of bandwidth policer is called a logical bandwidth policer.

You can configure a logical interface shaping rate by including the shaping-rate bps statement at the [edit class-of-service interfaces interface interface-name unit logical-unit-number] hierarchy level. A logical interface shaping rate causes the specified amount of bandwidth to be allocated to the logical interface.

**NOTE:** If you configure a logical-bandwidth policer and then apply the policer to a logical interface that is not configured with a shaping rate, then the policer rate-limits traffic on that logical interface to calculate the percentage bandwidth limit based on the physical interface port speed, even if you include the logical-bandwidth-policer statement in the bandwidth policer configuration.

• If you reference a bandwidth policer from a stateless firewall filter term, you must include the interface-specific statement in the firewall filter configuration.

**Guidelines for Applying a Bandwidth Policer**

The following guidelines pertain to applying a bandwidth policer to traffic:

• You can use a bandwidth policer to rate-limit protocol-specific traffic (not family any) at the input or output of a logical interface.

• You can apply a bandwidth policer directly to protocol-specific input or output traffic at a logical interface.

• To send only selected packets to a bandwidth policer, you can reference the bandwidth policer from a stateless firewall filter term and then apply the filter to logical interface traffic for a specific protocol family.

• To reference a logical bandwidth policer from a firewall filter, you must include the interface-specific statement in the firewall filter configuration.

• You cannot use a bandwidth policer for forwarding-table filters.

• You cannot apply a bandwidth policer to an aggregate interface, a tunnel interface, or a software interface.

**SEE ALSO**

Two-Color Policer Configuration Overview	1763
Example: Configuring a Logical Bandwidth Policer	1797
bandwidth-percent	2203
This example shows how to configure a logical bandwidth policer.

**Requirements**

Before you begin, make sure that you have two logical units available on a Gigabit Ethernet interface.

**Overview**

In this example, you configure a single-rate two-color policer that specifies the bandwidth limit as a percentage value rather than as an absolute number of bits per second. This type of policer is called a bandwidth policer. By default, a bandwidth policer enforces a bandwidth limit based on the line rate of the underlying physical interface. As an option, you can configure a bandwidth policer to enforce a bandwidth limit based on the configured shaping rate of the logical interface. To configure this type of bandwidth policer, called a logical bandwidth policer, you include the `logical-bandwidth-policer` statement in the policer configuration.

To configure a logical interface shaping rate, include the `shaping-rate bps` statement at the `[edit class-of-service interfaces interface interface-name unit logical-unit-number]` hierarchy level. This class-of-service (CoS) configuration statement causes the specified amount of bandwidth to be allocated to the logical interface.

**NOTE:** If you configure a policer bandwidth limit as a percentage but a shaping rate is not configured for the target logical interface, the policer bandwidth limit is calculated as a percentage of the physical interface media rate, even if you enable the logical-bandwidth policing feature.
To apply a logical bandwidth policer to a logical interface, you can apply the policer directly to the logical interface at the protocol family level or (if you only need to rate-limit filtered packets) you can reference the policer from a stateless firewall filter configured to operate in *interface-specific* mode.

**Topology**

In this example, you configure two logical interfaces on a single Gigabit Ethernet interface and configure a shaping rate on each logical interface. On logical interface `ge-1/3/0.0`, you allocate 4 Mbps of bandwidth. On logical interface `ge-1/3/0.1`, you allocate 2 Mbps of bandwidth.

You also configure a logical bandwidth policer with a bandwidth limit of 50 percent and a maximum burst size of 125,000 bytes, and then you apply the policer to input and output traffic at the logical units configured on `ge-1/3/0.0`. For logical interface `ge-1/3/0.0`, the policer rate-limits to a bandwidth limit of 2 Mbps (50 percent of the 4 Mbps shaping rate configured for the logical interface). For logical interface `ge-1/3/0.1`, the policer rate-limits traffic to a bandwidth limit of 1 Mbps (50 percent of the 2 Mbps shaping rate configured for the logical interface).

If no shaping rate is configured for a target logical interface, the policer rate-limits to a bandwidth limit calculated as 50 percent of the physical interface media rate. For example, if you apply a 50 percent bandwidth policer to input or output traffic at a Gigabit Ethernet logical interface without rate shaping, the policer applies a bandwidth limit of 500 Mbps (50 percent of 1000 Mbps).

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces ge-1/3/0 per-unit-scheduler
```
Configuring the Logical Interfaces

Step-by-Step Procedure

To configure the logical interfaces:

1. Enable configuration of the physical interface.

   ```
 [edit]
 user@host# edit interfaces ge-1/3/0
   ```

   ```
 [edit interfaces ge-1/3/0]
 user@host# set per-unit-scheduler
 user@host# set vlan-tagging
   ```

2. Configure the first logical interface.

   ```
 [edit interfaces ge-1/3/0]
 user@host# set unit 0 vlan-id 100
 user@host# set unit 0 family inet address 172.16.1.1/30
   ```

3. Configure the second logical interface.

   ```
 [edit interfaces ge-1/3/0]
 user@host# set unit 1 vlan-id 200
 user@host# set unit 1 family inet address 172.16.2.1/30
   ```
Results

Confirm the configuration of the interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/0 {
 per-unit-scheduler;
 vlan-tagging;
 unit 0 {
 vlan-id 100;
 family inet {
 address 172.16.1.1/30;
 }
 }
 unit 1 {
 vlan-id 200;
 family inet {
 address 172.16.2.1/30;
 }
 }
}
```

**Configuring Traffic Rate-Shaping by Specifying the Amount of Bandwidth to be Allocated to the Logical Interface**

**Step-by-Step Procedure**

To configure rate shaping by specifying the bandwidth to be allocated to the logical interface:

1. Enable CoS configuration on the physical interface.

```
[edit]
user@host# edit class-of-service interfaces ge-1/3/0
```

2. Configure rate shaping for the logical interfaces.

```
[edit class-of-service interfaces ge-1/3/0]
user@host# set unit 0 shaping-rate 4m
user@host# set unit 1 shaping-rate 2m
```

These statements allocate 4 Mbps of bandwidth to logical unit `ge-1/3/0.0` and 2 Mbps of bandwidth to logical unit `ge-1/3/0.1`. 
Results

Confirm the configuration of the rate shaping by entering the `show class-of-service` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show class-of-service
interfaces {
 ge-1/3/0 {
 unit 0 {
 shaping-rate 4m;
 }
 unit 1 {
 shaping-rate 2m;
 }
 }
}
```

Configuring the Logical Bandwidth Policer

Step-by-Step Procedure

To configure the logical bandwidth policer:

1. Enable configuration of a single-rate two-color policer.

```
[edit]
user@host# edit firewall policer LB-policer
```

2. Configure the policer as a logical-bandwidth policer.

```
[edit firewall policer LB-policer]
user@host# set logical-bandwidth-policer
```

This applies the rate-limiting to logical interfaces.

3. Configure the policer traffic limits and actions.

```
[edit firewall policer LB-policer]
user@host# set if-exceeding bandwidth-percent 50
user@host# set if-exceeding burst-size-limit 125k
user@host# set then discard
```
Confirm the configuration of the policer by entering the `show firewall configuration` mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer LB-policer {
 logical-bandwidth-policer;
 if-exceeding {
 bandwidth-percent 50;
 burst-size-limit 125k;
 }
 then discard;
}
```

**Applying the Logical Bandwidth Policers to the Logical Interfaces**

**Step-by-Step Procedure**

To configure the logical bandwidth policers to the logical interfaces:

1. Enable configuration of the interface.

```
[edit]
user@host# edit interfaces ge-1/3/0
```

2. Apply the logical bandwidth policer to the first logical interface.

```
[edit interfaces ge-1/3/0]
user@host# set unit 0 family inet policer input LB-policer
user@host# set unit 0 family inet policer output LB-policer
```

3. Apply the policing to the second logical interface.

```
[edit interfaces ge-1/3/0]
user@host# set unit 1 family inet policer input LB-policer
user@host# set unit 1 family inet policer output LB-policer
```

**Results**
Confirm the configuration of the interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/0 {
 per-unit-scheduler;
 vlan-tagging;
 unit 0 {
 vlan-id 100;
 family inet {
 policer {
 input LB-policer;
 output LB-policer;
 }
 address 172.16.1.1/30;
 }
 }
 unit 1 {
 vlan-id 200;
 family inet {
 policer {
 input LB-policer;
 output LB-policer;
 }
 address 172.16.2.1/30;
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

**IN THIS SECTION**

- Displaying Traffic Statistics and Policers for the Logical Interface | 1804
- Displaying Statistics for the Policer | 1805

Confirm that the configuration is working properly.
**Displaying Traffic Statistics and Policers for the Logical Interface**

**Purpose**
Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

**Action**
Use the `show interfaces` operational mode command for logical interfaces `ge-1/3/0.0` and `ge-1/3/0.1`, and include the `detail` or `extensive` option. The command output section for Traffic statistics lists the number of bytes and packets received and transmitted on the logical interface, and the Protocol inet section contains a Policer field that lists the policer `LB-policer` as an input or output policer as follows:

- **Input:** `LB-policer-ge-1/3/0.0-inet-i`
- **Output:** `LB-policer-ge-1/3/0.0-inet-o`

In this example, the policer is applied to logical interface traffic in both the input and output directions.

```
user@host> show interfaces ge-1/3/0.0 detail
```

```
Logical interface ge-1/3/0.0 (Index 80) (SNMP ifIndex 154) (Generation 150)
 Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.100] Encapsulation: ENET2
 Traffic statistics:
 Input bytes : 0
 Output bytes : 46
 Input packets: 0
 Output packets: 1
 Local statistics:
 Input bytes : 0
 Output bytes : 46
 Input packets: 0
 Output packets: 1
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Protocol inet, MTU: 1500, Generation: 174, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Policer: Input: LB-policer-ge-1/3/0.0-inet-i, Output: LB-policer-ge-1/3/0.0-inet-o
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 172.16.1.0/30, Local: 172.16.1.1, Broadcast: 172.16.1.3,
 Generation: 165
```
Logical interface ge-1/3/0.1 (Index 81) (SNMP ifIndex 543) (Generation 151)
Flags: SNMP-Traps 0x4000 VLAN-Tag [ 0x8100.200 ] Encapsulation: ENET2
Traffic statistics:
  Input bytes : 0
  Output bytes : 46
  Input packets: 0
  Output packets: 1
Local statistics:
  Input bytes : 0
  Output bytes : 46
  Input packets: 0
  Output packets: 1
Transit statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps
Protocol inet, MTU: 1500, Generation: 175, Route table: 0
  Flags: Sendbcast-pkt-to-re
  Policer: Input: LB-policer-ge-1/3/0.1-inet-i, Output:
  LB-policer-ge-1/3/0.1-inet-o
  Addresses, Flags: Is-Preferred Is-Primary
  Destination: 172.17.1.0/30, Local: 172.17.1.1, Broadcast: 172.17.1.3,
  Generation: 167

Displaying Statistics for the Policer

Purpose
Verify the number of packets evaluated by the policer.

Action
Use the show policer operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer LB-policer, the input and output policer names are displayed as follows:

- LB-policer-ge-1/3/0.0-inet-i
- LB-policer-ge-1/3/0.0-inet-o
- LB-policer-ge-1/3/0.1-inet-i
- LB-policer-ge-1/3/0.1-inet-o
The -inet-i suffix denotes a policer applied to logical interface input traffic, while the -inet-o suffix denotes a policer applied to logical interface output traffic. In this example, the policer is applied to both input and output traffic on logical interface ge-1/3/0.0 and logical interface ge-1/3/0.1.

```
user@host> show policer
```

<table>
<thead>
<tr>
<th>Policers:</th>
<th>Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>default_arp_policer</strong></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LB-policer-ge-1/3/0.0-inet-i</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LB-policer-ge-1/3/0.0-inet-o</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LB-policer-ge-1/3/0.1-inet-i</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LB-policer-ge-1/3/0.1-inet-o</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Bandwidth Policer Overview | 1795
- bandwidth-percent | 2203
- interface-specific | 2147
- logical-bandwidth-policer | 2249
- shaping-rate (Applying to an Interface)

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 1763
- Guidelines for Applying Traffic Policers | 1683
- bandwidth-percent | 2203
- interface-specific (Firewall Filters) | 2147
- logical-bandwidth-policer | 2249
- shaping-rate (Applying to an Interface)
Filter-Specific Counters and Policers

IN THIS SECTION

- Filter-Specific Policer Overview | 1807
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods | 1808

Filter-Specific Policer Overview

By default, a policer operates in term-specific mode so that, for a given firewall filter, the Junos OS creates a separate policer instance for every filter term that references the policer. As an option, you can configure a policer to operate in filter-specific mode so that a single policer instance is used by all terms (within the same firewall filter) that reference the policer.

For an IPv4 firewall filter with multiple terms that reference the same policer, configuring the policer to operate in filter-specific mode enables you to count and monitor the activity of the policer at the firewall filter level.

NOTE: Term-specific mode and filter-specific mode also apply to prefix-specific policer sets.

To enable a single-rate two-color policer to operate in filter-specific mode, you can include the filter-specific statement at the following hierarchy levels:

- [edit firewall policer policer-name]
- [edit logical-systems logical-system-name firewall policer policer-name]

You can reference filter-specific policers from IPv4 (family inet) firewall filters only.

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods | 976
- Filter-Specific Counter and Policer Set Overview | 1825
Example: Configuring a Stateless Firewall Filter to Protect Against TCP and ICMP Floods

IN THIS SECTION

- Requirements | 1808
- Overview | 1808
- Configuration | 1809
- Verification | 1816

This example shows how to create a stateless firewall filter that protects against TCP and ICMP denial-of-service attacks.

**Requirements**

No special configuration beyond device initialization is required before configuring stateless firewall filters.

**Overview**

In this example we create a stateless firewall filter called protect-RE to police TCP and ICMP packets. It uses the policers described here:

- **tcp-connection-policer**—This policer limits TCP traffic to 1,000,000 bits per second (bps) with a maximum burst size of 15,000 bytes. Traffic exceeding either limit is discarded.

- **icmp-policer**—This policer limits ICMP traffic to 1,000,000 bps with a maximum burst size of 15,000 bytes. Traffic exceeding either limit is discarded.

When specifying limits, the bandwidth limit can be from 32,000 bps to 32,000,000,000 bps and the burst-size limit can be from 1,500 bytes through 100,000,000 bytes. Use the following abbreviations when specifying limits: k (1,000), m (1,000,000), and g (1,000,000,000).

Each policer is incorporated into the action of a filter term. This example includes the following terms:

- **tcp-connection-term**—Polices certain TCP packets with a source address of 192.168.0.0/24 or 10.0.0.0/24. These addresses are defined in the trusted-addresses prefix list.

  Filtered packets include tcp-established packets The tcp-established match condition is an alias for the bit-field match condition tcp-flags "(ack | rst)", which indicates an established TCP session, but not the first packet of a TCP connection.

- **icmp-term**—Polices ICMP packets. All ICMP packets are counted in the icmp-counter counter.
NOTE: You can move terms within the firewall filter by using the `insert` command. See `insert` in the CLI User Guide.

You can apply a stateless firewall to the input or output sides, or both, of an interface. To filter packets transiting the device, apply the firewall filter to any non-Routing Engine interface. To filter packets originating from, or destined for, the Routing Engine, apply the firewall filter to the loopback (lo0) interface.

Figure 52 on page 978 shows the sample network.

Figure 85: Firewall Filter to Protect Against TCP and ICMP Floods

Because this firewall filter limits Routing Engine traffic to TCP packets, routing protocols that use other transport protocols for Layer 4 cannot successfully establish sessions when this filter is active. To demonstrate, this example sets up OSPF between Device R1 and Device R2.

"CLI Quick Configuration" on page 978 shows the configuration for all of the devices in Figure 52 on page 978.

The section "Step-by-Step Procedure" on page 979 describes the steps on Device R2.

**Configuration**

**CLI Quick Configuration**

To quickly configure the stateless firewall filter, copy the following commands to a text file, remove any line breaks, and then paste the commands into the CLI.

**Device R1**

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.1/30
set interfaces lo0 unit 0 family inet address 192.168.0.1/32 primary
set interfaces lo0 unit 0 family inet address 172.16.0.1/32
set protocols bgp group ext type external
```
Device R2

```
set interfaces fe-1/2/0 unit 0 family inet address 10.0.0.2/30
set interfaces lo0 unit 0 family inet filter input protect-RE
set interfaces lo0 unit 0 family inet address 192.168.0.2/32 primary
set interfaces lo0 unit 0 family inet address 172.16.0.2/32
set protocols bgp group ext type external
set protocols bgp group ext export send-direct
set protocols bgp group ext neighbor 10.0.0.1 peer-as 100
set protocols ospf area 0.0.0.0 interface fe-1/2/0.0
set policy-options prefix-list trusted-addresses 10.0.0.0/24
set policy-options prefix-list trusted-addresses 192.168.0.0/24
set policy-options policy-statement send-direct term 1 from protocol direct
set policy-options policy-statement send-direct term 1 then accept
set routing-options router-id 192.168.0.2
set routing-options autonomous-system 200
set firewall family inet filter protect-RE term tcp-connection-term from source-prefix-list trusted-addresses
set firewall family inet filter protect-RE term tcp-connection-term from protocol tcp
set firewall family inet filter protect-RE term tcp-connection-term from tcp-established
set firewall family inet filter protect-RE term tcp-connection-term then policer tcp-connection-policer
set firewall family inet filter protect-RE term tcp-connection-term then accept
set firewall family inet filter protect-RE term icmp-term from source-prefix-list trusted-addresses
set firewall family inet filter protect-RE term icmp-term from protocol icmp
set firewall family inet filter protect-RE term icmp-term then policer icmp-policer
set firewall family inet filter protect-RE term icmp-term then count icmp-counter
set firewall family inet filter protect-RE term icmp-term then accept
set firewall policer tcp-connection-policer filter-specific
set firewall policer tcp-connection-policer if-exceeding bandwidth-limit 1m
```
set firewall policer tcp-connection-policer if-exceeding burst-size-limit 15k
set firewall policer tcp-connection-policer then discard
set firewall policer icmp-policer filter-specific
set firewall policer icmp-policer if-exceeding bandwidth-limit 1m
set firewall policer icmp-policer if-exceeding burst-size-limit 15k
set firewall policer icmp-policer then discard

Step-by-Step Procedure
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure stateless firewall filter to discard:

1. Configure the device interfaces.

   [edit interfaces fe-1/2/0 unit 0 family inet ]
   user@R2# set address 10.0.0.2/30
   [edit interfaces lo0 unit 0 family inet]
   user@R2# set address 192.168.0.2/32 primary
   user@R2# set address 172.16.0.2/32

2. Configure the BGP peering session.

   [edit protocols bgp group ext]
   user@R2# set type external
   user@R2# set export send-direct
   user@R2# set neighbor 10.0.0.1 peer-as 100

3. Configure the autonomous system (AS) number and router ID.

   [edit routing-options]
   user@R2# set autonomous-system 200
   user@R2# set router-id 192.168.0.2

4. Configure OSPF.

   [edit protocols ospf area 0.0.0.0]
   user@R2# set interface lo0.0 passive
5. Define the list of trusted addresses.

```
[edit policy-options prefix-list trusted-addresses]
user@R2# set 10.0.0.0/24
user@R2# set 192.168.0.0/24
```

6. Configure a policy to advertise direct routes.

```
[edit policy-options policy-statement send-direct term 1]
user@R2# set from protocol direct
user@R2# set then accept
```

7. Configure the TCP policer.

```
[edit firewall policer tcp-connection-policer]
user@R2# set filter-specific
user@R2# set if-exceeding bandwidth-limit 1m
user@R2# set if-exceeding burst-size-limit 15k
user@R2# set then discard
```

8. Create the ICMP policer.

```
[edit firewall policer icmp-policer]
user@R2# set filter-specific
user@R2# set if-exceeding bandwidth-limit 1m
user@R2# set if-exceeding burst-size-limit 15k
user@R2# set then discard
```

9. Configure the TCP filter rules.

```
[edit firewall family inet filter protect-RE term tcp-connection-term]
user@R2# set from source-prefix-list trusted-addresses
user@R2# set from protocol tcp
user@R2# set from tcp-established
user@R2# set then policer tcp-connection-policer
user@R2# set then accept
```
10. Configure the ICMP filter rules.

[edit firewall family inet filter protect-RE term icmp-term]
user@R2# set from source-prefix-list trusted-addresses
user@R2# set from protocol icmp
user@R2# set then policer icmp-policer
user@R2# set then count icmp-counter
user@R2# set then accept

11. Apply the filter to the loopback interface.

[edit interfaces lo0 unit 0]
user@R2# set family inet filter input protect-RE

Results
Confirmyourconfigurationbyenteringtheshowinterfaces, show protocols, show policy-options, show routing-options, and show firewall commands from configuration mode. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R2# show interfaces
fe-1/2/0 {
  unit 0 {
    family inet {
      address 10.0.0.2/30;
    }
  }
}
lo0 {
  unit 0 {
    family inet {
      filter {
        input protect-RE;
      }
      address 192.168.0.2/32 {
        primary;
      }
      address 172.16.0.2/32;
    }
  }
}
user@R2# show protocols
bgp {
    group ext {
        type external;
        export send-direct;
        neighbor 10.0.0.1 {
            peer-as 100;
        }
    }
}

ospf {
    area 0.0.0.0 {
        interface lo0.0 {
            passive;
        }
        interface fe-1/2/0.0;
    }
}

user@R2# show policy-options
prefix-list trusted-addresses {
    10.0.0.0/24;
    192.168.0.0/24;
}
policy-statement send-direct {
    term 1 {
        from protocol direct;
        then accept;
    }
}

user@R2# show routing-options
router-id 192.168.0.2;
autonomous-system 200;

user@R2# show firewall
family inet {
    filter protect-RE {
        term tcp-connection-term {
            from {
                source-prefix-list {
                    trusted-addresses;
                }
            }
        }
    }
}
If you are done configuring the device, enter commit from configuration mode.
**Verification**

**IN THIS SECTION**
- Displaying Stateless Firewall Filter That Are in Effect | 1816
- Using telnet to Verify the tcp-established Condition in the TCP Firewall Filter | 1817
- Using telnet to Verify the Trusted Prefixes Condition in the TCP Firewall Filter | 1818
- Using OSPF to Verify the TCP Firewall Filter | 1819
- Verifying the ICMP Firewall Filter | 1820

Confirm that the configuration is working properly.

**NOTE:** To verify the TCP policer, you can use a packet generation tool. This task is not shown here.

**Displaying Stateless Firewall Filter That Are in Effect**

**Purpose**
Verify the configuration of the firewall filter.

**Action**
From operational mode, enter the `show firewall` command.

```
user@R2> show firewall
```

**Filter:** protect-RE

**Counters:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-counter</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Policers:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-policer</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tcp-connection-policer</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**
The output shows the filter, the counter, and the policers that are in effect on Device R2.
Using telnet to Verify the tcp-established Condition in the TCP Firewall Filter

Purpose
Make sure that telnet traffic works as expected.

Action
Verify that the device can establish only TCP sessions with hosts that meet the from tcp-established condition.

1. From Device R2, make sure that the BGP session with Device R1 is established.

   user@R2> show bgp summary | match down
   Groups: 1 Peers: 1 Down peers: 0

2. From Device R2, telnet to Device R1.

   user@R2> telnet 192.168.0.1
   Trying 192.168.0.1...
   Connected to R1.example.net.
   Escape character is '^]'.
   R1 (tttyp4)
   login:

3. From Device R1, telnet to Device R2.

   user@R1> telnet 192.168.0.2
   Trying 192.168.0.2...
   telnet: connect to address 192.168.0.2: Operation timed out
   telnet: Unable to connect to remote host

4. On Device R2, deactivate the from tcp-established match condition.

   [edit firewall family inet filter protect-RE term tcp-connection-term]
   user@R2# deactivate from tcp-established
   user@R2# commit

5. From Device R1, try again to telnet to Device R2.

   user@R1> telnet 192.168.0.1
Meaning
Verify the following information:

- As expected, the BGP session is established. The from tcp-established match condition is not expected to block BGP session establishment.

- From Device R2, you can telnet to Device R1. Device R1 has no firewall filter configured, so this is the expected behavior.

- From Device R1, you cannot telnet to Device R2. Telnet uses TCP as the transport protocol, so this result might be surprising. The cause for the lack of telnet connectivity is the from tcp-established match condition. This match condition limits the type of TCP traffic that is accepted on Device R2. After this match condition is deactivated, the telnet session is successful.

Using telnet to Verify the Trusted Prefixes Condition in the TCP Firewall Filter

Purpose
Make sure that telnet traffic works as expected.

Action
Verify that the device can establish only telnet sessions with a host at an IP address that matches one of the trusted source addresses. For example, log in to the device with the telnet command from another host with one of the trusted address prefixes. Also, verify that telnet sessions with untrusted source addresses are blocked.

1. From Device R1, telnet to Device R2 from an untrusted source address.

   user@R1> telnet 172.16.0.2 source 172.16.0.1

   Trying 172.16.0.2...
   ^C

2. From Device R2, add 172.16/16 to the list of trusted prefixes.

   [edit policy-options prefix-list trusted-addresses]
3. From Device R1, try again to telnet to Device R2.

```
user@R1> telnet 172.16.0.2 source 172.16.0.1
```

```
Trying 172.16.0.2...
Connected to R2.example.net.
Escape character is '^]'.

R2 (ttty4)

login:
```

Meaning
Verify the following information:

- From Device R1, you cannot telnet to Device R2 with an untrusted source address. After the 172.16/16 prefix is added to the list of trusted prefixes, the telnet request from source address 172.16.0.1 is accepted.

- OSPF session establishment is blocked. OSPF does not use TCP as its transport protocol. After the from protocol tcp match condition is deactivated, OSPF session establishment is not blocked.

Using OSPF to Verify the TCP Firewall Filter

Purpose
Make sure that OSPF traffic works as expected.

Action
Verify that the device cannot establish OSPF connectivity.

1. From Device R1, check the OSPF sessions.

```
user@R1> show ospf neighbor
```

```
+------------+-------------+--------+--------+--------+---+---+
| Address | Interface | State | ID | Pri | | |
+------------+-------------+--------+--------+--------+---+---+
| 10.0.0.2 | fe-1/2/0.0 | Init | 192.168.0.2 | 128 | 34 |
+------------+-------------+--------+--------+--------+---+---+
```

2. From Device R2, check the OSPF sessions.

```
user@R2> show ospf neighbor
```
3. From Device R2, remove the `from protocol tcp` match condition.

```
[edit firewall family inet filter protect-RE term tcp-connection-term]
user@R2# deactivate from protocol
devicename:protect-RE term tcp-connection-term
user@R2# commit
devicename:protect-RE term tcp-connection-term
```

4. From Device R1, recheck the OSPF sessions.

```
user@R1# show ospf neighbor
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.2</td>
<td>fe-1/2/0.0</td>
<td>Full</td>
<td>192.168.0.2</td>
<td>128</td>
<td>36</td>
</tr>
</tbody>
</table>

5. From Device R2, recheck the OSPF sessions.

```
user@R2# show ospf neighbor
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>fe-1/2/0.0</td>
<td>Full</td>
<td>192.168.0.1</td>
<td>128</td>
<td>39</td>
</tr>
</tbody>
</table>

**Meaning**

Verify the following information:

- OSPF session establishment is blocked. OSPF does not use TCP as its transport protocol. After the `from protocol tcp` match condition is deactivated, OSPF session establishment is successful.

**Verifying the ICMP Firewall Filter**

**Purpose**

Verify that ICMP packets are being policed and counted. Also make sure that ping requests are discarded when the requests originate from an untrusted source address.

**Action**

1. Undo the configuration changes made in previous verification steps.

Reactivate the TCP firewall settings, and delete the 172.16/16 trusted source address.

```
[edit firewall family inet filter protect-RE term tcp-connection-term]
user@R2# activate from protocol
devicename:protect-RE term tcp-connection-term
user@R2# activate from tcp-established
devicename:protect-RE term tcp-connection-term
[edit policy-options prefix-list trusted-addresses]
user@R2# delete 172.16.0.0/16
devicename:prefix-list trusted-addresses
user@R2# commit
devicename:prefix-list trusted-addresses
```
2. From Device R1, ping the loopback interface on Device R2.

```
user@R1> ping 192.168.0.2 rapid count 600 size 2000
```

```
PING 192.168.0.2 (192.168.0.2): 2000 data bytes

--- 192.168.0.2 ping statistics ---
600 packets transmitted, 536 packets received, 10% packet loss
pinground-trip min/avg/max/stddev = 2.976/3.405/42.380/2.293 ms
```

3. From Device R2, check the firewall statistics.

```
user@R2> show firewall
```

```
Filter: protect-RE
Counters:
Name Bytes Packets
icmp-counter 1180804 1135
Policers:
Name Bytes Packets
icmp-policer 66
tcp-connection-policer 0
```

4. From an untrusted source address on Device R1, send a ping request to Device R2's loopback interface.

```
user@R1> ping 172.16.0.2 source 172.16.0.1
```

```
PING 172.16.0.2 (172.16.0.2): 56 data bytes
^C
--- 172.16.0.2 ping statistics ---
14 packets transmitted, 0 packets received, 100% packet loss
```

**Meaning**

Verify the following information:

- The ping output shows that 10% packet loss is occurring.
- The ICMP packet counter is incrementing, and the icmp-policer is incrementing.
- Device R2 does not send ICMP responses to the ping 172.16.0.2 source 172.16.0.1 command.
Prefix-Specific Counting and Policing Actions

IN THIS SECTION

- Prefix-Specific Counting and Policing Overview | 1822
- Filter-Specific Counter and Policer Set Overview | 1825
- Example: Configuring Prefix-Specific Counting and Policing | 1826
- Prefix-Specific Counting and Policing Configuration Scenarios | 1835

Prefix-Specific Counting and Policing Overview

IN THIS SECTION

- Separate Counting and Policing for Each IPv4 Address Range | 1822
- Prefix-Specific Action Configuration | 1823
- Counter and Policer Set Size and Indexing | 1824

Separate Counting and Policing for Each IPv4 Address Range

Prefix-specific counting and policing enables you to configure an IPv4 firewall filter term that matches on a source or destination address, applies a single-rate two-color policer as the term action, but associates...
the matched packet with a specific counter and policer instance based on the source or destination in the packet header. You can implicitly create a separate counter or policer instance for a single address or for a group of addresses.

Prefix-specific counting and policing uses a *prefix-specific action* configuration that specifies the name of the policer you want to apply, whether prefix-specific counting is to be enabled, and a source or destination address prefix range.

The prefix range specifies between 1 and 16 sequential set bits of an IPv4 address mask. The length of the prefix range determines the size of the counter and policer set, which consists of as few as 2 or as many as 65,536 counter and policer instances. The position of the bits of the prefix range determines the indexing of filter-matched packets into the set of instances.

**NOTE:** A prefix-specific action is specific to a source or destination prefix range, but it is not specific to a particular source or destination address range, and it is not specific to a particular interface.

To apply a prefix-specific action to the traffic at an interface, you configure a firewall filter term that matches on source or destination addresses, and then you apply the firewall filter to the interface. The flow of filtered traffic is rate-limited using prefix-specific counter and policer instances that are selected per packet based on the source or destination address in the header of the filtered packet.

**Prefix-Specific Action Configuration**

To configure a prefix-specific action, you specify the following information:

- Prefix-specific action name—Name that can be referenced as the action of an IPv4 standard firewall filter term that matches packets on source or destination addresses.
- Policer name—Name of a single-rate two-color policer for which you want to implicitly create prefix-specific instances.

**NOTE:** For aggregated Ethernet interfaces, you can configure a prefix-specific action that references a logical interface policer (also called an aggregate policer). You can reference this type of prefix-specific action from an IPv4 standard firewall filter and then apply the filter at the aggregate level of the interface.

- Counting option—Option to include if you want to enable prefix-specific counters.
- Filter-specific option—Option to include if you want a single counter and policer set to be shared across all terms in the firewall filter. A prefix-specific action that operates in this way is said to operate in *filter-specific* mode. If you do not enable this option, the prefix-specific action operates in *term-specific* mode, meaning that a separate counter and policer set is created for each filter term that references the prefix-specific action.
• Source address prefix length—Length of the address prefix, from 0 through 32, to be used with a packet matched on the source address.

• Destination address prefix length—Length of the address prefix, from 0 through 32, to be used with a packet matched on the destination address.

• Subnet prefix length—Length of the subnet prefix, from 0 through 32, to be used with a packet matched on either the source or destination address.

You must configure source and destination address prefix lengths to be from 1 to 16 bits longer than the subnet prefix length. If you configure source or destination address prefix lengths to be more than 16 bits beyond the configured subnet prefix length, an error occurs when you try to commit the configuration.

Counter and Policer Set Size and Indexing

The number of prefix-specific actions (counters or policers) implicitly created for a prefix-specific action is determined by the length of the address prefix and the length of the subnet prefix:

Size of Counter and Policer Set = 2^(source-or-destination-prefix-length - subnet-prefix-length)

Table 117 on page 1824 shows examples of counter and policer set size and indexing.

Table 117: Examples of Counter and Policer Set Size and Indexing

<table>
<thead>
<tr>
<th>Example Prefix Lengths Specified in the Prefix-Specific Action</th>
<th>Calculation of Counter or Policer Set Size</th>
<th>Indexing of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-prefix-length = 32 subnet-prefix-length = 16</td>
<td>Size = 2^(32-16) = 2^16 = 65,536 instances</td>
<td>Instance 0: x.x.0.0</td>
</tr>
<tr>
<td>NOTE: This calculation shows the largest counter or policer set size supported.</td>
<td></td>
<td>Instance 1: x.x.0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 65535: xx255.255</td>
</tr>
<tr>
<td>source-prefix-length = 32 subnet-prefix-length = 24</td>
<td>Size = 2^(32-24) = 2^8 = 256 instances</td>
<td>Instance 0: x.x.x.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 1: x.x.x.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 255: x.x.x.255</td>
</tr>
</tbody>
</table>
Table 117: Examples of Counter and Policer Set Size and Indexing (continued)

<table>
<thead>
<tr>
<th>Example Prefix Lengths Specified in the Prefix-Specific Action</th>
<th>Calculation of Counter or Policer Set Size</th>
<th>Indexing of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source-prefix-length</code> = 32</td>
<td><code>Size = 2^{(32 - 25)} = 2^7 = 128 instances</code></td>
<td>Instance 0: <code>x.x.0</code></td>
</tr>
<tr>
<td><code>subnet-prefix-length</code> = 25</td>
<td></td>
<td>Instance 1: <code>x.x.1</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 127: <code>x.x.127</code></td>
</tr>
<tr>
<td><code>source-prefix-length</code> = 24</td>
<td><code>Size = 2^{(24 - 20)} = 2^4 = 16 instances</code></td>
<td>Instance 0: <code>x.x.0.x</code></td>
</tr>
<tr>
<td><code>subnet-prefix-length</code> = 20</td>
<td></td>
<td>Instance 1: <code>x.x.1.x</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 15: <code>x.x.15.x</code></td>
</tr>
</tbody>
</table>

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Filter-Specific Counter and Policer Set Overview | 1825
- Example: Configuring Prefix-Specific Counting and Policing | 1826
- Prefix-Specific Counting and Policing Configuration Scenarios | 1835
- prefix-action (Configuring) | 2284
- prefix-action (Firewall Filter Action) | 2285

Filter-Specific Counter and Policer Set Overview

By default, a prefix-specific policer set operates in term-specific mode so that, for a given firewall filter, the Junos OS creates a separate counter and policer set for every filter term that references the prefix-specific action. As an option, you can configure a prefix-specific policer set to operate in filter-specific mode so that a single prefix-specific policer set is used by all terms (within the same firewall filter) that reference the policer.

For an IPv4 firewall filter with multiple terms that reference the same prefix-specific policer set, configuring the policer set to operate in filter-specific mode enables you to count and monitor the activity of the policer set at the firewall filter level.
NOTE: Term-specific mode and filter-specific mode also apply to policers. See “Filter-Specific Policer Overview” on page 1807.

To enable a prefix-specific policer set to operate in filter-specific mode, you can include the `filter-specific` statement at the following the hierarchy levels:

- `[edit firewall family inet prefix-action prefix-action-name]`
- `[edit logical-systems logical-system-name firewall family inet prefix-action prefix-action-name]`

You can reference filter-specific, prefix-specific policer sets from IPv4 (family inet) firewall filters only.

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Filter-Specific Policer Overview | 1807
- Prefix-Specific Counting and Policing Overview | 1822
- Example: Configuring Prefix-Specific Counting and Policing | 1826
- Prefix-Specific Counting and Policing Configuration Scenarios | 1835

Example: Configuring Prefix-Specific Counting and Policing

IN THIS SECTION

- Requirements | 1826
- Overview | 1827
- Configuration | 1827
- Verification | 1833

This example shows how to configure prefix-specific counting and policing.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.
Overview

In this example, you configure prefix-specific counting and policing based on the last octet of the source address field in packets matched by an IPv4 firewall filter.

The single-rate two-color policer named **1Mbps-policer** rate-limits traffic to a bandwidth of 1,000,000 bps and a burst-size limit of 63,000 bytes, discarding any packets in a traffic flow that exceeds the traffic limits.

Independent of the IPv4 addresses contained in any packets passed from a firewall filter, the prefix-specific action named **psa-1Mbps-per-source-24-32-256** specifies a set of 256 counters and policers, numbered from 0 through 255. For each packet, the last octet of the source address field is used to index into the associated prefix-specific counter and policer in the set:

- Packets with a source address ending with the octet 0x00000000 index the first counter and policer in the set.
- Packets with a source address ending with the octet 0x00000001 index the second counter and policer in the set.
- Packets with a source address ending with the octet 0x11111111 index the last counter and policer in the set.

The **limit-source-one-24** firewall filter contains a single term that matches all packets from the /24 subnet of source address **10.10.10.0**, passing these packets to the prefix-specific action **psa-1Mbps-per-source-24-32-256**.

Topology

In this example, because the filter term matches the /24 subnet of a single source address, each counting and policing instance in the prefix-specific set is used for only one source address.

- Packets with a source address **10.10.10.0** index the first counter and policer in the set.
- Packets with a source address **10.10.10.1** index the second counter and policer in the set.
- Packets with a source address **10.10.10.255** index the last counter and policer in the set.

This example shows the simplest case of prefix-specific actions, in which the filter term matches on one address with a prefix length that is the same as the prefix length specified in the prefix-specific action for indexing into the set of prefix-specific counters and policers.

For descriptions of other configurations for prefix-specific counting and policing, see “Prefix-Specific Counting and Policing Configuration Scenarios” on page 1835.

Configuration

---

### IN THIS SECTION

- Configuring a Policer for Prefix-Specific Counting and Policing | 1828
- Configuring a Prefix-Specific Action Based on the Policer | 1829
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set firewall policer 1Mbps-policer if-exceeding bandwidth-limit 1m
set firewall policer 1Mbps-policer if-exceeding burst-size-limit 63k
set firewall policer 1Mbps-policer then discard
set firewall family inet prefix-action psa-1Mbps-per-source-24-32-256 policer 1Mbps-policer
set firewall family inet prefix-action psa-1Mbps-per-source-24-32-256 count
set firewall family inet prefix-action psa-1Mbps-per-source-24-32-256 subnet-prefix-length 24
set firewall family inet prefix-action psa-1Mbps-per-source-24-32-256 source-prefix-length 32
set firewall family inet filter limit-source-one-24 term one from source-address 10.10.10.0/24
set firewall family inet filter limit-source-one-24 term one then prefix-action psa-1Mbps-per-source-24-32-256
set interfaces so-0/0/2 unit 0 family inet filter input limit-source-one-24
set interfaces so-0/0/2 unit 0 family inet address 10.39.1.1/16
```

**Configuring a Policer for Prefix-Specific Counting and Policing**

**Step-by-Step Procedure**

To configure a policer to be used for prefix-specific counting and policing:

1. Enable configuration of a single-rate two-color policer.

   ```plaintext
 [edit]
 user@host# edit firewall policer 1Mbps-policer
   ```

2. Define the traffic limit.

   ```plaintext
 [edit firewall policer 1Mbps-policer]
 user@host# set if-exceeding bandwidth-limit 1m
 user@host# set if-exceeding burst-size-limit 63k
   ```
Packets in a traffic flow that conforms to this limit are passed with the PLP set to low.

3. Define the actions for nonconforming traffic.

```plaintext
[edit firewall policer 1Mbps-policer]
user@host# set then discard
```

Packets in a traffic flow that exceeds this limit are discarded. Other configurable actions for a single-rate two-color policer are to set the forwarding class and to set the PLP level.

**Results**

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
[edit]
user@host# show firewall
policer 1Mbps-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 63k;
 }
 then discard;
}
```

**Configuring a Prefix-Specific Action Based on the Policer**

**Step-by-Step Procedure**

To configure a prefix-specific action that references the policer and specifies a portion of a source address prefix:

1. Enable configuration of a prefix-specific action.

```plaintext
[edit]
user@host# edit firewall family inet prefix-action psa-1Mbps-per-source-24-32-256
```

Prefix-specific counting and policing can be defined for IPv4 traffic only.

2. Reference the policer for which a prefix-specific set is to be created.

```plaintext
[edit firewall family inet prefix-action psa-1Mbps-per-source-24-32-256]
user@host# set policer 1Mbps-policer
```
NOTE: For aggregated Ethernet interfaces, you can configure a prefix-specific action that references a logical interface policer (also called an aggregate policer). You can reference this type of prefix-specific action from an IPv4 standard firewall filter and then apply the filter at the aggregate level of the interface.

3. Specify the prefix range on which IPv4 addresses are to be indexed to the counter and policer set.

```
[edit firewall family inet prefix-action psa-1Mbps-per-source-24-32-256]
user@host# set source-prefix-length 32
user@host# set subnet-prefix-length 24
```

Results
Confirm the configuration of the prefix-specific action by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer 1Mbps-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 63k;
 }
 then discard;
}
family inet {
 prefix-action psa-1Mbps-per-source-24-32-256 {
 policer 1Mbps-policer;
 subnet-prefix-length 24;
 source-prefix-length 32;
 }
}
```

Configuring an IPv4 Filter That References the Prefix-Specific Action

Step-by-Step Procedure
To configure an IPv4 standard firewall filter that references the prefix-specific action:

1. Enable configuration of the IPv4 standard firewall filter.

   ```
 [edit]
 user@host# edit firewall family inet filter limit-source-one-24
   ```

Prefix-specific counting and policing can be defined for IPv4 traffic only.

2. Configure the filter term to match on the packet source address or destination address.

   ```
 [edit firewall family inet filter limit-source-one-24]
 user@host# set term one from source-address 10.10.10.0/24
   ```

3. Configure the filter term to reference the prefix-specific action.

   ```
 [edit firewall family inet filter limit-source-one-24]
 user@host# set term one then prefix-action psa-1Mbps-per-source-24-32-256
   ```

You could also use the next term action to configure all Hypertext Transfer Protocol (HTTP) traffic to each host to transmit at 500 Kbps and have the total HTTP traffic limited to 1 Mbps.

**Results**

Confirm the configuration of the prefix-specific action by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer 1Mbps-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 63k;
 }
 then discard;
}
family inet {
 prefix-action psa-1Mbps-per-source-24-32-256 {
 policer 1Mbps-policer;
 subnet-prefix-length 24;
 source-prefix-length 32;
 }
}
```
Applying the Firewall Filter to IPv4 Input Traffic at a Logical Interface

Step-by-Step Procedure

To apply the firewall filter to IPv4 input traffic at a logical interface:

1. Enable configuration of IPv4 on the logical interface.

```
[edit]
user@host# edit interfaces so-0/0/2 unit 0 family inet
```

2. Configure an IP address.

```
[edit interfaces so-0/0/2 unit 0 family inet]
user@host# set address 10.39.1.1/16
```

3. Apply the IPv4 standard stateless firewall filter.

```
[edit interfaces so-0/0/2 unit 0 family inet]
user@host# set filter input limit-source-one-24
```

Results

Confirm the configuration of the prefix-specific action by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
```
If you are done configuring the device, enter **commit** from configuration mode.

**Verification**

**IN THIS SECTION**

- Displaying the Firewall Filters Applied to an Interface  | 1833
- Displaying Prefix-Specific Actions Statistics for the Firewall Filter  | 1834

Confirm that the configuration is working properly.

**Displaying the Firewall Filters Applied to an Interface**

**Purpose**

Verify that the firewall filter **limit-source-one-24** is applied to the IPv4 input traffic at logical interface so-0/0/2.0.

**Action**

Use the **show interfaces statistics** operational mode command for logical interface **so-0/0/2.0**, and include the **detail** option. In the command output section for Protocol inet, the **Input Filters** field displays **limit-source-one-24**, indicating that the filter is applied to IPv4 traffic in the input direction:

```
user@host> show interfaces statistics so-0/0/2.0 detail

Logical interface so-0/0/2.0 (Index 79) (SNMP ifIndex 510) (Generation 149)
Flags: Hardware-Down Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP
Protocol inet, MTU: 4470, Generation: 173, Route table: 0
Flags: Sendcast-pkt-to-re, Protocol-Down
Input Filters: limit-source-one-24
```
**Displaying Prefix-Specific Actions Statistics for the Firewall Filter**

**Purpose**
Verify the number of packets evaluated by the policer.

**Action**
Use the `show firewall prefix-action-stats filter filter-name prefix-action name` operational mode command to display statistics about a prefix-specific action configured on a firewall filter.

As an option, you can use the `from set-index to set-index` command option to specify the starting and ending counter or policer to be displayed. A policer set is indexed from 0 through 65535.

The command output displays the specified filter name followed by a listing of the number of bytes and packets processed by each policer in the policer set.

For a term-specific policer, each policer in the set is identified as follows:

```
prefix-specific-action-name-term-name-set-index
```

For a filter-specific policer, each policer is identified in the command output as follows:

```
prefix-specific-action-name-set-index
```

Because the example prefix-specific action `psa-1Mbps-per-source-24-32-256` is referenced by only one term of the example filter `limit-source-one-24`, the example policer `1Mbps-policer` is configured as term-specific. In the `show firewall prefix-action-stats` command output, the policer statistics are displayed as `psa-1Mbps-per-source-24-32-256-one-0`, `psa-1Mbps-per-source-24-32-256-one-1`, and so on through `psa-1Mbps-per-source-24-32-256-one-255`.

```
user@host> show firewall prefix-action-stats filter limit-source-one-24 prefix-action psa-1Mbps-per-source-24-32-256 from 0 to 9
```

```
Filter: limit-source-one-24
Counters: Bytes Packets
Name 0 0
psa-1Mbps-per-source-24-32-256-one-0 0 0
psa-1Mbps-per-source-24-32-256-one-1 0 0
psa-1Mbps-per-source-24-32-256-one-2 0 0
```
SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Prefix-Specific Counting and Policing Overview | 1822
- Filter-Specific Counter and Policer Set Overview | 1825
- Prefix-Specific Counting and Policing Configuration Scenarios | 1835

Prefix-Specific Counting and Policing Configuration Scenarios

IN THIS SECTION

- Prefix Length of the Action and Prefix Length of Addresses in Filtered Packets | 1835
- Scenario 1: Firewall Filter Term Matches on Multiple Addresses | 1837
- Scenario 2: Subnet Prefix Is Longer Than the Prefix in the Filter Match Condition | 1839
- Scenario 3: Subnet Prefix Is Shorter Than the Prefix in the Firewall Filter Match Condition | 1840

*Prefix Length of the Action and Prefix Length of Addresses in Filtered Packets*

Table 118 on page 1835 describes the relationship between the prefix length specified in the prefix-specific action and the prefix length of the addresses matched by the firewall filter term that references the prefix-specific action.

**Table 118: Summary of Prefix-Specific Action Scenarios**

<table>
<thead>
<tr>
<th>Counter and Policer Set</th>
<th>Packet-Filtering Criteria</th>
<th>Indexing of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prefix-specific action scenario:
Table 118: Summary of Prefix-Specific Action Scenarios (continued)

<table>
<thead>
<tr>
<th>Counter and Policer Set</th>
<th>Packet-Filtering Criteria</th>
<th>Indexing of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>source-prefix-length = 32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subnet-prefix-length = 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-address = 10.10.10.0/24</td>
<td>Instance 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 255:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix-specific action scenario:</td>
<td>source-prefix-length = 32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subnet-prefix-length = 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-address = 10.10.10.0/24</td>
<td>Instance 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 255:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For addresses in the /16 subnet, x ranges from 0 through 255.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-prefix-length = 32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subnet-prefix-length = 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-address = 10.10.10.0/24</td>
<td>Instance 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instance 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Table 118: Summary of Prefix-Specific Action Scenarios (continued)

<table>
<thead>
<tr>
<th>Counter and Policer Set</th>
<th>Packet-Filtering Criteria</th>
<th>Indexing of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Instance 127:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.10.10.255,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.10.10.127</td>
</tr>
</tbody>
</table>

Prefix-specific action scenario:
"Scenario 3: Subnet Prefix Is Shorter Than the Prefix in the Firewall Filter Match Condition" on page 1840

	source-prefix-length = 32
	subnet-prefix-length = 24
	Set size: 2^8 = 256
	Instance numbers: 0 - 255
**source-address** = 10.10.10.0/25	Instance 0: 10.10.10.0
NOTE: Only packets with source addresses ranging from 10.10.10.0 through 10.10.10.127 are passed to the prefix-specific action.	
	Instance 1: 10.10.10.1
	...
	Instance 127: 10.10.10.127
	Instances 128 - 255: unused

**Scenario 1: Firewall Filter Term Matches on Multiple Addresses**

The complete example, "Example: Configuring Prefix-Specific Counting and Policing" on page 1826, shows the simplest case of prefix-specific actions, in which a single-term firewall filter matches on one address with a prefix length that is the same as the subnet prefix length specified in the prefix-specific action. Unlike the example, this scenario describes a configuration in which a single-term firewall filter matches on two IPv4 source addresses. In addition, the additional condition matches on a source address with a prefix length that is different from the subnet prefix length defined in the prefix-specific action. In this case, the additional condition matches on the /16 subnet of the source address 10.11.0.0.

**NOTE:** Unlike packets that match the source address 10.10.10.0/24, packets that match the source address 10.11.0.0/16 are in a many-to-one correspondence with the instances in the counter and policer set.

The filter-matched packets that are passed to the prefix-specific action index into the counter and policer set in such a way that the counting and policing instances are shared by packets that contain source addresses across the 10.10.10.0/24 and 10.11.0.0/16 subnets as follows:

- The first counter and policer in the set are indexed by packets with source addresses 10.10.10.0 and 10.11.x.0, where x ranges from 0 through 255.
• The second counter and policer in the set are indexed by packets with source addresses 10.10.10.1 and 10.11.x.1, where x ranges from 0 through 255.

• The 256th (last) counter and policer in the set are indexed by packets with source addresses 10.10.10.255 and 10.11.x.255, where x ranges from 0 through 255.

The following configuration shows the statements for configuring the single-rate two-color policer, the prefix-specific action that references the policer, and the IPv4 standard stateless firewall filter that references the prefix-specific action:

```
[edit]
firewall {
 policer 1Mbps-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 63k;
 }
 then discard;
 }
 family inet {
 prefix-action psa-1Mbps-per-source-24-32-256 {
 policer 1Mbps-policer;
 subnet-prefix-length 24;
 source-prefix-length 32;
 }
 filter limit-source-two-24-16 {
 term one {
 from {
 source-address {
 10.10.0.0/24;
 10.11.0.0/16;
 }
 }
 then prefix-action psa-1Mbps-per-source-24-32-256;
 }
 }
 }
 interfaces {
 so-0/0/2 {
 unit 0 {
 family inet {
 filter {
 input limit-source-two-24-16;
 }
 }
 }
 }
 }
}
```
Scenario 2: Subnet Prefix Is Longer Than the Prefix in the Filter Match Condition

The complete example, "Example: Configuring Prefix-Specific Counting and Policing" on page 1826, shows the simplest case of prefix-specific actions, in which the single-term firewall filter matches on one address with a prefix length that is the same as the subnet prefix length specified in the prefix-specific action. Unlike the example, this scenario describes a configuration in which the prefix-specific action defines a subnet prefix length that is longer than the prefix of the source address matched by the firewall filter. In this case, the prefix-specific action defines a subnet-prefix value of 25, while the firewall filter matches on a source address in the /24 subnet.

NOTE: The firewall filter passes the prefix-specific action packets with source addresses that range from 10.10.10.0 through 10.10.10.255, while the prefix-specific action specifies a set of only 128 counters and policers, numbered from 0 through 127.

The filter-matched packets that are passed to the prefix-specific action index into the counter and policer set in such a way that the counting and policing instances are shared by packets that contain either of two source addresses within the 10.10.10.0/24 subnet:

- The first counter and policer in the set are indexed by packets with source addresses 10.10.10.0 and 10.10.10.128.
- The second counter and policer in the set are indexed by packets with source addresses 10.10.10.1 and 10.10.10.129.
- The 128th (last) counter and policer in the set are indexed by packets with source addresses 10.10.10.127 and 10.10.10.255.

The following configuration shows the statements for configuring the single-rate two-color policer, the prefix-specific action that references the policer, and the IPv4 standard stateless firewall filter that references the prefix-specific action:

```
[edit]
f火wall {
policer 1Mbps-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 63k;
```
Scenario 3: Subnet Prefix Is Shorter Than the Prefix in the Firewall Filter Match Condition

The complete example, "Example: Configuring Prefix-Specific Counting and Policing" on page 1826, shows the simplest case of prefix-specific actions, in which the single-term firewall filter matches on one address with a prefix length that is the same as the subnet prefix length specified in the prefix-specific action. Unlike the example, this scenario describes a configuration in which the prefix-specific action defines a subnet prefix length that is shorter than the prefix of the source address matched by the firewall filter. In this case, the filter term matches on the /25 subnet of the source address 10.10.10.0.
The firewall filter passes the prefix-specific action only packets with source addresses that range from 10.10.10.0 through 10.10.10.127, while the prefix-specific action specifies a set of 256 counters and policers, numbered from 0 through 255.

The matched packets that are passed to the prefix-specific action index into the lower half of the counter and policer set only:

- The first counter and policer in the set are indexed by packets with source address 10.10.10.0.
- The second counter and policer in the set are indexed by packets with source address 10.10.10.1 and 10.10.10.129.
- The 128th counter and policer in the set are indexed by packets with source address 10.10.10.127.
- The upper half of the set (instances numbered from 128 through 255) are not indexed by packets passed to the prefix-specific action from this particular firewall filter.

The following configuration shows the statements for configuring the single-rate two-color policer, the prefix-specific action that references the policer, and the IPv4 standard stateless firewall filter that references the prefix-specific action:

```
[edit]
firewall {
policer 1Mbps-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 63k;
 }
 then discard;
}
family inet {
 prefix-action psa-1Mbps-per-source-24-32-256 {
 policer 1Mbps-policer;
 subnet-prefix-length 24;
 source-prefix-length 32;
 }
 filter limit-source-one-25 {
 term one {
 from {
 source-address {
 10.10.10.0/25;
 }
 }
 then prefix-action psa-1Mbps-per-source-24-32-256;
 }
 }
}
```
interfaces {
  so-0/0/2 {
    unit 0 {
      family inet {
        filter {
          input limit-source-one-25;
        }
        address 10.39.1.1/16;
      }
    }
  }
}

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Prefix-Specific Counting and Policing Overview | 1822
- Filter-Specific Counter and Policer Set Overview | 1825
- Example: Configuring Prefix-Specific Counting and Policing | 1826

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 1763
- Guidelines for Applying Traffic Policers | 1683

Multifield Classification

IN THIS SECTION

- Multifield Classification Overview | 1843
- Multifield Classification Requirements and Restrictions | 1846
- Multifield Classification Limitations on M Series Routers | 1847
**Multifield Classification Overview**

**IN THIS SECTION**

- Forwarding Classes and PLP Levels | 1843
- Multifield Classification and BA Classification | 1843
- Multifield Classification Used In Conjunction with Policers | 1844

**Forwarding Classes and PLP Levels**

You can configure the Junos OS class of service (CoS) features to classify incoming traffic by associating each packet with a forwarding class, a packet loss priority (PLP) level, or both:

- Based on the associated forwarding class, each packet is assigned to an output queue, and the router services the output queues according to the associated scheduling you configure.

- Based on the associated PLP, each packet carries a lower or higher likelihood of being dropped if congestion occurs. The CoS random early detection (RED) process uses the drop probability configuration, output queue fullness percentage, and packet PLP to drop packet as needed to control congestion at the output stage.

**Multifield Classification and BA Classification**

The Junos OS supports two general types of packet classification: behavior aggregate (BA) classification and multifield classification:

- BA classification, or CoS value traffic classification, refers to a method of packet classification that uses a CoS configuration to set the forwarding class or PLP of a packet based on the CoS value in the IP packet header. The CoS value examined for BA classification purposes can be the Differentiated Services code point (DSCP) value, DSCP IPv6 value, IP precedence value, MPLS EXP bits, and IEEE 802.1p value. The default classifier is based on the IP precedence value.

- Multifield classification refers to a method of packet classification that uses a standard stateless firewall filter configuration to set the forwarding class or PLP for each packet entering or exiting the interface based on multiple fields in the IP packet header, including the DSCP value (for IPv4 only), the IP precedence value, the MPLS EXP bits, and the IEEE 802.1p bits. Multifield classification commonly matches on IP
address fields, the IP protocol type field, or the port number in the UDP or TCP pseudoheader field. Multifield classification is used instead of BA classification when you need to classify packets based on information in the packet information other than the CoS values only.

With multifield classification, a firewall filter term can specify the packet classification actions for matching packets though the use of the forwarding-class class-name or loss-priority (high | medium-high | medium-low | low) nonterminating actions in the term's then clause.

NOTE: BA classification of a packet can be overridden by the stateless firewall filter actions forwarding-class and loss-priority.

**Multifield Classification Used In Conjunction with Policers**

To configure multifield classification in conjunction with rate limiting, a firewall filter term can specify the packet classification actions for matching packets through the use of a policer nonterminating action that references a single-rate two-color policer.

When multifield classification is configured to perform classification through a policer, the filter-matched packets in the traffic flow are rate-limited to the policer-specified traffic limits. Packets in a conforming flow of filter-matched packets are implicitly set to a low PLP. Packets in a nonconforming traffic flow can be discarded, or the packets can be set to a specified forwarding class, set to a specified PLP level, or both, depending on the type of policer and how the policer is configured to handle nonconforming traffic.
NOTE: Before you apply a firewall filter that performs multifield classification and also a policer to the same logical interface and for the same traffic direction, make sure that you consider the order of policer and firewall filter operations.

As an example, consider the following scenario:

- You configure a firewall filter that performs multifield classification (acts on matched packets by setting the forwarding class, the PLP, or both) based on the packet's existing forwarding class or PLP. You apply the firewall filter at the input of a logical interface.

- You also configure a single-rate two-color policer that acts on a red traffic flow by re-marking (setting the forwarding class, the PLP, or both) rather than discarding those packets. You apply the policer as an interface policer at the input of the same logical interface to which you apply the firewall filter.

Because of the order of policer and firewall operations, the input policer is executed before the input firewall filter. This means that the multifield classification specified by the firewall filter is performed on input packets that have already been re-marked once by policing actions. Consequently, any input packet that matches the conditions specified in a firewall filter term is then subject to a second re-marking according to the *forwarding-class* or *loss-priority* nonterminating actions also specified in that term.

SEE ALSO

"Firewall Filter Nonterminating Actions | 795" in the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*

Order of Policer and Firewall Filter Operations | 1678

Two-Color Policer Configuration Overview | 1763

Multifield Classification Requirements and Restrictions | 1846

Multifield Classification Limitations on M Series Routers | 1847

Example: Configuring Multifield Classification | 1849

*The Junos OS CoS Components Used to Manage Congestion and Control Service Levels*

*Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic*

*Understanding How Forwarding Classes Assign Classes to Output Queues*

*Default Forwarding Classes*

*Managing Congestion Using RED Drop Profiles and Packet Loss Priorities*
Multifield Classification Requirements and Restrictions

IN THIS SECTION

- Supported Platforms | 1846
- CoS Tricolor Marking Requirement | 1846
- Restrictions | 1846

**Supported Platforms**
The **loss-priority** firewall filter action is supported on the following routing platforms only:

- EX Series switches
- M7i and M10i routers with the Enhanced CFEB (CFEB-E)
- M120 and M320 routers
- MX Series routers
- T Series routers with Enhanced II Flexible PIC Concentrators (FPCs)
- PTX Series routers

**CoS Tricolor Marking Requirement**
The **loss-priority** firewall filter action has platform-specific requirements dependencies on the CoS tricolor marking feature, as defined in RFC 2698:

- On an M320 router, you cannot commit a configuration that includes the **loss-priority** firewall filter action unless you enable the CoS tricolor marking feature.

- On all routing platforms that support the **loss-priority** firewall filter action, you cannot set the **loss-priority** firewall filter action to **medium-low** or **medium-high** unless you enable the CoS tricolor marking feature.

To enable the CoS tricolor marking feature, include the **tri-color** statement at the [edit class-of-service] hierarchy level.

**Restrictions**
You cannot configure the **loss-priority** and **three-color-policer** nonterminating actions for the same firewall filter term. These two nonterminating actions are mutually exclusive.
NOTE: On a PTX Series router, you must configure the **policer** action in a separate rule and not combine it with the rule configuring the **forwarding-class**, and **loss-priority** actions. See "Firewall and Policing Differences Between PTX Series Packet Transport Routers and T Series Matrix Routers" on page 1599.

**SEE ALSO**

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filter Nonterminating Actions</td>
<td>795</td>
</tr>
<tr>
<td>Two-Color Policer Configuration Overview</td>
<td>1763</td>
</tr>
<tr>
<td>Multifield Classification Overview</td>
<td>1843</td>
</tr>
<tr>
<td>Multifield Classification Limitations on M Series Routers</td>
<td>1847</td>
</tr>
<tr>
<td>Example: Configuring Multifield Classification</td>
<td>1849</td>
</tr>
</tbody>
</table>

**Multifield Classification Limitations on M Series Routers**

**IN THIS SECTION**

- Problem: Output-Filter Matching on Input-Filter Classification | 1847
- Workaround: Configure All Actions in the Ingress Filter | 1848

**Problem: Output-Filter Matching on Input-Filter Classification**

On M Series routers (except M120 routers), you cannot classify packets with an output filter match based on the ingress classification that is set with an input filter applied to the same IPv4 logical interface.

For example, in the following configuration, the filter called **ingress** assigns all incoming IPv4 packets to the **expedited-forwarding** class. The filter called **egress** counts all packets that were assigned to the **expedited-forwarding** class in the **ingress** filter. This configuration does not work on most M Series routers. It works on all other routing platforms, including M120 routers, MX Series routers, and T Series routers.

```
[edit]
user@host # show firewall
family inet {
```
filter ingress {
    term 1 {
        then {
            forwarding-class expedited-forwarding;
            accept;
        }
    }
    term 2 {
        then accept;
    }
}
filter egress {
    term 1 {
        from {
            forwarding-class expedited-forwarding;
        }
        then count ef;
    }
    term 2 {
        then accept;
    }
}

[edit]
user@host# show interfaces
ge-1/2/0 {
    unit 0 {
        family inet {
            filter {
                input ingress;
                output egress;
            }
        }
    }
}

Workaround: Configure All Actions in the Ingress Filter

As a workaround, you can configure all of the actions in the ingress filter.

user@host # show firewall
family inet {
    filter ingress {
term 1 {
    then {
        forwarding-class expedited-forwarding;
        accept;
        count ef;
    }
}
term 2 {
    then accept;
}

[edit]
user@host# show interfaces
ge-1/2/0 {
    unit 0 {
        family inet {
            filter {
                input ingress;
            }
        }
    }
}

SEE ALSO

Two-Color Policier Configuration Overview | 1763
Multifield Classification Overview | 1843
Multifield Classification Requirements and Restrictions | 1846
Example: Configuring Multifield Classification | 1849

Example: Configuring Multifield Classification

IN THIS SECTION

- Requirements | 1850
- Overview | 1851
This example shows how to configure multifield classification of IPv4 traffic by using firewall filter actions and two firewall filter policers.

**Requirements**

Before you begin, make sure that your environment supports the features shown in this example:

1. The **loss-priority** firewall filter action must be supported on the router and configurable to all four values.
   a. To be able to set a **loss-priority** firewall filter action, configure this example on logical interface `ge-1/2/0.0` on one of the following routing platforms:
      - MX Series router
      - M120 or M320 router
      - M7i or M10i router with the Enhanced CFEB (CFEB-E)
      - T Series router with Enhanced II Flexible PIC Concentrator (FPC)
   b. To be able to set a **loss-priority** firewall filter action to **medium-low** or **medium-high**, make sure that the CoS tricolor marking feature is enabled. To enable the CoS tricolor marking feature, include the **tri-color** statement at the `[edit class-of-service]` hierarchy level.

2. The **expedited-forwarding** and **assured-forwarding** forwarding classes must be scheduled on the underlying physical interface `ge-1/2/0`.
   a. Make sure that the following forwarding classes are assigned to output queues:
      - **expedited-forwarding**
      - **assured-forwarding**

   Forwarding-class assignments are configured at the `[edit class-of-service forwarding-classes queue queue-number]` hierarchy level.

**NOTE:** You cannot commit a configuration that assigns the same forwarding class to two different queues.
b. Make sure that the output queues to which the forwarding classes are assigned are associated with schedulers. A scheduler defines the amount of interface bandwidth assigned to the queue, the size of the memory buffer allocated for storing packets, the priority of the queue, and the random early detection (RED) drop profiles associated with the queue.

- You configure output queue schedulers at the [edit class-of-service schedulers] hierarchy level.
- You associate output queue schedulers with forwarding classes by means of a scheduler map that you configure at the [edit class-of-service scheduler-maps map-name] hierarchy level.

c. Make sure that output-queue scheduling is applied to the physical interface ge-1/2/0.

You apply a scheduler map to a physical interface at the [edit class-of-service interfaces ge-1/2/0 scheduler-map map-name] hierarchy level.

**Overview**

In this example, you apply multifield classification to the input IPv4 traffic at a logical interface by using stateless firewall filter actions and two firewall filter policers that are referenced from the firewall filter. Based on the source address field, packets are either set to the low loss priority or else policed. Neither of the policers discards nonconforming traffic. Packets in nonconforming flows are marked for a specific forwarding class (expedited-forwarding or assured-forwarding), set to a specific loss priority, and then transmitted.

**NOTE:** Single-rate two-color policers always transmit packets in a conforming traffic flow after implicitly setting a low loss priority.

**Topology**

In this example, you apply multifield classification to the IPv4 traffic on logical interface ge-1/2/0.0. The classification rules are specified in the IPv4 stateless firewall filter mfc-filter and two single-rate two-color policers, ef-policer and af-policer.

The IPv4 standard stateless firewall filter mfc-filter defines three filter terms:

- **isp1-customers**—The first filter term matches packets with the source address 10.1.1.0/24 or 10.1.2.0/24. Matched packets are assigned to the expedited-forwarding forwarding class and set to the low loss priority.

- **isp2-customers**—The second filter term matches packets with the source address 10.1.3.0/24 or 10.1.4.0/24. Matched packets are passed to ef-policer, a policer that rate-limits traffic to a bandwidth limit of 300 Kbps with a burst-size limit of 50 KB. This policer specifies that packets in a nonconforming flow are marked for the expedited-forwarding forwarding class and set to the high loss priority.

- **other-customers**—The third and final filter term passes all other packets to af-policer, a policer that rate-limits traffic to a bandwidth limit of 300 Kbps and a burst-size limit of 50 KB (the same traffic limits
as defined by ef-policer). This policer specifies that packets in a nonconforming flow are marked for the **assured-forwarding** forwarding class and set to the **medium-high** loss priority.

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall policer ef-policer if-exceeding bandwidth-limit 300k
set firewall policer ef-policer if-exceeding burst-size-limit 50k
set firewall policer ef-policer then loss-priority high
set firewall policer ef-policer then forwarding-class expedited-forwarding
set firewall policer af-policer if-exceeding bandwidth-limit 300k
set firewall policer af-policer if-exceeding burst-size-limit 50k
set firewall policer af-policer then loss-priority high
set firewall policer af-policer then forwarding-class assured-forwarding
set firewall family inet filter mfc-filter term isp1-customers from source-address 10.1.1.0/24
set firewall family inet filter mfc-filter term isp1-customers from source-address 10.1.2.0/24
set firewall family inet filter mfc-filter term isp1-customers then loss-priority low
set firewall family inet filter mfc-filter term isp1-customers then forwarding-class expedited-forwarding
set firewall family inet filter mfc-filter term isp2-customers from source-address 10.1.3.0/24
set firewall family inet filter mfc-filter term isp2-customers from source-address 10.1.4.0/24
set firewall family inet filter mfc-filter term isp2-customers then policer ef-policer
set firewall family inet filter mfc-filter term other-customers then policer af-policer
set interfaces ge-1/2/0 unit 0 family inet address 192.168.1.1/24
set interfaces ge-1/2/0 unit 0 family inet filter input mfc-filter
```

**Configuring Policers to Rate-Limit Expedited-Forwarding and Assured-Forwarding Traffic**

**Step-by-Step Procedure**
To configure policers to rate-limit expedited-forwarding and assured-forwarding traffic:

1. Define traffic limits for expedited-forwarding traffic.

   [edit]
   user@host# edit firewall policer ef-policer
   [edit firewall policer ef-policer]
   user@host# set if-exceeding bandwidth-limit 300k
   user@host# set if-exceeding burst-size-limit 50k
   user@host# set then loss-priority high
   user@host# set then forwarding-class expedited-forwarding

2. Configure a policer for assured-forwarding traffic.

   [edit firewall policer ef-policer]
   user@host# up

   [edit firewall]
   user@host# edit policer af-policer

   [edit firewall policer af-policer]
   user@host# set if-exceeding bandwidth-limit 300k
   user@host# set if-exceeding burst-size-limit 50k
   user@host# set then loss-priority high
   user@host# set then forwarding-class assured-forwarding

Results

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

[edit]
user@host# show firewall
policer af-policer {
  if-exceeding {
    bandwidth-limit 300k;
    burst-size-limit 50k;
  }
  then {
    loss-priority high;
    forwarding-class assured-forwarding;
  }
}
Configuring a Multifield Classification Filter That Also Applies Policing

Step-by-Step Procedure
To configure a multifield classification filter that additionally applies policing:

1. Enable configuration of a firewall filter term for IPv4 traffic.

```
[edit]
user@host# edit firewall family inet filter mfc-filter
```

2. Configure the first term to match on source addresses and then classify the matched packets.

```
[edit firewall family inet filter mfc-filter]
user@host# set term isp1-customers from source-address 10.1.1.0/24
user@host# set term isp1-customers from source-address 10.1.2.0/24
user@host# set term isp1-customers then loss-priority low
user@host# set term isp1-customers then forwarding-class expedited-forwarding
```

3. Configure the second term to match on different source addresses and then police the matched packets.

```
[edit firewall family inet filter mfc-filter]
user@host# set term isp2-customers from source-address 10.1.3.0/24
user@host# set term isp2-customers from source-address 10.1.4.0/24
user@host# set term isp2-customers then policer ef-policer
```

4. Configure the third term to police all other packets to a different set of traffic limits and actions.

```
[edit firewall family inet filter mfc-filter]
```
user@host# set term other-customers then policer af-policer

Results

Confirm the configuration of the filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.
Applying Multifield Classification Filtering and Policing to the Logical Interface

Step-by-Step Procedure

To apply multifield classification filtering and policing to the logical interface:

1. Enable configuration of IPv4 on the logical interface.

```
[edit]
user@host# edit interfaces ge-1/2/0 unit 0 family inet
```

2. Configure an IP address for the logical interface.

```
[edit interfaces ge-1/2/0 unit 0 family inet]
user@host# set address 192.168.1.1/24
```

3. Apply the firewall filter to the logical interface input.

```
[edit interfaces ge-1/2/0 unit 0 family inet]
user@host# set filter input mfc-filter
```

**NOTE:** Because the policer is executed before the filter, if an input policer is also configured on the logical interface, it cannot use the forwarding class and PLP of a multifield classifier associated with the interface.

Results
Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/2/0 {
 unit 0 {
 family inet {
 filter {
 input mfc-filter;
 }
 address 192.168.1.1/24;
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

Confirm that the configuration is working properly.

**Displaying the Number of Packets Processed by the Policer at the Logical Interface**

**Purpose**

Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

**Action**

Use the `show firewall` operational mode command for the filter you applied to the logical interface.

```
user@host> show firewall filter rate-limit-in
```

<table>
<thead>
<tr>
<th>Filter: rate-limit-in</th>
<th>Policers:</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ef-policer-isp2-customers</td>
<td>32863</td>
<td></td>
</tr>
<tr>
<td>af-policer-other-customers</td>
<td>3870</td>
<td></td>
</tr>
</tbody>
</table>

The command output lists the policers applied by the firewall filter `rate-limit-in`, and the number of packets that matched the filter term.
NOTE: The packet count includes the number of out-of-specification (out-of-spec) packet counts, not all packets policed by the policer.

The policer name is displayed concatenated with the name of the firewall filter term in which the policer is referenced as an action.

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Multifield Classification Overview | 1843
- Multifield Classification Requirements and Restrictions | 1846
- Multifield Classification Limitations on M Series Routers | 1847
- tri-color statement

Example: Configuring and Applying a Firewall Filter for a Multifield Classifier

This example shows how to configure a firewall filter to classify traffic using a multifield classifier. The classifier detects packets of interest to class of service (CoS) as they arrive on an interface. Multifield classifiers are used when a simple behavior aggregate (BA) classifier is insufficient to classify a packet, when peering routers do not have CoS bits marked, or the peering router's marking is untrusted.

Requirements

To verify this procedure, this example uses a traffic generator. The traffic generator can be hardware-based or it can be software running on a server or host machine.

The functionality in this procedure is widely supported on devices that run Junos OS. The example shown here was tested and verified on MX Series routers running Junos OS Release 10.4.
Overview

A classifier is a software operation that inspects a packet as it enters the router or switch. The packet header contents are examined, and this examination determines how the packet is treated when the network becomes too busy to handle all of the packets and you want your devices to drop packets intelligently, instead of dropping packets indiscriminately. One common way to detect packets of interest is by source port number. The TCP port numbers 80 and 12345 are used in this example, but many other matching criteria for packet detection are available to multifield classifiers, using firewall filter match conditions. The configuration in this example specifies that TCP packets with source port 80 are classified into the BE-data forwarding class and queue number 0. TCP packets with source port 12345 are classified into the Premium-data forwarding class and queue number 1.

Multifield classifiers are typically used at the network edge as packets enter an autonomous system (AS).

In this example, you configure the firewall filter mf-classifier and specify some custom forwarding classes on Device R1. In specifying the custom forwarding classes, you also associate each class with a queue.

The classifier operation is shown in Figure 86 on page 1859.

Figure 86: Multifield Classifier Based on TCP Source Ports

You apply the multifield classifier’s firewall filter as an input filter on each customer-facing or host-facing interface that needs the filter. The incoming interface is ge-1/0/1 on Device R1. The classification and queue assignment is verified on the outgoing interface. The outgoing interface is Device R1’s ge-1/0/9 interface.

Topology

Figure 87 on page 1860 shows the sample network.
"CLI Quick Configuration" on page 1860 shows the configuration for all of the Juniper Networks devices in Figure 87 on page 1860.

The section "Step-by-Step Procedure" on page 1861 describes the steps on Device R1.

Classifiers are described in more detail in the following Juniper Networks Learning Byte video.

Video: Class of Service Basics, Part 2: Classification Learning Byte

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from the configuration mode.

Device R1

```
set interfaces ge-1/0/1 description to-host
set interfaces ge-1/0/1 unit 0 family inet filter input mf-classifier
set interfaces ge-1/0/1 unit 0 family inet address 172.16.50.2/30
set interfaces ge-1/0/9 description to-R2
set interfaces ge-1/0/9 unit 0 family inet address 10.30.0.1/30
set class-of-service forwarding-classes class BE-data queue-num 0
set class-of-service forwarding-classes class Premium-data queue-num 1
set class-of-service forwarding-classes class Voice queue-num 2
set class-of-service forwarding-classes class NC queue-num 3
set firewall family inet filter mf-classifier term BE-data from protocol tcp
set firewall family inet filter mf-classifier term BE-data from port 80
set firewall family inet filter mf-classifier term BE-data then forwarding-class BE-data
set firewall family inet filter mf-classifier term Premium-data from protocol tcp
set firewall family inet filter mf-classifier term Premium-data from port 12345
```
set firewall family inet filter mf-classifier term Premium-data then forwarding-class Premium-data
set firewall family inet filter mf-classifier term accept-all-else then accept

Device R2

set interfaces ge-1/0/9 description to-R1
set interfaces ge-1/0/9 unit 0 family inet address 10.30.0.2/30

Step-by-Step Procedure
The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645 in the CLI User Guide.

To configure Device R1:

1. Configure the device interfaces.

   [edit interfaces]
   user@R1# set ge-1/0/1 description to-host
   user@R1# set ge-1/0/1 unit 0 family inet address 172.16.50.2/30
   user@R1# set ge-1/0/9 description to-R2
   user@R1# set ge-1/0/9 unit 0 family inet address 10.30.0.1/30

2. Configure the custom forwarding classes and associated queue numbers.

   [edit class-of-service forwarding-classes]
   user@R1# set BE-data queue-num 0
   user@R1# set Premium-data queue-num 1
   user@R1# set Voice queue-num 2
   user@R1# set NC queue-num 3

3. Configure the firewall filter term that places TCP traffic with a source port of 80 (HTTP traffic) into the BE-data forwarding class, associated with queue 0.

   [edit firewall family inet filter mf-classifier]
   user@R1# set term BE-data from protocol tcp
4. Configure the firewall filter term that places TCP traffic with a source port of 12345 into the Premium-data forwarding class, associated with queue 1.

[edit firewall family inet filter mf-classifier]
user@R1# set term Premium-data from protocol tcp
user@R1# set term Premium-data from port 12345
user@R1# set term Premium-data then forwarding-class Premium-data

5. At the end of your firewall filter, configure a default term that accepts all other traffic. Otherwise, all traffic that arrives on the interface and is not explicitly accepted by the firewall filter is discarded.

[edit firewall family inet filter mf-classifier]
user@R1# set term accept-all-else then accept

6. Apply the firewall filter to the ge-1/0/1 interface as an input filter.

[edit interfaces]
user@R1# set ge-1/0/1 unit 0 family inet filter input mf-classifier

Results
From configuration mode, confirm your configuration by entering the `show interfaces`, `show class-of-service`, `show firewall` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

user@R1# show interfaces
ge-1/0/1 {  
description to-host;
  unit 0 {  
    family inet {  
      filter {  
        input mf-classifier;
      }  
      address 172.16.50.2/30;
    }
  }
}
If you are done configuring the device, enter `commit` from configuration mode.
Verification

IN THIS SECTION

- Checking the CoS Settings | 1864
- Sending TCP Traffic into the Network and Monitoring the Queue Placement | 1864

Confirm that the configuration is working properly.

Checking the CoS Settings

Purpose
Confirm that the forwarding classes are configured correctly.

Action
From Device R1, run the `show class-of-service forwarding-classes` command.

```
user@R1> show class-of-service forwarding-class
```

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BE-data</strong></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Premium-data</strong></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
</tbody>
</table>

Meaning
The output shows the configured custom classifier settings.

Sending TCP Traffic into the Network and Monitoring the Queue Placement

Purpose
Make sure that the traffic of interest is sent out the expected queue.

Action
1. Clear the interface statistics on Device R1’s outgoing interface.
user@R1> **clear interfaces statistics ge-1/0/9**

2. Use a traffic generator to send 50 TCP port 80 packets to Device R2 or to some other downstream device.

3. On Device R1, check the queue counters.

Notice that you check the queue counters on the downstream output interface, not on the incoming interface.

user@R1> **show interfaces extensive ge-1/0/9 | find “Queue counters”**

<table>
<thead>
<tr>
<th>Queue counters:</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

4. Use a traffic generator to send 50 TCP port 12345 packets to Device R2 or to some other downstream device.

[root@host]# **hping 172.16.60.1 -c 50 -s 12345 -k**

5. On Device R1, check the queue counters.

user@R1> **show interfaces extensive ge-1/0/9 | find “Queue counters”**

<table>
<thead>
<tr>
<th>Queue counters:</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
**Meaning**

The output shows that the packets are classified correctly. When port 80 is used in the TCP packets, queue 0 is incremented. When port 12345 is used, queue 1 is incremented.

**SEE ALSO**

Example: Configuring a Two-Rate Three-Color Policer | 1894

**RELATED DOCUMENTATION**

- Firewall Filter Nonterminating Actions | 795
- Order of Policer and Firewall Filter Operations | 1678
- Two-Color Policer Configuration Overview | 1763
- Guidelines for Applying Traffic Policers | 1683
- The Junos OS CoS Components Used to Manage Congestion and Control Service Levels
- Understanding How Behavior Aggregate Classifiers Prioritize Trusted Traffic
- Understanding How Forwarding Classes Assign Classes to Output Queues
- Default Forwarding Classes
- Managing Congestion Using RED Drop Profiles and Packet Loss Priorities
- **tri-color** statement

---

**Policer Overhead to Account for Rate Shaping in the Traffic Manager**

**IN THIS SECTION**

- Policier Overhead to Account for Rate Shaping Overview | 1866
- Example: Configuring Policier Overhead to Account for Rate Shaping | 1867

**Policier Overhead to Account for Rate Shaping Overview**

If you configure ingress or egress traffic-shaping overhead values for an interface, the traffic manager cannot apply these values to any rate-limiting also applied to the interface. To enable the router to account
for the additional Ethernet frame length when policing actions are being determined, you must configure the ingress or egress overhead values for policers separately.

**NOTE:** When a policer overhead value is changed, the PIC or DPC goes offline and then comes back online.

For Gigabit Ethernet Intelligent Queuing 2 (IQ2) and Enhanced IQ2 (IQ2E) PICs or interfaces on Dense Port Concentrators (DPCs) in MX Series routers, you can control the rate of traffic that passes through all interfaces on the PIC or DPC by configuring a policer overhead. You can configure a policer ingress overhead and a policer egress overhead, each with values from 0 through 255 bytes. The policer overhead values are added to the length of the final Ethernet frame when determining ingress and egress policer actions.

SEE ALSO

- egress-policer-overhead | 2223
- ingress-policer-overhead

**Example: Configuring Policer Overhead to Account for Rate Shaping**

This example shows how to configure overhead values for policers when rate-shaping overhead is configured.

**Requirements**

Before you begin, make sure that interface for which you are applying ingress or egress policer overhead is hosted on one of the following:

- Gigabit Ethernet IQ2 PIC
- IQ2E PIC


- DPCs in MX Series routers

**Overview**

This example shows how to configure policer overhead values for all physical interfaces on a supported PIC or MPC so that the rate shaping value configured on a logical interface is accounted for in any policing on that logical interface.

**Topology**

The router hosts a Gigabit Ethernet IQ2 PIC, installed in PIC location 3 of the Flexible PIC Concentrator (FPC) in slot number 1. The physical interface on port 1 on that PIC is configured to receive traffic on logical interface 0 and send it back out on logical interface 1. Class-of-service scheduling includes 100 Mbps of traffic rate-shaping overhead for the output traffic. A policer egress overhead of 100 bytes is configured on the entire PIC so that, for any policers applied to the output traffic, 100 bytes are added to the final Ethernet frame length when determining ingress and egress policer actions.

**NOTE:**

Traffic rate-shaping and corresponding policer overhead are configured separately:

- You configure rate shaping at the `[edit class-of-service interfaces interface-name unit unit-number]` hierarchy level.
- You configure policer overhead at the `[edit chassis fpc slot-number pic pic-number]` hierarchy level.

When a policer overhead value is changed, the PIC or DPC goes offline and then comes back online.

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**
To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```plaintext
set interfaces ge-1/3/1 per-unit-scheduler
set interfaces ge-1/3/1 vlan-tagging
set interfaces ge-1/3/1 unit 0 vlan-id 100
set interfaces ge-1/3/1 unit 0 family inet address 10.10.10.1/30
set interfaces ge-1/3/1 unit 1 vlan-id 101
set interfaces ge-1/3/1 unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
set class-of-service schedulers be transmit-rate percent 5
set class-of-service schedulers ef transmit-rate percent 30
set class-of-service schedulers af transmit-rate percent 30
set class-of-service schedulers nc transmit-rate percent 35
set class-of-service scheduler-maps my-map forwarding-class best-effort scheduler be
set class-of-service scheduler-maps my-map forwarding-class expedited-forwarding scheduler ef
set class-of-service scheduler-maps my-map forwarding-class network-control scheduler nc
set class-of-service scheduler-maps my-map forwarding-class assured-forwarding scheduler af
set class-of-service interfaces ge-1/3/1 unit 1 scheduler-map my-map
set class-of-service interfaces ge-1/3/1 unit 1 shaping-rate 100m
set firewall policer 500Kbps logical-interface-policer
set firewall policer 500Kbps if-exceeding bandwidth-limit 500k
set firewall policer 500Kbps if-exceeding burst-size-limit 625k
set firewall policer 500Kbps then discard
set chassis fpc 1 pic 3 ingress-policer-overhead 100
set chassis fpc 1 pic 3 egress-policer-overhead 100
set interfaces ge-1/3/1 unit 0 family inet policer input 500Kbps
```

Configuring the Logical Interfaces

Step-by-Step Procedure

To configure the logical interfaces:

1. Enable configuration of the interface
   
   ```plaintext
 [edit]
 user@host# edit interfaces ge-1/3/1
   ```

2. Enable multiple queues for each logical interface (so that you can associate an output scheduler with each logical interface).
   
   ```plaintext
 [edit interfaces ge-1/3/1]
 user@host# set per-unit scheduler
 user@host# set vlan-tagging
   ```
NOTE: For Gigabit Ethernet IQ2 PICs only, use the shared-scheduler statement to enable shared schedulers and shapers on a physical interface.

3. Configure logical interface `ge-1/3/1.0`.

```
[edit interfaces ge-1/3/1]
user@host# set unit 0 vlan-id 100
user@host# set unit 0 family inet address 10.10.10.1/30
```


```
[edit interfaces ge-1/3/1]
user@host# set unit 1 vlan-id 101
user@host# set unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
```

Results

Confirm the configuration of the interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
 per-unit-scheduler;
 vlan-tagging;
 unit 0 {
 vlan-id 100;
 family inet {
 address 10.10.1.1/30;
 }
 }
 unit 1 {
 vlan-id 101;
 family inet {
 address 20.20.20.1/30 {
 arp 20.20.20.2 mac 00:00:11:22:33:44;
 }
 }
 }
```
Configuring Traffic Rate-Shaping on the Logical Interface That Carries Output Traffic

Step-by-Step Procedure
To configure traffic rate-shaping on the logical interface that carries output traffic:

1. Enable configuration of class-of-service features.

```
[edit]
user@host# edit class-of-service
```

2. Configure packet scheduling on logical interface `ge-1/3/1.0`.

   a. Configure schedulers that specify the percentage of transmission capacity.

```
[edit class-of-service]
user@host# edit schedulers

[edit class-of-service schedulers]
user@host# set be transmit-rate percent 5
user@host# set ef transmit-rate percent 30
user@host# set af transmit-rate percent 30
user@host# set nc transmit-rate percent 35
```

A percentage of zero drops all packets in the queue. When the rate-limit option is specified, the transmission rate is limited to the rate-controlled amount. In contrast with the exact option, a scheduler with the rate-limit option shares unused bandwidth above the rate-controlled amount.

   b. Configure a scheduler map to associate each scheduler with a forwarding class.

```
[edit class-of-service]
user@host# edit scheduler-maps my-map

[edit class-of-service scheduler-maps my-map]
user@host# set forwarding-class best-effort scheduler be
user@host# set forwarding-class expedited-forwarding scheduler ef
user@host# set forwarding-class network-control scheduler nc
user@host# set forwarding-class assured-forwarding scheduler af
```
c. Associate the scheduler map with logical interface `ge-1/3/1.0`.

```bash
[edit class-of-service]
user@host# edit interfaces ge-1/3/1 unit 1

[edit class-of-service interfaces ge-1/3/1 unit 1]
user@host# set scheduler-map my-map
```

3. Configure 100 Mbps of traffic rate-shaping overhead on logical interface `ge-1/3/1.1`.

```bash
[edit class-of-service interfaces ge-1/3/1 unit 1]
user@host# set shaping-rate 100
```

Alternatively, you can configure a shaping rate for a logical interface and oversubscribe the physical interface by including the `shaping-rate` statement at the `[edit class-of-service traffic-control-profiles]` hierarchy level. With this configuration approach, you can independently control the delay-buffer rate.

**Results**

Confirm the configuration of the class-of-service features (including the 100 Mbp of shaping of the egress traffic) by entering the `show class-of-service` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```bash
[edit]
user@host# show class-of-service
interfaces {
 ge-1/3/1 {
 unit 1 {
 scheduler-map my-map;
 shaping-rate 100m;
 }
 }
}
scheduler-maps {
 my-map {
 forwarding-class best-effort scheduler be;
 forwarding-class expedited-forwarding scheduler ef;
 forwarding-class network-control scheduler nc;
 forwarding-class assured-forwarding scheduler af;
 }
}
schedulers {
 be {
```
Configuring Policier Overhead on the PIC or DPC That Hosts the Rate-Shaped Logical Interface

Step-by-Step Procedure

To configure policer overhead on the PIC or MPC that hosts the rate-shaped logical interface:

1. Enable configuration of the supported PIC or MPC.

   ```
 [edit]
 user@host# set chassis fpc 1 pic 3
   ```

2. Configure 100 bytes of policer overhead on the supported PIC or MPC.

   ```
 [edit chassis fpc 1 pic 3]
 user@host# set ingress-policer-overhead 100
 user@host# set egress-policer-overhead 100
   ```

   **NOTE:** These values are added to the length of the final Ethernet frame when determining ingress and egress policer actions for all physical interfaces on the PIC or MPC.

   You can specify policer overhead with values from 0 through 255 bytes.

   **Results**
Confirm the configuration of the policer overhead on the physical interface to account for rate-shaping by entering the `show chassis` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show chassis
chassis {
 fpc 1 {
 pic 3 {
 egress-policer-overhead 100;
 ingress-policer-overhead 100;
 }
 }
}
```

**Applying a Policer to the Logical Interface That Carries Input Traffic**

**Step-by-Step Procedure**

To apply a policer to the logical interface that carries input traffic:

1. Configure the logical interface (aggregate) policer.

```
[edit]
user@host# edit firewall policer 500Kbps

[edit firewall policer 500Kbps]
user@host# set logical-interface-policer
user@host# set if-exceeding bandwidth-limit 500k
user@host# set if-exceeding burst-size-limit 625k
user@host# set then discard
```

2. Apply the policer to Layer 3 input on the IPv4 logical interface.

```
[edit]
user@host# set interfaces ge-1/3/1 unit 0 family inet policer input 500Kbps
```

**NOTE:** The 100 Mbps policer overhead is added to the length of the final Ethernet frame when determining ingress and egress policer actions.

**Results**
Confirm the configuration of the policer with rate-shaping overhead by entering the `show firewall` and `show interfaces` configuration mode commands. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer 500Kbps {
 logical-interface-policer;
 if-exceeding {
 bandwidth-limit 500k;
 burst-size-limit 625k;
 }
 then discard;
}
[edit]
user@host# show interfaces
ge-1/3/1 {
 per-unit-scheduler;
 vlan-tagging:
 unit 0 {
 vlan-id 100;
 layer2-policer {
 input-policer 500Kbps;
 }
 family inet {
 address 10.10.10.1/30;
 }
 }
 unit 0 {
 vlan-id 101;
 family inet {
 address 20.20.20.1/30 {
 arp 20.20.20.2 mac 00:00:11:22:33:44;
 }
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.
**Verification**

**IN THIS SECTION**
- Displaying Traffic Statistics and Policers for the Logical Interface | 1876
- Displaying Statistics for the Policer | 1876

Confirm that the configuration is working properly.

**Displaying Traffic Statistics and Policers for the Logical Interface**

**Purpose**
Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

**Action**
Use the `show interfaces` operational mode command for logical interface `ge-1/3/1.0`, and include the `detail` or `extensive` option. The command output section for **Traffic statistics** lists the number of bytes and packets received and transmitted on the logical interface, and the **Protocol inet** section contains a Policer field that would list the policer **500Kbps** as an input or output policer as follows:

- **Input:** 500Kbps-ge-1/3/1.0-log_int-i
- **Output:** 500Kbps-ge-1/3/1.0-log_int-o

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

**Displaying Statistics for the Policer**

**Purpose**
Verify the number of packets evaluated by the policer.

**Action**
Use the `show policer` operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer **500Kbps**, the input and output policer names are displayed as follows:

- **500Kbps-ge-1/3/1.0-log_int-i**
- **500Kbps-ge-1/3/1.0-log_int-o**
The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

SEE ALSO

- egress-policer-overhead | 2223
- ingress-policer-overhead

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 1763
- Guidelines for Applying Traffic Policers | 1683
- “Configuring a Policer Overhead | 1733” in the CLI Explorer

Three-Color Policer Configuration Overview

Table 119 on page 1877 describes the hierarchy levels at which you can configure and apply single-rate tricolor-marking (single-rate TCM) policers and two-rate tricolor-marking (two-rate TCM) policers to Layer 3 traffic. For information about applying three-color policers to Layer 2 traffic, see “Three-Color Policing at Layer 2 Overview” on page 1737.

Table 119: Three-Color Policer Configuration and Application Overview

<table>
<thead>
<tr>
<th>Policier Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single-Rate Three-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines traffic rate limiting that you can apply to Layer 3 protocol-specific traffic at a logical interface. Can be applied as a firewall filter policer only. Provides moderate allowances for short periods of traffic that exceed the committed burst size.</td>
<td>Reference the policer from a firewall filter, and apply the filter to a protocol family on a logical interface:</td>
<td>Policier configuration:</td>
</tr>
<tr>
<td>[edit firewall]</td>
<td>[edit firewall]</td>
<td>• Include the <code>single-rate</code> (color-aware</td>
</tr>
<tr>
<td>three-color-policer <code>policer-name</code> { <code>single-rate</code></td>
<td>family <code>family-name</code></td>
<td></td>
</tr>
</tbody>
</table>

```text
[edit firewall]
three-color-policer policer-name { single-rate |
family family-name |
```
Table 119: Three-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(color-aware</td>
<td>color-blind); committed-information-rate bps; committed-burst-size bytes; excess-burst-size bytes;</td>
<td>filter filter-name { term term-name { from [ ... match-conditions ... ] } then { three-color-policer { single-rate policer-name; } } } }</td>
</tr>
<tr>
<td>action { loss-priority high then discard; }</td>
<td></td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply the filter to a logical interface at the protocol family level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[edit interfaces] interface-name { unit unit-number { family family-name { filter { input filter-name; output filter-name; } } } }</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Table 119: Three-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policier Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
</table>

### Single-Rate Three-Color Physical Interface Policer

Defines traffic rate limiting that applies to all logical interfaces and protocol families configured on a physical interface, even if the interfaces belong to different routing instances. Can be applied as a firewall filter policer only.

**Physical interface single-rate TCM policer:**

```plaintext
[edit firewall]
three-color-policer policer-name {
 physical-interface-policer;
 single-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 excess-burst-size bytes;
 }
 action {
 loss-priority high then discard;
 }
}
```

**Reference the policer from a physical interface filter only, and apply the filter to a protocol family on a logical interface:**

```plaintext
[edit firewall]
family family-name {
 filter filter-name {
 physical-interface-filter
 term term-name {
 from {
 ... match-conditions ...
 }
 then {
 three-color-policer {
 single-rate policer-name;
 }
 }
 }
 }
}
```

**Policer configuration:**
- Include the `physical-interface-policer` statement.

**Firewall filter configuration:**
- Include the `physical-interface-filter` statement.

**Application:**
- Include the `filter (input | output) filter-name` statement.

**Verification**
- To verify, use the `show firewall filter filter-name` operational mode command.
Table 119: Three-Color Policer Configuration and Application Overview (continued)

<table>
<thead>
<tr>
<th>Policer Configuration</th>
<th>Layer 3 Application</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic Two-Rate Three-Color Policer</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defines traffic rate limiting that you can apply to Layer 3 protocol-specific traffic at a logical interface. Can be applied as a firewall filter policer only. Provides moderate allowances for sustained periods of traffic that exceed the committed bandwidth limit or burst size.</td>
<td>Reference the policer from a firewall filter, and apply the filter to a protocol family on a logical interface:</td>
<td></td>
</tr>
<tr>
<td>Basic two-rate TCM policer configuration:</td>
<td>Policer configuration:</td>
<td></td>
</tr>
<tr>
<td>[edit firewall] three-color-policer policer-name { two-rate { (color-aware</td>
<td>color-blind); committed-information-rate bps; committed-burst-size bytes; peak-information-rate bps; peak-burst-size bytes; } action { loss-priority high then discard; } }</td>
<td>• Include the <strong>two-rate</strong> (color-aware</td>
</tr>
<tr>
<td>[edit interfaces] interface-name { unit unit-number { family family-name { filter { input filter-name; output filter-name; } } } }</td>
<td>• Include the <strong>three-color-policer</strong> two-rate policer-name action. Applying the firewall filter to the logical interface:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Include the <strong>filter</strong> (input</td>
<td>output) <strong>filter-name</strong> statement.</td>
</tr>
</tbody>
</table>

**RELATED DOCUMENTATION**
Platforms Supported for Three-Color Policers

Three-color policers are supported on the following Juniper Networks routers:

- M120 Multiservice Edge Routers
- M320 Multiservice Edge Routers and T Series Core Routers with Enhanced II Flexible PIC Concentrators (FPCs)
- MX Series 5G Universal Routing Platforms
- T640 Core Routers with Enhanced Scaling FPC4
- T4000 Core Routers with FPC5

On MX Series and M120 routers, you can apply three-color policers to aggregated interfaces.

The discard action for a tricolor marking policer for a firewall filter is supported on the M120 routers, M320 routers with Enhanced-III FPCs, M7i and M10i routers with the Enhanced CFEB (CFEB-E), and MX Series routers with Trio MPCs, so it is not necessary to include the logical-interface-policer statement for them.
Three-color policers—both single-rate and two-rate three-color policer schemes—can operate in either of two modes:

**Color-Blind Mode**

In *color-blind* mode, the three-color policer assumes that all packets examined have not been previously marked or metered. If you configure a three-color policer to be color-blind instead of color-aware, the policer ignores preexisting color markings that might have been set for a packet by another traffic policer configured at a previous network node.

**Color-Aware Mode**

In *color-aware* mode, the three-color policer assumes that all packets examined have been previously marked or metered. In other words, the three-color policer takes into account any coloring markings that might have been set for a packet by another traffic policer configured at a previous network node. At the node where color-aware policing is configured, any preexisting color markings are used in determining the appropriate policing action for the packet.

In color-aware mode, the three-color policer can increase the packet loss priority (PLP) level of a packet, but never decrease it. For example, if a color-aware three-color policer meters a packet with a medium PLP marking, it can raise the PLP level to high, but cannot reduce the PLP level to low.

For two-rate, three-color policing, the Junos OS uses two token buckets to manage bandwidth based on the two rates of traffic. For example, two-rate policing might be configured on a node upstream in the network. The two-rate policer has marked a packet as yellow (loss priority medium-low). The color-aware policer takes this yellow marking into account when determining the appropriate policing action. In color-aware policing, the yellow packet would never receive the action associated with either the green packets or red packets. This way, tokens for violating packets are never taken from the metering token buckets at the color-aware policing node.
NOTE: For a three-color policer operating in color-aware mode and when the PLP of the input packet is medium-low, the color of the input packet to the policer is mapped to the color yellow.

In such a scenario, if the color of the input packet remains unchanged, the policer operates in the following way:

- On a T1600 Enhanced Scaling Type 4 FPC (T1600-FPC4-ES), the PLP of the output packet remains medium-low.
- On a T4000 Type 5 FPC (T4000-FPC5-3D), the PLP of the output packet is marked as medium-high.

Because of this difference, for any applications (such as rewrite and WRED selection on egress interface) that use PLP, the packets are treated differently for the same flow depending on the FPC type (T1600 Enhanced Scaling FPC4 (T1600-FPC4-ES) or T4000 FPC5 (T4000-FPC5-3D)) on which the policer is applied.

SEE ALSO

Three-Color Policer Configuration Overview	1877
Platforms Supported for Three-Color Policers	1881
Naming Conventions for Three-Color Policers	1883

Naming Conventions for Three-Color Policers

Because policers can be numerous and must be applied correctly to work, a simple naming convention makes it easier to apply the policers properly.

We recommend that you name your policer using a convention that identifies the basic components of the policer:

- Three-color policer type—Where srTCM identifies a single-rate three-color policer and trTCM identifies a two-rate three-color policer.
- Three-color policer color mode—Where ca identifies a color-aware three-color policer and cb identifies a color-blind three-color policer.

NOTE:

TCM stands for tricolor marking.
Table 120 on page 1884 describes a recommended naming convention for policers.

Table 120: Recommended Naming Convention for Policers

<table>
<thead>
<tr>
<th>Three-Color Policer Type</th>
<th>Naming Convention</th>
<th>Example Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-rate three-color, color-aware</td>
<td>srTCM{number}-ca</td>
<td>srTCM1-ca, srTCM2-ca, srTCM3-ca, ...</td>
</tr>
<tr>
<td>Single-rate three-color, color-blind</td>
<td>srTCM{number}-cb</td>
<td>srTCM1-cb, srTCM2-cb, srTCM3-cb, ...</td>
</tr>
<tr>
<td>Two-rate three-color, color-aware</td>
<td>trTCM{number}-ca</td>
<td>trTCM1-ca, trTCM2-ca, trTCM3-ca, ...</td>
</tr>
<tr>
<td>Two-rate three-color, color-blind</td>
<td>trTCM{number}-cb</td>
<td>trTCM1-cb, trTCM2-cb, trTCM3-cb, ...</td>
</tr>
</tbody>
</table>

SEE ALSO

- Three-Color Policer Configuration Overview | 1877
- Platforms Supported for Three-Color Policers | 1881
- Color Modes for Three-Color Policers | 1882

RELATED DOCUMENTATION

- Three-Color Policer Configuration Overview | 1877
- Guidelines for Applying Traffic Policers | 1683
IN THIS SECTION

- Single-Rate Three-Color Policer Overview | 1885
- Example: Configuring a Single-Rate Three-Color Policer | 1886

Basic Single-Rate Three-Color Policers

Single-Rate Three-Color Policer Overview

A single-rate three-color policer defines a bandwidth limit and a maximum burst size for guaranteed traffic and a second burst size for peak traffic. A single-rate three-color policer is most useful when a service is structured according to packet length and not peak arrival rate.

Single-rate three-color policing meters a traffic stream based on the following configured traffic criteria:

- Committed information rate (CIR)—Bandwidth limit for guaranteed traffic.
- Committed burst size (CBS)—Maximum packet size permitted for bursts of data that exceed the CIR.
- Excess burst size (EBS)—Maximum packet size permitted for peak traffic.

Single-rate tricolor marking (single-rate TCM) classifies traffic as belonging to one of three color categories and performs congestion-control actions on the packets based on the color marking:

- Green—Traffic that conforms to either the bandwidth limit or the burst size for guaranteed traffic (CIR or CBS). For a green traffic flow, single-rate marks the packets with an implicit loss priority of low and transmits the packets.
- Yellow—Traffic that exceeds both the bandwidth limit and the burst size for guaranteed traffic (CIR and CBS) but not the burst size for peak traffic (EBS). For a yellow traffic flow, single-rate marks the packets with an implicit loss priority of medium-high and transmits the packets.
- Red—Traffic that exceeds the burst size for peak traffic (EBS), single-rate marks packets with an implicit loss priority of high and, optionally, discards the packets.

If congestion occurs downstream, the packets with higher loss priority are more likely to be discarded.

NOTE: For both single-rate and two-rate three-color policers, the only configurable action is to discard packets in a red traffic flow.
The **discard** action for a tricolor marking policer for a firewall filter is supported on the M120 routers, M320 routers with Enhanced-III FPCs, M7i and M10i routers with the Enhanced CFEB (CFEB-E), and MX Series routers with MPCs, so it is not necessary to include the **logical-interface-policer** statement for them.

**SEE ALSO**

| Three-Color Policer Configuration Overview | 1877 |
| Example: Configuring a Single-Rate Three-Color Policer | 1886 |

**Example: Configuring a Single-Rate Three-Color Policer**

This example shows how to configure a single-rate three-color policer.

**Requirements**

No special configuration beyond device initialization is required before configuring this example.

**Overview**

A single-rate three-color policer meters a traffic flow against a bandwidth limit and burst-size limit for guaranteed traffic, plus a second burst-size limit for excess traffic. Traffic that conforms to the limits for guaranteed traffic is categorized as green, and nonconforming traffic falls into one of two categories:

- Nonconforming traffic that does not exceed the burst size for excess traffic is categorized as yellow.
- Nonconforming traffic that exceeds the burst size for excess traffic is categorized as red.

Each category is associated with an action. For green traffic, packets are implicitly set with a loss-priority value of **low** and then transmitted. For yellow traffic, packets are implicitly set with a loss-priority value of **medium-high** and then transmitted. For red traffic, packets are implicitly set with a loss-priority value of **high** and then transmitted. If the policer configuration includes the optional **action** statement (**action loss-priority high then discard**), then packets in a red flow are discarded instead.
You can apply a three-color policer to Layer 3 traffic as a firewall filter policer only. You reference the policer from a stateless firewall filter term, and then you apply the filter to the input or output of a logical interface at the protocol level.

**Topology**

In this example, you apply a color-aware, single-rate three-color policer to the input IPv4 traffic at logical interface `ge-2/0/5.0`. The IPv4 firewall filter term that references the policer does not apply any packet-filtering. The filter is used only to apply the three-color policer to the interface.

You configure the policer to rate-limit traffic to a bandwidth limit of 40 Mbps and a burst-size limit of 100 KB for green traffic but also allow an excess burst-size limit of 200 KB for yellow traffic. Only nonconforming traffic that exceeds the peak burst-size limit is categorized as red. In this example, you configure the three-color policer action **loss-priority high then discard**, which overrides the implicit marking of red traffic to a **high** loss priority.

**Configuration**

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set firewall three-color-policer srtcm1-ca single-rate color-aware
set firewall three-color-policer srtcm1-ca single-rate committed-information-rate 40m
set firewall three-color-policer srtcm1-ca single-rate committed-burst-size 100k
set firewall three-color-policer srtcm1-ca single-rate excess-burst-size 200k
set firewall three-color-policer srtcm1-ca action loss-priority high then discard
set firewall family inet filter filter-srtcm1ca-all term 1 then three-color-policer single-rate srtcm1-ca
set class-of-service interfaces ge-2/0/5 unit 0 forwarding-class af
set interfaces ge-2/0/5 unit 0 family inet address 10.20.130.1/24
set interfaces ge-2/0/5 unit 0 family inet filter input filter-srtcm1ca-all
```
**Configuring a Single-Rate Three-Color Policer**

**Step-by-Step Procedure**

To configure a single-rate three-color policer:

1. Enable configuration of a three-color policer.

   ```plaintext
 [edit]
 user@host# edit firewall three-color-policer srTCM1-ca
   ```

2. Configure the color mode of the single-rate three-color policer.

   ```plaintext
 [edit firewall three-color-policer srTCM1-ca]
 user@host# set single-rate color-aware
   ```

3. Configure the single-rate guaranteed traffic limits.

   ```plaintext
 [edit firewall three-color-policer srTCM1-ca]
 user@host# set single-rate committed-information-rate 40m
 user@host# set single-rate committed-burst-size 100k
   ```

4. Configure the single-rate burst-size limit that is used to classify nonconforming traffic.

   ```plaintext
 [edit firewall three-color-policer srTCM1-ca]
 user@host# set single-rate excess-burst-size 200k
   ```

5. (Optional) Configure the action for nonconforming traffic.

   ```plaintext
 [edit firewall three-color-policer srTCM1-ca]
 user@host# set action loss-priority high then discard
   ```

For three-color policers, the only configurable action is to discard packets in a red traffic flow. In this example, packets in a red traffic flow have been implicitly marked with a high packet loss priority (PLP) level because the traffic flow exceeded the rate-limiting defined by the single rate-limit (specified by the `committed-information-rate 40m` statement) and the larger burst-size limit (specified by the `excess-burst-size 200k` statement). Because the optional action statement is included, this example takes the more severe action of discarding packets in a red traffic flow.

**Results**
Confirm the configuration of the hierarchical policer by entering the `show firewall` configuration command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
three-color-policer srTCM1-ca {
 action {
 loss-priority high then discard;
 }
 single-rate {
 color-aware;
 committed-information-rate 40m;
 committed-burst-size 100k;
 excess-burst-size 200k;
 }
}
```

**Configuring an IPv4 Stateless Firewall Filter That References the Policier**

**Step-by-Step Procedure**

To configure a standard stateless firewall filter that references the policer:

1. Enable configuration of an IPv4 standard stateless firewall filter.

   ```plaintext
 [edit]
 user@host# edit firewall family inet filter filter-srTCM1-ca-all
   ```

2. Specify the filter term that references the policer.

   ```plaintext
 [edit firewall family inet filter filter-srTCM1-ca-all]
 user@host# set term 1 then three-color-policer single-rate srTCM1-ca
   ```

   Note that the term does not specify any match conditions. The firewall filter passes all packets to the policer.

**Results**

Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
[edit]
user@host# show firewall
```
family inet {
  filter filter-srtcm1ca-all {
    term 1 {
      then {
        three-color-policer {
          single-rate srTCM1-ca;
        }
      }
    }
  }
}

three-color-policer srTCM1-ca {
  action {
    loss-priority high then discard;
  }
  single-rate {
    color-aware;
    committed-information-rate 40m;
    committed-burst-size 100k;
    excess-burst-size 200k;
  }
}

Applying the Filter to the Logical Interface

Step-by-Step Procedure

To apply the filter to the logical interface:

1. (MX Series routers only) (Optional) Reclassify all incoming packets on the logical interface ge-2/0/5.0 to assured forwarding, regardless of any preexisting classification.

   [edit]
   user@host# set class-of-service interfaces ge-2/0/5 unit 0 forwarding-class af

   The classifier name can be a configured classifier or one of the default classifiers.

2. Enable configuration of the logical interface.

   [edit]
   user@host# edit interfaces ge-2/0/5 unit 0 family inet
3. Configure an IP address.

```
[edit interfaces ge-2/0/5 unit 0 family inet]
user@host# set address 10.20.130.1/24
```

4. Reference the filter as an input filter.

```
[edit interfaces ge-2/0/5 unit 0 family inet]
user@host# set filter input filter-srtcm1ca-all
```

**Results**

Confirm the configuration of the interface by entering the `show class-of-service` and `show interfaces` configuration mode commands. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show class-of-service
interfaces {
 ge-2/0/5 {
 unit 0 {
 forwarding-class af;
 }
 }
}
[edit]
user@host# show interfaces
ge-2/0/5 {
 unit 0 {
 family inet {
 filter {
 input filter-srtcm1ca-all;
 }
 address 10.20.130.1/24;
 }
 }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

**Verification**

Confirm that the configuration is working properly.
Displaying the Firewall Filters Applied to the Logical Interface

Purpose
Verify that the firewall filter is applied to IPv4 input traffic at the logical interface.

Action
Use the `show interfaces` operational mode command for the logical interface `ge-2/0/5.0`, and specify `detail` mode. The `Protocol inet` section of the command output displays IPv4 information for the logical interface. Within that section, the `Input Filters` field displays the name of the firewall filter applied to IPv4 input traffic at the logical interface.

```
user@host> show interfaces ge-2/0/5.0 detail
```

```
Logical interface ge-2/0/5.0 (Index 105) (SNMP ifIndex 556) (Generation 170)
Flags: Device-Down SNMP-Traps 0x4004000 Encapsulation: ENET2
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
Protocol inet, MTU: 1500, Generation: 242, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Input Filters: filter-srtcm1ca-all
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 10.20.130/24, Local: 10.20.130.1, Broadcast: 10.20.130.255,
 Generation: 171
Protocol multiservice, MTU: Unlimited, Generation: 243, Route table: 0
Policer: Input: __default_arp_policer__
```
**Basic Two-Rate Three-Color Policers**

**Two-Rate Three-Color Policer Overview**

A two-rate three-color policer defines two bandwidth limits (one for guaranteed traffic and one for peak traffic) and two burst sizes (one for each of the bandwidth limits). A two-rate three-color policer is most useful when a service is structured according to arrival rates and not necessarily packet length.

Two-rate three-color policing meters a traffic stream based on the following configured traffic criteria:

- **Committed information rate (CIR)**—Bandwidth limit for guaranteed traffic.
- **Committed burst size (CBS)**—Maximum packet size permitted for bursts of data that exceed the CIR.
- **Peak information rate (PIR)**—Bandwidth limit for peak traffic.
- **Peak burst size (PBS)**—Maximum packet size permitted for bursts of data that exceed the PIR.

Two-rate tricolor marking (two-rate TCM) classifies traffic as belonging to one of three color categories and performs congestion-control actions on the packets based on the color marking:

- **Green**—Traffic that conforms to the bandwidth limit and burst size for guaranteed traffic (CIR and CBS). For a green traffic flow, two-rate TCM marks the packets with an implicit loss priority of **low** and transmits the packets.
- **Yellow**—Traffic that exceeds the bandwidth limit or burst size for guaranteed traffic (CIR or CBS) but not the bandwidth limit and burst size for peak traffic (PIR and PBS). For a yellow traffic flow, two-rate TCM marks packets with an implicit loss priority of **medium-high** and transmits the packets.
• Red—Traffic that exceeds the bandwidth limit and burst size for peak traffic (PIR and PBS). For a red traffic flow, two-rate TCM marks packets with an implicit loss priority of high and, optionally, discards the packets.

If congestion occurs downstream, the packets with higher loss priority are more likely to be discarded.

**NOTE:** For both single-rate and two-rate three-color policers, the only configurable action is to discard packets in a red traffic flow.

For a tricolor marking policer referenced by a firewall filter term, the discard policing action is supported on the following routing platforms:

• EX Series switches
• M7i and M10i routers with the Enhanced CFEB (CFEB-E)
• M120 and M320 routers with Enhanced-III FPCs
• MX Series routers with Trio MPCs

To apply a tricolor marking policer on these routing platforms, it is not necessary to include the logical-interface-policer statement.

SEE ALSO

| Example: Configuring a Two-Rate Three-Color Policer | 1894 |

**Example: Configuring a Two-Rate Three-Color Policer**

This example shows how to configure a two-rate three-color policer.
Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

A two-rate three-color policer meters a traffic flow against a bandwidth limit and burst-size limit for guaranteed traffic, plus a bandwidth limit and burst-size limit for peak traffic. Traffic that conforms to the limits for guaranteed traffic is categorized as green, and nonconforming traffic falls into one of two categories:

- Nonconforming traffic that does not exceed peak traffic limits is categorized as yellow.
- Nonconforming traffic that exceeds peak traffic limits is categorized as red.

Each category is associated with an action. For green traffic, packets are implicitly set with a loss-priority value of low and then transmitted. For yellow traffic, packets are implicitly set with a loss-priority value of medium-high and then transmitted. For red traffic, packets are implicitly set with a loss-priority value of high and then transmitted. If the policer configuration includes the optional action statement (action loss-priority high then discard), then packets in a red flow are discarded instead.

You can apply a three-color policer to Layer 3 traffic as a firewall filter policer only. You reference the policer from a stateless firewall filter term, and then you apply the filter to the input or output of a logical interface at the protocol level.

Topology

In this example, you apply a color-aware, two-rate three-color policer to the input IPv4 traffic at logical interface fe-0/1/1.0. The IPv4 firewall filter term that references the policer does not apply any packet-filtering. The filter is used only to apply the three-color policer to the interface.

You configure the policer to rate-limit traffic to a bandwidth limit of 40 Mbps and a burst-size limit of 100 KB for green traffic, and you configure the policer to also allow a peak bandwidth limit of 60 Mbps and a peak burst-size limit of 200 KB for yellow traffic. Only nonconforming traffic that exceeds the peak traffic limits is categorized as red. In this example, you configure the three-color policer action loss-priority high then discard, which overrides the implicit marking of red traffic to a high loss priority.

Configuration

IN THIS SECTION

- Configuring a Two-Rate Three-Color Policer | 1896
- Configuring an IPv4 Stateless Firewall Filter That References the Policer | 1898
- Applying the Filter to a Logical Interface at the Protocol Family Level | 1899
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

**CLI Quick Configuration**

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and then paste the commands into the CLI at the [edit] hierarchy level, and then enter commit from configuration mode.

```
set firewall three-color-policer trTCM1-ca two-rate color-aware
set firewall three-color-policer trTCM1-ca two-rate committed-information-rate 40m
set firewall three-color-policer trTCM1-ca two-rate committed-burst-size 100k
set firewall three-color-policer trTCM1-ca two-rate peak-information-rate 60m
set firewall three-color-policer trTCM1-ca two-rate peak-burst-size 200k
set firewall three-color-policer trTCM1-ca action loss-priority high then discard
set firewall family inet filter filter-trtcm1ca-all term 1 then three-color-policer two-rate trTCM1-ca
set interfaces ge-2/0/5 unit 0 family inet address 10.10.10.1/30
set interfaces ge-2/0/5 unit 0 family inet filter input filter-trtcm1ca-all
set class-of-service interfaces ge-2/0/5 forwarding-class af
```

**Configuring a Two-Rate Three-Color Policer**

**Step-by-Step Procedure**

To configure a two-rate three-color policer:

1. Enable configuration of a three-color policer.

   ```
 [edit]
 user@host# set firewall three-color-policer trTCM1-ca
   ```

2. Configure the color mode of the two-rate three-color policer.

   ```
 [edit firewall three-color-policer trTCM1-ca]
 user@host# set two-rate color-aware
   ```

3. Configure the two-rate guaranteed traffic limits.

   ```
 [edit firewall three-color-policer trTCM1-ca]
 user@host# set two-rate committed-information-rate 40m
 user@host# set two-rate committed-burst-size 100k
   ```
Traffic that does not exceed both of these limits is categorized as green. Packets in a green flow are implicitly set to low loss priority and then transmitted.

4. Configure the two-rate peak traffic limits.

```
[edit firewall three-color-policer trTCM1-ca]
user@host# set two-rate peak-information-rate 60m
user@host# set two-rate peak-burst-size 200k
```

Nonconforming traffic that does not exceed both of these limits is categorized as yellow. Packets in a yellow flow are implicitly set to medium-high loss priority and then transmitted. Nonconforming traffic that exceeds both of these limits is categorized as red. Packets in a red flow are implicitly set to high loss priority.

5. (Optional) Configure the policer action for red traffic.

```
[edit firewall three-color-policer trTCM1-ca]
user@host# set action loss-priority high then discard
```

For three-color policers, the only configurable action is to discard red packets. Red packets are packets that have been assigned high loss priority because they exceeded the peak information rate (PIR) and the peak burst size (PBS).

**Results**

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
three-color-policer trTCM1-ca {
 action {
 loss-priority high then discard;
 }
 two-rate {
 color-aware;
 committed-information-rate 40m;
 committed-burst-size 100k;
 peak-information-rate 60m;
 peak-burst-size 200k;
 }
}
```
Configuring an IPv4 Stateless Firewall Filter That References the Policer

Step-by-Step Procedure

To configure an IPv4 stateless firewall filter that references the policer:

1. Enable configuration of an IPv4 standard stateless firewall filter.

   ```
 [edit]
 user@host# set firewall family inet filter filter-trtc1ca-all
   ```

2. Specify the filter term that references the policer.

   ```
 [edit firewall family inet filter filter-trtc1ca-all]
 user@host# set term 1 then three-color-policer two-rate trTCM1-ca
   ```

   Note that the term does not specify any match conditions. The firewall filter passes all packets to the policer.

Results

Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
Applying the Filter to a Logical Interface at the Protocol Family Level

Step-by-Step Procedure

To apply the filter to the logical interface at the protocol family level:

1. Enable configuration of an IPv4 firewall filter.

```
[edit]
user@host# edit interfaces ge-2/0/5 unit 0 family inet
```

2. Apply the policer to the logical interface at the protocol family level.

```
[edit interfaces ge-2/0/5 unit 0 family inet]
user@host# set address 10.10.10.1/30
user@host# set filter input filter-trtcm1ca-all
```

3. (MX Series routers and EX Series switches only) (Optional) For input policers, you can configure a fixed classifier. A fixed classifier reclassifies all incoming packets, regardless of any preexisting classification.

 NOTE: Platform support depends on the Junos OS release in your implementation.

```
[edit]
user@host# set class-of-service interfaces ge-2/0/5 forwarding-class af
```

The classifier name can be a configured classifier or one of the default classifiers.

Results
Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-2/0/5 {  
  unit 0 {  
    family inet {  
      address 10.10.10.1/30;  
      filter {  
        input filter-trtc1ca-all;  
      }  
    }  
  }  
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Displaying the Firewall Filters Applied to the Logical Interface | 1900

Confirm that the configuration is working properly.

Displaying the Firewall Filters Applied to the Logical Interface

Purpose

Verify that the firewall filter is applied to IPv4 input traffic at the logical interface.

Action

Use the `show interfaces` operational mode command for the logical interface `ge-2/0/5.0`, and specify `detail` mode. The **Protocol inet** section of the command output displays IPv4 information for the logical interface. Within that section, the **Input Filters** field displays the name of IPv4 firewall filters associated with the logical interface.

```
user@host> show interfaces ge-2/0/5.0 detail
```
Logical interface ge-2/0/5.0 (Index 105) (SNMP ifIndex 556) (Generation 170)
 Flags: Device-Down SNMP-Traps 0x4004000 Encapsulation: ENET2

 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps

Protocol inet, MTU: 1500, Generation: 242, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Input Filters: filter-trtcmlca-all
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 10.20.130/24, Local: 10.20.130.1, Broadcast: 10.20.130.255,
 Generation: 171

Protocol multiservice, MTU: Unlimited, Generation: 243, Route table: 0
 Policer: Input: __default_arp_policer__

SEE ALSO

 Two-Rate Three-Color Policer Overview | 1893

RELATED DOCUMENTATION

 Three-Color Policer Configuration Overview | 1877
 Three-Color Policer Configuration Guidelines | 1881
This example shows how to configure a two-rate three-color policer.

Requirements

No special configuration beyond device initialization is required before configuring this example.

Overview

A two-rate three-color policer meters a traffic flow against a bandwidth limit and burst-size limit for guaranteed traffic, plus a bandwidth limit and burst-size limit for peak traffic. Traffic that conforms to the limits for guaranteed traffic is categorized as green, and nonconforming traffic falls into one of two categories:

- Nonconforming traffic that does not exceed peak traffic limits is categorized as yellow.
- Nonconforming traffic that exceeds peak traffic limits is categorized as red.

Each category is associated with an action. For green traffic, packets are implicitly set with a loss-priority value of low and then transmitted. For yellow traffic, packets are implicitly set with a loss-priority value of medium-high and then transmitted. For red traffic, packets are implicitly set with a loss-priority value of high and then transmitted. If the policer configuration includes the optional action statement (action loss-priority high then discard), then packets in a red flow are discarded instead.

You can apply a three-color policer to Layer 3 traffic as a firewall filter policer only. You reference the policer from a stateless firewall filter term, and then you apply the filter to the input or output of a logical interface at the protocol level.

Topology

In this example, you apply a color-aware, two-rate three-color policer to the input IPv4 traffic at logical interface fe-0/1/1.0. The IPv4 firewall filter term that references the policer does not apply any packet-filtering. The filter is used only to apply the three-color policer to the interface.
You configure the policer to rate-limit traffic to a bandwidth limit of 40 Mbps and a burst-size limit of 100 KB for green traffic, and you configure the policer to also allow a peak bandwidth limit of 60 Mbps and a peak burst-size limit of 200 KB for yellow traffic. Only nonconforming traffic that exceeds the peak traffic limits is categorized as red. In this example, you configure the three-color policer action **loss-priority high then discard**, which overrides the implicit marking of red traffic to a **high** loss priority.

Configuration

IN THIS SECTION

- Configuring a Two-Rate Three-Color Policier | 1903
- Configuring an IPv4 Stateless Firewall Filter That References the Policer | 1905
- Applying the Filter to a Logical Interface at the Protocol Family Level | 1906

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and then paste the commands into the CLI at the [edit] hierarchy level, and then enter `commit` from configuration mode.

```plaintext
set firewall three-color-policer trTCM1-ca two-rate color-aware
set firewall three-color-policer trTCM1-ca two-rate committed-information-rate 40m
set firewall three-color-policer trTCM1-ca two-rate committed-burst-size 100k
set firewall three-color-policer trTCM1-ca two-rate peak-information-rate 60m
set firewall three-color-policer trTCM1-ca two-rate peak-burst-size 200k
set firewall three-color-policer trTCM1-ca action loss-priority high then discard
set firewall family inet filter filter-trtcm1ca-all term 1 then three-color-policer two-rate trTCM1-ca
set interfaces ge-2/0/5 unit 0 family inet address 10.10.10.1/30
set interfaces ge-2/0/5 unit 0 family inet filter input filter-trtcm1ca-all
set class-of-service interfaces ge-2/0/5 forwarding-class af
```

Configuring a Two-Rate Three-Color Policier

Step-by-Step Procedure
To configure a two-rate three-color policer:

1. Enable configuration of a three-color policer.

   ```
   [edit]
   user@host# set firewall three-color-policer trTCM1-ca
   ```

2. Configure the color mode of the two-rate three-color policer.

   ```
   [edit firewall three-color-policer trTCM1-ca]
   user@host# set two-rate color-aware
   ```

3. Configure the two-rate guaranteed traffic limits.

   ```
   [edit firewall three-color-policer trTCM1-ca]
   user@host# set two-rate committed-information-rate 40m
   user@host# set two-rate committed-burst-size 100k
   ```

 Traffic that does not exceed both of these limits is categorized as green. Packets in a green flow are implicitly set to low loss priority and then transmitted.

4. Configure the two-rate peak traffic limits.

   ```
   [edit firewall three-color-policer trTCM1-ca]
   user@host# set two-rate peak-information-rate 60m
   user@host# set two-rate peak-burst-size 200k
   ```

 Nonconforming traffic that does not exceed both of these limits is categorized as yellow. Packets in a yellow flow are implicitly set to medium-high loss priority and then transmitted. Nonconforming traffic that exceeds both of these limits is categorized as red. Packets in a red flow are implicitly set to high loss priority.

5. (Optional) Configure the policer action for red traffic.

   ```
   [edit firewall three-color-policer trTCM1-ca]
   user@host# set action loss-priority high then discard
   ```

 For three-color policers, the only configurable action is to discard red packets. Red packets are packets that have been assigned high loss priority because they exceeded the peak information rate (PIR) and the peak burst size (PBS).
Results

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
three-color-policer trTCM1-ca {
    action {
        loss.Priority high then discard;
    }
    two-rate {
        color-aware;
        committed-information-rate 40m;
        committed-burst-size 100k;
        peak-information-rate 60m;
        peak-burst-size 200k;
    }
}
```

Configuring an IPv4 Stateless Firewall Filter That References the Policier

Step-by-Step Procedure

To configure an IPv4 stateless firewall filter that references the policer:

1. Enable configuration of an IPv4 standard stateless firewall filter.

```
[edit]
user@host# set firewall family inet filter filter-trtc1ma-all
```

2. Specify the filter term that references the policer.

```
[edit firewall family inet filter filter-trtc1ma-all]
user@host# set term 1 then three-color-policer two-rate trTCM1-ca
```

Note that the term does not specify any match conditions. The firewall filter passes all packets to the policer.

Results
Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```plaintext
[edit]
user@host# show firewall
family inet {
  filter filter-trtcmt1ca-all {
    term 1 {
      then {
        three-color-policer {
          two-rate trTCM1-ca;
        }
      }
    }
  }
}
three-color-policer trTCM1-ca {
  action {
    loss-priority high then discard;
  }
  two-rate {
    color-aware;
    committed-information-rate 40m;
    committed-burst-size 100k;
    peak-information-rate 60m;
    peak-burst-size 200k;
  }
}
```

Applying the Filter to a Logical Interface at the Protocol Family Level

Step-by-Step Procedure

To apply the filter to the logical interface at the protocol family level:

1. Enable configuration of an IPv4 firewall filter.

   ```plaintext
   [edit]
   user@host# edit interfaces ge-2/0/5 unit 0 family inet
   ```

2. Apply the policer to the logical interface at the protocol family level.

   ```plaintext
   [edit interfaces ge-2/0/5 unit 0 family inet]
   ```
3. (MX Series routers and EX Series switches only) (Optional) For input policers, you can configure a fixed classifier. A fixed classifier reclassifies all incoming packets, regardless of any preexisting classification.

NOTE: Platform support depends on the Junos OS release in your implementation.

```
[edit]
user@host# set class-of-service interfaces ge-2/0/5 forwarding-class af
```

The classifier name can be a configured classifier or one of the default classifiers.

Results

Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-2/0/5 {
  unit 0 {
    family inet {
      address 10.10.10.1/30;
      filter {
        input filter-trtcm1ca-all;
      }
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Displaying the Firewall Filters Applied to the Logical Interface | 1908
Confirm that the configuration is working properly.

Displaying the Firewall Filters Applied to the Logical Interface

Purpose
Verify that the firewall filter is applied to IPv4 input traffic at the logical interface.

Action
Use the show interfaces operational mode command for the logical interface ge-2/0/5.0, and specify detail mode. The Protocol inet section of the command output displays IPv4 information for the logical interface. Within that section, the Input Filters field displays the name of IPv4 firewall filters associated with the logical interface.

```
user@host> show interfaces ge-2/0/5.0 detail
```

```
Logical interface ge-2/0/5.0 (Index 105) (SNMP ifIndex 556) (Generation 170)
  Flags: Device-Down SNMP-Traps 0x4004000 Encapsulation: ENET2
  Traffic statistics:
    Input bytes : 0
    Output bytes : 0
    Input packets: 0
    Output packets: 0
  Local statistics:
    Input bytes : 0
    Output bytes : 0
    Input packets: 0
    Output packets: 0
  Transit statistics:
    Input bytes : 0  0 bps
    Output bytes : 0  0 bps
    Input packets: 0  0 pps
    Output packets: 0  0 pps
  Protocol inet, MTU: 1500, Generation: 242, Route table: 0
    Flags: Sendbcast-pkt-to-re
    Input Filters: filter-trtcmlca-all
    Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
      Destination: 10.20.130/24, Local: 10.20.130.1, Broadcast: 10.20.130.255,
      Generation: 171
  Protocol multiservice, MTU: Unlimited, Generation: 243, Route table: 0
    Policer: Input: __default_arp_policer__
```
Configuring Logical and Physical Interface Traffic Policers at Layer 3

IN THIS CHAPTER

- Two-Color and Three-Color Logical Interface Policers | 1911
- Two-Color and Three-Color Physical Interface Policers | 1928

Two-Color and Three-Color Logical Interface Policers

IN THIS SECTION

- Logical Interface (Aggregate) Policer Overview | 1911
- Example: Configuring a Two-Color Logical Interface (Aggregate) Policer | 1912
- Example: Configuring a Three-Color Logical Interface (Aggregate) Policer | 1920

Logical Interface (Aggregate) Policer Overview

A logical interface policer—also called an aggregate policer—is a two-color or three-color policer that defines traffic rate limiting that you can apply to input or output traffic for multiple protocol families on the same logical interface without creating multiple instances of the policer.

To configure a single-rate two-color logical interface policer, include the logical-interface-policer statement at one of the following hierarchy levels:

- [edit firewall policer policer-name]
- [edit logical-systems logical-system-name firewall policer policer-name]
To configure a single-rate or two-rate three-color logical interface policer, include the `logical-interface-policer` statement at one of the following hierarchy levels:

- `[edit firewall three-color-policer name]`
- `[edit logical-systems logical-system-name firewall three-color-policer name]`

NOTE: A three-color policer can be applied to Layer 2 traffic as a logical interface policer only. You cannot apply a three-color policer to Layer 2 traffic as a physical interface policer (through a firewall filter).

You apply a logical interface policer to Layer 3 traffic directly to the interface configuration at the logical unit level (to rate-limit all traffic types, regardless of the protocol family) or at the protocol family level (to rate-limit traffic of a specific protocol family). It is OK to reference a logical interface policer from a stateless firewall filter term and then apply the filter to a logical interface.

You can apply a logical interface policer to unicast traffic only. For information about configuring a stateless firewall filter for flooded traffic, see “Applying Forwarding Table Filters” in the “Traffic Sampling, Forwarding, and Monitoring” section of the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

To display a logical interface policer on a particular interface, issue the `show interfaces policers` operational mode command.

SEE ALSO

- Two-Color Policer Configuration Overview | 1763
- Three-Color Policer Configuration Overview | 1877
- Example: Configuring a Two-Color Logical Interface (Aggregate) Policer | 1912
- Example: Configuring a Three-Color Logical Interface (Aggregate) Policer | 1739
- interface-specific (Firewall Filters) | 2147
- logical-interface-policer | 2250

Example: Configuring a Two-Color Logical Interface (Aggregate) Policer

IN THIS SECTION

- Requirements | 1913
- Overview | 1913
This example shows how to configure a single-rate two-color policer as a logical interface policer and apply it to incoming IPv4 traffic on a logical interface.

Requirements
Before you begin, make sure that the logical interface to which you apply the two-color logical interface policer is hosted on a Gigabit Ethernet interface (ge-) or a 10-Gigabit Ethernet interface (xe-).

Overview
In this example, you configure the single-rate two-color policer `policer_IFL` as a logical interface policer and apply it to incoming IPv4 traffic at logical interface `ge-1/3/1.0`.

Topology
If the input IPv4 traffic on the physical interface `ge-1/3/1` exceeds the bandwidth limit equal to 90 percent of the media rate with a 300 KB burst-size limit, then the logical interface policer `policer_IFL` rate-limits the input IPv4 traffic on the logical interface `ge-1/3/1.0`. Configure the policer to mark nonconforming traffic by setting packet loss priority (PLP) levels to high and classifying packets as best-effort.

As the incoming IPv4 traffic rate on the physical interface slows and conforms to the configured limits, Junos OS stops marking the incoming IPv4 packets at the logical interface.

Configuration

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see “Using the CLI Editor in Configuration Mode” on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration
To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces ge-1/3/1 vlan-tagging
set interfaces ge-1/3/1 unit 0 vlan-id 100
set interfaces ge-1/3/1 unit 0 family inet address 10.10.10.1/30
set interfaces ge-1/3/1 unit 1 vlan-id 101
set interfaces ge-1/3/1 unit 1 family inet address 20.20.20.1/30
arp 20.20.20.2 mac 00:00:11:22:33:44
set firewall policer policer_IFL logical-interface-policer
set firewall policer policer_IFL if-exceeding bandwidth-percent 90
set firewall policer policer_IFL if-exceeding burst-size-limit 300k
set firewall policer policer_IFL then loss-priority high
set firewall policer policer_IFL then forwarding-class best-effort
set interfaces ge-1/3/1 unit 0 family inet policer input policer_IFL
```

Configuring the Logical Interfaces

Step-by-Step Procedure

To configure the logical interfaces:

1. Enable configuration of the interface.

```
[edit]
user@host# edit interfaces ge-1/3/1
```

2. Configure single tagging.

```
[edit interfaces ge-1/3/1]
user@host# set vlan-tagging
```

3. Configure logical interface **ge-1/3/1.0**.

```
[edit interfaces ge-1/3/1]
user@host# set unit 0 vlan-id 100
user@host# set unit 0 family inet address 10.10.10.1/30
```

4. Configure logical interface **ge-1/3/1.0**.

```
[edit interfaces ge-1/3/1]
user@host# set unit 1 vlan-id 101
```
user@host# set unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44

Results

Confirm the configuration of the logical interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
    vlan-tagging;
    unit 0 {
        vlan-id 100;
        family inet {
            address 10.10.10.1/30;
        }
    }
    unit 1 {
        vlan-id 101;
        family inet {
            address 20.20.20.1/30 {
                arp 20.20.20.2 mac 00:00:11:22:33:44;
            }
        }
    }
}
```

Configuring the Single-Rate Two-Color Policer as a Logical Interface Policer

Step-by-Step Procedure

To configure a single-rate two-color policer as a logical interface policer:

1. Enable configuration of a single-rate two-color policer.

```
[edit]
user@host# edit firewall policer policer_IFL
```

2. Specify that the policer is a logical interface (aggregate) policer.

```
[edit firewall policer policer_IFL]
user@host# set logical-interface-policer
```
A logical interface policer rate-limits traffic based on a percentage of the media rate of the physical interface underlying the logical interface to which the policer is applied. The policer is applied directly to the interface rather than referenced by a firewall filter.

3. Specify the policer traffic limits.
 a. Specify the bandwidth limit.
 • To specify the bandwidth limit as an absolute rate, from 8,000 bits per second through 50,000,000,000 bits per second, include the `bandwidth-limit bps` statement.
 • To specify the bandwidth limit as a percentage of the physical port speed on the interface, include the `bandwidth-percent percent` statement.

In this example, the CLI commands and output are based on a bandwidth limit specified as a percentage rather than as an absolute rate.

```
[edit firewall policer policer_IFL]
user@host# set if-exceeding bandwidth-percent 90
```

b. Specify the burst-size limit, from 1,500 bytes through 100,000,000,000 bytes, which is the maximum packet size to be permitted for bursts of data that exceed the specified bandwidth limit.

```
[edit firewall policer policer_IFL]
user@host# set if-exceeding burst-size-limit 300k
```

4. Specify the policer actions to be taken on traffic that exceeds the configured rate limits.
 • To discard the packet, include the `discard` statement.
 • To set the loss-priority value of the packet, include the `loss-priority (low | medium-low | medium-high | high)` statement.
 • To classify the packet to a forwarding class, include the `forwarding-class (forwarding-class | assured-forwarding | best-effort | expedited-forwarding | network-control)` statement.

In this example, the CLI commands and output are based on both setting the packet loss priority level and classifying the packet.

```
[edit firewall policer policer_IFL]
user@host# set then loss-priority high
user@host# set then forwarding-class best-effort
```

Results
Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
policer policer_IFL {
  logical-interface-policer;
  if-exceeding {
    bandwidth-percent 90;
    burst-size-limit 300k;
  }
  then {
    loss-priority high;
    forwarding-class best-effort;
  }
}
```

Applying the Logical Interface Policer to Input IPv4 Traffic at a Logical Interface

Step-by-Step Procedure

To apply the two-color logical interface policer to input IPv4 traffic a logical interface:

1. Enable configuration of the logical interface.

```
[edit]
user@host# edit interfaces ge-1/3/1 unit 0
```

2. Apply the policer to all traffic types or to a specific traffic type on the logical interface.

- To apply the policer to all traffic types, regardless of the protocol family, include the `policer (input | output) policer-name` statement at the `[edit interfaces interface-name unit number]` hierarchy level.

- To apply the policer to traffic of a specific protocol family, include the `policer (input | output) policer-name` statement at the `[edit interfaces interface-name unit unit-number family family-name]` hierarchy level.

To apply the logical interface policer to incoming packets, use the `policer input policer-name` statement.

To apply the logical interface policer to outgoing packets, use the `policer output policer-name` statement.
In this example, the CLI commands and output are based on rate-limiting the IPv4 input traffic at logical interface ge-1/3/1.0.

```
[edit interfaces ge-1/3/1 unit 0]
user@host# set family inet policer input policer_IFL
```

Results

Confirm the configuration of the interface by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
  vlan-tagging;
  unit 0 {
    vlan-id 100;
    family inet {
      policer input policer_IFL;
      address 10.10.10.1/30;
    }
  }
  unit 1 {
    vlan-id 101;
    family inet {
      address 20.20.20.1/30 {
        arp 20.20.20.2 mac 00:00:11:22:33:44;
      }
    }
  }
}
```

If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Displaying Traffic Statistics and Policers for the Logical Interface | 1919
- Displaying Statistics for the Policer | 1919
Confirm that the configuration is working properly.

Displaying Traffic Statistics and Policers for the Logical Interface

Purpose
Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

Action
Use the `show interfaces` operational mode command for logical interface `ge-1/3/1.0`, and include the `detail` or `extensive` option. The command output section for `Traffic statistics` lists the number of bytes and packets received and transmitted on the logical interface. The `Protocol inet` subsection contains a `Policer` field that would list the policer `policer_IFL` as an input or output logical interface policer as follows:

- Input: `policer_IFL-ge-1/3/1.0-log_int-i`
- Output: `policer_IFL-ge-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

Displaying Statistics for the Policier

Purpose
Verify the number of packets evaluated by the policer.

Action
Use the `show policer` operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer `policer_IFL`, the input and output policer names are displayed as follows:

- `policer_IFL-ge-1/3/1.0-log_int-i`
- `policer_IFL-ge-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

SEE ALSO

| Two-Color Policier Configuration Overview | 1763 |
| Logical Interface (Aggregate) Policier Overview | 1911 |
Example: Configuring a Three-Color Logical Interface (Aggregate) Policer

IN THIS SECTION
- Requirements | 1920
- Overview | 1920
- Configuration | 1921
- Verification | 1926

This example shows how to configure a two-rate three-color color-blind policer as a logical interface (aggregate) policer and apply the policer directly to Layer 2 input traffic at a supported logical interface.

Requirements
Before you begin, make sure that the logical interface to which you apply the three-color logical interface policer is hosted on a Gigabit Ethernet interface (ge-) or a 10-Gigabit Ethernet interface (xe-) on an MX Series router.

Overview
A two-rate three-color policer meters a traffic flow against a bandwidth limit and burst-size limit for guaranteed traffic, plus a second set of bandwidth and burst-size limits for peak traffic. Traffic that conforms to the limits for guaranteed traffic is categorized as green, and nonconforming traffic falls into one of two categories:

- Nonconforming traffic that does not exceed the bandwidth and burst-size limits for peak traffic is categorized as yellow.
- Nonconforming traffic that exceeds the bandwidth and burst-size limits for peak traffic is categorized as red.

A logical interface policer defines traffic rate-limiting rules that you can apply to multiple protocol families on the same logical interface without creating multiple instances of the policer.

NOTE: You apply a logical interface policer directly to a logical interface at the logical unit level, and not by referencing the policer in a stateless firewall filter and then applying the filter to the logical interface at the protocol family level.

Topology
In this example, you configure the two-rate three-color policer trTCM2-cb as a color-blind logical interface policer and apply the policer to incoming Layer 2 traffic on logical interface ge-1/3/1.0.
NOTE: When using a three-color policer to rate-limit Layer 2 traffic, color-aware policing can be applied to egress traffic only.

The policer defines guaranteed traffic rate limits such that traffic that conforms to the bandwidth limit of 40 Mbps with a 100 KB allowance for traffic bursting (based on the token-bucket formula) is categorized as green. As with any policed traffic, the packets in a green flow are implicitly set to a **low** loss priority and then transmitted.

Nonconforming traffic that falls within the peak traffic limits of a 60 Mbps bandwidth limit and a 200 KB allowance for traffic bursting (based on the token-bucket formula) is categorized as yellow. The packets in a yellow traffic flow are implicitly set to a **medium-high** loss priority and then transmitted.

Nonconforming traffic that exceeds the peak traffic limits are categorized as red. The packets in a red traffic flow are implicitly set to a **high** loss priority. In this example, the optional policer action for red traffic (**loss-priority high then discard**) is configured, so packets in a red traffic flow are discarded instead of transmitted.

Configuration

IN THIS SECTION

- Configuring the Logical Interfaces | 1922
- Configuring the Two-Rate Three-Color Policer as a Logical Interface Policer | 1923
- Applying the Three-Color Policer to the Layer 2 Input at the Logical Interface | 1925

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces ge-1/3/1 vlan-tagging
set interfaces ge-1/3/1 unit 0 vlan-id 100
set interfaces ge-1/3/1 unit 0 family inet address 10.10.10.1/30
set interfaces ge-1/3/1 unit 1 vlan-id 101
set interfaces ge-1/3/1 unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44
```
set firewall three-color-policer trTCM2-cb logical-interface-policer
set firewall three-color-policer trTCM2-cb two-rate color-blind
set firewall three-color-policer trTCM2-cb two-rate committed-information-rate 40m
set firewall three-color-policer trTCM2-cb two-rate committed-burst-size 100k
set firewall three-color-policer trTCM2-cb two-rate peak-information-rate 60m
set firewall three-color-policer trTCM2-cb two-rate peak-burst-size 200k
set firewall three-color-policer trTCM2-cb action loss-priority high then discard
set interfaces ge-1/3/1 unit 0 layer2-policer input-three-color trTCM2-cb

Configuring the Logical Interfaces

Step-by-Step Procedure
To configure the logical interfaces:

1. Enable configuration of the interface.

 [edit]
 user@host# edit interfaces ge-1/3/1

2. Configure single tagging.

 [edit interfaces ge-1/3/1]
 user@host# set vlan-tagging

3. Configure logical interface ge-1/3/1.0.

 [edit interfaces ge-1/3/1]
 user@host# set unit 0 vlan-id 100
 user@host# set unit 0 family inet address 10.10.10.1/30

4. Configure logical interface ge-1/3/1.0.

 [edit interfaces ge-1/3/1]
 user@host# set unit 1 vlan-id 101
 user@host# set unit 1 family inet address 20.20.20.1/30 arp 20.20.20.2 mac 00:00:11:22:33:44

Results
Confirm the configuration of the logical interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
  vlan-tagging;
  unit 0 {
    vlan-id 100;
    family inet {
      address 10.10.10.1/30;
    }
  }
  unit 1 {
    vlan-id 101;
    family inet {
      address 20.20.20.1/30 {
        arp 20.20.20.2 mac 00:00:11:22:33:44;
      }
    }
  }
}
```

Configuring the Two-Rate Three-Color Policer as a Logical Interface Policer

Step-by-Step Procedure

To configure the two-rate three-color policer as a logical interface policer:

1. Enable configuration of a three-color policer.

```
[edit]
user@host# edit firewall three-color-policer trTCM2-cb
```

2. Specify that the policer is a logical interface (aggregate) policer.

```
[edit firewall three-color-policer trTCM2-cb]
user@host# set logical-interface-policer
```

A logical interface policer rate-limits traffic based on a percentage of the media rate of the physical interface underlying the logical interface to which the policer is applied, and the policer is applied directly to the interface rather than referenced by a firewall filter.
3. Specify that the policer is two-rate and color-blind.

[edit firewall three-color-policer trTCM2-cb]
user@host# set two-rate color-blind

A color-aware three-color policer takes into account any coloring markings that might have been set for a packet by another traffic policer configured at a previous network node, and any preexisting color markings are used in determining the appropriate policing action for the packet.

Because you are applying this three-color policer applied to input at Layer 2, you must configure the policer to be color-blind.

4. Specify the policer traffic limits used to classify a green traffic flow.

[edit firewall three-color-policer trTCM2-cb]
user@host# set two-rate committed-information-rate 40m
user@host# set two-rate committed-burst-size 100k

5. Specify the additional policer traffic limits used to classify a yellow or red traffic flow.

[edit firewall three-color-policer trTCM2-cb]
user@host# set two-rate peak-information-rate 60m
user@host# set two-rate peak-burst-size 200k

6. (Optional) Specify the configured policer action for packets in a red traffic flow.

[edit firewall three-color-policer trTCM2-cb]
user@host# set action loss-priority high then discard

In color-aware mode, the three-color policer configured action can increase the packet loss priority (PLP) level of a packet, but never decrease it. For example, if a color-aware three-color policer meters a packet with a medium PLP marking, it can raise the PLP level to high, but cannot reduce the PLP level to low.

Results

Confirm the configuration of the three-color policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.
Applying the Three-Color Policer to the Layer 2 Input at the Logical Interface

Step-by-Step Procedure

To apply the three-color policer to the Layer 2 input at the logical interface:

1. Enable application of Layer 2 logical interface policers.

   ```
   [edit]
   user@host# edit interfaces ge-1/3/1 unit 0
   ```

2. Apply the three-color logical interface policer to a logical interface input.

   ```
   [edit interfaces ge-1/3/1 unit 0]
   user@host# set layer2-policerinput-three-color trTCM2-cb
   ```

Results

Confirm the configuration of the logical interfaces by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
ge-1/3/1 {
   vlan-tagging:
   unit 0 {
      vlan-id 100;
   }
```
If you are done configuring the device, enter `commit` from configuration mode.

Verification

IN THIS SECTION

- Displaying Traffic Statistics and Policers for the Logical Interface | 1926
- Displaying Statistics for the Policer | 1927

Confirm that the configuration is working properly.

Displaying Traffic Statistics and Policers for the Logical Interface

Purpose

Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

Action

Use the `show interfaces` operational mode command for logical interface `ge-1/3/1.0`, and include the `detail` or `extensive` option. The command output section for `Traffic statistics` lists the number of bytes and packets received and transmitted on the logical interface, and the `Protocol inet` section contains a `Policer` field that would list the policer `trTCM2-cb` as an input or output policer as follows:

- **Input:** `trTCM2-cb-ge-1/3/1.0-log_int-i`
- **Output:** `trTCM2-cb-ge-1/3/1.0-log_int-o`
The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to in the input direction only.

Displaying Statistics for the Policer

Purpose
Verify the number of packets evaluated by the policer.

Action
Use the `show policer` operational mode command and optionally specify the name of the policer. The command output displays the number of packets evaluated by each configured policer (or the specified policer), in each direction. For the policer `trTCM2-cb`, the input and output policer names are displayed as follows:

- `trTCM2-cb-ge-1/3/1.0-log_int-i`
- `trTCM2-cb-e-1/3/1.0-log_int-o`

The `log_int-i` suffix denotes a logical interface policer applied to input traffic, while the `log_int-o` suffix denotes a logical interface policer applied to output traffic. In this example, the logical interface policer is applied to input traffic only.

SEE ALSO

Logical Interface (Aggregate) Policer Overview	1911
Example: Configuring a Two-Color Logical Interface (Aggregate) Policer	1912
Three-Color Policing at Layer 2 Overview	1737
`layer2-policer`	2244 statement
`logical-interface-policer`	2250 statement
`three-color-policer (Configuring)`	2297 statement

RELATED DOCUMENTATION

Two-Color Policer Configuration Overview	1763
Three-Color Policer Configuration Overview	1877
Guidelines for Applying Traffic Policers	1683
Two-Color and Three-Color Physical Interface Policers

IN THIS SECTION

- Physical Interface Policer Overview | 1928
- Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface | 1929

Physical Interface Policer Overview

A physical interface policer is a two-color or three-color policer that defines traffic rate limiting that you can apply to input or output traffic for all the logical interfaces and protocol families configured on a physical interface, even if the logical interfaces belong to different routing instances. This feature is useful when you want to perform aggregate policing for different protocol families and different logical interfaces on the same physical interface.

For example, suppose that a provider edge (PE) router has numerous logical interfaces, each corresponding to a different customer, configured on the same link to a customer edge (CE) device. Now suppose that a customer wants to apply one set of rate limits aggregately for certain types of traffic on a single physical interface. To accomplish this, you could apply a single physical interface policer to the physical interface, which rate-limits all the logical interfaces configured on the interface and all the routing instances to which those interfaces belong.

To configure a single-rate two-color physical interface policer, include the `physical-interface-policer` statement at one of the following hierarchy levels:

- [edit firewall policer policer-name]
- [edit logical-system logical-system-name firewall policer policer-name]
- [edit routing-instances routing-instance-name firewall policer policer-name]
- [edit logical-systems logical-system-name routing-instances routing-instance-name firewall policer policer-name]

To configure a single-rate or two-rate three-color physical interface policer, include the `physical-interface-policer` statement at one of the following hierarchy levels:

- [edit firewall three-color-policer policer-name]
- [edit logical-system logical-system-name firewall three-color-policer policer-name]
You apply a physical interface policer to Layer 3 traffic by referencing the policer from a stateless firewall filter term and then applying the filter to a logical interface. You cannot apply a physical interface to Layer 3 traffic directly to the interface configuration.

To reference a single-rate two-color policer from a stateless firewall filter term, use the `policer` nonterminating action. To reference a single-rate or two-rate three-color policer from a stateless firewall filter term, use the `three-color-policer` nonterminating action.

The following requirements apply to a stateless firewall filter that references a physical interface policer:

- You must configure the firewall filter for a specific, supported protocol family: `ipv4`, `ipv6`, `mpls`, `vpls`, or circuit cross-connect (`ccc`), but not for `family any`.
- You must configure the firewall filter as a `physical interface filter` by including the `physical-interface-filter` statement at the `[edit firewall family family-name filter filter-name]` hierarchy level.
- A firewall filter that is defined as a physical interface filter can reference a physical interface policer only.
- A firewall filter that is defined as a physical interface filter cannot reference a policer configured with the `interface-specific` statement.
- You cannot configure a firewall filter as both a physical interface filter and as a logical interface filter that also includes the `interface-specific` statement.

SEE ALSO

Two-Color Policer Configuration Overview	1763
Three-Color Policer Configuration Overview	1877
Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface	1685
physical-interface-filter	2268
physical-interface-policer	2270

Example: Configuring a Physical Interface Policer for Aggregate Traffic at a Physical Interface
This example shows how to configure a single-rate two-color policer as a physical interface policer.

Requirements
No special configuration beyond device initialization is required before configuring this example.

Overview
A *physical interface policer* specifies rate-limiting for aggregate traffic, which encompasses all protocol families and logical interfaces configured on a physical interface, even if the interfaces belong to different routing instances.

You can apply a physical interface policer to Layer 3 input or output traffic only by referencing the policer from a stateless firewall filter that is configured for specific a specific protocol family (not for *family any*) and configured as a physical interface filter. You configure the filter terms with match conditions that select the types of packets you want to rate-limit, and you specify the physical interface policer as the action to apply to matched packets.

Topology
The physical interface policer in this example, *shared-policer-A*, rate-limits to 10,000,000 bps and permits a maximum burst of traffic of 500,000 bytes. You configure the policer to discard packets in nonconforming flows, but you could instead configure the policer to re-mark nonconforming traffic with a forwarding class, a packet loss priority (PLP) level, or both.

To be able to use the policer to rate-limit IPv4 traffic, you reference the policer from an IPv4 physical interface filter. For this example, you configure the filter to pass the policer IPv4 packets that meet either of the following match terms:

- Packets received through TCP and with the IP precedence fields *critical-ecp* (0xa0), *immediate* (0x40), or *priority* (0x20)
- Packets received through TCP and with the IP precedence fields *internet-control* (0xc0) or *routine* (0x00)

You could also reference the policer from physical interface filters for other protocol families.

Configuration
The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see "Using the CLI Editor in Configuration Mode" on page 1645.

To configure this example, perform the following tasks:

CLI Quick Configuration

To quickly configure this example, copy the following configuration commands into a text file, remove any line breaks, and then paste the commands into the CLI at the [edit] hierarchy level.

```
set interfaces so-1/0/0 unit 0 family inet address 192.168.1.1/24
set interfaces so-1/0/0 unit 0 family vpls
set interfaces so-1/0/0 unit 1 family mpls
set firewall policer shared-policer-A physical-interface-policer
set firewall policer shared-policer-A if-exceeding bandwidth-limit 100m burst-size-limit 500k
set firewall policer shared-policer-A then discard
set firewall family inet filter ipv4-filter physical-interface-filter
set firewall family inet filter ipv4-filter term tcp-police-1 from precedence [ critical-ecp immediate priority ]
set firewall family inet filter ipv4-filter term tcp-police-1 from protocol tcp
set firewall family inet filter ipv4-filter term tcp-police-1 then policer shared-policer-A
set firewall family inet filter ipv4-filter term tcp-police-2 from precedence [ internet-control routine ]
set firewall family inet filter ipv4-filter term tcp-police-2 from protocol tcp
set firewall family inet filter ipv4-filter term tcp-police-2 then policer shared-policer-A
set interfaces so-1/0/0 unit 0 family inet filter input ipv4-filter
```

Configuring the Logical Interfaces on the Physical Interface

Step-by-Step Procedure

To configure the logical interfaces on the physical interface:

1. Enable configuration of logical interfaces.

```
[edit]
user@host# edit interfaces so-1/0/0
```
2. Configure protocol families on logical unit 0.

 [edit interfaces so-1/0/0]
 user@host# set unit 0 family inet address 192.168.1.1/24
 user@host# set unit 0 family vpls

3. Configure protocol families on logical unit 1.

 [edit interfaces so-1/0/0]
 user@host# set unit 1 family mpls

Results

Confirm the configuration of the firewall filter by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

 [edit]
 user@host# show interfaces
 so-1/0/0 {
 unit 0 {
 family inet {
 address 192.168.1.1/24;
 }
 family vpls;
 }
 unit 1 {
 family mpls;
 }
 }

Configuring a Physical Interface Policer

Step-by-Step Procedure

To configure a physical interface policer:

1. Enable configuration of the two-color policer.

 [edit]
 user@host# edit firewall policer shared-policer-A
2. Configure the type of two-color policer.

[edit firewall policer shared-policer-A]
user@host# set physical-interface-policer

3. Configure the traffic limits and the action for packets in a nonconforming traffic flow.

[edit firewall policer shared-policer-A]
user@host# set if-exceeding bandwidth-limit 100m burst-size-limit 500k
user@host# set then discard

For a physical interface filter, the actions you can configure for packets in a nonconforming traffic flow are to discard the packets, assign a forwarding class, assign a PLP value, or assign both a forwarding class and a PLP value.

Results

Confirm the configuration of the policer by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

[edit]
user@host# show firewall
policer shared-policer-A {
 physical-interface-policer;
 if-exceeding {
 bandwidth-limit 100m;
 burst-size-limit 500k;
 }
 then discard;
}

Configuring an IPv4 Physical Interface Filter

Step-by-Step Procedure

To configure a physical interface policer as the action for terms in an IPv4 physical interface policer:

1. Configure a standard stateless firewall filter under a specific protocol family.

[edit]
user@host# edit firewall family inet filter ipv4-filter

You cannot configure a physical interface firewall filter for family any.
2. Configure the filter as a physical interface filter so that you can apply the physical interface policer as an action.

```
[edit firewall family inet filter ipv4-filter]
user@host# set physical-interface-filter
```

3. Configure the first term to match IPv4 packets received through TCP with the IP precedence fields critical-ecp, immediate, or priority and to apply the physical interface policer as a filter action.

```
[edit firewall family inet filter ipv4-filter]
user@host# set term tcp-police-1 from precedence [ critical-ecp immediate priority ]
user@host# set term tcp-police-1 from protocol tcp
user@host# set term tcp-police-1 then policer shared-policer-A
```

4. Configure the first term to match IPv4 packets received through TCP with the IP precedence fields internet-control or routine and to apply the physical interface policer as a filter action.

```
[edit firewall family inet filter ipv4-filter]
user@host# set term tcp-police-2 from precedence [ internet-control routine ]
user@host# set term tcp-police-2 from protocol tcp
user@host# set term tcp-police-2 then policer shared-policer-A
```

Results

Confirm the configuration of the firewall filter by entering the `show firewall` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show firewall
family inet {
    filter ipv4-filter {
        physical-interface-filter;
        term tcp-police-1 {
            from {
                precedence [ critical-ecp immediate priority ];
                protocol tcp;
            }
            then policer shared-policer-A;
        }
        term tcp-police-2 {
```
from {
 precedence [internet-control routine];
 protocol tcp;
}
then policer shared-policer-A;
}

Applying the IPv4 Physical interface Filter to Reference the Physical Interface Policers

Step-by-Step Procedure
To apply the physical interface filter so it references the physical interface policers:

1. Enable configuration of IPv4 on the logical interface.

```
[edit]
user@host# edit interfaces so-1/0/0 unit 0 family inet
```

2. Apply the IPv4 physical interface filter in the input direction.

```
[edit interfaces so-1/0/0 unit 0 family inet]
user@host# set filter input ipv4-filter
```

Results
Confirm the configuration of the firewall filter by entering the `show interfaces` configuration mode command. If the command output does not display the intended configuration, repeat the instructions in this procedure to correct the configuration.

```
[edit]
user@host# show interfaces
so-1/0/0 {  
    unit 0 {  
```
If you are done configuring the device, enter **commit** from configuration mode.

Verification

IN THIS SECTION

- Displaying the Firewall Filters Applied to an Interface | 1936
- Displaying the Number of Packets Processed by the Policier at the Logical Interface | 1937

Confirm that the configuration is working properly.

Displaying the Firewall Filters Applied to an Interface

Purpose
Verify that the firewall filter **ipv4-filter** is applied to the IPv4 input traffic at logical interface **so-1/0/0.0**.

Action
Use the **show interfaces statistics** operational mode command for logical interface **so-1/0/0.0**, and include the **detail** option. In the **Protocol inet** section of the command output, the **Input Filters** field shows that the firewall filter **ipv4-filter** is applied in the input direction.

```
user@host> show interfaces statistics so-1/0/0 detail
```

Logical interface so-1/0/0.0 (Index 79) (SNMP ifIndex 510) (Generation 149)
Flags: Hardware-Down Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP
Protocol inet, MTU: 4470, Generation: 173, Route table: 0
Flags: Sendbcast-pkt-to-re, Protocol-Down
Input Filters: ipv4-filter
Displaying the Number of Packets Processed by the Policer at the Logical Interface

Purpose
Verify the traffic flow through the logical interface and that the policer is evaluated when packets are received on the logical interface.

Action
Use the `show firewall` operational mode command for the filter you applied to the logical interface.

```
user@host> show firewall filter ipv4-filter
```

<table>
<thead>
<tr>
<th>Filter: ipv4-filter</th>
<th>Policers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Packets</td>
</tr>
<tr>
<td>shared-policer-A-tcp-police-1</td>
<td>32863</td>
</tr>
<tr>
<td>shared-policer-A-tcp-police-2</td>
<td>3870</td>
</tr>
</tbody>
</table>

The command output displays the name of policer (`shared-policer-A`), the name of the filter term (`police-1`) under which the policer action is specified, and the number of packets that matched the filter term. This is only the number of out-of-specification (out-of-spec) packet counts, not all packets policed by the policer.

SEE ALSO

- Firewall Filter Match Conditions Based on Numbers or Text Aliases | 875
- Firewall Filter Match Conditions Based on Bit-Field Values | 876
- Firewall Filter Match Conditions Based on Address Fields | 882
- Firewall Filter Match Conditions Based on Address Classes | 892
- Two-Color Policer Configuration Overview | 1763
- Physical Interface Policer Overview | 1928

RELATED DOCUMENTATION

- Firewall Filter Match Conditions Based on Numbers or Text Aliases | 875
CHAPTER 34

Configuring Policers on Switches

IN THIS CHAPTER

- Overview of Policers | 1940
- Traffic Policer Types | 1946
- Understanding the Use of Policers in Firewall Filters | 1950
- Understanding Tricolor Marking Architecture | 1954
- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
- Assigning Multifield Classifiers in Firewall Filters to Specify Packet-Forwarding Behavior (CLI Procedure) | 1958
- Configuring Tricolor Marking Policers | 1960
- Understanding Policers with Link Aggregation Groups | 1962
- Understanding Color-Blind Mode for Single-Rate Tricolor Marking | 1963
- Understanding Color-Aware Mode for Single-Rate Tricolor Marking | 1964
- Understanding Color-Blind Mode for Two-Rate Tricolor Marking | 1965
- Understanding Color-Aware Mode for Two-Rate Tricolor Marking | 1966
- Example: Using Two-Color Policers and Prefix Lists | 1968
- Example: Using Policers to Manage Oversubscription | 1972
- Assigning Forwarding Classes and Loss Priority | 1975
- Configuring Color-Blind Egress Policers for Medium-Low PLP | 1977
- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Verifying That Two-Color Policers Are Operational | 1981
- Verifying That Three-Color Policers Are Operational | 1981
- Troubleshooting Policer Configuration | 1982
- Troubleshooting Policer Configuration | 1984
Overview of Policers

A switch polices traffic by limiting the input or output transmission rate of a class of traffic according to user-defined criteria. Policing (or rate-limiting) traffic allows you to control the maximum rate of traffic sent or received on an interface and to provide multiple priority levels or classes of service.

Policing is also an important component of firewall filters. You can achieve policing by including policers in firewall filter configurations.

Policer Overview

You use policers to apply limits to traffic flow and set consequences for packets that exceed these limits—usually applying a higher loss priority—so that if packets encounter downstream congestion, they can be discarded first. Policers apply only to unicast packets.

Policers provide two functions: metering and marking. A policer meters (measures) each packet against traffic rates and burst sizes that you configure. It then passes the packet and the metering result to the marker, which assigns a packet loss priority that corresponds to the metering result. Figure 88 on page 1941 illustrates this process.
After you name and configure a policer, you can use it by specifying it as an action in one or more firewall filters.

Policer Types

A switch supports three types of policers:

- **Single-rate two-color marker**—A two-color policer (or “policer” when used without qualification) meters the traffic stream and classifies packets into two categories of packet loss priority (PLP) according to a configured bandwidth and burst-size limit. You can mark packets that exceed the bandwidth and burst-size limit with a specified PLP or simply discard them.

 You can specify this type of policer in an ingress or egress firewall.

 NOTE: A two-color policer is most useful for metering traffic at the port (physical interface) level.

- **Single-rate three-color marker**—This type of policer is defined in RFC 2697, *A Single Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on one rate—the configured committed information rate (CIR) as well as the committed burst size (CBS) and the excess burst size (EBS). The CIR specifies the average rate at which bits are admitted to the switch. The CBS specifies the usual burst size in bytes and the EBS specifies the maximum burst size in bytes. The EBS must be greater than or equal to the CBS, and neither can be 0.

 You can specify this type of policer in an ingress or egress firewall.

 NOTE: A single-rate three-color marker (TCM) is most useful when a service is structured according to packet length and not peak arrival rate.

- **Two-rate three-color marker**—This type of policer is defined in RFC 2698, *A Two Rate Three Color Marker*, as part of an assured forwarding per-hop-behavior classification system for a Differentiated Services...
environment. This type of policer meters traffic based on two rates—the CIR and peak information rate (PIR) along with their associated burst sizes, the CBS and peak burst size (PBS). The PIR specifies the maximum rate at which bits are admitted to the network and must be greater than or equal to the CIR.

You can specify this type of policer in an ingress or egress firewall.

NOTE: A two-rate three-color policer is most useful when a service is structured according to arrival rates and not necessarily packet length.

See [Table 111 on page 1672](#) for information about how metering results are applied for each of these policer types.

Policer Actions

Policer actions are implicit or explicit and vary by policer type. *Implicit* means that Junos OS assigns the loss priority automatically. [Table 111 on page 1672](#) describes the policer actions.

<table>
<thead>
<tr>
<th>Policer</th>
<th>Marking</th>
<th>Implicit Action</th>
<th>Configurable Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-rate two-color</td>
<td>Green (conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (nonconforming)</td>
<td>None</td>
<td>Discard</td>
</tr>
<tr>
<td>Single-rate three-color</td>
<td>Green (conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Yellow (above the CIR and CBS)</td>
<td>Assign medium-high loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (above the EBS)</td>
<td>Assign high loss priority</td>
<td>Discard</td>
</tr>
<tr>
<td>Two-rate three-color</td>
<td>Green (conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Yellow (above the CIR and CBS)</td>
<td>Assign medium-high loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (above the PIR and PBS)</td>
<td>Assign high loss priority</td>
<td>Discard</td>
</tr>
</tbody>
</table>

NOTE: If you specify a policer in an egress firewall filter, the only supported action is **discard**.
Policer Colors

Single-rate and two-rate three-color policers can operate in two modes:

- **Color-blind**—In color-blind mode, the three-color policer assumes that all packets examined have not been previously marked or metered. In other words, the three-color policer is “blind” to any previous coloring a packet might have had.

- **Color-aware**—In color-aware mode, the three-color policer assumes that all packets examined have been previously marked or metered. In other words, the three-color policer is “aware” of the previous coloring a packet might have had. In color-aware mode, the three-color policer can increase the PLP of a packet but cannot decrease it. For example, if a color-aware three-color policer meters a packet with a medium PLP marking, it can raise the PLP level to high but cannot reduce the PLP level to low.

Filter-Specific Policers

You can configure policers to be filter-specific, which means that Junos OS creates only one policer instance regardless of how many times the policer is referenced. When you do this on some QFX switches, rate limiting is applied in aggregate, so if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, the total bandwidth allowed by the filter is 1 Gbps. However, the behavior of a filter-specific policer is affected by how the firewall filter terms that reference the policer are stored in TCAM. If you create a filter-specific policer and reference it in multiple firewall filter terms, the policer allows more traffic than expected if the terms are stored in different TCAM slices. For example, if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms that are stored in three separate memory slices, the total bandwidth allowed by the filter is 3 Gbps, not 1 Gbps. (This behavior does not occur in QFX10000 switches.)

To prevent this unexpected behavior from occurring, use the information about TCAM slices presented in "Planning the Number of Firewall Filters to Create" on page 1520 to organize your configuration file so that all the firewall filter terms that reference a given filter-specific policer are stored in the same TCAM slice.

Suggested Naming Convention for Policers

We recommend that you use the naming convention policertypeTCM#-color type when configuring three-color policers and policer# when configuring two-color policers. TCM stands for three-color marker. Because policers can be numerous and must be applied correctly to work, a simple naming convention makes it easier to apply the policers properly. For example, the first single-rate, color-aware three-color policer configured would be named srTCM1-ca. The second two-rate, color-blind three-color configured would be named trTCM2-cb. The elements of this naming convention are explained below:

- **sr** (single-rate)
- **tr** (two-rate)
• TCM (tricolor marking)
• 1 or 2 (number of marker)
• ca (color-aware)
• cb (color-blind)

Policer Counters

On some QFX switches, each policer that you configure includes an implicit counter that counts the number of packets that exceed the rate limits that are specified for the policer. If you use the same policer in multiple terms—either within the same filter or in different filters—the implicit counter counts all the packets that are policed in all of these terms and provides the total amount. (This does not apply to QFX10000 switches.) If you want to obtain separate packet counts for each term on an affected switch, use these options:

• Configure a unique policer for each term.
• Configure only one policer, but use a unique, explicit counter in each term.

Policer Algorithms

Policing uses the token-bucket algorithm, which enforces a limit on average bandwidth while allowing bursts up to a specified maximum value. It offers more flexibility than the leaky bucket algorithm in allowing a certain amount of bursty traffic before it starts discarding packets.

NOTE: In an environment of light bursty traffic, QFX5200 might not replicate all multicast packets to two or more downstream interfaces. This occurs only at a line rate burst—if traffic is consistent, the issue does not occur. In addition, the issue occurs only when packet size increases beyond 6k in a one gigabit traffic flow.

How Many Policers Are Supported?

QFX10000 switches support 8K policers (all policer types). QFX5100 and QFX5200 switches support 1535 ingress policers and 1024 egress policers (assuming one policer per firewall filter term). QFX5110 switches support 6144 ingress policers and 1024 egress policers (assuming one policer per firewall filter term).

QFX3500 and QFX3600 standalone switches and QFabric Node devices support the following numbers of policers (assuming one policer per firewall filter term):
• Two-color policers used in ingress firewall filters: 767
• Three-color policers used in ingress firewall filters: 767
• Two-color policers used in egress firewall filters: 1022
• Three-color policers used in egress firewall filters: 512

Policers Can Limit Egress Firewall Filters

On some switches, the number of egress policers that you configure can affect the total number of allowed egress firewall filters. (This does not apply to QFX10000 switches.) Every policer has two implicit counters that consume two entries in a 1024-entry TCAM that is used for counters, including counters that are configured as action modifiers in firewall filter terms. (Policers consume two entries because one is used for green packets and one is used for nongreen packets regardless of policer type.) If the TCAM becomes full, you cannot commit any more egress firewall filters that have terms with counters. For example, if you configure and commit 512 egress policers (two-color, three-color, or a combination of both policer types), all of the memory entries for counters are used up. If later in your configuration file you insert additional egress firewall filters with terms that also include counters, none of the terms in those filters are committed because there is no available memory space for the counters.

Here are some additional examples:

• Assume that you configure egress filters that include a total of 512 policers and no counters. Later in your configuration file you include another egress filter with 10 terms, 1 of which has a counter action modifier. None of the terms in this filter are committed because there is not enough TCAM space for the counter.

• Assume that you configure egress filters that include a total of 500 policers, so 1000 TCAM entries are occupied. Later in your configuration file you include the following two egress filters:
 - Filter A with 20 terms and 20 counters. All the terms in this filter are committed because there is enough TCAM space for all the counters.
 - Filter B comes after Filter A and has five terms and five counters. None of the terms in this filter are committed because there is not enough memory space for all the counters. (Five TCAM entries are required but only four are available.)

You can prevent this problem by ensuring that egress firewall filter terms with counter actions are placed earlier in your configuration file than terms that include policers. In this circumstance, Junos OS commits policers even if there is not enough TCAM space for the implicit counters. For example, assume the following:

• You have 1024 egress firewall filter terms with counter actions.
• Later in your configuration file you have an egress filter with 10 terms. None of the terms have counters but one has a policer action modifier.
You can successfully commit the filter with 10 terms even though there is not enough TCAM space for the implicit counters of the policer. The policer is committed without the counters.

RELATED DOCUMENTATION

Understanding Color-Blind Mode for Single-Rate Tricolor Marking	1963
Understanding Color-Blind Mode for Two-Rate Tricolor Marking	1965
Understanding Color-Aware Mode for Single-Rate Tricolor Marking	1964
Understanding Color-Aware Mode for Two-Rate Tricolor Marking	1966
Configuring Two-Color and Three-Color Policers to Control Traffic Rates	1977

Traffic Policer Types

IN THIS SECTION

- Single-Rate Two-Color Policers | 1946
- Three-Color Policers | 1947
- Two-Color and Three-Color Policer Options | 1948

Single-Rate Two-Color Policers

You can use a single-rate two-color policer, or "policer" when used without qualification, to rate-limit a traffic flow to an average bits-per-second arrival rate (specified by the single specified bandwidth limit) while allowing bursts of traffic for short periods (controlled by the single specified burst-size limit). This type of policer categorizes a traffic flow as either green (conforming) or red (nonconforming). Packets in a green flow are implicitly set to a low loss priority and then transmitted. Packets in a red flow are handled according to actions specified in the policer configuration. Packets in a red flow can be marked—set to a specified forwarding class, set to a specified loss priority, or both—or they can be discarded.

A single-rate two-color policer is most useful for metering traffic at the port (physical interface) level.

Basic Single-Rate Two-Color Policer

You can apply a basic single-rate two-color policer to Layer 3 traffic in either of two ways: as an interface policer or as a firewall filter policer. You can apply the policer as an interface policer, meaning that you apply the policer directly to a logical interface at the protocol family level. If you want to apply the policer
to selected packets only, you can apply the policer as a *firewall filter policer*, meaning that you reference the policer in a stateless firewall filter term and then apply the filter to a logical interface at the protocol family level.

Bandwidth Policer

A bandwidth policer is simply a single-rate two-color policer that is defined using a bandwidth limit specified as a percentage value rather than as an absolute number of bits per second. When you apply the policer (as an interface policer or as a firewall filter policer) to a logical interface at the protocol family level, the effective bandwidth limit is calculated based on either the physical interface media rate or the logical interface configured shaping rate.

Logical Bandwidth Policer

A logical bandwidth policer is a bandwidth policer for which the effective bandwidth limit is calculated based on the logical interface configured shaping rate. You can apply the policer as a firewall filter policer only, and the firewall filter must be configured as an interface-specific filter. When you apply an interface-specific filter to multiple logical interfaces on supported routing platforms, any *count or policer* actions act on the traffic stream entering or exiting each individual interface, regardless of the sum of traffic on the multiple interfaces.

Three-Color Policers

The Junos OS supports two types of three-color policers: single-rate and two-rate. The main difference between a single-rate and a two-rate policer is that the single-rate policer allows bursts of traffic for short periods, while the two-rate policer allows more sustained bursts of traffic. Single-rate policing is implemented using a single token-bucket model, so that periods of relatively low traffic must occur between traffic bursts to allow the token bucket to refill. Two-rate policing is implemented using a dual token-bucket model, which allows bursts of traffic for longer periods.

Single-Rate Three-Color Policers

The single-rate three-color type of policer is defined in RFC 2697, *A Single Rate Three Color Marker*. You use this type of policer to rate-limit a traffic flow to a single rate and three traffic categories (green, yellow, and red). A single-rate three-color policer defines a *committed* bandwidth limit and burst-size limit plus an excess burst-size limit. Traffic that conforms to the committed traffic limits is categorized as green (conforming). Traffic that conforms to the bandwidth limit while allowing bursts of traffic as controlled by the excess burst-size limit is categorized as yellow. All other traffic is categorized as red. A single-rate three-color policer is most useful when a service is structured according to packet length, not peak arrival rate.

Two-Rate Three-Color Policers

The two-rate three-color type of policer is defined in RFC 2698, *A Two Rate Three Color Marker*. You use this type of policer to rate-limit a traffic flow to two rates and three traffic categories (green, yellow, and red). A two-rate three-color policer defines a *committed* bandwidth limit and burst-size limit plus a *peak* bandwidth limit and burst-size limit. Traffic that conforms to the committed traffic limits is categorized as
green (conforming). Traffic that exceeds the committed traffic limits but remains below the peak traffic limits is categorized as yellow. Traffic that exceeds the peak traffic limits is categorized as red.

A two-rate three-color policer is most useful when a service is structured according to arrival rates and not necessarily packet length.

Two-Color and Three-Color Policer Options

Both two-color and three-color policers can be configured with the following options:

Logical Interface (Aggregate) Policers

A logical interface policer can be a two-color policer, not a three-color policer. When you apply a logical interface policer to multiple protocol families on the same logical interface, multiple instances of the policer are created, meaning that traffic for each protocol family is policed separately. You apply a logical interface policer directly to a logical interface configuration (and not by referencing the policer in a stateless firewall filter and then applying the filter to the logical interface).

- You can apply the policer at the interface logical unit level to rate-limit all traffic types, regardless of the protocol family.

 When applied in this manner, the logical interface policer will be used by all traffic types (inet, inet6, etc.) and across all layers (layer 2, layer 3) no matter where the policer is attached on the logical interface.

- You can also apply the policer at the logical interface protocol family level, to rate-limit traffic for a specific protocol family.

You can apply a logical interface policer to unicast traffic only. For information about configuring a stateless firewall filter for flooded traffic, see “Applying Forwarding Table Filters” in the “Traffic Sampling, Forwarding, and Monitoring” section of the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*.

Physical Interface Policers

A physical interface policer can be a two-color or three-color policer. When you apply physical interface policer, to different protocol families on the same logical interface, the protocol families share the same policer instance. This means that rate limiting is performed aggregately for the protocol families for which the policer is applied. This feature enables you to use a single policer instance to perform aggregate policing.
for different protocol families on the same physical interface. If you want a policer instance to be associated with a protocol family, the corresponding physical interface filter needs to be applied to that protocol family. The policer is not automatically applied to all protocol families configured on the physical interface.

In contrast, with logical interface policers there are multiple separate policer instances.

Policers Applied to Layer 2 Traffic

In addition to hierarchical policing, you can also apply single-rate two-color policers and three-color policers (both single-rate and two-rate) to Layer 2 input or output traffic. You must configure the two-color or three-color policer as a logical interface policer and reference the policer in the interface configuration at the logical unit level, and not at the protocol level. You cannot apply a two-color or three-color policer to Layer 2 traffic as a stateless firewall filter action.

Multifield Classification

Like behavior aggregate (BA) classification, which is sometimes referred to as class-of-service (CoS) value traffic classification, multifield classification is a method of classifying incoming traffic by associating each packet with a forwarding class, a packet loss priority level, or both. The CoS scheduling configuration assigns packets to output queues based on forwarding class. The CoS random early detection (RED) process uses the drop probability configuration, output queue fullness percentage, and packet loss priority to drop packets as needed to control congestion at the output stage.

BA classification and multifield classification use different fields of a packet to perform traffic classification. BA classification is based on a CoS value in the IP packet header. Multifield classification can be based on multiple fields in the IP packet header, including CoS values. Multifield classification is used instead of BA classification when you need to classify packets based on information in the packet other than the CoS values only. Multifield classification is configured using a stateless firewall filter term that matches on any packet header fields and associates matched packets with a forwarding class, a loss priority, or both. The forwarding class or loss priority can be set by a firewall filter action or by a policer referenced as a firewall filter action.

RELATED DOCUMENTATION

Controlling Network Access Using Traffic Policing Overview	1669
Order of Policer and Firewall Filter Operations	1678
Two-Color Policer Configuration Overview	1763
Three-Color Policer Configuration Overview	1877
Two-Color Policing at Layer 2 Overview	1735
Three-Color Policing at Layer 2 Overview	1737
Policing, or rate limiting, is an important component of firewall filters that lets you control the amount of traffic that enters an interface on Juniper Networks EX Series Ethernet Switches. You can achieve policing by including policers in firewall filter configurations.

Policers Overview

You can use policers to specify rate limits on traffic. A firewall filter configured with a policer permits only traffic within a specified set of rate limits, thereby providing protection from denial-of-service (DoS) attacks. Traffic that exceeds the rate limits specified by the policer is either discarded immediately or is marked as lower priority than traffic that is within the rate limits. The switch discards the lower-priority traffic when there is traffic congestion.

A policer applies two types of rate limits on traffic:

- **Bandwidth**—The number of bits per second permitted, on average.
- **Maximum burst size**—The maximum size permitted for bursts of data that exceed the given bandwidth limit.

Policing uses an algorithm to enforce a limit on average bandwidth while allowing bursts up to a specified maximum value. You can define specific classes of traffic on an interface and apply a set of rate limits to each class. After you name and configure a policer, it is stored as a template. You can then use the policer in a firewall filter configuration.

On all EX Series switches except Juniper Networks EX8200 Ethernet Switches, each policer that you configure includes an implicit counter that counts the number of packets that exceed the rate limit specified for the policer. Each EX8200 switch contains three global management counters. You must assign ingress policers to these global management counters to obtain policer statistics. You can assign any number of ingress policers to each global management counter. The policer statistics for each global management
counter are the aggregate of the policer statistics for all policers associated with that global management counter.

To get filter-specific packet counts, you must configure a different policer for each firewall filter. Policers give term-specific counts by default.

Policer Types

Switches support three types of policers:

- **Single-rate two-color**—A two-color policer (sometimes called simply "policer") meters the traffic stream and classifies packets into two categories of packet loss priority (PLP) according to a configured bandwidth and burst-size limit. You can mark packets that exceed the bandwidth and burst-size limit or simply discard them. A two-color policer is most useful for metering traffic at the port (physical interface) level.

- **Single-rate three-color**—This type of policer is defined in RFC 2697, *A Single Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on the configured committed information rate (CIR), committed burst size (CBS), and the excess burst size (EBS). Traffic is marked as belonging to one of three categories (green, yellow, or red) based on whether the packets are arriving at rates that are below the CBS (green), exceed the CBS but not the EBS (yellow), or exceed the EBS (red). A single-rate three-color policer is most useful when a service is structured according to packet size and not according to peak arrival rate.

- **Two-rate three-color**—This type of policer is defined in RFC 2698, *A Two Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on the configured CIR and the peak information rate (PIR), along with their associated burst sizes; the CBS, and the peak burst size (PBS). Traffic is marked as belonging to one of three categories (green, yellow, or red) based on packets are arriving at rates that are below the CIR (green), exceed the CIR but not the PIR (yellow), or exceed the PIR (red). A two-rate three-color policer is most useful when a service is structured according to arrival rates and not to packet size.

Policer Actions

Policer actions can be implicit or explicit and vary by policer type. The term implicit means that Junos OS assigns a loss-priority value automatically; explicit means that you configure the action. *Table 122 on page 1952* lists policer actions.
Table 122: Policer Actions

<table>
<thead>
<tr>
<th>Policer</th>
<th>Marking</th>
<th>Implicit Action</th>
<th>Configurable Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-rate two-color</td>
<td>Green (Conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (Nonconforming)</td>
<td>None</td>
<td>Assign low or high loss priority, assign a forwarding class, or discard</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Single-rate three-color</td>
<td>Green (Conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (Above the EBS)</td>
<td>Assign high loss priority</td>
<td>Discard</td>
</tr>
<tr>
<td></td>
<td>Yellow (Exceeds the CBS but not the EBS)</td>
<td>Assign high loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Not supported on EX8200 switches</td>
<td>NOTE: Not supported on EX8200 switches</td>
</tr>
<tr>
<td>Two-rate three-color</td>
<td>Green (Conforming)</td>
<td>Assign low loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Red (Above the PIR)</td>
<td>Assign high loss priority</td>
<td>Discard</td>
</tr>
<tr>
<td></td>
<td>Yellow (Exceeds the CIR but not the PIR)</td>
<td>Assign high loss priority</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Not supported on EX8200 switches</td>
<td>NOTE: Not supported on EX8200 switches</td>
</tr>
</tbody>
</table>

NOTE: You cannot apply a policer with an action of `forwarding-class` to an output firewall filter.

NOTE: Beginning with Junos OS Release 17.1, on EX4300 switches, you can configure the policer action `loss-priority` to be `low`, `medium-low`, `medium-high`, or `high`.

Policer Levels

You can configure policers at the queue level, logical interface level, or Layer 2 (MAC) level. Only a single policer is applied to a packet at the egress queue. The search for policers occurs in this order:
• Queue level
• Logical interface level
• Layer 2 (MAC) level

Color Modes

Tricolor marking (TCM) policers are not bound by a green-yellow-red coloring convention. Packets are marked with low or high PLP bit configurations based on color. Therefore, both three-color policer types (single-rate and two-rate) extend the functionality of class-of-service (CoS) traffic policing by providing three levels of drop precedence (loss priority) instead of the two normally available in policers. Both single-rate and two-rate three-color policer types can operate in two modes:

• Color-blind—In color-blind mode, the three-color policer operates without reference to whether the examined packets have been previously marked or metered. In other words, the three-color policer is blind to any previous coloring a packet might have had.

• Color-aware—In color-aware mode, the three-color policer operates with reference to any previous marking or metering of the examined packets. In other words, the three-color policer is aware of the previous coloring a packet might have had. In color-aware mode, the three-color policer can increase the PLP of a packet but can never decrease it. For example, if a color-aware three-color policer meters a packet with a low PLP marking, it can raise the PLP level to high. But it cannot reduce a high PLP level to low.

Naming Conventions for Policers

We recommend you use the naming convention `rate-TCMnumber-colortype` when configuring three-color policers. TCM stands for tricolor marking. Because policers can be numerous and must be applied correctly to work, observing a simple naming convention makes it easier to apply the policers properly.

For example, if you configure a single-rate, three-color, color-aware policer, name it `srTCM1-ca`. If you configure a two-rate, three-color, color-blind policer, name it `trTCM2-cb`.

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Beginning with Junos OS Release 17.1, on EX4300 switches, you can configure the policer action <code>loss-priority</code> to be low, medium-low, medium-high, or high.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION
Understanding Tricolor Marking Architecture

Tricolor marking (TCM) policers provide two functions: metering and marking. A policer meters each packet and passes the packet and the metering result to the marker.

The meter operates in two modes. In the color-blind mode, the meter treats the packet stream as uncolored. Any preset loss priorities are ignored. In the color-aware mode, the meter inspects the packet loss priority (PLP) field, which has been set by an upstream device as high or low; in other words, the PLP field has already been set by a behavior aggregate (BA) or multifield (MF) classifier. The marker changes the PLP of each incoming IP packet according to the results of the meter.

Single-rate TCM is so called because traffic is policed according to one rate—the committed burst rate (CBR)—and two burst sizes: the committed burst size (CBS) and the excess burst size (EBS). The configured information rate (CIR) specifies the average rate at which bits are admitted to the network. The CBS specifies the usual burst size in bytes and the EBS specifies the maximum burst size in bytes for packets that are admitted to the network. The EBS is greater than or equal to the CBS, and neither can be 0. As each packet enters the network, its bytes are counted. Packets that do not exceed the CBS are marked low PLP. Packets that exceed the peak information rate (PIR) are marked high PLP.

Two-rate TCM is so called because traffic is policed according to two rates: the CIR and the PIR. The PIR is greater than or equal to the CIR. The CIR specifies the average rate at which bits are admitted to the network, and the PIR specifies the maximum rate at which bits are admitted to the network. As each packet enters the network, its bits are counted. Bits in packets that do not exceed the CIR have their packets marked low PLP. Bits in packets that exceed the PIR have their packets marked high PLP.

RELATED DOCUMENTATION

- Understanding the Use of Policers in Firewall Filters | 1950
- Configuring Tricolor Marking Policers | 1960
Configuring Policers to Control Traffic Rates (CLI Procedure)

You can configure policers to rate limit traffic on EX Series switches. After you configure a policer, you can include it in an ingress firewall filter configuration.

When you configure a firewall filter, you can specify a policer action for any term or terms within the filter. All traffic that matches a term that contains a policer action goes through the policer that the term references. Each policer that you configure includes an implicit counter. To get term-specific packet counts, you must configure a separate policer for each filter term that requires policing.

NOTE: On all EX Series switches except EX8200 switches, each policer that you configure includes an implicit counter. To ensure term-specific packet counts, configure a policer for each term in the filter that requires policing. For EX8200 switches, configure a policer and associate it with a global management counter using the counter option.

The following policer limits apply on a switch:

- A maximum of 512 policers can be configured for port firewall filters.
- A maximum of 512 policers can be configured for VLAN and Layer 3 firewall filters.

If the number of policers in the firewall filter configuration exceeds these limits, the switch returns the following message when you commit the configuration:

Cannot assign policers: Max policer limit reached

This topic includes these tasks:

1. Configuring Policers | 1955
2. Specifying Policers in a Firewall Filter Configuration | 1957
3. Applying a Firewall Filter That Is Configured with a Policer | 1957

Configuring Policers

To configure a policer:
1. Specify the name of the policer:

 [edit firewall]
 user@switch# set policer policer-one

 The policer name can include letters, numbers, and hyphens (-) and can contain up to 64 characters.

2. Specify the filter-specific statement to configure a policer to act as a filter-specific policer; else proceed to step 3:

 [edit firewall]
 user@switch# set policer policer-one filter-specific

 If you do not specify the filter-specific statement, the policer acts as a term-specific policer by default.

3. Configure rate limiting for the policer:
 a. Specify the bandwidth limit in bits per second (bps) to control the traffic rate on an interface:

 [edit firewall policer policer-one]
 user@switch# set if-exceeding bandwidth-limit 300k

 The range for the bandwidth limit is 1k through 102.3gbps.

 b. Specify the burst-size limit (the maximum allowed burst size in bytes) to control the amount of traffic bursting:

 [edit firewall policer policer-one]
 user@switch# set if-exceeding burst-size-limit 500k

 To determine the value for the burst-size limit, multiply the bandwidth of the interface on which the filter is applied by the amount of time to allow a burst of traffic at that bandwidth to occur:

 burst size = (bandwidth) * (allowable time for burst traffic)

 The range for the burst-size limit is 1 through 2,147,450,880 bytes.

4. Specify the policer action discard to discard packets that exceed the rate limits:

 [edit firewall policer]
 user@switch# set policer-one then (Policer Action) discard

 Discard is the only supported policer action.

5. On EX8200 switches, you must assign a global management counter to the policer to obtain policer statistics:
[edit firewall policer]
user@switch# set policer-one counter counter-id 0

In this sample statement, the global management counter ID is 0. You can assign any number of policers to the global management counter. The policer statistics displayed for each counter are the collective statistics of all policers assigned to that counter.

Specifying Policers in a Firewall Filter Configuration

To reference a policer for a single firewall, configure a filter term that includes the policer action:

[edit firewall family ethernet-switching]
user@switch# set filter limit-hosts term term-one from source-address 192.0.2.0/28
users@witch# set filter limit-hosts term term-one then policer policer-one

Applying a Firewall Filter That Is Configured with a Policier

A firewall filter that is configured with one or more policer actions, like any other firewall filter, must be applied to a port, VLAN, or Layer 3 interface. For information about applying firewall filters, see the sections on applying firewall filters in “Configuring Firewall Filters (CLI Procedure)” on page 1455.

RELATED DOCUMENTATION

Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467
Configuring Firewall Filters (CLI Procedure)	1455
Verifying That Policers Are Operational	1509
Understanding the Use of Policers in Firewall Filters	1950
Assigning Multifield Classifiers in Firewall Filters to Specify Packet-Forwarding Behavior (CLI Procedure)

You can configure firewall filters with multifield classifiers to classify packets transiting a port, VLAN, or Layer 3 interface on an EX Series switch.

You specify multifield classifiers in a firewall filter configuration to set the forwarding class and packet loss priority (PLP) for incoming or outgoing packets. By default, the data traffic that is not classified is assigned to the best-effort class associated with queue 0.

You can specify any of the following default forwarding classes:

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>0</td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>1</td>
</tr>
<tr>
<td>expedited-forwarding</td>
<td>5</td>
</tr>
<tr>
<td>network-control</td>
<td>7</td>
</tr>
</tbody>
</table>

To assign multifield classifiers in firewall filters:

1. Configure the family name and filter name for the filter at the [edit firewall] hierarchy level, for example:

 [edit firewall]
 user@switch# set family ethernet-switching
 user@switch# set family ethernet-switching filter ingress-filter

2. Configure the terms of the filter, including the forwarding-class and loss-priority action modifiers as appropriate. When you specify a forwarding class you must also specify the packet loss priority. For example, each of the following terms examines different packet header fields and assigns an appropriate classifier and the packet loss priority:

 • The term voice-traffic matches packets on the voice-vlan and assigns the forwarding class expedited-forwarding and packet loss priority low:

 [edit firewall family ethernet-switching filter ingress-filter]
 user@switch# set term voice-traffic from vlan-id voice-vlan
 user@switch# set term voice-traffic then forwarding-class expedited-forwarding
 user@switch# set term voice-traffic then loss-priority low
• The term **data-traffic** matches packets on **employee-vlan** and assigns the forwarding class **assured-forwarding** and packet loss priority **low**:

```console
[edit firewall family ethernet-switching filter ingress-filter]
user@switch# set term data-traffic from vlan-id employee-vlan
user@switch# set term data-traffic then forwarding-class assured-forwarding
user@switch# set term data-traffic then loss-priority low
```

• Because loss of network-generated packets can jeopardize proper network operation, delay is preferable to discard of packets. The following term, **network-traffic**, assigns the forwarding class **network-control** and packet loss priority **low**:

```console
[edit firewall family ethernet-switching filter ingress-filter]
user@switch# set term network-traffic from precedence net-control
user@switch# set term network-traffic then forwarding-class network
user@switch# set term network-traffic then loss-priority low
```

• The last term **accept-traffic** matches any packets that did not match on any of the preceding terms and assigns the forwarding class **best-effort** and packet loss priority **low**:

```console
[edit firewall family ethernet-switching filter ingress-filter]
user@switch# set term accept-traffic from precedence net-control
user@switch# set term accept-traffic then forwarding-class best-effort
user@switch# set term accept-traffic then loss-priority low
```

3. Apply the filter **ingress-filter** to a port, VLAN or Layer 3 interface. For information about applying the filter, see "Configuring Firewall Filters (CLI Procedure)" on page 1455.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches</th>
<th>1467</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifying That Firewall Filters Are Operational</td>
<td>1627</td>
</tr>
<tr>
<td>Monitoring Firewall Filter Traffic</td>
<td>1628</td>
</tr>
<tr>
<td>Defining CoS Classifiers (CLI Procedure)</td>
<td></td>
</tr>
<tr>
<td>Defining CoS Classifiers (J-Web Procedure)</td>
<td></td>
</tr>
<tr>
<td>Configuring Firewall Filters (CLI Procedure)</td>
<td>1455</td>
</tr>
</tbody>
</table>
You can rate-limit traffic on EX Series switches by configuring a policer and specifying it as an action modifier for a term in a firewall filter. By default, if you specify the same policer in multiple terms, Junos OS creates a separate policer instance for each term and applies rate limiting separately for each instance. For example, if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, each policer instance enforces a 1-Gbps limit. In this case, the total bandwidth allowed by the filter is 3 Gbps.

You can also configure a policer to be filter-specific, which means that Junos OS creates only one policer instance regardless of how many times the policer is referenced. When you do this, rate limiting is applied in aggregate, so if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, the total bandwidth allowed by the filter is 1 Gbps.

This topic describes how to configure single-rate and two-rate tricolor marking (TCM) policers, also known as single-rate and two-rate three-color policers. If you want to configure a single-rate two-color policer (also known just as a "policer"), see "Configuring Policers to Control Traffic Rates (CLI Procedure)" on page 1955.

Configuring a Tricolor Marking Policer

A tricolor marking policer polices traffic on the basis of metering rates, including the configured information rate (CIR), the peak information rate (PIR), their associated burst sizes, and any policing actions configured for the traffic. With tri-color marking, you can configure traffic policing according to two separate modes—color-blind and color-aware. In color-blind mode, the current packet loss priority (PLP) value is ignored. In color-aware mode, the current PLP values are considered by the policer, and the policer can increase those values but cannot decrease them.

To configure a tricolor marking (TCM) policer:
1. Specify the name of the policer and (optionally) whether to automatically discard packets with high loss priority (PLP):

```
[edit firewall]
user@switch# set three-color-policer policer-name
user@switch# set three-color-policer policer-name action loss-priority high then discard
```

2. Specify the policer as either single-rate or two-rate and as color-aware or color-blind:

```
[edit firewall three-color-policer policer-name]
user@switch# set rate mode
```

For example:

```
[edit firewall three-color-policer srTCm-1a]
user@switch# set single-rate color-aware
[edit firewall three-color-policer trTCM2-cb]
user@switch# set two-rate color-blind
```

3. For a single-rate TCM policer, configure the CIR, committed burst size (CBS), and excess burst size (EBS):

```
[edit firewall three-color-policer policer-name single-rate]
user@switch# set committed-information-rate bps
user@switch# set committed-burst-size bytes
user@switch# set excess-burst-size bytes
```

4. For a two-rate TCM policer, configure the CIR, CBS, PIR, and peak burst size (PBS):

```
[edit firewall three-color-policer policer-name single-rate]
user@switch# set committed-information-rate bps
user@switch# set committed-burst-size bytes
user@switch# set peak-information-rate bps
user@switch# set peak-burst-size bytes
```

Applying Tricolor Marking Policers to Firewall Filters

To rate-limit traffic by applying a tricolor marking (TCM) policer to a firewall filter:

```
[edit firewall family family filter filter-name term term-name then]
user@switch# set three-color-policer rate stTCM1-ca
```

For example:
You must include either the single-rate statement or the two-rate statement in the reference to the policer in the firewall filter configuration, and this statement must match the configured TCM policer. Otherwise, an error message appears in the configuration listing.

For example, if you configure srTCM1-ca as a single-rate TCM policer and try to apply it as a two-rate policer, the following message appears:

```bash
[edit firewall]
user@switch# set three-color-policer single-rate policer1

[edit firewall]
user@switch# show three-color-policer srTCM1-ca
single-rate {
  color-aware;
  ...
}
user@switch# show filter TESTER
term A {
  then {
    three-color-policer {
      ##
      ## Warning: Referenced two-rate policer does not exist
      ##
      two-rate srTCM;
    }
  }
}
```

RELATED DOCUMENTATION

- Understanding Tricolor Marking Architecture | 1954
- Understanding the Use of Policers in Firewall Filters | 1950

Understanding Policers with Link Aggregation Groups

If you apply a policer to a link aggregation group (LAG) on a standalone switch or QFabric node, the policer applies to all the interfaces in the LAG in aggregate. For example, if you configure a policer to rate-limit at 1 Gbps and apply the policer (by using a firewall filter) to a LAG that has two member interfaces on a single switch or node, the total allowed throughput for both members is 1 Gbps.
If you apply a policer to a LAG that has members on different nodes in a QFabric network Node group or redundant server Node group, the configured rate applies to the interface on each node. For example, if you configure a policer to rate-limit at 1 Gbps and apply the policer to a LAG that has one member on server node A and one member on server node B, the allowed throughput for each member is 1 Gbps, for a total allowed throughput of 2 Gbps.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Overview of Policers</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Two-Color and Three-Color Policers to Control Traffic Rates</td>
<td>1977</td>
</tr>
</tbody>
</table>

Understanding Color-Blind Mode for Single-Rate Tricolor Marking

With the color-blind mode of single-rate tricolor marking, all packets are evaluated against the CBS. If a packet exceeds the CBS, it is evaluated against the EBS. In color-blind mode, the policer supports three loss priorities only: low, medium-high, and high.

Packets that exceed the CBS but are below the EBS are marked yellow (medium-high). Packets that exceed the EBS are marked red (high), as shown in Table 123 on page 1663.

Table 123: Color-Blind Mode TCM Color-to-PLP Mapping

<table>
<thead>
<tr>
<th>Color</th>
<th>PLP</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>low</td>
<td>Conforming.</td>
</tr>
<tr>
<td>Yellow</td>
<td>medium-high</td>
<td>Packet exceeds the CIR and CBS but does not exceed the EBS.</td>
</tr>
<tr>
<td>Red</td>
<td>high</td>
<td>Packet exceeds the EBS.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Overview of Policers</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Color-Blind Egress Policers for Medium-Low PLP</td>
<td>1977</td>
</tr>
</tbody>
</table>
Understanding Color-Aware Mode for Single-Rate Tricolor Marking

In color-aware mode, the treatment the packet receives depends on its classification. Marking can increase a preassigned PLP but cannot decrease it.

Summary of PLP Changes

Table 124 on page 1964 shows how a packet’s incoming priority can be modified with single-rate marking.

Table 124: Color-Aware Mode Single-Rate PLP Mapping

<table>
<thead>
<tr>
<th>Incoming PLP</th>
<th>Packet Metered Against</th>
<th>Possible Cases</th>
<th>Outgoing PLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>CIR, CBS, and EBS</td>
<td>Conforming</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packet exceeds the CIR and CBS but does not exceed the EBS.</td>
<td>medium-high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packet exceeds the EBS.</td>
<td>high</td>
</tr>
<tr>
<td>medium-low</td>
<td>EBS only</td>
<td>Packet does not exceed the EBS.</td>
<td>medium-low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packet exceeds the EBS.</td>
<td>high</td>
</tr>
<tr>
<td>medium-high</td>
<td>EBS only</td>
<td>Packet does not exceed the EBS.</td>
<td>medium-high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packet exceeds the EBS.</td>
<td>high</td>
</tr>
<tr>
<td>high</td>
<td>Not metered by the policer.</td>
<td>All cases.</td>
<td>high</td>
</tr>
</tbody>
</table>

The following sections describe single-rate color-aware PLP mapping in more detail.

Effect on Green Packets (Low PLP)

Packets belonging to the green class have already been marked by a classifier with low PLP. The marking policer can leave the PLP unchanged or increase it to medium-high or high, so these packets are therefore metered against both the CBS and the EBS. For example, if a behavior aggregate or multifeild classifier marks a packet with low PLP and the two-rate TCM policer is in color-aware mode, the output loss priority is as follows:

- If the rate of traffic flow is less than the CIR, packets remain marked as low PLP.
- If bursts exceed the CBS but not the EBS, some of the packets are marked as medium-high PLP, and some of the packets remain marked as low PLP.
• If bursts exceed the EBS, some of the packets are marked as high PLP, and some of the packets remain marked as low PLP.

Effect on Yellow Packets (Medium PLP)

Packets belonging to the yellow class have already been marked by a classifier with medium-low or medium-high PLP. The marking policer can leave the PLP unchanged or increase it to high, so these packets are therefore metered against the EBS only. For example, if a behavior aggregate or multifield classifier marks a packet with medium-low PLP and the two-rate TCM policer is in color-aware mode, the output loss priority is as follows:

• If the rate of traffic flow is less than the CBS, the packets remain marked as medium-low PLP.

• If the rate of traffic flow is greater than the CBS but less than the EBS, the packets remain marked as medium-low PLP.

• If the rate of traffic flow is greater than the EBS, some of the packets are marked as high PLP and some remain marked as medium-low PLP.

If a BA or multifield classifier marks a packet with medium-high PLP and the two-rate TCM policer is in color-aware mode, the policer assigns output loss priority as follows:

• If the rate of traffic flow is less than the CBS, the packets remain marked as medium-high PLP.

• If the rate of traffic flow is greater than the CBS but less than the EBS, the packets remain marked as medium-high PLP.

• If the rate of traffic flow is greater than the EBS, some of the packets are marked as high PLP and some remain marked as medium-high PLP.

Effect on Red Packets (High PLP)

Packets belonging to the red class have already been marked by a classifier with high PLP. Because the policer cannot decrease the PLP, it does not change it, and these packets are not metered against the CBS or the EBS.

RELATED DOCUMENTATION

- Overview of Policers | 1940
- Configuring Color-Blind Egress Policers for Medium-Low PLP | 1977

Understanding Color-Blind Mode for Two-Rate Tricolor Marking

With the color-blind mode of two-rate tricolor marking, all packets are evaluated against the committed information rate (CIR). If a packet exceeds the CIR, it is evaluated against the peak information rate (PIR).
Packets that exceed the CIR but are below the PIR are marked yellow (medium-high). Packets that exceed the PIR are marked red (high).

Table 125: Color-Blind Mode TCM Color-to-PLP Mapping

<table>
<thead>
<tr>
<th>Color</th>
<th>PLP</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>low</td>
<td>Packet does not exceed the CIR.</td>
</tr>
<tr>
<td>Yellow</td>
<td>medium-high</td>
<td>Packet exceeds the CIR but does not exceed the PIR.</td>
</tr>
<tr>
<td>Red</td>
<td>high</td>
<td>Packet exceeds the PIR.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Overview of Policers | 1940
- Configuring Color-Blind Egress Policers for Medium-Low PLP | 1977

Understanding Color-Aware Mode for Two-Rate Tricolor Marking

In color-aware mode, the treatment the packet receives depends on its classification. Marking can increase the preassigned PLP but cannot decrease it.

Summary of PLP Changes

Table 126 on page 1966 shows how a packet’s incoming priority can be modified with two-rate marking.

Table 126: Color-Aware Mode Two-Rate PLP Mapping

<table>
<thead>
<tr>
<th>Incoming PLP</th>
<th>Packet Metered Against</th>
<th>Possible Cases</th>
<th>Outgoing PLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>CIR and PIR</td>
<td>Packet does not exceed the CIR.</td>
<td>low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packet exceeds the CIR but not the PIR.</td>
<td>medium-high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packet exceeds the PIR.</td>
<td>high</td>
</tr>
</tbody>
</table>
The following sections describe color-aware two-rate PLP mapping in more detail.

Effect on Green Packets (Low PLP)

Packets belonging to the green class have already been marked by a classifier with low PLP. The marking policer can leave the packet's PLP unchanged or increase the PLP to medium-high or high. These packets are therefore metered against both the CIR and the PIR. For example, if a behavior aggregate or multifield classifier marks a packet with low PLP and the two-rate TCM policer is in color-aware mode, the output loss priority is as follows:

- If the rate of traffic flow is less than the CIR, the packets remain marked as low PLP.
- If the rate of traffic flow is greater than the CIR but less than the PIR, some of the packets are marked as medium-high PLP and some of the packets remain marked as low PLP.
- If the rate of traffic flow is greater than the PIR, some of the packets are marked as high PLP and some of the packets remain marked as low PLP.

Effect on Yellow Packets (Medium PLP)

Packets belonging to the yellow class have already been marked by a classifier with medium-low or medium-high PLP. The marking policer can leave the PLP unchanged or increase it to high. These packets are therefore metered against the PIR only. For example, if a behavior aggregate (BA) or multifield classifier marks a packet with medium-low PLP and the two-rate TCM policer is in color-aware mode, the policer assigns output loss priority as follows:

- If the rate of traffic flow is less than the CIR, the packets remain marked as medium-low PLP.
• If the rate of traffic flow is greater than the CIR but less than the PIR, the packets remain marked as medium-low PLP.

• If the rate of traffic flow is greater than the PIR, some of the packets are marked as high PLP and some of the packets remain marked as medium-low PLP.

If a BA or multfield classifier marks a packet with medium-high PLP and the two-rate TCM policer is in color-aware mode, the policer assigns output loss priority as follows:

• If the rate of traffic flow is less than the CIR, the packets remain marked as medium-high PLP.

• If the rate of traffic flow is greater than the CIR but less than the PIR, the packets remain marked as medium-high PLP.

• If the rate of traffic flow is greater than the PIR, some of the packets are marked as high PLP and some of the packets remain marked as medium-high PLP.

Effect on Red Packets (High PLP)

Packets belonging to the red class have already been marked by a classifier with high PLP. Because the policer cannot decrease the PLP, it does not change it, and these packets are not metered against the CIR or the PIR.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Overview of Policers</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Color-Blind Egress Policers for Medium-Low PLP</td>
<td>1977</td>
</tr>
</tbody>
</table>

Example: Using Two-Color Policers and Prefix Lists

If you provide specific amounts of bandwidth to internal or external customers, you can use policing to make sure that customers do not consume more bandwidth than they should receive. For example, you might connect many customers to one 10-Gbps interface and want to ensure that none of them congest the interface by using more bandwidth than they have been allotted.

You could accomplish this by creating a two-color policer similar to the following for each customer:

```plaintext
firewall {
    policer Limit-Customer-1 {
        if-exceeding {
            bandwidth-limit 100m;
        }
    }
}
```
burst-size-limit 150m;
} then discard;
}

Creating a policer for each customer is clearly not a scalable solution, however. As an alternative, you can create prefix lists that group classes of customers and then create policers for each prefix list. For example, you could create prefix lists such as **Class-A-Customer-Prefixes**, **Class-B-Customer-Prefixes**, and **Class-C-Customer-Prefixes** (at the [edit policy-options] hierarchy level) and create the following corresponding policers:

```plaintext
firewall {
  policer Class-A {
    if-exceeding {
      bandwidth-limit 100m;
      burst-size-limit 150m;
    }
    then discard;
  }
}

firewall {
  policer Class-B {
    if-exceeding {
      bandwidth-limit 75m;
      burst-size-limit 100m;
    }
    then discard;
  }
}

firewall {
  policer Class-C {
    if-exceeding {
      bandwidth-limit 50m;
      burst-size-limit 75m;
    }
    then discard;
  }
}
```

You must create filter terms that specify the prefix lists in their **from** statements and the corresponding policers in their **then** statements similar to the following:

```plaintext
firewall {
  family inet {
    filter Class-A-Customers {
      term term-1 {
        from {
```
Here are the steps to create this firewall configuration:

1. Create the first policer:

 [edit firewall]
 user@switch# set policer Class-A if-exceeding bandwidth-limit 100m burst-size-limit 150m
 user@switch# set policer Class-A then discard

2. Create the second policer:

 [edit firewall]
 user@switch# set policer Class-B if-exceeding bandwidth-limit 75m burst-size-limit 100m
 user@switch# set policer Class-B then discard

3. Create the third policer:
[edit firewall]
user@switch# set policer Class-C if-exceeding bandwidth-limit 50m burst-size-limit 75m
user@switch# set policer Class-C then discard

4. Create a filter for class A customers:

[edit firewall]
user@switch# edit family inet filter Class-A-Customers

5. Configure the filter to send packets matching the Class-A-Customer-Prefixes prefix list to the Class-A policer:

[edit firewall family inet filter Class-A-Customers]
user@switch# set term term-1 from source-prefix-list Class-A-Customers
user@switch# set term term-1 then policer Class-A

6. Create a filter for class B customers:

[edit firewall]
user@switch# edit family inet filter Class-B-Customers

7. Configure the filter to send packets matching the Class-B-Customer-Prefixes prefix list to the Class-B policer:

[edit firewall family inet filter Class-B-Customers]
user@switch# set term term-1 from source-prefix-list Class-B-Customers
user@switch# set term term-1 then policer Class-B

8. Create a filter for class C customers:

[edit firewall]
user@switch# edit family inet filter Class-C-Customers

9. Configure the filter to send packets matching the Class-C-Customer-Prefixes prefix list to the Class-C policer:

[edit firewall family inet filter Class-C-Customers]
user@switch# set term term-1 from source-prefix-list Class-C-Customers
user@switch# set term term-1 then policer Class-C

10. Apply the filters you created to the appropriate interfaces in the output direction.
NOTE: Note that the implicit deny statement in this filter will block traffic from any source that does not match one of the prefix lists. If you want the filter to allow this traffic, you must include an explicit term for this purpose.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Overview of Policers</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix-list</td>
<td>2076</td>
</tr>
</tbody>
</table>

Example: Using Policers to Manage Oversubscription

You might want to use a policer when an interface is oversubscribed and you want to control what will happen if congestion occurs. For example, you might have servers connected to a switch as listed in Table 127 on page 1972.

Table 127: Servers Connected to Switch

<table>
<thead>
<tr>
<th>Server Type</th>
<th>Connection</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network application server</td>
<td>1-gigabit interface</td>
<td>10.0.0.1</td>
</tr>
<tr>
<td>Authentication server</td>
<td>1-gigabit interface</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>Database server</td>
<td>10-gigabit interface</td>
<td>10.0.0.3</td>
</tr>
</tbody>
</table>

In this example, users access services provided by the network application server, which requests information from the database server as appropriate. When it receives a request from a user, the network application server first contacts the authentication server to verify the user’s credentials. When a user is authenticated and the network application server provides the requested service, all the packets sent from the database server to the application server must transit the 1-Gigabit Ethernet interface connected to the application server twice—once on ingress to the application server and again on egress to the user.

The sequence of events for a user session is as follows:

1. A user connects to the application server and requests a service.

2. The application server requests the user’s credentials and relays them to the authentication server.
3. If the authentication server verifies the credentials, the application server initiates the requested service.

4. The application server requests the files necessary to meet the user’s request from the database server.

5. The database server sends the requested files to the application server.

6. The application server includes the requested files in its response to the user.

Traffic from the database server to the application server might congest the 1-gigabit interface to which that the application server is connected. This congestion might prevent the server from responding to requests from users and creating new sessions for them. You can use policing to make sure that this does not occur.

To create this firewall configuration, perform the following steps on the database server:

1. Create a policer to drop traffic from the database server to the application server if it exceeds certain limits:

 [edit firewall]
 user@switch# set policer Database-Egress-Policer if-exceeding bandwidth-limit 400 burst-size-limit 500m
 user@switch# set policer Database-Egress-Policer then discard

2. Create a filter to examine traffic from the database server to the application server:

 [edit firewall]
 user@switch# edit family inet filter Database-Egress-Filter

3. Configure the filter to apply the policer to traffic egressing the database server and destined for the application server:

 [edit firewall family inet filter Database-Egress-Filter]
 user@switch# set term term-1 from destination-address 10.0.0.1
 user@switch# set term term-1 then policer Database-Egress-Policer

4. If required, configure a term to allow traffic from the database server to other destinations (otherwise the traffic will be dropped by the implicit deny statement):

 [edit firewall family inet filter Database-Egress-Filter]
 user@switch# set term term-2 then accept
Note that omitting a `from` statement causes the term to match all packets, which is the desired behavior.

5. Install the egress filter as an output filter on the database server interface that is connected the application server:

```
[edit interfaces]
user@switch# set xe-0/0/3 unit 0 family inet filter output Database-Egress-Filter
```

Here is how the final configuration would appear:

```
firewall {
  policer Database-Egress-Policer {
    if-exceeding {
      bandwidth-limit 400;
      burst-size-limit 500m;
    }
    then discard;
  }
  family inet {
    filter Database-Egress-Filter {
      term term-1 {
        from {
          destination-address {
            10.0.0.1/24;
          }
        }
        then policer Database-Egress-Policer;
      }
      term term-2 { # If required, include this term so that traffic from the database server to other destinations is allowed.
        then accept;
      }
    }
  }
}
```

RELATED DOCUMENTATION

| Overview of Policers | 1940 |
Assigning Forwarding Classes and Loss Priority

You can configure firewall filters to assign packet loss priority (PLP) and forwarding classes so that if congestion occurs, the marked packets can be dropped according to the priority you set. The valid match conditions are one or more of the six packet header fields: destination address, source address, IP protocol, source port, destination port, and DSCP. In other words, you can set the forwarding class and the PLP for each packet entering or an interface with a specific destination address, source address, IP protocol, source port, destination port, or DSCP.

NOTE: Junos OS assigns forwarding classes and PLP on ingress only. Do not use a filter that assigns forwarding classes or PLP as an egress filter.

When tricolor marking is enabled, a switch supports four PLP designations: low, medium-low, medium-high, and high. You can also specify any of the forwarding classes listed in Table 27 on page 654.

Table 128: Unicast Forwarding Classes

<table>
<thead>
<tr>
<th>Unicast Forwarding Class</th>
<th>For CoS Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>be</td>
<td>Best-effort traffic</td>
</tr>
<tr>
<td>no-loss</td>
<td>Guaranteed delivery for TCP traffic</td>
</tr>
<tr>
<td>fcoe</td>
<td>Guaranteed delivery for Fibre Channel over Ethernet (FCoE) traffic</td>
</tr>
<tr>
<td>nc</td>
<td>Network-control traffic</td>
</tr>
</tbody>
</table>

To assign forwarding classes in firewall filters:

1. Configure the family address type and filter name:

 [edit]
 user@switch# edit firewall family ethernet-switching filter ingress-filter

2. Configure the terms of the filter as appropriate, including the forwarding-class and loss-priority action modifiers. For example, each of the following terms in the filter examines various packet header fields and assigns the appropriate forwarding class and packet loss priority:

 • The term corp-traffic matches all IPv4 packets with a 10.1.1.0/24 source address and assigns the packets to forwarding class no-loss with a loss priority of low:

 [edit firewall family ethernet-switching filter ingress-filter]
 user@switch# set term corp-traffic from source-address 10.1.1.0/24;
user@switch# set term corp-traffic then forwarding-class no-loss
user@switch# set term corp-traffic then loss-priority low

• The term data-traffic matches all IPv4 packets with a 10.1.2.0/24 source address and assigns the packets to forwarding class be (best effort) with a loss priority of medium-high:

[edit firewall family ethernet-switching filter ingress-filter]
user@switch# set term data-traffic from source-address 10.1.2.0/24;
user@switch# set term data-traffic then forwarding-class be
user@switch# set term data-traffic then loss-priority medium-high

• Because the loss of network-generated packets can jeopardize proper network operation, the delay of these packets is preferable to discarding these packets. The term network-traffic assigns the packets with an IP precedence of net-control to forwarding class nc (network control) with a loss priority of low:

[edit firewall family ethernet-switching filter ingress-filter]
user@switch# set term network-traffic from precedence net-control
user@switch# set term network-traffic then forwarding-class nc
user@switch# set term network-traffic then loss-priority low

• The last term accept-traffic matches any packets that did not match on any of the preceding terms and assigns the packets to forwarding class be with a loss priority of high:

[edit firewall family ethernet-switching filter ingress-filter]
user@switch# set term accept-traffic then forwarding-class be
user@switch# set term accept-traffic then loss-priority high

3. Apply the filter ingress-filter to a port, VLAN, or Layer 3 interface. For information about applying the filter, see “Configuring Firewall Filters” on page 1601. (Assigning forwarding classes and PLP is supported only on ingress filters.)

RELATED DOCUMENTATION

Configuring Firewall Filters	1601
Verifying That Firewall Filters Are Operational	758
Monitoring Firewall Filter Traffic	759
Overview of Policers	1940
Understanding CoS Classifiers	
Understanding CoS Forwarding Classes	
Configuring Color-Blind Egress Policers for Medium-Low PLP

If you use color-blind mode and want to configure an egress policer that marks packets to have medium-low PLP, you must configure a single-rate two-color policer at the [edit firewall policer policer-name] hierarchy level, because color-blind mode does not support medium-low priority. For example:

1. Specify the name of the policer, the bandwidth limit in bits per second (bps) to control the traffic rate on an interface, and the maximum allowed burst size to control the amount of traffic bursting:

 [edit]
 user@switch# set firewall policer policer-name if-exceeding bandwidth-limit bytes burst-size-limit bytes

2. Specify medium-low loss priority for matching packets:

 [edit]
 user@switch# set firewall policer policer-name then loss-priority medium-low;

3. Apply the filter to a port, VLAN, or Layer 3 interface.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Overview of Policers</th>
<th>1940</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Color-Blind Mode for Single-Rate Tricolor Marking</td>
<td>1963</td>
</tr>
<tr>
<td>Understanding Color-Blind Mode for Two-Rate Tricolor Marking</td>
<td>1965</td>
</tr>
<tr>
<td>Configuring Firewall Filters</td>
<td>1601</td>
</tr>
<tr>
<td>Configuring Two-Color and Three-Color Policers to Control Traffic Rates</td>
<td>1977</td>
</tr>
</tbody>
</table>

Configuring Two-Color and Three-Color Policers to Control Traffic Rates

You can rate-limit traffic by configuring a policer and specifying it as an action modifier for a term in a firewall filter. By default, if you specify the same policer in multiple terms, Junos OS creates a separate policer instance for each term and applies rate limiting separately for each instance. For example, if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, each policer instance enforces a 1-Gbps limit. In this case, the total bandwidth allowed by the filter is 3 Gbps.

You can also configure a policer to be filter-specific, which means that Junos OS creates only one policer instance regardless of how many times the policer is referenced. When you do this, rate limiting is applied
in aggregate, so if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, the total bandwidth allowed by the filter is 1 Gbps.

NOTE: You can include two-color policer actions on ingress firewall filters only. You can include three-color policer actions on ingress and egress filters.

1. Configuring Two-Color Policers | 1978
2. Configuring Three-Color Policers | 1978
3. Specifying Policers in a Firewall Filter Configuration | 1979
4. Applying a Firewall Filter That Includes a Policer | 1980

Configuring Two-Color Policers

To configure a two-color policer:

1. Specify the name of the policer, the bandwidth limit to control the traffic rate on an interface, and the maximum allowed burst size to control the amount of traffic bursting:

   ```
   [edit firewall]
   user@switch# set policer policer-name <filter-specific> if-exceeding bandwidth-limit bps burst-size-limit bytes
   ```

 The policer name can contain letters, numbers, and hyphens (-) and can have as many as 64 characters. The range for the bandwidth limit is 32000 (32k) through 102,300,000,000 (102300m) bps.

 To determine the value for the burst-size limit, multiply the bandwidth of the interface on which the filter is applied by the amount of time to allow a burst of traffic at that bandwidth to occur and divide the result by 8:

 \[
 \text{maximum burst size} = \frac{(\text{interface bandwidth}) \times \text{allowable time for burst}}{8 \text{ bits/byte}}
 \]

 The range for the burst-size limit is 1 through 2,147,450,880 bytes.

2. Specify the policer action to discard or assign a loss priority to packets that exceed the rate limits:

   ```
   [edit firewall policer policer-name]
   user@switch# set then (discard | loss-priority low | loss-priority high)
   ```

Configuring Three-Color Policers

To configure a three-color policer:
1. Specify the name of the policer and (optionally) whether to automatically discard packets with high loss priority (PLP):

```bash
[edit firewall]
user@switch# set three-color-policer policer-name
user@switch# set three-color-policer policer-name action loss-priority high then discard
```

2. Specify whether the three-color policer should be single-rate or two-rate and whether it should be color-aware or color-blind:

```bash
[edit firewall three-color-policer policer-name]
user@switch# set (single-rate | two-rate) (color-aware | color-blind)
```

3. For single-rate three-color policers, configure the CIR, CBS, and EBS:

```bash
[edit firewall three-color-policer policer-name single-rate]
user@switch# set committed-information-rate bps
user@switch# set committed-burst-size bytes
user@switch# set excess-burst-size bytes
```

4. For two-rate three-color policers, configure the CIR, CBS, PIR, and PBS:

```bash
[edit firewall three-color-policer policer-name single-rate]
user@switch# set committed-information-rate bps
user@switch# set committed-burst-size bytes
user@switch# set peak-information-rate bps
user@switch# set peak-burst-size bytes
```

Specifying Policers in a Firewall Filter Configuration

To use a two-color policer, configure a filter term that includes the action `policer`:

```bash
[edit firewall family family-name]
user@switch# set filter filter-name term name then name
```

For example, the following commands apply a two-color policer to all packets sent from 192.0.2.0/24.

```bash
[edit firewall family family-name]
user@switch# set filter limit—hosts term term1 from source-address 192.0.2.0/24
user@switch# set filter limit—hosts term term1 then policer policer1
```
To use a three-color policer, configure a filter term that includes the action `three-color-policer`:

```
[edit firewall family name]
user@switch# set filter name term name from match-condition
user@switch# set filter name term name then three-color-policer (single-rate | two-rate) name
```

For example, the following commands apply a single-rate three-color policer to all packets received or sent by interface `ge-0/0/6` (depending on whether the filter is an ingress or egress filter).

```
[edit firewall family name]
user@switch# set filter srTCM term term-one from interface ge-0/0/6
user@switch# set filter srTCM term term-one then three-color-policer single-rate srTCM1-ca
```

You must specify whether the three-color policer is single-rate or two-rate, and this must match the policer itself. Otherwise, the configuration listing includes an error message indicating that the three-color policer you referenced in the filter does not exist.

Applying a Firewall Filter That Includes a Policer

A firewall filter that includes one or more policer action modifiers must be applied to a port, VLAN, or Layer 3 interface like any other filter. For information about applying firewall filters, see "Configuring Firewall Filters" on page 1601.

> **NOTE:** You can include two-color policer actions on ingress firewall filters only. You can include three-color policer actions on ingress and egress filters.

RELATED DOCUMENTATION

- Configuring Firewall Filters | 1601
- Overview of Policers | 1940
- Verifying That Two-Color Policers Are Operational | 1981
- Verifying That Three-Color Policers Are Operational | 1981
- Configuring Color-Blind Egress Policers for Medium-Low PLP | 1977
Verifying That Two-Color Policers Are Operational

Purpose
Verify that two-color policers in firewall filter configurations are working properly.

Action
Use the `show firewall policer` operational mode command to verify that the polcers are working properly:

```
user@switch> show firewall policer
```

```
Filter: egress-vlan-watch-employee
Filter: ingress-port-filter
Filter: ingress-port-limit-tcp-icmp
Policers:
<table>
<thead>
<tr>
<th>Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-connection-policer</td>
<td>10</td>
</tr>
<tr>
<td>tcp-connection-policer</td>
<td>539</td>
</tr>
<tr>
<td>Filter: ingress-vlan-rogue-block</td>
<td></td>
</tr>
<tr>
<td>Filter: ingress-vlan-limit-guest</td>
<td></td>
</tr>
</tbody>
</table>
```

Meaning
The `show firewall policer` command displays the names of all firewall filters and polcers that are configured. For each polcer that is specified in a filter configuration, the output field shows the current packet count for all packets that exceed the specified rate limits.

Related Documentation

<table>
<thead>
<tr>
<th>Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Two-Color and Three-Color Policers to Control Traffic Rates</td>
<td>1977</td>
</tr>
<tr>
<td>Configuring Firewall Filters</td>
<td>1601</td>
</tr>
<tr>
<td>Monitoring Firewall Filter Traffic</td>
<td>759</td>
</tr>
</tbody>
</table>

Verifying That Three-Color Policers Are Operational

Purpose
Verify that three-color policers in firewall filter configurations are working properly.

Action
Use the following operational mode commands to verify that a three-color policer is working properly:
Incomplete Count of Packet Drops

Problem

Description: Under certain circumstances, Junos OS might display a misleading number of packets dropped by an ingress policer.

If packets are dropped because of ingress admission control, policer statistics might not show the number of packet drops you would expect by calculating the difference between ingress and egress packet counts. This might happen if you apply an ingress policer to multiple interfaces, and the aggregate ingress rate of those interfaces exceeds the line rate of a common egress interface. In this case, packets might be dropped from the ingress buffer. These drops are not included in the count of packets dropped by the policer, which causes policer statistics to underreport the total number of drops.

Solution

This is expected behavior.
Counter Reset When Editing Filter

Problem

Description: If you edit a firewall filter term, the value of any counter associated with any term in the same filter is set to 0, including the implicit counter for any policer referenced by the filter. Consider the following examples:

- Assume that your filter has term1, term2, and term3, and each term has a counter that has already counted matching packets. If you edit any of the terms in any way, the counters for all the terms are reset to 0.

- Assume that your filter has term1 and term2. Also assume that term2 has a policer action modifier and the implicit counter of the policer has already counted 1000 matching packets. If you edit term1 or term2 in any way, the counter for the policer referenced by term2 is reset to 0.

Solution

This is expected behavior.

Invalid Statistics for Policer

Problem

Description: If you apply a single-rate two-color policer in more than 128 terms in a firewall filter, the output of the show firewall command displays incorrect data for the policer.

Solution

This is expected behavior.

Policers Can Limit Egress Filters

Problem

Description: On some switches, the number of egress policers that you configure can affect the total number of allowed egress firewall filters. (This does not apply to QFX10000 switches.) Every policer has two implicit counters that consume two entries in a 1024-entry TCAM that is used for counters, including counters that are configured as action modifiers in firewall filter terms. (Policers consume two entries because one is used for green packets and one is used for nongreen packets regardless of policer type.) If the TCAM becomes full, you cannot commit any more egress firewall filters that have terms with counters. For example, if you configure and commit 512 egress policers (two-color, three-color, or a combination of both policer types), all of the memory entries for counters are used up. If later in your configuration file you insert additional egress firewall filters with terms that also include counters, none of the terms in those filters are committed because there is no available memory space for the counters.

Here are some additional examples:

- Assume that you configure egress filters that include a total of 512 policers and no counters. Later in your configuration file you include another egress filter with 10 terms, 1 of which has a counter action
modifier. None of the terms in this filter are committed because there is not enough TCAM space for the counter.

- Assume that you configure egress filters that include a total of 500 policers, so 1000 TCAM entries are occupied. Later in your configuration file you include the following two egress filters:
 - Filter A with 20 terms and 20 counters. All the terms in this filter are committed because there is enough TCAM space for all the counters.
 - Filter B comes after Filter A and has five terms and five counters. None of the terms in this filter are committed because there is not enough memory space for all the counters. (Five TCAM entries are required but only four are available.)

Solution

You can prevent this problem by ensuring that egress firewall filter terms with counter actions are placed earlier in your configuration file than terms that include policers. In this circumstance, Junos OS commits policers even if there is not enough TCAM space for the implicit counters. For example, assume the following:

- You have 1024 egress firewall filter terms with counter actions.
- Later in your configuration file you have an egress filter with 10 terms. None of the terms have counters but one has a policer action modifier.

You can successfully commit the filter with 10 terms even though there is not enough TCAM space for the implicit counters of the policer. The policer is committed without the counters.

SEE ALSO

- **Overview of Policers** | 1940
- **Example: Using Policers to Manage Oversubscription** | 1972
 - *Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device*
- **Example: Using Two-Color Policers and Prefix Lists** | 1968

Troubleshooting Policer Configuration

IN THIS SECTION

- Incomplete Count of Packet Drops | 1985
- Counter Reset When Editing Filter | 1985
Incomplete Count of Packet Drops

Problem
Description: Under certain circumstances, Junos OS might display a misleading number of packets dropped by an ingress policer.

If packets are dropped because of ingress admission control, policer statistics might not show the number of packet drops you would expect by calculating the difference between ingress and egress packet counts. This might happen if you apply an ingress policer to multiple interfaces, and the aggregate ingress rate of those interfaces exceeds the line rate of a common egress interface. In this case, packets might be dropped from the ingress buffer. These drops are not included in the count of packets dropped by the policer, which causes policer statistics to underreport the total number of drops.

Solution
This is expected behavior.

Counter Reset When Editing Filter

Problem
Description: If you edit a firewall filter term, the value of any counter associated with any term in the same filter is set to 0, including the implicit counter for any policer referenced by the filter. Consider the following examples:

• Assume that your filter has term1, term2, and term3, and each term has a counter that has already counted matching packets. If you edit any of the terms in any way, the counters for all the terms are reset to 0.

• Assume that your filter has term1 and term2. Also assume that term2 has a policer action modifier and the implicit counter of the policer has already counted 1000 matching packets. If you edit term1 or term2 in any way, the counter for the policer referenced by term2 is reset to 0.

Solution
This is expected behavior.
Invalid Statistics for Policer

Problem
Description: If you apply a single-rate two-color policer in more than 128 terms in a firewall filter, the output of the `show firewall` command displays incorrect data for the policer.

Solution
This is expected behavior.

Egress Policers on QFX3500 Devices Might Allow More Throughput Than Is Configured

Problem
Description: If you configure a policer to rate-limit throughput and apply it on egress to multiple interfaces on a QFX3500 switch or Node, the measured aggregate policed rate might be twice the configured rate, depending on which interfaces you apply the policer to. The doubling of the policed rate occurs if you apply a policer to multiple interfaces and both of the following are true:

- There is at least one policed interface in the range xe-0/0/0 to xe-0/0/23 or the range xe-0/1/1 to xe-0/1/7.
- There is at least one policed interface in the range xe-0/0/24 to xe-0/0/47 or the range xe-0/1/8 to xe-0/1/15.

For example, if you configure a policer to rate-limit traffic at 1 Gbps and apply the policer (by using a firewall filter) to xe-0/0/0 and xe-0/0/24 in the output direction, each interface is rate-limited at 1 Gbps, for a total allowed throughput of 2 Gbps. The same behavior occurs if you apply the policer to xe-0/1/1 and xe-0/0/24—each interface is rate-limited at 1 Gbps.

If you apply the same policer on egress to multiple interfaces in these groups, each group is rate-limited at 1 Gbps. For example, if you apply the policer to xe-0/0/0 through xe-0/0/4 (five interfaces) and xe-0/0/24 through xe-0/0/33 (ten interfaces), each group is rate-limited at 1 Gbps, for a total allowed throughput of 2 Gbps.

Here is another example: If you apply the policer to xe-0/0/0 through xe-0/0/4 and xe-0/1/1 through xe-0/1/5 (a total of ten interfaces), that group is rate-limited at 1 Gbps in aggregate. If you also apply the policer to xe-0/0/24, that one interface is rate-limited at 1 Gbps while the other ten are still rate-limited at 1 Gbps in aggregate.

Interfaces xe-0/1/1 through xe-0/1/15 are physically located on the QSFP+ uplink ports, according to the following scheme:

- xe-0/1/1 through xe-0/1/3 are on Q0.
- xe-0/1/4 through xe-0/1/7 are on Q1.
- xe-0/1/8 through xe-0/1/11 are on Q2.
- xe-0/1/2 through xe-0/1/15 are on Q3.
The doubling of the policed rate occurs only if the policer is applied in the output direction. If you configure a policer as described above but apply it in the input direction, the total allowed throughput for all interfaces is 1 Gbps.

Solution
This is expected behavior.

Filter-Specific Egress Policers on QFX3500 Devices Might Allow More Throughput Than Is Configured

Problem Description: You can configure policers to be filter-specific. This means that Junos OS creates only one policer instance no matter how many times the policer is referenced. When you do this, rate limiting is applied in aggregate, so if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms, the total bandwidth allowed by the filter is 1 Gbps. However, the behavior of a filter-specific policer is affected by how the firewall filter terms that reference the policer are stored in ternary content addressable memory (TCAM). If you create a filter-specific policer and reference it in multiple firewall filter terms, the policer allows more traffic than expected if the terms are stored in different TCAM slices. For example, if you configure a policer to discard traffic that exceeds 1 Gbps and reference that policer in three different terms that are stored in three separate memory slices, the total bandwidth allowed by the filter is 3 Gbps, not 1 Gbps.

Solution
To prevent this unexpected behavior, use the information about TCAM slices presented in “Planning the Number of Firewall Filters to Create” on page 1520 to organize your configuration file so that all the firewall filter terms that reference a given filter-specific policer are stored in the same TCAM slice.

Policers Can Limit Egress Filters

Problem Description: On some switches, the number of egress policers that you configure can affect the total number of allowed egress firewall filters. (This does not apply to QFX10000 switches.) Every policer has two implicit counters that consume two entries in a 1024-entry TCAM that is used for counters, including counters that are configured as action modifiers in firewall filter terms. (Policers consume two entries because one is used for green packets and one is used for nongreen packets regardless of policer type.) If the TCAM becomes full, you cannot commit any more egress firewall filters that have terms with counters. For example, if you configure and commit 512 egress policers (two-color, three-color, or a combination of both policer types), all of the memory entries for counters are used up. If later in your configuration file you insert additional egress firewall filters with terms that also include counters, none of the terms in those filters are committed because there is no available memory space for the counters.

Here are some additional examples:
• Assume that you configure egress filters that include a total of 512 policers and no counters. Later in your configuration file you include another egress filter with 10 terms, 1 of which has a counter action modifier. None of the terms in this filter are committed because there is not enough TCAM space for the counter.

• Assume that you configure egress filters that include a total of 500 policers, so 1000 TCAM entries are occupied. Later in your configuration file you include the following two egress filters:
 • Filter A with 20 terms and 20 counters. All the terms in this filter are committed because there is enough TCAM space for all the counters.
 • Filter B comes after Filter A and has five terms and five counters. None of the terms in this filter are committed because there is not enough memory space for all the counters. (Five TCAM entries are required but only four are available.)

Solution
You can prevent this problem by ensuring that egress firewall filter terms with counter actions are placed earlier in your configuration file than terms that include policers. In this circumstance, Junos OS commits policers even if there is not enough TCAM space for the implicit counters. For example, assume the following:

• You have 1024 egress firewall filter terms with counter actions.

• Later in your configuration file you have an egress filter with 10 terms. None of the terms have counters but one has a policer action modifier.

You can successfully commit the filter with 10 terms even though there is not enough TCAM space for the implicit counters of the policer. The policer is committed without the counters.

SEE ALSO

| Overview of Policers | 1940 |
| Example: Using Policers to Manage Oversubscription | 1972 |
| Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device |
| Example: Using Two-Color Policers and Prefix Lists | 1968 |
Configuration Statements

Routing Policy Configuration Statements | 1991
Firewall Filter Configuration Statements | 2093
Traffic Policer Configuration Statements | 2189
Routing Policy Configuration Statements

IN THIS CHAPTER

- address-family | 1993
- aigp-adjust (Policy Action) | 1994
- aigp-originate | 1996
- apply-path | 1998
- arp policer | 1999
- as-path (Policy Options) | 2001
- as-path-group | 2002
- backup-selection (Protocols OSPF or OSPF3) | 2003
- ccc (Routing Policy Condition) | 2005
- community (Policy Options) | 2006
- condition | 2009
- damping (Policy Options) | 2011
- decapsulate (Firewall Filter) | 2013
- defaults (Policy Options) | 2015
- destination (Protocols OSPF or OSPF3) | 2016
- dynamic-db | 2018
- eracl-ip6-match (packet-forwarding-options) | 2019
- export (Protocols BGP) | 2021
- export (Protocols DVMRP) | 2023
- export | 2024
- export (Protocols LDP) | 2025
- export (Protocols MSDP) | 2026
- export | 2028
- export (Protocols PIM) | 2029
- export (Bootstrap) | 2030
- export | 2031
- export (Protocols RIPng) | 2032
- export (Routing Options) | 2033
if-route-exists | 2035
import | 2037
import (Protocols DVMRP) | 2039
import (Protocols LDP) | 2040
import (Protocols MSDP) | 2041
import | 2043
import (Protocols PIM) | 2044
import (Protocols PIM Bootstrap) | 2045
import (Protocols RIP) | 2046
import (Protocols RIPng) | 2047
import | 2048
ingress-queuing-filter | 2049
inet (Routing Policy Condition) | 2050
instance-shared | 2051
interface (Protocols ISIS) | 2052
interface (Protocols OSPF or OSPF3) | 2055
ip-options-protocol-queue | 2059
metric (Policy Action) | 2060
node | 2062
node-tag | 2064
no-walkup | 2066
peer-unit (Routing Policy Condition) | 2067
policy-options | 2068
policy-statement | 2070
prefix-list | 2076
prefix-list-filter | 2078
route-filter | 2079
route-filter-list | 2080
rtf-prefix-list | 2083
source-address-filter-list | 2085
standby (Routing Policy Condition) | 2087
table | 2088
walkup | 2089
priority (policy-options) | 2090
address-family

Syntax

```plaintext
address-family {
    inet {
        address;
        table table-name;
    }
    ccc {
        interface-name;
        standby;
        peer-unit unit-number;
        table table-name;
    }
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name policy-options condition if-route-exists],
[edit policy-options condition if-route-exists],
```

Release Information

Statement introduced in Junos OS Release 13.2.

Description

Specify that the route must correspond to certain prefix type to be considered a match.

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario*
aigp-adjust (Policy Action)

Syntax

```
 aigp-adjust (add|divide|multiply|subtract) (user-value | distance-to-protocol-nexthop);
```

Hierarchy Level

```
[edit policy-options policy-statement policy-name term term-name then],
[edit policy-options policy-statement policy-name then]
```

Release Information

Description

Specify this CLI policy action in an import or export policy to modify the accumulated interior gateway protocol (AIGP) BGP attribute. You can modify the AIGP attribute for one of the following reasons:

- Modify the AIGP metric on the route if it exists on the external BGP sessions between two ASBR routers where there is no interior gateway protocol (IGP)
- Scale up or down while transitioning from one IGP domain, such as OSPF to another IGP domain, such as IS-IS
- Make very minor adjustments on the AIGP from another AS domain or another vendor's routers

![CAUTION: AIGP is rated very high in the best route decision and comes only after the BGP local preference rule. Therefore, use AIGP adjustment option with caution as it can have a huge impact on the network.]

Options

- `add | divide | multiply | subtract`—Specify the mathematical operation that needs to be performed on the original AIGP attribute for adjustment.
- `user-value`—Specify an unsigned 64-bit value in decimal.
- `distance-to-protocol-nexthop`—Use the current metric2 value in the routing table as specified in the routing policy. Configure this option in the export policy if you want full control of the advertised AIGP value and do not want BGP to add up the distance to protocol nexthop.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control`—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>metric (Policy Action)</th>
<th>2060</th>
</tr>
</thead>
<tbody>
<tr>
<td>show policy</td>
<td>2343</td>
</tr>
</tbody>
</table>
aigp-originate

Syntax

aigp-originate distance;

Hierarchy Level

[edit logical-systems logical-system-name policy-options policy-statement policy-name term term-name then],
[edit logical-systems logical-system-name policy-options policy-statement policy-name then],
[edit policy-options policy-statement policy-name term term-name then],
[edit policy-options policy-statement policy-name then]

Release Information
Statement introduced in Junos OS Release 12.1.

Description
Originate an accumulated interior gateway protocol (AIGP) BGP attribute for a given prefix by export policy, using the aigp-originate policy action.

To originate an AIGP attribute, you need configure the policy action on only one node. The AIGP attribute is readvertised if the neighbors are AIGP enabled with the aigp statement in the BGP configuration.

Default
If you omit the aigp-originate policy action, the node still readvertises the AIGP BGP attribute if AIGP is enabled in the BGP configuration. However, the node does not originate its own AIGP attribute for local prefixes.

As the route is readvertised by downstream nodes, the cost of the AIGP attribute reflects the IGP distance to the prefix (zero + IGP distance or configured distance + IGP distance).

Options

distance—(Optional) Associate an initial cost when advertising a local prefix with the AIGP BGP attribute.

Range: 0 through 4,294,967,295

Default: The initial cost associated with the AIGP attribute for a local prefix is zero. The distance option overrides the default zero value for the initial cost.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION
Example: Configuring the Accumulated IGP Attribute for BGP

aigp
apply-path

Syntax

apply-path path;

Hierarchy Level

[edit logical-systems logical-system-name policy-options prefix-list name],
[edit policy-options prefix-list name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for apply-path "access radius-server <*>" configuration for SNMP added in Junos OS Release 16.1.

Description

Expand a prefix list to include all prefixes pointed to by a defined path. Using the apply-path statement eliminates most of the effort required to maintain a group prefix list. You can use this expanded list in defining policies and firewalls.

You can also use the apply-path configuration statement with SNMP, as long as the path uses the following configuration: apply-path "policy-options prefix-list list-name <*>". This is the only apply-path configuration originally supported for SNMP. As of Junos OS Release 16.1, support for one other SNMP apply-path configuration is added: apply-path "access radius-server <*>".

Options

path—String of elements composed of identifiers or configuration keywords that points to a set of prefixes. Use a space to delimit multiple elements. As long as the last path element is not a leaf, that is, terminal, statement, you can include wildcards (enclosed in angle brackets) to match more than one identifier. No elements can be added after a leaf statement, including wildcards.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Prefix Lists | 361
Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List | 943
arp policer

Syntax

```
policer name {
  filter-specific;
  logical-interface-policer;
  physical-interface-policer;
  if-exceeding {
    (bandwidth-limit bits per second | bandwidth-percent percent);
    burst-size-limit bytes;
    then <discard> <forwarding-class forwarding-class> <loss-priority (high | low | medium-high | medium-low)> <out-of-profile>;
  }
}
```

Hierarchy Level

```
[edit firewall]
```

Release Information

Statement introduced in Junos OS Release 18.4R1.

Description

Apply a policer to an interface. Configure policer rate limits and actions. The traffic to the Routing Engine is controlled by applying the policer on ARP. This prevents network congestion caused by broadcast storms.

A policer applies two types of rate limits on traffic:

- Bandwidth—The number of bits per second permitted, on average
- Maximum burst size—The maximum size permitted for bursts of data that exceed the given bandwidth limit

Options

- **name**—Policer name.
- **filter-specific**—Policer is filter-specific.
- **logical-interface-policer**—Policer is a logical interface policer.
- **physical-interface-policer**—Policer is a physical interface policer.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

security—To view this statement in the configuration.
security-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- `bandwidth-limit (Hierarchical Policer)`
- `burst-size-limit (Hierarchical Policer)`
as-path (Policy Options)

Syntax

 as-path name regular-expression;

Hierarchy Level

[edit dynamic policy-options],
[edit logical-systems logical-system-name policy-options],
[edit policy-options]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5 for EX Series switches.

Description
Define an autonomous system (AS) path regular expression for use in a routing policy match condition.

Options

name—Name that identifies the regular expression. The name can contain letters, numbers, and hyphens (-) and can be up to 65,536 characters long. To include spaces in the name, enclose it in quotation marks (" ").

regular-expression—one or more regular expressions used to match the AS path.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding AS Path Regular Expressions for Use as Routing Policy Match Conditions | 399
dynamic-db | 2018
as-path-group

Syntax

```
as-path-group group-name {
    as-path name regular-expression;
}
```

Hierarchy Level

```
[edit dynamic policy-options],
[edit logical-systems logical-system-name policy-options],
[edit policy-options]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for dynamic database configuration introduced in Junos OS Release 9.5.
Support for dynamic database configuration introduced in Junos OS Release 9.5 for EX Series switches.

Description
Define a group containing multiple AS path regular expressions for use in a routing policy match condition.

Options

- **group-name**—Name that identifies the AS path group. One or more AS path regular expressions must be listed below the `as-path-group` hierarchy.
- **name**—Name that identifies the regular expression. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose it in quotation marks (" ").
- **regular-expression**—One or more regular expressions used to match the AS path.

Required Privilege Level
routingleTo view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding AS Path Regular Expressions for Use as Routing Policy Match Conditions | 399
- dynamic-db | 2018
backup-selection (Protocols OSPF or OSPF3)

Syntax

```plaintext
backup-selection {
    destination prefix {
        interface (interface-name | all) {
            admin-group {
                exclude [ group-name ];
                include-all [ group-name ];
                include-any [ group-name ];
                preference [ group-name ];
            }
            bandwidth-greater-equal-primary;
            dest-metric (highest | lowest);
            downstream-paths-only;
            metric-order [ root dest ];
            node {
                exclude [ node-address ];
                preference [ node-address ];
            }
            protection-type (link | node | node-link);
            root-metric (highest | lowest);
            srlg (loose | strict);
            evaluation-order [ admin-group srlg bandwidth protection-type node metric ];
        }
    }
}
```

Hierarchy Level

- [edit logical-systems logical-system-name routing-options],
- [edit logical-systems logical-system-name routing-instances instance-name routing-options],
- [edit routing-instances instance-name routing-options],
- [edit routing-options]

Release Information
Statement introduced in Junos OS Release 15.1.

Description
Define backup selection policies, per prefix per primary next-hop interface, to enforce loop-free alternate (LFA) selection based on admin-group, srlg, bandwidth, protection-type, node, and metric attributes of the backup path.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 201
- Configuring Backup Selection Policy for the OSPF Protocol | 193
- Understanding Backup Selection Policy for OSPF Protocol | 191
ccc (Routing Policy Condition)

Syntax

```
ccc {
  interface-name;
  standby;
  peer-unit unit-number;
  table table-name;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name policy-options condition if-route-exists address-family],
[edit policy-options condition if-route-exists address-family],
```

Release Information

Statement introduced in Junos OS Release 13.2.

Description

Specify that the route must correspond to a CCC prefix to be considered a match.

Options

- `interface-name`—Interface used to establish the CCC route.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario
community (Policy Options)

Syntax

```
community name {
    invert-match;
    members [ community-ids ];
}
```

Hierarchy Level

```
[edit dynamic policy-options],
[edit logical-systems logical-system-name policy-options],
[edit policy-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5 for EX Series switches.
Support for BGP large community introduced in Junos OS Release 17.3 for MX Series, PTX Series, and QFX Series.

Description

Define a community, extended community or large community for use in a routing policy match condition.

Options

```
name—Name that identifies the regular expression. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters. To include spaces in the name, enclose it in quotation marks (" ").

invert-match—Invert the results of the community expression matching. The community match condition defines a regular expression and if it matches the community attribute of the received prefix, Junos OS returns a TRUE result. If not, Junos OS returns a FALSE result. The invert-match statement makes Junos OS behave to the contrary. If there is a match, Junos OS returns a FALSE result. If there is no match, Junos OS returns a TRUE result.

members community-ids—One or more community members. If you specify more than one member, you must enclose all members in brackets.
```

The format for community-ids is:

```
as-number:community-value
```
Starting in Junos OS Release 15.1, you can apply a wildcard member `segmented-nh:.*:0` to apply the BGP policy to all the S-PMSI A-D routes carrying extended community information.

`as-number` is the AS number and can be a value in the range from 0 through 65,535. `community-value` is the community identifier and can be a number in the range from 0 through 65,535.

You also can specify `community-ids` for communities as one of the following well-known community names, which are defined in RFC 1997, BGP Communities Attribute:

- **no-export**—Routes containing this community name are not advertised outside a BGP confederation boundary.
- **no-advertise**—Routes containing this community name are not advertised to other BGP peers.
- **no-export-subconfed**—Routes containing this community name are not advertised to external BGP peers, including peers in other members’ ASs inside a BGP confederation.

You can explicitly exclude BGP community information with a static route using the `none` option. Include `none` when configuring an individual route in the `route` portion of the `static` statement to override a `community` option specified in the `defaults` portion of the statement.

The format for extended `community-ids` is the following:

```
type:administrator:assigned-number
```

`type` is the type of extended community and can be either a `bandwidth`, `target`, `origin`, `domain-id`, `src-as`, or `rt-import` community or a 16-bit number that identifies a specific BGP extended community. The `target` community identifies the destination to which the route is going. The `origin` community identifies where the route originated. The `domain-id` community identifies the OSPF domain from which the route originated. The `src-as` community identifies the autonomous system from which the route originated. The `rt-import` community identifies the route to install in the routing table.

NOTE: For `src-as`, you can specify only an AS number and not an IP address. For `rt-import`, you can specify only an IP address and not an AS number.

`administrator` is the administrator. It is either an AS number or an IPv4 address prefix, depending on the type of extended community.

`assigned-number` identifies the local provider.

The format for linking a bandwidth with an AS number is:

```
bandwidth:as-number:bandwidth
```

`as-number` specifies the AS number and `bandwidth` specifies the bandwidth in bytes per second.
NOTE: In Junos OS Release 9.1 and later, you can specify 4-byte AS numbers as defined in RFC 4893, BGP Support for Four-octet AS Number Space, as well as the 2-byte AS numbers that are supported in earlier releases of the Junos OS. In plain-number format, you can configure a value in the range from 1 through 4,294,967,295. To configure a target or origin extended community that includes a 4-byte AS number in the plain-number format, append the letter "L" to the end of number. For example, a target community with the 4-byte AS number 334,324 and an assigned number of 132 is represented as target:334324L:132.

In Junos OS Release 9.2 and later, you can also use AS-dot notation when defining a 4-byte AS number for the target and origin extended communities. Specify two integers joined by a period: 16-bit high-order value in decimal.16-bit low-order value in decimal. For example, the 4-byte AS number represented in plain-number format as 65546 is represented in AS-dot notation as 1.10.

As defined in RFC 8092, BGP large community uses 12-byte encoding and the format for BGP large community-ids is:

\[\text{large: global-administrator: assigned-number: assigned-number} \]

large indicates BGP large community.

global-administrator is the administrator. It is a 4-byte AS number.

assigned-number is a 4-byte value used to identify the local provider. BGP large community uses two 4-byte assigned number to identify the local provider.

Required Privilege Level
routin—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding BGP Communities, Extended Communities, and Large Communities as Routing Policy Match Conditions | 461
- Understanding How to Define BGP Communities and Extended Communities | 463
- dynamic-db | 2018
condition

Syntax

```plaintext
condition condition-name {
  dynamic-db;
  if-route-exists{
    address;
    address-family {
      inet {
        address;
        table table-name;
      }
      ccc {
        interface-name;
        standby;
        peer-unit unit-number;
        table table-name;
      }
    }
  }
  table table-name;
}
```

Hierarchy Level

- [edit dynamic policy-options],
- [edit logical-systems logical-system-name policy-options],
- [edit policy-options]

Release Information

Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5 for EX Series switches.
Support for the address families introduced in Junos OS Release 13.2.

Description

Define a policy condition based on the existence of routes in specific tables for use in BGP export policies.

Options

- `condition-name`—Name of the condition.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Conditional Advertisement and Import Policy (Routing Table) with certain match conditions</th>
<th>626</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario</td>
<td></td>
</tr>
<tr>
<td>dynamic-db</td>
<td>2018</td>
</tr>
</tbody>
</table>
damping (Policy Options)

Syntax

```plaintext
damping name {
    disable;
    half-life minutes;
    max-suppress minutes;
    reuse number;
    suppress number;
}
```

Hierarchy Level

```
[edit logical-systems logical-system-name policy-options],
[edit policy-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Define route flap damping properties to set on BGP routes.

Options

- **disable**—Disable damping on a per-prefix basis. Any damping state that is present in the routing table for a prefix is deleted if damping is disabled.

- **half-life minutes**—Decay half-life. *minutes* is the interval after which the accumulated figure-of-merit value is reduced by half if the route remains stable.

 Range: 1 through 45
 Default: 15 minutes

 NOTE: For the half-life, configure a value that is less than the max-suppress. If you do not, the configuration is rejected.

- **max-suppress minutes**—Maximum hold-down time. *minutes* is the maximum time that a route can be suppressed no matter how unstable it has been.

 Range: 1 through 720
 Default: 60 minutes
NOTE: For the max-suppress, configure a value that is greater than the half-life. If you do not, the configuration is rejected.

name—Name that identifies the set of damping parameters. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose it in quotation marks (" ").

reuse number—Reuse threshold. **number** is the figure-of-merit value below which a suppressed route can be used again.
Range: 1 through 20,000
Default: 750 (unitless)

suppress number—Cutoff (suppression) threshold. **number** is the figure-of-merit value above which a route is suppressed for use or inclusion in advertisements.
Range: 1 through 20,000
Default: 3000 (unitless)

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring BGP Flap Damping Parameters	541
Example: Configuring BGP Route Flap Damping Parameters	547
Example: Configuring BGP Route Flap Damping Based on the MBGP MVPN Address Family	560
decapsulate (Firewall Filter)

Syntax

decapsulate {
 gre {
 apply-groups;
 apply-groups-except;
 forwarding-class;
 interface-group(0-255)
 no-decrement-ttl;
 routing-instance;
 sample;
 }
 gre-in-udp{
 l2tp {
 apply-groups;
 apply-groups-except;
 cookie;
 forwarding-class;
 no-decrement-ttl;
 output-interface;
 sample;
 }
 }
}

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name then],

Release Information

Statement introduced in Junos OS Release 7.6.
output-interface and cookie options introduced in Junos OS Release 15.1.
decapsulate gre introduced in Junos OS Release 15.1F3 and 16.1R2 for PTX5000 routers with third generation FPCs and Junos OS Release 15.1F6 and 16.1R2 for PTX3000 routers with third-generation FPCs.
no-decrement-ttl attribute for the decapsulate gre filter action introduced in Junos OS Release 15.1F6 and 16.2R1 for PTX5000 routers with third-generation FPCs.

Description

Define the termination action for GRE and L2TP tunnels.

Options
gre—(Optional) Terminate a GRE tunnel for the filter conditions that are matched.

l2tp—(Optional) Terminate an L2TP tunnel for the filter conditions that are matched.

output-interface interface-name—(Optional) For L2TP tunnels, enable the packet to be duplicated and sent towards the customer or the network (based on the MAC address in the Ethernet payload).

cookie l2tpv3-cookie—(Optional) For L2TP tunnels, specify the L2TP cookie for the duplicated packets. If the tunnel does not contain the receive-cookie configured, packet injection does not happen. In such a case, any received tunnel packet is counted and dropped in the same manner in which packets that arrive with a wrong cookie are counted and dropped.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Configuring Multifield Classifiers
- Guidelines for Configuring and Applying Firewall Filters in Logical Systems | 1080
defaults (Policy Options)

Syntax

```
defaults {
    route-filter (no-walkup | walkup);
}
```

Hierarchy Level

```
[edit logical-system logical-system-name policy-options],
[edit logical-system logical-system-name policy-options policy-statement policy-statement-name ],
[edit policy-options],
[edit policy-options policy-statement policy-statement-name ]
```

Release Information

Description

Establish defaults for a particular policy statement or globally. Defaults include the walkup feature, which examines more than the longest match route filters in a policy statement term with more than one route filter, allowing consolidation of terms and a potential performance enhancement.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

no-walkup	2066
walkup	2089
route-filter	2079
Walkup for Route Filters Overview	304
Configuring Walkup for Route Filters to Improve Operational Efficiency	308
Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency	319
Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency	326
destination (Protocols OSPF or OSPF3)

Syntax

```plaintext
destination prefix {
  interface (interface-name | all) {
    admin-group {
      exclude [group-name];
      include-all [group-name];
      include-any [group-name];
      preference [group-name];
    }
    bandwidth-greater-equal-primary;
    dest-metric (highest | lowest);
    downstream-paths-only;
    evaluation-order [admin-group srlg bandwidth protection-type neighbor neighbor-tag metric];
    metric-order [root dest];
    node {
      exclude [node-address];
      preference [node-address];
    }
    protection-type (link | node | node-link);
    root-metric (highest | lowest);
    srlg (loose | strict);
  }
}
```

Hierarchy Level

* [edit logical-systems logical-system-name routing-options backup-selection]*],
* [edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection]*],
* [edit routing-instances instance-name routing-options backup-selection]*],
* [edit routing-options backup-selection]*]

Release Information

Statement introduced in Junos OS Release 15.1.

Description

Define the backup selection policy for a particular destination prefix or for all the prefixes.

Options

prefix— Destination prefix name and prefix length. You can specify 0/0 for the IPv4 least-specific prefix or 0::0/0 for the IPv6 least-specific prefix.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- routing—to view this statement in the configuration.
- routing-control—to add this statement to the configuration.
dynamic-db

Syntax

dynamic-db;

Hierarchy Level

[edit logical-systems logical-system-name policy-options as-path path-name],
[edit logical-systems logical-system-name policy-options as-path-group group-name],
[edit logical-systems logical-system-name policy-options community community-name],
[edit logical-systems logical-system-name policy-options condition condition-name],
[edit logical-systems logical-system-name policy-options policy-statement policy-statement-name],
[edit logical-systems logical-system-name policy-options prefix-list prefix-list-name],
[edit policy-options as-path path-name],
[edit policy-options as-path-group group-name],
[edit policy-options community community-name],
[edit policy-options condition condition-name],
[edit policy-options policy-statement policy-statement-name],
[edit policy-options prefix-list prefix-list-name]

Release Information

Statement introduced in Junos OS Release 9.5.
Statement introduced in Junos OS Release 9.5 for EX Series switches.

Description

Define routing policies and policy objects that reference policies configured in the dynamic database at the [edit dynamic] hierarchy level.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control-level—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Dynamic Routing Policies | 676
eracl-ip6-match (packet-forwarding-options)

Syntax

```
eracl-ip6-match {
    (srcip6-and-destip6 | srcip6-only);
}
```

Hierarchy Level

```
[edit system packet-forwarding-options]
```

Release Information

Statement introduced in Junos OS Release 19.1 (EX4300 and QFX5100 Series switches only).

Description

Use the options of this command to allow source and/or destination IPv6 address match conditions for eRACL inet6 filters.

In Junos, firewall filters are classified as *ingress* or *egress* depending on where in the sequence the packet is evaluated and action taken. Filtering IPv6 traffic on an *inet6* egress interface can be useful, for example, for safeguarding a third-party device connected to the Juniper switch.

NOTE: After configuring, modifying, or deleting the `eracl-ip6-match` statement, you must commit the configuration, and the packet forwarding engine (PFE) must be restarted.

Options

`eracl-ip6-match`— Configuring match conditions in a firewall filter for IPv6 source and/or destination IP addresses is only allowed if the `srcip6-and-destip6` or the `srcip6-only` options described below are enabled. The two options cannot both be enabled at the same time. If neither option is configured, the default behavior is to allow match condition to be created for IPv6 destination addresses on egress interfaces only.

Values:

- `srcip6-and-destip6`—Choose this option to allow both source and destination IPv6 address match conditions on inet6 interfaces in egress direction. The source and destination port match conditions are also allowed only with this option. Note that when this option is enabled, the scale of eRACLv6 is reduced by half.
- **srcip6-only**—Choosing this option allows the source IPv6 address match condition in eRACLv6 filters but not a destination address. Both source and destination port match conditions cannot be configured at the same time as this option is enabled (you will get a commit error).

Required Privilege Level
flow-tap

RELATED DOCUMENTATION

- Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses | 1069
export (Protocols BGP)

Syntax

export [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols bgp],
[edit logical-systems logical-system-name protocols bgp group group-name],
[edit logical-systems logical-system-name protocols bgp group group-name neighbor address],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols bgp],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols bgp group group-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols bgp group group-name neighbor address],
[edit protocols bgp],
[edit protocols bgp group group-name],
[edit protocols bgp group group-name neighbor address],
[edit routing-instances routing-instance-name protocols bgp],
[edit routing-instances routing-instance-name protocols bgp group group-name],
[edit routing-instances routing-instance-name protocols bgp group group-name neighbor address]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being exported from the routing table into BGP.

If you specify more than one policy, they are evaluated in the order specified, from left to right, and the first matching filter is applied to the route. If no routes match the filters, the routing table exports into BGP only the routes that it learned from BGP. If an action specified in one of the policies manipulates a route characteristic, the policy framework software carries the new route characteristic forward during the evaluation of the remaining policies. For example, if the action specified in the first policy of a chain sets a route’s metric to 500, this route matches the criterion of metric 500 defined in the next policy.

Options

policy-names—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Configuring Routing Policies to Control BGP Route Advertisements

Routing Policies, Firewall Filters, and Traffic Policers Feature Guide

import | 2037
export (Protocols DVMRP)

Syntax

```plaintext
export [ policy-names ];
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name protocols dvmrp],
[edit protocols dvmrp]
```

Release Information

NOTE: Distance Vector Multicast Routing Protocol (DVMRP) was deprecated in Junos OS Release 16.1. Although DVMRP commands continue to be available and configurable in the CLI, they are no longer visible and are scheduled for removal in a subsequent release.

Statement introduced before Junos OS Release 7.4.

Description

Apply one or more policies to routes being exported from the routing table into DVMRP. If you specify more than one policy, they are evaluated in the order specified, from first to last, and the first matching policy is applied to the route. If no match is found, the routing table exports into DVMRP only the routes that it learned from DVMRP and direct routes.

Options

`policy-names`—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- import | 2039

Example: Configuring DVMRP to Announce Unicast Routes
export

Syntax

```
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols isis],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols isis],
[edit protocols isis],
[edit routing-instances routing-instance-name protocols isis]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being exported from the routing table into IS-IS.

All routing protocols store the routes that they learn in the routing table. The routing table uses this collected route information to determine the active routes to destinations. The routing table then installs the active routes into its forwarding table and exports them into the routing protocols. It is these exported routes that the protocols advertise.

For each protocol, you control which routes the protocol stores in the routing table and which routes the routing table exports into the protocol from the routing table by defining a routing policy for that protocol.

NOTE: For IS-IS, you cannot apply routing policies that affect how routes are imported into the routing table; doing so with a link-state protocol can easily lead to an inconsistent topology database.

Options

policy-names—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
export (Protocols LDP)

Syntax

```
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ldp],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ldp],
[edit protocols ldp],
[edit routing-instances routing-instance-name protocols ldp]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3X50 for the QFX Series.

Description

Apply policy filters to outbound LDP label bindings. Filters are applied to all label bindings from all neighbors.

Options

`policy-names`—Name of one or more routing policies.

Required Privilege Level

`routing`—To view this statement in the configuration.
`routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

Filtering Outbound LDP Label Bindings
export (Protocols MSDP)

Syntax

 export [policy-names];

Hierarchy Level

 [edit logical-systems logical-system-name protocols msdp],
 [edit logical-systems logical-system-name protocols msdp group group-name],
 [edit logical-systems logical-system-name protocols msdp group group-name peer address],
 [edit logical-systems logical-system-name protocols msdp peer address],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp group group-name],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp group group-name peer address],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp peer address],
 [edit protocols msdp],
 [edit protocols msdp group group-name],
 [edit protocols msdp group group-name peer address],
 [edit protocols msdp peer address],
 [edit routing-instances routing-instance-name protocols msdp],
 [edit routing-instances routing-instance-name protocols msdp group group-name],
 [edit routing-instances routing-instance-name protocols msdp group group-name peer address],
 [edit routing-instances routing-instance-name protocols msdp peer address]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being exported from the routing table into MSDP.

Options

 policy-names—Name of one or more policies.

Required Privilege Level

 routing—To view this statement in the configuration.
 routing-control—To add this statement to the configuration.
Example: Configuring MSDP in a Routing Instance

import | 2041
export

Syntax

 export [policy-names];

Hierarchy Level

 [edit logical-systems logical-system-name protocols (ospf | ospf3)],
 [edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
 [edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
 [edit protocols (ospf | ospf3)],
 [edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
 [edit routing-instances routing-instance-name protocols (ospf | ospf3)],
 [edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information

 Statement introduced before Junos OS Release 7.4.
 Statement introduced in Junos OS Release 9.0 for EX Series switches.
 Support for the realm statement introduced in Junos OS Release 9.2.
 Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
 Statement introduced in Junos OS Release 11.3 for the QFX Series.
 Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

 Apply one or more policies to routes being exported from the routing table into OSPF.

Options

 policy-names—Name of one or more policies.

Required Privilege Level

 routing—To view this statement in the configuration.
 routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

 Understanding OSPF Routing Policy
 Import and Export Policies for Network Summaries Overview
export (Protocols PIM)

Syntax

```plaintext
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols pim],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols pim],
[edit protocols pim],
[edit routing-instances routing-instance-name protocols pim]
```

Release Information
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Apply one or more export policies to control outgoing PIM join and prune messages. PIM join and prune filters can be applied to PIM-SM and PIM-SSM messages. PIM join and prune filters cannot be applied to PIM-DM messages.

Required Privilege Level
view-level—To view this statement in the configuration.
control-level—To add this statement to the configuration.

RELATED DOCUMENTATION

- Filtering Outgoing PIM Join Messages
export (Bootstrap)

Syntax

```
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols pim rp bootstrap family (inet | inet6)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols pim rp bootstrap family (inet | inet6)],
[edit protocols pim rp bootstrap family (inet | inet6)],
[edit routing-instances routing-instance-name protocols pim rp bootstrap family (inet | inet6)]
```

Release Information

Statement introduced in Junos OS Release 7.6.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more export policies to control outgoing PIM bootstrap messages.

Options

`policy-names`—Name of one or more import policies.

Required Privilege Level

`routing`—To view this statement in the configuration.
`routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring PIM Bootstrap Properties for IPv4
- Configuring PIM Bootstrap Properties for IPv4 or IPv6
- import (Protocols PIM Bootstrap)
export

Syntax

```plaintext
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols rip group group-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols rip group group-name],
[edit protocols rip group group-name],
[edit routing-instances routing-instance-name protocols rip group group-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Apply a policy to routes being exported to the neighbors.

By default, RIP does not export routes it has learned to its neighbors. To enable RIP to export routes, apply one or more export policies.

If no routes match the policies, the local routing device does not export any routes to its neighbors. Export policies override any metric values determined through calculations involving the values configured with the `metric-in` and `metric-out` statements.

NOTE: The export policy on RIP does not support manipulating routing information of the next hop.

Options

- `policy-names`—Name of one or more policies.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- import | 2046
export (Protocols RIPng)

Syntax

```
export [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols ripng group group-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ripng group group-name],
[edit protocols ripng group group-name],
[edit routing-instances routing-instance-name protocols ripng group group-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for routing instances introduced in Junos OS Release 9.0.

Description

Apply a policy or list of policies to routes being exported to the neighbors.

By default, RIPng does not export routes it has learned to its neighbors. To have RIPng export routes, apply one or more export policies. To apply export policies and to filter routes being exported from the local routing device to its neighbors, include the `export` statement and list the name of the policy to be evaluated.

You can define one or more export policies. If no routes match the policies, the local routing device does not export any routes to its neighbors. Export policies override any metric values determined through calculations involving the values configured with the `metric-in` and `metric-out` statements.

Options

- `policy-names`—Name of one or more policies.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- `import` | 2047
export (Routing Options)

Syntax

```bsh
export [ policy-name ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name routing-instances routing-instance-name routing-options forwarding-table],
[edit logical-systems logical-system-name routing-options forwarding-table],
[edit routing-instances routing-instance-name routing-options forwarding-table],
[edit routing-options forwarding-table]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 12.3 for ACX Series routers.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being exported from the routing table into the forwarding table.

In the `export` statement, list the name of the routing policy to be evaluated when routes are being exported from the routing table into the forwarding table. Only active routes are exported from the routing table.

You can reference the same routing policy one or more times in the same or a different `export` statement.

You can apply export policies to routes being exported from the routing table into the forwarding table for the following features:

- Per-packet load balancing
- Class of service (CoS)

Options

`policy-name`—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION
Example: Load Balancing BGP Traffic
if-route-exists

Syntax

if-route-exists{
 address;
 address-family {
 inet {
 address;
 table table-name;
 }
 ccc {
 interface-name;
 standby;
 peer-unit unit-number;
 table table-name;
 }
 }
 table table-name;
}

Hierarchy Level

[edit logical-systems logical-system-name policy-options condition],
[edit policy-options condition],

Release Information
Statement introduced in Junos OS Release 13.2.

Description
Specify the route match conditions.

Options
(Optional) address—Specify the IP address that the route must have to be considered a match.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION
Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario

Example: Configuring a Routing Policy for Conditional Advertisement Enabling Conditional Installation of Prefixes in a Routing Table | 631
import

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols bgp],
[edit logical-systems logical-system-name protocols bgp group group-name],
[edit logical-systems logical-system-name protocols bgp group group-name neighbor address],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols bgp],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols bgp group group-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols bgp group group-name neighbor address],
[edit protocols bgp],
[edit protocols bgp group group-name],
[edit protocols bgp group group-name neighbor address],
[edit routing-instances routing-instance-name protocols bgp],
[edit routing-instances routing-instance-name protocols bgp group group-name],
[edit routing-instances routing-instance-name protocols bgp group group-name neighbor address]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more routing policies to routes being imported into the Junos OS routing table from BGP.

If you specify more than one policy, they are evaluated in the order specified, from left to right, and the first matching filter is applied to the route. If no match is found, BGP places into the routing table only those routes that were learned from BGP routing devices. The policy framework software evaluates the routing policies in a chain sequentially. If an action specified in one of the policies manipulates a route characteristic, the policy framework software carries the new route characteristic forward during the evaluation of the remaining policies. For example, if the action specified in the first policy of a chain sets a route’s metric to 500, this route matches the criterion of metric 500 defined in the next policy.

It is also important to understand that in Junos OS, although an import policy (inbound route filter) might reject a route, not use it for traffic forwarding, and not include it in an advertisement to other peers, the router retains these routes as hidden routes. These hidden routes are not available for policy or routing purposes. However, they do occupy memory space on the router. A service provider filtering routes to
control the amount of information being kept in memory and processed by a router might want the router to entirely drop the routes being rejected by the import policy.

Hidden routes can be viewed by using the `show route receive-protocol bgp neighbor-address hidden` command. The hidden routes can then be retained or dropped from the routing table by configuring the `keep all | none` statement at the `[edit protocols bgp]` or `[edit protocols bgp group group-name]` hierarchy level.

The rules of BGP route retention are as follows:

- By default, all routes learned from BGP are retained, except those where the AS path is looped. (The AS path includes the local AS.)
- By configuring the `keep all` statement, all routes learned from BGP are retained, even those with the local AS in the AS path.
- By configuring the `keep none` statement, all routes received are discarded. When this statement is configured and the inbound policy changes, Junos OS re-advertises all the routes advertised by the peer.

Options

`policy-names`—Name of one or more policies.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Example: Configuring BGP Interactions with IGP*
- *Configuring Routing Policies to Control BGP Route Advertisements*
- *Understanding Routing Policies*

| export | 2021 |
import (Protocols DVMRP)

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols dvmrp],
[edit protocols dvmrp]

Release Information

NOTE: Distance Vector Multicast Routing Protocol (DVMRP) was deprecated in Junos OS Release 16.1. Although DVMRP commands continue to be available and configurable in the CLI, they are no longer visible and are scheduled for removal in a subsequent release.

Statement introduced before Junos OS Release 7.4.

Description

Apply one or more policies to routes being imported into the routing table from DVMRP. If you specify more than one policy, they are evaluated in the order specified, from first to last, and the first matching policy is applied to the route. If no match is found, DVMRP shares with the routing table only those routes that were learned from DVMRP routers.

Options

policy-names—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

export | 2023

Example: Configuring DVMRP to Announce Unicast Routes
import (Protocols LDP)

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols ldp],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ldp],
[edit protocols ldp],
[edit routing-instances routing-instance-name protocols ldp]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3X50 for the QFX Series.

Description
Apply policy filters to received LDP label bindings. Filters are applied to all label bindings from all neighbors.

Options

policy-names—Name of one or more routing policies.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Filtering Inbound LDP Label Bindings
import (Protocols MSDP)

Syntax

```plaintext
import [ policy-names ];
```

Hierarchy Level

- [edit logical-systems logical-system-name protocols msdp],
- [edit logical-systems logical-system-name protocols msdp group group-name],
- [edit logical-systems logical-system-name protocols msdp group group-name peer address],
- [edit logical-systems logical-system-name protocols msdp peer address],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp group group-name],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp group group-name peer address],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp peer address],
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols msdp peer address],
- [edit protocols msdp group group-name],
- [edit protocols msdp group group-name peer address],
- [edit protocols msdp peer address],
- [edit routing-instances routing-instance-name protocols msdp],
- [edit routing-instances routing-instance-name protocols msdp group group-name],
- [edit routing-instances routing-instance-name protocols msdp group group-name peer address],
- [edit routing-instances routing-instance-name protocols msdp peer address]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being imported into the routing table from MSDP.

Options

- `policy-names`—Name of one or more policies.

Required Privilege Level

- `routing`—To view this statement in the configuration.
- `routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION
Example: Configuring MSDP in a Routing Instance

export | 2026
import

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit protocols (ospf | ospf3)],
[edit protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)],
[edit routing-instances routing-instance-name protocols (ospf | ospf3)],
[edit routing-instances routing-instance-name protocols ospf3 realm (ipv4-unicast | ipv4-multicast | ipv6-multicast)]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for the realm statement introduced in Junos OS Release 9.2.
Support for the realm statement introduced in Junos OS Release 9.2 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Filter OSPF routes from being added to the routing table.

Options
policy-names—Name of one or more policies.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding OSPF Routing Policy
Import and Export Policies for Network Summaries Overview
import (Protocols PIM)

Syntax

```
import [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols pim],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols pim],
[edit protocols pim],
[edit routing-instances routing-instance-name protocols pim]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being imported into the routing table from PIM. Use the `import` statement to filter PIM join messages and prevent them from entering the network.

Options

`policy-names`—Name of one or more policies.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Filtering Incoming PIM Join Messages
import (Protocols PIM Bootstrap)

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols pim rp bootstrap (inet | inet6)],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols pim rp bootstrap (inet | inet6)],
[edit protocols pim rp bootstrap (inet | inet6)],
[edit routing-instances routing-instance-name protocols pim rp bootstrap (inet | inet6)]

Release Information
Statement introduced in Junos OS Release 7.6.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Apply one or more import policies to control incoming PIM bootstrap messages.

Options
policy-names—Name of one or more import policies.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring PIM Bootstrap Properties for IPv4
Configuring PIM Bootstrap Properties for IPv4 or IPv6
export (Bootstrap) | 2030
import (Protocols RIP)

Syntax

```
import [ policy-names ];
```

Hierarchy Level

```
[edit logical-systems logical-system-name protocols rip],
[edit logical-systems logical-system-name protocols rip group group-name neighbor neighbor-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols rip],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols rip group group-name neighbor neighbor-name],
[edit protocols rip],
[edit protocols rip group group-name neighbor neighbor-name],
[edit routing-instances routing-instance-name protocols rip],
[edit routing-instances routing-instance-name protocols rip group group-name neighbor neighbor-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply one or more policies to routes being imported by the local routing device from neighbors.

Options

`policy-names`—Name of one or more policies.

Required Privilege Level

routing—To view this statement in the configuration.
route-control—To add this statement to the configuration.

RELATED DOCUMENTATION

* Example: Applying Policies to RIP Routes Imported from Neighbors

Junos OS Routing Policies, Firewall Filters, and Traffic Policers Feature Guide for Routing Devices

export | 2031
import (Protocols RIPv2)

Syntax

import [policy-names];

Hierarchy Level

[edit logical-systems logical-system-name protocols ripng],
[edit logical-systems logical-system-name protocols ripng group group-name neighbor neighbor-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ripng],
[edit logical-systems logical-system-name routing-instances routing-instance-name protocols ripng group group-name neighbor neighbor-name],
[edit protocols ripng],
[edit protocols ripng group group-name neighbor neighbor-name],
[edit routing-instances routing-instance-name protocols ripng],
[edit routing-instances routing-instance-name protocols ripng group group-name neighbor neighbor-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for routing instances introduced in Junos OS Release 9.0.

Description
Apply one or more policies to routes being imported into the local routing device from its neighbors.

Options
policy-names—Name of one or more policies.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Applying Policies to RIPv2 Routes Imported from Neighbors
export | 2032
import

Syntax

`import [policy-names];`

Hierarchy Level

```
[edit logical-systems logical-system-name routing-instances routing-instance-name routing-options resolution rib],
[edit logical-systems logical-system-name routing-options resolution rib],
[edit routing-instances routing-instance-name routing-options resolution rib],
[edit routing-options resolution rib]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify one or more import policies to use for route resolution.

Options

`policy-names`—Name of one or more import policies.

Required Privilege Level

`routing`—To view this statement in the configuration.
`routing-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

`Example: Configuring Route Resolution on PE Routers`
ingress-queuing-filter

Syntax

```
ingress-queuing-filter filter-name;
```

Hierarchy Level

```
[edit interfaces interface-name unit unit-number family family-name],
[edit logical systems logical-system-name interfaces interface-name unit unit-number family family-name]
```

Release Information

Statement introduced in Junos OS Release 16.1 for MX Series routers with MPCs.

Description

Use the `ingress-queuing-filter` statement to set the packet loss priority and forwarding class for the packet, or drop the packet prior to input queue selection. This assists in traffic shaping.

The `ingress-queuing-filter` statement is available only for the following protocol families: `bridge`, `ccc`, `inet`, `inet6`, `mpls`, and `vpls`.

`ingress-queuing-filter` takes `filter-name` as an argument. The named filter is a normal firewall filter that must be configured with at least one of the following actions: `accept`, `discard`, `forwarding-class`, and `loss-priority`.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring a Filter for Use as an Ingress Queuing Filter | 1009
inet (Routing Policy Condition)

Syntax

```plaintext
inet {
    address;
    table table-name;
}
```

Hierarchy Level

```plaintext
[edit logical-systems logical-system-name policy-options condition if-route-exists address-family],
[edit policy-options condition if-route-exists address-family],
```

Release Information
Statement introduced in Junos OS Release 13.2.

Description
Specify that the route must correspond to a IPv4 prefix to be considered a match.

Options
(Optional) `address`—Specify the IP address that the route must have to be considered a match.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario
instance-shared

Syntax

instance-shared;

Hierarchy Level

[edit firewall family protocol-family-name filter filter-name],
[edit logical systems logical-system-name firewall family protocol-family-name filter filter-name]

Release Information
Statement introduced in Junos OS Release 14.2.

Description
Specify to share the firewall filter across multiple routing instances. By default, firewall filters are not automatically shared across multiple instances. You can configure both shared and nonshared firewall filters on the same routing device. This statement can be used only when network services for the device are configured with enhanced IP mode.

The following protocol families are supported: Bridge, IPv4, IPv6, Layer 2 CCC, MPLS, and VPLS.

NOTE: Only Modular Port Concentrators (MPCs) are supported.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Guidelines for Configuring Firewall Filters | 746
network-services
interface (Protocols ISIS)

Syntax

interface (interface-name | all) {
 admin-group {
 exclude [group-name];
 include-all [group-name];
 include-any [group-name];
 preference [group-name];
 }
 bandwidth-greater-equal-primary;
 dest-metric (highest | lowest);
 downstream-paths-only;
 evaluation-order [admin-group srlg bandwidth protection-type neighbor neighbor-tag metric];
 metric-order [root dest];
 node {
 exclude [neighbor-address];
 preference [neighbor-address];
 }
 node-tag {
 exclude [route-tag];
 preference [route-tag];
 }
 protection-type (link | node| node-link);
 root-metric (highest | lowest);
 srlg (loose | strict);
}

Hierarchy Level

[edit logical-systems logical-system-name routing-options backup-selection destination prefix],
[edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix],
[edit routing-instances instance-name routing-options backup-selection prefix],
[edit routing-options backup-selection destination prefix]

Release Information

Description
Define the backup selection policy for a specific primary next hop.

Options
interface-name— Name of the primary next-hop interface.

all— All the interfaces.

bandwidth-greater-equal-primary— Allow the selection of the backup next hop only if the bandwidth is greater than or equal to the bandwidth of the primary next hop.

dest-metric (highest | lowest)— Specify the metric from the one-hop neighbor or from the remote router such as an RSVP backup label-switched-path (LSP) tail-end router to the final destination.

 - **highest**— Select the backup path that has the highest destination metric.
 - **lowest**— Select the backup path that has the lowest destination metric.

downstream-paths-only— Select the backup path that is a downstream path to the destination.

evaluation-order [admin-group srlg bandwidth protection-type neighbor neighbor-tag metric]— Control the order and the criteria of evaluating the backup path. The default order of evaluation is admin-group, srlg, bandwidth, protection-type, neighbor, neighbor-tag, and metric.

NOTE: For the explicitly configured evaluation order, only the listed attributes influence the selection of the backup path.

metric-order [root dest]— Specify the order of preference of the root and the destination metric during the backup path selection. The preference order can be:

- **[root dest]**— Backup path selection or preference is first based on the root-metric criteria. If the criteria of all the root-metric is the same, then the selection or preference is based on the dest-metric.
- **[dest root]**— Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric.

NOTE: By default, backup paths with lower destination metric criteria are selected or preferred. If the criteria is the same, then the lowest root metric criteria is preferred or selected.

root— The metric to a one-hop neighbor or a remote router.

dest— The metric from a one-hop neighbor or remote router to the final destination.

protection-type (link | node | node-link)— Specify the required protection type of the backup path.
NOTE: If no protection-type is configured, then by default the first best path that matches all the other criteria is executed.

link—Select the backup path that provides link protection.

node—Select the backup path that provides node protection.

node-link—Allow either node or link protection LFA where node-protection LFA is preferred over link-protection LFA.

root-metric (highest | lowest)—Specify the metric to the one-hop neighbor or to the remote router such as an RSVP backup label-switched-path (LSP) tail-end router.

highest—Select the highest root metric.

lowest—Select the lowest root metric.

srlg (loose | strict)—Define the backup selection to either allow or reject the common shared risk link groups (SRLGs) between the primary link and any link in the backup path.

loose—Allow the backup path that has common srlgs between the primary link and any link in the backup path. A backup path with a fewer number of srlg collisions is preferred.

strict—Reject the backup path that has common srlgs between the primary link and each link in the backup path.

The remaining statements are explained separately. See **CLI Explorer**.

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding Backup Selection Policy for IS-IS Protocol | 199
- Configuring Backup Selection Policy for IS-IS Protocol | 199
- *backup-selection (Protocols ISIS)*
- *destination*
interface (Protocols OSPF or OSPF3)

Syntax

interface (interface-name | all) {
 admin-group {
 exclude [group-name];
 include-all [group-name];
 include-any [group-name];
 preference [group-name];
 }
 bandwidth-greater-equal-primary;
 dest-metric (highest | lowest);
 downstream-paths-only;
 evaluation-order [admin-group srlg bandwidth protection-type node metric];
 metric-order [root dest];
 node {
 exclude [node-address];
 preference [node-address];
 }
 protection-type (link | node | node-link);
 root-metric (highest | lowest);
 srlg (loose | strict);
}

Hierarchy Level

[edit logical-systems logical-system-name routing-options backup-selection destination prefix],
[edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix],
[edit routing-instances instance-name routing-options backup-selection prefix],
[edit routing-options backup-selection destination prefix]

Release Information
Statement introduced in Junos OS Release 15.1.

Description
Define the backup selection policy for a specific primary next hop.

Options

interface-name — Name of the primary next-hop interface.

all — All the interfaces.
bandwidth-greater-equal-primary— Allow the selection of the backup next hop only if the bandwidth is greater than or equal to the bandwidth of the primary next hop.

dest-metric (highest lowest)— Specify the metric from the one-hop neighbor or from the remote router such as an RSVP backup label-switched-path (LSP) tail-end router to the final destination.

- **highest**— Select the backup path that has the highest destination metric.
- **lowest**— Select the backup path that has the lowest destination metric.

downstream-paths-only— Select the backup path that is a downstream path to the destination.

evaluation-order [admin-group srlg bandwidth protection-type node metric]— Control the order and the criteria of evaluating the backup path. The default order of evaluation is admin-group, srlg, bandwidth, protection-type, node and metric.

NOTE: For the explicitly configured evaluation order, only the listed attributes influence the selection of the backup path.
metric-order [root dest] — Specify the order of preference of the root and the destination metric during the backup path selection. The preference order can be:

- [root dest] — Backup path selection or preference is first based on the root-metric criteria. If the criteria of all the root-metric is the same, then the selection or preference is based on the dest-metric.
- [dest root] — Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric.

NOTE: Backup path selection or preference is first based on the dest-metric criteria. If the criteria of all the dest-metric is the same, then the selection is based on the root-metric. By default, backup paths with lower destination metric criteria are selected or preferred. If the criteria is the same, then the lowest root metric criteria is preferred or selected.

root — The metric to a one-hop neighbor or a remote router.

dest — The metric from a one-hop neighbor or remote router to the final destination.

protection-type (link | node | node-link) — Specify the required protection type of the backup path.

link — Select the backup path that provides link protection.

node — Select the backup path that provides node protection.

node-link — Allow either node or link protection LFA where node-protection LFA is preferred over link-protection LFA.

root-metric (highest lowest) — Specify the metric to the one-hop neighbor or to the remote router such as an RSVP backup label-switched-path (LSP) tail-end router.

 - **highest** — Select the highest root metric.
 - **lowest** — Select the lowest root metric.
srlg (loose | strict)—Define the backup selection to either allow or reject the common shared risk link groups (SRLGs) between the primary link and any link in the backup path.

loose—Allow the backup path that has common srlgs between the primary link and any link in the backup path. A backup path with a fewer number of srlg collisions is preferred.

strict—Reject the backup path that has common srlgs between the primary next-hop link and each link in the backup path.

The remaining statements are explained separately. See [CLI Explorer](#).

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Backup Selection Policy for the OSPF or OSPF3 Protocol | 201
- Configuring Backup Selection Policy for the OSPF Protocol | 193
- Understanding Backup Selection Policy for OSPF Protocol | 191
- backup-selection (Protocols ISIS)
ip-options-protocol-queue

Syntax

```
ip-options-protocol-queue protocol-name {
   protocol-id protocol-id;
   queue-depth queue-depth;
}
```

Hierarchy Level

```
[edit forwarding-options]
```

Release Information

Description

Configure logical queue-depth in the PFE for **ip-options** packets for a given protocol such as TCP, UDP, ICMP, and so on, except IGMP. The queue-depth indicates the number of **ip-options** packets that can be enqueued in the PFE logical queue, beyond which it will start dropping the packets. Currently, IGMP has a default queue-depth of 192 (which is not configurable), and other protocols have a cumulative default queue-depth of 25. The CLI supports configuration for a maximum of 16 protocols. The sum total of queue-depth for all the protocols should not exceed 1024 packets.

Options

protocol-id protocol-id—Identify the protocol.

- **Range**: 1 through 254

queue-depth queue-depth—Size of the protocol logical options queue for a given protocol.

- **Range**: 1 through 807 packets

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
metric (Policy Action)

Syntax

```metric (add add | aigp | expression expression | igp metric_offset | minimum-igp metric_offset | subtract subtract)```

**Hierarchy Level**

```[edit policy-options policy-statement policy-name term term-name then ],
[edit policy-options policy-statement policy-name then]```

Release Information

Description

Specify this CLI policy action in an import or export policy to set the metric value to one of the following options as per your network requirement.

Options

- **add add**—Specify a constant that should be added to the metric value. Use this option if you want to increase the metric of a route.
- **expression**—Calculate the metric value based on the route metric and metric2.
- **igp metric_offset**—Configure this option to set the IGP metric for BGP. Specify a metric offset to increase or decrease the calculated IGP metric.
- **minimum-igp metric_offset**—Configure this option to set the minimum IGP metric for BGP.
- **aigp**—Configure this option to set IGP metric to the accumulated interior gateway protocol (AIGP) metric value if an AIGP attribute has been configured. Specify this value in an export policy to redistribute BGP routes to an IGP, such as the OSPF protocol.
- **subtract subtract**—Specify a constant that must be subtracted from the metric value. Use this option if you want to decrease the metric of a route.

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

| aigp-adjust (Policy Action) | 1994 |
node

Syntax

node {
 exclude [node-address];
 preference [node-address];
}

Hierarchy Level

[edit logical systems logical-system-name routing-options backup-selection (Protocols ISIS) destination prefix interface name],
[edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
[edit routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
[edit routing-options backup-selection (Protocols ISIS) destination prefix interface interface name]

Release Information

Description

Define a list of loop-back IP addresses of the adjacent nodes to either prefer or exclude in the backup path selection. The node can be a local (adjacent router) node, remote node, or any other router in the backup path.

NOTE: The nodes are identified through the TE-router-ID TLV advertised by a node in the LSP.

Options

exclude [node-address]— Specify the list of nodes to be excluded. The backup path that has a router from the list is not selected as the loop-free alternative or backup next hop.

 node-address— Name of one or more nodes to be excluded during backup path selection.

preference [node-address]— Define an ordered set of nodes to be preferred. The backup path having the leftmost node is selected.

 node-address— Name of one or more nodes to be preferred in the backup path selection.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Understanding Backup Selection Policy for IS-IS Protocol | 199 |
| Configuring Backup Selection Policy for IS-IS Protocol | 199 |
| backup-selection (Protocols ISIS) |
| destination |
| interface | 2052 |
node-tag

Syntax

```
node-tag {
  exclude [ route-tag ];
  preference [ route-tag ];
}
```

Hierarchy Level

- [edit logical-systems logical-system-name routing-options backup-selection (Protocols ISIS) destination prefix interface interface-name],
- [edit logical-systems logical-system-name routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
- [edit routing-instances instance-name routing-options backup-selection destination prefix interface interface-name],
- [edit routing-options backup-selection destination prefix interface interface-name]

Release Information

Description

Define per-neighbor policy to either prefer or exclude a backup path.

NOTE: This statement identifies a group of nodes in the network based on criteria such as the same neighbor tag values for all PE nodes. This is implemented using IS-IS admin-tags.

Options

exclude [route-tag]— Specify that the backup path which has any node or router with route-tag from this list is not selected as the loop-free alternative or backup-next hop.

route-tag— Name of one or more tags advertised as part of extended IP reachability with a /32 prefix length that represents the TE-router-ID or node ID of a router.

preference [route-tag]— Specify the set of route tags in descending order of preference.

route-tag— Name of one or more tags advertised as part of extended IP reachability with a /32 prefix length that represents the TE-router-ID or node ID of a router.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Backup Selection Policy for IS-IS Protocol</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Backup Selection Policy for IS-IS Protocol</td>
<td>199</td>
</tr>
</tbody>
</table>

backup-selection (Protocols ISIS)

destination

interface | 2052
no-walkup

Syntax

no-walkup;

Hierarchy Level

[edit logical-system logical-system-name policy-options defaults route-filter],
[edit logical-system logical-system-name policy-options policy-statement policy-statement-name defaults route-filter]

Release Information

Description
Override route filter walkup globally or locally for a particular policy statement. The walkup feature examines more than the longest match route filters in a policy statement term with more than one route filter, allowing consolidation of terms and a potential performance enhancement.

Default
By default, the policy statement performs the type of route filter processing that is enabled at the global level.

Required Privilege Level
routings—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

walkup | 2089
route-filter | 2079
Walkup for Route Filters Overview | 304
Configuring Walkup for Route Filters to Improve Operational Efficiency | 308
Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency | 319
Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency | 326
peer-unit (Routing Policy Condition)

Syntax

peer-unit unit-number;

Hierarchy Level

[edit logical-systems logical-system-name policy-options condition if-route-exists address-family ccc], [edit policy-options condition if-route-exists address-family ccc],

Release Information

Statement introduced in Junos OS Release 13.2.

Description

Specify the associated logical tunnel interface's peer-unit. This is required for logical-tunnel-based routes.

Options

unit-number—Logical unit number of the logical tunnel peer interface.

Range: 0 through 8192

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario
policy-options

Syntax

```
policy-options {
  as-path name regular-expression;
  as-path-group group-name;
  community name {
    invert-match;
    members [ community-ids ];
  }
  condition condition-name {
    if-route-exists address table table-name;
  }
  damping name {
    disable;
    half-life minutes;
    max-suppress minutes;
    reuse number;
    suppress number;
  }
  policy-statement policy-name {
    term term-name {
      from {
        family;
        fpc-pfes-offline pfes-offline-per-fpc;
        match-conditions;
        policy subroutine-policy-name;
        prefix-list name;
        route-filter destination-prefix match-type <actions>;
        source-address-filter source-prefix match-type <actions>;
      }
      to {
        match-conditions;
        policy subroutine-policy-name;
      }
      then actions;
      default-action (accept | reject);
      prefix-segment {
        index index;
        node-segment;
      }
    }
    then {
      no-entropy-label-capability;
    }
  }
```
priority (high | medium | low);
}
}
prefix-list name {
 ip-addresses;
}
}

Hierarchy Level

[edit],
[edit dynamic-profiles profile-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Support at the [edit dynamic-profiles] hierarchy level introduced in Junos OS Release 11.4.

Description
Configure routing policy.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Using Routing Policy in an ISP Network | 127
policy-statement

Syntax

```plaintext
policy-statement policy-name {
  term term-name {
    from {
      as-path-unique-count count (equal | orhigher | orlower);
      family family-name;
      match-conditions;
      policy subroutine-policy-name;
      prefix-list prefix-list-name;
      prefix-list-filter prefix-list-name match-type <actions>;
      protocol protocol-name;
      route-filter destination-prefix match-type <actions>;
      source-address-filter source-prefix match-type <actions>;
      tag value;
      traffic-engineering;
    }
    to {
      match-conditions;
      policy subroutine-policy-name;
    }
  }
  then actions;
}
then {
  aggregate-bandwidth;
  dynamic-tunnel-attributes dynamic-tunnel-attributes;
  limit-bandwidth limit-bandwidth;
  multipath-resolve multipath-resolve;
  no-entropy-label-capability;
  prefix-segment {
    index index;
    node-segment;
  }
  priority (high | medium | low);
  resolution-map map-name;
}
}
```

Hierarchy Level

```plaintext
[edit dynamic-profiles profile-name policy-options],
[edit logical-systems logical-system-name policy-options],
```
Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5 for EX Series switches.
inet-mdt option introduced in Junos OS Release 10.0R2.
Statement introduced in Junos OS Release 11.3 for the QFX Series.
route-target option introduced in Junos OS Release 12.2.
Statement introduced in Junos OS 14.1X53-D20 for the OCX Series.
protocol and traffic-engineering options introduced in Junos OS Release 14.2.
no-entropy-label-capability option introduced in Junos OS Release 15.1.
priority and tag value options introduced in Junos OS Release 17.1.
as-path-unique-count option introduced in Junos OS Release 17.2R1.
prefix-segment option introduced in Junos OS Release 17.2R1 for MX Series routers, PTX Series routers, QFX5100 switches, and QFX10000 switches.
multipath-resolve and dynamic-tunnel-attributes options introduced in Junos OS Release 17.3R1.
aggregate-bandwidth and limit-bandwidth limit-bandwidth options introduced in Junos OS Release 17.4R1 for MX Series, PTX Series, and QFX Series.
I-isis and I-ospf keywords at the protocol option is introduced in Junos OS Release 19.1R1.
resolution-map statement introduced in Junos OS Release 19.2R1-S1 on MX and PTX Series routers.
Description
Define a routing policy, including subroutine policies.

A term is a named structure in which match conditions and actions are defined. Routing policies are made up of one or more terms. Each routing policy term is identified by a term name. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in double quotation marks.

Each term contains a set of match conditions and a set of actions:

• Match conditions are criteria that a route must match before the actions can be applied. If a route matches all criteria, one or more actions are applied to the route.

• Actions specify whether to accept or reject the route, control how a series of policies are evaluated, and manipulate the characteristics associated with a route.

Generally, a router compares a route against the match conditions of each term in a routing policy, starting with the first and moving through the terms in the order in which they are defined, until a match is made and an explicitly configured or default action of accept or reject is taken. If none of the terms in the policy match the route, the router compares the route against the next policy, and so on, until either an action is taken or the default policy is evaluated.

If none of the match conditions of each term evaluates to true, the final action is executed. The final action is defined in an unnamed term. Additionally, you can define a default action (either accept or reject) that overrides any action intrinsic to the protocol.

The order of match conditions in a term is not relevant, because a route must match all match conditions in a term for an action to be taken.

To list the routing policies under the [edit policy-options] hierarchy level by policy-statement policy-name in alphabetical order, enter the show policy-options configuration command.

The statements are explained separately.
Options

actions—(Optional) One or more actions to take if the conditions match. The actions are described in "Configuring Flow Control Actions" on page 70.

NOTE: When family is not specified, the routing device or routing instance uses the address family or families carried by BGP. If multiprotocol BGP (MP-BGP) is enabled, the policy defaults to the protocol family or families carried in the network layer reachability information (NLRI) as configured in the family statement for BGP. If MP-BGP is not enabled, the policy uses the default BGP address family unicast IPv4.

from—(Optional) Match a route based on its source address.

as-path-unique-count count (equal | orhigher | orlower)—(Optional) Specify a number from 0 through 1024 to filter routes based on the number of unique autonomous systems (ASs) in the AS path. Specify the match condition for the unique AS path count.

aggregate-bandwidth—(Optional) Enable BGP to advertise aggregate outbound link bandwidth for load balancing.

dynamic-tunnel-attributes dynamic-tunnel-attributes—(Optional) Choose a set of defined dynamic tunnel attributes for forwarding traffic over V4oV6 tunnels.

match-conditions—(Optional in from statement; required in to statement) One or more conditions to use to make a match. The qualifiers are described in "Routing Policy Match Conditions" on page 55.

multipath-resolve multipath-resolve—(Optional) Enable the use of all paths for resolution over the specified prefix.

limit-bandwidth limit-bandwidth—(Optional) Specify the limit for advertised aggregate outbound link bandwidth for load balancing.

Range: 0 through 4,294,967,295 bytes

no-entropy-label-capability—(Optional) Disable the entropy label capability advertisement at egress or transit routes specified in the policy.

priority (high | medium | low)—(Optional) Configure the priority for an IS-IS route to change the default order in which the routes are installed in the routing table, in the event of a network topology change.
policy subroutine-policy-name—Use another policy as a match condition within this policy. The name identifying the subroutine policy can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose it in quotation marks (" "). Policy names cannot take the form __.*-internal__, as this form is reserved. For information about how to configure subroutines, see “Understanding Policy Subroutines in Routing Policy Match Conditions” on page 259.

policy-name—Name that identifies the policy. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose it in quotation marks (" ").

prefix-list prefix-list-name—Name of a list of IPv4 or IPv6 prefixes.

prefix-list-filter prefix-list-name—Name of a prefix list to evaluate using qualifiers; **match-type** is the type of match, and **actions** is the action to take if the prefixes match.

protocol protocol-name—Name of the protocol used to control traffic engineering database import at the originating point.

Starting in Junos OS Release 19.1R1, you can specify options to match label IS-IS and label OSPF routes using the l-isis and l-ospf options, respectively. The isis options matches all IS-IS routes, excluding labelled IS-IS routes. The ospf option matches all OSPF routes, including OSPFv2, OSPFv3 and labelled OSPF routes.

resolution-map—(Optional) Set resolution map modes. A given resolution-map can be shared across multiple policy-statements.

route-filter destination-prefix match-type <actions>—(Optional) List of routes on which to perform an immediate match; **destination-prefix** is the IPv4 or IPv6 route prefix to match, **match-type** is the type of match (see "Configuring Route Filters" on page 282), and **actions** is the action to take if the **destination-prefix** matches.

source-address-filter source-prefix match-type <actions>—(Optional) Unicast source addresses in multiprotocol BGP (MBGP) and Multicast Source Discovery Protocol (MSDP) environments on which to perform an immediate match. **source-prefix** is the IPv4 or IPv6 route prefix to match, **match-type** is the type of match (see "Configuring Route Filters" on page 282), and **actions** is the action to take if the **source-prefix** matches.

tag value—(Optional) A numeric value that identifies a route. You can tag certain routes to prioritize them over other routes. In the event of a network topology change, Junos OS updates these routes in the routing table before updating other routes with lower priority. You can also tag some routes to identify and reject them based on your requirement.

term term-name—Name that identifies the term. The term name must be unique in the policy. It can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" "). A policy statement can include multiple terms. We recommend that you name all terms. However, you do have the option to include an unnamed term which must be the final term in the policy. To configure an unnamed term, omit the **term** statement when defining match conditions and actions.
to—(Optional) Match a route based on its destination address or the protocols into which the route is being advertised.

then—(Optional) Actions to take on matching routes. The actions are described in "Configuring Flow Control Actions" on page 70 and "Configuring Actions That Manipulate Route Characteristics" on page 71.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>dynamic-db</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Source Packet Routing in Networking (SPRING)</td>
<td></td>
</tr>
</tbody>
</table>
prefix-list

Syntax

```
prefix-list name {
  ip-addresses;
  apply-path path;
}
```

Hierarchy Level

- [edit dynamic policy-options],
- [edit logical-systems logical-system-name policy-options],
- [edit policy-options]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5 for EX Series switches.
Support for the vpls protocol family introduced in Junos OS Release 10.2.
Support for IPv6 RA guard policy lists introduced in Junos OS Release 16.1 for EX Series switches.

Description

Define a list of IPv4 or IPv6 address prefixes for use in a routing policy statement or firewall filter statement, or a list of IPv6 addresses or address prefixes for use in an IPv6 RA guard policy.

You can configure up to 85,325 prefixes in each prefix list. To configure more than 85,325 prefixes, configure multiple prefix lists and apply them to multiple firewall filter terms.

Options

- **name**—Name that identifies the list of IPv4 or IPv6 addresses or address prefixes.
- **ip-addresses**—List of IPv4 or IPv6 addresses or address prefixes, one IP address per line in the configuration.

The remaining statement is explained separately. See CLI Explorer.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Understanding Prefix Lists for Use in Routing Policy Match Conditions | 360

dynamic-db | 2018

Firewall Filter Match Conditions Based on Address Fields | 882 in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide

Example: Configuring a Filter to Limit TCP Access to a Port Based On a Prefix List | 943 in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
prefix-list-filter

Syntax

prefix-list-filter prefix-list-name match-type <actions>;

Hierarchy Level

[edit logical-systems logical-system-name policy-options policy-statement policy-statement-name term term--name from],
[edit policy-options policy-statement policy-statement-name term term--name from]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Evaluate a list of prefixes within a prefix list using specified qualifiers.

Options

prefix-list-name—Name of the prefix list to evaluate.

exact—The prefix-length component of the match prefix is equal to the route’s prefix length

longer—The route’s prefix length is greater than the prefix-length component of the match prefix.

orlonger—The route’s prefix length is equal to or greater than the prefix-length component of the configured match prefix.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding Prefix Lists for Use in Routing Policy Match Conditions | 360
route-filter

Syntax

route-filter (no-walkup | walkup);

Hierarchy Level

[edit logical-system logical-system-name policy-options defaults],
[edit logical-system logical-system-name policy-options policy-statement policy-statement-name defaults],
[edit policy-options policy-statement policy-statement-name defaults]

Release Information

Description
Enable or disable walkup globally or locally for route filters in a particular policy statement or globally. The walkup feature examines more than the longest match route filters in a policy statement term with more than one route filter, allowing consolidation of terms and a potential performance enhancement.

Default
By default, no route filter walkup is performed.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Statement</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>no-walkup</td>
<td>2066</td>
</tr>
<tr>
<td>walkup</td>
<td>2089</td>
</tr>
<tr>
<td>Walkup for Route Filters Overview</td>
<td>304</td>
</tr>
<tr>
<td>Configuring Walkup for Route Filters to Improve Operational Efficiency</td>
<td>308</td>
</tr>
<tr>
<td>Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency</td>
<td>319</td>
</tr>
<tr>
<td>Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency</td>
<td>326</td>
</tr>
</tbody>
</table>
route-filter-list

List of Syntax
route-filter-list (Create List) on page 2080
route-filter-list (Use list) on page 2080

route-filter-list (Create List)

route-filter-list route-filter-list-name {
 ip-addresses <exact | longer | orlonger | prefix-length-range | through | upto> label range start : end;
 ip-addresses <exact | longer | orlonger | prefix-length-range | through | upto> label-allocation-fallback-reject;
 ip-addresses exact label value;
 ip-addresses exact label-allocation-fallback-reject;
}

Hierarchy Level

[edit logical-systems logical-system-name policy-options],
[edit policy-options]

route-filter-list (Use list)

route-filter-list route-filter-list-name;

Hierarchy Level

[edit logical-systems logical-system-name policy-statement policy-statement-name term term-name from],
[edit policy-options policy-statement policy-statement-name term term-name from]

Release Information

Description
The route filter list is a user-configured list of individual route filters that you create at the [edit policy-options] hierarchy level. Each item in the list consists of a complete route filter statement, made up of a destination prefix, a match type, and an optional action.

For example:

[edit]
user@router# show policy-options route-filter-list rf-test-list
203.0.113.0/24 address-mask 255.255.255.0;
192.0.2.0/26 orlonger reject;
Once configured, the route-filter-list is used by referencing its route-filter-list-name in a policy-statement at the [edit policy-options policy-statement policy-statement-name term term-name from] hierarchy level. Route filter lists can be used in conjunction with other route-filter statements.

For example:

```
[edit]
user@router# show policy-options policy-statement test-route-filter-list-statement
from {
  route-filter 198.51.100.32/29 exact accept;
  route-filter 192.0.2.1/32 exact;
  route-filter-list rf-test-list;
}
then reject;
```

Here is an example on how to specify policy-based control for BGP-LU labels being allocated for a given prefix:

```
[edit]
user@host# show policy-options route-filter-list rfl-1
198.51.1.1/32 exact {
  label 1000101;
  next-hop 198.52.1.2;
  accept;
  label-allocation-fallback-reject;
}
198.51.1.0/24 prefix-length-range /24-/32 {
  label range 1000000:1000200;
  next-hop 198.53.2.2;
  accept;
}
}
```

```
[edit]
user@host# show policy-options policy-statement p-1
from {
  route-filter-list rfl-1;
}
then accept;
```
[edit]
user@host# show protocols bgp group ibgp{
 type internal;
 local-address 198.0.23.3;
 family inet {
 labeled-unicast {
 per-prefix-label;
 }
 }
 neighbor 198.0.12.1 {
 export p-1;
 }
}

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
rtf-prefix-list

Syntax

```
rtf-prefix-list name route-targets
```

Hierarchy Level

```
[edit logical-systems logical-system-name policy-options],
[edit logical-systems logical-system-name policy-options policy-statement policy-name term term-name],
[edit policy-options],
[edit policy-options policy-statement policy-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 12.2.

Description

Define a list of route target prefixes for use in a routing policy statement. These prefixes are only useful for filtering routes in the bgp.rtarget.0 table.

The route target filtering prefix is in the format: `AS number:route target extended community/length`. The first number represents the autonomous system (AS) of the device that sent the advertisement. The second group of numbers represent the route target extended community. The format of the extended community is the same as the extended community type target. For more information about extended communities, see “Understanding How to Define BGP Communities and Extended Communities” on page 463.

In this route target prefix example `64500:200:101/96`, `64500` is the AS number, `200:101` is the BGP extended community used for the route target, and `96` is the prefix length.

For more information about the route target community, see RFC 4360, `BGP Extended Communities Attribute`.

For more information about the route target filtering prefix format, see RFC 4684, *Constrained Route Distribution for Border Gateway Protocol/MultiProtocol Label Switching (BGP/MPLS) Internet Protocol (IP) Virtual Private Networks (VPNs)*.

Options

- **name**—Name that identifies the list of route target filtering prefixes. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose the entire name in quotation marks (" ").

- **route-targets**—List of route target filtering prefixes, one route target filter per line in the configuration. When you use the `rtf-prefix-list` statement as a match condition, you do not have the option of configuring the list of route target filtering prefixes. You must first define and configure the route target filtering prefixes with the `policy-options` statement.
Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring an Export Policy for BGP Route Target Filtering for VPNs
- Configuring BGP Route Target Filtering for VPNs
- Understanding Proxy BGP Route Target Filtering for VPNs
- Understanding How to Define BGP Communities and Extended Communities in the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*
source-address-filter-list

List of Syntax
source-address-filter-list (Create List) on page 2085
source-address-filter-list (Use list) on page 2085

source-address-filter-list (Create List)

 source-address-filter-list source-address-filter-list-name;

Hierarchy Level

 [edit logical-systems logical-system-name policy-options],
 [edit policy-options]

source-address-filter-list (Use list)

 source-address-filter-list source-address-filter-list-name;

Hierarchy Level

 [edit logical-systems logical-system-name policy-statement policy-statement-name term term-name from],
 [edit policy-options policy-statement policy-statement-name term term-name from]

Release Information

Description
The source address filter list is a user configured list of individual source address filters, typically used to match an incoming route address to unicast source addresses in Multiprotocol BGP (MBGP) and Multicast Source Discovery Protocol (MSDP) environments, that you create at the [edit policy-options] hierarchy level. Each item in the list consists of a complete source address filter statement, made up of a source-prefix address, a match-type, and an optional action.

For example:

 [edit]
 user@router# show policy-options source-address-filter-list saf-test-list
 203.0.113.0/26 exact;
 192.0.2.0/24 longer accept;
 198.51.100.8/29 exact reject;
Once configured, `source-address-filter-list` is used by referencing its `source-address-filter-list-name` in a `policy-statement` at the `[edit policy-options policy-statement policy-statement-name term term-name from]` hierarchy level. Source address filter lists can be used in conjunction with other `source-address-filter` statements.

For example:

```
[edit]
user@router# show policy-options policy-statement test-saf-list-statement
from {
  source-address-filter 198.51.100.16/29 exact accept;
  source-address-filter-list saf-test-list;
}
  then reject;
```

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.
standby (Routing Policy Condition)

Syntax

standby;

Hierarchy Level

[edit logical-systems logical-system-name policy-options condition if-route-exists address-family ccc],
[edit policy-options condition if-route-exists address-family ccc],

Release Information
Statement introduced in Junos OS Release 13.2.

Description
Specify that the route must be in standby state to be considered a match.

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario
table

Syntax

```
table table-name;
```

Hierarchy Level

```
[edit dynamic policy-options condition],
[edit logical-systems logical-system-name policy-options condition if-route-exists ],
[edit logical-systems logical-system-name policy-options condition if-route-exists address-family ccc],
[edit logical-systems logical-system-name policy-options condition if-route-exists address-family inet],
[edit policy-options condition if-route-exists],
[edit policy-options condition if-route-exists address-family ccc],
[edit policy-options condition if-route-exists address-family inet]
```

Release Information

Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5.
Support for configuration in the dynamic database introduced in Junos OS Release 9.5 for EX Series switches.
Support for the address families introduced in Junos OS Release 13.2.

Description

Specify a routing table in which the route must exist for the condition to be met and the route to be considered a match.

Options

- **table table-name**—Routing table name, such as inet.0.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Conditional Advertisement and Import Policy (Routing Table) with certain match conditions | 626
- Example: Configuring Pseudowire Redundancy in a Mobile Backhaul Scenario
- dynamic-db | 2018
walkup

Syntax

walkup;

Hierarchy Level

[edit logical-system logical-system-name policy-options defaults route-filter],
[edit logical-system logical-system-name policy-options policy-statement policy-statement-name defaults route-filter],
[edit policy-options defaults route-filter],
[edit policy-options policy-statement policy-statement-name defaults route-filter]

Release Information

Description

Enable route filter walkup globally or locally for a particular policy statement. The walkup feature examines more than the longest match route filters in a policy statement term with more than one route filter, allowing consolidation of terms and a potential performance enhancement.

Default

By default, no route filter walkup is performed and only the longest match route filter in a policy statement term is examined.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

no-walkup	2066
route-filter	2079
Walkup for Route Filters Overview	304
Configuring Walkup for Route Filters to Improve Operational Efficiency	308
Example: Configuring Walkup for Route Filters Globally to Improve Operational Efficiency	319
Example: Configuring Walkup for Route Filters Locally to Improve Operational Efficiency	326
priority (policy-options)

Syntax

```
policy-options {
    policy-statement policy-name {
        term term-name {
            from {
                match-conditions;
                route-filter destination-prefix match-type;
            }
            then {
                priority high | low;
            }
        }
    }
}
```

Hierarchy Level

```
[edit logical-systems name policy-options policy-statement policy-name term term-name then],
[edit logical-systems name policy-options policy-statement policy-name then],
[edit policy-options policy-statement policy-name term term-name then],
[edit policy-options policy-statement policy-name then]
```

Release Information

Description

Sets the priority for route installation. You can choose a relative priority of `high`, `low`, or `medium` to ensure that high priority IGP and LDP routes are updated in the FIB (forwarding table) before medium and low priority routes. Routes are placed in different priority queues according to the priority. Any routes that are not explicitly assigned a priority are treated as medium priority. Within the same priority level, routes will continue to be updated in lexicographic order.

Options

- **high**—Set priority to high.
- **low**—Set priority to low.
- **medium**—Set priority to medium.

Required Privilege Level

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Prefix Prioritization Overview</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Configuring the Priority for Route Prefixes in the RPD Infrastructure</td>
<td>378</td>
</tr>
</tbody>
</table>
CHAPTER 36

Firewall Filter Configuration Statements

IN THIS CHAPTER

- accounting-profile | 2095
- bandwidth-limit | 2096
- burst-size-limit | 2097
- counter | 2098
- enhanced-mode | 2099
- destination-address | 2102
- destination-port | 2103
- direction (forwarding-class-accounting) | 2104
- family | 2105
- family (Firewall Filter) | 2107
- family (Firewall) | 2109
- family vpls (Layer 2 Pseudowires) | 2111
- fast-lookup-filter | 2112
- filter-list-template | 2114
- filter (Applying to a Logical Interface) | 2115
- filter (Configuring) | 2117
- filter (Firewall Filters) | 2119
- filter (Layer 2 and Layer 3 Interfaces) | 2120
- filter (Layer 3 Interfaces) | 2121
- filter (VLANs) | 2122
- Firewall Filter Configuration Statements Supported by Junos OS for EX Series Switches | 2123
- firewall | 2127
- firewall | 2129
- firewall | 2131
- force-premium (Firewall Filter Action) | 2133
- forwarding-class (Firewall Filter Action) | 2134
- from | 2135
- from | 2136
hierarchical-policer | 2137
if-exceeding | 2140
if-exceeding | 2141
input (Forwarding Table) | 2142
input-chain | 2143
interface-group (Decapsulate GRE) | 2144
interface-set | 2145
interface-shared | 2146
interface-specific (Firewall Filters) | 2147
interface-specific | 2148
interface-specific | 2149
ipv4 (Family MPLS) | 2150
ipv6 (Family MPLS) | 2152
ip-version (Family MPLS) | 2153
ip-version | 2154
output (Forwarding Table) | 2155
output-chain | 2156
packet-format-match | 2157
policer | 2159
promote gre-key | 2161
protocol | 2162
routing-instance | 2163
routing-instance-name (circuit-id) | 2164
scale-optimized | 2165
service-filter (Firewall) | 2167
simple-filter | 2169
source-address | 2171
source-checking | 2172
source-port | 2173
term (Firewall Filter) | 2174
term | 2177
term | 2178
then (Firewall Filters) | 2179
then (Policer Action) | 2180
accounting-profile

Syntax

accounting-profile name;

Hierarchy Level

[edit firewall family family-name filter filter-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Statement introduced in Junos OS Release 15.1F6 for PTX Series routers with third-generation FPCs installed.

Description

Enable collection of accounting data for the specified filter.

Options

name—Name assigned to the accounting profile.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Accounting for Firewall Filters Overview | 1135
bandwidth-limit

Syntax

bandwidth-limit bps;

Hierarchy Level

[edit firewall policer policer-name if-exceeding]
[edit logical-systems logical-system-name firewall policer policer-name if-exceeding]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Logical systems support introduced in Junos OS Release 9.3.

Description

Specify the traffic rate in bits per second.

Options

bps — Traffic rate to be specified in bits per second. Specify **bps** as a decimal value or as a decimal number followed by one of the following abbreviations:

- k (thousand)
- m (million)
- g (billion, which is also called a thousand million)

Range:

- 1000 (1k) through 102,300,000,000 (102.3g) bps (EX Series switches)
- 8000 (8k) through 40,000,000,000 (40g) bps (routers)

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
- Understanding the Use of Policers in Firewall Filters | 1950
burst-size-limit

Syntax

burst-size-limit bytes;

Hierarchy Level

[edit firewall policer policer-name if-exceeding]
[edit logical-systems logical-system-name firewall policer policer-name if-exceeding]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Logical systems support introduced in Junos OS Release 9.3.

Description

Specify the maximum allowed burst size to control the amount of traffic bursting.

Options

bytes — Decimal value or a decimal number followed by k (thousand) or m (million).

Range:
- 1 through 2,147,450,880 bytes (EX Series switches)
- 1500 through 1,00,000,000,000 bytes (routers)

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
Understanding the Use of Policers in Firewall Filters | 1950
Basic Single-Rate Two-Color Policers | 1770
counter

Syntax

```plaintext
counter {
  counter-id counter-index;
}
```

Hierarchy Level

```plaintext
[edit firewall policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 12.2 for EX Series switches.

Description

(On EX8200 switches only) Configure a policer counter.

Options

- `counter-id counter-index`—Global management counter ID.

Range: 0 through 2

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
- Configuring Firewall Filters (CLI Procedure) | 1455
- Understanding the Use of Policers in Firewall Filters | 1950
enhanced-mode

Syntax

enhanced-mode;

Hierarchy Level

[edit dynamic-profiles profile-name firewall family family-name filter filter-name],
[edit firewall filter filter-name],
[edit firewall family family-name filter filter-name],
[edit logical-systems logical-system-name firewall family family-name filter filter-name],
[edit logical-systems logical-system-name firewall family family-name filter filter-name]

Release Information

Statement introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Limit static service filters or API-client filters to term-based filter format only for inet or inet6 families when enhanced network services mode is configured at the [edit chassis network-services] hierarchy level. You cannot attach enhanced mode filters to local loopback, management, or MS-DPC interfaces. These interfaces are processed by the Routing Engine and DPC modules and can accept only compiled firewall filter format. In cases where both filter formats are needed for dynamic service filters, you can use the enhanced-mode-override statement on the specific filter definition to override the default filter term-based only format of chassis network-service enhanced IP mode. The enhanced-mode and the enhanced-mode-override statements are mutually exclusive; you can define the filter with either enhanced-mode or enhanced-mode-override, but not both.

NOTE:

For MX Series routers with MPCs, you need to initialize Trio-only match filters (that is, a filter that includes at least one match condition or action that is only supported by the Trio chipset) by walking the corresponding SNMP MIB. For example, for any filter that is configured or changed with respect to their Trio only filters, you need to run a command such as the following: show snmp mib walk (ascii | decimal) object-id. This forces Junos to learn the filter counters and ensure that the filter statistics are displayed. This guidance applies to all enhanced-mode firewall filters. It also applies to “Firewall Filter Match Conditions for IPv4 Traffic” on page 845 with flexible match filter terms for offset-range or offset-mask, gre-key, and “Firewall Filter Match Conditions for IPv6 Traffic” on page 861 with any of the following match conditions: payload-protocol, extension headers, is_fragment. It also applies to filters with either of the following “Firewall Filter Terminating Actions”
When used with one of the chassis enhanced network services modes, firewall filters are generated in term-based format for use with MPC modules. Do not use enhanced mode for firewall filters that are intended for control plane traffic. Control plane filtering is handled by the Routing Engine kernel, which cannot use the term-based format of the enhanced mode filters.

If enhanced network services are not configured for the chassis, the enhanced-mode statement is ignored and any enhanced mode firewall filters are generated in both term-based and the default, compiled format. Only term-based (enhanced) firewall filters will be generated, regardless of the setting of the enhanced-mode statement at the [edit chassis network-services] hierarchy level, if any of the following are true:

- Flexible filter match conditions are configured at the [edit firewall family family-name filter filter-name term term-name from] or [edit firewall filter filter-name term term-name from] hierarchy levels.
- A tunnel header push or pop action, such as GRE encapsulate or decapsulate is configured at the [edit firewall family family-name filter filter-name term term-name then] hierarchy level.
- Payload-protocol match conditions are configured at the [edit firewall family family-name filter filter-name term term-name from] or [edit firewall filter filter-name term term-name from] hierarchy levels.
- An extension-header match is configured at the [edit firewall family family-name filter filter-name term term-name from] or [edit firewall filter filter-name term term-name from] hierarchy levels.
- A match condition is configured that only works with MPC cards, such as firewall bridge filters for IPv6 traffic.

For packets sourced from the Routing Engine, the Routing Engine processes Layer 3 packets by applying output filters to the packets and forwards Layer 2 packets to the Packet Forwarding Engine for transmission. By configuring the enhanced mode filter, you explicitly specify that only the term-based filter format is used, which also implies that the Routing Engine cannot use this filter.

Required Privilege Level

firewall—To view this statement in the configuration.

firewall-control—To add this statement to the configuration.
RELATED DOCUMENTATION

- **Network Services Mode Overview**
- **Firewall Filters and Enhanced Network Services Mode Overview**
- **Configuring a Filter for Use with Enhanced Network Services Mode**
 - Firewall Filter Match Conditions for IPv4 Traffic | 845
 - Firewall Filter Match Conditions for IPv6 Traffic | 861
 - Firewall Filter Terminating Actions | 804
 - Firewall Filter Flexible Match Conditions | 787
destination-address

Syntax

```
destination-address address;
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name from],
[edit firewall family family-name filter filter-name term term-name from ip-version ip-version]
```

Release Information

Statement introduced in Junos OS Release 10.1R1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

IP destination address field, which is the address of the destination node for the packet. You cannot specify the `destination-address` and `address` match conditions in the same term.

For IPv4, the `destination-address` field is 32 bits in length. The filter description syntax supports either a mask value that can be noncontiguous, such as `10.0.0.10/255.0.0.255`, or prefix notation such as `10.0.0.0/8`. Simple filters do not support noncontiguous mask values.

For IPv6, the `destination-address` field is 128 bits in length. The filter description syntax supports the text representations for IPv6 addresses that are described in RFC 2373, *IP Version 6 Addressing Architecture*.

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

family	2109
family	2107
Firewall Filter Match Conditions Based on Address Fields	882
Firewall Filter Match Conditions for IPv4 Traffic	845
Firewall Filter Match Conditions for IPv6 Traffic	861
Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic	903
Guidelines for Configuring Simple Filters	1285
destination-port

Syntax

destination-port <destination-port>;

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name from ip-version ip-version protocol (tcp|udp)]

Release Information
Statement introduced in Junos OS Release 10.1R1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Configure the destination port of the Layer 4 header.

Options
destination-port—The destination port of the Layer 4 header.

Range: 0 through 65,535

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic | 903
direction (forwarding-class-accounting)

Syntax

direction (ingress | egress | both)

Hierarchy Level

[edit interfaces interface-name forwarding-class-accounting]
[edit interfaces interface-name unit logical-unit-number forwarding-class-accounting]

Release Information

Statement introduced in Junos OS Release 13.3R3 in MX Series.

Description

Specify the direction of traffic for which you want to apply counters. A single aggregate counter per forwarding class is used for flows. Forwarding class accounting applies to IPv4, IPv6, MPLS, Layer 2 and Other traffic.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- show class-of-service interface
- clear interfaces statistics | 2309
family

Syntax

family family-name {
 filter filter-name {
 interface-specific;
 term term-name {
 from {
 match-conditions;
 egress-to-ingress;
 }
 then {
 action;
 action-modifiers;
 }
 }
}
}

Hierarchy Level

[edit firewall]

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
evpn options introduced in Junos OS Release 15.1 for the MX Series.
egress-to-ingress option introduced in Junos OS Release 19.1R1 for the QFX5110.

Description

Configure the fields a firewall filter can match on.

Options

family-name—Type of addressing protocol:

- ethernet-switching—Filter Layer 2 Ethernet packets and Layer 3 (IP) packets (allows some Layer 3 filtering). Not supported on OCX Series switches.
- egress-to-ingress—Include this option to increase the number of egress VLAN firewall filter terms from 1024 to 2048.
- evpn—Filter Ethernet VPN (EVPN) packets.
- inet—Filter Layer 3 IPv4 packets (provides additional Layer 3 filter options).
- **inet6**—Filter Layer 3 IPv6 packets (provides additional Layer 3 filter options).
- **mpls**—Filter multiprotocol label switched packets. Not supported on OCX Series switches.

The remaining statements are explained separately. See [CLI Explorer](https://www.example.com/cli-explorer).

Required Privilege Level
- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Firewall Filter Match Conditions and Actions</th>
<th>1526</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Firewall Filters</td>
<td>1601</td>
</tr>
<tr>
<td>Overview of Firewall Filters</td>
<td>1516</td>
</tr>
</tbody>
</table>
family (Firewall Filter)

Syntax

family family-name {
 filter filter-name {
 interface-specific;
 term term-name {
 from {
 match-conditions;
 }
 then {
 action;
 action-modifiers;
 }
 }
 }
}

Hierarchy Level

[edit firewall]

Release Information

Statement introduced in Junos OS Release 9.0 for EX Series switches.
Option interface-specific introduced in Junos OS Release 9.5 for EX Series switches.

Description

Configure a firewall filter for IP version 4 or IP version 6.

Options

family-name—Version or type of addressing protocol:

- any—Filter packets based on protocol-independent match conditions.
- ethernet-switching—Filter Layer 2 (Ethernet) packets and Layer 3 (IP) packets.
- inet—Filter IPv4 packets.
- inet6—Filter IPv6 packets.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
<table>
<thead>
<tr>
<th>RELATED DOCUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches</td>
</tr>
<tr>
<td>Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches</td>
</tr>
<tr>
<td>Configuring Firewall Filters (CLI Procedure)</td>
</tr>
<tr>
<td>Firewall Filters for EX Series Switches Overview</td>
</tr>
</tbody>
</table>
family (Firewall)

Syntax

family family-name {
 filter filter-name {
 accounting-profile name;
 enhanced-mode;
 interface-specific;
 physical-interface-filter;
 }
 prefix-action name {
 count;
 destination-prefix-length prefix-length;
 policer policer-name;
 source-prefix-length prefix-length;
 subnet-prefix-length prefix-length;
 }
 simple-filter filter-name {
 term term-name {
 from {
 match-conditions;
 }
 then {
 action;
 action-modifiers;
 }
 }
 }
}

Hierarchy Level

[edit firewall], [edit logical-systems logical-system-name firewall]

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
simple-filter statement introduced in Junos OS Release 7.6.
any family type introduced in Junos OS Release 8.0.
bridge family type introduced in Junos OS Release 8.4 (MX Series routers only).
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Description
Configure a firewall filter for IP version 4 (IPv4) or IP version 6 (IPv6) traffic. Only on MX Series routers and EX Series switches, configure a firewall filter for Layer 2 traffic in a bridging environment.

Options
family-name—Version or type of addressing protocol:

- any—Protocol-independent match conditions.
- bridge—(MX Series routers only) Layer 2 packets that are part of bridging domain.
- ethernet-switching—(EX Series switches) Filter Layer 2 (Ethernet) packets and Layer 3 (IP) packets.
- ccc—Layer 2 switching cross-connects.
- inet—IPv4 addressing protocol.
- inet6—IPv6 addressing protocol.
- mpls—MPLS.
- vpls—Virtual private LAN service (VPLS).

The remaining statements are explained separately. See CLI Explorer.

NOTE: The packet lengths that a policer considers depends on the address family of the firewall filter.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Guidelines for Configuring Service Filters | 1257
- Guidelines for Configuring Simple Filters | 1285
family vpls (Layer 2 Pseudowires)

Syntax

```
family vpls;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number]
```

Release Information
Statement introduced in Junos OS Release 11.1.

Description
Specify that the protocol family for the logical interface is VPLS.

Required Privilege Level
router—To view this statement in the configuration.
router-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Applying the Policers to Dynamic Profile Interfaces | 1750
- Creating a Dynamic Profile for the Complex Configuration | 1755
fast-lookup-filter

Syntax

```
fast-lookup-filter;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall family family],
[edit firewall family family-name filter filter-name],
[edit logical-systems logical-system-name firewall family family-name filter filter-name]
```

Release Information

Statement introduced in Junos OS Release 13.3R3 for MX 240, MX 480, MX 960, MX 2010, and MX 2020 routers with MPC5E, MPC5EQ, or MPC6E MPCs. Support for the next-header firewall match condition was added in Junos OS Release 13.3R6. Support for MPC2E-NG and MPC3E-NG MPCs was added in Junos OS Release 15.1R1.
See the MX Series Interface Module Reference manual for more information.

Description

The fast-lookup-filter is available for the inet and inet6 protocol families for both static and dynamic profiles. Junos installs firewall filters created under this hierarchy to the accelerated filter block available in the certain MPCs, which provides enhanced performance.

Juniper recommends that you use the payload-protocol term rather than the next-header term when configuring a firewall filter with match conditions for IPv6 traffic. Although either can be used, payload-protocol provides the more reliable match condition because it uses the actual payload protocol to find a match, whereas next-header simply takes whatever appears in the first header following the IPv6 header, which may or may not be the actual protocol. In addition, if next-header is used with IPv6, the accelerated filter block lookup process is bypassed and the standard filter used instead.

See "Firewall Filter Match Conditions for IPv6 Traffic" on page 861 for more information about firewall filters and terms.

The filter block hardware supports up to 4095 firewall filters, each of which can support up to 255 terms, to a system maximum of 8000 terms. Firewall instances from the same firewall block can also be attached to multiple interfaces.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

Release History Table
<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Support for MPC2E-NG and MPC3E-NG MPCs was added in Junos OS Release 15.1R1.</td>
</tr>
<tr>
<td>13.3R6</td>
<td>Support for the next-header firewall match condition was added in Junos OS Release 13.3R6</td>
</tr>
<tr>
<td>13.3R3</td>
<td>Statement introduced in Junos OS Release 13.3R3 for MX 240, MX 480, MX 960, MX 2010, and MX 2020 routers with MPC5E, MPC5EQ, or MPC6E MPCs.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- *MX Series 5G Universal Routing Platform Interface Module Reference*
- *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*
filter-list-template

Syntax

```plaintext
filter-list-template;
```

Hierarchy Level

```plaintext
[edit firewall family (inet | inet6) filter filter-name],
[edit logical-systems logical-system-name firewall family (inet | inet6) filter filter-name]
```

Release Information

Description

(MX5, MX10, MX40, and MX80 routers, and routers that use MX Series MPC line cards only) Configure all interfaces that use the same filter list to use a common template. This feature can be used to save microkernel memory and DMEM memory.

If the same filter list cannot be used on all interfaces, consider merging the filters and using the `from interface` firewall filter term to group the per-interface terms to produce a new common filter list.

NOTE: If you configure both `fast-lookup-filter` and `interface-specific` statements, filter list templates are also used.

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- `input-list`
- `output-list`
- `Firewall Filter Match Conditions for IPv6 Traffic` | 861
filter (Applying to a Logical Interface)

Syntax

```plaintext
filter {
    group filter-group-number;
    input filter-name;
    input-list [ filter-names ];
    output filter-name;
    output-list [ filter-names ];
}
```

Hierarchy Level

Protocol-independent firewall filter on MX Series router logical interface:

```plaintext
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

All other standard firewall filters on all other devices:

```plaintext
[edit interfaces interface-name unit logical-unit-number family family],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Apply a stateless firewall filter to a logical interface at a specific protocol level.

Options

- **group filter-group-number**—(Only Ex, M, MX, and T Series) Number of the group to which the interface belongs. Range: 1 through 255
- **input filter-name**—Name of one filter to evaluate when packets are received on the interface.
- **input-list [filter-names]**—Names of filters to evaluate when packets are received on the interface. Up to 16 filters can be included in a filter input list.
- **output filter-name**—Name of one filter to evaluate when packets are transmitted on the interface.
- **output-list [filter-names]**—Names of filters to evaluate when packets are transmitted on the interface. Up to 16 filters can be included in a filter output list.
Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Guidelines for Configuring Firewall Filters | 746 |
| Guidelines for Applying Standard Firewall Filters | 753 |
filter (Configuring)

Syntax

```
filter filter-name {
    accounting-profile name;
    enhanced-mode;
    fast-lookup-filter;
    filter-list-template;
    interface-shared;
    interface-specific;
    physical-interface-filter;
    promote gre-key;
    term term-name {
        ... term configuration ...
    }
}
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall family family-name],
[edit firewall family family-name],
[edit logical-systems logical-system-name firewall family family-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Support for the interface-shared statement introduced in Junos OS Release 12.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure firewall filters.

Options

filter-name—Name that identifies the filter. This must be a non-reserved string of not more than 64 characters. To include spaces in the name, enclose it in quotation marks (" "). Firewall filter names are restricted from having the form `__.*__` (beginning and ending with underscores) or `__.*` (beginning with an underscore).

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Guidelines for Configuring Firewall Filters | 746 |
| Guidelines for Applying Standard Firewall Filters | 753 |
| Configuring Multifield Classifiers |
| Using Multifield Classifiers to Set Packet Loss Priority |
| simple-filter | 2169 |
filter (Firewall Filters)

Syntax

```
filter filter-name {
    interface-specific;
    term term-name {
        from {
            match-conditions;
        }
        then {
            action;
            action-modifiers;
        }
    }
}
```

Hierarchy Level

```
[edit firewall family family-name]
```

Release Information
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Option `interface-specific` introduced in Junos OS Release 9.5 for EX Series switches.

Description
Configure firewall filters.

Options
`filter-name`—Name that identifies the filter. The name can contain letters, numbers, and hyphens (-), and can be up to 64 characters long. To include spaces in the name, enclose it in quotation marks.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
filter (Layer 2 and Layer 3 Interfaces)

Syntax

```plaintext
filter (input | output) filter-name;
```

Hierarchy Level

```plaintext
[edit interfaces interface-name unit logical-unit-number family family-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description

Apply a firewall filter to traffic transiting a port or Layer 3 interface.

Default

All incoming traffic is accepted unmodified on the port or Layer 3 interface, and all outgoing traffic is sent unmodified from the port or Layer 3 interface.

Options

- `filter-name`—Name of a firewall filter defined at the `[edit firewall family family-name filter]` hierarchy level.
- `input`—Apply a firewall filter to traffic entering the port or Layer 3 interface.
- `output`—Apply a firewall filter to traffic exiting the port or Layer 3 interface.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Gigabit Ethernet Interfaces (CLI Procedure)
- Configuring Firewall Filters | 1601
- Overview of Firewall Filters | 1516
filter (Layer 3 Interfaces)

Syntax

```
filter (input | output) filter-name;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number family family-name]
```

Release Information

Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Apply a firewall filter to traffic transiting a Layer 3 interface.

Default

All incoming traffic is accepted unmodified on the Layer 3 interface, and all outgoing traffic is sent unmodified from the Layer 3 interface.

Options

- **filter-name**—Name of a firewall filter defined at the [edit firewall family family-name filter] hierarchy level.
- **input**—Apply a firewall filter to traffic entering the Layer 3 interface.
- **output**—Apply a firewall filter to traffic exiting the Layer 3 interface.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Gigabit Ethernet Interfaces (CLI Procedure)
- Configuring Firewall Filters | 1158
- Overview of Firewall Filters | 772
filter (VLANs)

Syntax

filter (input | output) filter-name;

Hierarchy Level

[edit vlans vlan-name]

[edit vlans vlan-name forwarding-options]

Release Information
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 13.2X50-D10 for EX Series switches.

Description
Apply a firewall filter to traffic entering or exiting a VLAN.

Default
All incoming traffic is accepted unmodified to the VLAN, and all outgoing traffic is sent unmodified from the VLAN.

Options
filter-name — Name of a firewall filter defined in a filter statement.

• input — Apply a firewall filter to VLAN ingress traffic.

• output — Apply a firewall filter to VLAN egress traffic.

Required Privilege Level
system—To view this statement in the configuration.

system-control—To add this statement to the configuration.

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467

Configuring Firewall Filters | 1601
Firewall Filter Configuration Statements Supported by Junos OS for EX Series Switches

You configure firewall filters to filter packets based on their components and to perform an action on packets that match the filter.

Table 129 on page 2123 lists the options that are supported for the firewall statement in Junos OS for EX Series switches.

Table 129: Supported Options for Firewall Filter Statements

<table>
<thead>
<tr>
<th>Statement and Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>family family-name { }</td>
<td>The <code>family-name</code> option specifies the version or type of addressing protocol:</td>
</tr>
<tr>
<td></td>
<td>• <code>any</code>—Filter packets based on protocol-independent match conditions.</td>
</tr>
<tr>
<td></td>
<td>• <code>ethernet-switching</code>—Filter Layer 2 (Ethernet) packets and Layer 3 (IP) packets</td>
</tr>
<tr>
<td></td>
<td>• <code>inet</code>—Filter IPv4 packets</td>
</tr>
<tr>
<td></td>
<td>• <code>inet6</code>—Filter IPv6 packets</td>
</tr>
<tr>
<td>filter filter-name { }</td>
<td>The <code>filter-name</code> option identifies the filter. The name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the name in quotation marks (" ").</td>
</tr>
<tr>
<td>interface-specific</td>
<td>The <code>interface-specific</code> statement configures unique names for individual firewall counters specific to each interface.</td>
</tr>
<tr>
<td>term term-name { }</td>
<td>The <code>term-name</code> option identifies the term. The name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the entire name in quotation marks (" "). Each term name must be unique within a filter.</td>
</tr>
</tbody>
</table>
Table 129: Supported Options for Firewall Filter Statements *(continued)*

<table>
<thead>
<tr>
<th>Statement and Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from [match-conditions;]</td>
<td>The <code>from</code> statement is optional. If you omit it, all packets are considered to match.</td>
</tr>
<tr>
<td>then [action; action-modifiers;]</td>
<td>For information about the <code>action</code> and <code>action-modifiers</code> options, see "Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches" on page 1370.</td>
</tr>
<tr>
<td>policer policer-name []</td>
<td>The <code>policer-name</code> option identifies the policer. The name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose the name in quotation marks (" ").</td>
</tr>
<tr>
<td>filter-specific</td>
<td>The <code>filter-specific</code> statement configures policers and counters for a specific filter name.</td>
</tr>
</tbody>
</table>
| if-exceeding [bandwidth-limit bps burst-size-limit bytes] | The `bandwidth-limit bps` option specifies the traffic rate in bits per second (bps). You can specify `bps` as a decimal value or as a decimal number followed by one of the following abbreviations:
 - k (thousand)
 - m (million)
 - g (billion, which is also called a thousand million)
 Range: 1000 (1k) through 102,300,000,000 (102.3g) bps
 The `burst-size-limit bytes` option specifies the maximum allowed burst size to control the amount of traffic bursting. To determine the value for the burst-size limit, you can multiply the bandwidth of the interface on which the filter is applied by the amount of time (in seconds) to allow a burst of traffic at that bandwidth to occur:

 \[
 \text{burst size} = \text{bandwidth} \times \text{allowable time for burst traffic}
 \]

 You can specify a decimal value or a decimal number followed by k (thousand) or m (million).
 Range: 1 through 2,147,450,880 bytes |
Table 129: Supported Options for Firewall Filter Statements (continued)

<table>
<thead>
<tr>
<th>Statement and Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>then (policer-action)</td>
<td>Use the <code>policer-action</code> option to specify <code>discard</code> to discard traffic that exceeds the rate limits.</td>
</tr>
</tbody>
</table>

Junos OS for EX Series switches does not support some of the firewall filter statements that are supported by other Junos OS packages. Table 130 on page 2125 shows the firewall filter statements that are not supported by Junos OS for EX Series switches.

Table 130: Firewall Filter Statements That Are Not Supported by Junos OS for EX Series Switches

<table>
<thead>
<tr>
<th>Statements Not Supported</th>
<th>Statement Hierarchy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-set <code>interface-set-name</code> { }</td>
<td>[edit firewall]</td>
</tr>
<tr>
<td>load-balance-group <code>group-name</code> { }</td>
<td></td>
</tr>
<tr>
<td>three-color-policer <code>name</code> { }</td>
<td></td>
</tr>
<tr>
<td>logical-interface-policer;</td>
<td></td>
</tr>
<tr>
<td>single-rate { }</td>
<td></td>
</tr>
<tr>
<td>two-rate { }</td>
<td></td>
</tr>
<tr>
<td>prefix-action <code>name</code> { }</td>
<td>[edit firewall family <code>family-name</code>]</td>
</tr>
<tr>
<td>prefix-policer { }</td>
<td></td>
</tr>
<tr>
<td>service-filter <code>filter-name</code> { }</td>
<td></td>
</tr>
<tr>
<td>simple-filter <code>simple-filter-name</code> { }</td>
<td></td>
</tr>
<tr>
<td>accounting-profile <code>name</code>;</td>
<td>[edit firewall family <code>family-name</code> filter <code>filter-name</code>]</td>
</tr>
<tr>
<td>logical-bandwidth-policer;</td>
<td>[edit firewall policer <code>policer-name</code>]</td>
</tr>
<tr>
<td>logical-interface-policer;</td>
<td></td>
</tr>
</tbody>
</table>
Table 130: Firewall Filter Statements That Are Not Supported by Junos OS for EX Series Switches (continued)

<table>
<thead>
<tr>
<th>Statements Not Supported</th>
<th>Statement Hierarchy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth-percent number;</td>
<td>[edit firewall policer policer-name if-exceeding]</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Configuring Firewall Filters (CLI Procedure) | 1455
- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
- Firewall Filters for EX Series Switches Overview | 1352
firewall

Syntax

```plaintext
firewall {
  atm-policer atm-policer-name {
    ... atm-policer-configuration ...
  }
  family protocol-family-name {
    ... protocol-family-configuration ...
  }
  filter ipv4-filter-name {
    ... ipv4-filter-configuration ...
  }
  hierarchical-policer hierarchical-policer-name {
    ... hierarchical-policer-configuration ...
  }
  interface-set interface-set-name {
    ... interface-set-configuration ...
  }
  policer two-color-policer-name {
    ... two-color-policer-configuration ...
  }
  three-color-policer three-color-policer-name {
    ... three-color-policer-configuration ...
  }
}
```

Hierarchy Level

```
[edit],
[edit logical-systems logical-system-name]
[edit dynamic-profiles profile-name],
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure firewall filters.
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Guidelines for Configuring Service Filters | 1257
- Guidelines for Configuring Simple Filters | 1285
- Configuring Multifield Classifiers
- Using Multifield Classifiers to Set Packet Loss Priority
firewall

Syntax

```
firewall {
  family family-name {
    filter filter-name {
      interface-specific;
      term term-name {
        from {
          match-conditions;
        }
        then {
          action;
          action-modifiers;
        }
      }
    }
  }
}
policer policer-name {
  filter-specific;
  if-exceeding {
    bandwidth-limit bps;
    burst-size-limit bytes;
  }
  then {
    policer-action;
  }
}
three-color-policer policer-name {
  action {
    loss-priority high then discard;
  }
  single-rate {
    (color-aware | color-blind);
    committed-information-rate bps;
    committed-burst-size bytes;
    excess-burst-size bytes;
  }
  two-rate {
    (color-aware | color-blind);
    committed-information-rate bps;
    committed-burst-size bytes;
    peak-information-rate bps;
    peak-burst-size bytes;
  }
```
Hierarchy Level

[edit]

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure firewall filters and policers.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions and Actions	1526
Configuring Firewall Filters	1601
Configuring Two-Color and Three-Color Policers to Control Traffic Rates	1977
Overview of Firewall Filters	1516
firewall

Syntax

```plaintext
firewall {
    family family-name {
        filter filter-name {
            interface-specific;
            term term-name {
                from {
                    match-conditions;
                }
                then {
                    action;
                    action-modifiers;
                }
            }
        }
    }
    policer policer-name {
        filter-specific;
        if-exceeding {
            bandwidth-limit bps;
            burst-size-limit bytes;
        }
        then {
            policer-action;
        }
    }
}

three-color-policer policer-name {
    action {
        loss-priority high then discard
    }
    single-rate {
        (color-aware | color-blind);
        committed-burst-size bytes;
        committed-information-rate bps;
        excess-burst-size bytes;
    }
    two-rate {
        (color-aware | color-blind);
        committed-burst-size bytes;
```
committed-information-rate bps;
peak-burst-size bytes;
peak-information-rate bps;
}
}

Hierarchy Level

[edit]

Release Information
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Options interface-specific and filter-specific introduced in Junos OS Release 9.5 for EX Series switches.

Description
Configure firewall filters and policers.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches	1370
Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467
Configuring Firewall Filters (CLI Procedure)	1455
Configuring Policers to Control Traffic Rates (CLI Procedure)	1955
Firewall Filters for EX Series Switches Overview	1352
force-premium (Firewall Filter Action)

Syntax

```plaintext
force-premium;
```n

Hierarchy Level

```plaintext
[edit firewall family family-name filter filter-name term term-name then],
[edit logical-systems logical-system-name firewall family family-name filter filter-name term term-name then]
```n

Release Information

Statement introduced in Junos OS Release 12.3 for `family inet` and `inet6`.
Support for `family vpls`, `ccc`, and `bridge` added in Junos OS Releases 13.3R8, 13.3R10, 14.1R8, 14.2R7, 15.1R4, 16.1R1, and 17.1R1.

Description

Firewall filter option to force premium treatment for traffic (MX Series routers)—By default, a hierarchical policer processes the traffic it receives according to the traffic's forwarding class. Premium, expedited-forwarding traffic has priority for bandwidth over aggregate, best-effort traffic. Now you can include the `force-premium` option at the `[edit firewall filter filter-name term term-name]` hierarchy level to ensure that traffic matching the term is treated as premium traffic by a subsequent hierarchical policer, regardless of its forwarding class. This traffic is given preference over any aggregate traffic received by that policer. Consider a scenario where a firewall filter is applied to an interface that receives both expedited-forwarding voice traffic and best-effort video traffic. Traffic that matches the first term of the filter is passed to a hierarchical policer in the second term. The hierarchical policer also receives best-effort data traffic from another source. The filtered video traffic is treated the same as this data traffic, as aggregate traffic with a lower priority than the premium voice traffic. Consequently, some of the video traffic might be dropped and some of the data traffic passed on.

To avoid that situation, include the `force-premium` option in the firewall filter term that passes traffic to the hierarchical policer. This term forces the video traffic to be marked as premium traffic. The hierarchical policer gives both the voice traffic and the video traffic priority over the aggregate data traffic.

NOTE: The `force-premium` filter option is supported only on MPCs.

Required Privilege Level

`firewall`—To view this statement in the configuration.
`firewall-control`—To add this statement to the configuration.
forwarding-class (Firewall Filter Action)

Syntax

 forwarding-class class-name;

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name then],
[edit logical-systems logical-system-name firewall family family-name filter filter-name term term-name then]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Set the forwarding class of incoming packets.

Options

class-name—Name of the forwarding class.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
from

Syntax

```
from {
    match-conditions;
}
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

Match packet fields to values specified in a match condition. If the `from` statement is not included in a firewall filter configuration, all packets are considered to match and the actions and action modifiers in the `then` statement are taken.

Options

`match-conditions`—Conditions that define the values or fields that the incoming or outgoing packets must contain for a match. You can specify one or more match conditions. If you specify more than one, they all must match for a match to occur and for the action in the `then` statement to be taken.

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Configuring Firewall Filters (CLI Procedure) | 1455
- Understanding Firewall Filter Match Conditions | 1359
from

Syntax

```
from {
    match-conditions;
    egress-to-ingress;
}
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.
Option `egress-to-ingress` introduced in Junos OS Release 19.1R1 for the QFX5110.

Description

Match packet fields to values specified in a match condition. If the `from` statement is not included in a firewall filter configuration, all packets are considered to match and the actions and action modifiers in the `then` statement are implemented.

Options

- `match-conditions`—Conditions that define the values or fields that the incoming or outgoing packets must contain for a match. You can specify one or more match conditions. If you specify more than one, they all must match for a match to occur and for the action in the `then` statement to be implemented.

- `egress-to-ingress`—Include this option to increase the number of egress VLAN firewall filter terms from 1024 to 2048.

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Match Conditions and Actions | 1526
- Configuring Firewall Filters | 1601
- Understanding Firewall Filter Match Conditions | 782
hierarchical-policer

List of Syntax
Syntax (M Series, MX Series, T Series - Bandwidth-Based) on page 2137
Syntax (MX Series - Packets-Per-Second (pps)-Based) on page 2137

Syntax (M Series, MX Series, T Series - Bandwidth-Based)

hierarchical-policer hierarchical-policer-name | uid {
 aggregate {
 if-exceeding {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 then {
 discard;
 }
 }
 premium {
 if-exceeding {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 then {
 discard;
 }
 }
}

Syntax (MX Series - Packets-Per-Second (pps)-Based)

hierarchical-policer hierarchical-policer-name | uid {
 aggregate {
 if-exceeding-pps {
 pps-limit pps;
 packet-burst packets;
 }
 then {
 discard;
 }
 }
 premium {
 if-exceeding-pps (Hierarchical Policier) {
 pps-limit (Hierarchical Policier) pps;
 }
 }
}
packet-burst (Hierarchical Policer) packets;
} then {

discard;
}
}

Hierarchy Level

[edit dynamic-profiles profile-name firewall],
[edit firewall]

Release Information
Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles profile-name firewall] hierarchy level introduced in Junos OS Release 11.4.
Support for if-exceeding-pps statement on MX Series routers with MPCs introduced in Junos OS Release 15.2.

Description
Use a hierarchical policer to rate-limit ingress Layer 2 traffic at a physical or logical interface and apply different policing actions based on whether the packets are classified as premium for expedited forwarding (EF) or aggregate for a lower priority. The two policers defined within the hierarchical policer are aggregate and premium.

Hierarchical policers are supported on Enhanced Intelligent Queuing (IQE) PICs and SONET interfaces hosted on the M120 and M320 with incoming Flexible PIC Concentrators (FPCs) as SFPC and outgoing FPCs as FFPC; on MPCs hosted on MX Series routers; on the T320, T640, and T1600 with Enhanced Intelligent Queuing (IQE) PICs; and on the T4000 with Type 5 FPC and Enhanced Scaling Type 4 FPC.

NOTE:
• The if-exceeding-pps statement is only supported on MX Series routers with MPCs.
• The if-exceeding and if-exceeding-pps statements are mutually exclusive and, therefore, cannot be applied at the same time.

You can configure the policer in static firewall filters or dynamic firewall filters in a dynamic client profile or a dynamic service profile.
Options

hierarchical-policer-name—Name that identifies the policer. The name can contain letters, numbers, and hyphens (-), and can be up to 255 characters long. To include spaces in the name, enclose the name in quotation marks (" ").

uid—When you configure a hierarchical policer at the [edit dynamic-profiles profile name firewall] hierarchy level, you must assign a variable UID as the policer name.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Hierarchical Policer Configuration Overview | 1680 |
| Hierarchical Policers | 1723 |
| aggregate (Hierarchical Policer) | 2195 |
| bandwidth-limit (Hierarchical Policer) | 2199 |
| burst-size-limit (Hierarchical Policer) | 2207 |
| pps-limit (Hierarchical Policer) | 2280 |
| packet-burst (Hierarchical Policer) | 2259 |
| if-exceeding (Hierarchical Policer) | 2236 |
| if-exceeding-pps (Hierarchical Policer) |
| premium (Hierarchical Policer) | 2286 |
if-exceeding

Syntax

if-exceeding {
 bandwidth-limit bps;
 bandwidth-percent percent
 burst-size-limit bytes;
}

Hierarchy Level

[edit firewall policer policer-name]
[edit logical-systems logical-system-name firewall policer policer-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Logical systems support introduced in Junos OS Release 9.3.

Description

Configure policer rate limits.

The `bandwidth-percent` statement is supported on routers only.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467 |
| Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955 |
| Understanding the Use of Policers in Firewall Filters | 1950 |
| Basic Single-Rate Two-Color Policers | 1770 |
if-exceeding

Syntax

```plaintext
if-exceeding {
    bandwidth-limit bps;
    burst-size-limit bytes;
}
```

Hierarchy Level

```
[edit firewall policer policer-name]
```

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure policer rate limits.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
input (Forwarding Table)

Syntax

```
input filter-name;
```

Hierarchy Level

```
[edit forwarding-options family [inet | inet6 | mpls | vpls] filter],
[edit routing-instances routing-instance-name forwarding-options family [inet | inet6 | mpls | vpls] filter]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches..

Description
Apply a forwarding table filter to ingress traffic of the forwarding table.

Options
`filter-name`—Name of the applied filter.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Applying Forwarding Table Filters
input-chain

Syntax

input-chain [filter-name]

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family family filter],

Release Information

Statement introduced in Junos OS Release 18.4R1 for MX Series routers running MPCs.

Description

The input-chain command works like the next filter term to allow multiple levels of filtering on the interface in both the ingress and egress direction. For example, you can implement a combination of classification and firewall filter rules for evaluation, wherein the first filter performs a generic filter classification and the subsequent filters go on to perform the actual filtering and actions.

To continue on to the next filter, the terminating action in the current filter must be accept.

The input-chain command is supported on all interfaces except loopback (lo0 and fxp0) and interfaces under logical systems.

Options

[filter-names]—Name of each filter in the chain that is to be evaluated when packets are received on the interface. Supports up to 8 ingress and 8 egress filters. Evaluation occurs in the order in which the names appear, from left to right.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Using Firewall Filter Chains | 252
output-chain | 2156
Applying a Filter to an Interface
interface-group (Decapsulate GRE)

Syntax

interface-group (0-255)

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name then decapsulate gre],

Release Information

Statement introduced in Junos OS Release 14.1 for MX 80, MX 240, MX 480, MX 960, MX 2010, and MX 2020 routers with MPC2, MPC3, MPC4, MPC5, or MPC6 MPCs.

Description

Allows you to explicitly specify and add an interface group to packets after they have undergone GRE decapsulation. In releases prior to Junos OS Release 14.1, the interface group upon decapsulation was always 0 and could not be changed.

In Junos OS Release 14.1 and later, you can assign any arbitrary value in the range of 1 to 255 to the packets' interface-group upon GRE decapsulation. For example, you could use this command to retain the original interface from which the packet was received (if no value is set, the default interface group is 0). You could also use it to ensure that all decapsulated GRE packets are placed in the same group, for example to trigger additional filtering in the forwarding table on the basis of the this data from the inner packet.

The value used in interface-group is set after the GRE packet is decapsulate by a filter action in a filter attached to a given ingress interface.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Example: Configuring a Stateless Firewall Filter on an Interface Group | 1204
| Applying Forwarding Table Filters
| decapsulate | 2013 |
interface-set

Syntax

interface-set interface-set-name {
 interface-name;
}

Hierarchy Level

[edit firewall],
[edit logical-systems logical-system-name firewall]

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure an interface set.

Options

interface-name—Names of each interface to include in the interface set. You must specify more than one name.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Filtering Packets Received on an Interface Set Overview | 1197
interface-shared

Syntax

interface-shared;

Hierarchy Level

[edit dynamic-profiles profile-name firewall family family-name filter filter-name],
[edit firewall family family-name filter filter-name],

Release Information

Statement introduced in Junos OS Release 12.2.

Description

Set the interface-shared attribute for a firewall filter.

NOTE: A firewall filter cannot be both interface-specific and interface-shared.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Interface-Shared Filters Overview
- Understanding Dynamic Firewall Filters
- Classic Filters Overview
- Basic Classic Filter Syntax
interface-specific (Firewall Filters)

Syntax

interface-specific;

Hierarchy Level

[edit dynamic-profiles profile-name firewall family family-name filter filter-name],
[edit firewall family family-name filter filter-name],
[edit logical-systems logical-system-name firewall family family-name filter filter-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Configure interface-specific names for firewall counters.

NOTE: A firewall filter cannot be both interface-specific and interface-shared.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Firewall Filters and Policers for VPLS
Interface-Specific Firewall Filter Instances Overview | 1194
interface-specific

Syntax

interface-specific;

Hierarchy Level

[edit firewallfamily family-name filter filter-name]

Release Information

Statement introduced in Junos OS Release 9.5 for EX Series switches.

Description

Configure firewall counters that are interface-specific. You can configure an interface-specific firewall filter only on a port or a Layer 3 interface as an interface-specific firewall filter is not supported for a VLAN.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Configuring Firewall Filters (CLI Procedure) | 1455
- Firewall Filters for EX Series Switches Overview | 1352
interface-specific

Syntax

```
interface-specific;
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure separate counters for each interface to which a filter is applied.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall Filter Match Conditions and Actions</td>
<td>1526</td>
</tr>
<tr>
<td>Configuring Firewall Filters</td>
<td>1601</td>
</tr>
<tr>
<td>Overview of Firewall Filters</td>
<td>1516</td>
</tr>
</tbody>
</table>
ipv4 (Family MPLS)

Syntax

```
ipv4 {
  destination-address ip-address {
    except;
  }
  destination-prefix-list destination-prefix-list-name {
    except;
  }
  protocol protocol {
    (source-port | source-port-except);
    (destination-port | destination-port-except);
  }
  source-address ip-address {
    except;
  }
  source-prefix-list source-prefix-list-name {
    except;
  }
}
```

Hierarchy Level

```
[edit firewall family mpls filter name term name from ip-version]
```

Release Information
Statement introduced in Junos OS Release 18.4R1 on MX Series routers with MPC and MIC interfaces.

Description
Define Layer 3 and Layer 4 match items to match IPv4 packets for IP-based filtering of MPLS traffic.

Options

destination-address ip-address—Match MPLS traffic with the specified IPv4 destination address.

destination-prefix-list destination-prefix-list-name—Match MPLS traffic with the specified IPv4 destination prefixes. The prefix-list is defined under the [edit policy-options prefix-list prefix-list-name] hierarchy level.

protocol protocol—Specify one or a range of inner IPv4 protocols for IP-based filtering of MPLS traffic.

source-address ip-address—Match MPLS traffic with the specified IPv4 source address.
source-prefix-list source-prefix-list-name—Match MPLS traffic with the specified IPv4 source prefixes. The prefix-list is defined under the [edit policy-options prefix-list prefix-list-name] hierarchy level.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic | 893
ipv6 (Family MPLS)

Syntax

ipv6 {
 destination-address destination-ip-address {
 except;
 }
 destination-prefix-list prefix-list-name {
 except;
 }
 protocol protocol {
 (source-port | source-port-except);
 (destination-port | destination-port-except);
 }
 source-address ip-address {
 except;
 }
 source-prefix-list source-prefix-list-name {
 except;
 }
}

Hierarchy Level

[edit firewall family mpls filter name term name from ip-version].

Release Information
Statement introduced in Junos OS Release 18.4R1 on MX Series routers with MPC and MIC interfaces.

Description
Define Layer 3 and Layer 4 match items to match IPv6 packets for IP-based filtering of MPLS traffic.

Options

destination-address ip-address—Match MPLS traffic with the specified IPv6 destination address.

destination-prefix-list destination-prefix-list-name—Match MPLS traffic with the specified list of IPv6 destination prefixes. The prefix-list is defined under the [edit policy-options prefix-list prefix-list-name] hierarchy level. You must configure separate prefix-lists for IPv4 and IPv6 addresses.

protocol protocol—Specify one or a range of inner IPv6 next header for IP-based filtering of MPLS traffic.

source-address ip-address—Match MPLS traffic with the specified IPv6 source address.
source-prefix-list source-prefix-list-name—Match MPLS traffic with the specified IPv6 source prefixes. The prefix-list is defined under the [edit policy-options prefix-list prefix-list-name] hierarchy level. You must configure separate prefix-lists for IPv4 and IPv6 addresses.

Required Privilege Level
firewall

ip-version (Family MPLS)

Syntax

```plaintext
ip-version {
  ipv4;
  ipv6;
}
```

Hierarchy Level

[edit firewall family mpls filter name term name from]

Release Information

Statement introduced in Junos OS Release 18.4R1 on MX Series routers with MPC and MIC interfaces.

Description

Specify inner IP version to enable IP-based filtering of MPLS family filter.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic | 893
ip-version

Syntax

```plaintext
ip-version ip-version {
  match-conditions;
  protocol (tcp | udp) {
    match-conditions;
  }
}
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name from]
```

Release Information

Statement introduced in Junos OS Release 10.1R1.
Option ipv6 introduced in Junos OS Release 12.2R1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure the IP version for the firewall filter.

Options

ip-version—Version of the IP addressing.

- **ipv4**—IP version 4
- **ipv6**—IP version 6

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions Based on Address Fields	882
Firewall Filter Match Conditions for IPv4 Traffic	845
Firewall Filter Match Conditions for IPv6 Traffic	861
Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic	903
output (Forwarding Table)

Syntax

output filter-name;

Hierarchy Level

[edit forwarding-options family (inet | inet6 | mpls) filter],
[edit routing-instances routing-instance-name forwarding-options family (inet | inet6 | mpls) filter]

Release Information
Statement introduced in Junos OS Release 7.5.
Statement introduced in Junos OS Release 15.1X53-D10 for QFX10000 switches..

Description
Configure filtering on the egress traffic of the forwarding table.

Options
filter-name—Name of the applied filter.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Applying Forwarding Table Filters
output-chain

Syntax

output-chain [filter-name]

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family family filter],

Release Information

Statement introduced in Junos OS Release 18.4R1 for MX Series routers running MPCs.

Description

The output-chain command works like the next filter term to allow multiple levels of filtering on the interface in both the ingress and egress direction. For example, you can implement a combination of classification and firewall filter rules for evaluation, wherein the first filter performs a generic filter classification and the subsequent filters go on to perform the actual filtering and actions.

To continue on to the next filter, the terminating action in the current filter must be accept.

The output-chain command is supported on all interfaces except loopback (lo0 and fxp0) and interfaces under logical systems.

Options

[filter-names]—Name of each filter in the chain that is to be evaluated when packets are received on the interface. Supports up to 8 ingress and 8 egress filters. Evaluation occurs in the order in which the names appear, from left to right.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Using Firewall Filter Chains | 252
input-chain | 2143
Understanding Multiple Firewall Filters Applied as a List | 1164
Applying a Filter to an Interface
packet-format-match

Syntax

```
packet-format-match {
  (mpls-packet-format-1 | mpls-packet-format-2 | mpls-packet-format-3 | mpls-packet-format-4 |
   mpls-packet-format-5 | mpls-packet-format-6 | mpls-packet-format-7 | mpls-packet-format-8);
}
```

Hierarchy Level

[edit system packet-forwarding-options]

Release Information

Statement introduced in Junos OS Release 19.2R1 for QFX5100, QFX5110, QFX5200, and QFX5210 switches.

Description

Types of packet formats for MPLS labeled traffic.

NOTE: You must restart the PFE every time you configure this command. A PFE reboot forces disruptions to the data plane, a hit that can last several minutes while the component reboots, and is then repopulated with the current routing state.

Default

The default packet format is `mpls-packet-format-1`.

Options

You can specify a value from 1 through 8.

- `mpls-packet-format-1`—Untagged packet with one or two labels.
- `mpls-packet-format-2`—Untagged packet with one label.
- `mpls-packet-format-3`—Untagged packet with two labels.
- `mpls-packet-format-4`—Single tagged packet with one or two labels.
- `mpls-packet-format-5`—Single tagged packet with one label.
- `mpls-packet-format-6`—Single tagged packet with two labels.
- `mpls-packet-format-7`—Untagged and single tagged packets with one label.
mpls-packet-format-8—Untagged and single tagged packets with two labels.

Required Privilege Level
admin

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>family mpls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of MPLS Firewall Filters on Loopback Interface</td>
</tr>
<tr>
<td>Configuring MPLS Firewall Filters and Policers on Switches</td>
</tr>
</tbody>
</table>
policer

Syntax

```snippet
policer policer-name {
  counter {
    counter-id counter-index;
  }
  filter-specific;
  if-exceeding {
    bandwidth-limit bps;
    bandwidth-percent percent
    burst-size-limit bytes;
  }
  then {
    policer-action;
  }
}
```

Hierarchy Level

```snippet
[edit firewall],
[edit logical-systems logical-system-name firewall]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Logical systems support introduced in Junos OS Release 9.3.

Description

Configure policer rate limits and actions. To activate a policer, you must include the `policer` action modifier in the `then` statement in a firewall filter term. Except for EX8200 switches, each policer that you configure includes an implicit counter. To obtain term-specific packet counts, configure a policer for each term in the filter that requires policing. For EX8200 switches, configure a policer and associate it with a global management counter using the `counter` option.

Options

`policer-name`—Name that identifies the policer. The name can include letters, numbers, hyphens (-), and can contain up to 64 characters.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

`firewall`—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Example: Configuring CoS on EX Series Switches
- Configuring Policers to Control Traffic Rates (CLI Procedure) | 1955
- Configuring MPLS on Provider Edge EX8200 and EX4500 Switches Using Circuit Cross-Connect (CLI Procedure)
- Configuring MPLS on Provider Edge Switches Using IP Over MPLS (CLI Procedure)
- Understanding the Use of Policers in Firewall Filters | 1950
- Basic Single-Rate Two-Color Policers | 1770
promote gre-key

Syntax

```
promote gre-key;
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name]
```

Release Information

Statement introduced in Junos OS Release 15.1F3 and 16.1R2 for PTX5000 routers with third-generation FPCs.
Statement introduced in Junos OS Release 15.1F6 and 16.1R2 for PTX3000 routers with third-generation FPCs.

Description

You must configure the `promote gre-key` statement if you want to use `gre-key` as one of the matches in a filter. When you configure `promote gre-key` and use `gre-key` in any of the terms in a filter, the entire filter is compiled in a way that optimizes performance of the filter for `gre-key` matching.

NOTE: The `promote gre-key` configuration statement is supported on PTX Series routers only when network services is set to `enhanced-mode`. For more information, see `enhanced-mode`.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Guidelines for Configuring Firewall Filters | 746
- Guidelines for Applying Standard Firewall Filters | 753
- Firewall Filter Match Conditions for IPv4 Traffic | 845
protocol

Syntax

protocol {tcp|udp};

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name from ip-version ip-version]

Release Information

Statement introduced in Junos OS Release 10.1R1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure the protocol field of IPv4 or the next-header field of the IPv6 address.

Options

udp—User Datagram Protocol.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic | 903
routing-instance

Syntax

```
routing-instance routing-instance-name;
```

Hierarchy Level

```
[edit firewall family inet filter filter-name term term-name then]
```

Release Information

Statement introduced in Junos OS Release 9.4 for EX Series switches.

Description

Specify a specific virtual routing instance to which the switch sends matched packets.

Options

```
routing-instance-name — Name of a virtual routing instance.
```

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches
- Configuring Virtual Routing Instances on EX Series Switches
- Understanding Filter-Based Forwarding for EX Series Switches
routing-instance-name (circuit-id)

Syntax

```
routing-instance--name;
```

Hierarchy Level

```
[edit vlans vlan-name forwarding-options dhcp-security option-82 circuit-id prefix]
```

Release Information

Statement introduced in Junos OS Release 13.2 for EX Series switches.

Description

Specify that the routing instance name used by the VLAN is included with the circuit ID suboption in the DHCP option 82 information that is inserted by the switch into the packet header of a DHCP request before it forwards or relays the request to a DHCP server.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Setting Up DHCP Option 82 on the Switch with No Relay (ELS)*
- *Understanding DHCP Option 82*
scale-optimized

Syntax

```plaintext
scale-optimized;
```

Hierarchy Level

```plaintext
[edit firewall family protocol-family-name filter filter-name], [edit logical systems logical-system-name firewall family protocol-family-name filter filter-name]
```

Release Information

Statement introduced in Junos OS Release 18.1.

Description

Specify to optimize the interface specific firewall filters in the PFE itself.

When an interface specific firewall filter is configured with multiple Interface bind point instances, the PTX halp software allocates resources for each interface instance separately, and the resources consumption is directly proportional to the number of bind points. This happens because, RE Junos dfw software creates independent instances for each bind point of an interface specific filter.

For example, if an interface specific firewall filter with 'x' number of prefix matches is bound to 'y' number of interfaces (bind points), the Junos software sends 'x' number of independent firewall instances to the PFE software each with 'y' numbers of prefix matches. This automatically consumes 'x * y' numbers of prefixes in the Alpha match block of FLT, and this leads to Alpha block prefix scale issue in FLT. When you add the `scale-optimized` flag under the filter hierarchy, the interface specific firewall filters are optimized in the PFE itself.

The `scale-optimized` flag has the following limitations:

- Can only be configured along with `interface-specific` flag.
- Applicable only to IPv6 and IPv4 families.
- Does not support the `next term` action.
- Does not work with filter lists. Filter lists create unique interface-specific filter for each interface they are applied on. Filters lists do not have a template filter, from which they are copied. It does not add any advantage having scale-optimized flag.
- Cannot be applied to both input and output directions for an interface.
- The `scale-optimized` flag should be configured along with filter configuration. If you add the `scale-optimized` flag to an existing filter configuration, the filter counters do not increase. To resolve the filter counter issue, create a new filter with the `scale-optimized` flag, replace the filter on the interface and commit it.
Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
| Guidelines for Configuring Firewall Filters | 746 |
service-filter (Firewall)

Syntax

```
service-filter filter-name {
  term term-name {
    from {
      match-conditions;
    }
    then {
      actions;
    }
  }
}
```

Hierarchy Level

[edit firewall family (inet | inet6),
[edit logical-systems logical-system-name firewall family (inet | inet6)]

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.

Description

Configure service filters.

NOTE: ACX Series routers do not support family inet6.

Options

filter-name—Name that identifies the service filter. The name can contain letters, numbers, and hyphens (-) and can be up to 255 characters long. To include spaces in the name, enclose it in quotation marks (" ").

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Guidelines for Configuring Service Filters | 1257
Guidelines for Applying Service Filters | 1259
simple-filter

Syntax

```plaintext
simple-filter filter-name {
    term term-name {
        from {
            match-conditions;
        }
        then {
            forwarding-class class-name;
            loss-priority (high | low | medium);
        }
    }
}
```

Hierarchy Level

```plaintext
[edit firewall family inet],
[edit logical-systems logical-system-name firewall family inet]
```

Release Information

Statement introduced in Junos OS Release 7.6.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure simple filters.

Options

- **filter-name**—Name that identifies the simple filter. The name must be a non-reserved string of not more than 64 characters. No special characters are restricted. To include spaces in the name, enclose them in quotation marks (" ").

- **from**—Match packet fields to values. If the from option is not included, all packets are considered to match and the actions and action modifiers in the then statement are taken.

- **match-conditions**—One or more conditions to use to make a match.

- **term term-name**—Define a simple-filter term. The name that identifies the term can contain letters, numbers, and hyphens (-), and can be up to 255 characters long. To include spaces in the name, enclose them in quotation marks (" ").
then—Actions to take on matching packets. If the then option is not included and a packet matches all the conditions in the from statement, the packet is accepted.

NOTE: Only forwarding-class and loss-priority are valid actions in a simple filter configuration.

Required Privilege Level
- **firewall**—To view this statement in the configuration.
- **firewall-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- [*simple-filter (Applying to an Interface)*](#)
 - Simple Filter Overview | 1283
 - How Simple Filters Evaluate Packets | 1284
 - Guidelines for Configuring Simple Filters | 1285
 - Guidelines for Applying Simple Filters | 1289
source-address

Syntax

source-address ip-address;

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name from],
[edit firewall family family-name filter filter-name term term-name from ip-version ip-version]

Release Information

Statement introduced in Junos OS Release 10.1R1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

IP source address field, which is the address of the source node sending the packet. You cannot specify the source-address and address match conditions in the same term.

For IPv4, the source-address field is 32 bits in length. The filter description syntax supports either a mask value that can be noncontiguous, such as 10.0.0.10/255.0.0.255, or prefix notation such as 10.0.0.0/8. Simple filters do not support noncontiguous mask values.

For IPv6, the source-address field is 128 bits in length. The filter description syntax supports the text representations for IPv6 addresses that are described in RFC 2373, IP Version 6 Addressing Architecture.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

family	2109
family	2107
Firewall Filter Match Conditions Based on Address Fields	882
Firewall Filter Match Conditions for IPv4 Traffic	845
Firewall Filter Match Conditions for IPv6 Traffic	861
Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic	903
Guidelines for Configuring Simple Filters	1285
source-checking

Syntax

source-checking;

Hierarchy Level

[edit forwarding-options family inet6]

Release Information

Statement introduced in Junos OS Release 12.3.

Description

(MX Series 5G Universal Routing Platforms Only) Discard IPv6 packets when the source address type is unspecified, loopback, multicast or link-local

RFC 4291, IP Version 6 Addressing Architecture, refers to four address types that require special treatment when they are used as source addresses. The four address types are:

- Unspecified
- Loopack
- Multicast
- Link-Local Unicast

The loopback and multicast addresses must never be used as a source address in IPv6 packets. The unspecified and link-local addresses can be used as source addresses but routers must never forward packets that have these addresses as source addresses. Typically, packets that contain unspecified or link-local addresses as source addresses are delivered to the local host. If the destination is not the local host, then the packet must not be forwarded. Configuring this statement filters or discards IPv6 packets of these four address types.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Applying Forwarding Table Filters
source-port

Syntax
source-port <source-port>;

Hierarchy Level
[edit firewall family family-name filter filter-name term term-name from ip-version ip-version protocol (tcp|udp)]

Release Information
Statement introduced in Junos OS Release 10.1R1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Configure the source port of the Layer 4 header.

Options
source-port—The source port of the Layer 4 header.

Range: 0 through 65,535

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION
| Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic | 903 |
term (Firewall Filter)

Syntax

```
term term-name {
    from {
        match-conditions;
        vxlan {
            vni vni-id
            flags value mask-in-hex value
            reserved1 value
            reserved2 value
        }
        ip-version ipv4 {
            match-conditions-mpls-ipv4-address;
            protocol (tcp | udp) {
                match conditions-mpls-ipv4-port;
            }
        }
    }
    then {
        actions;
    }
}
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall family family-name filter filter-name],
[edit firewall family family-name filter filter-name],
[edit firewall family family-name service-filter filter-name],
[edit firewall family family-name simple-filter filter-name],
[edit logical-systems logical-system-name firewall family family-name filter filter-name],
[edit logical-systems logical-system-name firewall family family-name service-filter filter-name],
[edit logical-systems logical-system-name firewall family family-name simple-filter filter-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
filter option introduced in Junos OS Release 7.6.
Logical systems support introduced in Junos OS Release 9.3.
ip-version ipv4 support introduced in Junos OS Release 10.1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Define a firewall filter term.
Options

actions—(Optional) Actions to perform on the packet if conditions match. You can specify one terminating action supported for the specified filter type. If you do not specify a terminating action, the packets that match the conditions in the *from* statement are accepted by default. As an option, you can specify one or more nonterminating actions supported for the specified filter type.

filter-name—(Optional) For *family family-name filter filter-name* only, reference another standard stateless firewall filter from within this term.

from—(Optional) Match packet fields to values. If not included, all packets are considered to match and the actions and action modifiers in the *then* statement are taken.

match-conditions—One or more conditions to use to make a match on a packet.

match-conditions-mpls-ipv4-address—(MPLS-tagged IPv4 traffic only) One or more IP address match conditions to match on the IPv4 packet header. Supports network-based service in a core network with IPv4 packets as an inner payload of an MPLS packet with labels stacked up to five deep.

match-conditions-mpls-ipv4-port—(MPLS-tagged IPv4 traffic only) One or more UDP or TCP port match conditions to use to match a packet in an MPLS flow. Supports network-based service in a core network with IPv4 packets as an inner payload of an MPLS packet with labels stacked up to five deep.

vxlan—(Optional) Match packets belonging to a particular VXLAN Network Identifier (VNI).

term-name—Name that identifies the term. The name can contain letters, numbers, and hyphens (-) and can be up to 64 characters long. To include spaces in the name, enclose it in quotation marks (" ").

then—(Optional) Actions to take on matching packets. If not included and a packet matches all the conditions in the *from* statement, the packet is accepted.

The Firewall Filer Match Conditions for the different protocols are explained separately:

- Firewall Filter Match Conditions for IPv4 Traffic on page 845
- Firewall Filter Match Conditions for IPv6 Traffic on page 861
- Firewall Filter Match Conditions for MPLS Traffic on page 899
- Firewall Filter Match Conditions for MPLS-Tagged IPv4 or IPv6 Traffic on page 903
- Firewall Filter Match Conditions for VPLS Traffic on page 906
- Firewall Filter Match Conditions for Protocol-Independent Traffic on page 843
- *Firewall Filter Match Conditions for Protocol-Independent Traffic in Dynamic Service Profiles*
- Firewall Filter Match Conditions Based on Numbers or Text Aliases on page 875
- Firewall Filter Match Conditions Based on Bit-Field Values on page 876
- Firewall Filter Match Conditions Based on Address Fields on page 882
- Firewall Filter Match Conditions Based on Address Classes on page 892
• Firewall Filter Match Conditions for Layer 2 Bridging Traffic on page 925
• Firewall Filter Match Conditions for Layer 2 CCC Traffic on page 920

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Guidelines for Configuring Firewall Filters | 746 |
| Configuring Multifield Classifiers |
| Guidelines for Configuring Simple Filters | 1285 |
| Guidelines for Configuring and Applying Firewall Filters in Logical Systems | 1080 |
term

Syntax

term term-name {
 from {
 match-conditions;
 }
 then {
 action;
 action-modifiers;
 }
}

Hierarchy Level

[edit firewall family family-name filter filter-name]

Release Information
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Define a firewall filter term.

Options

term-name—Name that identifies the term. The name can contain letters, numbers, and hyphens (-), and can be up to 64 characters long. To include spaces in the name, enclose it in quotation marks.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches	1370
Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467
Configuring Firewall Filters (CLI Procedure)	1455
Firewall Filters for EX Series Switches Overview	1352
term

Syntax

term term-name {
 from {
 match-conditions;
 }
 then {
 action;
 action-modifiers;
 }
}

Hierarchy Level

[edit firewall family family-name filter filter-name]

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Define a firewall filter term.

Options
term-name—Name that identifies the term. The name can contain letters, numbers, and hyphens (-), and can be up to 64 characters long. To include spaces in the name, enclose it in quotation marks.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions and Actions	1526
Configuring Firewall Filters	1601
Overview of Firewall Filters	1516
then (Firewall Filters)

Syntax

```plaintext
then {
    action;
    action-modifiers;
}
```

Hierarchy Level

```plaintext
[edit firewall family family-name filter filter-name term term-name]
```

Release Information
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Configure a filter action.

Options
- **action**—Action to accept, discard, or forward packets that match all match conditions specified in a filter term.
- **action-modifiers**—Additional actions to analyze, classify, count, or police packets that match all conditions specified in a filter term.

Required Privilege Level
- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Match Conditions, Actions, and Action Modifiers for EX Series Switches | 1370
- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Example: Using Filter-Based Forwarding to Route Application Traffic to a Security Device on EX Series Switches | 1497
- Configuring Firewall Filters (CLI Procedure) | 1455
- Understanding Firewall Filter Match Conditions | 1359
then (Policer Action)

Syntax

then {
 policer-action;
}

Hierarchy Level

[edit firewall policer policer-name]
[edit logical-systems logical-system-name firewall policer policer-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description
Configure a policer action.

Options
policer-action—Actions to take are:

• discard—Discard traffic that exceeds the rate limits defined by the policer.
• forwarding-class class-name—Classify traffic that exceeds the rate limits defined by the policer.
• loss-priority—Set the loss priority for traffic that exceeds the rate limits defined by the policer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches	1467
Configuring Policers to Control Traffic Rates (CLI Procedure)	1955
Configuring Firewall Filters (CLI Procedure)	1455
Understanding the Use of Policers in Firewall Filters	1950
Basic Single-Rate Two-Color Policers	1770
then (Filters)

Syntax

```plaintext
then {
  action;
  action-modifiers;
}
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure a firewall filter action.

Options

action—Actions to accept, discard, or forward packets that match all conditions specified in a filter term.

Starting in Junos OS Release 18.4R1, two new actions -- **port-mirror** and **port-mirror-instance** – are added for all match conditions, which enable selective port mirroring of MPLS traffic to a mirrored destination.

The **port-mirror** action enables port mirroring globally on the device, which applies to all Packet Forwarding Engines (PFEs) and associated interfaces.

The **port-mirror-instance** action enables you to customize each instance with different properties for input sampling and port mirroring output destinations, instead of having to use a single system-wide configuration for port mirroring.

NOTE:

- You can configure only two port mirroring instances per Flexible PIC Concentrator (FPC) by including the instance **port-mirror-instance-name** statement at the **[edit forwarding-options port-mirror]** hierarchy level. You can then associate individual port mirroring instances with an FPC, PIC, or (Forwarding Engine Board (FEB) depending on the device hardware.
For both `port-mirror` and `port-mirror-instance` actions, the output interface must be enabled with Layer 2 family and not family MPLS (Layer 3) for the selective port mirroring feature to work.

action-modifiers—Additional actions to analyze, classify, count, or police packets that match all conditions specified in a filter term.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Match Conditions and Actions	1526
Configuring Firewall Filters	1601
Understanding Firewall Filter Match Conditions	782
Understanding IP-Based Filtering and Selective Port Mirroring of MPLS Traffic	893
tunnel-end-point

Syntax

```
tunnel-end-point tunnel-name {
  gre {
    key authentication key;
  }
  ipv4 {
    destination-address destination-host-address;
    source-address source-host-address;
  }
  ipv6 {
    destination-address destination-host-address;
    source-address source-host-address;
  }
}
```

Hierarchy Level

```
[edit firewall]
```

Release Information

Statement introduced in Junos OS Release 18.1R1 for PTX Series routers running third generation line cards.
Statement introduced in Junos OS Release 12.3R2 for MX Series routers.

Description

The `tunnel-end-point` command enables line-rate, filter-based, GRE tunneling of IPv4 and IPv6 payloads across IPv4 networks for MX Series routers running Trio-based FPCs (including MX80, MX104 and MX204). Filter-based tunneling encapsulates the original passenger protocol packet in an outer packet header. For example, for filter-based tunneling across IPv4 networks, the header adds 24 bytes or 28 bytes of overhead, including 20 bytes of IPv4 header. Either IPv4 or IPv6 traffic can be the transport protocol. For outgoing packets that match the configured filter term, the original packet are encapsulated inside an IP+GRE header as specified by the tunnel definition. IP lookup is performed on the outer header, and the packets are forwarded accordingly.

The route lookup for GRE encapsulated traffic is supported on the default routing instance only. GRE encapsulation is not supported for logical systems, or for MPLS traffic.

When an subnet range is configured for either the IPv4 or IPv6 option, traffic between hosts in the range is load balanced.
Note that the device must be enabled for **enhanced-mode** to support the use of GRE tunnel templates, which allows you to define tunnel attributes.

To use the feature with PTX Series routers, install a PTX Series router as an **encapsulator**, that is, an ingress PE router where you can reference a tunnel template name in an type **inet** or **inet6** ingress firewall filter by configuring the encapsulate terminating action.

Configure the tunnel end points as shown here (for IPv4):

- `set firewall tunnel-end-point tunnel-name ipv4 source-address source-host-address`
- `set firewall tunnel-end-point tunnel-name ipv4 destination-address destination-host-address`
- `set firewall tunnel-end-point tunnel-name ipv4 destination-address destination-host-address`

Note that the maximum number of /25 IPv4 or /123 IPv6 subnets allowed for a tunnel-endpoint destination addresses is 64.

An interface-specific encapsulating output filter action is also required. It triggers the Packet Forwarding Engine to use information in the specified tunnel template to encapsulate matching packets and forward the resulting GRE packets. GRE encapsulation is supported only for outgoing IPv4 unicast and IPv6 unicast traffic.

Configure the tunnel end points as shown here (for IPv4):

- `set firewall family inet filter filter-name term term-name then encapsulate gre tunnel-name`

For the GRE decapsulation with PTX Series routers, use a PTX3000 or PTX5000 router with third generation FPCs that is running Junos OS Release 16.1R2 or later and configure the firewall filter at the hierarchy level shown here:

- `set firewall family inet filter filter-name term term-name then decapsulate gre`

Egress sampling is supported on GRE encapsulated packets, but note that output filter match conditions only work on the contents of ingress packets.

The route lookup for GRE encapsulated traffic is supported on the default routing instance only. GRE encapsulation is supported for ingress IPv4 unicast and IPv6 unicast traffic. It is not supported for logical systems, or for MPLS traffic.

When defining the tunnel end point, or the prefix list, be sure to specify the /32 route. Multiple tunnel end point source-address are not supported.

- A maximum of 1024 tunnel templates is supported. You can configure or change up to 512 tunnel templates at a time
- A maximum of 64 tunnel end point destination addresses are supported in a given tunnel template. When more than one destination IP address exists, the one used for the outer header is based on a hash that is computed on the input packet from the input interface.
Options

gre—The encapsulation protocol. You must also specify whether the tunnel is IPv4 or IPv6. An example with IPv4 follows.

```
tunnel-end-point tunnel_name {
    ipv4 {
        source-address 10.255.1.1;
        destination-address 10.255.2.0/25;
    }
    gre;
}
```

- **key number**—An integer value that uniquely identifies a GRE IPv4 tunnel if multiple traffic flows share the same source-address and destination-address pair. Range: 1 through 0xFFFFFFFF (4,294,967,295 decimal). If a tunnel definition specifies GRE IPv4 tunneling using a key, the system includes the key in the GRE header whenever a Packet Forwarding Engine is instructed to use that tunnel definition to encapsulate a packet.

gre-in-udp—For MX Series routers; specify if the tunnel is gre-in-udp.

- **destination-port number**—An integer value that uniquely identifies the UDP destination port. Range: 1 through 65535.

- **key number**—An integer value that uniquely identifies the gre-in-udp tunnel if multiple traffic flows share the same destination-port and source-port. Range: 1 through 0xFFFFFFFF (4,294,967,295 decimal). If you include a key in the tunnel definition to encapsulate packets, the key used is the one in the GRE header.

- **source-port number**—An integer value that uniquely identifies the UDP source port. Range: 1 through 65535.

ipv4—The IP network protocol used to transport encapsulated passenger protocol packets; IPv4 transports IPv4 packets encapsulated using filter-based GRE. The default prefix length is 32; the supported range is from 25 to 32. When specified, traffic is load-balanced to the hosts on this subnet.

ipv6—The IP network protocol used to transport encapsulated passenger protocol packets; IPv6 transports IPv6 packets encapsulated using filter-based GRE. The default prefix length is 128; the supported range is from 121 to 128. When specified, traffic is load-balanced to the hosts on this subnet.

source-address—IP address of the encapsulator (the local ingress PE router). Multiple tunnel end point source-address are not supported.

destination-address—IP address or address range of the decapsulator (the remote egress PE router). For both IPv4 and IPv6, a maximum of 64 /25 IPv4 or /123 IPv6 subnets can be configured for the end point destination address.
Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components of Filter-Based Tunneling Across IPv4 Networks</td>
<td>1225</td>
</tr>
<tr>
<td>Understanding Filter-Based Tunneling Across IPv4 Networks</td>
<td>1217</td>
</tr>
<tr>
<td>Firewall Filter Terminating Actions</td>
<td>804</td>
</tr>
<tr>
<td>interface-group (Decapsulate GRE)</td>
<td>2144</td>
</tr>
<tr>
<td>enhanced-mode (Network Services)</td>
<td></td>
</tr>
</tbody>
</table>
use-interface-description

Syntax

use-interface-description (logical | device);

Hierarchy Level

[edit forwarding-options dhcp-relay dhcv6 (relay-agent-interface-id | relay-agent-remote-id)],
[edit forwarding-options dhcp-relay dhcv6 group group-name (relay-agent-interface-id | relay-agent-remote-id)],
[edit forwarding-options dhcp-relay relay-option-82 (circuit-id | remote-id)],
[edit forwarding-options dhcp-relay group group-name relay-option-82 (circuit-id | remote-id)],
[edit logical-systems logical-system-name ... forwarding-options dhcp-relay dhcv6 (relay-agent-interface-id | relay-agent-remote-id)],
[edit logical-systems logical-system-name ... forwarding-options dhcp-relay ... relay-option-82 (circuit-id | remote-id)],
[edit routing-instances routing-instance-name forwarding-options dhcp-relay dhcv6 (relay-agent-interface-id | relay-agent-remote-id)],
[edit routing-instances routing-instance-name forwarding-options dhcp-relay ... relay-option-82 (circuit-id | remote-id)],
[edit vlans vlan-name forwarding-options dhcp-security dhcv6-options option-18],
[edit vlans vlan-name forwarding-options dhcp-security dhcv6-options option-37]

Release Information

Support at the [edit ... dhcv6] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3 for EX Series switches.
Support at the [edit ... relay-agent-remote-id] and [edit ... remote-id] hierarchy levels introduced in Junos OS Release 14.1.
Support at the [edit vlans vlan-name dhcp-security dhcv6-options option-18] and [edit vlans vlan-name dhcp-security dhcv6-options option-37] hierarchy levels introduced in Junos OS Release 14.1X53-D10 for EX Series switches.

Description

Use the textual interface description instead of the interface identifier in the DHCP base option 82 Agent Circuit ID (suboption 1) or Agent Remote ID (suboption 2) information, or in the DHCPv6 option 18 (Relay Agent Interface ID) or option 37 (Relay Agent Remote ID) information in DHCP packets that the DHCP relay agent sends to a DHCP server.

NOTE: For integrated routing and bridging (IRB) interfaces, the option 82 field must be able to uniquely identify the incoming interface based on either the Agent Circuit ID or Agent Remote ID. You can modify the information in the textual interface description to match the raw IFD (physical interface without a subunit) name and configure the option 82 field to use the interface description.
The textual description is configured using the `description` statement at the `[edit interfaces interface-name]` hierarchy level. If you specify that the textual description be used and no description is configured for the interface, DHCP relay defaults to using the Layer 2 interface name. When you use the interface description rather than the interface name, the interface description has to be specified under interface unit ("set interfaces ge-0/0/0 unit 0 description "client"). If you do not do this, then the interface name is used.

In the case of integrated routing and bridging (IRB) interfaces, the textual description of the Layer 2 interface is used instead of the IRB interface. If there is no description configured, the Layer 2 logical interface name is used. To include the IRB interface description instead of the Layer 2 interface description, configure the `use-interface-description` and the `no-vlan-interface-name` statements. If no description is configured for the IRB interface, DHCP relay defaults to using the IRB interface name.

NOTE: The `use-interface-description` statement is mutually exclusive with the `use-vlan-id` statement.

If you specify the textual interface description, rather than accepting the default syntax, the identification is for packets returned from the server, and only for instances where that identification would be required by the DHCP relay, such as a stateless pass-through.

NOTE: By default, DHCP relay accepts a maximum of 253 ASCII characters. If the textual interface description exceeds 253 characters, DHCP relay drops the packet, which results in the DHCP client failing to bind.

Options
- `logical`—Use the textual description that is configured for the logical interface.
- `device`—Use the textual description that is configured for the device interface.

Required Privilege Level
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION
- Including a Textual Description in DHCP Options
- Using DHCP Relay Agent Option 82 Information
- Configuring DHCPv6 Relay Agent Options
CHAPTER 37

Traffic Policer Configuration Statements

IN THIS CHAPTER

- action | 2192
- action | 2193
- aggregate (Hierarchical Policer) | 2195
- associate-profile | 2197
- bandwidth-limit | 2198
- bandwidth-limit (Hierarchical Policer) | 2199
- bandwidth-limit (Policer) | 2201
- bandwidth-percent | 2203
- burst-size-limit | 2206
- burst-size-limit (Hierarchical Policer) | 2207
- burst-size-limit (Policer) | 2209
- color-aware | 2211
- color-aware | 2213
- color-blind | 2214
- color-blind | 2215
- committed-burst-size | 2217
- committed-burst-size | 2219
- committed-information-rate | 2220
- committed-information-rate | 2221
- egress-policer-overhead | 2223
- excess-burst-size | 2225
- excess-burst-size | 2227
- filter | 2228
- filter-specific | 2230
- filter-specific | 2231
- forwarding-class (Firewall Filter Action) | 2232
- hierarchical-policer | 2233
- if-exceeding (Hierarchical Policer) | 2236
- if-exceeding (Policer) | 2238
- if-exceeding-pps (Policer) | 2240
- input-hierarchical-policer | 2241
- input-policer | 2242
- input-three-color | 2243
- layer2-policer | 2244
- layer2-policer | 2246
- layer2-policer (Hierarchical Policer) | 2247
- load-balance-group | 2248
- logical-bandwidth-policer | 2249
- logical-interface-policer | 2250
- loss-priority (Firewall Filter Action) | 2252
- loss-priority high then discard (Three-Color Policer) | 2253
- loss-priority high then discard (Three-Color Policer) | 2254
- output-policer | 2255
- output-three-color | 2256
- packet-burst (Policer) | 2257
- packet-burst (Hierarchical Policer) | 2259
- reacl-ip6-match (packet-forwarding-options) | 2260
- peak-burst-size | 2262
- peak-burst-size | 2264
- peak-information-rate | 2265
- peak-information-rate | 2266
- physical-interface-filter | 2268
- physical-interface-policer | 2270
- policer | 2272
- policer (Applying to a Logical Interface) | 2274
- policer (Configuring) | 2276
- policer (Firewall Filter Action) | 2278
- policer-overhead-adjustment | 2279
- pps-limit (Hierarchical Policer) | 2280
- pps-limit (Policer) | 2282
- prefix-action (Configuring) | 2284
- prefix-action (Firewall Filter Action) | 2285
- premium (Hierarchical Policer) | 2286
- profile-variable-set (Dynamic Profiles) | 2288
- profile-variable-set (Routing Instances) | 2289
- shared-bandwidth-policer (Configuring) | 2290
- single-rate | 2291
- single-rate | 2293
- three-color-policer (Configuring) | 2294
- three-color-policer (Applying) | 2296
- three-color-policer (Configuring) | 2297
- two-rate | 2299
- two-rate | 2301
- then (Policers) | 2302
- three-color-policer | 2303
action

Syntax

```plaintext
action {
    loss-priority high then discard;
}
```

Hierarchy Level

```plaintext
[edit firewall three-color-policer name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Discard traffic on a logical interface using tricolor marking policing.

Options

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.
action

Syntax

```
action {
  loss-priority high then discard;
}
```

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name],
[edit firewall three-color-policer name],
[edit logical-systems logical-system-name firewall three-color-policer name]

Release Information

Statement introduced in Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... three-color-policer] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Discard traffic on a logical interface using tricolor marking policing.

NOTE: This statement is supported only on IQ2 interfaces.

The remaining statement is explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Three-Color Policer Configuration Overview	1877
Basic Single-Rate Three-Color Policers	1885
Basic Two-Rate Three-Color Policers	1893
Two-Color and Three-Color Logical Interface Policers	1911
Two-Color and Three-Color Physical Interface Policers	1928
Two-Color and Three-Color Policers at Layer 2	1734
loss-priority high then discard	2253
aggregate (Hierarchical Policer)

Syntax

```plaintext
aggregate {
  if-exceeding {
    bandwidth-limit bandwidth;
    burst-size-limit burst;
  }
  then {
    discard;
  }
}
```

Hierarchy Level

[edit dynamic-profiles profile-name firewall hierarchical-policer name],
[edit firewall hierarchical-policer]

Release Information

Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles ... hierarchical-policer name] hierarchy level introduced in Junos OS Release 11.4.

Description

On M40e, M120, and M320 edge routers with Flexible PIC Concentrator (FPC) input as FFPC and FPC output as SFPC, and on MX Series, T320, T640, and T1600 edge routers with Enhanced Intelligent Queuing (IQE) PICs, T4000 routers with Type 5 FPC and Enhanced Scaling Type 4 FPC, configure an aggregate hierarchical policer.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Hierarchical Policer Configuration Overview | 1680
- Hierarchical Policers | 1723
<table>
<thead>
<tr>
<th>bandwidth-limit (Hierarchical Policer)</th>
<th>2199</th>
</tr>
</thead>
<tbody>
<tr>
<td>burst-size-limit (Hierarchical Policer)</td>
<td>2207</td>
</tr>
<tr>
<td>hierarchical-policer</td>
<td>2137</td>
</tr>
<tr>
<td>if-exceeding (Hierarchical Policer)</td>
<td>2236</td>
</tr>
<tr>
<td>premium</td>
<td>2286</td>
</tr>
</tbody>
</table>
associate-profile

Syntax

```plaintext
associate-profile {
    dynamic-profile-name;
    profile-variable-set profile-variable-set-name;
}
```

Hierarchy Level

```plaintext
[edit routing-instances routing-instance-name protocols vpls],
[edit routing-instances routing-instance-name protocols vpls mesh-group mesh-group-name],
[edit routing-instances routing-instance-name protocols vpls mesh-group mesh-group-name neighbor neighbor-id]
```

Release Information

Statement introduced in Junos OS Release 11.1.

Description

Associate a dynamic profile or a profile variable set with a VPLS instance.

Options

- `dynamic-profile-name`—Name of the dynamic profile to attach to this routing instance.

The remaining option is explained separately.

Required Privilege Level

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Attaching Dynamic Profiles to Routing Instances | 1752
- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration | 1756
bandwidth-limit

Syntax

bandwidth-limit bps;

Hierarchy Level

[edit firewall policer policer-name if-exceeding]

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Specify the traffic rate in bits per second.

Options

bps—Traffic rate in bits per second. Specify bps as a decimal value or as a decimal number followed by one of the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 32000 bps (32 Kbps) through 10,000,000,000 bps (10 Gbps)

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
bandwidth-limit (Hierarchical Policer)

Syntax

bandwidth-limit bps;

Hierarchy Level

[edit dynamic-profiles profile-name firewall hierarchical-policer aggregate if-exceeding],
[edit dynamic-profiles profile-name firewall hierarchical-policer premium if-exceeding],
[edit firewall hierarchical-policer aggregate if-exceeding],
[edit firewall hierarchical-policer premium if-exceeding]

Release Information
Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles ... if-exceeding] hierarchy level introduced in Junos OS Release 11.4.

Description
On M40e, M120, and M320 (with FFPC and SFPC) edge routers; on MPCs hosted on MX Series routers; on T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs; and on T4000 routers with Type 5 FPC and Enhanced Scaling Type 4 FPC, configure the maximum average bandwidth for premium or aggregate traffic in a hierarchical policer.

Options

bps—You can specify the number of bits per second either as a decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range:
- 32,000 through 50,000,000,000 on M Series routers
- 32,000 through 100,000,000,000 on T Series routers
- 32,000 through 18,446,744,073,709,551,615 on MX Series routers

NOTE: When you specify a numeric value beyond the supported bandwidth of the PFE, the router caps the bandwidth at the maximum supported bandwidth of the PFE.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
bandwidth-limit (Policer)

Syntax

bandwidth-limit bps;

Hierarchy Level

[edit dynamic-profiles profile-name firewall policer policer-name if-exceeding],
[edit firewall policer policer-name if-exceeding],
[edit logical-systems logical-system-name policer policer-name if-exceeding]

Release Information

Statement introduced before Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... if-exceeding] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a single-rate two-color policer, configure the bandwidth limit as a number of bits per second. Single-rate two-color policing uses the single token bucket algorithm to measure traffic-flow conformance to a two-color policer rate limit.

Traffic at the interface that conforms to the bandwidth limit is categorized green. Traffic that exceeds the specified rate is also categorized as green provided that sufficient tokens remain in the single token bucket. Packets in a green flow are implicitly marked with low packet loss priority (PLP) and then passed through the interface.

Traffic that exceeds the specified rate when insufficient tokens remain in the single token bucket is categorized red. Depending on the configuration of the two-color policer, packets in a red traffic flow might be implicitly discarded; or the packets might be re-marked with a specified forwarding class, a specified PLP, or both, and then passed through the interface.

NOTE: This statement specifies the bandwidth limit as an absolute number of bits per second. Alternatively, for single-rate two-color policers only, you can use the bandwidth-percent percentage statement to specify the bandwidth limit as a percentage of either the physical interface port speed or the configured logical interface shaping rate.

Single-rate two-color policing allows bursts of traffic for short periods, whereas single-rate and two-rate three-color policing allows more sustained bursts of traffic.

Hierarchical policing is a form of two-color policing that applies different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority. You apply a hierarchical
policer to ingress Layer 2 traffic to allows bursts of EF traffic for short period and bursts of non-EF traffic for short periods, with EF traffic always taking precedence over non-EF traffic.

Options

bps—You can specify the number of bits per second either as a decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range:
- (M Series and T Series routers) 8000 through 100,000,000,000
- (Mx Series routers) 8000 through 18,446,744,073,709,551,615

NOTE: When you specify a numeric value beyond the supported bandwidth of the PFE, the router caps the bandwidth at the maximum supported bandwidth of the PFE.

Default: None.

Required Privilege Level
- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 1763
- Policer Bandwidth and Burst-Size Limits | 1713
- Policer Color-Marking and Actions | 1715
- Single Token Bucket Algorithm | 1717
- Determining Proper Burst Size for Traffic Policers | 1662
- bandwidth-percent | 2203
- burst-size-limit (Policer) | 2209
bandwidth-percent

Syntax

```
bandwidth-percent percentage;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall policer policer-name if-exceeding],
[edit firewall policer policer-name if-exceeding],
[edit logical-systems logical-system-name policer policer-name if-exceeding]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... if-exceeding] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a single-rate two-color policer, configure the bandwidth limit as a percentage value. Single-rate two-color policing uses the single token bucket algorithm to measure traffic-flow conformance to a two-color policer rate limit.

Traffic at the interface that conforms to the bandwidth limit is categorized green. Traffic that exceeds the specified rate is also categorized as green provided that sufficient tokens remain in the single token bucket. Packets in a green flow are implicitly marked with low packet loss priority and then passed through the interface.

Traffic that exceeds the specified rate when insufficient tokens remain in the single token bucket is categorized red. Depending on the configuration of the two-color policer, packets in a red traffic flow might be implicitly discarded; or the packets might be re-marked with a specified forwarding class, a specified PLP, or both, and then passed through the interface.

NOTE: This statement specifies the bandwidth limit as a percentage of either the physical interface port speed or the configured logical interface shaping rate. Alternatively, you can use the `bandwidth-limit bps` statement to specify the bandwidth limit as an absolute number of bits per second.

The function of the bandwidth limit is extended by the burst size (configured using the `burst-size-limit bytes` statement) to allow bursts of traffic up to a limit based on the overall traffic load:
- When a single-rate two-color policer is applied to the input or output traffic at an interface, the initial capacity for traffic bursting is equal to the number of bytes specified by this statement.

- During periods of relatively low traffic (traffic that arrives at or departs from the interface at overall rates below the token arrival rate), unused tokens accumulate in the bucket, but only up to the configured token bucket depth.

Single-rate two-color policing allows bursts of traffic for short periods, whereas single-rate and two-rate three-color policing allows more sustained bursts of traffic.

Hierarchical policing is a form of two-color policing that applies different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority. You apply a hierarchical policer to ingress Layer 2 traffic to allows bursts of EF traffic for short period and bursts of non-EF traffic for short periods, with EF traffic always taking precedence over non-EF traffic.

Options

percentage—Traffic rate as a percentage of either the physical interface media rate or the logical interface configured shaping rate. You can configure a shaping rate on a logical interface by using class-of-service statement.

NOTE: The bandwidth percentage policer cannot be used to rate-limit tunnel or software interfaces, or for forwarding table filters. It is only valid for interface-specific filters. When used for matching bandwidth or burst-size on aggregated Ethernet or SONET bundles, bandwidth percentage policers must be used in conjunction with `shared-bandwidth-policer`.

Range: 0 through 100

Default: None.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.
<table>
<thead>
<tr>
<th>RELATED DOCUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Color Policer Configuration Overview</td>
</tr>
<tr>
<td>Policer Bandwidth and Burst-Size Limits</td>
</tr>
<tr>
<td>Policer Color-Marking and Actions</td>
</tr>
<tr>
<td>Single Token Bucket Algorithm</td>
</tr>
<tr>
<td>Determining Proper Burst Size for Traffic Policers</td>
</tr>
<tr>
<td>Bandwidth Policers</td>
</tr>
<tr>
<td>bandwidth-limit (Policer)</td>
</tr>
<tr>
<td>burst-size-limit (Policer)</td>
</tr>
</tbody>
</table>
burst-size-limit

Syntax

burst-size-limit bytes;

Hierarchy Level

[edit firewall policer policer-name if-exceeding]

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Specify the maximum allowed burst size to control the amount of traffic bursting.

Options

bytes—Decimal value or a decimal number followed by k (thousand), m (million), or g (giga).

Range: 1 through 2,147,450,880 bytes (2147 MB)

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
burst-size-limit (Hierarchical Policer)

Syntax

burst-size-limit bytes;

Hierarchy Level

[edit dynamic-profiles profile-name firewall hierarchical-policer aggregate if-exceeding],
[edit dynamic-profiles profile-name firewall hierarchical-policer premium if-exceeding],
[edit firewall hierarchical-policer aggregate if-exceeding],
[edit firewall hierarchical-policer premium if-exceeding]

Release Information

Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles ... if exceeding] hierarchy level introduced in Junos OS Release 11.4.

Description

On M40e, M120, and M320 (with FFPC and SFPC) edge routers; on MPCs hosted on MX Series routers; on T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs; and on T4000 routers with Type 5 FPC and Enhanced Scaling Type 4 FPC, configure the burst-size limit for premium or aggregate traffic in a hierarchical policer.

Options

bytes—Burst-size limit in bytes. The minimum recommended value is the maximum transmission unit (MTU) of the IP packets being policed. You can specify the value either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 1500 through 2,147,450,880 (1500 through 100,000,000,000 on MPCs hosted on MX Series routers)

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Hierarchical Policer Configuration Overview | 1680
Policer Bandwidth and Burst-Size Limits | 1713
Policer Color-Marking and Actions | 1715
Single Token Bucket Algorithm | 1717
Determining Proper Burst Size for Traffic Policers | 1662
<table>
<thead>
<tr>
<th>Hierarchical Policers</th>
<th>1723</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate (Hierarchical Policer)</td>
<td>2195</td>
</tr>
<tr>
<td>bandwidth-limit (Hierarchical Policer)</td>
<td>2199</td>
</tr>
<tr>
<td>premium (Hierarchical Policer)</td>
<td>2286</td>
</tr>
</tbody>
</table>
burst-size-limit (Policer)

Syntax

burst-size-limit bytes;

Hierarchy Level

[edit dynamic-profiles profile-name firewall policer policer-name if-exceeding],
[edit firewall policer policer-name if-exceeding],
[edit logical-systems logical-system-name policer policer-name if-exceeding]

Release Information

Statement introduced before Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... if-exceeding] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a single-rate two-color policer, configure the burst size as a number of bytes. The burst size allows for short periods of traffic bursting (back-to-back traffic at average rates that exceed the configured bandwidth limit). Single-rate two-color policing uses the single token bucket algorithm to measure traffic-flow conformance to a two-color policer rate limit.

Traffic at the interface that conforms to the bandwidth limit is categorized green. Traffic that exceeds the specified rate is also categorized as green provided that sufficient tokens remain in the single token bucket. Packets in a green flow are implicitly marked with low packet loss priority and then passed through the interface.

Traffic that exceeds the specified rate when insufficient tokens remain in the single token bucket is categorized red. Depending on the configuration of the two-color policer, packets in a red traffic flow might be implicitly discarded; or the packets might be re-marked with a specified forwarding class, a specified PLP, or both, and then passed through the interface.

The burst size extends the function of the bandwidth limit (configured using either the bandwidth-limit bps statement or the bandwidth-percent percentage statement) to allow bursts of traffic up to a limit based on the overall traffic load:

- When a single-rate two-color policer is applied to the input or output traffic at an interface, the initial capacity for traffic bursting is equal to the number of bytes specified by this statement.

- During periods of relatively low traffic (traffic that arrives at or departs from the interface at overall rates below the token arrival rate), unused tokens accumulate in the bucket, but only up to the configured token bucket depth.
Single-rate two-color policing allows bursts of traffic for short periods, whereas single-rate and two-rate three-color policing allows more sustained bursts of traffic.

Hierarchical policing is a form of two-color policing that applies different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority. You apply a hierarchical policer to ingress Layer 2 traffic to allows bursts of EF traffic for short period and bursts of non-EF traffic for short periods, with EF traffic always taking precedence over non-EF traffic.

The burst-size limit enforced is based on the burst-size limit you configure. For a rate-limited logical interface, the Packet Forwarding Engine calculates the optimum burst-size-limit values and then applies the value closest to the burst-size-limit value specified in the policer configuration.

On MX Series routers and EX Series switches, the burst-size limit is not as freely configurable as it is on other platforms. Junos OS does not support an unlimited combination of policer bandwidth and burst-size limits on MX Series routers and EX Series switches. For a single-rate two-color policer on an MX Series router and on an EX Series switch, the minimum supported burst-size limit is equivalent to the amount of traffic allowed by the policer bandwidth limit in a time span of 1 millisecond. For example, for a policer configured with a `bandwidth-limit` value of 1 Gbps, the minimum supported value for `burst-size-limit` on an MX Series router is 125 KB. If you configure a value that is smaller than the minimum, Junos OS overrides the configuration and applies the actual minimum.

Options

`bytes`—Burst-size limit in bytes. The minimum recommended value is the maximum transmission unit (MTU) of the IP packets being policed. You can specify the value either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 1500 through 100,000,000,000

Default: None

Required Privilege Level

firewall—To view this statement in the configuration.

firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Two-Color Policer Configuration Overview	1763
Policer Bandwidth and Burst-Size Limits	1713
Policer Color-Marking and Actions	1715
Single Token Bucket Algorithm	1717
Determining Proper Burst Size for Traffic Policers	1662
`bandwidth-limit` (Policer)	2201
`bandwidth-percent`	2203
color-aware

Syntax

color-aware;

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name single-rate],
[edit dynamic-profiles profile-name firewall three-color-policer name two-rate],
[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information

Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... single-rate] and [edit dynamic-profiles ... two-rate] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a three-color policer, configure the way preclassified packets are metered. In color-aware mode, the local router can assign a higher packet loss priority, but cannot assign a lower packet loss priority.

For example, suppose an upstream router assigned medium-high packet loss priority to a packet because the packet exceeded the committed information rate on the upstream router interface.

• If the local router applies color-aware policing to the packet, the router cannot change the packet loss priority to low, even if the packet conforms to the configured committed information route on the local router interface.

• If the local router applies color-blind policing to the packet, the router can change the packet loss priority to low if the packet conforms to the configured committed information route on the local router interface.

NOTE: A color-aware policer cannot be applied to Layer 2 traffic.

Default

If you omit the color-aware statement, the default behavior is color-aware mode.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Three-Color Policer Configuration Overview | 1877
Color Modes for Three-Color Policers | 1882
color-blind | 2215
color-aware

Syntax

```
color-aware;
```

Hierarchy Level

```
[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]
```

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure the way preclassified packets are metered. In color-aware mode, the switch can assign a higher packet-loss priority, but cannot assign a lower packet loss priority (PLP). For example, suppose an upstream device assigns medium-high PLP to a packet because the packet exceeded its committed information rate (CIR). The switch cannot change the PLP to low even if the packet conforms to the configured CIR of the appropriate interface. On the other hand, if an upstream device assigns low PLP to a packet but the packet exceeds the CIR and committed burst size (CBS) of the switch interface, the switch can increase the PLP to medium-high.

Default
If you omit the `color-aware` statement, the default behavior is color-aware mode.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Overview of Policers | 1940
- Understanding Color-Aware Mode for Single-Rate Tricolor Marking | 1964
- Understanding Color-Aware Mode for Two-Rate Tricolor Marking | 1966
- color-blind | 2214
color-blind

Syntax

color-blind;

Hierarchy Level

[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure the way preclassified packets are metered. In color-blind mode, the switch ignores any
preclassification of packets and can assign a higher or lower packet loss priority (PLP). For example, suppose
an upstream device assigns medium-high PLP to a packet because the packet exceeded the CIR on the
upstream device. The switch can change the PLP to low if the packet conforms to the CIR of the appropriate
interface.

Default
If you omit the color-blind statement, the default behavior is color-aware mode.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Overview of Policers | 1940
Understanding Color-Blind Mode for Single-Rate Tricolor Marking | 1963
Understanding Color-Blind Mode for Two-Rate Tricolor Marking | 1965
Configuring Color-Blind Egress Policers for Medium-Low PLP | 1977
color-aware | 2213
color-blind

Syntax

color-blind;

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name single-rate],
[edit dynamic-profiles profile-name firewall three-color-policer name two-rate],
[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information
Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... single-rate] and [edit dynamic-profiles ... two-rate] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
For a three-color policer, configure the way preclassified packets are metered. In color-blind mode, the local router ignores the preclassification of packets and can assign a higher or lower packet loss priority.

For example, suppose an upstream router assigned medium-high packet loss priority to a packet because the packet exceeded the committed information rate on the upstream router interface.

• If the local router applies color-aware policing to the packet, the router cannot change the packet loss priority to low, even if the packet conforms to the configured committed information route on the local router interface.

 NOTE: A color-aware policer cannot be applied to Layer 2 traffic.

• If the local router applies color-blind policing to the packet, the router can change the packet loss priority to low if the packet conforms to the configured committed information route on the local router interface.

Default
If you omit the color-blind statement, the default behavior is color-aware mode.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-Color Policer Configuration Overview</td>
<td>1877</td>
</tr>
<tr>
<td>Color Modes for Three-Color Policers</td>
<td>1882</td>
</tr>
<tr>
<td>color-aware</td>
<td>2211</td>
</tr>
</tbody>
</table>
committed-burst-size

Syntax

committed-burst-size bytes;

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name single-rate],
[edit dynamic-profiles profile-name firewall three-color-policer name two-rate],
[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information

Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... single-rate] and [edit dynamic-profiles ... two-rate] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a three-color policer, configure the committed burst size (CBS) as a number of bytes.

NOTE: When you include the committed-burst-size statement in the configuration, you must also include the committed-information-rate statement at the same hierarchy level.

In three-color policing, a committed information rate (CIR) defines the guaranteed bandwidth for traffic arriving at or departing from the interface under normal line conditions. A flow of traffic at an average rate that conforms to the CIR is categorized green.

During periods of average traffic rates below the CIR, any unused bandwidth capacity accumulates up to a maximum amount defined by the CBS. Short periods of bursting traffic (back-to-back traffic at averages rates that exceed the CIR) are also categorized as green provided that unused bandwidth capacity is available.

Traffic that exceeds both the CIR and the CBS is considered nonconforming.

Single-rate three-color policers use a dual token bucket algorithm to measure traffic against a single rate limit. Nonconforming traffic is categorized as yellow or red, based on the excess-burst-size statement included in the policer configuration.
Two-rate three-color policers use a *dual-rate dual token bucket algorithm* to measure traffic against two rate limits. Nonconforming traffic is categorized as yellow or red based on the **peak-information-rate** and **peak-burst-rate** statements included in the policer configuration.

Options

bytes—Number of bytes. You can specify a value in bytes either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 1500 through 100,000,000,000 bytes

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Three-Color Policer Configuration Overview	1877
Policer Bandwidth and Burst-Size Limits	1713
Policer Color-Marking and Actions	1715
Dual Token Bucket Algorithms	1719
Determining Proper Burst Size for Traffic Policers	1662
committed-information-rate	2221
excess-burst-size	2225
peak-burst-size	2262
peak-information-rate	2266
committed-burst-size

Syntax

```plaintext
committed-burst-size bytes;
```

Hierarchy Level

```plaintext
[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure the maximum number of bytes allowed for incoming traffic to burst above the committed information rate and still be marked with low packet loss priority (green).

NOTE: When you include the `committed-burst-size` statement in the configuration, you must also include the `committed-information-rate` statement at the same hierarchy level.

Options

- **bytes**—Number of bytes. You can specify a value in bytes either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

 Range: 512 bytes through 268435456 bytes (268 MB)

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
committed-information-rate

Syntax

committed-information-rate bits-per-second;

Hierarchy Level

[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure the guaranteed bandwidth under normal line conditions and the average rate up to which packets are marked with low packet loss priority (green).

NOTE: When you include the committed-information-rate statement in the configuration, you must also include the committed-burst-size statement at the same hierarchy level.

Options
bits-per-second—Number of bits per second. You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 32,000 bps through 10,000,000,000 bps (10 gbps)

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
Overview of Policers | 1940
committed-information-rate

Syntax

committed-information-rate bps;

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name single-rate],
[edit dynamic-profiles profile-name firewall three-color-policer name two-rate],
[edit firewall three-color-policer policer-name single-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information
Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... single-rate] and [edit dynamic-profiles ... two-rate] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
For a three-color policer, configure the committed information rate as a number of bits per second. The committed information rate (CIR) is the guaranteed bandwidth for traffic arriving at or departing from the interface under normal line conditions.

NOTE: When you include the committed-information-rate statement in the configuration, you must also include the committed-burst-size statement at the same hierarchy level.

In three-color policing, a CIR defines the guaranteed bandwidth for traffic arriving at or departing from the interface under normal line conditions. A flow of traffic at an average rate that conforms to the CIR is categorized green.

During periods of average traffic rates below the CIR, any unused bandwidth capacity accumulates up to a maximum amount defined by the committed burst size (CBS). Short periods of bursting traffic (back-to-back traffic at averages rates that exceed the CIR) are also categorized as green provided that unused bandwidth capacity is available.

Traffic that exceeds both the CIR and the CBS is considered nonconforming.

Single-rate three-color policers use a dual token bucket algorithm to measure traffic against a single rate limit. Nonconforming traffic is categorized as yellow or red, based on the excess-burst-size statement included in the policer configuration.
Two-rate three-color policers use a *dual-rate dual token bucket algorithm* to measure traffic against two rate limits. Nonconforming traffic is categorized as yellow or red based on the *peak-information-rate* and *peak-burst-rate* statements included in the policer configuration.

Options

bps—Number of bits per second. You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range:
- 1500 through 100,000,000,000 bps on EX, M, and T Series routers
- 1500 through 18,446,744,073,709,551,615 bps on Mx Series routers

Required Privilege Level

firewall—To view this statement in the configuration.

firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Three-Color Policer Configuration Overview	1877
Policer Bandwidth and Burst-Size Limits	1713
Policer Color-Marking and Actions	1715
Dual Token Bucket Algorithms	1719
Determining Proper Burst Size for Traffic Policers	1662
committed-burst-size	2217
excess-burst-size	2225
peak-burst-size	222
peak-information-rate	2266
egress-policer-overhead

Syntax

```
egress-policer-overhead bytes;
```

Hierarchy Level

```
[edit chassis fpc slot-number pic pic-number]
```

Release Information

Statement introduced before Junos OS Release 11.1.

Description

Add the specified number of bytes to the actual length of an Ethernet frame when determining the actions of Layer 2 policers, MAC policers, or queue rate limits applied to output traffic on the line card. You can configure egress policer overhead to account for egress shaping overhead bytes added to output traffic on the line card.

On M Series and T Series routers, this statement is supported on Gigabit Ethernet Intelligent Queuing 2 (IQ2) PICs and Enhanced IQ2 (IQ2E) PICs. On MX Series routers, this statement is supported for interfaces configured on Dense Port Concentrators (DPCs).

NOTE: This statement is not supported on Modular Interface Cards (MICs) or Modular Port Concentrators (MPCs) in MX Series routers.

Options

- `bytes`—Number of bytes added to a packet exiting an interface.

Range: 0–255 bytes

Default: 0

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- `egress-shaping-overhead`
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer Overhead to Account for Rate Shaping Overview</td>
<td>1866</td>
</tr>
<tr>
<td>Example: Configuring Policer Overhead to Account for Rate Shaping</td>
<td>1867</td>
</tr>
<tr>
<td>Configuring a Policer Overhead</td>
<td>1733</td>
</tr>
<tr>
<td>CoS on Enhanced IQ2 PICs Overview</td>
<td></td>
</tr>
</tbody>
</table>
excess-burst-size

Syntax

```plaintext
excess-burst-size bytes;
```

Hierarchy Level

```plaintext
[edit dynamic-profiles profile-name firewall three-color-policer name single-rate],
[edit firewall three-color-policer policer-name single-rate]
```

Release Information

Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... single-rate] hierarchy level introduced in Junos Release OS 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a single-rate three-color policer, configure the excess burst size (EBS) as a number of bytes. The EBS allows for moderate periods of bursting traffic that exceeds both the committed information rate (CIR) and the committed burst size (CBS).

NOTE: When you include the `excess-burst-size` statement in the configuration, you must also include the `committed-burst-size` and `committed-information-rate` statements at the same hierarchy level.

Traffic that exceeds both the CIR and the CBS is considered nonconforming.

Single-rate three-color policing uses a *dual token bucket algorithm* to measure traffic against a single rate limit. Nonconforming traffic is categorized as yellow or red based on the `excess-burst-size` statement included in the policer configuration.

During periods of traffic that conforms to the CIR, any unused portion of the guaranteed bandwidth capacity accumulates in the first token bucket, up to the maximum number of bytes defined by the CBS. If any accumulated bandwidth capacity overflows the first bucket, the excess accumulates in a second token bucket, up to the maximum number of bytes defined by the EBS.

A nonconforming traffic flow is categorized yellow if its size conforms to bandwidth capacity accumulated in the first token bucket. Packets in a yellow flow are marked with **medium-high** packet loss priority (PLP) and then passed through the interface.
A nonconforming traffic flow is categorized red if its size exceeds the bandwidth capacity accumulated in the second token bucket. Packets in a red traffic flow are marked with **high PLP** and then either passed through the interface or optionally discarded.

Options

bytes—Number of bytes. You can specify a value in bytes either as a complete decimal number or as a decimal number followed by the abbreviation **k** (1000), **m** (1,000,000), or **g** (1,000,000,000).

Range: 1500 through 100,000,000,000 bytes

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

Three-Color Policer Configuration Overview	1877
Policer Bandwidth and Burst-Size Limits	1713
Policer Color-Marking and Actions	1715
Dual Token Bucket Algorithms	1719
Determining Proper Burst Size for Traffic Policers	1662
committed-burst-size	2217
committed-information-rate	2221
excess-burst-size

Syntax

excess-burst-size bytes;

Hierarchy Level

[edit firewall three-color-policer policer-name single-rate]

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure the maximum number of bytes allowed for incoming traffic to burst above the committed information rate and still be marked with medium-high packet loss priority (yellow). Packets that exceed the excess burst size (EBS) are marked with high packet loss priority (red).

NOTE: When you include the `excess-burst-size` statement in the configuration, you must also include the `committed-burst-size` and `committed-information-rate` statements at the same hierarchy level.

Options

bytes—Number of bytes. You can specify a value in bytes either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 512 bytes through 268435456 bytes (268 MB)

Required Privilege Level

`firewall`—To view this statement in the configuration.
`firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
filter

Syntax

```bash
filter filter-name {
  interface-specific;
  term term-name {
    from {
      match-conditions;
    }
    then {
      action;
      action-modifiers;
    }
  }
}
```

Hierarchy Level

```
[edit firewall family family-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure firewall filters.

Options

- **filter-name**—Name that identifies the filter. The name can contain letters, numbers, and hyphens (-), and can be up to 64 characters long. To include spaces in the name, enclose it in quotation marks.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Match Conditions and Actions | 1526
- Configuring Firewall Filters | 1601
filter-specific

Syntax

filter-specific;

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall policer policer-name],
[edit firewall family inet prefix-action name],
[edit firewall policer policer-name],
[edit logical-systems logical-system-name firewall policer policer-name],
[edit logical-systems logical-system-name firewall family inet prefix-action name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... policer policer-name] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

By default, a policer operates in term-specific mode, which means that for a given firewall filter the Junos OS creates a separate policer instance for every filter term that references the policer. You can, however, use a common policer instance for all terms within the same firewall filter by setting the filter-specific option in the policer. In addition, for IPv4 firewall filters with multiple terms that reference the same policer, filter-specific mode counts and monitors the activity of the policer at the firewall filter level.

NOTE: Both filter-specific and term-specific apply to prefix-specific policer sets.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Filter-Specific Policer Overview | 1807 |
| Prefix-Specific Counting and Policing Overview | 1822 |
filter-specific

Syntax

```plaintext
filter-specific;
```

Hierarchy Level

```plaintext
[edit firewall policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure a policer to be filter-specific, which means that Junos OS creates only one policer instance regardless of how many times the policer is referenced. If you use a filter-specific policer in multiple terms, both of the following are true:

- Traffic is policed at the aggregate rate. For example, if you create a policer that has a bandwidth limit of 100 Mbps and use the policer in two terms, the total allowed bandwidth for both terms is 100 Mbps—not 100 Mbps for each term.
- The implicit counter counts all the packets are that matched by any of the terms. For example, if you reference the same filter-specific policer in term1 and term2, and term1 matches 1000 packets and term2 matches 500 packets, the implicit counter shows 1500 matches for the policer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
forwarding-class (Firewall Filter Action)

Syntax

forwarding-class class-name;

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name then],
[edit logical-systems logical-system-name firewall family family-name filter filter-name term term-name then]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Set the forwarding class of incoming packets.

Options

class-name—Name of the forwarding class.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Firewall Filter Nonterminating Actions	795
Policer Color-Marking and Actions	1715
Multifield Classification Overview	1843
hierarchical-policer

List of Syntax
Syntax (M Series, MX Series, T Series - Bandwidth-Based) on page 2233
Syntax (MX Series - Packets-Per-Second (pps)-Based) on page 2233

Syntax (M Series, MX Series, T Series - Bandwidth-Based)

```plaintext
hierarchical-policer hierarchical-policer-name | uid {
  aggregate {
    if-exceeding {
      bandwidth-limit bps;
      burst-size-limit bytes;
    }
    then {
      discard;
    }
  }
  premium {
    if-exceeding {
      bandwidth-limit bps;
      burst-size-limit bytes;
    }
    then {
      discard;
    }
  }
}
```

Syntax (MX Series - Packets-Per-Second (pps)-Based)

```plaintext
hierarchical-policer hierarchical-policer-name | uid {
  aggregate {
    if-exceeding-pps {
      pps-limit pps;
      packet-burst packets;
    }
    then {
      discard;
    }
  }
  premium {
    if-exceeding-pps (Hierarchical Policer) {
      pps-limit (Hierarchical Policer) pps;
    }
  }
}
```
packet-burst (Hierarchical Policer) packets;

} then {
discard;
}

}

Hierarchy Level

[edit dynamic-profiles profile-name firewall],
[edit firewall]

Release Information
Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles profile-name firewall] hierarchy level introduced in Junos OS Release 11.4.
Support for if-exceeding-pps statement on MX Series routers with MPCs introduced in Junos OS Release 15.2.

Description
Use a hierarchical policer to rate-limit ingress Layer 2 traffic at a physical or logical interface and apply different policing actions based on whether the packets are classified as premium for expedited forwarding (EF) or aggregate for a lower priority. The two policers defined within the hierarchical policer are aggregate and premium.

Hierarchical policers are supported on Enhanced Intelligent Queuing (IQE) PICs and SONET interfaces hosted on the M120 and M320 with incoming Flexible PIC Concentrators (FPCs) as SFPC and outgoing FPCs as FFPC; on MPCs hosted on MX Series routers; on the T320, T640, and T1600 with Enhanced Intelligent Queuing (IQE) PICs; and on the T4000 with Type 5 FPC and Enhanced Scaling Type 4 FPC.

NOTE:
- The if-exceeding-pps statement is only supported on MX Series routers with MPCs.
- The if-exceeding and if-exceeding-pps statements are mutually exclusive and, therefore, cannot be applied at the same time.

You can configure the policer in static firewall filters or dynamic firewall filters in a dynamic client profile or a dynamic service profile.
Options

hierarchical-policer-name—Name that identifies the policer. The name can contain letters, numbers, and hyphens (-), and can be up to 255 characters long. To include spaces in the name, enclose the name in quotation marks (" ").

uid—When you configure a hierarchical policer at the [edit dynamic-profiles profile name firewall] hierarchy level, you must assign a variable UID as the policer name.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.

firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Hierarchical Policer Configuration Overview	1680
Hierarchical Policers	1723
aggregate (Hierarchical Policer)	2195
bandwidth-limit (Hierarchical Policer)	2199
burst-size-limit (Hierarchical Policer)	2207
pps-limit (Hierarchical Policer)	2280
packet-burst (Hierarchical Policer)	2259
if-exceeding (Hierarchical Policer)	2236
if-exceeding-pps (Hierarchical Policer)	
premium (Hierarchical Policer)	2286
if-exceeding (Hierarchical Policer)

Syntax

```plaintext
if-exceeding {
  bandwidth-limit bps;
  burst-size-limit bytes;
}
```

Hierarchy Level

```plaintext
[edit dynamic-profiles profile-name firewall hierarchical-policer aggregate],
[edit dynamic-profiles profile-name firewall hierarchical-policer premium],
[edit firewall hierarchical-policer aggregate],
[edit firewall hierarchical-policer premium]
```

Release Information

Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles ... aggregate] and [edit dynamic-profiles ... premium] hierarchy level introduced in Junos OS Release 11.4.

Description

For M40e, M120, and M320 (with FFPC and SFPC) edge routers and T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs, T4000 routers with Type 5 FPC and Enhanced Scaling Type 4 FPC, specify bandwidth and burst limits for a premium or aggregate component of a hierarchical policer.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<p>| Hierarchical Policer Configuration Overview | 1680 |
| Hierarchical Policers | 1723 |
| aggregate (Hierarchical Policer) | 2195 |
| bandwidth-limit (Hierarchical Policer) | 2199 |
| burst-size-limit (Hierarchical Policer) | 2207 |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>hierarchical-policer</td>
<td>2137</td>
</tr>
<tr>
<td>premium (Hierarchical Policer)</td>
<td>2286</td>
</tr>
</tbody>
</table>
if-exceeding (Policer)

Syntax

```plaintext
if-exceeding {
  (bandwidth-limit bps | bandwidth-percent number);
  burst-size-limit bytes;
}
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall policer policer-name],
[edit firewall policer policer-name],
[edit logical-systems logical-system-name firewall policer policer-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Support at the `edit dynamic-profiles ... policer policer-name` hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure rate limits for a single-rate two-color policer.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 1763
- Hierarchical Policer Configuration Overview | 1680
- Basic Single-Rate Two-Color Policers | 1770
- Bandwidth Policers | 1795
- Filter-Specific Counters and Policers | 1807
- Prefix-Specific Counting and Policing Actions | 1822
<table>
<thead>
<tr>
<th>Multifield Classification</th>
<th>1842</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer Overhead to Account for Rate Shaping in the Traffic Manager</td>
<td>1866</td>
</tr>
<tr>
<td>Hierarchical Policers</td>
<td>1723</td>
</tr>
</tbody>
</table>
if-exceeding-pps (Policer)

Syntax

```plaintext
if-exceeding-pps {
  pps-limit pps;
  packet-burst packets;
}
```

Hierarchy Level

- [edit dynamic-profiles profile-name firewall policer policer-name],
- [edit firewall policer policer-name],
- [edit logical-systems logical-system-name firewall policer policer-name]

Release Information

Statement introduced in Junos OS Release 16.1 for MX Series routers with MPCs.

Description

Configure rate limits in packets per second for a single-rate two-color policer when policing is desired on a packets-per-second basis rather than a bits-per-second basis. This can help protect against distributed denial of service (DDoS) attacks.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Two-Color Policer Configuration Overview | 1763
- Hierarchical Policer Configuration Overview | 1680
- Basic Single-Rate Two-Color Policers | 1770
- Bandwidth Policers | 1795
- Filter-Specific Counters and Policers | 1807
- Prefix-Specific Counting and Policing Actions | 1822
- Multifield Classification | 1842
- Policer Overhead to Account for Rate Shaping in the Traffic Manager | 1866
- Hierarchical Policers | 1723
input-hierarchical-policer

Syntax

input-hierarchical-policer policer-name;

Hierarchy Level

[edit interfaces interface-name layer2-policer],
[edit interfaces interface-name unit logical-unit-number layer2-policer],

Release Information
Statement introduced in Junos OS Release 9.5.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Apply a hierarchical policer to the Layer 2 input traffic for all protocol families at the physical or logical interface.

Options
policer-name—Name of the hierarchical policer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Hierarchical Policers</th>
<th>1723</th>
</tr>
</thead>
<tbody>
<tr>
<td>layer2-policer (Hierarchical Policer)</td>
<td>2247</td>
</tr>
</tbody>
</table>
input-policer

Syntax

```
input-policer policer-name;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number layer2-policer]
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number layer2-policer]
```

Release Information

Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Apply a single-rate two-color policer to the Layer 2 input traffic at the logical interface. The `input-policer` and `input-three-color` statements are mutually exclusive.

Options

- **policer-name**—Name of the single-rate two-color policer that you define at the [edit firewall] hierarchy level.

Usage Guidelines

See *Applying Layer 2 Policers to Gigabit Ethernet Interfaces*.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- Two-Color and Three-Color Policers at Layer 2 | 1734
- Applying Layer 2 Policers to Gigabit Ethernet Interfaces
- Configuring Gigabit Ethernet Policers
 - input-three-color | 2243
 - layer2-policer | 2244
 - logical-interface-policer | 2250
 - output-policer | 2255
 - output-three-color | 2256
input-three-color

Syntax

input-three-color policer-name;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number layer2-policer]
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number layer2-policer]

Release Information

Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Apply a single-rate or two-rate three-color policer to the Layer 2 input traffic at the logical interface. The input-three-color and input-policer statements are mutually exclusive.

Options

policer-name—Name of the single-rate or two-rate three-color policer.

Usage Guidelines

See Applying Layer 2 Policers to Gigabit Ethernet Interfaces.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Two-Color and Three-Color Policers at Layer 2 | 1734 |
| Applying Layer 2 Policers to Gigabit Ethernet Interfaces |
| Configuring Gigabit Ethernet Policers |
input-policer	2242
layer2-policer	2244
logical-interface-policer	2250
output-policer	2255
output-three-color	2256
layer2-policer

Syntax

```plaintext
layer2-policer {
    input-policer policer-name;
    input-three-color policer-name;
    output-policer policer-name;
    output-three-color policer-name;
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number].

Release Information

Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For 1-Gigabit Ethernet and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces on M Series, MX Series, and T Series routers, and for aggregated Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces on EX Series switches, apply Layer 2 logical interface policers. The following policers are supported:

- Two-color
- Single-rate tricolor marking (srTCM)
- Two-rate tricolor marking (trTCM)

Two-color and tricolor policers are configured at the [edit firewall] hierarchy level.

Options

- **input-policer policer-name**—Two-color input policer to associate with the interface. This statement is mutually exclusive with the **input-three-color** statement.

- **input-three-color policer-name**—Tricolor input policer to associate with the interface. This statement is mutually exclusive with the **input-policer** statement.

- **output-policer policer-name**—Two-color output policer to associate with the interface. This statement is mutually exclusive with the **output-three-color** statement.

- **output-three-color policer-name**—Tricolor output policer to associate with the interface. This statement is mutually exclusive with the **output-policer** statement.
Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Applying Layer 2 Policers to Gigabit Ethernet Interfaces
- Configuring Gigabit Ethernet Two-Color and Tricolor Policers
layer2-policer

Syntax

layer2-policer {
 output-policer policer-name;
 output-three-color policer-name;
}

Hierarchy Level

[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced in Junos OS Release 11.1.

Description
Specify the output policers to be used in the dynamic profile.

Options
output-policer policer-name—Two-color output policer to associate with the interface. You define this policer at the [edit firewall policer] hierarchy level.

output-three-color policer-name—Tricolor output policer to associate with the interface. You define this policer at the [edit firewall] hierarchy level.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
- Applying the Policers to Dynamic Profile Interfaces | 1750
- Creating a Dynamic Profile for the Complex Configuration | 1755
layer2-policer (Hierarchical Policer)

Syntax

```
layer2-policer {
    input-hierarchical-policer policer-name
}
```

Hierarchy Level

```
[edit interfaces interface-name],
[edit interfaces interface-name unit logical-unit-number],
```

Release Information
Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Apply a hierarchical policer to the Layer 2 input traffic for all protocol families at the physical or logical interface. The following interfaces are supported:

- SONET interfaces hosted on M40e, M120, and M320 edge routers with incoming Flexible PIC Concentrators (FPCs) as SFPC and outgoing FPCs as FFPC
- Interfaces on MX Series, T320, T640, and T1600 core routers with Enhanced Intelligent Queuing (IQE) PICs

Options
The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Hierarchical Policers</th>
<th>1723</th>
</tr>
</thead>
<tbody>
<tr>
<td>input-hierarchical-police</td>
<td>2241</td>
</tr>
<tr>
<td>Two-Color and Three-Color Policers at Layer 2</td>
<td>1734</td>
</tr>
</tbody>
</table>
load-balance-group

Syntax

```
load-balance-group group-name {
    next-hop-group [ group-names ];
}
```

Hierarchy Level

```
[edit firewall]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure a load-balance group.

Options

`group-name`—Name of load-balance group.

`group-names`—Name of next-hop groups to include in the load-balance group set.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Load-Balance Groups in the Routing Policies, Firewall Filters, and Traffic Policers Feature Guide
logical-bandwidth-policer

Syntax

```plaintext
logical-bandwidth-policer;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall policer policer-name],
[edit firewall policer policer-name],
[edit logical-systems logical-system-name firewall policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... policer policer-name] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a policer with a bandwidth limit configured as a percentage (using the `bandwidth-percent` statement), specify that the percentage be based on the shaping rate defined on the logical interface, rather than on the media rate of the physical interface.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Bandwidth Policers</th>
<th>1795</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Policers Based on Logical Interface Bandwidth</td>
<td></td>
</tr>
<tr>
<td>bandwidth-percent</td>
<td>2203 statement</td>
</tr>
<tr>
<td>interface-specific</td>
<td>2147 statement</td>
</tr>
</tbody>
</table>
logical-interface-policer

Syntax

```plaintext
logical-interface-policer;
```

Hierarchy Level

```plaintext
[edit dynamic-profiles profile-name firewall policer policer-name],
[edit dynamic-profiles profile-name firewall three-color-policer name],
[edit firewall atm-policer atm-policer-name],
[edit firewall policer policer-name],
[edit firewall policer policer-template-name],
[edit firewall three-color-policer policer-name],
[edit logical-systems logical-system-name firewall policer policer-name],
[edit logical-systems logical-system-name firewall three-color-policer name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Support at the [edit firewall three-color-policer policer-name] hierarchy level introduced in Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... policer policer-name] and [edit dynamic-profiles ... three-color-policer name] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Support for PTX series routers with third-generation FPCs added in Junos OS Release 18.3R1.

Description

Configure a logical interface policer. For PTX series routers running Junos OS Release 18.3R1 or later, you can use this command to configure separate firewall filters for different family address types (IPv4 and IPv6) that share the same interface, and configure the same policer as an action for the filter.

To configure the aggregate policer, configure the firewall policer you want to use as logical-interface-policer. And at the firewall family family-name filter filter-name hierarchy level where you will reference the policer, make the policer an interface-specific firewall filter action.

The sample configuration shows the relationship.

```plaintext
firewall {
    policer Shared_Policer {
        logical-interface-policer;
        if-exceeding {
```

```plaintext
```
bandwidth-limit 100m;
burst-size-limit 500k;
}
then {
discard;
}

family inet {
 filter filter_name{
 interface-specific;
 term term_name {
 then {
 policer Shared_Policer;
 count cinet;
 }
 }
 }
}
loss-priority (Firewall Filter Action)

Syntax

```
loss-priority (high | low);
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name then],
[edit logical-systems logical-system-name firewall family family-name filter filter-name term term-name then]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Set the loss priority of incoming packets.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Nonterminating Actions | 795
- Policer Color-Marking and Actions | 1715
- Multifield Classification Overview | 1843
loss-priority high then discard (Three-Color Policer)

Syntax

```
loss-priority high then discard;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall three-color-policer name action],
[edit firewall three-color-policer policer-name action],
[edit logical-systems logical-system-name firewall three-color-policer policer-name action]
```

Release Information
Statement introduced before Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... action] hierarchy level introduced in Junos OS Release 11.4.

Description
For packets with high loss priority, discard the packets. The loss priority setting is implicit and is not configurable. Include this statement if you do not want the local router to forward packets that have high packet loss priority.

For single-rate three-color policers, the Junos OS assigns high loss priority to packets that exceed the committed information rate and the excess burst size.

For two-rate three-color policers, the Junos OS assigns high loss priority to packets that exceed the peak information rate and the peak burst size.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Link</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-Color Policer Configuration Overview</td>
<td>1877</td>
</tr>
<tr>
<td>Basic Single-Rate Three-Color Policers</td>
<td>1885</td>
</tr>
<tr>
<td>Basic Two-Rate Three-Color Policers</td>
<td>1893</td>
</tr>
<tr>
<td>Two-Color and Three-Color Logical Interface Policers</td>
<td>1911</td>
</tr>
<tr>
<td>Two-Color and Three-Color Physical Interface Policers</td>
<td>1928</td>
</tr>
<tr>
<td>Two-Color and Three-Color Policers at Layer 2</td>
<td>1734</td>
</tr>
</tbody>
</table>
loss-priority high then discard (Three-Color Policer)

Syntax

loss-priority high then discard;

Hierarchy Level

[edit firewall three-color-policer policer-name action]

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

For packets with high loss priority, discard the packets. The loss priority setting is not configurable. Include this statement if you do not want the switch to forward packets that have high packet-loss priority.

For single-rate three-color policers, Junos OS assigns high loss priority to packets that exceed the committed information rate and the excess burst size.

For two-rate three-color policers, Junos OS assigns high loss priority to packets that exceed the peak information rate and the peak burst size.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977 |
| Overview of Policers | 1940 |
output-policer

Syntax

```plaintext
output-policer policer-name;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number layer2-policer],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number layer2-policer]
```

Release Information

Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Apply a single-rate two-color policer to the Layer 2 output traffic at the logical interface. The `output-policer` and `output-three-color` statements are mutually exclusive.

Options

`policer-name`—Name of the single-rate two-color policer that you define at the `[edit firewall]` hierarchy level.

Required Privilege Level

`interface`—To view this statement in the configuration.
`interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Two-Color and Three-Color Policers at Layer 2 | 1734
- Applying Layer 2 Policers to Gigabit Ethernet Interfaces
- Configuring Gigabit Ethernet Policers
- `input-policer` | 2242
- `input-three-color` | 2243
- `layer2-policer` | 2244
- `logical-interface-policer` | 2250
- `output-three-color` | 2256
output-three-color

Syntax

```
output-three-color policer-name;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number layer2-policer]
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number layer2-policer]
```

Release Information

Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Apply a single-rate or two-rate three-color policer to the Layer 2 output traffic at the logical interface. The `output-three-color` and `output-policer` statements are mutually exclusive.

Options

`policer-name`—Name of the single-rate or two-rate three-color policer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Two-Color and Three-Color Policers at Layer 2 | 1734
- Applying Layer 2 Policers to Gigabit Ethernet Interfaces
- Configuring Gigabit Ethernet Policers
 - input-three-color | 2243
 - input-policer | 2242
 - layer2-policer | 2244
 - logical-interface-policer | 2250
 - output-policer | 2255
packet-burst (Policer)

Syntax

```
packet-burst packets;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall policer policer-name if-exceeding-pps],
[edit firewall policer policer-name if-exceeding-pps],
[edit logical-systems logical-system-name firewall policer policer-name if-exceeding-pps]
```

Release Information

Statement introduced in Junos OS Release 16.1 for MX Series routers with MPCs.

Description

For a single-rate two-color policer, configure the `packet-burst` as a number of packets. Single-rate two-color policing uses the single token bucket algorithm to measure traffic-flow conformance to a two-color policer rate limit.

Traffic at the interface that conforms to the pps-limit is categorized green. Traffic that exceeds the specified rate is also categorized as green provided that sufficient tokens remain in the single token bucket. Packets in a green flow are implicitly marked with low packet loss priority (PLP) and then passed through the interface.

Traffic that exceeds the specified rate when insufficient tokens remain in the single token bucket is categorized red. Depending on the configuration of the two-color policer, packets in a red traffic flow might be implicitly discarded; or the packets might be re-marked with a specified forwarding class, a specified PLP, or both, and then passed through the interface.

NOTE: This statement specifies the packet burst limit as an absolute number of packets.

Single-rate two-color policing allows bursts of traffic for short periods, whereas single-rate and two-rate three-color policing allows more sustained bursts of traffic.

Hierarchical policing is a form of two-color policing that applies different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority. You apply a hierarchical policer to ingress Layer 2 traffic to allows bursts of EF traffic for short period and bursts of non-EF traffic for short periods, with EF traffic always taking precedence over non-EF traffic.

Options
packets—Specify the number of packets either as a decimal number or as a decimal number followed by the abbreviation \(k \) (1000), or \(m \) (1000000).

Range: 1 through 24414062

Default: None

Required Privilege Level

- **firewall**—To view this statement in the configuration.
- **firewall-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Color Policer Configuration Overview</td>
<td>1763</td>
</tr>
<tr>
<td>Policer Bandwidth and Burst-Size Limits</td>
<td>1713</td>
</tr>
<tr>
<td>Policer Color-Marking and Actions</td>
<td>1715</td>
</tr>
<tr>
<td>Single Token Bucket Algorithm</td>
<td>1717</td>
</tr>
<tr>
<td>Determining Proper Burst Size for Traffic Policers</td>
<td>1662</td>
</tr>
<tr>
<td>bandwidth-percent</td>
<td>2203</td>
</tr>
<tr>
<td>burst-size-limit (Policer)</td>
<td>2209</td>
</tr>
</tbody>
</table>
packet-burst (Hierarchical Policer)

Syntax

```
packet-burst packets;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall hierarchical-policer hierarchical-policer-name aggregate if-exceeding-pps],
[edit dynamic-profiles profile-name firewall hierarchical-policer hierarchical-policer-name premium if-exceeding-pps],
[edit firewall hierarchical-policer hierarchical-policer-name aggregate if-exceeding-pps],
[edit firewall hierarchical-policer hierarchical-policer-name premium if-exceeding-pps]
```

Release Information

Statement introduced in Junos OS Release 16.1 for MX Series routers with MPCs.

Description

On MPCs hosted on MX Series routers, configure the packet burst limit for premium or aggregate traffic in a hierarchical policer. When used in combination with the `if-exceeding-pps` and `pps-limit` statements, you can control the number of packets that will be allowed over a configured packets-per-second limit when traffic is in burst state.

Options

- **packets**—Packet burst limit in packets. You can specify the number of packets either as a decimal number or as a decimal number followed by the abbreviation k (1000), or m (1000000).

 Range: 1 through 24414062

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Hierarchical Policer Configuration Overview	1680
Policer Color-Marking and Actions	1715
Single Token Bucket Algorithm	1717
Hierarchical Policers	1723
aggregate (Hierarchical Policer)	2195
bandwidth-limit (Hierarchical Policer)	2199
premium (Hierarchical Policer)	2286
eracl-ip6-match (packet-forwarding-options)

Syntax

```
eracl-ip6-match {
    (srcip6-and-destip6 | srcip6-only);
}
```

Hierarchy Level

```
[edit system packet-forwarding-options]
```

Release Information

Statement introduced in Junos OS Release 19.1 (EX4300 and QFX5100 Series switches only).

Description

Use the options of this command to allow source and/or destination IPv6 address match conditions for eRACL inet6 filters.

In Junos, firewall filters are classified as ingress or egress depending on where in the sequence the packet is evaluated and action taken. Filtering IPv6 traffic on an inet6 egress interface can be useful, for example, for safeguarding a third-party device connected to the Juniper switch.

NOTE: After configuring, modifying, or deleting the `eracl-ip6-match` statement, you must commit the configuration, and the packet forwarding engine (PFE) must be restarted.

Options

eracl-ip6-match— Configuring match conditions in a firewall filter for IPv6 source and/or destination IP addresses is only allowed if the `srcip6-and-destip6` or the `srcip6-only` options described below are enabled. The two options cannot both be enabled at the same time. If neither option is configured, the default behavior is to allow match condition to be created for IPv6 destination addresses on egress interfaces only.

Values:

- **srcip6-and-destip6**—Choose this option to allow both source and destination IPv6 address match conditions on inet6 interfaces in egress direction. The source and destination port match conditions are also allowed only with this option. Note that when this option is enabled, the scale of eRACLv6 is reduced by half.
- **srcip6-only**—Choosing this option allows the source IPv6 address match condition in eRACLv6 filters but not a destination address. Both source and destination port match conditions cannot be configured at the same time as this option is enabled (you will get a commit error).

Required Privilege Level
flow-tap

RELATED DOCUMENTATION

| Example: Configuring an Egress Filter Based on IPv6 Source or Destination IP Addresses | 1069 |
peak-burst-size

Syntax

peak-burst-size bytes;

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name two-rate],
[edit firewall three-color-policer policer-name two-rate]

Release Information

Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... two-rate] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a two-rate three-color policer, configure the peak burst size (PBS) as a number of bytes. The PBS defines the maximum number of bytes of unused peak bandwidth capacity that can be accumulated. The accumulated bandwidth allows for moderate periods of bursting traffic that exceeds the peak information rate (PIR) and the committed burst size (CBS).

NOTE: When you include the peak-burst-size statement in the configuration, you must also include the committed-burst-size and peak-information-rate statements at the same hierarchy level.

Two-rate three-color policers use a dual-rate dual token bucket algorithm to measure traffic against two rate limits.

- A traffic flow is categorized green if it conforms to both the committed information rate (CIR) and the CBS-bounded accumulation of available committed bandwidth capacity.

- A traffic flow is categorized yellow if exceeds the CIR and CBS but conforms to the PIR. Packets in a yellow flow are marked with medium-high packet loss priority (PLP) and then passed through the interface.

- A traffic flow is categorized red if exceeds the PIR and the PBS-bounded accumulation of available peak bandwidth capacity. Packets in a red traffic flow are marked with high PLP and then either passed through the interface or optionally discarded.

Options

bytes—Number of bytes. You can specify a value in bytes either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).
Range: 1500 through 100,000,000,000 bytes

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Three-Color Policer Configuration Overview	1877
Policer Bandwidth and Burst-Size Limits	1713
Policer Color-Marking and Actions	1715
Dual Token Bucket Algorithms	1719
Determining Proper Burst Size for Traffic Policers	1662
committed-burst-size	2217
committed-information-rate	2221
excess-burst-size	2225
peak-information-rate	2266
peak-burst-size

Syntax

peak-burst-size bytes;

Hierarchy Level

[edit firewall three-color-policer policer-name two-rate]

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure the maximum number of bytes allowed for incoming packets to burst above the peak information rate (PIR) and still be marked with medium-high packet loss priority (yellow). Packets that exceed the peak burst size (PBS) are marked with high packet loss priority (red).

NOTE: When you include the `peak-burst-size` statement in the configuration, you must also include the `committed-burst-size` and `peak-information-rate` statements at the same hierarchy level.

Options

- **bytes**—Number of bytes. You can specify a value in bytes either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 1500 bytes through 100,000,000,000 bytes (100 GB)

Required Privilege Level

- `firewall`—To view this statement in the configuration.
- `firewall-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
peak-information-rate

Syntax

```
peak-information-rate bits-per-second;
```

Hierarchy Level

```
[edit firewall three-color-policer policer-name two-rate]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure the maximum achievable rate. Packets that exceed the committed information rate (CIR) but are below the peak information rate (PIR) are marked with medium-high packet loss priority (yellow). Packets that exceed the PIR are marked with high packet loss priority (red). You can configure a discard action for packets that exceed the PIR.

NOTE: When you include the `peak-information-rate` statement in the configuration, you must also include the `committed-information-rate` and `peak-burst-size` statements at the same hierarchy level.

Options

bits-per-second—Number of bits per second. You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation `k` (1000), `m` (1,000,000), or `g` (1,000,000,000).

Range: 32,000 bps through 10,000,000,000 bps (10 gbps)

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Overview of Policers | 1940
peak-information-rate

Syntax

```
peak-information-rate bps;
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall three-color-policer name two-rate],
[edit firewall three-color-policer policer-name two-rate]
```

Release Information

Statement introduced in Junos OS Release 7.4.
Support at the [edit dynamic-profiles ... two-rate] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For a two-rate three-color policer, configure the peak information rate (PIR) as a number of bits per second. The PIR is the maximum rate for traffic arriving at or departing from the interface under peak line conditions. Traffic that exceeds the committed information rate (CIR) and the committed burst size (CBS) is metered to the PIR.

NOTE: When you include the `peak-information-rate` statement in the configuration, you must also include the `committed-information-rate` and `peak-burst-size` statements at the same hierarchy level.

Two-rate three-color policers use a **dual-rate dual token bucket algorithm** to measure traffic against two rate limits.

- A traffic flow is categorized green if it conforms to both the CIR and the CBS-bounded accumulation of available committed bandwidth capacity.

- A traffic flow is categorized yellow if exceeds the CIR and CBS but conforms to the PIR. Packets in a yellow flow are marked with medium-high packet loss priority (PLP) and then passed through the interface.

- A traffic flow is categorized red if exceeds the PIR and the PBS-bounded accumulation of available peak bandwidth capacity. Packets in a red traffic flow are marked with high PLP and then either passed through the interface or optionally discarded.

Options
bps—Number of bits per second. You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range:
- 1500 through 100,000,000,000 bps on EX, M, and T Series routers
- 1500 through 18,446,744,073,709,551,615 bps on Mx Series routers

Required Privilege Level
- firewall—for viewing this statement in the configuration.
- firewall-control—for adding this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-Color Policier Configuration Overview</td>
<td>1877</td>
</tr>
<tr>
<td>Policer Bandwidth and Burst-Size Limits</td>
<td>1713</td>
</tr>
<tr>
<td>Policer Color-Marking and Actions</td>
<td>1715</td>
</tr>
<tr>
<td>Dual Token Bucket Algorithms</td>
<td>1719</td>
</tr>
<tr>
<td>Determining Proper Burst Size for Traffic Policers</td>
<td>1662</td>
</tr>
<tr>
<td>committed-burst-size</td>
<td>2217</td>
</tr>
<tr>
<td>committed-information-rate</td>
<td>2221</td>
</tr>
<tr>
<td>excess-burst-size</td>
<td>2225</td>
</tr>
<tr>
<td>peak-burst-size</td>
<td>2262</td>
</tr>
</tbody>
</table>
physical-interface-filter

Syntax

physical-interface-filter;

Hierarchy Level

[edit firewall family family-name filter filter-name],
[edit logical-systems logical-system-name firewall family family-name filter filter-name],
[edit routing-instances routing-instance-name firewall family family-name filter filter-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name firewall family family-name filter filter-name]

Release Information

Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Support for PTX series routers with third-generation FPCs added in Junos OS Release 18.3R1.

Description

Configure a physical interface filter. Use this statement to reference a physical interface policer for the specified protocol family.

For PTX series routers running Junos OS Release 18.3R1 or later, you can use this command to configure separate firewall filters for different family address types (IPv4 and IPv6) that share the same interface, and configure the same policer as an action for the filter.

To use the aggregate policer, configure the firewall policer you want as physical-interface-policer. In addition, at the firewall family family-name filter filter-name hierarchy level where you will reference the policer, make the policer a physical-interface-specific firewall filter action. This creates a unique instance of the filter on the physical interface.

The sample configuration shows the settings and relationship between them.

```plaintext
firewall {
    policer Shared_Policer {
        physical-interface-policer;
        if-exceeding {
            bandwidth-limit 100m;
            burst-size-limit 500k;
        }
        then {
            discard;
        }
    }
}
```
firewall {
 filter Filter_Name {
 physical-interface-specific;
 term term_name {
 then {
 policer Shared_Policer;
 count cinet;
 }
 }
 }
}

family inet {
 filter filter_name {
 physical-interface-filter;
 term term_name {
 then {
 policer Shared_Policer;
 count cinet;
 }
 }
 }
}

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Two-Color and Three-Color Physical Interface Policers</th>
<th>1928</th>
</tr>
</thead>
<tbody>
<tr>
<td>physical-interface-policer</td>
<td>2270</td>
</tr>
<tr>
<td>policer (Configuring)</td>
<td>2276</td>
</tr>
</tbody>
</table>
physical-interface-policer

Syntax

physical-interface-policer;

Hierarchy Level

[edit dynamic-profiles profile-name firewall policer policer-name],
[edit firewall policer policer-name],
[edit firewall three-color-policer policer-name],
[edit logical-system logical-system-name firewall policer policer-name],
[edit logical-system logical-system-name three-color-policer policer-name],
[edit routing-instances routing-instance-name firewall policer policer-name],
[edit routing-instances routing-instance-name firewall three-color-policer policer-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name firewall policer policer-name],
[edit logical-systems logical-system-name routing-instances routing-instance-name firewall three-color-policer policer-name]

Release Information

Support at the [edit dynamic-profiles ... policer policer-name] hierarchy level introduced in Junos Release OS 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.
Support for PTX series routers with third-generation FPCs added in Junos OS Release 18.3R1.

Description

Configure an aggregate policer for a physical interface.

A physical interface policer can be a two-color or three-color policer. When you apply physical interface policer, to different protocol families on the same logical interface, the protocol families share the same policer instance. This means that rate limiting is performed in aggregate for the protocol families for which the policer is applied. This feature enables you to use a single policer instance to perform aggregate policing for different protocol families on the same physical interface. If you want a policer instance to be associated with a protocol family, the corresponding physical interface filter needs to be applied to that protocol family. The policer is not automatically applied to all protocol families configured on the physical interface.

In contrast, with logical interface policers there are multiple separate policer instances.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Two-Color and Three-Color Physical Interface Policers</th>
<th>1928</th>
</tr>
</thead>
<tbody>
<tr>
<td>physical-interface-filter</td>
<td>2268</td>
</tr>
</tbody>
</table>
policer

Syntax

```bash
policer policer-name {
  filter-specific;
  if-exceeding {
    bandwidth-limit bps;
    burst-size-limit bytes;
  }
  then {
    policer-action;
  }
}
```

Hierarchy Level

```
[edit firewall]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure policer rate limits and actions. To activate a policer, you must include the `policer` action modifier in the `then` statement in a firewall filter term.

Each policer that you configure includes an implicit counter that counts the number of packets that exceed the rate limits that are specified for the policer. If you use the same policer in multiple terms—either within the same filter or across filters—the policer’s implicit counter is used to count packets that are policed in all of these terms. If you want to obtain separate packet counts for each term, use these approaches:

- Configure a unique policer for each term.
- Configure only one policer, but use a unique, explicit counter in each term.

Options

`policer-name`—Name that identifies the policer. The name can contain letters, numbers, hyphens (-), and can be up to 64 characters long.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Configuring Firewall Filters | 1601
- Overview of Policers | 1940
policer (Applying to a Logical Interface)

Syntax

```markdown
policer {
  input policer-name;
  output policer-name;
}
```

Hierarchy Level

```markdown
[edit interfaces interface-name unit unit-number],
[edit interfaces interface-name unit unit-number family family],
[edit logical-systems logical-system-name interfaces interface-name unit unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit unit-number family family]
```

Description

Apply a single-rate two-color policer—except for a physical interface policer—to Layer 3 input or output traffic at a logical interface.

- To rate-limit all traffic types, regardless of the protocol family, you can apply a logical interface policer at the logical unit level of a supported interface.
- To rate-limit traffic of a specific protocol family, you can apply a basic two-color policer, a bandwidth policer, or a logical interface policer at the protocol family level of a supported interface.

NOTE: You cannot apply a physical interface policer as part of the interface configuration. You can apply a physical interface policer by referencing the policer from a physical interface filter term.

Options

- **input policer-name**—Name of one policer to evaluate packets received on the interface.
- **output policer-name**—Name of one policer to evaluate packets transmitted on the interface.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION
policer (Configuring)

Syntax

```plaintext
policer policer-name {
  filter-specific;
  if-exceeding {
    bandwidth-limit bps;
    bandwidth-percent number;
    burst-size-limit bytes;
  }
  logical-bandwidth-policer;
  logical-interface-policer;
  physical-interface-policer;
  shared-bandwidth-policer;
  then {
    policer-action;
  }
}
```

Hierarchy Level

- [edit dynamic-profiles profile-name firewall],
- [edit firewall],
- [edit logical-systems logical-system-name firewall]

Release Information

Statement introduced before Junos OS Release 7.4.
The out-of-profile policer action added in Junos OS Release 8.1.
The logical-bandwidth-policer statement added in Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
The shared-bandwidth-policer statement added in Junos OS Release 11.2.
Support at the [edit dynamic-profiles ... firewall] hierarchy level introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure policer rate limits and actions. When included at the [edit firewall] hierarchy level, the policer statement creates a template, and you do not have to configure a policer individually for every firewall filter or interface. To activate a policer, you must include the policer-action modifier in the then statement in a firewall filter term or on an interface.
You can configure the policer in static firewall filters or dynamic firewall filters in a dynamic client profile or a dynamic service profile.

Options

policer-action—One or more actions to take:

- **discard**—Discard traffic that exceeds the rate limits.
- **forwarding-class class-name**—Specify the particular forwarding class.
- **loss-priority**—Set the packet loss priority (PLP) to *low*, *medium-low*, *medium-high*, or *high*.

policer-name—Name that identifies the policer. The name can contain letters, numbers, and hyphens (-), and can be up to 255 characters long. To include spaces in the name, enclose it in quotation marks (" "). Policer names cannot begin with an underscore in the form _.*.

then—Actions to take on matching packets.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

- **firewall**—To view this statement in the configuration.
- **firewall-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Bandwidth Policer Overview</th>
<th>1795</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Firewall Filters and Policers for VPLS</td>
<td></td>
</tr>
<tr>
<td>Configuring Multifield Classifiers</td>
<td></td>
</tr>
<tr>
<td>Logical Interface (Aggregate) Policer Overview</td>
<td>1911</td>
</tr>
<tr>
<td>Physical Interface Policer Overview</td>
<td>1928</td>
</tr>
<tr>
<td>Single-Rate Two-Color Policer Overview</td>
<td>1770</td>
</tr>
<tr>
<td>Using Multifield Classifiers to Set Packet Loss Priority</td>
<td></td>
</tr>
<tr>
<td>filter (Configuring)</td>
<td>2117</td>
</tr>
<tr>
<td>priority (Schedulers)</td>
<td></td>
</tr>
</tbody>
</table>
policer (Firewall Filter Action)

Syntax

```
policer policer-name;
```

Hierarchy Level

```
[edit firewall family family-name filter filter-name term term-name then],
[edit logical-systems logical-system-name firewall family family-name filter filter-name term term-name then]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

For T Series routers and M320 routers with Enhanced II Flexible PIC Concentrators (FPCs) and the T640 Core Router with Enhanced Scaling FPC4, apply a tricolor marking policer.

Options

```
policer-name—Name of a single-rate two-color policer to use to rate-limit traffic.
```

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Firewall Filter Nonterminating Actions | 795
- Two-Color Policier Configuration Overview | 1763
policer-overhead-adjustment

Syntax

```
interfaces interface-name
    unit unit-number
    policer-overhead <ingress | egress> <adjustment in-bytes>
    policer-overhead <adjustment in-bytes>
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number]
```

Release Information

Description

Add the configured number of bytes to the length of a packet entering the interface or leaving the interface. The policer overhead adjustment at per IFL or direction granularity is in the range of -64 bytes to +64 bytes.

```
NOTE: If you configure the policer-overhead adjustment statement without the ingress or egress option and only with values in the supported range, it is considered for both ingress and egress.

For example: set interfaces xe-1/0/1 policer-overhead <value>
```

Options

- **adjustment-in-bytes**—Policer overhead bytes to be accounted in ingress and egress. Number of bytes used to adjust the length of a packet used for policing purposes entering an interface and leaving an interface.

Range: -64 to +64 bytes

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration

RELATED DOCUMENTATION

- [Accounting of the Policer Overhead Attribute at the Interface Level](#) | 15
- [Configuring the Accounting of Policer Overhead in Interface Statistics](#) | 18
pps-limit (Hierarchical Policer)

Syntax

```plaintext
pps-limit pps;
```

Hierarchy Level

```plaintext
[edit dynamic-profiles profile-name firewall hierarchical-policer hierarchical-policer-name aggregate if-exceeding],
[edit dynamic-profiles profile-name firewall hierarchical-policer hierarchical-policer-name premium if-exceeding],
[edit firewall hierarchical-policer hierarchical-policer-name aggregate if-exceeding],
[edit firewall hierarchical-policer hierarchical-policer-name premium if-exceeding]
```

Release Information

Statement introduced in Junos OS Release 16.1 for MX Series routers with MPCs.

Description

Configure the maximum bandwidth in packets per second (pps) for premium or aggregate traffic in a hierarchical policer.

Hierarchical policing is a form of two-color policing that applies different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority. You apply a hierarchical policer to ingress Layer 2 traffic to allow bursts of EF traffic for short periods and bursts of non-EF traffic for short periods, with EF traffic always taking precedence over non-EF traffic.

Options

- `pps`—Specify the number of packets per second either as a decimal number or as a decimal number followed by the abbreviation k (1000), or m (1000000).

Range: 2 through 24414062

Default: None

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Hierarchical Policer Configuration Overview</th>
<th>1680</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policer Bandwidth and Burst-Size Limits</td>
<td>1713</td>
</tr>
<tr>
<td>Policer Color-Marking and Actions</td>
<td>1715</td>
</tr>
<tr>
<td>Single Token Bucket Algorithm</td>
<td>1717</td>
</tr>
<tr>
<td>Determining Proper Burst Size for Traffic Policers</td>
<td>1662</td>
</tr>
<tr>
<td>aggregate (Hierarchical Policer)</td>
<td>2195</td>
</tr>
<tr>
<td>burst-size-limit (Hierarchical Policer)</td>
<td>2207</td>
</tr>
<tr>
<td>premium (Hierarchical Policer)</td>
<td>2286</td>
</tr>
</tbody>
</table>
pps-limit (Policer)

Syntax

pps-limit pps;

Hierarchy Level

[edit dynamic-profiles profile-name firewall policer policer-name if-exceeding-pps],
[edit firewall policer policer-name if-exceeding-pps],
[edit logical-systems logical-system-name firewallpolicer policer-name if-exceeding-pps]

Release Information

Statement introduced in Junos OS Release 16.1 for MX Series routers with MPCs.

Description

For a single-rate two-color policer, configure the packets-per-second (pps) limit as a number of packets per second. Single-rate two-color policing uses the single token bucket algorithm to measure traffic-flow conformance to a two-color policer rate limit.

Traffic at the interface that conforms to the pps limit is categorized green. Traffic that exceeds the specified rate is also categorized as green provided that sufficient tokens remain in the single token bucket. Packets in a green flow are implicitly marked with low packet loss priority (PLP) and then passed through the interface.

Traffic that exceeds the specified rate when insufficient tokens remain in the single token bucket is categorized red. Depending on the configuration of the two-color policer, packets in a red traffic flow might be implicitly discarded; or the packets might be re-marked with a specified forwarding class, a specified PLP, or both, and then passed through the interface.

NOTE: This statement specifies the pps limit as an absolute number of packets per second. You cannot use the pps limit as a percentage of interface bandwidth.

Single-rate two-color policing allows bursts of traffic for short periods, whereas single-rate and two-rate three-color policing allow more sustained bursts of traffic.

Hierarchical policing is a form of two-color policing that applies different policing actions based on whether the packets are classified for expedited forwarding (EF) or for a lower priority. You apply a hierarchical policer to ingress Layer 2 traffic to allow bursts of EF traffic for short periods and bursts of non-EF traffic for short periods, with EF traffic always taking precedence over non-EF traffic.

Options
pps—Specify the number of packets per second either as a decimal number or as a decimal number followed by the abbreviation k (1000), or m (1000000).

Range: 2 through 24414062
Default: None

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Two-Color Policer Configuration Overview	1763
Policer Bandwidth and Burst-Size Limits	1713
Policer Color-Marking and Actions	1715
Single Token Bucket Algorithm	1717
Determining Proper Burst Size for Traffic Policers	1662
bandwidth-percent	2203
burst-size-limit (Policer)	2209
prefix-action (Configuring)

Syntax

```
prefix-action prefix-action-name {
    count;
    destination-prefix-length prefix-length;
    filter-specific;
    policer policer-name;
    source-prefix-length prefix-length;
    subnet-prefix-length prefix-length;
}
```

Hierarchy Level

```
[edit firewall family inet],
[edit logical-systems logical-system-name firewall family inet]
```

Release Information
Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Configure a prefix-specific action.

Options
```
count—Enable counter.

destination-prefix-length prefix-length—Destination prefix length.
Range: 0 through 32
```
```
filter-specific—Create the prefix-specific set of policers and counters as a filter-specific set. If this option is not specified, the prefix-specific set of policers and counters are created as term-specific.
```
```
policer policer-name—Policer name.
```
```
source-prefix-length prefix-length—Source prefix length.
Range: 0 through 32
```
```
subnet-prefix-length prefix-length—Subnet prefix length.
Range: 0 through 32
```

Required Privilege Level
prefix-action (Firewall Filter Action)

Syntax

```
prefix-action prefix-action-name;
```

Hierarchy Level

```
[edit firewall family inet filter filter-name term term-name then],
[edit logical-systems logical-system-name firewall family inet filter filter-name term term-name then]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Reference a prefix-specific action.

Options

```
prefix-action-name—Name of a prefix-specific action to use to rate-limit traffic.
```

RELATED DOCUMENTATION

- Firewall Filter Nonterminating Actions | 795
- Prefix-Specific Counting and Policing Actions | 1822
premium (Hierarchical Policer)

Syntax

```plaintext
premium {
  if-exceeding {
    bandwidth-limit bandwidth;
    burst-size-limit burst;
  }
  then {
    discard;
  }
}
```

Hierarchy Level

- [edit dynamic-profiles profile-name firewall hierarchical-policer],
- [edit firewall hierarchical-policer]

Release Information

Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles ... hierarchical-policer name] hierarchy level introduced in Junos OS Release 11.4.

Description

On M40e, M120, and M320 edge routers with FPC input as FFPC and FPC output as SFPC, and on MX Series, T320, T640, and T1600 edge routers with Enhanced Intelligent Queuing (IQE) PICs, T4000 routers with Type 5 FPC and Enhanced Scaling Type 4 FPC, specify a premium level for a hierarchical policer.

Options

Options are described separately.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Applying Policers
- Guidelines for Applying Traffic Policers | 1683
| Hierarchical Policer Configuration Overview | 1680 |
| Hierarchical Policers | 1723 |
| aggregate (Hierarchical Policer) | 2195 |
| bandwidth-limit (Hierarchical Policer) | 2199 |
| burst-size-limit (Hierarchical Policer) | 2207 |
| hierarchical-policer | 2137 |
| if-exceeding (Hierarchical Policer) | 2236 |
profile-variable-set (Dynamic Profiles)

Syntax

```
profile-variable-set {
    variable-set-name {
        junos-layer2-output-policer policer-name;
    }
}
```

Hierarchy Level

```
[edit dynamic-profiles profile-name]
```

Release Information

Statement introduced in Junos OS Release 11.1.

Description

Specify the policer used in the variable set.

Options

junos-layer2-output-policer policer-name—Layer 2 policer that you want to substitute in the dynamic profile. You define this policer at the [edit firewall policer] hierarchy level.

Required Privilege Level

routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Applying the Policers to Dynamic Profile Interfaces | 1750
- Creating a Dynamic Profile for the Complex Configuration | 1755
profile-variable-set (Routing Instances)

Syntax

```
profile-variable-set variable-set-name
```

Hierarchy Level

```
[edit routing-instances routing-instance-name protocols vpls associate-profile]
```

Release Information

Statement introduced in Junos OS Release 11.1.

Description

Specify the variable set to apply to the dynamic profile for the routing instance.

Options

`variable-set-name`—Name of the variable set to use when this dynamic profile is applied to the routing instance. You define this variable set at the `[edit dynamic-profiles profile-name]` hierarchy level.

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Attaching Dynamic Profiles to Routing Instances for the Complex Configuration | 1756
shared-bandwidth-policer (Configuring)

Syntax

```
shared-bandwidth-policer;
```

Hierarchy Level

```
[edit firewall]
[edit firewall policer policer-name],
[edit firewall three-color-policer policer-name],
[edit firewall hierarchical-policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 11.2.
Support for MX Series MPC and MIC interfaces added in Junos OS Release 12.1.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Policer instances share bandwidth. This enables configuration of interface-specific policers applied on an aggregated Ethernet bundle or an aggregated SONET bundle to match the effective bandwidth and burst-size to user-configured values. This feature is supported on the following platforms: T Series routers, M120, M10i, M7i (CFEB-E only), M320 (SFPC only), MX240, MX480, and MX960 with DPC, MIC, and MPC interfaces and EX Series switches.

NOTE: This statement is not supported on T4000 Type 5 FPCs.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Policer Support for Aggregated Ethernet Interfaces Overview | 1684 |
single-rate

Syntax

```
single-rate {
  (color-aware | color-blind);
  committed-information-rate bps;
  committed-burst-size bytes;
  excess-burst-size bytes;
}
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall three-color-policer name],
[edit firewall three-color-policer policer-name],
[edit logical-systems logical-system-name firewall three-color-policer policer-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... three-color-policer name] hierarchy level introduced in Junos OS Release 11.4.

Description

Configure a single-rate three-color policer in which marking is based on the committed information rate (CIR), committed burst size (CBS), and excess burst size (EBS).

Packets that conform to the CIR or the CBS are assigned low loss priority (green). Packets that exceed the CIR and the CBS but are within the EBS are assigned medium-high loss priority (yellow). Packets that exceed the EBS are assigned high loss priority (red).

Green and yellow packets are always forwarded; this action is not configurable. You can configure red packets to be discarded. By default, red packets are forwarded.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION
<table>
<thead>
<tr>
<th>Three-Color Policer Configuration Overview</th>
<th>1877</th>
</tr>
</thead>
<tbody>
<tr>
<td>color-aware</td>
<td>2211</td>
</tr>
<tr>
<td>color-blind</td>
<td>2215</td>
</tr>
<tr>
<td>two-rate</td>
<td>2299</td>
</tr>
</tbody>
</table>
single-rate

Syntax

```
single-rate {
  (color-aware | color-blind);
  committed-information-rate bps;
  committed-burst-size bytes;
  excess-burst-size bytes;
}
```

Hierarchy Level

```
[edit firewall three-color-policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure a single-rate three-color policer in which marking is based on the committed information rate (CIR), committed burst size (CBS), and excess burst size (EBS).

Packets that conform to the CIR or the CBS are assigned low loss priority (green). Packets that exceed the CIR and the CBS but are within the EBS are assigned medium-high loss priority (yellow). Packets that exceed the EBS are assigned high loss priority (red).

Green and yellow packets are always forwarded; this action is not configurable. You can configure red packets to be discarded. By default, red packets are forwarded.

The remaining statements are explained separately. See CLI Explorer.

Options

`policer-name`—Name of the three-color policer. Use this name when you apply the policer to an interface.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977 |
| Overview of Policers | 1940 |
three-color-policer (Configuring)

Syntax

three-color-policer policer-name {
 action {
 loss-priority high then discard ;
 }
 single-rate {
 (color-aware | color-blind);
 committed-burst-size bytes;
 committed-information-rate bps;
 excess-burst-size bytes;
 }
 two-rate {
 (color-aware | color-blind);
 committed-burst-size bytes;
 committed-information-rate bps;
 peak-burst-size bytes;
 peak-information-rate bps;
 }
}

Hierarchy Level

[edit firewall]

Release Information
Statement introduced in Junos OS Release 11.2 for EX Series switches.

Description
Configure a three-color policer.

Options

policer-name—Name of the three-color policer. Reference this name when you apply the policer to an interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
RELATED DOCUMENTATION

- Configuring Tricolor Marking Policers | 1960
three-color-policer (Applying)

Syntax

three-color-policer {
 (single-rate | two-rate) policer-name;
}

Hierarchy Level

[edit firewall family family-name filter filter-name term term-name then]
[edit logical-systems logical-system-name firewall family family-name filter filter-name term term-name then]

Release Information
Statement introduced in Junos OS Release 7.4.
single-rate statement added in Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description
Apply a tricolor marking policer.

Options

single-rate—Named tricolor policer is a single-rate policer.

two-rate—Named tricolor policer is a two-rate policer.

policer-name—Name of a tricolor policer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring and Applying Tricolor Marking Policers
Firewall Filter Nonterminating Actions | 795
Three-Color Policer Configuration Overview | 1877
three-color-policer (Configuring)

Syntax

```
three-color-policer policer-name | uid {
  action {
    loss-priority high then discard;
  }
  filter-specific;
  logical-interface-policer;
  physical-interface-policer;
  shared-bandwidth-policer;
  single-rate {
    (color-aware | color-blind);
    committed-burst-size bytes;
    committed-information-rate bps;
    excess-burst-size bytes;
  }
  two-rate {
    (color-aware | color-blind);
    committed-burst-size bytes;
    committed-information-rate bps;
    peak-burst-size bytes;
    peak-information-rate bps;
  }
}
```

Hierarchy Level

```
[edit dynamic-profiles profile-name firewall],
[edit firewall],
[edit logical-systems logical-system-name firewall]
```

Release Information

Statement introduced before Junos OS Release 7.4.
The action and single-rate statements added in Junos OS Release 8.2.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... firewall] hierarchy level introduced in Junos OS Release 11.4.

Description

Configure a three-color policer in static firewall filters or dynamic firewall filters in a dynamic client profile or a dynamic service profile.

Options
policer-name—Name of the three-color policer. Reference this name when you apply the policer to an interface.

uid—When you configure a policer at the [edit dynamic-profiles] hierarchy level, you must assign a variable UID as the policer name.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

- **firewall**—To view this statement in the configuration.
- **firewall-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- *Configuring and Applying Tricolor Marking Policers*
 - Three-Color Policer Configuration Guidelines | 1881
 - Basic Single-Rate Three-Color Policers | 1885
 - Basic Two-Rate Three-Color Policers | 1893
 - Two-Color and Three-Color Logical Interface Policers | 1911
 - Two-Color and Three-Color Physical Interface Policers | 1928
 - Two-Color and Three-Color Policers at Layer 2 | 1734
two-rate

Syntax

two-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 peak-information-rate bps;
 peak-burst-size bytes;
}

Hierarchy Level

[edit dynamic-profiles profile-name firewall three-color-policer name],
[edit firewall three-color-policer policer-name],
[edit logical-systems logical-system-name firewall three-color-policer policer-name]

Release Information

Statement introduced before Junos OS Release 7.4.
Logical systems support introduced in Junos OS Release 9.3.
Support at the [edit dynamic-profiles ... three-color-policer name] hierarchy levels introduced in Junos OS Release 11.4.
Statement introduced in Junos OS Release 12.3R2 for EX Series switches.

Description

Configure a two-rate three-color policer in which marking is based on the committed information rate (CIR), committed burst size (CBS), peak information rate (PIR), and peak burst size (PBS).

Packets that conform to the CIR or the CBS are assigned low loss priority (green). Packets that exceed the CIR and the CBS but are within the PIR or the PBS are assigned medium-high loss priority (yellow). Packets that exceed the PIR and the PBS are assigned high loss priority (red).

Green and yellow packets are always forwarded; this action is not configurable. You can configure red packets to be discarded. By default, red packets are forwarded.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Three-Color Policer Configuration Overview	1877
color-aware	2211
color-blind	2215
single-rate	2291
two-rate

Syntax

```plaintext
two-rate {
  (color-aware | color-blind);
  committed-information-rate bps;
  committed-burst-size bytes;
  peak-information-rate bps;
  peak-burst-size bytes;
}
```

Hierarchy Level

```plaintext
[edit firewall three-color-policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure a two-rate three-color policer in which marking is based on the committed information rate (CIR), committed burst size (CBS), peak information rate (PIR), and peak burst size (PBS).

Packets that conform to the CIR or the CBS are assigned low loss priority (green). Packets that exceed the CIR and the CBS but are within the PIR or the PBS are assigned medium-high loss priority (yellow). Packets that exceed the PIR and the PBS are assigned high loss priority (red).

Green and yellow packets are always forwarded; this action is not configurable. You can configure red packets to be discarded. By default, red packets are forwarded.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.
then (Policers)

Syntax

```
then {
    policer-action;
}
```

Hierarchy Level

```
[edit firewall policer policer-name]
```

Release Information

Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Configure a policer action.

Options

`policer-action`—Allowed policer actions are `discard`, `loss-priority high`, and `loss-priority low`. `discard` causes the system to drop traffic that exceeds the rate limits defined by the policer. Use `loss-priority high` to allow the system to forward matching traffic in some cases.

NOTE: If you specify a policer in an egress firewall filter, the only supported action is `discard`.

Required Privilege Level

firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two-Color and Three-Color Policers to Control Traffic Rates | 1977
- Configuring Firewall Filters | 1601
- Overview of Policers | 1940
three-color-policer

Syntax

three-color-policer policer-name {
 action {
 loss-priority high then discard;
 }
 single-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 excess-burst-size bytes;
 }
 two-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 peak-information-rate bps;
 peak-burst-size bytes;
 }
}

Hierarchy Level

[edit firewall],
[edit logical-systems logical-system-name firewall]

Release Information
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Configure a three-color policer.

Options
policer-name—Name of the three-color policer. Use this name when you apply the policer to an interface.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
firewall—To view this statement in the configuration.
firewall-control—To add this statement to the configuration.
5

PART

Operational Commands

Routing Policy Operational Commands | 2307
Firewall Filters Operational Commands | 2653
Traffic Policer Operational Commands | 2661
Routing Policy Operational Commands

IN THIS CHAPTER

- clear interfaces statistics | 2309
- clear policy statistics | 2311
- show accounting profile | 2312
- show interfaces destination-class | 2318
- show interfaces source-class | 2322
- show interfaces statistics | 2326
- show policy | 2343
- show policy conditions | 2347
- show policy damping | 2349
- show route | 2352
- show route active-path | 2381
- show route advertising-protocol | 2387
- show route all | 2394
- show route aspath-regex | 2397
- show route best | 2400
- show route brief | 2404
- show route community | 2406
- show route community-name | 2408
- show route damping | 2411
- show route detail | 2418
- show route exact | 2444
- show route export | 2447
- show route extensive | 2450
- show route flow validation | 2476
- show route forwarding-table | 2479
- show route hidden | 2503
- show route inactive-path | 2507
- show route inactive-prefix | 2512
show route instance | 2515
show route next-hop | 2525
show route no-community | 2533
show route output | 2537
show route protocol | 2543
show route receive-protocol | 2561
show route table | 2575
show route terse | 2631
show validation database | 2635
show validation group | 2638
show validation replication database | 2640
show validation session | 2643
show validation statistics | 2647
test policy | 2650
clear interfaces statistics

Syntax

```
clear interfaces statistics (all | interface-name)
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 19.2R1 for QSFP-100GE-DWDM2 transceiver on MX10003, MX10008, MX10016, and MX204 routers.

Description

Set interface statistics to zero. If you issue the `clear interfaces statistics interface-name` command and then perform a graceful Routing Engine switchover, the interface statistics are not cleared on the new master. Reissue the command to clear the interface statistics again.

Starting in Junos OS Release 17.3R1, this command supports the clearing of Packet Forwarding Engine accounting statistics on logical interfaces configured with accounting options. On these interfaces, the current statistics values are stored as the new current baseline values and then the counters are reset to zero. If the `allow-clear` statement is included in the interface profile, then the cleared statistics values are reported to the accounting options flat file associated with the interface. Reporting is disabled by default; if `allow-clear` is not configured, then the CLI displays cleared statistics counters, but they are not reported to the flat file.

Starting in Junos OS Release 19.1R1, this command supports the clearing of unicast Reverse Path Forwarding (RPF) statistics.

Options

- `all`—Set statistics on all interfaces to zero.
- `interface-name`—Set statistics on a particular interface to zero.

Required Privilege Level

clear

List of Sample Output

clear interfaces statistics on page 2310

Output Fields

When you enter this command, you are provided no feedback on the status of your request.
Sample Output

clear interfaces statistics

user@host> clear interfaces statistics
clear policy statistics

Syntax

clear policy statistics
<policy-name>

Release Information
Command introduced in Junos OS Release 15.1F6.

Description
Clear policy statistics.

Options
none—Clear statistics for all policies.

<policy-name>—(Optional) Clear statistics for the specified policy only.

Required Privilege Level
clear

RELATED DOCUMENTATION

| show policy | 2343 |
| test policy | 2650 |

List of Sample Output
clear policy statistics on page 2311

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output

clear policy statistics
user@host> clear policy statistics
show accounting profile

Syntax

```
show accounting profile profile-name
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display accounting profile information.

Options

`profile-name`—Name of the accounting profile.

Required Privilege Level

`view`

List of Sample Output

- `show accounting profile (Interface) on page 2315`
- `show accounting profile (Filter) on page 2316`
- `show accounting profile (Destination Class) on page 2316`
- `show accounting profile (Routing Engine) on page 2317`

Output Fields

Table 131 on page 2312 lists the output fields for the `show accounting profile` command. Output fields are listed in the approximate order in which they appear.

Table 131: show accounting profile Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>Name of the accounting profile.</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>Configured interval, in minutes, for statistic collection.</td>
</tr>
<tr>
<td>Profile Usage Count</td>
<td>Number of items configured for collecting accounting statistics.</td>
</tr>
</tbody>
</table>
Table 131: show accounting profile Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| **file information** | Information about the accounting profile log, including:
 - **File**—Name of accounting profile log. If no name is explicitly provided, the name of the accounting profile is used. All statistics files are placed in the `/var/log` directory.
 - **maximum size**—Configured size. When the size is exceeded, the log file closes and a new log file opens.
 - **maximum number**—Configured maximum number of log files.
 - **bytes written**—Number of bytes written to the log file. |
| **Transfer Interval** | Length of time (in minutes) the file remains open, receiving statistics before it is closed, transferred, and rotated. When either the time or the file size is exceeded, the file is closed and a new one opened, whether or not a transfer site is specified. |
| **Next Scheduled Transfer** | Time at which the next transfer occurs. |
Table 131: show accounting profile Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Labels</td>
<td>Names of sampled statistics. This list varies depending on the configuration:</td>
</tr>
<tr>
<td>names</td>
<td>- profile-layout—List of data fields reported, in the order they appear in the output.</td>
</tr>
<tr>
<td>of sampled</td>
<td>- epoch-timestamp—Number of seconds since the epoch.</td>
</tr>
<tr>
<td>statistics</td>
<td>- interfaces—(For interface, filter, and destination class profiles) Name of the interfaces on which the filter is applied.</td>
</tr>
<tr>
<td>which the filter</td>
<td>- filter-name—(For filter profiles) Name of the filter.</td>
</tr>
<tr>
<td>is applied</td>
<td>- counter-name—(For filter profiles) Name of the counter.</td>
</tr>
<tr>
<td></td>
<td>- packet-count—(For filter and destination class profiles) Number of packets for the counter.</td>
</tr>
<tr>
<td></td>
<td>- byte-count—(For filter and destination class profiles) Number of bytes for the counter.</td>
</tr>
<tr>
<td></td>
<td>- input-bytes—(For interface profiles) Input bytes.</td>
</tr>
<tr>
<td></td>
<td>- input-errors—(For interface profiles) Generic input error packets.</td>
</tr>
<tr>
<td></td>
<td>- input-multicast—(For interface profiles) Input packets arriving by multicast.</td>
</tr>
<tr>
<td></td>
<td>- input-packets—(For interface profiles) Input packets.</td>
</tr>
<tr>
<td></td>
<td>- input-unicast—(For interface profiles) Input unicast packets.</td>
</tr>
<tr>
<td></td>
<td>- output-bytes—(For interface profiles) Output bytes.</td>
</tr>
<tr>
<td></td>
<td>- output-errors—(For interface profiles) Generic output error packets.</td>
</tr>
<tr>
<td></td>
<td>- output-multicast—(For interface profiles) Output packets sent by multicast.</td>
</tr>
<tr>
<td></td>
<td>- output-packets—(For interface profiles) Output packets.</td>
</tr>
<tr>
<td></td>
<td>- output-unicast—(For interface profiles) Output unicast packets.</td>
</tr>
<tr>
<td></td>
<td>- no,proto—(For interface profiles) Packets for unsupported protocol.</td>
</tr>
<tr>
<td></td>
<td>- snmp-index—(For interface profiles) SNMP index.</td>
</tr>
<tr>
<td></td>
<td>- destination-class-name—(For destination class profiles) Configured destination class name.</td>
</tr>
<tr>
<td></td>
<td>- host name—(For Routing Engine profiles) Hostname for the router.</td>
</tr>
<tr>
<td></td>
<td>- date-yyyyymmd—(For Routing Engine profiles) Date.</td>
</tr>
<tr>
<td></td>
<td>- timeofday-hhmmss—(For Routing Engine profiles) Time of day.</td>
</tr>
<tr>
<td></td>
<td>- uptime—(For Routing Engine profiles) Time since the last reboot, in seconds.</td>
</tr>
<tr>
<td></td>
<td>- cpu1min—(For Routing Engine profiles) Average system load over the last 1 minute.</td>
</tr>
<tr>
<td></td>
<td>- cpu5min—(For Routing Engine profiles) Average system load over the last 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>- cpu15min—(For Routing Engine profiles) Average system load over the last 15 minutes.</td>
</tr>
<tr>
<td>Interface name</td>
<td>Name of the interface configured for this accounting profile.</td>
</tr>
<tr>
<td>Filter name</td>
<td>Name of the filter configured for this accounting profile.</td>
</tr>
<tr>
<td>routing-engine-stats</td>
<td>Routing Engine accounting profile.</td>
</tr>
</tbody>
</table>
Table 131: show accounting profile Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Scheduled</td>
<td>Time for next collection of statistics for the named interface.</td>
</tr>
<tr>
<td>Collection</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

show accounting profile (Interface)

user@host> show accounting profile if_prof

Profile if_prof
Sampling interval: 1 minute(s), Profile Usage Count: 2
File accounting_profile_stats: maximum size 1048576, maximum number 5, bytes written 2196
Transfer Interval: 15 minute(s), Next Scheduled Transfer: 2001-06-17-18:00:45
Column Labels:
 profile-layout
 epoch-timestamp
 interface-name
 snmp-index
 input-bytes
 output-bytes
 input-packets
 output-packets
 input-unicast
 output-unicast
 input-multicast
 output-multicast
 no,proto
 input-errors
 output-errors

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>Next Scheduled Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>fxp0.0</td>
<td>2001-06-18-18:00:30</td>
</tr>
<tr>
<td>fxp0</td>
<td>2001-06-18-18:01:00</td>
</tr>
</tbody>
</table>
show accounting profile (Filter)

user@host> show accounting profile filter_profile

Profile filter_profile
Sampling interval: 1 minute(s), Profile Usage Count: 0
File accounting_profile_stats: maximum size 1048576, maximum number 5, bytes written 822
Transfer Interval: 15 minute(s), Next Scheduled Transfer: 2001-06-17-18:00:46
Column Labels:
 profile-layout
 epoch-timestamp
 interfaces
 filter-name
 counter-name
 packet-count
 byte-count

Filter Name Next Scheduled Collection
myfiltero 2001-06-03-04:32:59

show accounting profile (Destination Class)

user@host> show accounting profile dcu1

Profile dcu1
Sampling interval: 1 minute(s), Profile Usage Count: 0
File accounting_profile_stats: maximum size 1048576, maximum number 5, bytes written 901
Transfer Interval: 15 minute(s), Next Scheduled Transfer: 2001-06-17-18:00:46
Column Labels:
 profile-layout
 epoch-timestamp
 interface-name
 destination-class-name
 packet-count
 byte-count

Interface Name Next Scheduled Collection
so-0/3/3 2001-06-03-04:34:00
show accounting profile (Routing Engine)

user@host> show accounting profile rep1

Profile rep1
Sampling interval: 1 minute(s), Profile Usage Count: 1
File accounting_profile_stats: maximum size 1048576, maximum number 5, bytes written 901
Transfer Interval: 15 minute(s), Next Scheduled Transfer: 2001-06-17-18:00:46

Column Labels:
 profile-layout
 epoch-timestamp
 hostname
 date-yyyymmdd
 timeofday-hhmmss
 uptime
 cpu1min
 cpu5min
 cpu15min

Interface Name Next Scheduled Collection
routing-engine-stats 2001-06-18-18:02:31
show interfaces destination-class

Syntax

show interfaces destination-class
(all | destination-class-name logical-interface-name)

Release Information
Command introduced before Junos OS Release 7.4.
all option introduced in Junos OS Release 8.0.

Description
Display information about interfaces grouped by destination class.

Options
all—Display information about all configured destination classes.

destination-class-name—Name of a logical grouping of prefixes that count packets having the destination address matching those prefixes. Whenever a destination class is specified, you must also specify a particular logical interface, not all interfaces.

logical interface-name—Name of a logical interface.

Additional Information
For interfaces that carry IPv4, IPv6, or Multiprotocol Label Switching (MPLS) traffic, you can maintain packet counts based on the entry and exit points for traffic passing through your network. Entry and exit points are identified by source and destination prefixes grouped into sets defined as source classes and destination classes. For more information, see the Junos OS Network Interfaces Library for Routing Devices.

Required Privilege Level
view

List of Sample Output
show interfaces destination-class all on page 2319

Output Fields
Table 132 on page 2318 lists the output fields for the show interfaces destination-class command. Output fields are listed in the approximate order in which they appear.

Table 132: show interfaces destination-class Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Destination class</td>
<td>Name of destination class usage (DCU) counters per class for this interface.</td>
</tr>
<tr>
<td>Packets</td>
<td>Packets going to designated user-selected prefixes.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Bytes going to designated user-selected prefixes.</td>
</tr>
</tbody>
</table>

Sample Output

```plaintext
show interfaces destination-class all

user@host> show interfaces destination-class all

Logical interface .local..1
Logical interface .local..2
Logical interface fxp0.0
Logical interface fxp1.0
Logical interface lo0.16384
Logical interface lo0.16385
Logical interface lo0.0
Logical interface .local..3
Logical interface .local..4
Logical interface .local..5
Logical interface .local..6
Logical interface .local..7
Logical interface .local..8
```
Logical interface .local..9

Logical interface .local..10

Logical interface lo0.3

Logical interface pfh-0/0/0.16383

Logical interface fe-0/1/0.0

| Protocol | | Packets | | Bytes |
|----------|------------------|------------------|
| Destination class | (packet-per-second) | (bits-per-second) |
| SILVER1 | 0 | 0 |
| | (0) | (0) |
| SILVER2 | 0 | 0 |
| | (0) | (0) |
| SILVER3 | 0 | 0 |
| | (0) | (0) |
| v4-dest | 0 | 0 |
| | (0) | (0) |

Logical interface fe-0/1/1.0

Logical interface fe-0/1/2.0

Description: CE1-to-PE2

Logical interface ge-0/3/0.0

Description: CE1-to-PE1

Logical interface ge-0/3/2.0

Description: CE2-to-PE1
Logical interface pc-0/3/0.16383

Logical interface lt-1/2/0.3
 Description: LS3->LS2

Logical interface lt-1/2/0.5
 Description: LS3->LS1

Logical interface sp-1/2/0.16383
show interfaces source-class

Syntax

```
show interfaces source-class
(all | destination-class-name logical-interface-name)
```

Release Information
Command introduced before Junos OS Release 7.4.
all option introduced in Junos OS Release 8.0.

Description
Display information about interfaces grouped by source class.

Options
all—Display information about all configured source classes.

source-class-name—Name of a logical grouping of prefixes that count packets having the source address matching those prefixes.

interface-name—Name of a logical interface.

Additional Information
For interfaces that carry IPv4, IPv6, or Multiprotocol Label Switching (MPLS) traffic, you can maintain packet counts based on the entry and exit points for traffic passing through your network. Entry and exit points are identified by source and destination prefixes grouped into sets defined as source classes and destination classes. For more information, see the Junos OS Network Interfaces Library for Routing Devices.

Required Privilege Level
view

List of Sample Output
show interfaces source-class all on page 2323

Output Fields
Table 133 on page 2322 lists the output fields for the show interfaces source-class command. Output fields are listed in the approximate order in which they appear.

Table 133: show interfaces source-class Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
</tr>
<tr>
<td>Source class</td>
<td>Source class usage (SCU) counters per class for this interface.</td>
</tr>
</tbody>
</table>
Table 133: show interfaces source-class Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>Packets going to designated user-selected prefixes.</td>
</tr>
<tr>
<td>Bytes</td>
<td>Bytes going to designated user-selected prefixes.</td>
</tr>
</tbody>
</table>

Sample Output

```bash
show interfaces source-class all

user@host>  show interfaces source-class all

Logical interface .local..1
Logical interface .local..2
Logical interface fxp0.0
Logical interface fxp1.0
Logical interface lo0.16384
Logical interface lo0.16385
Logical interface lo0.0
Logical interface .local..3
Logical interface .local..4
Logical interface .local..5
Logical interface .local..6
Logical interface .local..7
Logical interface .local..8
Logical interface .local..9
Logical interface .local..10
```
Logical interface lo0.3

Logical interface pfh-0/0/0.16383

Logical interface fe-0/1/0.0

Logical interface fe-0/1/1.0

Protocol inet

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>GOLD2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>GOLD3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>v4-src</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Protocol inet6

<table>
<thead>
<tr>
<th>Source class</th>
<th>Packets (packet-per-second)</th>
<th>Bytes (bits-per-second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOLD1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>GOLD2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>GOLD3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>v4-src</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Logical interface fe-0/1/2.0

Description: CE1-to-PE2

Logical interface ge-0/3/0.0

Description: CE1-to-PE1

Logical interface ge-0/3/2.0

Description: CE2-to-PE1

Logical interface pc-0/3/0.16383
<table>
<thead>
<tr>
<th>Logical interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt-1/2/0.3</td>
<td>LS3→LS2</td>
</tr>
<tr>
<td>lt-1/2/0.5</td>
<td>LS3→LS1</td>
</tr>
<tr>
<td>sp-1/2/0.16383</td>
<td></td>
</tr>
</tbody>
</table>
show interfaces statistics

Syntax

```
show interfaces statistics interface-name
<satellite-device [device-alias-name | all ]>
<detail>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers.
Command introduced in Junos OS Release 12.2 for ACX Series Routers.
satellite-device option introduced in Junos OS Release 14.2R3.

Description

Display static interface statistics, such as errors.

NOTE: When the `show interfaces statistics` command is executed on an interface that is configured on T4000 Type 5 FPC, the IPv6 transit statistics field displays:

- Total statistics (sum of transit and local statistics) at the physical interface level
- Transit statistics at the logical interface level

Options

- `interface-name`—Name of an interface.
- `satellite-device [device-alias-name | all]`—(Junos Fusion only) (Optional) Display interface statistics for interfaces on the specified satellite device in the Junos Fusion, or on all satellite devices in the Junos Fusion.

NOTE: In a Junos Fusion Enterprise, logical interface statistics are not synced across aggregation devices in a dual-aggregation device topology.

- `detail`—(Optional) Display detailed output.

Required Privilege Level

- view
List of Sample Output

show interfaces statistics (Fast Ethernet) on page 2327
show interfaces statistics (Gigabit Ethernet PIC—Egress) on page 2328
show interfaces statistics detail (Aggregated Ethernet) on page 2331
show interfaces statistics detail (Aggregated Ethernet—Ingress) on page 2332
show interfaces statistics detail (Aggregated Ethernet—Egress) on page 2334
show interfaces statistics (SONET/SDH) on page 2335
show interfaces statistics (Aggregated SONET/SDH—Ingress) on page 2337
show interfaces statistics (Aggregated SONET/SDH—Egress) on page 2338
show interfaces statistics (MX Series Routers) on page 2339
show interfaces statistics (MX Series Routers: Dynamic Interfaces with RPF Check Detail) on page 2340
show interfaces statistics (PTX Series Packet Transport Routers) on page 2341
show interfaces statistics (ACX Series routers) on page 2342

Output Fields

Output from both the **show interfaces interface-name detail** and the **show interfaces interface-name extensive** commands include all the information displayed in the output from the **show interfaces statistics** command. For more information, see the particular interface type in which you are interested. For information about destination class and source class statistics, see the “Destination Class Field” section and the “Source Class Field” section under **Common Output Fields Description**. For information about the input errors and output errors, see **Fast Ethernet and Gigabit Ethernet Counters**.

Sample Output

show interfaces statistics (Fast Ethernet)

```
user@host> show interfaces fe-1/3/1 statistics
```

```
Physical interface: fe-1/3/1, Enabled, Physical link is Up
   Interface index: 144, SNMP ifIndex: 1042
   Description: ford fe-1/3/1
   Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
   Source filtering: Disabled, Flow control: Enabled
   Device flags   : Present Running
   Interface flags: SNMP-Traps Internal: 0x4000
   CoS queues     : 4 supported, 4 maximum usable queues
   Current address: 00:00:5E:00:53:dc, Hardware address: 00:00:5E:00:53:dc
   Last flapped   : 2006-04-18 03:08:59 PDT (00:01:24 ago)
   Statistics last cleared: Never
```
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
Input errors: 0, Output errors: 0
Active alarms : None
Active defects : None
Logical interface fe-1/3/1.0 (Index 69) (SNMP ifIndex 50)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: Is-Primary, DCU, SCU-in
 Packets Bytes
 Destination class (packet-per-second) (bits-per-second)
 silver1 0 0
 (0) (0)
 silver2 0 0
 (0) (0)
 silver3 0 0
 (0) (0)
 Addresses, Flags: Is-Default Is-Preferred Is-Primary
 Destination: 10.27.245/24, Local: 10.27.245.2,
 Broadcast: 10.27.245.255
 Protocol iso, MTU: 1497
 Flags: Is-Primary

show interfaces statistics (Gigabit Ethernet PIC—Egress)

user@host> show interfaces ge-5/2/0 statistics detail

Physical interface: ge-5/2/0, Enabled, Physical link is Up
 Interface index: 146, SNMP ifIndex: 519, Generation: 149
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, BPDU Error: None,
 MAC-REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
 Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:00:5E:00:53:74, Hardware address: 00:00:5E:00:53:74
 Last flapped : 2009-11-11 11:24:00 PST (09:23:08 ago)
 Statistics last cleared: 2009-11-11 17:50:58 PST (02:56:10 ago)
 Traffic statistics:
 Input bytes : 271524 0 bps
 Output bytes : 37769598 352 bps
<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input packets</td>
<td>3664</td>
<td>0 pps</td>
</tr>
<tr>
<td>Output packets</td>
<td>885790</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

IPv6 transit statistics:

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes</td>
<td>16681118</td>
</tr>
<tr>
<td>Input packets</td>
<td>0</td>
</tr>
<tr>
<td>Output packets</td>
<td>362633</td>
</tr>
</tbody>
</table>

Multicast statistics:

IPV4 multicast statistics:

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>112048</td>
<td>0 bps</td>
</tr>
<tr>
<td>Output bytes</td>
<td>20779920</td>
<td>0 bps</td>
</tr>
<tr>
<td>Input packets</td>
<td>1801</td>
<td>0 pps</td>
</tr>
<tr>
<td>Output packets</td>
<td>519498</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

IPV6 multicast statistics:

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>156500</td>
<td>0 bps</td>
</tr>
<tr>
<td>Output bytes</td>
<td>16681118</td>
<td>0 bps</td>
</tr>
<tr>
<td>Input packets</td>
<td>1818</td>
<td>0 pps</td>
</tr>
<tr>
<td>Output packets</td>
<td>362633</td>
<td>0 pps</td>
</tr>
</tbody>
</table>

Input errors:

Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0

Output errors:

Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0

Egress queues: 8 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue counters</th>
<th>Count</th>
<th>Count</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>882558</td>
<td>882558</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>3232</td>
<td>3232</td>
<td>0</td>
</tr>
</tbody>
</table>

Active alarms: None

Active defects: None

Logical interface ge-5/2/0.0 (Index 71) (SNMP ifIndex 573) (Generation 135)

Flags: SNMP-Traps 0x4000 Encapsulation: ENET2

Egress account overhead: 100

Ingress account overhead: 90

Traffic statistics:

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>271524</td>
</tr>
<tr>
<td>Output bytes</td>
<td>37769598</td>
</tr>
<tr>
<td>Input packets</td>
<td>3664</td>
</tr>
<tr>
<td>Output packets</td>
<td>885790</td>
</tr>
</tbody>
</table>
IPv6 transit statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>16681118</td>
</tr>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>362633</td>
</tr>
</tbody>
</table>

Local statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>271524</td>
</tr>
<tr>
<td>Output</td>
<td>308560</td>
</tr>
<tr>
<td>Input</td>
<td>3664</td>
</tr>
<tr>
<td>Output</td>
<td>3659</td>
</tr>
</tbody>
</table>

Transit statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>37461038</td>
</tr>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>882131</td>
</tr>
</tbody>
</table>

IPv6 transit statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>16681118</td>
</tr>
<tr>
<td>Input</td>
<td>0</td>
</tr>
<tr>
<td>Output</td>
<td>362633</td>
</tr>
</tbody>
</table>

Multicast statistics:

IPV4 multicast statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>112048</td>
</tr>
<tr>
<td>Output</td>
<td>20779920</td>
</tr>
<tr>
<td>Input</td>
<td>1801</td>
</tr>
<tr>
<td>Output</td>
<td>519498</td>
</tr>
</tbody>
</table>

IPV6 multicast statistics:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>156500</td>
</tr>
<tr>
<td>Output</td>
<td>16681118</td>
</tr>
<tr>
<td>Input</td>
<td>1818</td>
</tr>
<tr>
<td>Output</td>
<td>362633</td>
</tr>
</tbody>
</table>

Protocol inet, MTU: 1500, Generation: 151, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.40.40.0/30, Local: 10.40.40.2, Broadcast: 10.40.40.3,
Generation: 167

Protocol inet6, MTU: 1500, Generation: 152, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: ::10.40.40.0/126, Local: ::10.40.40.2
Generation: 169

Protocol multiservice, MTU: Unlimited, Generation: 171
Generation: 153, Route table: 0
show interfaces statistics detail (Aggregated Ethernet)

user@host> show interfaces ae0 detail

Physical interface: ae0, Enabled, Physical link is Up
Interface index: 186, SNMP ifIndex: 111, Generation: 187
Link-level type: Ethernet, MTU: 1514, Speed: 2000mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1,
Minimum bandwidth needed: 0
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Current address: 00:00:5E:0053:f0, Hardware address: 00:00:5E:00:53:f0
Last flapped : Never
Statistics last cleared: 2006-12-23 03:04:16 PST (01:16:24 ago)
Traffic statistics:
Input bytes : 28544 0 bps
Output bytes : 39770 0 bps
Input packets: 508 0 pps
Output packets: 509 0 pps
Input bytes : IPv6 28544
Output bytes : IPv6 0
Input packets: IPv6 508
Output packets: IPv6 0
Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
Policed discards: 0, Resource errors: 0
Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0,
Resource errors: 0

Logical interface ae0.0 (Index 67) (SNMP ifIndex 139) (Generation 145)
Flags: SNMP-Traps Encapsulation: ENET2
Statistics Packets pps Bytes bps
Bundle:
Input : 508 0 28544 0
Output: 509 0 35698 0

Link:
ge-3/3/8.0
Input : 508 0 28544 0
Output: 0 0 0 0

ge-3/3/9.0
Input : 0 0 0 0 0
Output: 0 0 0 0 0

Marker Statistics: Marker Rx Resp Tx Unknown Rx Illegal Rx
ge-3/3/8.0 0 0 0 0
ge-3/3/9.0 0 0 0 0

Egress queues: 8 supported, 8 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 0 0 0

Protocol inet, MTU: 1500, Generation: 166, Route table: 0
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.1.1/24, Local: 10.1.1.1, Broadcast: 10.1.1.255,
 Generation: 159
Protocol inet6, MTU: 1500, Generation: 163, Route table: 0
Flags: Is-Primary
Addresses, Flags: Is-Preferred
 Destination: fe80::/64, Local: fe80::206:5bff:fe05:c321,
 Broadcast: Unspecified, Generation: 161

show interfaces statistics detail (Aggregated Ethernet—Ingress)
user@host> show interfaces statistics detail ae0 | no-more

Physical interface: ae0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 504, Generation: 278
 Link-level type: Ethernet, MTU: 1514, Speed: 1Gbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1, Minimum bandwidth needed: 0
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Current address: 00:00:5E:00:53:f0, Hardware address: 00:00:5E:00:53:f0
 Last flapped : 2009-11-09 03:30:23 PST (00:01:28 ago)
 Statistics last cleared: 2009-11-09 03:26:18 PST (00:05:33 ago)
 Traffic statistics:
 Input bytes : 544009602 54761856 bps
 Output bytes : 3396 0 bps
 Input packets: 11826292 148809 pps
 Output packets: 42 0 pps
 IPv6 transit statistics:
 Input bytes : 350818604
Output bytes: 0
Input packets: 7626488
Output packets: 0
Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
Ingress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 21 21 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 451 451 0

Logical interface ae0.0 (Index 70) (SNMP ifIndex 574) (Generation 177)
 Flags: SNMP-Traps 0x4000 Encapsulation: ENET2
Statistics Packets pps Bytes bps
Bundle:
 Input: 11826292 148809 544009602 54761856
 Output: 42 0 3396 0
Link:
 ge-5/2/0.0
 Input: 11826292 148809 544009602 54761856
 Output: 42 0 3396 0
Marker Statistics: Marker Rx Resp Tx Unknown Rx Illegal Rx
 ge-5/2/0.0 0 0 0 0
Protocol inet, MTU: 1500, Generation: 236, Route table: 0
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.30.30.0/30, Local: 10.30.30.2, Broadcast: 10.30.30.3,
 Generation: 310
Protocol inet6, MTU: 1500, Generation: 237, Route table: 0
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: ::10.30.30.0/126, Local: ::10.30.30.2
 Generation: 312
 Addresses, Flags: Is-Preferred
 Destination: fe80::/64, Local: fe80::21d:b5ff:fe61:dbf0
show interfaces statistics detail (Aggregated Ethernet—Egress)

user@host> show interfaces statistics detail ae0 | no-more

Physical interface: ae0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 501, Generation: 319
 Link-level type: Ethernet, MTU: 1514, Speed: 1Gbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1,
 Minimum bandwidth needed: 0
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Current address: 00:00:5E:00:53:f0, Hardware address: 00:00:5E:00:53:f0
 Last flapped : 2009-11-09 03:30:24 PST (00:02:42 ago)
 Statistics last cleared: 2009-11-09 03:26:42 PST (00:06:24 ago)
 Traffic statistics:
 Input bytes : 440 0 bps
 Output bytes : 1047338120 54635848 bps
 Input packets: 7 0 pps
 Output packets: 22768200 148466 pps
 IPv6 transit statistics:
 Input bytes : 288
 Output bytes : 723202616
 Input packets: 4
 Output packets: 15721796
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
 Ingress queues: 8 supported, 4 in use
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0
 Egress queues: 8 supported, 4 in use
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 201985796 201985796 0
Logical interface ae0.0 (Index 72) (SNMP ifIndex 505) (Generation 204)
Flags: SNMP-Traps 0x4000 Encapsulation: ENET2

Statistics
Packets pps Bytes bps

<table>
<thead>
<tr>
<th>Bundle:</th>
<th>Input:</th>
<th>7</th>
<th>0</th>
<th>440</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Link:
ge-2/1/6.0

<table>
<thead>
<tr>
<th>Link:</th>
<th>Input:</th>
<th>7</th>
<th>0</th>
<th>440</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Marker Statistics:
Marker Rx Resp Tx Unknown Rx Illegal Rx
ge-2/1/6.0 0 0 0 0

Protocol inet, MTU: 1500, Generation: 291, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.30.30.0/30, Local: 10.30.30.1, Broadcast: 10.30.30.3,
Generation: 420

Protocol inet6, MTU: 1500, Generation: 292, Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: ::/26, Local: ::10.30.30.1
Generation: 422

Protocol multiservice, MTU: Unlimited, Generation: 424
Generation: 293, Route table: 0
Policer: Input: __default_arp_policer__
Input: 13 (last seen 00:00:04 ago)
Output: 14 (last sent 00:00:02 ago)
LCP state: Opened
CHAP state: Closed
PAP state: Closed
CoS queues: 8 supported, 8 maximum usable queues
Last flapped: 2009-11-09 02:52:34 PST (01:12:39 ago)
Statistics last cleared: 2009-11-09 03:58:54 PST (00:06:19 ago)
Traffic statistics:
 Input bytes: 2559160294 54761720 bps
 Output bytes: 10640 48 bps
 Input packets: 5563975 148809 pps
 Output packets: 216 0 pps
 IPv6 transit statistics:
 Input bytes: 647922328
 Output bytes: 0
 Input packets: 14085269
 Output packets: 0
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Bucket drops: 0,
 Policed discards: 0, L3 incompletes: 0,
 L2 channel errors: 0, L2 mismatch timeouts: 0, HS link CRC errors: 0, HS link
 FIFO overflows: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, HS link FIFO
 underflows: 0, MTU errors: 0
 Egress queues: 8 supported, 4 in use
 Queue counters:
 Queued packets Transmitted packets Dropped packets
 0 best-effort 4 4 0
 1 expedited-f0 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 213 213 0
 SONET alarms: None
 SONET defects: None
Logical interface so-3/0/0.0 (Index 72) (SNMP ifIndex 578) (Generation 182)
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: PPP
 Protocol inet, MTU: 4470, Generation: 244, Route table: 0
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.30.30.0/30, Local: 10.30.30.2, Broadcast: 10.30.30.3,
 Generation: 322
 Protocol inet6, MTU: 4470, Generation: 245, Route table: 0
show interfaces statistics (Aggregated SONET/SDH—Ingress)

user@host> show interfaces statistics detail as0 | no-more

Physical interface: as0, Enabled, Physical link is Up
Interface index: 132, SNMP ifIndex: 534, Generation: 282
Link-level type: PPP, MTU: 4474, Speed: OC192, Minimum links needed: 1, Minimum bandwidth needed: 0
Device flags: Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags: Keepalives
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Last flapped: 2009-11-09 03:45:53 PST (00:09:38 ago)
Statistics last cleared: 2009-11-09 03:48:17 PST (00:07:14 ago)
Traffic statistics:
Input bytes: 2969786332 54761688 bps
Output bytes: 11601 0 bps
Input packets: 64560636 148808 pps
Output packets: 225 0 pps
IPv6 transit statistics:
Input bytes: 2086013152
Output bytes: 0
Input packets: 45348114
Output packets: 0
Input errors:
Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0, Resource errors: 0
Output errors:
Carrier transitions: 0, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0
Egress queues: 8 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 3 3 0
1 expedited-forw 0 0 0
2 assured-forward 0 0 0
3 network-cont 222 222 0
show interfaces statistics (Aggregated SONET/SDH—Egress)

user@host> show interfaces statistics detail as0 | no-more

Physical interface: as0, Enabled, Physical link is Up
Interface index: 132, SNMP ifIndex: 565, Generation: 323
Link-level type: PPP, MTU: 4474, Speed: OC192, Minimum links needed: 1, Minimum bandwidth needed: 0
Device flags : Present Running
Interface flags: SNMP-Traps Internal: 0x4000
Link flags : Keepalives
Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
Last flapped : 2009-11-09 03:43:37 PST (00:12:48 ago)
Statistics last cleared: 2009-11-09 03:48:54 PST (00:07:31 ago)
Traffic statistics:
Input bytes : 11198 392 bps
Output bytes : 3101452132 54783448 bps
Input packets: 234 0 bps
Output packets: 67422937 148868 bps
IPv6 transit statistics:
Input bytes : 5780
Output bytes : 2171015678
show interfaces statistics (MX Series Routers)

user@host> show interfaces xe-0/0/0 statistics

Physical interface: xe-0/0/0, Enabled, Physical link is Up
 Interface index: 145, SNMP ifIndex: 592
 Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps, BPDU Error:
show interfaces statistics (MX Series Routers: Dynamic Interfaces with RPF Check Detail)

user@host> show interfaces statistics pp0.3221225475 detail

Logical interface pp0.3221225475(Index 536870921)(SNMP ifIndex 20000009)
(Generation 6)
 Flags: Up Point-To-Point Encapsulation: PPPoE
 PPPoE:
 State: SessionUp, Session ID: 1,
 Session AC name: B, Remote MAC address: 00:00:5E:00:53:01,
 Underlying interface: xe-1/0/0.3221225474 (Index 536870919)
 Ignore End-Of-List tag: Disable
 Bandwidth: 0
 Traffic statistics:
 Input bytes : 34
 Output bytes : 0
 Input packets: 1
 Output packets: 1
 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes : 34 0 bps
Output bytes : 0 0 bps
Input packets: 1 0 pps
Output packets: 1 0 pps

Keepalive settings: Interval 30 seconds, Up-count 3, Down-count 3
LCP state: Opened
CHAP state: Success
PAP state: Closed
Protocol inet, MTU: 1492
Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0, NH drop cnt: 0
Generation: 0, Route table: 0
Flags: uRPF, Unnumbered
RPF Failures: Packets: 0, Bytes: 0
Donor interface: lo0.0 (Index 320)
Input Filters: upstrm1-inet-pp0.3221225475-in
Output Filters: dwnstrm1-inet-pp0.3221225475-out
Addresses, Flags: Is-Primary
Destination: Unspecified, Local: 10.255.96.19, Broadcast: Unspecified, Generation: 0

show interfaces statistics (PTX Series Packet Transport Routers)

user@host> show interfaces statistics em0

Physical interface: em0, Enabled, Physical link is Up
Interface index: 8, SNMP ifIndex: 0
Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps
Device flags : Present Running
Interface flags: SNMP-Traps
Link type : Full-Duplex
Current address: 00:00:5E:00:53:1b, Hardware address: 00:00:5E:00:53:1b
Last flapped : Never
Statistics last cleared: Never
Input packets : 212620
Output packets: 71
Input errors: 0, Output errors: 0

Logical interface em0.0 (Index 3) (SNMP ifIndex 0)
Flags: SNMP-Traps Encapsulation: ENET2
Input packets : 212590
Output packets: 71
Protocol inet, MTU: 1500
show interfaces statistics (ACX Series routers)

user@host> show interfaces statistics ge-0/1/7

Physical interface: ge-0/1/7, Enabled, Physical link is Down
 Interface index: 151, SNMP ifIndex: 524
 Link-level type: Ethernet, Media type: Copper, MTU: 1514, Link-mode: Full-duplex,
 Speed: 1000mbps, BPDU Error: None, MAC-REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
 Remote fault: Online
 Device flags : Present Running Down
 Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:00:5E:00:53:a3, Hardware address: 00:00:5E:00:53:a3
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Input errors: 0, Output errors: 0
 Active alarms : LINK
 Active defects : LINK
 Interface transmit statistics: Disabled
show policy

List of Syntax
Syntax on page 2343
Syntax (EX Series Switches) on page 2343

Syntax

show policy
<logical-system (all | logical-system-name)>
<policy-name>
<statistics>

Syntax (EX Series Switches)

show policy
<policy-name>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
statistics option introduced in Junos OS Release 16.1 for MX Series routers.

Description
Display information about configured routing policies.

Options
none—List the names of all configured routing policies.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

policy-name—(Optional) Show the contents of the specified policy.

statistics—(Optional) Use in conjunction with the test policy command to show the length of time (in microseconds) required to evaluate a given policy and the number of times it has been executed. This information can be used, for example, to help structure a policy so it is evaluated efficiently. Timers shown are per route; times are not cumulative. Statistics are incremented even when the router is learning (and thus evaluating) routes from peering routers.

Required Privilege Level
view
RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>show policy damping</th>
<th>2349</th>
</tr>
</thead>
<tbody>
<tr>
<td>test policy</td>
<td>2650</td>
</tr>
</tbody>
</table>

List of Sample Output

- show policy on page 2344
- show policy policy-name on page 2345
- show policy statistics policy-name on page 2345
- show policy (Multicast Scoping) on page 2345
- show policy (Route Filter and source Address Filter Lists) on page 2346

Output Fields

Table 134 on page 2344 lists the output fields for the `show policy` command. Output fields are listed in the approximate order in which they appear.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>policy-name</code></td>
<td>Name of the policy listed.</td>
</tr>
<tr>
<td><code>term</code></td>
<td>Name of the user-defined policy term. The term name <code>unnamed</code> is used for policy elements that occur outside of user defined terms</td>
</tr>
<tr>
<td><code>from</code></td>
<td>Match condition for the policy.</td>
</tr>
<tr>
<td><code>then</code></td>
<td>Action for the policy.</td>
</tr>
</tbody>
</table>

Sample Output

show policy

```
user@host> show policy
```

```
Configured policies:
__vrf-export-red-internal__
__vrf-import-red-internal__
red-export
rftest-policy
multicast-scoping
```
show policy policy-name

user@host> show policy vrf-import-red-internal

Policy vrf-import-red-internal:
 from
 203.0.113.0/28 accept
 203.0.113.32/28 accept
 then reject

show policy statistics policy-name

user@host> show policy statistics iBGP-v4-RR-Import

Policy iBGP-v4-RR-Import:
 [1243328] Term Lab-Infra:
 from [1243328 0] proto BGP
 [28 0] route filter:
 10.11.0.0/8 orlonger
 10.13.0.0/8 orlonger
 then [28 0] accept
 [1243300] Term External:
 from [1243300 1] proto BGP
 [1243296 0] community Ext-Com1 [64496:1515]
 [1243296 0] prefix-list-filter Customer-Routes
 [1243296 0] aspath AS6221
 [1243296 1] route filter:
 172.16.49.0/12 orlonger
 172.16.50.0/12 orlonger
 172.16.51.0/12 orlonger
 172.16.52.0/12 orlonger
 172.16.53.0/12 orlonger
 172.16.56.0/12 orlonger
 172.16.60.0/12 orlonger
 then [1243296 2] community + Ext-Com2 [64496:2000] [1243296 0] accept
 [4] Term Final:
 then [4 0] reject

show policy (Multicast Scoping)

user@host> show policy multicast-scoping

Policy multicast-scoping:
 from
 multicast-scope == 8
then
 accept

show policy (Route Filter and source Address Filter Lists)

user@host> show policy rf-test-policy

Policy rf-test-policy:
 Term term1:
 from source-address-filter-list saf-list-1
 source-address filter:
 192.0.2.0/29 longer
 192.0.2.64/28 exact
 192.0.2.128/28 exact
 192.0.2.160/28 orlonger
 Term term2:
 from route-filter-list rf-list-1
 route filter:
 198.51.100.0/29 upto 198.51.100.0/30
 198.51.100.8/29 upto 198.51.100.8/30 accept
 Term unnamed:
 then reject
show policy conditions

Syntax

```
show policy conditions
<condition-name>
<detail>
<dynamic>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show policy conditions
<condition-name>
<detail>
<dynamic>
```

Release Information
Command introduced in Junos OS Release 9.0.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display all the configured conditions as well as the routing tables with which the configuration manager is interacting. If the detail keyword is included, the output also displays dependent routes for each condition.

Options

- none—Display all configured conditions and associated routing tables.
- **condition-name**—(Optional) Display information about the specified condition only.
- detail—(Optional) Display the specified level of output.
- dynamic—(Optional) Display information about the conditions in the dynamic database.
- **logical-system (all | logical-system-name)**—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

List of Sample Output
show policy conditions detail on page 2348

Output Fields
Table 135 on page 2348 lists the output fields for the `show policy conditions` command. Output fields are listed in the approximate order in which they appear.

Table 135: show policy conditions Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Name of configured condition.</td>
<td>All levels</td>
</tr>
<tr>
<td>event</td>
<td>Condition type. If the <code>if-route-exists</code> option is configured, the event type is:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>Existence of a route in a specific routing table.</td>
<td></td>
</tr>
<tr>
<td>Dependent routes</td>
<td>List of routes dependent on the condition, along with the latest generation number.</td>
<td>detail</td>
</tr>
<tr>
<td>Condition tables</td>
<td>List of routing tables associated with the condition, along with the latest generation number and number of dependencies.</td>
<td>All levels</td>
</tr>
<tr>
<td>If-route-exists conditions</td>
<td>List of conditions configured to look for a route in the specified table.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

```
show policy conditions detail

user@host> show policy conditions detail

Configured conditions:
Condition cond1, event: Existence of a route in a specific routing table
Dependent routes:
    172.16.4.4/32, generation 3
    6.6.6.6/32, generation 3
    10.10.10.10/32, generation 3

Condition cond2, event: Existence of a route in a specific routing table
Dependent routes:
None

Condition tables:
Table inet.0, generation 4, dependencies 3, If-route-exists conditions: cond1 (static) cond2 (static)
```
show policy damping

List of Syntax
Syntax on page 2349
Syntax (EX Series Switch and QFX Series) on page 2349

Syntax

```
show policy damping
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switch and QFX Series)

```
show policy damping
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display information about BGP route flap damping parameters.

Options
none—Display information about BGP route flap damping parameters.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Additional Information
In the output from this command, figure-of-merit values correlate with the probability of future instability of a routing device. Routes with higher figure-of-merit values are suppressed for longer periods of time. The figure-of-merit value decays exponentially over time. A figure-of-merit value of zero is assigned to each new route. The value is increased each time the route is withdrawn or readvertised, or when one of its path attributes changes.

Required Privilege Level
view

RELATED DOCUMENTATION
"Configuring BGP Flap Damping Parameters" in the *Routing Policies, Firewall Filters, and Traffic Policers Feature Guide*

<table>
<thead>
<tr>
<th>clear bgp damping</th>
<th>2411</th>
</tr>
</thead>
<tbody>
<tr>
<td>show route damping</td>
<td>2411</td>
</tr>
</tbody>
</table>

List of Sample Output

show policy damping on page 2350

Output Fields

Table 136 on page 2350 describes the output fields for the **show policy damping** command. Output fields are listed in the approximate order in which they appear.

Table 136: show policy damping Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halflife</td>
<td>Decay half-life, in minutes. The value represents the period during which the accumulated figure-of-merit value is reduced by half if the route remains stable. If a route has flapped, but then becomes stable, the figure-of-merit value for the route decays exponentially. For example, for a route with a figure-of-merit value of 1500, if no incidents occur, its figure-of-merit value is reduced to 750 after 15 minutes and to 375 after another 15 minutes.</td>
</tr>
<tr>
<td>Reuse merit</td>
<td>Figure-of-merit value below which a suppressed route can be used again. A suppressed route becomes reusable when its figure-of-merit value decays to a value below a reuse threshold, and the route once again is considered usable and can be installed in the forwarding table and exported from the routing table.</td>
</tr>
<tr>
<td>Suppress/cutoff merit</td>
<td>Figure-of-merit value above which a route is suppressed for use or inclusion in advertisements. When a route's figure-of-merit value reaches a particular level, called the cutoff or suppression threshold, the route is suppressed. When a route is suppressed, the routing table no longer installs the route into the forwarding table and no longer exports this route to any of the routing protocols.</td>
</tr>
<tr>
<td>Maximum suppress time</td>
<td>Maximum hold-down time, in minutes. The value represents the maximum time that a route can be suppressed no matter how unstable it has been before this period of stability.</td>
</tr>
<tr>
<td>Computed values</td>
<td>- Merit ceiling—Maximum merit that a flapping route can collect.</td>
</tr>
<tr>
<td></td>
<td>- Maximum decay—Maximum decay half-life, in minutes.</td>
</tr>
</tbody>
</table>

Sample Output

show policy damping

user@host> show policy damping
Default damping information:

- Halflife: 15 minutes
- Reuse merit: 750
- Suppress/cutoff merit: 3000
- Maximum suppress time: 60 minutes

Computed values:

- Merit ceiling: 12110
- Maximum decay: 6193

Damping information for "standard-damping":

- Halflife: 10 minutes
- Reuse merit: 4000
- Suppress/cutoff merit: 8000
- Maximum suppress time: 30 minutes

Computed values:

- Merit ceiling: 32120
- Maximum decay: 12453
show route

List of Syntax
Syntax on page 2352
Syntax (EX Series Switches) on page 2352

Syntax

 show route
 <all>
 <destination-prefix>
 <logical-system (all | logical-system-name)>
 <private>
 <te-ipv4-prefix-ip te-ipv4-prefix-ip>
 <te-ipv4-prefix-node-ip te-ipv4-prefix-node-ip>
 <te-ipv4-prefix-node-iso te-ipv4-prefix-node-iso>

Syntax (EX Series Switches)

 show route
 <all>
 <destination-prefix>
 <private>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Option private introduced in Junos OS Release 9.5.
Option private introduced in Junos OS Release 9.5 for EX Series switches.
Command introduced in Junos OS Release 15.1R3 on MX Series routers for enhanced subscriber management.
Options te-ipv4-prefix-ip, te-ipv4-prefix-node-ip, and te-ipv4-prefix-node-iso introduced in Junos OS Release 17.2R1 on MX Series and PTX Series.

Description
Display the active entries in the routing tables.

Options
none—Display brief information about all active entries in the routing tables.
all—(Optional) Display information about all routing tables, including private, or internal, routing tables.
destination-prefix—(Optional) Display active entries for the specified address or range of addresses.

logical-system *(all | logical-system-name)*—(Optional) Perform this operation on all logical systems or on a particular logical system.

private—(Optional) Display information only about all private, or internal, routing tables.

display-client-data—(Optional) Display client id and cookie information for routes installed by the routing protocol process client applications.

te-ipv4-prefix-ip te-ipv4-prefix-ip—(Optional) Display IPv4 address of the traffic-engineering prefix, without the mask length if present in the routing table.

te-ipv4-prefix-node-ip te-ipv4-prefix-node-ip—(Optional) Display all prefixes that have originated from the traffic-engineering node. You can filter IPv4 node addresses from the traffic-engineered routes in the **lsdist.0** table.

te-ipv4-prefix-node-iso te-ipv4-prefix-node-iso—(Optional) Display all prefixes that have originated from the traffic-engineering node. You can filter IPv4 routes with the specified ISO circuit ID from the **lsdist.0** table.

Required Privilege Level

view

RELATED DOCUMENTATION

- **Understanding IS-IS Configuration**
- **Example: Configuring IS-IS**
- **Examples: Configuring Internal BGP Peering**
- **Examples: Configuring External BGP Peering**
- **Examples: Configuring OSPF Routing Policy**
- **Verifying and Managing Junos OS Enhanced Subscriber Management**

List of Sample Output

- **show route on page 2357**
- **show route (VPN) on page 2358**
- **show route (with Destination Prefix) on page 2359**
- **show route destination-prefix detail on page 2359**
- **show route extensive on page 2359**
- **show route extensive (ECMP) on page 2360**
- **show route extensive (Multipath Resolution) on page 2360**
- **show route (Enhanced Subscriber Management) on page 2366**
- **show route (IPv6 Flow Specification) on page 2367**
show route display-client-data detail on page 2367
show route te-ipv4-prefix-ip on page 2368
show route te-ipv4-prefix-ip extensive on page 2369
show route te-ipv4-prefix-node-iso on page 2372
show route te-ipv4-prefix-node-iso extensive on page 2373
show route te-ipv4-prefix-node-iso detail on page 2377

Output Fields

Table 137 on page 2354 describes the output fields for the `show route` command. Output fields are listed in the approximate order in which they appear.

Table 137: show route Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table (for example, inet.0).</td>
</tr>
<tr>
<td><code>number destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
</tr>
<tr>
<td></td>
<td>• active (routes that are active).</td>
</tr>
<tr>
<td></td>
<td>• holddown (routes that are in the pending state before being declared inactive). A holddown route was once the active route and is no longer the active route. The route is in the holddown state because a protocol still has interest in the route, meaning that the interest bit is set. A protocol might have its interest bit set on the previously active route because the protocol is still advertising the route. The route will be deleted after all protocols withdraw their advertisement of the route and remove their interest bit. A persistent holddown state often means that the interested protocol is not releasing its interest bit properly. However, if you have configured advertisement of multiple routes (with the <code>add-path</code> or <code>advertise-inactive</code> statement), the holddown bit is most likely set because BGP is advertising the route as an active route. In this case, you can ignore the holddown state because nothing is wrong. If you have configured <code>uRPF-loose</code> mode, the holddown bit is most likely set because Kernel Routing Table (KRT) is using inactive route to build valid incoming interfaces. In this case, you can ignore the holddown state because nothing is wrong.</td>
</tr>
<tr>
<td></td>
<td>• hidden (routes that are not used because of a routing policy).</td>
</tr>
</tbody>
</table>
Table 137: show route Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination-prefix</td>
<td>Route destination (for example: 10.0.0.1/24). Sometimes the route information is presented in another format, such as:</td>
</tr>
<tr>
<td>• MPLS-label</td>
<td>(for example, 80001).</td>
</tr>
<tr>
<td>• interface-name</td>
<td>(for example, ge-1/0/2).</td>
</tr>
<tr>
<td>• neighbor-address: control-word-status: encapsulation type: vc-id: source</td>
<td>(Layer 2 circuit only. For example, 10.1.1.195:NoCtrlWord:1:1:Local/96):</td>
</tr>
<tr>
<td>• neighbor-address—Address of the neighbor.</td>
<td></td>
</tr>
<tr>
<td>• 控制-word-status—Whether the use of the control word has been negotiated for this virtual circuit: NoCtrlWord or CtrlWord.</td>
<td></td>
</tr>
<tr>
<td>• encapsulation type—Type of encapsulation, represented by a number: (1) Frame Relay DLCI, (2) ATM AAL5 VCC transport, (3) ATM transparent cell transport, (4) Ethernet, (5) VLAN Ethernet, (6) HDLC, (7) PPP, (8) ATM VCC cell transport, (10) ATM VPC cell transport.</td>
<td></td>
</tr>
<tr>
<td>• vc-id—Virtual circuit identifier.</td>
<td></td>
</tr>
<tr>
<td>• source—Source of the advertisement: Local or Remote.</td>
<td></td>
</tr>
<tr>
<td>protocol, preference</td>
<td>Protocol from which the route was learned and the preference value for the route.</td>
</tr>
<tr>
<td>• +—A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.</td>
<td></td>
</tr>
<tr>
<td>• - —A hyphen indicates the last active route.</td>
<td></td>
</tr>
<tr>
<td>• *—An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.</td>
<td></td>
</tr>
<tr>
<td>In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1's complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value and a lower Preference2 value.</td>
<td></td>
</tr>
<tr>
<td>weeks:days hours:minutes:seconds</td>
<td>How long the route been known (for example, 2w4d 13:11:14, or 2 weeks, 4 days, 13 hours, 11 minutes, and 14 seconds).</td>
</tr>
<tr>
<td>metric</td>
<td>Cost value of the indicated route. For routes within an AS, the cost is determined by the IGP and the individual protocol metrics. For external routes, destinations, or routing domains, the cost is determined by a preference value.</td>
</tr>
<tr>
<td>localpref</td>
<td>Local preference value included in the route.</td>
</tr>
</tbody>
</table>
Table 137: show route Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>Interface from which the route was received.</td>
</tr>
</tbody>
</table>
| AS path | AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:
 - I—IGP.
 - E—EGP.
 - ?—Incomplete; typically, the AS path was aggregated.
 When AS path numbers are included in the route, the format is as follows:
 - ![]—Brackets enclose the local AS number associated with the AS path if more than one AS number is configured on the routing device, or if AS path prepending is configured.
 - ![]—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.
 - ![]—Parentheses enclose a confederation.
 - ![]—Parentheses and brackets enclose a confederation set.
 NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance. |
| encapsulated | Extended next-hop encoding capability enabled for the specified BGP community for routing IPv4 traffic over IPv6 tunnels. When BGP receives routes without the tunnel community, IPv4-0ver IPv6 tunnels are not created and BGP routes are resolved without encapsulation. |
| Route Labels | Stack of labels carried in the BGP route update. |
| validation-state | (BGP-learned routes) Validation status of the route:
 - **Invalid**—Indicates that the prefix is found, but either the corresponding AS received from the EBGP peer is not the AS that appears in the database, or the prefix length in the BGP update message is longer than the maximum length permitted in the database.
 - **Unknown**—Indicates that the prefix is not among the prefixes or prefix ranges in the database.
 - **Unverified**—Indicates that the origin of the prefix is not verified against the database. This is because the database got populated and the validation is not called for in the BGP import policy, although origin validation is enabled, or the origin validation is not enabled for the BGP peers.
 - **Valid**—Indicates that the prefix and autonomous system pair are found in the database. |
Table 137: show route Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>Next hop to the destination. An angle bracket (>) indicates that the route is the selected route. If the destination is Discard, traffic is dropped.</td>
</tr>
<tr>
<td>via</td>
<td>Interface used to reach the next hop. If there is more than one interface available to the next hop, the interface that is actually used is followed by the word Selected. This field can also contain the following information:</td>
</tr>
<tr>
<td></td>
<td>• Weight—Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.</td>
</tr>
<tr>
<td></td>
<td>• Balance—Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a routing device is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing.</td>
</tr>
<tr>
<td></td>
<td>• lsp-path-name—Name of the LSP used to reach the next hop.</td>
</tr>
<tr>
<td></td>
<td>• label-action—MPLS label and operation occurring at the next hop. The operation can be pop (where a label is removed from the top of the stack), push (where another label is added to the label stack), or swap (where a label is replaced by another label). For VPNs, expect to see multiple push operations, corresponding to the inner and outer labels required for VPN routes (in the case of a direct PE-to-PE connection, the VPN route would have the inner label push only).</td>
</tr>
<tr>
<td>Private unicast</td>
<td>(Enhanced subscriber management for MX Series routers) Indicates that an access-internal route is managed by enhanced subscriber management. By contrast, access-internal routes not managed by enhanced subscriber management are displayed with associated next-hop and media access control (MAC) address information.</td>
</tr>
<tr>
<td>balance</td>
<td>Distribution of the load based on the underlying operational interface bandwidth for equal-cost multipaths (ECMP) across the nexthop gateways in percentages.</td>
</tr>
</tbody>
</table>

Sample Output

show route

user@host> show route
show route (VPN)

The following sample output shows a VPN route with composite next hops enabled. The first Push operation corresponds to the outer label. The second Push operation corresponds to the inner label.

```
user@host> show route 192.0.2.0
```

```
inet.0: 11 destinations, 12 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1:65500:1:10.0.0.20/240
  *[MPN/70] 19:53:41, metric2 1
    Indirect

1:65500:1:10.0.0.40/240
  *[BGP/170] 19:53:29, localpref 100, from 10.0.0.30
    AS path: I
    > to 10.0.24.4 via lt-0/3/0.24, label-switched-path toD
  *[BGP/170] 19:53:26, localpref 100, from 10.0.0.33
    AS path: I
    > to 10.0.24.4 via lt-0/3/0.24, label-switched-path toD

1:65500:1:10.0.0.60/240
  *[BGP/170] 19:53:29, localpref 100, from 10.0.0.30
    AS path: I
    > to 10.0.28.8 via lt-0/3/0.28, label-switched-path toF
  *[BGP/170] 19:53:25, localpref 100, from 10.0.0.33
    AS path: I
    > to 10.0.28.8 via lt-0/3/0.28, label-switched-path toF
```
show route (with Destination Prefix)

user@host> **show route 192.168.0.0/12**

inet.0: 10 destinations, 10 routes (9 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.0.0/12 *[Static/5] 2w4d 12:54:27
 > to 192.168.167.254 via fxp0.0

show route destination-prefix detail

user@host> **show route 198.51.100.0 detail**

inet.0: 15 destinations, 20 routes (15 active, 0 holddown, 0 hidden)
198.51.100.0/24 (2 entries, 2 announced)
 *BGP Preference: 170/-101
 ...
 BGP-Static Preference: 4294967292
 Next hop type: Discard
 Address: 0x9041ae4
 Next-hop reference count: 2
 State: <NoReadvrt Int Ext AlwaysFlash>
 Inactive reason: Route Preference
 Local AS: 200
 Age: 4d 1:40:40
 Validation State: unverified
 Task: RT
 Announcement bits (1): 2-BGP_RT_Background
 AS path: 4 5 6 I

show route extensive

user@host> **show route extensive**

v1.mvpn.0: 5 destinations, 8 routes (5 active, 1 holddown, 0 hidden)
1:65500:1:10.0.0.40/240 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 PMSI: Flags 0x0: Label[0:0:0]: PIM-SM: Sender 10.0.0.40 Group 203.0.113.1
 Next hop type: Indirect
 Address: 0x92455b8
Next-hop reference count: 2
Source: 10.0.0.30
Protocol next hop: 10.0.0.40
Indirect next hop: 2 no-forward
State: <Active Int Ext>
 Local AS: 64510 Peer AS: 64511
Age: 3 Metric2: 1
Validation State: unverified
Task: BGP_64510.10.0.0.30+179
Announcement bits (2): 0-PIM.v1 1-mvpn global task
AS path: I (Originator) Cluster list: 10.0.0.30
AS path: Originator ID: 10.0.0.40
Communities: target:64502:100 encapsulation:0L:14
Accepted
Localpref: 100
Router ID: 10.0.0.30
Primary Routing Table bgp.mvpn.0
Indirect next hops: 1
 Protocol next hop: 10.0.0.40 Metric: 1
 Indirect next hop: 2 no-forward
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.24.4 via lt-0/3/0.24 weight 0x1
 10.0.0.40/32 Originating RIB: inet.3
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.24.4 via lt-0/3/0.24

show route extensive (ECMP)

user@host> show route extensive

*IS-IS Preference: 15
Level: 1
 Next hop type: Router, Next hop index: 1048577
 Address: 0xXXXXXXXXXX
 Next-hop reference count: YY
 Next hop: 198.51.100.2 via ae1.0 balance 43%, selected
 Session Id: 0x141
 Next hop: 192.0.2.2 via ae0.0 balance 57%

show route extensive (Multipath Resolution)

user@host> show route extensive
inet.0: 37 destinations, 37 routes (36 active, 0 holddown, 1 hidden)
10.1.1.2/32 (1 entry, 1 announced)

TSI:
KRT in-kernel 10.1.1.2/32 -> {indirect(1048574)}
 *Static Preference: 5
 Next hop type: Indirect, Next hop index: 0
 Address: 0xb39d1b0
 Next-hop reference count: 2
 Next hop type: Router, Next hop index: 581
 Next hop: 10.1.1.2 via ge-2/0/1.0, selected
 Session Id: 0x144
 Next hop: 10.2.1.2 via ge-2/0/2.0, selected
 Session Id: 0x145
 Protocol next hop: 10.1.1.1
 Indirect next hop: 0xb2b20f0 1048574 INH Session ID: 0x143
 State: <Active Int Ext>
 Age: 2:53 Metric2: 0
 Validation State: unverified
 Task: RT
 Announcement bits (2): 0-KRT 2-Resolve tree 1
 AS path: I
 Indirect next hops: 1
 Protocol next hop: 10.1.1.1
 Indirect next hop: 0xb2b20f0 1048574 INH Session ID: 0x143

Indirect path forwarding next hops: 2
 Next hop type: Router
 Next hop: 10.1.1.2 via ge-2/0/1.0
 Session Id: 0x144
 Next hop: 10.2.1.2 via ge-2/0/2.0
 Session Id: 0x145
10.1.1.1/32 Originating RIB: inet.0
 Node path count: 1
 Node flags: 1
 Forwarding nexthops: 2 (Merged)
 Nexthop: 10.1.1.2 via ge-2/0/1.0
 Nexthop: 10.2.1.2 via ge-2/0/2.0

user@host> show route active-path extensive

user@host> show route 198.51.100.1 active-path extensive

inet.0: 1000061 destinations, 1000082 routes (1000061 active, 0 holddown, 0 hidden)
198.51.100.1/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 198.51.100.1/32 -> {indirect(1051215)}
unicast reverse-path: 0
[ae0.0 ae1.0]
Page 0 idx 0, (group Internet-IPv4 type External) Type 1 val 0xb2e53d8 (adv_entry)
Advertised metrics:
Nexthop: Self
AS path: [500] 410 I
Communities:
Path 198.51.100.1 from 10.0.0.11 Vector len 4. Val: 0
*BGP Preference: 170/-101
Next hop type: Indirect, Next hop index: 0
Address: 0x2e9aacdc
Next-hop reference count: 500000
Source: 10.0.0.11
Next hop type: Router, Next hop index: 0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 25, Push 20(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 20: None;
Label element ptr: 0xb5dc1780
Label parent element ptr: 0x18d48080
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 25, Push 22(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 22: None;
Label element ptr: 0xb5dc1700
Label parent element ptr: 0x18d41000
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 24, Push 48(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 48: None;
Label element ptr: 0x18d40800
Label parent element ptr: 0x18d49780
Label element references: 3
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
Label operation: Push 3851, Push 24, Push 49(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 49: None;
Label element ptr: 0xb5dc1680
Label parent element ptr: 0x18d48f00
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Label operation: Push 3851, Push 25, Push 21(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 21: None;
Label element ptr: 0xb5dc1600
Label parent element ptr: 0x18d44d80
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Label operation: Push 3851, Push 25, Push 25(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 25: None; Label 25: None;
Label element ptr: 0xb5dc1580
Label parent element ptr: 0x18d3da80
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1, selected
Label operation: Push 3851, Push 24, Push 68(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 68: None;
Label element ptr: 0x18d41500
Label parent element ptr: 0x18d49000
Label element references: 3
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Label operation: Push 3851, Push 24, Push 69(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 3851: None; Label 24: None; Label 69: None;
Label element ptr: 0xb5dc1500
Label parent element ptr: 0x18d48300
Label element references: 2
Label element child references: 0
Label element lsp id: 0
Session Id: 0x0
Protocol next hop: 10.0.0.11
Label operation: Push 3851
Label TTL action: prop-ttl
Load balance label: Label 3851: None;
Indirect next hop: 0x1883e200 1051215 INH Session ID: 0xb0d
State:
 Local AS: 500 Peer AS: 500
 Age: 1:40:03 Metric2: 2
 Validation State: unverified
 Task: BGP_500.10.0.0.11
 Announcement bits (5): 0-KRT 8-KRT 9-BGP_RT_Background 10-Resolve tree 5 11-Resolve tree 8
 AS path: 410 I
 Accepted
 Route Label: 3851
 Localpref: 100
 Router ID: 10.0.0.11
 Indirect next hops: 1
 Protocol next hop: 10.0.0.11 Metric: 2
 Label operation: Push 3851
 Label TTL action: prop-ttl
 Load balance label: Label 3851: None;
 Indirect next hop: 0x1883e200 1051215 INH Session ID: 0xb0d
 Indirect path forwarding next hops (Merged): 8
Next hop type: Router
Next hop: 10.0.12.2 via ae0.0 weight 0x1
 Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
 Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
 Session Id: 0x0
Next hop: 10.0.12.2 via ae0.0 weight 0x1
 Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
 Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
Next hop: 10.0.13.3 via ae1.0 weight 0x1
Session Id: 0x0
10.0.0.11/32 Originating RIB: inet.3
Metric: 1 Node path count: 4
Node flags: 1
Indirect nexthops: 4
Protocol Nexthop: 10.0.0.4 Metric: 1 Push 24
Indirect nexthop: 0x1880f200 1048597 INH Session ID: 0xb0c
Path forwarding nexthops link: 0x36120400
Path inh link: 0x0
Indirect path forwarding nexthops: 2
Next hop: 10.0.12.2 via ae0.0
Session Id: 0
Next hop: 10.0.13.3 via ae1.0
Session Id: 0
10.0.0.4/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 2
Next hop: 10.0.12.2 via ae0.0
Session Id: 0
Next hop: 10.0.13.3 via ae1.0
Session Id: 0
Protocol Nexthop: 10.0.0.5 Metric: 1 Push 24
Indirect nexthop: 0x18810000 1048596 INH Session ID: 0xb0b
Path forwarding nexthops link: 0x1545be00
Path inh link: 0x0
Indirect path forwarding nexthops: 2
Next hop: 10.0.12.2 via ae0.0
Session Id: 0
Next hop: 10.0.13.3 via ae1.0
Session Id: 0
10.0.0.5/32 Originating RIB: inet.3
Metric: 1 Node path count: 1
Forwarding nexthops: 2
Next hop: 10.0.12.2 via ae0.0
Session Id: 0
Next hop: 10.0.13.3 via ae1.0
Session Id: 0
Protocol Nexthop: 10.0.0.6 Metric: 1 Push 25
Indirect nexthop: 0x1880e600 1048588 INH Session ID: 0xb0a
Path forwarding nexthops link: 0x3611f440
show route (Enhanced Subscriber Management)

user@host> show route

inet.0: 41 destinations, 41 routes (40 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

198.51.100.11/24 *[Access-internal/12] 00:00:08
 > to #0 10.0.0.1.93.65 via demux0.1073741824
198.51.100.12/24 *[Access-internal/12] 00:00:08
 Private unicast
show route (IPv6 Flow Specification)

user@host> show route

inet6.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8::10:255:185:19/128
 *[Direct/0] 05:11:27
 > via lo0.0

2001:db8::11:11:10:0/120
 *[BGP/170] 00:28:58, localpref 100
 AS path: 2000 I, validation-state: unverified
 > to 2001:db8::13:14:2:2 via ge-1/1/4.0

2001:db8::13:14:2:0/120*[Direct/0] 00:45:07
 > via ge-1/1/4.0

2001:db8::13:14:2:1/128*[Local/0] 00:45:18
 Local via ge-1/1/4.0

fe80::2a0:a50f:fc71:71d5/128
 *[Direct/0] 05:11:27
 > via lo0.0

fe80::5e5e:abff:feb0:933e/128
 *[Local/0] 00:45:18
 Local via ge-1/1/4.0

inet6flow.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8::11:11:10:128,*,proto=6,dstport=80,srcport=65535/term:1
 *[BGP/170] 00:28:58, localpref 100, from 2001:db8::13:14:2:2
 AS path: 2000 I, validation-state: unverified
 Fictitious

2001:db8::11:11:30/128,*,icmp6-type=128,len=100,dscp=10/term:2
 *[BGP/170] 00:20:54, localpref 100, from 2001:db8::13:14:2:2
 AS path: 2000 I, validation-state: unverified
 Fictitious

show route display-client-data detail

user@host> show route 198.51.100.0/24 display-client-data detail

inet.0: 59 destinations, 70 routes (59 active, 0 holddown, 0 hidden)
198.51.100.0/24 (1 entry, 1 announced)
 State: <FlashAll>
show route te-ipv4-prefix-ip

user@host> show route te-ipv4-prefix-ip 10.10.10.10

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152
 *[IS-IS/15] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0101.0101.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0202.0202.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0303.0303.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
PREFIX { Node { AS:64496 ISO:0100.0404.0404.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152
 *[IS-IS/18] 00:01:01
 Fictitious
show route te-ipv4-prefix-ip extensive

user@host>show route te-ipv4-prefix-ip 10.10.10.10 extensive

lsdist.0: 298 destinations, 298 routes (298 active, 0 holddown, 0 hidden)

 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State:<Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0

PREFIX { Node { AS:64496 ISO:00100.0101.0101.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }
 /1152 (1 entry, 0 announced)

 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
State: <Active NotInstall>
Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0>

PREFIX { Node { AS:64496 ISO:0100.0202.0202.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }
 /1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>

Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0303.0303.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }
 /1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>

Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0404.0404.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }
 /1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
Next hop type: Fictitious, Next hop index: 0
Address: 0xa1a2ac4
Next-hop reference count: 298
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 7:58
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1000, Flags: Ox0e0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0505.0505.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }
 /1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: Ox0e0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0606.0606.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }
 /1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: Ox0e0, Algo: 0
show route te-ipv4-prefix-node-iso

user@host> show route te-ipv4-prefix-node-iso 0100.0a0a.00.00

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

PREFIX { Node { AS:64496 ISO:0100.0a0a.00.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.00.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *[IS-IS/15] 00:05:20 Fictitious

PREFIX { Node { AS:64496 ISO:0100.0a0a.00.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 298
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 7:58
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0
show route te-ipv4-prefix-node-iso extensive

user@host> show route te-ipv4-prefix-node-iso 0100.0a0a.0a0a.00 extensive

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
Next-hop reference count: 283
Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 6:47
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1000, Flags: 0x40, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1001, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.2.2.2/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1002, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.3.3/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
*IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1003, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.4.4.4/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1004, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.5.5.5/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
Prefix SID: 1005, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.6.6.6/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1006, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.7.7.7/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:47
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1007, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
show route te-ipv4-prefix-node-iso detail

user@host> show route te-ipv4-prefix-node-iso 0100.0a0a.0a0a.00 detail

lsdist.0: 283 destinations, 283 routes (283 active, 0 holddown, 0 hidden)
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L1:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.1.1.1/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xala2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1001, Flags: 0xe0, Algo: 0
PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.2.2.2/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1002, Flags: Oxe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.3.3.3/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1003, Flags: Oxe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.4.4.4/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x1a1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1004, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.5.5.5/32 } ISIS-L2:0
 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1005, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.6.6.6/32 } ISIS-L2:0
 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1006, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.7.7.7/32 } ISIS-L2:0
 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
State: <Active NotInstall>
Local AS: 64496
Age: 6:54
Validation State: unverified
Task: IS-IS
AS path: I
Prefix SID: 1007, Flags: 0xe0, Algo: 0

PREFIX { Node { AS:64496 ISO:0100.0a0a.0a0a.00 } { IPv4:10.10.10.10/32 } ISIS-L2:0 }/1152 (1 entry, 0 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Fictitious, Next hop index: 0
 Address: 0xa1a2ac4
 Next-hop reference count: 283
 Next hop:
 State: <Active NotInstall>
 Local AS: 64496
 Age: 6:54
 Validation State: unverified
 Task: IS-IS
 AS path: I
 Prefix SID: 1000, Flags: 0x40, Algo: 0
show route active-path

List of Syntax

Syntax on page 2381
Syntax (EX Series Switches) on page 2381

Syntax

```
show route active-path
<b brief | detail | extensive | terse>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route active-path
<b brief | detail | extensive | terse>
```

Release Information

Command introduced in Junos OS Release 8.0.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display all active routes for destinations. An active route is a route that is selected as the best path. Inactive routes are not displayed.

Options

none—Display all active routes.

brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

view

List of Sample Output

show route active-path on page 2382
show route active-path brief on page 2382
show route active-path detail on page 2382
show route active-path extensive on page 2384
show route active-path terse on page 2386
Output Fields
For information about output fields, see the output field tables for the `show route` command, the `show route detail` command, the `show route extensive` command, or the `show route terse` command.

Sample Output

show route active-path

```plaintext
user@host> show route active-path

inet.0: 7 destinations, 7 routes (6 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.70.19/32    *[Direct/0] 21:33:52
> via lo0.0
10.255.71.50/32    *[IS-IS/15] 00:18:13, metric 10
> to 172.16.100.1 via so-2/1/3.0
172.16.100.1/24     *[Direct/0] 00:18:36
> via so-2/1/3.0
172.16.100.1/32     *[Local/0] 00:18:41
      Local via so-2/1/3.0
192.168.64.0/21     *[Direct/0] 21:33:52
> via fxp0.0
192.168.70.19/32    *[Local/0] 21:33:52
      Local via fxp0.0
```

show route active-path brief

The output for the `show route active-path brief` command is identical to that for the `show route active-path` command. For sample output, see `show route active-path on page 2382`.

show route active-path detail

```plaintext
user@host> show route active-path detail

inet.0: 7 destinations, 7 routes (6 active, 0 holddown, 1 hidden)

10.255.70.19/32 (1 entry, 1 announced)
  *Direct Preference: 0
  Next hop type: Interface
  Next-hop reference count: 3
```
Next hop: via lo0.0, selected
State: <Active Int>
Local AS: 200
Age: 21:37:10
Task: IF
Announcement bits (3): 2-IS-IS 5-Resolve tree 2 6-Resolve tree 3
AS path: I

10.255.71.50/32 (1 entry, 1 announced)
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Router, Next hop index: 397
 Next-hop reference count: 4
 Next hop: 172.16.100.1 via so-2/1/3.0, selected
State: <Active Int>
Local AS: 200
Age: 21:37 Metric: 10
Task: IS-IS
Announcement bits (4): 0-KRT 2-IS-IS 5-Resolve tree 2 6-Resolve tree 3
AS path: I

172.16.100.0/24 (1 entry, 1 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 3
 Next hop: di via so-2/1/3.0, selected
State: <Active Int>
Local AS: 200
Age: 21:54
Task: IF
Announcement bits (3): 2-IS-IS 5-Resolve tree 2 6-Resolve tree 3
AS path: I

172.16.100.1/32 (1 entry, 1 announced)
 *Local Preference: 0
 Next hop type: Local
 Next-hop reference count: 11
 Interface: so-2/1/3.0
 State: <Active NoReadvrt Int>
Local AS: 200
Age: 21:59
Task: IF
Announcement bits (2): 5-Resolve tree 2 6-Resolve tree 3
AS path: I

192.168.64.0/21 (1 entry, 1 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 3
 Next hop: via fxp0.0, selected
 State: <Active Int>
 Local AS: 200
 Age: 21:37:10
 Task: IF
 Announcement bits (2): 5-Resolve tree 2 6-Resolve tree 3
 AS path: I

192.168.70.19/32 (1 entry, 1 announced)
 *Local Preference: 0
 Next hop type: Local
 Next-hop reference count: 11
 Interface: fxp0.0
 State: <Active NoReadvrt Int>
 Local AS: 200
 Age: 21:37:10
 Task: IF
 Announcement bits (2): 5-Resolve tree 2 6-Resolve tree 3
 AS path: I

show route active-path extensive

user@host> show route active-path extensive

inet.0: 7 destinations, 7 routes (6 active, 0 holddown, 1 hidden)
10.255.70.19/32 (1 entry, 1 announced)
 TSI:
 IS-IS level 1, LSP fragment 0
 IS-IS level 2, LSP fragment 0
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 3
 Next hop: via lo0.0, selected
 State: <Active Int>
 Local AS: 200
 Age: 21:39:47
 Task: IF
Announcement bits (3): 2-IS-IS 5-Resolve tree 2 6-Resolve tree 3
AS path: I

10.255.71.50/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.255.71.50/32 -> {172.16.100.1}
IS-IS level 2, LSP fragment 0
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Router, Next hop index: 397
 Next-hop reference count: 4
 Next hop: 172.16.100.1 via so-2/1/3.0, selected
 State: <Active Int>
 Local AS: 200
 Age: 24:08 Metric: 10
 Task: IS-IS
 Announcement bits (4): 0-KRT 2-IS-IS 5-Resolve tree 2 6-Resolve
 tree 3
AS path: I

172.16.100.1/24 (1 entry, 1 announced)
TSI:
IS-IS level 1, LSP fragment 0
IS-IS level 2, LSP fragment 0
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 3
 Next hop: via so-2/1/3.0, selected
 State: <Active Int>
 Local AS: 200
 Age: 24:31
 Task: IF
 Announcement bits (3): 2-IS-IS 5-Resolve tree 2 6-Resolve tree 3
AS path: I

172.16.100.1/32 (1 entry, 1 announced)
 *Local Preference: 0
 Next hop type: Local
 Next-hop reference count: 11
 Interface: so-2/1/3.0
 State: <Active NoReadvrt Int>
 Local AS: 200
 Age: 24:36
 Task: IF
Announcement bits (2): 5-Resolve tree 2 6-Resolve tree 3
AS path: I

192.168.64.0/21 (1 entry, 1 announced)
*Direct Preference: 0
Next hop type: Interface
Next-hop reference count: 3
Next hop: via fxp0.0, selected
State: <Active Int>
Local AS: 200
Age: 21:39:47
Task: IF
Announcement bits (2): 5-Resolve tree 2 6-Resolve tree 3
AS path: I

192.168.70.19/32 (1 entry, 1 announced)
*Local Preference: 0
Next hop type: Local
Next-hop reference count: 11
Interface: fxp0.0
State: <Active NoReadvrt Int>
Local AS: 200
Age: 21:39:47
Task: IF
Announcement bits (2): 5-Resolve tree 2 6-Resolve tree 3
AS path: I

show route active-path terse
user@host> show route active-path terse

inet.0: 7 destinations, 7 routes (6 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.255.70.19/32</td>
<td>D</td>
<td>0</td>
<td></td>
<td>>lo0.0</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.50/32</td>
<td>I</td>
<td>15</td>
<td>10</td>
<td>>172.16.100.1.</td>
<td></td>
</tr>
<tr>
<td>* 172.16.100.0/24</td>
<td>D</td>
<td>0</td>
<td></td>
<td>>so-2/1/3.0</td>
<td></td>
</tr>
<tr>
<td>* 172.16.100.2/32</td>
<td>L</td>
<td>0</td>
<td></td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>* 192.168.64.0/21</td>
<td>D</td>
<td>0</td>
<td></td>
<td>>fxp0.0</td>
<td></td>
</tr>
<tr>
<td>* 192.168.70.19/32</td>
<td>L</td>
<td>0</td>
<td></td>
<td>Local</td>
<td></td>
</tr>
</tbody>
</table>
show route advertising-protocol

Syntax

```
show route advertising-protocol protocol neighbor-address
  <brief | detail | extensive | terse>
  <logical-system (all | logical-system-name)>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display the routing information as it has been prepared for advertisement to a particular neighbor of a particular dynamic routing protocol.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

neighbor-address—Address of the neighboring router to which the route entry is being transmitted.

protocol—Protocol transmitting the route:
 - bgp—Border Gateway Protocol
 - dvmrp—Distance Vector Multicast Routing Protocol
 - msdp—Multicast Source Discovery Protocol
 - pim—Protocol Independent Multicast
 - rip—Routing Information Protocol
 - ripng—Routing Information Protocol next generation

Additional Information
Routes displayed are routes that the routing table has exported into the routing protocol and that have been filtered by the associated protocol's export routing policy statements. Starting with Junos OS Release 13.3, you can display the routing instance table foo for any address family, on a VPN route reflector, or a VPN AS boundary router that is advertising local VPN routes. However, if you do not specify the table in the command, the output displays each VRF prefix twice.

Required Privilege Level
view
RELATED DOCUMENTATION

Example: Configuring the MED Attribute That Determines the Exit Point in an AS

List of Sample Output

- show route advertising-protocol bgp (Layer 3 VPN) on page 2391
- show route advertising-protocol bgp detail on page 2391
- show route advertising-protocol bgp detail (Aggregate Extended Community Bandwidth) on page 2392
- show route advertising-protocol bgp detail (Labeled Unicast) on page 2392
- show route advertising-protocol bgp detail (Layer 2 VPN) on page 2392
- show route advertising-protocol bgp detail (Layer 3 VPN) on page 2393
- show route advertising-protocol bgp extensive all (Next Hop Self with RIB-out IP Address) on page 2393

Output Fields

Table 138 on page 2388 lists the output fields for the `show route advertising-protocol` command. Output fields are listed in the approximate order in which they appear.

Table 138: show route advertising-protocol Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table—for example, inet.0.</td>
<td>All levels</td>
</tr>
<tr>
<td><code>number destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
<td>All levels</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• active (routes that are active)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• holdown (routes that are in the pending state before being declared inactive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hidden (routes that are not used because of a routing policy)</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>Destination prefix.</td>
<td>brief none</td>
</tr>
<tr>
<td><code>destination-prefix</code> (entry, announced)</td>
<td>Destination prefix. The entry value is the number of routes for this destination, and the announced value is the number of routes being announced for this destination.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>BGP group and type</td>
<td>BGP group name and type (Internal or External).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Distinguisher</td>
<td>Unique 64-bit prefix augmenting each IP subnet.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 138: show route advertising-protocol Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertised Label</td>
<td>Incoming label advertised by the Label Distribution Protocol (LDP). When an IP packet enters a label-switched path (LSP), the ingress router examines the packet and assigns it a label based on its destination, placing the label in the packet’s header. The label transforms the packet from one that is forwarded based on its IP routing information to one that is forwarded based on information associated with the label.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Label-Base, range</td>
<td>First label in a block of labels and label block size. A remote PE router uses this first label when sending traffic toward the advertising PE router.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>VPN Label</td>
<td>Virtual private network (VPN) label. Packets are sent between CE and PE routers by advertising VPN labels. VPN labels transit over either a Resource Reservation Protocol (RSVP) or a Label Distribution Protocol (LDP) label-switched path (LSP) tunnel.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Nexthop</td>
<td>Next hop to the destination. An angle bracket (>) indicates that the route is the selected route.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>If the next-hop advertisement to the peer is Self, and the RIB-out next hop is a specific IP address, the RIB-out IP address is included in the extensive output. See show route advertising-protocol bgp extensive all (Next Hop Self with RIB-out IP Address) on page 2393.</td>
<td></td>
</tr>
<tr>
<td>MED</td>
<td>Multiple exit discriminator value included in the route.</td>
<td>brief</td>
</tr>
<tr>
<td>Lclpref or Localpref</td>
<td>Local preference value included in the route.</td>
<td>All levels</td>
</tr>
<tr>
<td>Queued</td>
<td>When BGP route prioritization is enabled and a route is present in a priority queue, this shows which priority queue the route is in.</td>
<td>All levels except brief</td>
</tr>
</tbody>
</table>
Table 138: show route advertising-protocol Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path</td>
<td>AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated: • I—IGP. • E—EGP. • ?—Incomplete; typically, the AS path was aggregated. When AS path numbers are included in the route, the format is as follows: • []—Brackets enclose the local AS number associated with the AS path if configured on the router, or if AS path prepending is configured. • {}—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order. • ()—Parentheses enclose a confederation. • ([])—Parentheses and brackets enclose a confederation set. NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance.</td>
<td>All levels</td>
</tr>
<tr>
<td>Route Labels</td>
<td>Stack of labels carried in the BGP route update.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Cluster list</td>
<td>(For route reflected output only) Cluster ID sent by the route reflector.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Originator ID</td>
<td>(For route reflected output only) Address of routing device that originally sent the route to the route reflector.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Communities</td>
<td>Community path attribute for the route. See the output field table for the show route detail command for all possible values for this field.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>AIGP</td>
<td>Accumulated interior gateway protocol (AIGP) BGP attribute.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Attrset AS</td>
<td>Number, local preference, and path of the autonomous system (AS) that originated the route. These values are stored in the Attrset attribute at the originating router.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Layer2-info: encaps</td>
<td>Layer 2 encapsulation (for example, VPLS).</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 138: show route advertising-protocol Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>control flags</td>
<td>Control flags: none or Site Down.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>mtu</td>
<td>Maximum transmission unit (MTU) of the Layer 2 circuit.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

show route advertising-protocol bgp (Layer 3 VPN)

```bash
user@host> show route advertising-protocol bgp 10.255.14.171

VPN-A.inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
Prefix       Nexthop       MED     Localpref AS path
10.255.14.172/32 Self   1       100 I

VPN-B.inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
Prefix       Nexthop       MED     Localpref AS path
10.255.14.181/32 Self   2       100 I
```

show route advertising-protocol bgp detail

```bash
user@host> show route advertising-protocol bgp detail 111.222.1.3

bgp20.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
111.222.1.11/32 (1 entry, 1 announced)
  BGP group pe-pe type Internal
    Route Distinguisher: 111.255.14.11:69
    Advertised Label: 100000
    next hop: Self
    Localpref: 100
    AS path: 2 I
    Communities: target:69:20
    AIGP 210
111.8.0.0/16 (1 entry, 1 announced)
  BGP group pe-pe type Internal
    Route Distinguisher: 111.255.14.11:69
    Advertised Label: 100000
    Next hop: Self
    Localpref: 100
    AS path: 2 I
```
Communities: target:69:20
AIGP 210

show route advertising-protocol bgp detail (Aggregate Extended Community Bandwidth)
user@host> show route advertising-protocol bgp 10.0.2.0/30 detail

inet.0: 20 destinations, 26 routes (20 active, 0 holddown, 0 hidden)
* 10.0.2.0/30 (2 entries, 1 announced)
 BGP group external2 type External
 Nexthop: Self
 AS path: [65000] 65001 I
 Communities: bandwidth:65000:80000000

show route advertising-protocol bgp detail (Labeled Unicast)
user@host> show route advertising bgp 1.1.1.3 detail

inet.0: 69 destinations, 70 routes (69 active, 0 holddown, 0 hidden)
* 1.1.1.8/32 (2 entries, 2 announced)
 BGP group ibgp type Internal
 Route Labels: 1000123(top) 1000124 1000125 1000126
 Nexthop: 1.1.1.4
 MED: 7
 Localpref: 100
 AS path: [5] I
 Cluster ID: 3.3.3.3
 Originator ID: 1.1.1.1
 Entropy label capable
 inet6.0: 26 destinations, 28 routes (26 active, 0 holddown, 0 hidden)
 * 100::1/128 (2 entries, 1 announced)
 BGP group ibgp type Internal
 Labels: 1000123(top) 1000124 1000125 1000126
 Nexthop: ::ffff:1.1.1.4
 Localpref: 100
 AS path: [5] I
 Cluster ID: 3.3.3.3
 Originator ID: 1.1.1.1

show route advertising-protocol bgp detail (Layer 2 VPN)
user@host> show route advertising-protocol bgp 192.168.24.1 detail
vpn-a.l2vpn.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
192.168.16.1:1:1:1/96 (1 entry, 1 announced)

BGP group int type Internal
 Route Distinguisher: 192.168.16.1:1
 Label-base: 32768, range: 3
 Nexthop: Self
 Localpref: 100
 AS path: I
 Communities: target:65412:100
 AIGP 210
 Layer2-info: encaps:VLAN, control flags:, mtu:

show route advertising-protocol bgp detail (Layer 3 VPN)

user@host> show route advertising-protocol bgp 10.255.14.176 detail

vpna.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
* 10.49.0.0/30 (1 entry, 1 announced)

BGP group ibgp type Internal
 Route Distinguisher: 10.255.14.174:2
 VPN Label: 101264
 Nexthop: Self
 Localpref: 100
 AS path: I
 Communities: target:200:100
 AIGP 210
 AttrSet AS: 100
 Localpref: 100
 AS path: I

show route advertising-protocol bgp extensive all (Next Hop Self with RIB-out IP Address)

user@host> show route advertising-protocol bgp 200.0.0.2170.0.1.0/24 extensive all

inet.0: 13 destinations, 19 routes (13 active, 0 holddown, 6 hidden)
 170.0.1.0/24 (2 entries, 1 announced)

BGP group eBGP-INTEROP type External
 Nexthop: Self (rib-out 10.100.3.2)
 AS path: [4713] 200 I

...
show route all

List of Syntax

Syntax on page 2394
Syntax (EX Series Switches) on page 2394

Syntax

```
show route all
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route all
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display information about all routes in all routing tables, including private, or internal, tables.

Options

- **none**—Display information about all routes in all routing tables, including private, or internal, tables.
- **logical-system (all | logical-system-name)**—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

view

RELATED DOCUMENTATION

| show route brief | 2404 |
| show route detail | 2418 |

List of Sample Output

show route all on page 2395

Output Fields
In Junos OS Release 9.5 and later, only the output fields for the `show route all` command display all routing tables, including private, or hidden, routing tables. The output field table of the `show route` command does not display entries for private, or hidden, routing tables in Junos OS Release 9.5 and later.

Sample Output

show route all

The following example displays a snippet of output from the `show route` command and then displays the same snippet of output from the `show route all` command:

```
user@host> show route

mpls.0: 7 destinations, 7 routes (5 active, 0 holddown, 2 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
0  *[MPLS/0] 2d 02:24:39, metric 1
   Receive
1  *[MPLS/0] 2d 02:24:39, metric 1
   Receive
2  *[MPLS/0] 2d 02:24:39, metric 1
   Receive
800017  *[VPLS/7] 1d 14:00:16
   > via vt-3/2/0.32769, Pop
800018  *[VPLS/7] 1d 14:00:26
   > via vt-3/2/0.32772, Pop

user@host> show route all

mpls.0: 7 destinations, 7 routes (5 active, 0 holddown, 2 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
0  *[MPLS/0] 2d 02:19:12, metric 1
   Receive
1  *[MPLS/0] 2d 02:19:12, metric 1
   Receive
2  *[MPLS/0] 2d 02:19:12, metric 1
   Receive
800017  *[VPLS/7] 1d 13:54:49
   > via vt-3/2/0.32769, Pop
800018  *[VPLS/7] 1d 13:54:59
   > via vt-3/2/0.32772, Pop
vt-3/2/0.32769  [VPLS/7] 1d 13:54:49
```
show route aspath-regex

List of Syntax
Syntax on page 2397
Syntax (EX Series Switches) on page 2397

Syntax

```
show route aspath-regex regular-expression
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route aspath-regex regular-expression
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the entries in the routing table that match the specified autonomous system (AS) path regular expression.

Options

`regular-expression`—Regular expression that matches an entire AS path.

`logical-system (all | logical-system-name)`—(Optional) Perform this operation on all logical systems or on a particular logical system.

Additional Information
You can specify a regular expression as:

- An individual AS number
- A period wildcard used in place of an AS number
- An AS path regular expression that is enclosed in parentheses

You also can include the operators described in the table of AS path regular expression operators in the Junos Policy Framework Configuration Guide. The following list summarizes these operators:

- `{m,n}`—At least m and at most n repetitions of the AS path term.
- `{m}`—Exactly m repetitions of the AS path term.
- `{m,}`—m or more repetitions of the AS path term.
• *—Zero or more repetitions of an AS path term.

• +—One or more repetitions of an AS path term.

• ?—Zero or one repetition of an AS path term.

• aspath_term | aspath_term—Match one of the two AS path terms.

When you specify more than one AS number or path term, or when you include an operator in the regular expression, enclose the entire regular expression in quotation marks. For example, to match any path that contains AS number 234, specify the following command:

```
show route aspath-regex ".*234.*"
```

Required Privilege Level

view

RELATED DOCUMENTATION

Example: Using AS Path Regular Expressions | 407

List of Sample Output

- show route aspath-regex (Matching a Specific AS Number) on page 2398
- show route aspath-regex (Matching Any Path with Two AS Numbers) on page 2399

Output Fields

For information about output fields, see the output field table for the `show route` command.

Sample Output

show route aspath-regex (Matching a Specific AS Number)

```
user@host> show route aspath-regex 65477

inet.0: 46411 destinations, 46411 routes (46409 active, 0 holddown, 2 hidden)
+ = Active Route, - = Last Active, * = Both

111.222.1.0/25 *[BGP/170] 00:08:48, localpref 100, from 111.222.2.24
   AS Path: [65477] ((65548 65536)) IGP
   to 111.222.18.225 via fpa0.0(111.222.18.233)

111.222.1.128/25 *[IS-IS/15] 09:15:37, metric 37, tag 1
   to 111.222.18.225 via fpa0.0(111.222.18.233)
```
show route aspath-regex (Matching Any Path with Two AS Numbers)

user@host> show route aspath-regex ".*2343561.*"

inet.0: 46351 destinations, 46351 routes (46349 active, 0 holddown, 2 hidden)
+ = Active Route, - = Last Active, * = Both

9.20.0.0/17 *[BGP/170] 01:35:00, localpref 100, from 131.103.20.49
AS Path: [666] 234 3561 2685 2686 Incomplete
 to 192.156.169.1 via 192.156.169.14(so-0/0/0)

12.10.231.0/24 *[BGP/170] 01:35:00, localpref 100, from 131.103.20.49
AS Path: [666] 234 3561 5696 7369 IGP
 to 192.156.169.1 via 192.156.169.14(so-0/0/0)

24.64.32.0/19 *[BGP/170] 01:34:59, localpref 100, from 131.103.20.49
AS Path: [666] 234 3561 6327 IGP
 to 192.156.169.1 via 192.156.169.14(so-0/0/0)

...
show route best

List of Syntax
Syntax on page 2400
Syntax (EX Series Switches) on page 2400

Syntax

```
show route best destination-prefix
  <brief | detail | extensive | terse>
  <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route best destination-prefix
  <brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the route in the routing table that is the best route to the specified address or range of addresses. The best route is the longest matching route.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

destination-prefix—Address or range of addresses.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

RELATED DOCUMENTATION

- show route brief | 2404
- show route detail | 2418
List of Sample Output
show route best on page 2401
show route best detail on page 2401
show route best extensive on page 2403
show route best terse on page 2403

Output Fields
For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.

Sample Output

show route best
user@host> show route best 10.255.70.103

inet.0: 24 destinations, 25 routes (23 active, 0 holddown, 1 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
10.255.70.103/32 *[OSPF/10] 1d 13:19:20, metric 2
 > to 10.31.1.6 via ge-3/1/0.0
 via so-0/3/0.0

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
10.255.70.103/32 *[RSVP/7] 1d 13:20:13, metric 2
 > via so-0/3/0.0, label-switched-path green-r1-r3

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.0.0.0/8 *[Direct/0] 2d 01:43:34
 > via fxp2.0
 [Direct/0] 2d 01:43:34
 > via fxp1.0

show route best detail
user@host> show route best 10.255.70.103 detail

inet.0: 24 destinations, 25 routes (23 active, 0 holddown, 1 hidden)
Restart Complete
10.255.70.103/32 (1 entry, 1 announced)
 *OSPF Preference: 10
 Next-hop reference count: 9
 Next hop: 10.31.1.6 via ge-3/1/0.0, selected
 Next hop: via so-0/3/0.0
 State: <Active Int>
 Local AS: 69
 Age: 1d 13:20:06 Metric: 2
 Area: 0.0.0.0
 Task: OSPF
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete
10.255.70.103/32 (1 entry, 1 announced)
 State: <FlashAll>
 *RSVP Preference: 7
 Next-hop reference count: 5
 Next hop: via so-0/3/0.0 weight 0x1, selected
 Label-switched-path green-r1-r3
 Label operation: Push 100016
 State: <Active Int>
 Local AS: 69
 Age: 1d 13:20:59 Metric: 2
 Task: RSVP
 Announcement bits (1): 1-Resolve tree 2
 AS path: I

private1__inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
10.0.0.0/8 (2 entries, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via fxp2.0, selected
 State: <Active Int>
 Age: 2d 1:44:20
 Task: IF
 AS path: I
 Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via fxp1.0, selected
 State: <NotBest Int>
show route best extensive

The output for the **show route best extensive** command is identical to that for the **show route best detail** command. For sample output, see **show route best detail on page 2401**.

show route best terse

```bash
user@host> show route best 10.255.70.103 terse
```

```plaintext
inet.0: 24 destinations, 25 routes (23 active, 0 holddown, 1 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

A Destination        P Prf   Metric 1   Metric 2  Next hop        AS path
* 10.255.70.103/32   O  10          2            >10.31.1.6
                                so-0/3/0.0

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

A Destination        P Prf   Metric 1   Metric 2  Next hop        AS path
* 10.255.70.103/32   R   7          2            >so-0/3/0.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A Destination        P Prf   Metric 1   Metric 2  Next hop        AS path
* 10.0.0.0/8         D  0                       >fxp2.0
                      D  0                       >fxp1.0
```
show route brief

List of Syntax

Syntax on page 2404
Syntax (EX Series Switches) on page 2404

Syntax

```
show route brief
  <destination-prefix>
  <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route brief
  <destination-prefix>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display brief information about the active entries in the routing tables.

Options

none—Display all active entries in the routing table.

destination-prefix—(Optional) Display active entries for the specified address or range of addresses.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

view

RELATED DOCUMENTATION

```
show route all | 2394
show route best | 2400
```

List of Sample Output

show route brief on page 2405
Output Fields
For information about output fields, see the Output Field table of the show route command.

Sample Output

show route brief

user@host> show route brief

inet.0: 10 destinations, 10 routes (9 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 1w5d 20:30:29
 Discard
10.255.245.51/32 *[Direct/0] 2w4d 13:11:14
 > via lo0.0
172.16.0.0/12 *[Static/5] 1w5d 20:30:29
 > to 192.168.167.254 via fxp0.0
192.168.0.0/18 *[Static/5] 1w5d 20:30:29
 > to 192.168.167.254 via fxp0.0
192.168.40.0/22 *[Static/5] 2w4d 13:11:14
 > to 192.168.167.254 via fxp0.0
192.168.64.0/18 *[Static/5] 2w4d 13:11:14
 > to 192.168.167.254 via fxp0.0
192.168.164.0/22 *[Direct/0] 2w4d 13:11:14
 > via fxp0.0
192.168.164.51/32 *[Local/0] 2w4d 13:11:14
 Local via fxp0.0
207.17.136.192/32 *[Static/5] 2w4d 13:11:14
 > to 192.168.167.254 via fxp0.0

green.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
100.101.0.0/16 *[Direct/0] 1w5d 20:30:28
 > via fe-0/0/3.0
100.101.2.3/32 *[Local/0] 1w5d 20:30:28
 Local via fe-0/0/3.0
172.16.233.5/32 *[OSPF/10] 1w5d 20:30:29, metric 1
 MultiRecv
show route community

List of Syntax
Syntax on page 2406
Syntax (EX Series Switches) on page 2406

Syntax

show route community as-number:community-value
 <brief | detail | extensive | terse>
 <logical-system (all | logical-system-name)>

Syntax (EX Series Switches)

show route community as-number:community-value
 <brief | detail | extensive | terse>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the route entries in each routing table that are members of a Border Gateway Protocol (BGP) community.

Options

as-number:community-value—One or more community identifiers. as-number is the AS number, and community-value is the community identifier. When you specify more than one community identifier, enclose the identifiers in double quotation marks. Community identifiers can include wildcards.

For example:

user@host> show route table inet.0 protocol bgp community "12083:6015" community "12083:65551"

or

user@host> show route table inet.0 protocol bgp community [12083:6014 12083:65551]

brief | detail | extensive | terse—(Optional) Display the specified level of output.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.
Additional Information
Specifying the community option displays all routes matching the community found within the routing table. The community option does not limit the output to only the routes being advertised to the neighbor after any egress routing policy.

Required Privilege Level
view

RELATED DOCUMENTATION
- show route detail | 2418

List of Sample Output
show route community on page 2407

Output Fields
For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.

Sample Output
show route community

```
user@host> show route community 234:80

inet.0: 46511 destinations, 46511 routes (46509 active, 0 holddown, 2 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.4.0/8   *[BGP/170] 03:33:07, localpref 100, from 131.103.20.49
   AS Path: (666) 234 2548 1 IGP
   to 192.156.169.1 via 192.156.169.14(so-0/0/0)
172.16.6.0/8   *[BGP/170] 03:33:07, localpref 100, from 131.103.20.49
   AS Path: (666) 234 2548 568 721 Incomplete
   to 192.156.169.1 via 192.156.169.14(so-0/0/0)
172.16.92.0/16 *[BGP/170] 03:33:06, localpref 100, from 131.103.20.49
   AS Path: (666) 234 2548 1673 1675 1747 IGP
   to 192.156.169.1 via 192.156.169.14(so-0/0/0)
```

show route community-name

List of Syntax
Syntax on page 2408
Syntax (EX Series Switches) on page 2408

Syntax

show route community-name community-name
 <brief | detail | extensive | terse>
 <logical-system (all | logical-system-name)>

Syntax (EX Series Switches)

show route community-name community-name
 <brief | detail | extensive | terse>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the route entries in each routing table that are members of a Border Gateway Protocol (BGP) community, specified by a community name.

Options
community-name—Name of the community.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

List of Sample Output
show route community-name on page 2409

Output Fields
For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.
Sample Output

show route community-name

```
user@host> show route community-name red-com

inet.0: 17 destinations, 17 routes (16 active, 0 holddown, 1 hidden)
inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
instance1.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
red.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.245.212/32  *[BGP/170] 00:04:40, localpref 100, from 10.255.245.204
     AS path: 300 I
     > to 172.16.100.1 via ge-1/1/0.0, label-switched-path to_fix

172.16.20.20/32   *[BGP/170] 00:04:40, localpref 100, from 10.255.245.204
     AS path: I
     > to 172.16.100.1 via ge-1/1/0.0, label-switched-path to_fix

172.16.100.0/24    *[BGP/170] 00:04:40, localpref 100, from 10.255.245.204
     AS path: I
     > to 172.16.100.1 via ge-1/1/0.0, label-switched-path to_fix

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

bgp.l3vpn.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.245.204:10:10.255.245.212/32
    *[BGP/170] 00:06:40, localpref 100, from 10.255.245.204
     AS path: 300 I
     > to 172.16.100.1 via ge-1/1/0.0, label-switched-path to_fix

10.255.245.204:10:172.16.20.20/32
    *[BGP/170] 00:36:02, localpref 100, from 10.255.245.204
     AS path: I
     > to 172.16.100.1 via ge-1/1/0.0, label-switched-path to_fix

10.255.245.204:10:172.16.100.0/24
    *[BGP/170] 00:36:02, localpref 100, from 10.255.245.204
     AS path: I
     > to 172.16.100.1 via ge-1/1/0.0, label-switched-path to_fix
```
inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

instance1.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
show route damping

List of Syntax
Syntax on page 2411
Syntax (EX Series Switch and QFX Series) on page 2411

Syntax

```
show route damping (decayed | history | suppressed)
<brief | detail | extensive | terse>
logical-system (all | logical-system-name)
```

Syntax (EX Series Switch and QFX Series)

```
show route damping (decayed | history | suppressed)
<brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display the BGP routes for which updates might have been reduced because of route flap damping.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

decayed—Display route damping entries that might no longer be valid, but are not suppressed.

history—Display entries that have already been withdrawn, but have been logged.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

suppressed—Display entries that have been suppressed and are no longer being installed into the forwarding table or exported by routing protocols.

Required Privilege Level
view
RELATED DOCUMENTATION

- `clear bgp damping`
- `show policy damping`

List of Sample Output
- `show route damping decayed detail on page 2415`
- `show route damping history on page 2416`
- `show route damping history detail on page 2416`

Output Fields

Table 139 on page 2412 lists the output fields for the `show route damping` command. Output fields are listed in the approximate order in which they appear.

Table 139: show route damping Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table—for example, inet.0.</td>
<td>All levels</td>
</tr>
<tr>
<td><code>destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
<td>All levels</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• active</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <code>holddown</code> (routes that are in a pending state before being declared inactive)</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <code>hidden</code> (the routes are not used because of a routing policy)</td>
<td>All levels</td>
</tr>
<tr>
<td><code>destination-prefix</code></td>
<td>Destination prefix. The <code>entry</code> value is the number of routes for this destination, and the <code>announced</code> value is the number of routes being announced for this destination.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>(<code>entry, announced</code>)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 139: show route damping Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>[protocol, preference]</td>
<td>Protocol from which the route was learned and the preference value for the route.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• +—A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• - —A hyphen indicates the last active route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• *—An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1’s complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value and a lower Preference2 value.</td>
<td></td>
</tr>
<tr>
<td>Next-hop reference count</td>
<td>Number of references made to the next hop.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Source</td>
<td>IP address of the route source.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Next hop</td>
<td>Network layer address of the directly reachable neighboring system.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>via</td>
<td>Interface used to reach the next hop. If there is more than one interface available to the next hop, the interface that is actually used is followed by the word Selected.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Protocol next hop</td>
<td>Network layer address of the remote routing device that advertised the prefix. This address is used to derive a forwarding next hop.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Indirect next hop</td>
<td>Index designation used to specify the mapping between protocol next hops, tags, kernel export policy, and the forwarding next hops.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>State</td>
<td>Flags for this route. For a description of possible values for this field, see the output field table for the show route detail command.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local AS</td>
<td>AS number of the local routing device.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Peer AS</td>
<td>AS number of the peer routing device.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 139: show route damping Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>How long the route has been known.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Metric</td>
<td>Metric for the route.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Task</td>
<td>Name of the protocol that has added the route.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Announcement bits</td>
<td>List of protocols that announce this route. (n)-\texttt{Resolve inet} indicates that the route is used for route resolution for next hops found in the routing table. (n) is an index used by Juniper Networks customer support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
| AS path | AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:

- I—IGP.
- E—EGP.
- ?—Incomplete; typically, the AS path was aggregated.
When AS path numbers are included in the route, the format is as follows:

- []—Brackets enclose the local AS number associated with the AS path if more than one AS number is configured on the routing device or if AS path prepending is configured.
- {}—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.
- ()—Parentheses enclose a confederation.
- ([])—Parentheses and brackets enclose a confederation set.

NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance. |
| to | Next hop to the destination. An angle bracket \(>\) indicates that the route is the selected route. | brief none |
| via | Interface used to reach the next hop. If there is more than one interface available to the next hop, the interface that is actually used is followed by the word \texttt{Selected}. | brief none |
Table 139: show route damping Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communities</td>
<td>Community path attribute for the route. See the output field table for the show route detail command.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Localpref</td>
<td>Local preference value included in the route.</td>
<td>All levels</td>
</tr>
<tr>
<td>Router ID</td>
<td>BGP router ID as advertised by the neighbor in the open message.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Merit (last update/now)</td>
<td>Last updated and current figure-of-merit value.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>damping-parameters</td>
<td>Name that identifies the damping parameters used, which is defined in the damping statement at the [edit policy-options] hierarchy level.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Last update</td>
<td>Time of most recent change in path attributes.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>First update</td>
<td>Time of first change in path attributes, which started the route damping process.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flaps</td>
<td>Number of times the route has gone up or down or its path attributes have changed.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Suppressed</td>
<td>(suppressed keyword only) This route is currently suppressed. A suppressed route does not appear in the forwarding table and routing protocols do not export it.</td>
<td>All levels</td>
</tr>
<tr>
<td>Reusable in</td>
<td>(suppressed keyword only) Time when a suppressed route will again be available.</td>
<td>All levels</td>
</tr>
<tr>
<td>Preference will be</td>
<td>(suppressed keyword only) Preference value that will be applied to the route when it is again active.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show route damping decayed detail

```bash
user@host> show route damping decayed detail

inet.0: 173319 destinations, 1533668 routes (172625 active, 4 holddown, 108083 hidden)
```
10.0.111.0/24 (7 entries, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 151973
 Source: 172.23.2.129
 Next hop: via so-1/2/0.0
 Next hop: via so-5/1/0.0, selected
 Next hop: via so-6/0/0.0
 Protocol next hop: 172.23.2.129
 Indirect next hop: 89a1a00 264185
 State: <Active Ext>
 Local AS: 64500 Peer AS: 64490
 Age: 3:28 Metric2: 0
 Task: BGP_64490.172.23.2.129+179
 Announcement bits (6): 0-KRT 1-RT 4-KRT 5-BGP.0.0.0.0+179

 6-Resolve tree 2 7-Resolve tree 3
 AS path: 64499 64510 645511 645511 645511 I ()
 Localpref: 100
 Router ID: 172.23.2.129
 Merit (last update/now): 1934/1790
 damping-parameters: damping-high
 Last update: 00:03:28 First update: 00:06:40
 Flaps: 2

show route damping history
user@host> show route damping history

inet.0: 173320 destinations, 1533529 routes (172624 active, 6 holddown, 108122 hidden)
+ = Active Route, - = Last Active, * = Both

 10.108.0.0/15 [BGP] 2d 22:47:58, localpref 100
 AS path: 64220 65541 65542 I
 > to 192.168.60.85 via so-3/1/0.0

show route damping history detail
user@host> show route damping history detail

inet.0: 173319 destinations, 1533435 routes (172627 active, 2 holddown, 108105 hidden)
10.108.0.0/15 (3 entries, 1 announced)

BGP

Next-hop reference count: 69058
Source: 192.168.60.85
Next hop: 192.168.60.85 via so-3/1/0.0, selected
State: <Hidden Ext>
Inactive reason: Unusable path
Local AS: 64500 Peer AS: 64220
Age: 2d 22:48:10
Task: BGP_64220.192.168.60.85+179
AS path: 64220 65541 65542 I ()
Communities: 65541:390 65541:2000 65541:3000 65504:3561
Localpref: 100
Router ID: 192.168.80.25
Merit (last update/now): 1000/932
damping-parameters: set-normal
Last update: 00:01:05 First update: 00:01:05
Flaps: 1
show route detail

List of Syntax
Syntax on page 2418
Syntax (EX Series Switches) on page 2418

Syntax

show route detail
<destination-prefix>
<logical-system (all | logical-system-name)>

Syntax (EX Series Switches)

show route detail
<destination-prefix>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 13.2X51-D15 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display detailed information about the active entries in the routing tables.

Options
none—Display all active entries in the routing table on all systems.

destination-prefix—(Optional) Display active entries for the specified address or range of addresses.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

List of Sample Output
show route detail on page 2432
show route detail (with BGP Multipath) on page 2440
show route label detail (Multipoint LDP Inband Signaling for Point-to-Multipoint LSPs) on page 2441
show route label detail (Multipoint LDP with Multicast-Only Fast Reroute) on page 2442
show route detail (Flexible VXLAN Tunnel Profile) on page 2443
Output Fields

Table 140 on page 2419 describes the output fields for the `show route detail` command. Output fields are listed in the approximate order in which they appear.

Table 140: show route detail Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table (for example, inet.0).</td>
</tr>
<tr>
<td><code>number destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
</tr>
<tr>
<td></td>
<td>• active (routes that are active)</td>
</tr>
<tr>
<td></td>
<td>• holddown (routes that are in the pending state before being declared inactive)</td>
</tr>
<tr>
<td></td>
<td>• hidden (routes that are not used because of a routing policy)</td>
</tr>
<tr>
<td><code>route-destination</code></td>
<td>Route destination (for example: 10.0.0.1/24). The <code>entry</code> value is the number of routes for this destination, and the <code>announced</code> value is the number of routes being announced for this destination. Sometimes the route destination is presented in another format, such as:</td>
</tr>
<tr>
<td></td>
<td>• MPLS-label (for example, 80001).</td>
</tr>
<tr>
<td></td>
<td>• interface-name (for example, ge-1/0/2).</td>
</tr>
<tr>
<td></td>
<td>• <code>neighbor-address:control-word-status:encapsulation type:vc-id:source</code> (Layer 2 circuit only; for example, 10.1.1.195:NoCtrlWord:1:1:Local/96).</td>
</tr>
<tr>
<td></td>
<td>• <code>neighbor-address</code>—Address of the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• <code>control-word-status</code>—Whether the use of the control word has been negotiated for this virtual circuit: NoCtrlWord or CtrlWord.</td>
</tr>
<tr>
<td></td>
<td>• <code>encapsulation type</code>—Type of encapsulation, represented by a number: (1) Frame Relay DLCI, (2) ATM AAL5 VCC transport, (3) ATM transparent cell transport, (4) Ethernet, (5) VLAN Ethernet, (6) HDLC, (7) PPP, (8) ATM VCC cell transport, (10) ATM VPC cell transport.</td>
</tr>
<tr>
<td></td>
<td>• <code>vc-id</code>—Virtual circuit identifier.</td>
</tr>
<tr>
<td></td>
<td>• <code>source</code>—Source of the advertisement: Local or Remote.</td>
</tr>
<tr>
<td></td>
<td>• <code>source</code>—Source of the advertisement: Local or Remote.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>label stacking</td>
<td>(Next-to-the-last-hop routing device for MPLS only) Depth of the MPLS label stack, where the label-popping operation is needed to remove one or more labels from the top of the stack. A pair of routes is displayed, because the pop operation is performed only when the stack depth is two or more labels.</td>
</tr>
<tr>
<td></td>
<td>* S=0 route indicates that a packet with an incoming label stack depth of 2 or more exits this routing device with one fewer label (the label-popping operation is performed).</td>
</tr>
<tr>
<td></td>
<td>* If there is no S= information, the route is a normal MPLS route, which has a stack depth of 1 (the label-popping operation is not performed).</td>
</tr>
</tbody>
</table>
Table 140: show route detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[protocol, preference]</td>
<td>Protocol from which the route was learned and the preference value for the route.</td>
</tr>
</tbody>
</table>

- A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.
- A hyphen indicates the last active route.
- An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.

In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1's complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value.

Preference2 values are signed integers, that is, Preference2 values can be either positive or negative values. However, Junos OS evaluates Preference2 values as unsigned integers that are represented by positive values. Based on the Preference2 values, Junos OS evaluates a preferred route differently in the following scenarios:

- **Both Signed Preference2 values**
 - Route A = -101
 - Route B = -156

 Where both the Preference2 values are signed, Junos OS evaluates only the unsigned value of Preference2 and Route A, which has a lower Preference2 value is preferred.

- **Unsigned Preference2 values**

 Now consider both unsigned Preference2 values:
 - Route A = 4294967096
 - Route B = 200

 Here, Junos OS considers the lesser Preference2 value and Route B with a Preference2 value of 200 is preferred because it is less than 4294967096.

- **Combination of signed and unsigned Preference2 values**

 When Preference2 values of two routes are compared, and for one route the Preference2 is a signed value, and for the other route it is an unsigned value, Junos OS prefers the route with the positive Preference2 value over the negative Preference2 value. For example, consider the following signed and unsigned Preference2 values:
 - Route A = -200
 - Route B = 200

 In this case, Route B with a Preference2 value of 200 is preferred although this value is greater than -200, because Junos OS evaluates only the unsigned value of the Preference2 value.
(IS-IS only). In IS-IS, a single AS can be divided into smaller groups called areas. Routing between areas is organized hierarchically, allowing a domain to be administratively divided into smaller areas. This organization is accomplished by configuring Level 1 and Level 2 intermediate systems. Level 1 systems route within an area. When the destination is outside an area, they route toward a Level 2 system. Level 2 intermediate systems route between areas and toward other ASs.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>(IS-IS only). In IS-IS, a single AS can be divided into smaller groups called areas. Routing between areas is organized hierarchically, allowing a domain to be administratively divided into smaller areas. This organization is accomplished by configuring Level 1 and Level 2 intermediate systems. Level 1 systems route within an area. When the destination is outside an area, they route toward a Level 2 system. Level 2 intermediate systems route between areas and toward other ASs.</td>
</tr>
<tr>
<td>Route Distinguisher</td>
<td>IP subnet augmented with a 64-bit prefix.</td>
</tr>
<tr>
<td>PMSI</td>
<td>Provider multicast service interface (MVPN routing table).</td>
</tr>
<tr>
<td>Next-hop type</td>
<td>Type of next hop. For a description of possible values for this field, see Table 141 on page 2426.</td>
</tr>
<tr>
<td>Next-hop reference count</td>
<td>Number of references made to the next hop.</td>
</tr>
<tr>
<td>Flood nexthop branches exceed maximum message</td>
<td>Indicates that the number of flood next-hop branches exceeded the system limit of 32 branches, and only a subset of the flood next-hop branches were installed in the kernel.</td>
</tr>
<tr>
<td>Source</td>
<td>IP address of the route source.</td>
</tr>
<tr>
<td>Next hop</td>
<td>Network layer address of the directly reachable neighboring system.</td>
</tr>
<tr>
<td>via</td>
<td>Interface used to reach the next hop. If there is more than one interface available to the next hop, the name of the interface that is actually used is followed by the word Selected. This field can also contain the following information:</td>
</tr>
<tr>
<td></td>
<td>• Weight—Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.</td>
</tr>
<tr>
<td></td>
<td>• Balance—Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a routing device is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing.</td>
</tr>
<tr>
<td>Label-switched-path</td>
<td>Name of the LSP used to reach the next hop.</td>
</tr>
<tr>
<td>Lsp-path-name</td>
<td>Name of the LSP used to reach the next hop.</td>
</tr>
</tbody>
</table>
Table 140: show route detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label operation</td>
<td>MPLS label and operation occurring at this routing device. The operation can be pop (where a label is removed from the top of the stack), push (where another label is added to the label stack), or swap (where a label is replaced by another label).</td>
</tr>
<tr>
<td>Interface</td>
<td>(Local only) Local interface name.</td>
</tr>
<tr>
<td>Protocol next hop</td>
<td>Network layer address of the remote routing device that advertised the prefix. This address is used to derive a forwarding next hop.</td>
</tr>
<tr>
<td>Indirect next hop</td>
<td>Index designation used to specify the mapping between protocol next hops, tags, kernel export policy, and the forwarding next hops.</td>
</tr>
<tr>
<td>State</td>
<td>State of the route (a route can be in more than one state). See Table 142 on page 2428.</td>
</tr>
<tr>
<td>Local AS</td>
<td>AS number of the local routing device.</td>
</tr>
<tr>
<td>Age</td>
<td>How long the route has been known.</td>
</tr>
<tr>
<td>AIGP</td>
<td>Accumulated interior gateway protocol (AIGP) BGP attribute.</td>
</tr>
<tr>
<td>Metricn</td>
<td>Cost value of the indicated route. For routes within an AS, the cost is determined by IGP and the individual protocol metrics. For external routes, destinations, or routing domains, the cost is determined by a preference value.</td>
</tr>
<tr>
<td>MED-plus-IGP</td>
<td>Metric value for BGP path selection to which the IGP cost to the next-hop destination has been added.</td>
</tr>
<tr>
<td>TTL-Action</td>
<td>For MPLS LSPs, state of the TTL propagation attribute. Can be enabled or disabled for all RSVP-signaled and LDP-signaled LSPs or for specific VRF routing instances.</td>
</tr>
<tr>
<td></td>
<td>For sample output, see show route table.</td>
</tr>
<tr>
<td>Task</td>
<td>Name of the protocol that has added the route.</td>
</tr>
<tr>
<td>Announcement bits</td>
<td>The number of BGP peers or protocols to which Junos OS has announced this route, followed by the list of the recipients of the announcement. Junos OS can also announce the route to the KRT for installing the route into the Packet Forwarding Engine, to a resolve tree, a L2 VC, or even a VPN. For example, n-Resolve inet indicates that the specified route is used for route resolution for next hops found in the routing table.</td>
</tr>
<tr>
<td></td>
<td>• n—An index used by Juniper Networks customer support only.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| AS path | AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:
 - I—IGP.
 - E—EGP.
 - Recorded—The AS path is recorded by the sample process (sampled).
 - ?—Incomplete; typically, the AS path was aggregated.
 When AS path numbers are included in the route, the format is as follows:
 - []—Brackets enclose the number that precedes the AS path. This number represents the number of ASs present in the AS path, when calculated as defined in RFC 4271. This value is used in the AS-path merge process, as defined in RFC 4893.
 - []—If more than one AS number is configured on the routing device, or if AS path prepending is configured, brackets enclose the local AS number associated with the AS path.
 - { }—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.
 - ()—Parentheses enclose a confederation.
 - ([])—Parentheses and brackets enclose a confederation set.
 NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance. |
| validation-state | (BGP-learned routes) Validation status of the route:
 - Invalid—Indicates that the prefix is found, but either the corresponding AS received from the EBGP peer is not the AS that appears in the database, or the prefix length in the BGP update message is longer than the maximum length permitted in the database.
 - Unknown—Indicates that the prefix is not among the prefixes or prefix ranges in the database.
 - Unverified—Indicates that the origin of the prefix is not verified against the database. This is because the database got populated and the validation is not called for in the BGP import policy, although origin validation is enabled, or the origin validation is not enabled for the BGP peers.
 - Valid—Indicates that the prefix and autonomous system pair are found in the database. |
| ORR Generation-ID | Displays the optimal route reflection (ORR) generation identifier. ISIS and OSPF interior gateway protocol (IGP) updates filed whenever any of the corresponding ORR route has its metric valued changed, or if the ORR route is added or deleted. |
Table 140: show route detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FECs bound to route</td>
<td>Point-to-multipoint root address, multicast source address, and multicast group address when multipoint LDP (M-LDP) inband signaling is configured.</td>
</tr>
<tr>
<td>Primary Upstream</td>
<td>When multipoint LDP with multicast-only fast reroute (MoFRR) is configured, the primary upstream path. MoFRR transmits a multicast join message from a receiver toward a source on a primary path, while also transmitting a secondary multicast join message from the receiver toward the source on a backup path.</td>
</tr>
<tr>
<td>RPF Nexthops</td>
<td>When multipoint LDP with MoFRR is configured, the reverse-path forwarding (RPF) next-hop information. Data packets are received from both the primary path and the secondary paths. The redundant packets are discarded at topology merge points due to the RPF checks.</td>
</tr>
<tr>
<td>Label</td>
<td>Multiple MPLS labels are used to control MoFRR stream selection. Each label represents a separate route, but each references the same interface list check. Only the primary label is forwarded while all others are dropped. Multiple interfaces can receive packets using the same label.</td>
</tr>
<tr>
<td>weight</td>
<td>Value used to distinguish MoFRR primary and backup routes. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.</td>
</tr>
<tr>
<td>VC Label</td>
<td>MPLS label assigned to the Layer 2 circuit virtual connection.</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit (MTU) of the Layer 2 circuit.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN identifier of the Layer 2 circuit.</td>
</tr>
<tr>
<td>Prefixes bound to route</td>
<td>Forwarding equivalent class (FEC) bound to this route. Applicable only to routes installed by LDP.</td>
</tr>
<tr>
<td>Communities</td>
<td>Community path attribute for the route. See Table 143 on page 2431 for all possible values for this field.</td>
</tr>
<tr>
<td>Layer2-info: encaps</td>
<td>Layer 2 encapsulation (for example, VPLS).</td>
</tr>
<tr>
<td>control flags</td>
<td>Control flags: none or Site Down.</td>
</tr>
<tr>
<td>mtu</td>
<td>Maximum transmission unit (MTU) information.</td>
</tr>
<tr>
<td>Label-Base, range</td>
<td>First label in a block of labels and label block size. A remote PE routing device uses this first label when sending traffic toward the advertising PE routing device.</td>
</tr>
</tbody>
</table>
Table 140: show route detail Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status vector</td>
<td>Layer 2 VPN and VPLS network layer reachability information (NLRI).</td>
</tr>
<tr>
<td>Accepted Multipath</td>
<td>Current active path when BGP multipath is configured.</td>
</tr>
<tr>
<td>Accepted LongLivedStale</td>
<td>The LongLivedStale flag indicates that the route was marked LLGR-stale by this router, as part of the operation of LLGR receiver mode. Either this flag or the LongLivedStaleImport flag may be displayed for a route. Neither of these flags are displayed at the same time as the Stale (ordinary GR stale) flag.</td>
</tr>
<tr>
<td>Accepted LongLivedStaleImport</td>
<td>The LongLivedStaleImport flag indicates that the route was marked LLGR-stale when it was received from a peer, or by import policy. Either this flag or the LongLivedStale flag may be displayed for a route. Neither of these flags are displayed at the same time as the Stale (ordinary GR stale) flag. Accept all received BGP long-lived graceful restart (LLGR) and LLGR stale routes learned from configured neighbors and import into the inet.0 routing table.</td>
</tr>
<tr>
<td>ImportAccepted LongLivedStaleImport</td>
<td>Accept all received BGP long-lived graceful restart (LLGR) and LLGR stale routes learned from configured neighbors and imported into the inet.0 routing table. The LongLivedStaleImport flag indicates that the route was marked LLGR-stale when it was received from a peer, or by import policy.</td>
</tr>
<tr>
<td>Accepted MultipathContrib</td>
<td>Path currently contributing to BGP multipath.</td>
</tr>
<tr>
<td>Localpref</td>
<td>Local preference value included in the route.</td>
</tr>
<tr>
<td>Router ID</td>
<td>BGP router ID as advertised by the neighbor in the open message.</td>
</tr>
<tr>
<td>Primary Routing Table</td>
<td>In a routing table group, the name of the primary routing table in which the route resides.</td>
</tr>
<tr>
<td>Secondary Tables</td>
<td>In a routing table group, the name of one or more secondary tables in which the route resides.</td>
</tr>
</tbody>
</table>

Table 141 on page 2426 describes all possible values for the Next-hop Types output field.

Table 141: Next-hop Types Output Field Values

<table>
<thead>
<tr>
<th>Next-Hop Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast (bcast)</td>
<td>Broadcast next hop.</td>
</tr>
<tr>
<td>Next-Hop Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Deny</td>
<td>Deny next hop.</td>
</tr>
<tr>
<td>Discard</td>
<td>Discard next hop.</td>
</tr>
<tr>
<td>Dynamic List</td>
<td>Dynamic list next hop</td>
</tr>
<tr>
<td>Flood</td>
<td>Flood next hop. Consists of components called branches, up to a maximum of 32 branches. Each flood next-hop branch sends a copy of the traffic to the forwarding interface. Used by point-to-multipoint RSVP, point-to-multipoint LDP, point-to-multipoint CCC, and multicast.</td>
</tr>
<tr>
<td>Hold</td>
<td>Next hop is waiting to be resolved into a unicast or multicast type.</td>
</tr>
<tr>
<td>Indexed (idxd)</td>
<td>Indexed next hop.</td>
</tr>
<tr>
<td>Indirect (indr)</td>
<td>Used with applications that have a protocol next hop address that is remote. You are likely to see this next-hop type for internal BGP (IBGP) routes when the BGP next hop is a BGP neighbor that is not directly connected.</td>
</tr>
<tr>
<td>Interface</td>
<td>Used for a network address assigned to an interface. Unlike the router next hop, the interface next hop does not reference any specific node on the network.</td>
</tr>
<tr>
<td>Local (locl)</td>
<td>Local address on an interface. This next-hop type causes packets with this destination address to be received locally.</td>
</tr>
<tr>
<td>Multicast (mcst)</td>
<td>Wire multicast next hop (limited to the LAN).</td>
</tr>
<tr>
<td>Multicast discard (mdsc)</td>
<td>Multicast discard.</td>
</tr>
<tr>
<td>Multicast group (mgrp)</td>
<td>Multicast group member.</td>
</tr>
<tr>
<td>Receive (recv)</td>
<td>Receive.</td>
</tr>
<tr>
<td>Reject (rjct)</td>
<td>Discard. An ICMP unreachable message was sent.</td>
</tr>
<tr>
<td>Resolve (rslv)</td>
<td>Resolving next hop.</td>
</tr>
<tr>
<td>Routed multicast (mcrt)</td>
<td>Regular multicast next hop.</td>
</tr>
</tbody>
</table>
Table 141: Next-hop Types Output Field Values (continued)

<table>
<thead>
<tr>
<th>Next-Hop Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Router** | A specific node or set of nodes to which the routing device forwards packets that match the route prefix. To qualify as next-hop type router, the route must meet the following criteria:
 - Must not be a direct or local subnet for the routing device.
 - Must have a next hop that is directly connected to the routing device. |
| **Software** | Next hop added to the Routing Engine forwarding table for remote IP addresses with prefix /32 for Junos OS Evolved only. |
| **Table** | Routing table next hop. |
| **Unicast (ucst)** | Unicast. |
| **Unilist (ulst)** | List of unicast next hops. A packet sent to this next hop goes to any next hop in the list. |

Table 142 on page 2428 describes all possible values for the State output field. A route can be in more than one state (for example, `<Active NoReadvrt Int Ext>`).

Table 142: State Output Field Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Route needs accounting.</td>
</tr>
<tr>
<td>Active</td>
<td>Route is active.</td>
</tr>
<tr>
<td>Always Compare MED</td>
<td>Path with a lower multiple exit discriminator (MED) is available.</td>
</tr>
<tr>
<td>AS path</td>
<td>Shorter AS path is available.</td>
</tr>
<tr>
<td>Cisco Non-deterministic MED selection</td>
<td>Cisco nondeterministic MED is enabled, and a path with a lower MED is available.</td>
</tr>
<tr>
<td>Clone</td>
<td>Route is a clone.</td>
</tr>
<tr>
<td>Cluster list length</td>
<td>Length of cluster list sent by the route reflector.</td>
</tr>
<tr>
<td>Delete</td>
<td>Route has been deleted.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Ex</td>
<td>Exterior route.</td>
</tr>
<tr>
<td>Ext</td>
<td>BGP route received from an external BGP neighbor.</td>
</tr>
<tr>
<td>FlashAll</td>
<td>Forces all protocols to be notified of a change to any route, active or inactive, for a prefix. When not set, protocols are informed of a prefix only when the active route changes.</td>
</tr>
<tr>
<td>Hidden</td>
<td>Route not used because of routing policy.</td>
</tr>
<tr>
<td>IfCheck</td>
<td>Route needs forwarding RPF check.</td>
</tr>
<tr>
<td>IGP metric</td>
<td>Path through next hop with lower IGP metric is available.</td>
</tr>
<tr>
<td>Inactive reason</td>
<td>Flags for this route, which was not selected as best for a particular destination.</td>
</tr>
<tr>
<td>Initial</td>
<td>Route being added.</td>
</tr>
<tr>
<td>Int</td>
<td>Interior route.</td>
</tr>
<tr>
<td>Int Ext</td>
<td>BGP route received from an internal BGP peer or a BGP confederation peer.</td>
</tr>
<tr>
<td>Interior > Exterior > Exterior via Interior</td>
<td>Direct, static, IGP, or EBGP path is available.</td>
</tr>
<tr>
<td>Local Preference</td>
<td>Path with a higher local preference value is available.</td>
</tr>
<tr>
<td>Martian</td>
<td>Route is a martian (ignored because it is obviously invalid).</td>
</tr>
<tr>
<td>MartianOK</td>
<td>Route exempt from martian filtering.</td>
</tr>
<tr>
<td>Next hop address</td>
<td>Path with lower metric next hop is available.</td>
</tr>
<tr>
<td>No difference</td>
<td>Path from neighbor with lower IP address is available.</td>
</tr>
<tr>
<td>NoReadvrt</td>
<td>Route not to be advertised.</td>
</tr>
<tr>
<td>NotBest</td>
<td>Route not chosen because it does not have the lowest MED.</td>
</tr>
</tbody>
</table>
Table 142: State Output Field Values *(continued)*

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Best in its group</td>
<td>Incoming BGP AS is not the best of a group (only one AS can be the best).</td>
</tr>
<tr>
<td>NotInstall</td>
<td>Route not to be installed in the forwarding table.</td>
</tr>
<tr>
<td>Number of gateways</td>
<td>Path with a greater number of next hops is available.</td>
</tr>
<tr>
<td>Origin</td>
<td>Path with a lower origin code is available.</td>
</tr>
<tr>
<td>Pending</td>
<td>Route pending because of a hold-down configured on another route.</td>
</tr>
<tr>
<td>Programmed</td>
<td>Route installed programatically by on-box or off-box applications using API.</td>
</tr>
<tr>
<td>Release</td>
<td>Route scheduled for release.</td>
</tr>
<tr>
<td>RIB preference</td>
<td>Route from a higher-numbered routing table is available.</td>
</tr>
<tr>
<td>Route Distinguisher</td>
<td>64-bit prefix added to IP subnets to make them unique.</td>
</tr>
<tr>
<td>Route Metric or MED comparison</td>
<td>Route with a lower metric or MED is available.</td>
</tr>
<tr>
<td>Route Preference</td>
<td>Route with lower preference value is available.</td>
</tr>
<tr>
<td>Router ID</td>
<td>Path through a neighbor with lower ID is available.</td>
</tr>
<tr>
<td>Secondary</td>
<td>Route not a primary route.</td>
</tr>
<tr>
<td>Unusable path</td>
<td>Path is not usable because of one of the following conditions:</td>
</tr>
<tr>
<td></td>
<td>• The route is damped.</td>
</tr>
<tr>
<td></td>
<td>• The route is rejected by an import policy.</td>
</tr>
<tr>
<td></td>
<td>• The route is unresolved.</td>
</tr>
<tr>
<td>Update source</td>
<td>Last tiebreaker is the lowest IP address value.</td>
</tr>
<tr>
<td>ProtectionCand</td>
<td>Indicates paths requesting protection.</td>
</tr>
<tr>
<td>ProtectionPath</td>
<td>Indicates the route entry that can be used as a protection path.</td>
</tr>
</tbody>
</table>

Table 143 on page 2431 describes the possible values for the Communities output field.
Table 143: Communities Output Field Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-number</td>
<td>4 bytes, encoding a 32-bit area number. For AS-external routes, the value is 0. A nonzero value identifies the route as internal to the OSPF domain, and as within the identified area. Area numbers are relative to a particular OSPF domain.</td>
</tr>
<tr>
<td>bandwidth: local AS number: link-bandwidth-number</td>
<td>Link-bandwidth community value used for unequal-cost load balancing. When BGP has several candidate paths available for multipath purposes, it does not perform unequal-cost load balancing according to the link-bandwidth community unless all candidate paths have this attribute.</td>
</tr>
<tr>
<td>domain-id</td>
<td>Unique configurable number that identifies the OSPF domain.</td>
</tr>
<tr>
<td>domain-id-vendor</td>
<td>Unique configurable number that further identifies the OSPF domain.</td>
</tr>
<tr>
<td>link-bandwidth-number</td>
<td>Link-bandwidth number: from 0 through 4,294,967,295 (bytes per second).</td>
</tr>
<tr>
<td>local AS number</td>
<td>Local AS number: from 1 through 65,535.</td>
</tr>
<tr>
<td>options</td>
<td>1 byte. Currently this is only used if the route type is 5 or 7. Setting the least significant bit in the field indicates that the route carries a type 2 metric.</td>
</tr>
<tr>
<td>origin</td>
<td>(Used with VPNs) Identifies where the route came from.</td>
</tr>
<tr>
<td>ospf-route-type</td>
<td>1 byte, encoded as 1 or 2 for intra-area routes (depending on whether the route came from a type 1 or a type 2 LSA); 3 for summary routes; 5 for external routes (area number must be 0); 7 for NSSA routes; or 129 for sham link endpoint addresses.</td>
</tr>
<tr>
<td>route-type-vendor</td>
<td>Displays the area number, OSPF route type, and option of the route. This is configured using the BGP extended community attribute 0x8000. The format is area-number:ospf-route-type:options.</td>
</tr>
<tr>
<td>rte-type</td>
<td>Displays the area number, OSPF route type, and option of the route. This is configured using the BGP extended community attribute 0x0306. The format is area-number:ospf-route-type:options.</td>
</tr>
<tr>
<td>target</td>
<td>Defines which VPN the route participates in; target has the format 32-bit IP address:16-bit number. For example, 10.19.0.0:100.</td>
</tr>
<tr>
<td>unknown IANA</td>
<td>Incoming IANA codes with a value between 0x1 and 0x7ff. This code of the BGP extended community attribute is accepted, but it is not recognized.</td>
</tr>
<tr>
<td>unknown OSPF vendor community</td>
<td>Incoming IANA codes with a value above 0x8000. This code of the BGP extended community attribute is accepted, but it is not recognized.</td>
</tr>
</tbody>
</table>
Sample Output

show route detail

user@host> show route detail

inet.0: 22 destinations, 23 routes (21 active, 0 holddown, 1 hidden)
10.10.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 29
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 1:31:43
 Task: RT
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

10.31.1.0/30 (2 entries, 1 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 2
 Next hop: via so-0/3/0.0, selected
 State: <Active Int>
 Local AS: 69
 Age: 1:30:17
 Task: IF
 Announcement bits (1): 3-Resolve tree 2
 AS path: I

OSPF Preference: 10
 Next-hop reference count: 1
 Next hop: via so-0/3/0.0, selected
 State: <Int>
 Inactive reason: Route Preference
 Local AS: 69
 Age: 1:30:17 Metric: 1
 ORR Generation-ID: 1
 Area: 0.0.0.0
 Task: OSPF
 AS path: I

10.31.1.1/32 (1 entry, 1 announced)
 *Local Preference: 0
 Next hop type: Local
Next-hop reference count: 7
Interface: so-0/3/0.0
State: <Active NoReadvrt Int>
Local AS: 69
Age: 1:30:20
Task: IF
Announcement bits (1): 3-Resolve tree 2
AS path: I

10.31.2.0/30 (1 entry, 1 announced)
 *OSPF Preference: 10
 Next-hop reference count: 9
 Next hop: via so-0/3/0.0
 Next hop: 10.31.1.6 via ge-3/1/0.0, selected
 State: <Active Int>
 Local AS: 69
 Age: 1:29:56 Metric: 2
 Area: 0.0.0.0
 ORR Generation-ID: 1
 Task: OSPF
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

172.16.233.2/32 (1 entry, 1 announced)
 *PIM Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 69
 Age: 1:31:45
 Task: PIM Recv
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

172.16.233.22/32 (1 entry, 1 announced)
 *IGMP Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 69
Age: 1:31:43
Task: IGMP
Announcement bits (2): 0-KRT 3-Resolve tree 2
AS path: I

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

10.255.70.103/32 (1 entry, 1 announced)
 State: <FlashAll>
 *RSVP Preference: 7
 Next-hop reference count: 6
 Next hop: 10.31.1.6 via ge-3/1/0.0 weight 0x1, selected
 Label-switched-path green-r1-r3
 Label operation: Push 100096
 State: <Active Int>
 Local AS: 69
 Age: 1:25:49 Metric: 2
 Task: RSVP
 Announcement bits (2): 1-Resolve tree 1 2-Resolve tree 2
 AS path: I

10.255.71.238/32 (1 entry, 1 announced)
 State: <FlashAll>
 *RSVP Preference: 7
 Next-hop reference count: 6
 Next hop: via so-0/3/0.0 weight 0x1, selected
 Label-switched-path green-r1-r2
 State: <Active Int>
 Local AS: 69
 Age: 1:25:49 Metric: 1
 Task: RSVP
 Announcement bits (2): 1-Resolve tree 1 2-Resolve tree 2
 AS path: I

private__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

47.0005.80ff.f800.0000.0108.0001.0102.5507.1052/152 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.0, selected
 State: <Active Int>
Local AS: 69
Age: 1:31:44
Task: IF
AS path: I

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
0 (1 entry, 1 announced)
 *MPLS Preference: 0
 Next hop type: Receive
 Next-hop reference count: 6
 State: <Active Int>
 Local AS: 69
 Age: 1:31:45 Metric: 1
 Task: MPLS
 Announcement bits (1): 0-KRT
 AS path: I

...
Task: RSVP
 Announcement bits (1): 0-KRT
 AS path: I...

800010 (1 entry, 1 announced)
 *VPLS Preference: 7
 Next-hop reference count: 2
 Next hop: via vt-3/2/0.32769, selected
 Label operation: Pop
 State: <Active Int>
 Age: 1:29:30
 Task: Common L2 VC
 Announcement bits (1): 0-KRT
 AS path: I

vt-3/2/0.32769 (1 entry, 1 announced)
 *VPLS Preference: 7
 Next-hop reference count: 2
 Next hop: 10.31.1.6 via ge-3/1/0.0 weight 0x1, selected
 Label-switched-path green-r1-r3
 Label operation: Push 800012, Push 100096(top)
 Protocol next hop: 10.255.70.103
 Push 800012
 Indirect next hop: 87272e4 1048574
 State: <Active Int>
 Age: 1:29:30 Metric2: 2
 Task: Common L2 VC
 Announcement bits (2): 0-KRT 1-Common L2 VC
 AS path: I
 Communities: target:11111:1 Layer2-info: encaps:VPLS, control flags:, mtu: 0

inet6.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

abcd::10:255:71:52/128 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.0, selected
 State: <Active Int>
 Local AS: 69
 Age: 1:31:44
 Task: IF
 AS path: I
fe80::280:42ff:fe10:f179/128 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.0, selected
 State: <Active NoReadvrt Int>
 Local AS: 69
 Age: 1:31:44
 Task: IF
 AS path: I

ff02::2/128 (1 entry, 1 announced)
 *PIM Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 69
 Age: 1:31:45
 Task: PIM Recv6
 Announcement bits (1): 0-KRT
 AS path: I

ff02::d/128 (1 entry, 1 announced)
 *PIM Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 69
 Age: 1:31:45
 Task: PIM Recv6
 Announcement bits (1): 0-KRT
 AS path: I

ff02::16/128 (1 entry, 1 announced)
 *MLD Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 69
 Age: 1:31:43
 Task: MLD
 Announcement bits (1): 0-KRT
 AS path: I

private.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
fe80::280:42ff:fe10:f179/128 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.16385, selected
 State: <Active NoReadvrt Int>
 Age: 1:31:44
 Task: IF
 AS path: I

green.12vpn.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

10.255.70.103:1:3:1/96 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 10.255.70.103:1
 Next-hop reference count: 7
 Source: 10.255.70.103
 Protocol next hop: 10.255.70.103
 Indirect next hop: 2 no-forward
 State: <Secondary Active Int Ext>
 Local AS: 69 Peer AS: 69
 Age: 1:25:49 Metric2: 1
 AIGP 210
 Task: BGP_69.10.255.70.103+179
 Announcement bits (1): 0-green-l2vpn
 AS path: I
 Communities: target:11111:1 Layer2-info: encaps:VPLS,
 control flags:, mtu: 0
 Label-base: 800008, range: 8
 Localpref: 100
 Router ID: 10.255.70.103
 Primary Routing Table bgp.12vpn.0

10.255.71.52:1:1:1/96 (1 entry, 1 announced)
 *L2VPN Preference: 170/-1
 Next-hop reference count: 5
 Protocol next hop: 10.255.71.52
 Indirect next hop: 0 -
 State: <Active Int Ext>
 Age: 1:31:40 Metric2: 1
 Task: green-l2vpn
 Announcement bits (1): 1-BGP.0.0.0.0+179
 AS path: I
 Communities: Layer2-info: encaps:VPLS, control flags:Site-Down,
mtu: 0
Label-base: 800016, range: 8, status-vector: 0x9F

10.255.71.52:1:5:1/96 (1 entry, 1 announced)
 *L2VPN Preference: 170/-101
 Next-hop reference count: 5
 Protocol next hop: 10.255.71.52
 Indirect next hop: 0 -
 State: <Active Int Ext>
 Age: 1:31:40 Metric2: 1
 Task: green-l2vpn
 Announcement bits (1): 1-BGP.0.0.0.0+179
 AS path: I
 Communities: Layer2-info: encaps:VPLS, control flags:, mtu: 0
 Label-base: 800008, range: 8, status-vector: 0x9F

 ...

12circuit.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
10.245.255.63:CtrlWord:4:3:Local/96 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via so-1/1/2.0 weight 1, selected
 Label-switched-path my-lsp
 Label operation: Push 100000[0]
 Protocol next hop: 10.245.255.63 Indirect next hop: 86af000 296
 State: <Active Int>
 Local AS: 99
 Age: 10:21
 Task: 12 circuit
 Announcement bits (1): 0-LDP
 AS path: I
 VC Label 100000, MTU 1500, VLAN ID 512

inet.0: 45 destinations, 47 routes (44 active, 0 holddown, 1 hidden)
1.1.1.3/32 (1 entry, 1 announced)
 *IS-IS Preference: 18
 Level: 2
 Next hop type: Router, Next hop index: 580
 Address: 0x9db6ed0
 Next-hop reference count: 8
 Next hop: 10.1.1.6 via lt-1/0/10.5, selected
 Session Id: 0x18a
 State: <Active Int>
 Local AS: 2
show route detail (with BGP Multipath)

user@host> show route detail

10.1.1.8/30 (2 entries, 1 announced)

*BGP Preference: 170/-101
Next hop type: Router, Next hop index: 262142
Address: 0x901a010
Next-hop reference count: 2
Source: 10.1.1.2
Next hop: 10.1.1.2 via ge-0/3/0.1, selected
Next hop: 10.1.1.6 via ge-0/3/0.5
State: <Active Ext>
Local AS: 1 Peer AS: 2
Age: 5:04:43
Validation State: unverified
Task: BGP_2.10.1.1.2+59955
show route label detail (Multipoint LDP Inband Signaling for Point-to-Multipoint LSPs)

user@host> show route label 299872 detail

mpls.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
299872 (1 entry, 1 announced)
 *LDP Preference: 9
 Next hop type: Flood
 Next-hop reference count: 3
 Address: 0x9097d90
 Next hop: via vt-0/1/0.1
 Next-hop index: 661
 Label operation: Pop
 Address: 0x9172130
 Next hop: via so-0/0/3.0
 Next-hop index: 654
 Label operation: Swap 299872
 State: **Active Int>
 Local AS: 1001
 Age: 8:20 Metric: 1
 Task: LDP
 Announcement bits (1): 0-KRT
show route label detail (Multipoint LDP with Multicast-Only Fast Reroute)

user@host> show route label 301568 detail

| mpls.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden) |
|-------------------------|-------------------------|
| 301568 (1 entry, 1 announced) |
*LDP	Preference: 9
	Next hop type: Flood
	Address: 0x2735208
	Next-hop reference count: 3
	Next hop type: Router, Next hop index: 1397
	Address: 0x2735d2c
	Next-hop reference count: 3
	Next hop: 1.3.8.2 via ge-1/2/22.0
	Label operation: Pop
	Load balance label: None;
	Next hop type: Router, Next hop index: 1395
	Address: 0x2736290
	Next-hop reference count: 3
	Next hop: 1.3.4.2 via ge-1/2/18.0
	Label operation: Pop
	Load balance label: None;
	State: <Active Int AckRequest MulticastRPF>
	Local AS: 10
	Age: 54:05
	Metric: 1
	Validation State: unverified
	Task: LDP
	Announcement bits (1): 0-KRT
	AS path: I
	FECs bound to route: P2MP root-addr 172.16.1.1, grp: 232.1.1.1, src: 192.168.219.11
	Primary Upstream : 172.16.1.3:0--172.16.1.2:0
	RPF Nexthops :
	ge-1/2/15.0, 1.2.94.1, Label: 301568, weight: 0x1
	ge-1/2/14.0, 1.2.3.1, Label: 301568, weight: 0x1
	Backup Upstream : 172.16.1.3:0--172.16.1.6:0
	RPF Nexthops :
	ge-1/2/20.0, 1.2.96.1, Label: 301584, weight: 0xfffe
	ge-1/2/19.0, 1.3.6.1, Label: 301584, weight: 0xfffe
show route detail (Flexible VXLAN Tunnel Profile)

user@host> show route 192.168.0.2 detail

... CUSTOMER_0001.inet.0: 5618 destinations, 6018 routes (5618 active, 0 holddown, 0 hidden)

192.168.0.2/32 (1 entry, 1 announced)
 *Static Preference: 5/100
 Next hop type: Router, Next hop index: 74781
 Address: 0x5d9b03cc
 Next-hop reference count: 363
 Next hop: via fti0.6, selected
 Session Id: 0x24c8
 State: <Active Int NSR-incapable OpaqueData Programmed>
 Age: 1:25:53
 Validation State: unverified
 Tag: 10000001 Tag2: 1
 Announcement bits (2): 1-KRT 3-Resolve tree 30
 AS path: I
 Flexible IPv6 VXLAN tunnel profile
 Action: Encapsulate
 Interface: fti0.6 (Index: 10921)
 VNI: 10000001
 Source Prefix: 2001:db8:255::2/128
 Source UDP Port Range: 54614 - 60074
 Destination Address: 2001:db8:80:1:1:0:1
 Destination UDP Port: 4790
 VXLAN Flags: 0x08

...
show route exact

List of Syntax

Syntax on page 2444
Syntax (EX Series Switches) on page 2444

Syntax

```plaintext
show route exact destination-prefix
    <brief | detail | extensive | terse>
    <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```plaintext
show route exact destination-prefix
    <brief | detail | extensive | terse>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display only the routes that exactly match the specified address or range of addresses.

Options

brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to *brief*.

destination-prefix—Address or range of addresses.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

view

List of Sample Output

show route exact on page 2445
show route exact detail on page 2445
show route exact extensive on page 2445
show route exact terse on page 2446

Output Fields
For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.

Sample Output

show route exact

```
user@host> show route exact 207.17.136.0/24

inet.0: 24 destinations, 25 routes (23 active, 0 holddown, 1 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
207.17.136.0/24    *[Static/5]   2d 03:30:22
                   > to 192.168.71.254 via fxp0.0
```

show route exact detail

```
user@host> show route exact 207.17.136.0/24 detail

inet.0: 24 destinations, 25 routes (23 active, 0 holddown, 1 hidden)
Restart Complete
207.17.136.0/24 (1 entry, 1 announced)
   *Static Preference: 5
     Next-hop reference count: 29
     Next hop: 192.168.71.254 via fxp0.0, selected
     State: <Active NoReadvrt Int Ext>
     Local AS:    69
     Age: 2d 3:30:26
     Task: RT
     Announcement bits (2): 0-KRT 3-Resolve tree 2
     AS path: I
```

show route exact extensive

```
user@host> show route exact 207.17.136.0/24 extensive

inet.0: 22 destinations, 23 routes (21 active, 0 holddown, 1 hidden)
207.17.136.0/24 (1 entry, 1 announced)
TSI:
KRT in-kernel 207.17.136.0/24 -> {192.168.71.254}
```
*Static Preference: 5
 Next-hop reference count: 29
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 1:25:18
 Task: RT
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

show route exact terse
user@host> show route exact 207.17.136.0/24 terse

inet.0: 22 destinations, 23 routes (21 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
A Destination P Prf Metric 1 Metric 2 Next hop AS path
* 207.17.136.0/24 S 5 >192.168.71.254
show route export

List of Syntax
Syntax on page 2447
Syntax (EX Series Switches) on page 2447

Syntax

```
show route export
  <brief | detail>
  <instance <instance-name> | routing-table-name>
  <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route export
  <brief | detail>
  <instance <instance-name> | routing-table-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display policy-based route export information. Policy-based export simplifies the process of exchanging route information between routing instances.

Options
none—(Same as brief.) Display standard information about policy-based export for all instances and routing tables on all systems.

brief | detail—(Optional) Display the specified level of output.

instance <instance-name>—(Optional) Display a particular routing instance for which policy-based export is currently enabled.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

routing-table-name—(Optional) Display information about policy-based export for all routing tables whose name begins with this string (for example, inet.0 and inet6.0 are both displayed when you run the show route export inet command).

Required Privilege Level
view
List of Sample Output

show route export on page 2449
show route export detail on page 2449
show route export instance detail on page 2449

Output Fields

Table 144 on page 2448 lists the output fields for the *show route export* command. Output fields are listed in the approximate order in which they appear.

Table 144: show route export Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table or table-name</td>
<td>Name of the routing tables that either import or export routes.</td>
<td>All levels</td>
</tr>
<tr>
<td>Routes</td>
<td>Number of routes exported from this table into other tables. If a particular route is exported to different tables, the counter will only increment by one.</td>
<td>brief none</td>
</tr>
<tr>
<td>Export</td>
<td>Whether the table is currently exporting routes to other tables: Y or N (Yes or No).</td>
<td>brief none</td>
</tr>
<tr>
<td>Import</td>
<td>Tables currently importing routes from the originator table. (Not displayed for tables that are not exporting any routes.)</td>
<td>detail</td>
</tr>
<tr>
<td>Flags</td>
<td>(instance keyword only) Flags for this feature on this instance:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• config auto-policy—The policy was deduced from the configured IGP export policies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• cleanup—Configuration information for this instance is no longer valid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• config—The instance was explicitly configured.</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>(instance keyword only) Configured option displays the type of routing tables the feature handles:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• unicast—Indicates instance.inet.0.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast—Indicates instance.inet.2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unicast multicast—Indicates instance.inet.0 and instance.inet.2.</td>
<td></td>
</tr>
<tr>
<td>Import policy</td>
<td>(instance keyword only) Policy that route export uses to construct the import-export matrix. Not displayed if the instance type is vrf.</td>
<td>detail</td>
</tr>
<tr>
<td>Instance</td>
<td>(instance keyword only) Name of the routing instance.</td>
<td>detail</td>
</tr>
<tr>
<td>Type</td>
<td>(instance keyword only) Type of routing instance: forwarding, non-forwarding, or vrf.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Sample Output

show route export

user@host> show route export

<table>
<thead>
<tr>
<th>Table</th>
<th>Export</th>
<th>Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0</td>
<td>N</td>
<td>0</td>
</tr>
<tr>
<td>black.inet.0</td>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>red.inet.0</td>
<td>Y</td>
<td>4</td>
</tr>
</tbody>
</table>

show route export detail

user@host> show route export detail

<table>
<thead>
<tr>
<th></th>
<th>Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0</td>
<td>0</td>
</tr>
<tr>
<td>black.inet.0</td>
<td>3</td>
</tr>
<tr>
<td>red.inet.0</td>
<td>4</td>
</tr>
</tbody>
</table>

Import: [inet.0]

show route export instance detail

user@host> show route export instance detail

<table>
<thead>
<tr>
<th>Instance</th>
<th>Type</th>
<th>Flags</th>
<th>Options</th>
<th>Import policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>forwarding</td>
<td><config auto-policy></td>
<td><unicast multicast></td>
<td>(ospf-master-from-red</td>
</tr>
<tr>
<td>black</td>
<td>non-forwarding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td>non-forwarding</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show route extensive

List of Syntax
Syntax on page 2450
Syntax (EX Series Switches) on page 2450

Syntax

```
show route extensive
<destination-prefix>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route extensive
<destination-prefix>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display extensive information about the active entries in the routing tables.

Options
none—Display all active entries in the routing table.

`destination-prefix`—(Optional) Display active entries for the specified address or range of addresses.

`logical-system (all | logical-system-name)`—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

List of Sample Output
show route extensive on page 2459
show route extensive (Access Route) on page 2469
show route extensive (BGP PIC Edge) on page 2470
show route extensive (FRR and LFA) on page 2471
show route extensive (IS-IS) on page 2472
show route extensive (Route Reflector) on page 2472
show route label detail (Multipoint LDP Inband Signaling for Point-to-Multipoint LSPs) on page 2473
show route label detail (Multipoint LDP with Multicast-Only Fast Reroute) on page 2473
show route extensive (Flexible VXLAN Tunnel Profile) on page 2474

Output Fields

Table 145 on page 2451 describes the output fields for the `show route extensive` command. Output fields are listed in the approximate order in which they appear.

Table 145: show route extensive Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table (for example, inet.0).</td>
</tr>
<tr>
<td><code>number destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
</tr>
<tr>
<td></td>
<td>• active (routes that are active).</td>
</tr>
<tr>
<td></td>
<td>• holddown (routes that are in the pending state before being declared inactive).</td>
</tr>
<tr>
<td></td>
<td>• hidden (routes that are not used because of a routing policy).</td>
</tr>
<tr>
<td><code>route-destination (entry, announced)</code></td>
<td>Route destination (for example: 10.0.0.1/24). The entry value is the number of route for this destination, and the announced value is the number of routes being announced for this destination. Sometimes the route destination is presented in another format, such as:</td>
</tr>
<tr>
<td></td>
<td>• MPLS-label (for example, 80001).</td>
</tr>
<tr>
<td></td>
<td>• interface-name (for example, ge-1/0/2).</td>
</tr>
<tr>
<td></td>
<td>• neighbor-address:control-word-status:encapsulation type:vc-id:source (Layer 2 circuit only; for example, 10.1.1.195:NoCtrlWord:1:1:Local/96).</td>
</tr>
<tr>
<td></td>
<td>• neighbor-address—Address of the neighbor.</td>
</tr>
<tr>
<td></td>
<td>• control-word-status—Whether the use of the control word has been negotiated for this virtual circuit: NoCtrlWord or CtrlWord.</td>
</tr>
<tr>
<td></td>
<td>• encapsulation type—Type of encapsulation, represented by a number: (1) Frame Relay DLCI, (2) ATM AAL5 VCC transport, (3) ATM transparent cell transport, (4) Ethernet, (5) VLAN Ethernet, (6) HDLC, (7) PPP, (8) ATM VCC cell transport, (10) ATM VPC cell transport.</td>
</tr>
<tr>
<td></td>
<td>• vc-id—Virtual circuit identifier.</td>
</tr>
<tr>
<td></td>
<td>• source—Source of the advertisement: Local or Remote.</td>
</tr>
<tr>
<td>TSI</td>
<td>Protocol header information.</td>
</tr>
</tbody>
</table>
Table 145: show route extensive Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>label stacking</td>
<td>(Next-to-the-last-hop routing device for MPLS only) Depth of the MPLS label stack, where the label-popping operation is needed to remove one or more labels from the top of the stack. A pair of routes is displayed, because the pop operation is performed only when the stack depth is two or more labels.</td>
</tr>
<tr>
<td></td>
<td>• S=0 route indicates that a packet with an incoming label stack depth of two or more exits this router with one fewer label (the label-popping operation is performed).</td>
</tr>
<tr>
<td></td>
<td>• If there is no S= information, the route is a normal MPLS route, which has a stack depth of 1 (the label-popping operation is not performed).</td>
</tr>
<tr>
<td>[protocol, preference]</td>
<td>Protocol from which the route was learned and the preference value for the route.</td>
</tr>
<tr>
<td></td>
<td>• +—A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.</td>
</tr>
<tr>
<td></td>
<td>• - —A hyphen indicates the last active route.</td>
</tr>
<tr>
<td></td>
<td>• *—An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.</td>
</tr>
<tr>
<td></td>
<td>In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1’s complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value and a lower Preference2 value.</td>
</tr>
<tr>
<td>Level</td>
<td>(IS-IS only). In IS-IS, a single autonomous system (AS) can be divided into smaller groups called areas. Routing between areas is organized hierarchically, allowing a domain to be administratively divided into smaller areas. This organization is accomplished by configuring Level 1 and Level 2 intermediate systems. Level 1 systems route within an area. When the destination is outside an area, they route toward a Level 2 system. Level 2 intermediate systems route between areas and toward other ASs.</td>
</tr>
<tr>
<td>Route Distinguisher</td>
<td>IP subnet augmented with a 64-bit prefix.</td>
</tr>
<tr>
<td>PMSI</td>
<td>Provider multicast service interface (MVPN routing table).</td>
</tr>
<tr>
<td>Next-hop type</td>
<td>Type of next hop. For a description of possible values for this field, see the Output Field table in the show route detail command.</td>
</tr>
<tr>
<td>Next-hop reference count</td>
<td>Number of references made to the next hop.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Flood nexthop branches exceed maximum message</td>
<td>Indicates that the number of flood next-hop branches exceeded the system limit of 32 branches, and only a subset of the flood next-hop branches were installed in the kernel.</td>
</tr>
<tr>
<td>Source</td>
<td>IP address of the route source.</td>
</tr>
<tr>
<td>Next hop</td>
<td>Network layer address of the directly reachable neighboring system.</td>
</tr>
</tbody>
</table>
| **via** | Interface used to reach the next hop. If there is more than one interface available to the next hop, the name of the interface that is actually used is followed by the word **Selected**. This field can also contain the following information:
 • **Weight**—Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.
 • **Balance**—Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a routing device is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing. |
<p>| Label-switched-path lsp-path-name | Name of the LSP used to reach the next hop. |
| Label operation | MPLS label and operation occurring at this routing device. The operation can be pop (where a label is removed from the top of the stack), push (where another label is added to the label stack), or swap (where a label is replaced by another label). |
| Offset | Whether the metric has been increased or decreased by an offset value. |
| Interface | (Local only) Local interface name. |
| Protocol next hop | Network layer address of the remote routing device that advertised the prefix. This address is used to recursively derive a forwarding next hop. |
| label-operation | MPLS label and operation occurring at this routing device. The operation can be pop (where a label is removed from the top of the stack), push (where another label is added to the label stack), or swap (where a label is replaced by another label). |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| Indirect next hops | When present, a list of nodes that are used to resolve the path to the next-hop destination, in the order that they are resolved. When BGP PIC Edge is enabled, the output lines that contain Indirect next hop: weight follow next hops that the software can use to repair paths where a link failure occurs. The next-hop weight has one of the following values:
 - 0x1 indicates active next hops.
 - 0x4000 indicates passive next hops. |
<p>| State | State of the route (a route can be in more than one state). See the Output Field table in the show route detail command. |
| Session ID | The BFD session ID number that represents the protection using MPLS fast reroute (FRR) and loop-free alternate (LFA). |
| Weight | Weight for the backup path. If the weight of an indirect next hop is larger than zero, the weight value is shown. For sample output, see show route table. |</p>
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive reason</td>
<td>If the route is inactive, the reason for its current state is indicated. Typical reasons include:</td>
</tr>
<tr>
<td></td>
<td>• Active preferred—Currently active route was selected over this route.</td>
</tr>
<tr>
<td></td>
<td>• Always compare MED—Path with a lower multiple exit discriminator (MED) is available.</td>
</tr>
<tr>
<td></td>
<td>• AS path—Shorter AS path is available.</td>
</tr>
<tr>
<td></td>
<td>• Cisco Non-deterministic MED selection—Cisco nondeterministic MED is enabled and a path with a lower MED is available.</td>
</tr>
<tr>
<td></td>
<td>• Cluster list length—Path with a shorter cluster list length is available.</td>
</tr>
<tr>
<td></td>
<td>• Forwarding use only—Path is only available for forwarding purposes.</td>
</tr>
<tr>
<td></td>
<td>• IGP metric—Path through the next hop with a lower IGP metric is available.</td>
</tr>
<tr>
<td></td>
<td>• IGP metric type—Path with a lower OSPF link-state advertisement type is available.</td>
</tr>
<tr>
<td></td>
<td>• Interior > Exterior > Exterior via Interior—Direct, static, IGP, or EBGP path is available.</td>
</tr>
<tr>
<td></td>
<td>• Local preference—Path with a higher local preference value is available.</td>
</tr>
<tr>
<td></td>
<td>• Next hop address—Path with a lower metric next hop is available.</td>
</tr>
<tr>
<td></td>
<td>• No difference—Path from a neighbor with a lower IP address is available.</td>
</tr>
<tr>
<td></td>
<td>• Not Best in its group—Occurs when multiple peers of the same external AS advertise the same prefix and are grouped together in the selection process. When this reason is displayed, an additional reason is provided (typically one of the other reasons listed).</td>
</tr>
<tr>
<td></td>
<td>• Number of gateways—Path with a higher number of next hops is available.</td>
</tr>
<tr>
<td></td>
<td>• Origin—Path with a lower origin code is available.</td>
</tr>
<tr>
<td></td>
<td>• OSPF version—Path does not support the indicated OSPF version.</td>
</tr>
<tr>
<td></td>
<td>• RIB preference—Route from a higher-numbered routing table is available.</td>
</tr>
<tr>
<td></td>
<td>• Route distinguisher—64-bit prefix added to IP subnets to make them unique.</td>
</tr>
<tr>
<td></td>
<td>• Route metric or MED comparison—Route with a lower metric or MED is available.</td>
</tr>
<tr>
<td></td>
<td>• Route preference—Route with a lower preference value is available.</td>
</tr>
<tr>
<td></td>
<td>• Router ID—Path through a neighbor with a lower ID is available.</td>
</tr>
<tr>
<td></td>
<td>• Unusable path—Path is not usable because of one of the following conditions: the route is damped, the route is rejected by an import policy, or the route is unresolved.</td>
</tr>
<tr>
<td></td>
<td>• Update source—Last tiebreaker is the lowest IP address value.</td>
</tr>
<tr>
<td>Local AS</td>
<td>Autonomous system (AS) number of the local routing device.</td>
</tr>
<tr>
<td>Age</td>
<td>How long the route has been known.</td>
</tr>
<tr>
<td>AIGP</td>
<td>Accumulated interior gateway protocol (AIGP) BGP attribute.</td>
</tr>
</tbody>
</table>
Table 145: show route extensive Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>Cost value of the indicated route. For routes within an AS, the cost is determined by IGP and the individual protocol metrics. For external routes, destinations, or routing domains, the cost is determined by a preference value.</td>
</tr>
<tr>
<td>MED-plus-IGP</td>
<td>Metric value for BGP path selection to which the IGP cost to the next-hop destination has been added.</td>
</tr>
<tr>
<td>TTL-Action</td>
<td>For MPLS LSPs, state of the TTL propagation attribute. Can be enabled or disabled for all RSVP-signaled and LDP-signaled LSPs or for specific VRF routing instances.</td>
</tr>
<tr>
<td></td>
<td>For sample output, see show route table.</td>
</tr>
<tr>
<td>Task</td>
<td>Name of the protocol that has added the route.</td>
</tr>
<tr>
<td>Announcement bits</td>
<td>List of protocols that are consumers of the route. Using the following output as an example, Announcement bits (3): 0-KRT 5-Resolve tree 2 8-BGP RT Background there are (3) announcement bits to reflect the three clients (protocols) that have state for this route: Kernel (0-KRT), 5 (resolution tree process 2), and 8 (BGP).</td>
</tr>
<tr>
<td></td>
<td>The notation n-Resolve inet indicates that the route is used for route resolution for next hops found in the routing table. n is an index used by Juniper Networks customer support only.</td>
</tr>
</tbody>
</table>
Table 145: show route extensive Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS path</td>
<td>AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:</td>
</tr>
<tr>
<td></td>
<td>• I—IGP.</td>
</tr>
<tr>
<td></td>
<td>• E—EGP.</td>
</tr>
<tr>
<td></td>
<td>• Recorded—The AS path is recorded by the sample process (sampled).</td>
</tr>
<tr>
<td></td>
<td>• ?—Incomplete; typically, the AS path was aggregated.</td>
</tr>
<tr>
<td></td>
<td>When AS path numbers are included in the route, the format is as follows:</td>
</tr>
<tr>
<td></td>
<td>• []—Brackets enclose the local AS number associated with the AS path if more than one AS number is configured on the routing device, or if AS path prepending is configured.</td>
</tr>
<tr>
<td></td>
<td>• { }—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.</td>
</tr>
<tr>
<td></td>
<td>• ()—Parentheses enclose a confederation.</td>
</tr>
<tr>
<td></td>
<td>• ([)—Parentheses and brackets enclose a confederation set.</td>
</tr>
<tr>
<td></td>
<td>NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance.</td>
</tr>
<tr>
<td>validation-state</td>
<td>(BGP-learned routes) Validation status of the route:</td>
</tr>
<tr>
<td></td>
<td>• Invalid—Indicates that the prefix is found, but either the corresponding AS received from the EBGP peer is not the AS that appears in the database, or the prefix length in the BGP update message is longer than the maximum length permitted in the database.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Indicates that the prefix is not among the prefixes or prefix ranges in the database.</td>
</tr>
<tr>
<td></td>
<td>• Unverified—Indicates that origin validation is not enabled for the BGP peers.</td>
</tr>
<tr>
<td></td>
<td>• Valid—Indicates that the prefix and autonomous system pair are found in the database.</td>
</tr>
<tr>
<td>FECs bound to route</td>
<td>Point-to-multipoint root address, multicast source address, and multicast group address when multipoint LDP (M-LDP) inband signaling is configured.</td>
</tr>
<tr>
<td>AS path: I<Originator></td>
<td>(For route reflected output only) Originator ID attribute set by the route reflector.</td>
</tr>
</tbody>
</table>
Table 145: show route extensive Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>route status</td>
<td>Indicates the status of a BGP route:</td>
</tr>
<tr>
<td></td>
<td>• Accepted—The specified BGP route is imported by the default BGP policy.</td>
</tr>
<tr>
<td></td>
<td>• Import—The route is imported into a Layer 3 VPN routing instance.</td>
</tr>
<tr>
<td></td>
<td>• Import-Protect—A remote instance egress that is protected.</td>
</tr>
<tr>
<td></td>
<td>• Multipath—A BGP multipath active route.</td>
</tr>
<tr>
<td></td>
<td>• MultipathContrib—The route is not active but contributes to the BGP multipath.</td>
</tr>
<tr>
<td></td>
<td>• Protect—An egress route that is protected.</td>
</tr>
<tr>
<td></td>
<td>• Stale—A route that is marked stale due to graceful restart.</td>
</tr>
<tr>
<td>Primary Upstream</td>
<td>When multipoint LDP with multicast-only fast reroute (MoFRR) is configured, the primary upstream path. MoFRR transmits a multicast join message from a receiver toward a source on a primary path, while also transmitting a secondary multicast join message from the receiver toward the source on a backup path.</td>
</tr>
<tr>
<td>RPF Nexthops</td>
<td>When multipoint LDP with MoFRR is configured, the reverse-path forwarding (RPF) next-hop information. Data packets are received from both the primary path and the secondary paths. The redundant packets are discarded at topology merge points due to the RPF checks.</td>
</tr>
<tr>
<td>Label</td>
<td>Multiple MPLS labels are used to control MoFRR stream selection. Each label represents a separate route, but each references the same interface list check. Only the primary label is forwarded while all others are dropped. Multiple interfaces can receive packets using the same label.</td>
</tr>
<tr>
<td>weight</td>
<td>Value used to distinguish MoFRR primary and backup routes. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.</td>
</tr>
<tr>
<td>VC Label</td>
<td>MPLS label assigned to the Layer 2 circuit virtual connection.</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit (MTU) of the Layer 2 circuit.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN identifier of the Layer 2 circuit.</td>
</tr>
<tr>
<td>Cluster list</td>
<td>(For route reflected output only) Cluster ID sent by the route reflector.</td>
</tr>
<tr>
<td>Originator ID</td>
<td>(For route reflected output only) Address of router that originally sent the route to the route reflector.</td>
</tr>
<tr>
<td>Prefixes bound to route</td>
<td>Forwarding Equivalent Class (FEC) bound to this route. Applicable only to routes installed by LDP.</td>
</tr>
</tbody>
</table>
Table 145: show route extensive Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communities</td>
<td>Community path attribute for the route. See the Output Field table in the <code>show route detail</code> command for all possible values for this field.</td>
</tr>
<tr>
<td>Layer2-info: encaps</td>
<td>Layer 2 encapsulation (for example, VPLS).</td>
</tr>
<tr>
<td>control flags</td>
<td>Control flags: none or Site Down.</td>
</tr>
<tr>
<td>mtu</td>
<td>Maximum transmission unit (MTU) information.</td>
</tr>
<tr>
<td>Label-Base, range</td>
<td>First label in a block of labels and label block size. A remote PE routing device uses this first label when sending traffic toward the advertising PE routing device.</td>
</tr>
<tr>
<td>status vector</td>
<td>Layer 2 VPN and VPLS network layer reachability information (NLRI).</td>
</tr>
<tr>
<td>Localpref</td>
<td>Local preference value included in the route.</td>
</tr>
<tr>
<td>Router ID</td>
<td>BGP router ID as advertised by the neighbor in the open message.</td>
</tr>
<tr>
<td>Primary Routing Table</td>
<td>In a routing table group, the name of the primary routing table in which the route resides.</td>
</tr>
<tr>
<td>Secondary Tables</td>
<td>In a routing table group, the name of one or more secondary tables in which the route resides.</td>
</tr>
<tr>
<td>Originating RIB</td>
<td>Name of the routing table whose active route was used to determine the forwarding next-hop entry in the resolution database. For example, in the case of inet.0 resolving through inet.0 and inet.3, this field indicates which routing table, inet.0 or inet.3, provided the best path for a particular prefix.</td>
</tr>
<tr>
<td>Node path count</td>
<td>Number of nodes in the path.</td>
</tr>
<tr>
<td>Forwarding nexthops</td>
<td>Number of forwarding next hops. The forwarding next hop is the network layer address of the directly reachable neighboring system (if applicable) and the interface used to reach it.</td>
</tr>
</tbody>
</table>

Sample Output

```
show route extensive
user@host> show route extensive
```
inet.0: 22 destinations, 23 routes (21 active, 0 holddown, 1 hidden)
203.0.113.10/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 203.0.113.10/16 -> {192.168.71.254}
 *Static Preference: 5
 Next-hop reference count: 29
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 64496
 Age: 1:34:06
 Task: RT
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

203.0.113.30/30 (2 entries, 1 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 2
 Next hop: via so-0/3/0.0, selected
 State: <Active Int>
 Local AS: 64496
 Age: 1:32:40
 Task: IF
 Announcement bits (1): 3-Resolve tree 2
 AS path: I
 OSPF Preference: 10
 Next-hop reference count: 1
 Next hop: via so-0/3/0.0, selected
 State: <Int>
 Inactive reason: Route Preference
 Local AS: 64496
 Age: 1:32:40 Metric: 1
 Area: 0.0.0.0
 Task: OSPF
 AS path: I

203.0.113.103/32 (1 entry, 1 announced)
 *Local Preference: 0
 Next hop type: Local
 Next-hop reference count: 7
 Interface: so-0/3/0.0
 State: <Active NoReadvrt Int>
 Local AS: 64496
 Age: 1:32:43
Task: IF
Announcement bits (1): 3-Resolve tree 2
AS path: I

203.0.113.203/30 (1 entry, 1 announced)
TSI:
KRT in-kernel 203.0.113.203/30 -> {203.0.113.216}
 *OSPF Preference: 10
 Next-hop reference count: 9
 Next hop: via so-0/3/0.0
 Next hop: 203.0.113.216 via ge-3/1/0.0, selected
 State: <Active Int>
 Local AS: 64496
 Age: 1:32:19 Metric: 2
 Area: 0.0.0.0
 Task: OSPF
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

198.51.100.2/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 198.51.100.2/32 -> {}
 *PIM Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 64496
 Age: 1:34:08
 Task: PIM Recv
 Announcement bits (2): 0-KRT 3-Resolve tree 2
 AS path: I

198.51.100.22/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 198.51.100.22/32 -> {}
 *IGMP Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 64496
Age: 1:34:06
Task: IGMP
Announcement bits (2): 0-KRT 3-Resolve tree 2
AS path: I

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

203.0.113.103/32 (1 entry, 1 announced)
 State: <FlashAll>
 *RSVP Preference: 7
 Next-hop reference count: 6
 Next hop: 203.0.113.216 via ge-3/1/0.0 weight 0x1, selected
 Label-switched-path green-r1-r3
 Label operation: Push 100096
 State: <Active Int>
 Local AS: 64496
 Age: 1:28:12 Metric: 2
 Task: RSVP
 Announcement bits (2): 1-Resolve tree 1 2-Resolve tree 2
 AS path: I

203.0.113.238/32 (1 entry, 1 announced)
 State: <FlashAll>
 *RSVP Preference: 7
 Next-hop reference count: 6
 Next hop: via so-0/3/0.0 weight 0x1, selected
 Label-switched-path green-r1-r2
 State: <Active Int>
 Local AS: 64496
 Age: 1:28:12 Metric: 1
 Task: RSVP
 Announcement bits (2): 1-Resolve tree 1 2-Resolve tree 2
 AS path: I

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
...

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

47.0005.80ff.f800.0000.0108.0001.0102.5507.1052/152 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
Next hop: via lo0.0, selected
State: <Active Int>
Local AS: 64496
Age: 1:34:07
Task: IF
AS path: I

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

0 (1 entry, 1 announced)
TSI:
KRT in-kernel 0 /36 -> {}
 *MPLS Preference: 0
 Next hop type: Receive
 Next-hop reference count: 6
 State: <Active Int>
 Local AS: 64496
 Age: 1:34:08 Metric: 1
 Task: MPLS
 Announcement bits (1): 0-KRT
 AS path: I

...
Next hop: 198.51.100.2 via lt-1/2/0.5 weight 0x8001
Label operation: Pop
State: <Active Int>
Age: 1:29 Metric: 1
Task: RSVP
Announcement bits (1): 0-KRT
AS path: I...

800010 (1 entry, 1 announced)

TSI:
KRT in-kernel 800010 /36 -> (vt-3/2/0.32769)
 *VPLS Preference: 7
 Next-hop reference count: 2
 Next hop: via vt-3/2/0.32769, selected
 Label operation: Pop
 State: <Active Int>
 Age: 1:31:53
 Task: Common L2 VC
 Announcement bits (1): 0-KRT
 AS path: I

vt-3/2/0.32769 (1 entry, 1 announced)
TSI:
KRT in-kernel vt-3/2/0.32769.0 /16 -> (indirect(1048574))
 *VPLS Preference: 7
 Next-hop reference count: 2
 Next hop: 203.0.113.216 via ge-3/1/0.0 weight 0x1, selected
 Label-switched-path green-r1-r3
 Label operation: Push 800012, Push 100096(top)
 Protocol next hop: 203.0.113.103
 Push 800012
 Indirect next hop: 87272e4 1048574
 State: <Active Int>
 Age: 1:31:53 Metric2: 2
 Task: Common L2 VC
 Announcement bits (2): 0-KRT 1-Common L2 VC
 AS path: I
 Communities: target:11111:1 Layer2-info: encaps:VPLS,
 control flags:, mtu: 0
 Indirect next hops: 1
 Protocol next hop: 203.0.113.103 Metric: 2
 Push 800012
 Indirect next hop: 87272e4 1048574
Indirect path forwarding next hops: 1
 Next hop: 203.0.113.216 via ge-3/1/0.0 weight 0x1

203.0.113.103/32 Originating RIB: inet.3
 Metric: 2 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 203.0.113.216 via ge-3/1/0.0

inet6.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

2001:db8::10:255:71:52/128 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.0, selected
 State: <Active Int>
 Local AS: 64496
 Age: 1:34:07
 Task: IF
 AS path: I

fe80::280:42ff:fe10:f179/128 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.0, selected
 State: <Active NoReadvrt Int>
 Local AS: 64496
 Age: 1:34:07
 Task: IF
 AS path: I

ff02::2/128 (1 entry, 1 announced)
TSI:
KRT in-kernel ff02::2/128 -> {}
 *PIM Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 64496
 Age: 1:34:08
 Task: PIM Recv6
 Announcement bits (1): 0-KRT
 AS path: I
ff02::d/128 (1 entry, 1 announced)
TSI:
KRT in-kernel ff02::d/128 -> {}
 *PIM Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 64496
 Age: 1:34:08
 Task: PIM Recv6
 Announcement bits (1): 0-KRT
 AS path: I

ff02::16/128 (1 entry, 1 announced)
TSI:
KRT in-kernel ff02::16/128 -> {}
 *MLD Preference: 0
 Next-hop reference count: 18
 State: <Active NoReadvrt Int>
 Local AS: 64496
 Age: 1:34:06
 Task: MLD
 Announcement bits (1): 0-KRT
 AS path: I

private.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

fe80::280:42ff:fe10:f179/128 (1 entry, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.16385, selected
 State: <Active NoReadvrt Int>
 Age: 1:34:07
 Task: IF
 AS path: I

green.l2vpn.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

203.0.113.103:1:3:1/96 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 203.0.113.103:1
 Next-hop reference count: 7
 Source: 203.0.113.103
 Protocol next hop: 203.0.113.103
Indirect next hop: 2 no-forward
State: <Secondary Active Int Ext>
Local AS: 64496 Peer AS: 64496
Age: 1:28:12 Metric2: 1
Task: BGP_69.203.0.113.103+179
Announcement bits (1): 0-green-12vpn
AS path: I
Communities: target:11111:1 Layer2-info: encaps:VPLS, control flags:, mtu: 0
Label-base: 800008, range: 8
Localpref: 100
Router ID: 203.0.113.103
Primary Routing Table bgp.l2vpn.0

203.0.113.152:1:1:1/96 (1 entry, 1 announced)
TSI:
Page 0 idx 0 Type 1 val 8699540
 *L2VPN Preference: 170/-1
 Next-hop reference count: 5
 Protocol next hop: 203.0.113.152
 Indirect next hop: 0 -
 State: <Active Int Ext>
 Age: 1:34:03 Metric2: 1
 Task: green-12vpn
 Announcement bits (1): 1-BGP.0.0.0.0+179
 AS path: I
 Communities: Layer2-info: encaps:VPLS, control flags:Site-Down, mtu: 0
 Label-base: 800016, range: 8, status-vector: 0x9F

203.0.113.152:1:5:1/96 (1 entry, 1 announced)
TSI:
Page 0 idx 0 Type 1 val 8699528
 *L2VPN Preference: 170/-101
 Next-hop reference count: 5
 Protocol next hop: 203.0.113.152
 Indirect next hop: 0 -
 State: <Active Int Ext>
 Age: 1:34:03 Metric2: 1
 Task: green-12vpn
 Announcement bits (1): 1-BGP.0.0.0.0+179
 AS path: I
 Communities: Layer2-info: encaps:VPLS, control flags:, mtu: 0
 Label-base: 800008, range: 8, status-vector: 0x9F
12circuit.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

TSI:

203.0.113.163:CtrlWord:4:3:Local/96 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via so-1/1/2.0 weight 1, selected
 Label-switched-path my-lsp
 Label operation: Push 100000[0]
 Protocol next hop: 203.0.113.163 Indirect next hop: 86af000 296
 State: <Active Int>
 Local AS: 64499
 Age: 10:21
 Task: 12 circuit
 Announcement bits (1): 0-LDP
 AS path: I
 VC Label 100000, MTU 1500, VLAN ID 512

203.0.113.55/24 (1 entry, 1 announced)
TSI:
KRT queued (pending) add
 198.51.100.0/24 -> {Push 300112}
 *BGP Preference: 170/-101
 Next hop type: Router
 Address: 0x925c208
 Next-hop reference count: 2
 Source: 203.0.113.9
 Next hop: 203.0.113.9 via ge-1/2/0.15, selected
 Label operation: Push 300112
 Label TTL action: prop-ttl
 State: <Active Ext>
 Local AS: 64509 Peer AS: 65539
 Age: 1w0d 23:06:56
 AIGP: 25
 Task: BGP_65539.203.0.113.9+56732
 Announcement bits (1): 0-KRT
 AS path: 65539 64509 I
 Accepted
 Route Label: 300112
show route extensive (Access Route)

user@host> show route 203.0.113.102 extensive

inet.0: 39256 destinations, 39258 routes (39255 active, 0 holddown, 1 hidden)
203.0.113.102/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 203.0.113.102/32 -> {192.0.2.2}
OSPF area : 0.0.0.0, LSA ID : 203.0.113.102, LSA type : Extern
 *Access Preference: 13
 Next-hop reference count: 78472
 Next hop: 192.0.2.2 via fe-0/0/0.0, selected
 State: <Active Int>
Age: 12
 Task: RPD Unix Domain Server./var/run/rpd_serv.local
 Announcement bits (2): 0-KRT 1-OSPFv2
AS path: I

user@host> show route 2001:db8:4641:1::/48 extensive

inet.0: 75 destinations, 81 routes (75 active, 0 holddown, 0 hidden)
2001:db8:4641:1::/48 (1 entry, 1 announced)
TSI:
KRT in-kernel 2001:db8:4641:1::/48 -> {#0 0.13.1.0.0.1}
 *Access Preference: 13
 Next hop type: Router, Next hop index: 74548
 Address: 0x1638c1d8
 Next-hop reference count: 6
 Next hop: #0 0.13.1.0.0.1 via demux0.1073753267, selected
 Session Id: 0x0
 State: <Active Int>
 Age: 4:17
 Validation State: unverified
 Task: RPD Unix Domain Server./var/run/rpd_serv.local
 Announcement bits (2): 0-KRT 4-Resolve tree 2
AS path: I
2001:db8:4641:1::/128 (1 entry, 1 announced)
TSI:
KRT in-kernel 2001:db8:4641:1::/128 -> {#0 0.13.1.0.0.1}
 *Access-internal Preference: 12
 Next hop type: Router, Next hop index: 74548
 Address: 0x1638c1d8
 Next-hop reference count: 6
 Next hop: #0 0.13.1.0.0.1 via demux0.1073753267, selected
 Session Id: 0x0
 State: <Active Int>
 Age: 4:17
 Validation State: unverified
 Task: RPD Unix Domain Server./var/run/rpd_serv.local
 Announcement bits (2): 0-KRT 4-Resolve tree 2
 AS path: I

show route extensive (BGP PIC Edge)

user@host> show route 198.51.100.6 extensive

ed.inet.0: 6 destinations, 9 routes (6 active, 0 holddown, 0 hidden)
 198.51.100.6/32 (3 entries, 2 announced)
 State: <CalcForwarding>
 TSI:
 KRT in-kernel 198.51.100.6/32 -> {indirect(1048574), indirect(1048577)}
 Page 0 idx 0 Type 1 val 9219e30
 Nexthop: Self
 AS path: [2] 3 I
 Communities: target:2:1
 Path 198.51.100.6 from 198.51.100.4 Vector len 4. Val: 0
 ..
 #Multipath Preference: 255
 Next hop type: Indirect
 Address: 0x93f4010
 Next-hop reference count: 2
 ..
 Protocol next hop: 198.51.1001.4
 Push 299824
 Indirect next hop: 944c000 1048574 INH Session ID: 0x3
 Indirect next hop: weight 0x1
 Protocol next hop: 198.51.100.5
 Push 299824
 Indirect next hop: 944c1d8 1048577 INH Session ID: 0x4
 Indirect next hop: weight 0x4000
 State: <ForwardingOnly Int Ext>
 Inactive reason: Forwarding use only
show route extensive (FRR and LFA)

user@host> show route 203.0.113.20 extensive

inet.0: 46 destinations, 49 routes (45 active, 0 holddown, 1 hidden)
203.0.113.20/24 (2 entries, 1 announced)
 State: FlashAll
TSI:
 KRT in-kernel 203.0.113.20/24 -> {Push 299776, Push 299792}
 *RSVP Preference: 7/1
 Next hop type: Router, Next hop index: 1048574
 Address: 0xbbbc010
 Next-hop reference count: 5
 Next hop: 203.0.113.112 via ge-2/1/8.0 weight 0x1, selected
 Label-switched-path europa-d-to-europa-e
 Label operation: Push 299776
 Label TTL action: prop-ttl
 Session Id: 0x201
 Next hop: 203.0.113.122 via ge-2/1/4.0 weight 0x4001
 Label-switched-path europa-d-to-europa-e
 Label operation: Push 299792
 Label TTL action: prop-ttl
 Session Id: 0x202
 State: Active Int
 Local AS: 64500
 Age: 5:31 Metric: 2
 Task: RSVP
 Announcement bits (1): 0-KRT
 AS path: I
OSPF Preference: 10
 Next hop type: Router, Next hop index: 615
 Address: 0xb9d78c4
 Next-hop reference count: 7
 Next hop: 203.0.113.112 via ge-2/1/8.0, selected
 Session Id: 0x201
 State: Int
 Inactive reason: Route Preference
Local AS: 64500
Age: 5:35 Metric: 3
Area: 0.0.0.0
Task: OSPF
AS path: I

show route extensive (IS-IS)

```plaintext
user@host> show route extensive

IS-IS Preference: 15  
Level: 1  
Next hop type: Router, Next hop index: 1048577  
Address: 0xXXXXXXXXXX  
Next-hop reference count: YY  
Next hop: 203.0.113.22 via ae1.0 balance 43%, selected  
Session Id: 0x141  
Next hop: 203.0.113.22 via ae0.0 balance 57%
```

show route extensive (Route Reflector)

```plaintext
user@host> show route extensive

203.0.113.0/8 (1 entry, 1 announced)

TSI:  
KRT in-kernel 203.0.113.0/8 -> {indirect(40)}  
*BGP Preference: 170/-101  
Source: 192.168.4.214  
Protocol next hop: 198.51.100.192 Indirect next hop: 84ac908 40  
State: <Active Int Ext>  
Local AS: 65548 Peer AS: 65548  
Age: 3:09 Metric: 0 Metric2: 0  
Task: BGP_65548.192.168.4.214+1033  
Announcement bits (2): 0-KRT 4-Resolve inet.0  
AS path: 65544 64507 I <Originator>  
Cluster list: 198.51.100.1  
Originator ID: 203.0.113.88  
Communities: 7777:7777  
Localpref: 100  
Router ID: 203.0.113.4  
Indirect next hops: 1  
Protocol next hop: 203.0.113.192 Metric: 0
```
show route label detail (Multipoint LDP Inband Signaling for Point-to-Multipoint LSPs)

user@host> show route label 299872 detail

mpls.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
299872 (1 entry, 1 announced)
 *LDP Preference: 9
 Next hop type: Flood
 Next-hop reference count: 3
 Address: 0x9097d90
 Next hop: via vt-0/1/0.1
 Next-hop index: 661
 Label operation: Pop
 Address: 0x9172130
 Next hop: via so-0/0/3.0
 Next-hop index: 654
 Label operation: Swap 299872
 State: **Active Int>
 Local AS: 64511
 Age: 8:20 Metric: 1
 Task: LDP
 Announcement bits (1): 0-KRT
 AS path: I
 FECs bound to route: P2MP root-addr 203.0.113.166, grp 203.0.113.1, src 192.168.142.2

show route label detail (Multipoint LDP with Multicast-Only Fast Reroute)

user@host> show route label 301568 detail

mpls.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
301568 (1 entry, 1 announced)
 *LDP Preference: 9
 Next hop type: Flood
 Address: 0x2735208
 Next-hop reference count: 3
 Next hop type: Router, Next hop index: 1397
 Address: 0x2735d2c
Next-hop reference count: 3
Next hop: 203.0.113.82 via ge-1/2/22.0
Label operation: Pop
Load balance label: None;
Next hop type: Router, Next hop index: 1395
Address: 0x2736290
Next-hop reference count: 3
Next hop: 203.0.113.2 via ge-1/2/18.0
Label operation: Pop
Load balance label: None;
State: <Active Int AckRequest MulticastRPF>
Local AS: 64500
Age: 54:05 Metric: 1
Validation State: unverified
Task: LDP
Announcement bits (1): 0-KRT
AS path: I
FECs bound to route: P2MP root-addr 198.51.100.1, grp: 203.0.113.1, src: 192.168.219.11
Primary Upstream : 198.51.100.3:0--198.51.100.2:0
RPF Nexthops :
 ge-1/2/15.0, 10.2.94.1, Label: 301568, weight: 0x1
 ge-1/2/14.0, 10.2.3.1, Label: 301568, weight: 0x1
Backup Upstream : 198.51.100.3:0--198.51.100.6:0
RPF Nexthops :
 ge-1/2/20.0, 198.51.100.96, Label: 301584, weight: 0xfffe
 ge-1/2/19.0, 198.51.100.36, Label: 301584, weight: 0xfffe

show route extensive (Flexible VXLAN Tunnel Profile)

user@host> show route 192.168.0.2 extensive

... CUSTOMER_0001.inet.0: 5618 destinations, 6018 routes (5618 active, 0 holddown, 0 hidden)

192.168.0.2/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 192.168.0.2/32 -> {fti0.6 Flags NSR-incapable}
Opaque data client: FLEX-TNL
Address: 0xd00eee8
Opaque-data reference count: 2
Opaque data: Flexible IPv6 VXLAN tunnel profile
*Static Preference: 5/100
 Next hop type: Router, Next hop index: 74781
 Address: 0x5d9b03cc
 Next-hop reference count: 363
 Next hop: via fti0.6, selected
 Session Id: 0x24c8
 State: <Active Int NSR-incapable OpaqueData Programmed>
 Age: 1:34:00
 Validation State: unverified
 Tag: 10000001 Tag2: 1
 Announcement bits (2): 1-KRT 3-Resolve tree 30
 AS path: I
 Flexible IPv6 VXLAN tunnel profile
 Action: Encapsulate
 Interface: fti0.6 (Index: 10921)
 VNI: 10000001
 Source Prefix: 2001:db8:255::2/128
 Source UDP Port Range: 54614 - 60074
 Destination Address: 2001:db8:80:1:1:1:0:1
 Destination UDP Port: 4790
 VXLAN Flags: 0x08

...
show route flow validation

List of Syntax
Syntax on page 2476
Syntax (EX Series Switches) on page 2476

Syntax

```
show route flow validation
<brief | detail>
<ip-prefix>
<table table-name>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route flow validation
<brief | detail>
<ip-prefix>
<table table-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display flow route information.

Options
none—Display flow route information.

brief | detail—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

ip-prefix—(Optional) IP address for the flow route.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

table table-name—(Optional) Display flow route information for all routing tables whose name begins with this string (for example, inet.0 and inet6.0 are both displayed when you run the show route flow validation inet command).

Required Privilege Level
view
List of Sample Output

show route flow validation on page 2477
show route flow validation (IPv6) on page 2478

Output Fields

Table 146 on page 2477 lists the output fields for the show route flow validation command. Output fields are listed in the approximate order in which they appear.

Table 146: show route flow validation Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>routing-table-name</td>
<td>Name of the routing table (for example, inet.0).</td>
<td>All levels</td>
</tr>
<tr>
<td>prefix</td>
<td>Route address.</td>
<td>All levels</td>
</tr>
<tr>
<td>Active unicast route</td>
<td>Active route in the routing table.</td>
<td>All levels</td>
</tr>
<tr>
<td>Dependent flow destinations</td>
<td>Number of flows for which there are routes in the routing table.</td>
<td>All levels</td>
</tr>
<tr>
<td>Origin</td>
<td>Source of the route flow.</td>
<td>All levels</td>
</tr>
<tr>
<td>Neighbor AS</td>
<td>Autonomous system identifier of the neighbor.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flow destination</td>
<td>Number of entries and number of destinations that match the route flow.</td>
<td>All levels</td>
</tr>
<tr>
<td>Unicast best match</td>
<td>Destination that is the best match for the route flow.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the route flow.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show route flow validation

user@host> show route flow validation

inet.0:
10.0.5.0/24 Active unicast route
Dependent flow destinations: 1
Origin: 192.168.224.218, Neighbor AS: 64501
Flow destination (3 entries, 1 match origin)
Unicast best match: 10.0.5.0/24
Flags: SubtreeApex Consistent

show route flow validation (IPv6)

user@host> show route flow validation

inet6.0:
2001:db8::11:11:11:0/120
 Active unicast route
 Dependent flow destinations: 2
2001:db8::11:11:11:10/128
 Flow destination (1 entries, 1 match origin, next-as)
 Unicast best match: 2001:db8::11:11:11:0/120
 Flags: Consistent
2001:db8::11:11:11:30/128
 Flow destination (1 entries, 1 match origin, next-as)
 Unicast best match: 2001:db8::11:11:11:0/120
 Flags: Consistent
show route forwarding-table

List of Syntax
Syntax on page 2479
Syntax (MX Series Routers) on page 2479
Syntax (TX Matrix and TX Matrix Plus Routers) on page 2479

Syntax

```
show route forwarding-table
  <detail | extensive | summary>
  <all>
  <ccc interface-name>
  <destination destination-prefix>
  <family family | matching matching>
  <interface-name interface-name>
  <label name>
  <matching matching>
  <multicast>
  <table (default | logical-system-name/routing-instance-name | routing-instance-name)>
  <vlan (all | vlan-name)>
  <vpn vpn>
```

Syntax (MX Series Routers)

```
show route forwarding-table
  <detail | extensive | summary>
  <all>
  <bridge-domain (all | domain-name)>
  <ccc interface-name>
  <destination destination-prefix>
  <family family | matching matching>
  <interface-name interface-name>
  <label name>
  <learning-vlan-id learning-vlan-id>
  <matching matching>
  <multicast>
  <table (default | logical-system-name/routing-instance-name | routing-instance-name)>
  <vlan (all | vlan-name)>
  <vpn vpn>
```

Syntax (TX Matrix and TX Matrix Plus Routers)
show route forwarding-table
<detail | extensive | summary>
<all>
<ccc interface-name>
<destination destination-prefix>
?family family | matching matching>
<interface-name interface-name>
<matching matching>
<label name>
<lcc number>
<multicast>
<table routing-instance-name>
<vpn vpn>

Release Information

Command introduced before Junos OS Release 7.4.
Option **bridge-domain** introduced in Junos OS Release 7.5
Option **learning-vlan-id** introduced in Junos OS Release 8.4
Options **all** and **vlan** introduced in Junos OS Release 9.6.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display the Routing Engine’s forwarding table, including the network-layer prefixes and their next hops. This command is used to help verify that the routing protocol process has relayed the correction information to the forwarding table. The Routing Engine constructs and maintains one or more routing tables. From the routing tables, the Routing Engine derives a table of active routes, called the forwarding table.

NOTE: The Routing Engine copies the forwarding table to the Packet Forwarding Engine, the part of the router that is responsible for forwarding packets. To display the entries in the Packet Forwarding Engine’s forwarding table, use the **show pfe route** command.

Options

none—Display the routes in the forwarding tables. By default, the **show route forwarding-table** command does not display information about private, or internal, forwarding tables.

detail | extensive | summary—(Optional) Display the specified level of output.

all—(Optional) Display routing table entries for all forwarding tables, including private, or internal, tables.
bridge-domain (all | bridge-domain-name)—(MX Series routers only) (Optional) Display route entries for all bridge domains or the specified bridge domain.

ccc interface-name—(Optional) Display route entries for the specified circuit cross-connect interface.

destination destination-prefix—(Optional) Destination prefix.

family family—(Optional) Display routing table entries for the specified family: bridge (ccc | destination | detail | extensive | interface-name | label | learning-vlan-id | matching | multicast | summary | table | vlan | vpn), ethernet-switching, evpn, fibre-channel, fmembers, inet, inet6, iso, mcsnoop-inet, mcsnoop-inet6, mpls, satellite-inet, satellite-inet6, satellite-vpls, tnp, unix, vpls, or vlan-classification.

interface-name interface-name—(Optional) Display routing table entries for the specified interface.

label name—(Optional) Display route entries for the specified label.

lcc number—(TX Matrix and TX matrix Plus routers only) (Optional) On a routing matrix composed of a TX Matrix router and T640 routers, display information for the specified T640 router (or line-card chassis) connected to the TX Matrix router. On a routing matrix composed of the TX Matrix Plus router and T1600 or T4000 routers, display information for the specified router (line-card chassis) connected to the TX Matrix Plus router.

Replace number with the following values depending on the LCC configuration:

• 0 through 3, when T640 routers are connected to a TX Matrix router in a routing matrix.
• 0 through 3, when T1600 routers are connected to a TX Matrix Plus router in a routing matrix.
• 0 through 7, when T1600 routers are connected to a TX Matrix Plus router with 3D SIBs in a routing matrix.
• 0, 2, 4, or 6, when T4000 routers are connected to a TX Matrix Plus router with 3D SIBs in a routing matrix.

learning-vlan-id learning-vlan-id—(MX Series routers only) (Optional) Display learned information for all VLANs or for the specified VLAN.

matching matching—(Optional) Display routing table entries matching the specified prefix or prefix length.

multicast—(Optional) Display routing table entries for multicast routes.

table—(Optional) Display route entries for all the routing tables in the main routing instance or for the specified routing instance. If your device supports logical systems, you can also display route entries for the specified logical system and routing instance. To view the routing instances on your device, use the show route instance command.

vlan (all | vlan-name)—(Optional) Display information for all VLANs or for the specified VLAN.

vpn vpn—(Optional) Display routing table entries for a specified VPN.
Required Privilege Level
view

List of Sample Output
show route forwarding-table on page 2487
show route forwarding-table detail on page 2489
show route forwarding-table destination extensive (Weights and Balances) on page 2490
show route forwarding-table extensive on page 2490
show route forwarding-table extensive (RPF) on page 2493
show route forwarding-table extensive (PIM using point-to-multipoint mode) on page 2493
show route forwarding-table (dynamic list next hop) on page 2494
show route forwarding-table family mpls on page 2495
show route forwarding-table family vpls on page 2496
show route forwarding-table vpls (Broadcast, unknown unicast, and multicast (BUM) hashing is enabled) on page 2496
show route forwarding-table vpls (Broadcast, unknown unicast, and multicast (BUM) hashing is enabled with MAC Statistics) on page 2497
show route forwarding-table family vpls extensive on page 2497
show route forwarding-table table default on page 2499
show route forwarding-table table logical-system-name/routing-instance-name on page 2500
show route forwarding-table vpn on page 2501

Output Fields
Table 147 on page 2482 lists the output fields for the show route forwarding-table command. Output fields are listed in the approximate order in which they appear. Field names might be abbreviated (as shown in parentheses) when no level of output is specified, or when the detail keyword is used instead of the extensive keyword.

Table 147: show route forwarding-table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical system</td>
<td>Name of the logical system. This field is displayed if you specify the table logical-system-name/routing-instance-name option on a device that is configured for and supports logical systems.</td>
<td>All levels</td>
</tr>
<tr>
<td>Routing table</td>
<td>Name of the routing table (for example, inet, inet6, mpls).</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 147: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled protocols</td>
<td></td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 147: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>The features and protocols that have been enabled for a given routing table. This field can contain the following values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• BUM hashing—BUM hashing is enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAC Stats—Mac Statistics is enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bridging—Routing instance is a normal layer 2 bridge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No VLAN—No VLANs are associated with the bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• All VLANs—The vlan-id all statement has been enabled for this bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Single VLAN—Single VLAN ID is associated with the bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAC action drop—New MACs will be dropped when the MAC address limit is reached.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dual VLAN—Dual VLAN tags are associated with the bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No local switching—No local switching is enabled for this routing instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Learning disabled—Layer 2 learning is disabled for this routing instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAC limit reached—The maximum number of MAC addresses that was configured for this routing instance has been reached.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• VPLS—The VPLS protocol is enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No IRB I2-copy—The no-irb-layer-2-copy feature is enabled for this routing instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ACKed by all peers—All peers have acknowledged this routing instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• BUM Pruning—BUM pruning is enabled on the VPLS instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Def BD VXLAN—VXLAN is enabled for the default bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EVPN—EVPN protocol is enabled for this routing instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Def BD OVSD—Open vSwitch Database (OVSDB) is enabled on the default bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Def BD Ingress replication—VXLAN ingress node replication is enabled on the default bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• L2 backhaul—Layer 2 backhaul is enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FRR optimize—Fast reroute optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAC pinning—MAC pinning is enabled for this bridge domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAC Aging Timer—The MAC table aging time is set per routing instance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EVPN VXLAN—This routing instance supports EVPN with VXLAN encapsulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PBNN—This routing instance is configured as a provider backbone bridged network.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 147: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• PBN—This routing instance is configured as a provider bridge network.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ETREE—The ETREE protocol is enabled on this EVPN routing instance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ARP/NDP suppression—EVPN ARP NDP suppression is enabled in this routing instance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Def BD EVPN VXLAN—EVPN VXLAN is enabled for the default bridge domain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MPLS control word—Control word is enabled for this MPLS routing instance.</td>
<td></td>
</tr>
<tr>
<td>Address family</td>
<td>Address family (for example, IP, IPv6, ISO, MPLS, and VPLS).</td>
<td>All levels</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination of the route.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Type (Type)</td>
<td>How the route was placed into the forwarding table. When the detail keyword is used, the route type might be abbreviated (as shown in parentheses):</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• cloned (clon)—(TCP or multicast only) Cloned route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destination (dest)—Remote addresses directly reachable through an interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• destination down (iddn)—Destination route for which the interface is unreachable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• interface cloned (ifcl)—Cloned route for which the interface is unreachable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• route down (ifdn)—Interface route for which the interface is unreachable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ignore (ignr)—Ignore this route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• interface (intf)—Installed as a result of configuring an interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• permanent (perm)—Routes installed by the kernel when the routing table is initialized.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• user—Routes installed by the routing protocol process or as a result of the configuration.</td>
<td></td>
</tr>
<tr>
<td>Route Reference (RtRef)</td>
<td>Number of routes to reference.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 147: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Route type flags:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• none—No flags are enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• accounting—Route has accounting enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• cached—Cache route.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• incoming-iface interface-number—Check against incoming interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• prefix load balance—Load balancing is enabled for this prefix.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• rt nh decoupled—Route has been decoupled from the next hop to the destination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sent to PFE—Route has been sent to the Packet Forwarding Engine.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• static—Static route.</td>
<td></td>
</tr>
<tr>
<td>Next hop</td>
<td>IP address of the next hop to the destination.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Next hop Type</td>
<td>Next-hop type. When the detail keyword is used, the next-hop type might be abbreviated (as indicated in parentheses):</td>
<td>detail extensive</td>
</tr>
<tr>
<td>(Type)</td>
<td>• broadcast (bcst)—Broadcast.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• deny—Deny.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• discard (dscd)—Discard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• hold—Next hop is waiting to be resolved into a unicast or multicast type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• indexed (idxd)—Indexed next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• indirect (indr)—Indirect next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• local (loc)—Local address on an interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• routed multicast (mcrt)—Regular multicast next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast (mcst)—Wire multicast next hop (limited to the LAN).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast discard (mdsc)—Multicast discard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• multicast group (mgrp)—Multicast group member.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• receive (recv)—Receive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• reject (rjct)—Discard. An ICMP unreachable message was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• resolve (rsiv)—Resolving the next hop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unicast (ucst)—Unicast.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unilist (ulst)—List of unicast next hops. A packet sent to this next hop goes to any next hop in the list.</td>
<td></td>
</tr>
</tbody>
</table>
Table 147: show route forwarding-table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Software index of the next hop that is used to route the traffic for a given prefix.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Route interface-index</td>
<td>Logical interface index from which the route is learned. For example, for interface routes, this is the logical interface index of the route itself. For static routes, this field is zero. For routes learned through routing protocols, this is the logical interface index from which the route is learned.</td>
<td>extensive</td>
</tr>
<tr>
<td>Reference (NhRef)</td>
<td>Number of routes that refer to this next hop.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Next-hop interface (Netif)</td>
<td>Interface used to reach the next hop.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Weight</td>
<td>Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible (see the Balance field description).</td>
<td>extensive</td>
</tr>
<tr>
<td>Balance</td>
<td>Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a router is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing.</td>
<td>extensive</td>
</tr>
<tr>
<td>RPF interface</td>
<td>List of interfaces from which the prefix can be accepted. Reverse path forwarding (RPF) information is displayed only when rpf-check is configured on the interface.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

Sample Output

```plaintext
show route forwarding-table

user@host>  show route forwarding-table

Routing table: default.inet
Internet:
Destination          Type RtRef Next hop       Type Index NhRef Netif
2487
```
<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>rjct</td>
<td>46</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0.0.0/32</td>
<td>perm</td>
<td>0</td>
<td>dscd</td>
<td>44</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.1.0/24</td>
<td>ifdn</td>
<td>0</td>
<td>rslv</td>
<td>608</td>
<td>1 ge-2/0/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.1.0/32</td>
<td>iddn</td>
<td>0</td>
<td>recv</td>
<td>606</td>
<td>1 ge-2/0/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.1.1/32</td>
<td>user</td>
<td>0</td>
<td>rjct</td>
<td>46</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.1.1/32</td>
<td>intf</td>
<td>0</td>
<td>locl</td>
<td>607</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.1.1/32</td>
<td>iddn</td>
<td>0</td>
<td>locl</td>
<td>607</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.1.255/32</td>
<td>iddn</td>
<td>0</td>
<td>bcst</td>
<td>605</td>
<td>1 ge-2/0/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.0/24</td>
<td>intf</td>
<td>0</td>
<td>rslv</td>
<td>616</td>
<td>1 ge-2/0/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.1/32</td>
<td>intf</td>
<td>0</td>
<td>locl</td>
<td>615</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.1/32</td>
<td>dest</td>
<td>0</td>
<td>locl</td>
<td>615</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.255/32</td>
<td>dest</td>
<td>0</td>
<td>bcst</td>
<td>613</td>
<td>1 ge-2/0/0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>ifdn</td>
<td>0</td>
<td>rslv</td>
<td>612</td>
<td>1 ge-2/0/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.0.0/32</td>
<td>iddn</td>
<td>0</td>
<td>recv</td>
<td>610</td>
<td>1 ge-2/0/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.0/32</td>
<td>user</td>
<td>0</td>
<td>rjct</td>
<td>46</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.0/32</td>
<td>intf</td>
<td>0</td>
<td>locl</td>
<td>611</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.0/32</td>
<td>iddn</td>
<td>0</td>
<td>locl</td>
<td>611</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1.1.255/32</td>
<td>iddn</td>
<td>0</td>
<td>bcst</td>
<td>609</td>
<td>1 ge-2/0/1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.206.0.0/16</td>
<td>user</td>
<td>0</td>
<td>ucst</td>
<td>419</td>
<td>20 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.0.0/16</td>
<td>user</td>
<td>1</td>
<td>ucst</td>
<td>419</td>
<td>20 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.0.0/18</td>
<td>intf</td>
<td>0</td>
<td>rslv</td>
<td>418</td>
<td>1 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.0.0/32</td>
<td>dest</td>
<td>0</td>
<td>recv</td>
<td>416</td>
<td>1 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.2.131/32</td>
<td>intf</td>
<td>0</td>
<td>locl</td>
<td>417</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.2.131/32</td>
<td>dest</td>
<td>0</td>
<td>locl</td>
<td>417</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.17.55/32</td>
<td>dest</td>
<td>0</td>
<td>ucst</td>
<td>435</td>
<td>1 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.63.42/32</td>
<td>dest</td>
<td>0</td>
<td>ucst</td>
<td>434</td>
<td>1 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.209.63.255/32</td>
<td>dest</td>
<td>0</td>
<td>ucst</td>
<td>419</td>
<td>20 fxp0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.227.0.0/16</td>
<td>user</td>
<td>0</td>
<td>ucst</td>
<td>419</td>
<td>20 fxp0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routing table: iso

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>rjct</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.0005.80ff.f800.0000.0108.0003.0102.5524.5220.00</td>
<td>intf</td>
<td>0</td>
<td>locl</td>
<td>28</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routing table: inet6

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>rjct</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Routing table: ccc
MPLS:
Interface.Label Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 16 1
100004(top)fe-0/0/1.0

Routing table: inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
default user 2 0:90:69:8e:b1:1b ucst 132 4 fxp0.0
default perm 0 rjct 14 1
10.1.1.0/24 intf 0 ff.3.0.21 ucst 322 1 so-5/3/0.0
10.1.1.0/32 dest 0 10.1.1.0 recv 324 1 so-5/3/0.0
10.1.1.1/32 intf 0 10.1.1.1 locl 321 1
10.1.1.255/32 dest 0 10.1.1.255 bcst 323 1 so-5/3/0.0
10.21.21.0/24 intf 0 ff.3.0.21 ucst 326 1 so-5/3/0.0
10.21.21.0/32 dest 0 10.21.21.0 recv 328 1 so-5/3/0.0
10.21.21.1/32 intf 0 10.21.21.1 locl 325 1
10.21.21.255/32 dest 0 10.21.21.255 bcst 327 1 so-5/3/0.0
127.0.0.1/32 intf 0 127.0.0.1 locl 320 1
172.17.28.19/32 clon 1 192.168.4.254 ucst 132 4 fxp0.0
172.17.28.44/32 clon 1 192.168.4.254 ucst 132 4 fxp0.0

Routing table: privatel__.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 46 1
10.0.0.0/8 intf 0 rslv 136 1 fxp1.0
10.0.0.0/32 dest 0 10.0.0.0 recv 134 1 fxp1.0
10.0.0.4/32 intf 0 10.0.0.4 locl 135 2
10.0.0.4/32 dest 0 10.0.0.4 locl 135 2

Routing table: iso
show route forwarding-table destination extensive (Weights and Balances)

user@host> show route forwarding-table destination 3.4.2.1 extensive

Routing table: inet [Index 0]
Internet:

Destination: 3.4.2.1/32
 Route type: user
 Route reference: 0
 Route interface-index: 0
 Flags: sent to PFE
 Next-hop type: unilist
 Index: 262143
 Reference: 1
 Weight: 22
 Balance: 3
 Next-hop: 172.16.4.4
 Next-hop type: unicast
 Index: 335
 Reference: 2
 Next-hop interface: so-1/1/0.0
 Next-hop: 145.12.1.2
 Next-hop type: unicast
 Index: 337
 Reference: 2
 Next-hop interface: so-0/1/2.0

show route forwarding-table extensive

user@host> show route forwarding-table extensive

Routing table: inet [Index 0]
Internet:
Destination: default
Route type: user
Route reference: 2
Flags: sent to PFE
Next-hop: 00:00:5E:00:53:1b
Next-hop type: unicast
Next-hop interface: fxp0.0

Destination: default
Route type: permanent
Route reference: 0
Flags: none
Next-hop type: reject
Index: 132
Reference: 4

Destination: 127.0.0.1/32
Route type: interface
Route reference: 0
Flags: sent to PFE
Next-hop: 127.0.0.1
Next-hop type: local
Index: 320
Reference: 1

Routing table: private1__.inet [Index 1]

Internet:

Destination: default
Route type: permanent
Route reference: 0
Flags: sent to PFE
Next-hop type: reject
Index: 46
Reference: 1

Destination: 10.0.0.0/8
Route type: interface
Route reference: 0
Flags: sent to PFE
Next-hop type: resolve
Index: 136
Reference: 1
Next-hop interface: fxp1.0

Routing table: iso [Index 0]
ISO:
Destination: default
 Route type: permanent
 Route reference: 0
 Flags: sent to PFE
 Next-hop type: reject
 Index: 38
 Reference: 1

Routing table: inet6 [Index 0]
Internet6:

Destination: default
 Route type: permanent
 Route reference: 0
 Flags: sent to PFE
 Next-hop type: reject
 Index: 22
 Reference: 1

Destination: ff00::/8
 Route type: permanent
 Route reference: 0
 Flags: sent to PFE
 Next-hop type: multicast discard
 Index: 21
 Reference: 1

...
show route forwarding-table extensive (RPF)

The next example is based on the following configuration, which enables an RPF check on all routes that are learned from this interface, including the interface route:

```
so-1/1/0 {
    unit 0 {
        family inet {
            rpf-check;
            address 192.0.2.2/30;
        }
    }
}
```

user@host> **show route forwarding-table extensive**

Routing table: inet [Index 0]
Internet:
...
...
Destination: 192.0.2.3/32
 Route type: destination
 Route reference: 0 Route interface-index: 67
 Flags: sent to PFE
 Nexthop: 192.0.2.3
 Next-hop type: broadcast Index: 328 Reference: 1
 Next-hop interface: so-1/1/0.0
 RPF interface: so-1/1/0.0

show route forwarding-table extensive (PIM using point-to-multipoint mode)

user@host> **show route forwarding-table extensive**

Destination: 198.51.100.0/24
 Route type: user
 Route reference: 0 Route interface-index: 335
 Multicast RPF nh index: 0
 P2mpidx: 0
 Flags: cached, check incoming interface, accounting, sent to PFE, rt nh decoupled
 Next-hop type: indirect Index: 1048575 Reference: 4
 Nexthop:
 Next-hop type: composite Index: 627 Reference: 1
show route forwarding-table (dynamic list next hop)

The `show route forwarding table` output shows the two next hop elements for a multihomed EVPN destination.

```
user@host> show route forwarding-table label 299952 extensive
```

```
MPLS:

Destination:  299952
  Route type: user
  Route reference: 0                Route interface-index: 0
  Multicast RPF nh index: 0
  P2mpidx: 0
  Flags: sent to PFE, rt nh decoupled
Next-hop type: indirect            Index: 1048575  Reference: 2
  Nexthop:
    Next-hop type: composite         Index: 601    Reference: 2
    Next-hop type: indirect          Index: 1048574  Reference: 3
    Nexthop: 1.0.0.4
    Next-hop type: Push 301632, Push 299776(top) Index: 600 Reference: 2
      Load Balance Label: None
      Next-hop interface: ge-0/0/1.0
    Next-hop type: indirect          Index: 1048577  Reference: 3
    Nexthop: 1.0.0.4
    Next-hop type: Push 301344, Push 299792(top) Index: 619 Reference: 2
      Load Balance Label: None
      Next-hop interface: ge-0/0/1.0
```

After one of the PE router has been disabled in the EVPN multihomed network, the same `show route forwarding table` output command shows one next hop element and one empty next hop element.

```
user@host> show route forwarding-table label 299952 extensive
```

```
Routing table: default.mpls [Index 0]
MPLS:

Destination:  299952
  Route type: user
  Route reference: 0                Route interface-index: 0
```
Multicast RPF nh index: 0
P2mpidx: 0
Flags: sent to PFE, rt nh decoupled
Next-hop type: indirect Index: 1048575 Reference: 2
Nexthop:
Next-hop type: composite Index: 601 Reference: 2
Next-hop type: indirect Index: 1048577 Reference: 3
Nexthop: 1.0.0.4
Next-hop type: Push 301344, Push 299792(top) Index: 619 Reference: 2
Load Balance Label: None
Next-hop interface: ge-0/0/1.0

show route forwarding-table family mpls

Routing table: mpls
MPLS:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 19 1
0 user 0 recv 18 3
1 user 0 recv 18 3
2 user 0 recv 18 3
100000 user 0 10.31.1.6 swap 100001 fe-1/1/0.0
800002 user 0 10.31.1.6 Pop vt-0/3/0.32770
vt-0/3/0.32770 (VPLS) user 0 indr 351 4

Routing table: __mpls-oam__.mpls

show route forwarding-table family mpls ccc ge-0/0/1.1004

Routing table: default.mpls
MPLS:
Destination Type RtRef Next hop Type Index NhRef Netif
ge-0/0/1.1004 (CCC) user 0 ulst 1048577 2
 comp 754 3
 comp 755 3
 comp 756 3

Routing table: __mpls-oam__.mpls
MPLS:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>dscd</td>
<td>556</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

show route forwarding-table family vpls

user@host> **show route forwarding-table family vpls**

Routing table: green.vpls

VPLS:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>dynm</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fe-0/1/0.0</td>
<td>dynm</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:5E:00:53:1f/48 <<<<<<Remote CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dynm</td>
<td>0</td>
<td>indr</td>
<td>351</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:5E:00:53:1f/48 <<<<<<Local CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dynm</td>
<td>0</td>
<td>ucst</td>
<td>354</td>
<td>2</td>
<td>fe-0/1/0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show route forwarding-table vpls (Broadcast, unknown unicast, and multicast (BUM) hashing is enabled)

user@host> **show route forwarding-table vpls**

Routing table: green.vpls

VPLS:

Enabled protocols: BUM hashing

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lsi.1048832</td>
<td>intf</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-3/0/0.0</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00:5E:00:53:01/48 user 0 ucst 590 5 ge-2/3/9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x30003/51</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-2/3/9.0</td>
<td>intf</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-3/1/3.0</td>
<td>intf</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x30002/51</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x30001/51</td>
<td>user</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show route forwarding-table vpls (Broadcast, unknown unicast, and multicast (BUM) hashing is enabled with MAC Statistics)

user@host> show route forwarding-table vpls

Routing table: green.vpls
VPLS:
Enabled protocols: BUM hashing, MAC Stats

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>dscd</td>
<td></td>
<td>519</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>lsi.1048834</td>
<td>intf</td>
<td>0</td>
<td>indr 1048574</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.3.2</td>
<td></td>
<td></td>
<td>172.16.3.2</td>
<td>Push</td>
<td>262145</td>
<td>592</td>
<td>2</td>
</tr>
<tr>
<td>ge-3/0/0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:19:e2:25:d0:01/48 user</td>
<td>0</td>
<td>ucst</td>
<td>590</td>
<td>5</td>
<td>ge-2/3/9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x30003/51</td>
<td>user</td>
<td>0</td>
<td>comp</td>
<td>630</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-2/3/9.0</td>
<td>intf</td>
<td>0</td>
<td>ucst 590</td>
<td></td>
<td>5</td>
<td>ge-2/3/9.0</td>
<td></td>
</tr>
<tr>
<td>ge-3/1/3.0</td>
<td>intf</td>
<td>0</td>
<td>ucst 591</td>
<td></td>
<td>4</td>
<td>ge-3/1/3.0</td>
<td></td>
</tr>
<tr>
<td>0x30002/51</td>
<td>user</td>
<td>0</td>
<td>comp 627</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x30001/51</td>
<td>user</td>
<td>0</td>
<td>comp 624</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show route forwarding-table family vpls extensive

user@host> show route forwarding-table family vpls extensive

Routing table: green.vpls [Index 2]
VPLS:

Destination: default
Route type: dynamic
Route reference: 0
Route interface-index: 72
Flags: sent to PFE
Next-hop type: flood
Index: 289
Reference: 1
Next-hop type: unicast
Index: 291
Reference: 3
Next-hop interface: fe-0/1/3.0
Next-hop type: unicast
Index: 290
Reference: 3
Next-hop interface: fe-0/1/2.0

Destination: default
Route type: permanent
Route reference: 0
Route interface-index: 0
Flags: none
Next-hop type: discard
Index: 341
Reference: 1

Destination: fe-0/1/2.0
Route type: dynamic
Route reference: 0
Flags: sent to PFE
Next-hop type: flood
Next-hop type: indirect
Next-hop type: Push 800016
Next-hop interface: at-1/0/1.0
Next-hop type: indirect
Next hop: 10.31.3.2
Next-hop type: Push 800000
Next-hop interface: fe-0/1/1.0
Next-hop type: unicast
Next-hop interface: fe-0/1/3.0

Destination: fe-0/1/3.0
Route type: dynamic
Route reference: 0
Flags: sent to PFE
Next-hop type: flood
Next-hop type: indirect
Next-hop type: Push 800016
Next-hop interface: at-1/0/1.0
Next-hop type: indirect
Next hop: 10.31.3.2
Next-hop type: Push 800000
Next-hop interface: fe-0/1/1.0
Next-hop type: unicast
Next-hop interface: fe-0/1/2.0

Destination: 00:00:5E:00:53:01/48
Route type: dynamic
Route reference: 0
Flags: sent to PFE, prefix load balance
Next-hop type: unicast
Next-hop interface: fe-0/1/3.0

Route used as destination:
Packet count: 6640
Byte count: 675786

Route used as source:
Packet count: 6894
Byte count: 696424

Destination: 00:00:5E:00:53:04/48
Route type: dynamic
Route reference: 0
Flags: sent to PFE, prefix load balance
Next-hop type: unicast
Next-hop interface: fe-0/1/2.0

Route used as destination:
Packet count: 6640
Byte count: 675786

Route used as source:
Packet count: 6894
Byte count: 696424
Next-hop interface: fe-0/1/2.0
Route used as destination:
 Packet count: 96 Byte count: 8079
Route used as source:
 Packet count: 296 Byte count: 24955

Destination: 00:00:5E:00:53:05/48
Route type: dynamic
Route reference: 0 Route interface-index: 74
Flags: sent to PFE, prefix load balance
Next-hop type: indirect Index: 301 Reference: 5
Next hop: 10.31.3.2
Next-hop type: Push 800000
Next-hop interface: fe-0/1/1.0

show route forwarding-table table default

user@host> show route forwarding-table table default

Routing table: default.inet
Internet:
<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>36</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.0.0.0/32</td>
<td>perm</td>
<td>0</td>
<td></td>
<td>dscd</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.0.60.0/30</td>
<td>user</td>
<td>0</td>
<td>10.0.60.13</td>
<td>ucst</td>
<td>713</td>
<td>5</td>
<td>fe-0/1/3.0</td>
</tr>
<tr>
<td>10.0.60.12/30</td>
<td>intf</td>
<td>0</td>
<td></td>
<td>rslv</td>
<td>688</td>
<td>1</td>
<td>fe-0/1/3.0</td>
</tr>
<tr>
<td>10.0.60.12/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.60.12</td>
<td>recv</td>
<td>686</td>
<td>1</td>
<td>fe-0/1/3.0</td>
</tr>
<tr>
<td>10.0.60.13/32</td>
<td>dest</td>
<td>0</td>
<td>0:5:85:8b:bc:22</td>
<td>ucst</td>
<td>713</td>
<td>5</td>
<td>fe-0/1/3.0</td>
</tr>
<tr>
<td>10.0.60.14/32</td>
<td>intf</td>
<td>0</td>
<td>10.0.60.14</td>
<td>locl</td>
<td>687</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.0.60.14/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.60.14</td>
<td>locl</td>
<td>687</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.0.60.15/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.60.15</td>
<td>bcst</td>
<td>685</td>
<td>1</td>
<td>fe-0/1/3.0</td>
</tr>
<tr>
<td>10.0.67.12/30</td>
<td>user</td>
<td>0</td>
<td>10.0.60.13</td>
<td>ucst</td>
<td>713</td>
<td>5</td>
<td>fe-0/1/3.0</td>
</tr>
<tr>
<td>10.0.80.0/30</td>
<td>ifdn</td>
<td>0</td>
<td>ff.3.0.21</td>
<td>ucst</td>
<td>676</td>
<td>1</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.0.80.0/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.80.0</td>
<td>recv</td>
<td>678</td>
<td>1</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.0.80.2/32</td>
<td>user</td>
<td>0</td>
<td></td>
<td>rjct</td>
<td>36</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.0.80.2/32</td>
<td>intf</td>
<td>0</td>
<td>10.0.80.2</td>
<td>locl</td>
<td>675</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.0.80.3/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.80.3</td>
<td>bcst</td>
<td>677</td>
<td>1</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.0.90.12/30</td>
<td>intf</td>
<td>0</td>
<td></td>
<td>rslv</td>
<td>684</td>
<td>1</td>
<td>fe-0/1/0.0</td>
</tr>
<tr>
<td>10.0.90.12/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.90.12</td>
<td>recv</td>
<td>682</td>
<td>1</td>
<td>fe-0/1/0.0</td>
</tr>
<tr>
<td>10.0.90.14/32</td>
<td>intf</td>
<td>0</td>
<td>10.0.90.14</td>
<td>locl</td>
<td>683</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.0.90.14/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.90.14</td>
<td>locl</td>
<td>683</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10.0.90.15/32</td>
<td>dest</td>
<td>0</td>
<td>10.0.90.15</td>
<td>bcst</td>
<td>681</td>
<td>1</td>
<td>fe-0/1/0.0</td>
</tr>
<tr>
<td>10.5.0.0/16</td>
<td>user</td>
<td>0</td>
<td>192.168.187.126</td>
<td>ucst</td>
<td>324</td>
<td>15</td>
<td>ffp0.0</td>
</tr>
<tr>
<td>10.10.0.0/16</td>
<td>user</td>
<td>0</td>
<td>192.168.187.126</td>
<td>ucst</td>
<td>324</td>
<td>15</td>
<td>ffp0.0</td>
</tr>
</tbody>
</table>
show route forwarding-table table logical-system-name/routing-instance-name

Logical system: R4
Routing table: vpn-red.inet
Internet:
<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>rjct</td>
<td>563</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0.0.0/32</td>
<td>perm</td>
<td>0</td>
<td>dscd</td>
<td>561</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.0.1/32</td>
<td>user</td>
<td>0</td>
<td>dscd</td>
<td>561</td>
<td>2</td>
<td>ge-1/2/0.3</td>
<td></td>
</tr>
<tr>
<td>172.16.2.0/24</td>
<td>intf</td>
<td>0</td>
<td>rsv</td>
<td>771</td>
<td></td>
<td>ge-1/2/0.3</td>
<td></td>
</tr>
<tr>
<td>172.16.2.0/32</td>
<td>dest</td>
<td>0</td>
<td>recv</td>
<td>769</td>
<td>1</td>
<td>ge-1/2/0.3</td>
<td></td>
</tr>
<tr>
<td>172.16.2.1/32</td>
<td>intf</td>
<td>0</td>
<td>locl</td>
<td>770</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.2.1/32</td>
<td>dest</td>
<td>0</td>
<td>locl</td>
<td>770</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.2.2/32</td>
<td>dest</td>
<td>0</td>
<td>0.4.80.3.0.1b.c0.d5.e4.bd.0.1b.c0.d5.e4.bc.8.0</td>
<td>789</td>
<td>1</td>
<td>ge-1/2/0.3</td>
<td></td>
</tr>
<tr>
<td>172.16.2.255/32</td>
<td>dest</td>
<td>0</td>
<td>172.16.2.255</td>
<td>768</td>
<td>1</td>
<td>ge-1/2/0.3</td>
<td></td>
</tr>
</tbody>
</table>
Logical system: R4
Routing table: vpn-red.iso
ISO:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 608 1

Logical system: R4
Routing table: vpn-red.inet6
Internet6:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 708 1
::/128 perm 0 dscd 706 1
ff00::/8 perm 0 mdsc 707 1
ff02::/128 perm 0 ff02::1 mcst 704 1

Logical system: R4
Routing table: vpn-red.mpls
MPLS:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 dscd 638

show route forwarding-table vpn

user@host> show route forwarding-table vpn VPN-A

Routing table:: VPN-A.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 4 4
10.39.10.20/30 intf 0 ff.3.0.21 ucst 40 1
so-0/0/0.0
10.39.10.21/32 intf 0 10.39.10.21 locl 36 1
10.255.14.172/32 user 0 ucst 69 2
so-0/0/0.0
10.255.14.175/32 user 0 indr 81 3
Push 100004, Push
100004(top) so-1/0/0.0
172.16.233.0/4 perm 2 mdsc 5 3
172.16.233.1/32 perm 0 172.16.233.1 mcst 1 8
On QFX5200, the results for this command look like this:

```
show route forwarding-table family mpls
```

Routing table: default.mpls

MPLS:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>dscd</td>
<td>65</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>user</td>
<td>0</td>
<td>recv</td>
<td>64</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>user</td>
<td>0</td>
<td>recv</td>
<td>64</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>user</td>
<td>0</td>
<td>recv</td>
<td>64</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>user</td>
<td>0</td>
<td>recv</td>
<td>64</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300384</td>
<td>user</td>
<td>0</td>
<td>9.1.1.1</td>
<td>Pop</td>
<td>1711</td>
<td>2</td>
<td>xe-0/0/34.0</td>
</tr>
<tr>
<td>300384(S=0)</td>
<td>user</td>
<td>0</td>
<td>9.1.1.1</td>
<td>Pop</td>
<td>1712</td>
<td>2</td>
<td>xe-0/0/34.0</td>
</tr>
<tr>
<td>300400</td>
<td>user</td>
<td>0</td>
<td>ulst</td>
<td>131071</td>
<td>2</td>
<td>10.1.1.2 Pop</td>
<td>1713</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172.16.11.2 Pop</td>
</tr>
<tr>
<td>300400(S=0)</td>
<td>user</td>
<td>0</td>
<td>ulst</td>
<td>131072</td>
<td>2</td>
<td>10.1.1.2 Pop</td>
<td>1715</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172.16.11.2 Pop</td>
</tr>
</tbody>
</table>

Routing table: __mpls-oam__.mpls

MPLS:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>dscd</td>
<td>1681</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show route hidden

Syntax

```
show route hidden
<brief | detail | extensive | terse>
<logical-system (all | logical-system-name)>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display only hidden route information. A hidden route is unusable, even if it is the best path.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

RELATED DOCUMENTATION

Understanding Hidden Routes

List of Sample Output
show route hidden on page 2504
show route hidden detail on page 2504
show route hidden extensive on page 2505
show route hidden terse on page 2505

Output Fields
For information about output fields, see the output field table for the show route command, the show route detail command, the show route extensive command, or the show route terse command.
Sample Output

show route hidden

user@host> show route hidden

inet.0: 25 destinations, 26 routes (24 active, 0 holddown, 1 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
127.0.0.1/32 [Direct/0] 04:26:38
 > via lo0.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

red.inet.0: 6 destinations, 8 routes (4 active, 0 holddown, 3 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both
10.5.5.5/32 [BGP/170] 03:44:10, localpref 100, from 10.4.4.4
 AS path: 100 I
 Unusable
10.12.1.0/24 [BGP/170] 03:44:10, localpref 100, from 10.4.4.4
 AS path: 100 I
 Unusable
10.12.80.4/30 [BGP/170] 03:44:10, localpref 100, from 10.4.4.4
 AS path: I
 Unusable
...

show route hidden detail

user@host> show route hidden detail

inet.0: 25 destinations, 26 routes (24 active, 0 holddown, 1 hidden)
Restart Complete
127.0.0.1/32 (1 entry, 0 announced)
 Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via lo0.0, selected
 State: <Hidden Martian Int>
 Local AS: 1
 Age: 4:27:37
 Task: IF
AS path: I

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
red.inet.0: 6 destinations, 8 routes (4 active, 0 holddown, 3 hidden)
Restart Complete

10.5.5.5/32 (1 entry, 0 announced)
 BGP Preference: 170/-101
 Route Distinguisher: 10.4.4.4:4
 Next hop type: Unusable
 Next-hop reference count: 6
 State: <Secondary Hidden Int Ext>
 Local AS: 1 Peer AS: 1
 Age: 3:45:09
 Task: BGP_1.10.4.4.4+2493
 AS path: 100 I
 Communities: target:1:999
 VPN Label: 100064
 Localpref: 100
 Router ID: 10.4.4.4
 Primary Routing Table bgp.l3vpn.0

...
red.inet.0: 6 destinations, 8 routes (4 active, 0 holddown, 3 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P</th>
<th>Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.5.5/32</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td>Unusable</td>
<td>100 I</td>
<td></td>
</tr>
<tr>
<td>10.12.1.0/24</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td>Unusable</td>
<td>100 I</td>
<td></td>
</tr>
<tr>
<td>10.12.80.4/30</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td>Unusable</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete

mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
Restart Complete

bgp.l3vpn.0: 3 destinations, 3 routes (0 active, 0 holddown, 3 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P</th>
<th>Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.4.4:4:10.5.5.5/32</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td>Unusable</td>
<td>100 I</td>
<td></td>
</tr>
<tr>
<td>10.4.4.4:4:10.12.1.0/24</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td>Unusable</td>
<td>100 I</td>
<td></td>
</tr>
<tr>
<td>10.4.4.4:4:10.12.80.4/30</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td>Unusable</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete

privatel__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
show route inactive-path

List of Syntax
Syntax on page 2507
Syntax (EX Series Switches) on page 2507

Syntax

```
show route inactive-path
  <brief | detail | extensive | terse>
  <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route inactive-path
  <brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display routes for destinations that have no active route. An inactive route is a route that was not selected as the best path.

Options

none—Display all inactive routes.

brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to **brief**.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

RELATED DOCUMENTATION

| show route active-path | 2381 |

List of Sample Output
show route inactive-path on page 2508
For information about output fields, see the output field tables for the `show route` command, the `show route detail` command, the `show route extensive` command, or the `show route terse` command.

Sample Output

show route inactive-path

```bash
user@host> show route inactive-path

inet.0: 25 destinations, 26 routes (24 active, 0 holddown, 1 hidden)
  Restart Complete
+ = Active Route, - = Last Active, * = Both

10.12.100.12/30     [OSPF/10] 03:57:28, metric 1
  > via so-0/3/0.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.0/8          [Direct/0] 04:39:56
  > via fxp1.0

red.inet.0: 6 destinations, 8 routes (4 active, 0 holddown, 3 hidden)
  Restart Complete
+ = Active Route, - = Last Active, * = Both

10.12.80.0/30       [BGP/170] 04:38:17, localpref 100
  AS path: 100 I
  > to 10.12.80.1 via ge-6/3/2.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
  Restart Complete

mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
  Restart Complete

bgp.l3vpn.0: 3 destinations, 3 routes (0 active, 0 holddown, 3 hidden)
```
show route inactive-path detail

user@host> show route inactive-path detail

inet.0: 25 destinations, 26 routes (24 active, 0 holddown, 1 hidden)
Restart Complete

10.12.100.12/30 (2 entries, 1 announced)
 OSPF Preference: 10
 Next-hop reference count: 1
 Next hop: via so-0/3/0.0, selected
 State: <Int>
 Inactive reason: Route Preference
 Local AS: 1
 Age: 3:58:24 Metric: 1
 Area: 0.0.0.0
 Task: OSPF
 AS path: I

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

10.0.0.0/8 (2 entries, 0 announced)
 Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via fxp1.0, selected
 State: <NotBest Int>
 Inactive reason: No difference
 Age: 4:40:52
 Task: IF
 AS path: I

red.inet.0: 6 destinations, 8 routes (4 active, 0 holddown, 3 hidden)
Restart Complete

10.12.80.0/30 (2 entries, 1 announced)
show route inactive-path extensive

The output for the **show route inactive-path extensive** command is identical to that of the **show route inactive-path detail** command. For sample output, see **show route inactive-path detail on page 2509**.

show route inactive-path terse

```
user@host> show route inactive-path terse

inet.0: 25 destinations, 26 routes (24 active, 0 holddown, 1 hidden)
  Restart Complete
  + = Active Route, - = Last Active, * = Both

  A Destination       P Prf  Metric 1  Metric 2  Next hop        AS path
  10.12.100.12/30    O  10          1            >so-0/3/0.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
  + = Active Route, - = Last Active, * = Both

  A Destination       P Prf  Metric 1  Metric 2  Next hop        AS path
  10.0.0.0/8         D   0                       >fxp1.0

red.inet.0: 6 destinations, 8 routes (4 active, 0 holddown, 3 hidden)
  Restart Complete
  + = Active Route, - = Last Active, * = Both

  A Destination       P Prf  Metric 1  Metric 2  Next hop        AS path
  10.12.80.0/30      B 170        100            >10.12.80.1      100 I
```
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete

mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
Restart Complete

bgp.l3vpn.0: 3 destinations, 3 routes (0 active, 0 holddown, 3 hidden)
Restart Complete

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete

private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
show route inactive-prefix

List of Syntax
Syntax on page 2512
Syntax (EX Series Switches) on page 2512

Syntax

```
show route inactive-prefix
<brief | detail | extensive | terse>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route inactive-prefix
<brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display inactive route destinations in each routing table.

Options
none—Display all inactive route destination.

brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

List of Sample Output
show route inactive-prefix on page 2513
show route inactive-prefix detail on page 2513
show route inactive-prefix extensive on page 2513
show route inactive-prefix terse on page 2513

Output Fields
For information about output fields, see the output field tables for the `show route` command, the `show route detail` command, the `show route extensive` command, or the `show route terse` command.

Sample Output

```bash
show route inactive-prefix

user@host> show route inactive-prefix

inet.0: 14 destinations, 14 routes (13 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

127.0.0.1/32 [Direct/0] 00:04:54
  > via lo0.0
```

```bash
show route inactive-prefix detail

user@host> show route inactive-prefix detail

inet.0: 14 destinations, 14 routes (13 active, 0 holddown, 1 hidden)
127.0.0.1/32 (1 entry, 0 announced)
  Direct Preference: 0
  Next hop type: Interface
  Next-hop reference count: 1
  Next hop: via lo0.0, selected
  State: <Hidden Martian Int>
  Age: 4:51
  Task: IF
  AS path: 100:04:54
    > via lo0.0
```

```bash
show route inactive-prefix extensive

The output for the `show route inactive-prefix extensive` command is identical to that of the `show route inactive-path detail` command. For sample output, see `show route inactive-prefix detail on page 2513`.
```

```bash
show route inactive-prefix terse

user@host> show route inactive-prefix terse
```
inet.0: 18 destinations, 18 routes (17 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Destination</th>
<th>P</th>
<th>Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1/32</td>
<td>D</td>
<td>0</td>
<td></td>
<td></td>
<td>>lo0.0</td>
<td></td>
</tr>
</tbody>
</table>
show route instance

List of Syntax
Syntax on page 2515
Syntax (EX Series Switches and QFX Series) on page 2515

Syntax

show route instance
 <brief | detail | summary>
 <instance-name>
 <logical-system (all | logical-system-name)>
 <operational>

Syntax (EX Series Switches and QFX Series)

show route instance
 <brief | detail | summary>
 <instance-name>
 <operational>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Command introduced in Junos OS Release 11.3 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display routing instance information.

Options
none—(Same as brief) Display standard information about all routing instances.
brief | detail | summary—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief. (These options are not available with the operational keyword.)
instance-name—(Optional) Display information for all routing instances whose name begins with this string (for example, cust1, cust11, and cust111 are all displayed when you run the show route instance cust1 command).
logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.
operational—(Optional) Display operational routing instances.
List of Sample Output

- show route instance on page 2517
- show route instance detail (Graceful Restart Complete) on page 2518
- show route instance detail (Graceful Restart Incomplete) on page 2520
- show route instance detail (VPLS Routing Instance) on page 2523
- show route instance operational on page 2523
- show route instance summary on page 2523

Output Fields

Table 148 on page 2516 lists the output fields for the **show route instance** command. Output fields are listed in the approximate order in which they appear.

Table 148: show route instance Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance or instance-name</td>
<td>Name of the routing instance.</td>
<td>All levels</td>
</tr>
<tr>
<td>Operational Routing Instances</td>
<td>(operational keyword only) Names of all operational routing instances.</td>
<td>—</td>
</tr>
<tr>
<td>Type</td>
<td>Type of routing instance: forwarding, l2vpn, no-forwarding, vpls, virtual-router, or vrf.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the routing instance: active or inactive.</td>
<td>brief detail none</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Name of interfaces belonging to this routing instance.</td>
<td>brief detail none</td>
</tr>
<tr>
<td>Restart State</td>
<td>Status of graceful restart for this instance: Pending or Complete.</td>
<td>detail</td>
</tr>
<tr>
<td>Path selection timeout</td>
<td>Maximum amount of time, in seconds, remaining until graceful restart is declared complete. The default is 300.</td>
<td>detail</td>
</tr>
<tr>
<td>Tables</td>
<td>Tables (and number of routes) associated with this routing instance.</td>
<td>brief detail none</td>
</tr>
</tbody>
</table>
Table 148: show route instance Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route-distinguisher</td>
<td>Unique route distinguisher associated with this routing instance.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-import</td>
<td>VPN routing and forwarding instance import policy name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-export</td>
<td>VPN routing and forwarding instance export policy name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-import-target</td>
<td>VPN routing and forwarding instance import target community name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-export-target</td>
<td>VPN routing and forwarding instance export target community name.</td>
<td>detail</td>
</tr>
<tr>
<td>Vrf-edge-protection-id</td>
<td>Context identifier configured for edge-protection.</td>
<td>detail</td>
</tr>
<tr>
<td>Fast-reroute-priority</td>
<td>Fast reroute priority setting for a VPLS routing instance: high, medium, or low. The default is low.</td>
<td>detail</td>
</tr>
<tr>
<td>Restart State</td>
<td>Restart state:</td>
<td>detail</td>
</tr>
<tr>
<td></td>
<td>• Pending: protocol-name—List of protocols that have not yet completed graceful restart for this routing table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complete—All protocols have restarted for this routing table.</td>
<td></td>
</tr>
<tr>
<td>Primary rib</td>
<td>Primary table for this routing instance.</td>
<td>brief none summary</td>
</tr>
<tr>
<td>Active/holddown/hidden</td>
<td>Number of active, hold-down, and hidden routes.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show route instance

User@host> show route instance

<table>
<thead>
<tr>
<th>Instance</th>
<th>Type</th>
<th>Active/holddown/hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>forwarding</td>
<td></td>
</tr>
<tr>
<td>inet.0</td>
<td></td>
<td>16/0/1</td>
</tr>
<tr>
<td>iso.0</td>
<td></td>
<td>1/0/0</td>
</tr>
<tr>
<td>mpls.0</td>
<td></td>
<td>0/0/0</td>
</tr>
</tbody>
</table>
show route instance detail (Graceful Restart Complete)

user@host> show route instance detail

master:
 Router ID: 10.255.14.176
 Type: forwarding State: Active
 Restart State: Complete Path selection timeout: 300
 Tables:
 inet.0 : 17 routes (15 active, 0 holddown, 1 hidden)
 Restart Complete
 inet.3 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete
 mpls.0 : 19 routes (19 active, 0 holddown, 0 hidden)
 Restart Complete
 bgp.l3vpn.0 : 10 routes (10 active, 0 holddown, 0 hidden)
 Restart Complete
 inet6.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete
 bgp.l2vpn.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete
 BGP-INET:
 Router ID: 10.69.103.1
 Type: vrf State: Active
 Restart State: Complete Path selection timeout: 300
 Interfaces:
 t3-0/0/0.103
 Route-distinguisher: 10.255.14.176:103
 Vrf-import: [BGP-INET-import]
 Vrf-export: [BGP-INET-export]
 Tables:
 BGP-INET.inet.0 : 4 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete
 BGP-L:
 Router ID: 10.69.104.1
 Type: vrf State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0.104
Route-distinguisher: 10.255.14.176:104
Vrf-import: [BGP-L-import]
Vrf-export: [BGP-L-export]
Tables:
 BGP-L.inet.0 : 4 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete
 BGP-L.mpls.0 : 3 routes (3 active, 0 holddown, 0 hidden)
 Restart Complete
L2VPN:
Router ID: 0.0.0.0
Type: l2vpn State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0.512
Route-distinguisher: 10.255.14.176:512
Vrf-import: [L2VPN-import]
Vrf-export: [L2VPN-export]
Tables:
 L2VPN.l2vpn.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete
LDP:
Router ID: 10.69.105.1
Type: vrf State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0.105
Route-distinguisher: 10.255.14.176:105
Vrf-import: [LDP-import]
Vrf-export: [LDP-export]
Tables:
 LDP.inet.0 : 5 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete
OSPF:
Router ID: 10.69.101.1
Type: vrf State: Active
Restart State: Complete Path selection timeout: 300
Interfaces:
 t3-0/0/0.101
Vrf-import: [OSPF-import]
Vrf-export: [OSPF-export]
show route instance detail (Graceful Restart Incomplete)

user@host> show route instance detail

master:
 Router ID: 10.255.14.176
 Type: forwarding State: Active
 Restart State: Pending Path selection timeout: 300
 Tables:
 inet.0 : 17 routes (15 active, 1 holddown, 1 hidden)
 Restart Pending: OSPF LDP
 inet.3 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Pending: OSPF LDP
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete
mpls.0 : 23 routes (23 active, 0 holddown, 0 hidden)
Restart Pending: LDP VPN
bgp.l3vpn.0 : 10 routes (10 active, 0 holddown, 0 hidden)
Restart Pending: BGP VPN
inet6.0 : 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete
bgp.l2vpn.0 : 1 routes (1 active, 0 holddown, 0 hidden)
Restart Pending: BGP VPN

BGP-INET:
Router ID: 10.69.103.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
 t3-0/0/0.103
Route-distinguisher: 10.255.14.176:103
Vrf-import: [BGP-INET-import]
Vrf-export: [BGP-INET-export]
Tables:
 BGP-INET.inet.0 : 6 routes (5 active, 0 holddown, 0 hidden)
 Restart Pending: VPN

BGP-L:
Router ID: 10.69.104.1
Type: vrf State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
 t3-0/0/0.104
Route-distinguisher: 10.255.14.176:104
Vrf-import: [BGP-L-import]
Vrf-export: [BGP-L-export]
Tables:
 BGP-L.inet.0 : 6 routes (5 active, 0 holddown, 0 hidden)
 Restart Pending: VPN
 BGP-L.mpls.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Pending: VPN

L2VPN:
Router ID: 0.0.0.0
Type: l2vpn State: Active
Restart State: Pending Path selection timeout: 300
Interfaces:
 t3-0/0/0.512
Route-distinguisher: 10.255.14.176:512
Vrf-import: [L2VPN-import]
Vrf-export: [L2VPN-export]
Tables:
L2VPN.l2vpn.0 : 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Pending: VPN L2VPN

LDP:
 Router ID: 10.69.105.1
 Type: vrf State: Active
 Restart State: Pending Path selection timeout: 300
 Interfaces:
 t3-0/0/0.105
 Route-distiguisher: 10.255.14.176:105
 Vrf-import: [LDP-import]
 Vrf-export: [LDP-export]
 Tables:
 LDP.inet.0 : 5 routes (4 active, 1 holddown, 0 hidden)
 Restart Pending: OSPF LDP VPN

OSPF:
 Router ID: 10.69.101.1
 Type: vrf State: Active
 Restart State: Pending Path selection timeout: 300
 Interfaces:
 t3-0/0/0.101
 Vrf-import: [OSPF-import]
 Vrf-export: [OSPF-export]
 Tables:
 OSPF.inet.0 : 8 routes (7 active, 1 holddown, 0 hidden)
 Restart Pending: OSPF VPN

RIP:
 Router ID: 10.69.102.1
 Type: vrf State: Active
 Restart State: Pending Path selection timeout: 300
 Interfaces:
 t3-0/0/0.102
 Route-distiguisher: 10.255.14.176:102
 Vrf-import: [RIP-import]
 Vrf-export: [RIP-export]
 Tables:
 RIP.inet.0 : 8 routes (6 active, 2 holddown, 0 hidden)
 Restart Pending: RIP VPN

STATIC:
 Router ID: 10.69.100.1
 Type: vrf State: Active
 Restart State: Pending Path selection timeout: 300
 Interfaces:
 t3-0/0/0.100
show route instance detail (VPLS Routing Instance)

user@host> show route instance detail test-vpls

test-vpls:
 Router ID: 0.0.0.0
 Type: vpls State: Active
 Interfaces:
 lsi.1048833
 lsi.1048832
 fe-0/1/0.513
 Route-distinguisher: 10.255.37.65:1
 Vrf-import: [__vrf-import-test-vpls-internal__]
 Vrf-export: [__vrf-export-test-vpls-internal__]
 Vrf-import-target: [target:300:1]
 Vrf-export-target: [target:300:1]
 Vrf-edge-protection-id: 166.1.3.1 Fast-reroute-priority: high
 Tables:
 test-vpls.l2vpn.0 : 3 routes (3 active, 0 holddown, 0 hidden)

show route instance operational

user@host> show route instance operational

Operational Routing Instances:

 master
 default

show route instance summary

user@host> show route instance summary

<table>
<thead>
<tr>
<th>Instance</th>
<th>Type</th>
<th>Primary rib</th>
<th>Active/holddown/hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>master</td>
<td>forwarding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VRF Type</td>
<td>Source</td>
<td>Version</td>
<td>Metric</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>BGP-INET</td>
<td>vrf</td>
<td>BGP-INET.inet.0</td>
<td>5/0/0</td>
</tr>
<tr>
<td>BGP-L</td>
<td>vrf</td>
<td>BGP-L.inet.0</td>
<td>5/0/0</td>
</tr>
<tr>
<td>L2VPN</td>
<td>l2vpn</td>
<td>L2VPN.inet.0</td>
<td>0/0/0</td>
</tr>
<tr>
<td>LDP</td>
<td>vrf</td>
<td>LDP.inet.0</td>
<td>4/0/0</td>
</tr>
<tr>
<td>OSPF</td>
<td>vrf</td>
<td>OSPF.inet.0</td>
<td>7/0/0</td>
</tr>
<tr>
<td>RIP</td>
<td>vrf</td>
<td>RIP.inet.0</td>
<td>6/0/0</td>
</tr>
<tr>
<td>STATIC</td>
<td>vrf</td>
<td>STATIC.inet.0</td>
<td>4/0/0</td>
</tr>
</tbody>
</table>
show route next-hop

List of Syntax
Syntax on page 2525
Syntax (EX Series Switches) on page 2525

Syntax

```
show route next-hop next-hop
    <brief | detail | extensive | terse>
    <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route next-hop next-hop
    <brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the entries in the routing table that are being sent to the specified next-hop address.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

next-hop—Next-hop address.

Required Privilege Level
view

List of Sample Output
show route next-hop on page 2526
show route next-hop detail on page 2526
show route next-hop extensive on page 2529
show route next-hop terse on page 2531

Output Fields
For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.
Sample Output

show route next-hop

user@host> show route next-hop 192.168.71.254

ing.0: 18 destinations, 18 routes (17 active, 0 holddown, 1 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.10.0.0/16 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0
10.209.0.0/16 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0
172.16.0.0/12 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0
192.168.0.0/16 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0
192.168.102.0/23 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0
207.17.136.0/24 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0
207.17.136.192/32 *[Static/5] 06:26:25
> to 192.168.71.254 via fxp0.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
red.inet.0: 4 destinations, 5 routes (4 active, 0 holddown, 0 hidden)
Restart Complete

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete
mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
Restart Complete
inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete
private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

show route next-hop detail

user@host> show route next-hop 192.168.71.254 detail
inet.0: 18 destinations, 18 routes (17 active, 0 holddown, 1 hidden)
Restart Complete
10.10.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 36
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 1
 Age: 6:27:41
 Task: RT
 Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
 AS path: I

10.209.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 36
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 1
 Age: 6:27:41
 Task: RT
 Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
 AS path: I

172.16.0.0/12 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 36
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 1
 Age: 6:27:41
 Task: RT
 Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
 AS path: I

192.168.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 36
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 1
 Age: 6:27:41
 Task: RT
Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
AS path: I

192.168.102.0/23 (1 entry, 1 announced)
*Static Preference: 5
Next-hop reference count: 36
Next hop: 192.168.71.254 via fxp0.0, selected
State: <Active NoReadvrt Int Ext>
Local AS: 1
Age: 6:27:41
Task: RT
Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
AS path: I

207.17.136.0/24 (1 entry, 1 announced)
*Static Preference: 5
Next-hop reference count: 36
Next hop: 192.168.71.254 via fxp0.0, selected
State: <Active NoReadvrt Int Ext>
Local AS: 1
Age: 6:27:41
Task: RT
Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
AS path: I

207.17.136.192/32 (1 entry, 1 announced)
*Static Preference: 5
Next-hop reference count: 36
Next hop: 192.168.71.254 via fxp0.0, selected
State: <Active NoReadvrt Int Ext>
Local AS: 1
Age: 6:27:41
Task: RT
Announcement bits (3): 0-KRT 3-Resolve tree 1 5-Resolve tree 2
AS path: I

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
red.inet.0: 4 destinations, 5 routes (4 active, 0 holddown, 0 hidden)
Restart Complete

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete
mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
Restart Complete

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Restart Complete

private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

show route next-hop extensive

user@host> show route next-hop 192.168.71.254 extensive

inet.0: 18 destinations, 18 routes (17 active, 0 holddown, 1 hidden)
10.10.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.10.0.0/16 -> {192.168.71.254}
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:02:28
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I
10.209.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 10.209.0.0/16 -> {192.168.71.254}
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:02:28
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I
172.16.0.0/12 (1 entry, 1 announced)
TSI:
KRT in-kernel 172.16.0.0/12 -> {192.168.71.254}
 *Static Preference: 5
Next-hop reference count: 22
Next hop: 192.168.71.254 via fxp0.0, selected
State: <Active NoReadvrt Int Ext>
Local AS: 69
Age: 2:02:28
Task: RT
Announcement bits (1): 0-KRT
AS path: I

192.168.0.0/16 (1 entry, 1 announced)
TSI:
KRT in-kernel 192.168.0.0/16 -> (192.168.71.254)
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:02:28
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

192.168.102.0/23 (1 entry, 1 announced)
TSI:
KRT in-kernel 192.168.102.0/23 -> (192.168.71.254)
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:02:28
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

207.17.136.0/24 (1 entry, 1 announced)
TSI:
KRT in-kernel 207.17.136.0/24 -> (192.168.71.254)
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:02:28
Task: RT
Announcement bits (1): 0-KRT
AS path: I

207.17.136.192/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 207.17.136.192/32 -> {192.168.71.254}
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:02:28
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
inet6.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
green.l2vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
red.l2vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

show route next-hop terse
user@host> show route next-hop 192.168.71.254 terse

inet.0: 25 destinations, 26 routes (24 active, 0 holddown, 1 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.10.0.0/16</td>
<td>S</td>
<td>5</td>
<td></td>
<td>>192.168.71.254</td>
<td></td>
</tr>
<tr>
<td>* 10.209.0.0/16</td>
<td>S</td>
<td>5</td>
<td></td>
<td>>192.168.71.254</td>
<td></td>
</tr>
<tr>
<td>* 172.16.0.0/12</td>
<td>S</td>
<td>5</td>
<td></td>
<td>>192.168.71.254</td>
<td></td>
</tr>
</tbody>
</table>
* 192.168.0.0/16 S 5 >192.168.71.254
* 192.168.102.0/23 S 5 >192.168.71.254
* 207.17.136.0/24 S 5 >192.168.71.254
* 207.17.136.192/32 S 5 >192.168.71.254

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)
red.inet.0: 4 destinations, 5 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete
mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
 Restart Complete
inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 Restart Complete
private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
show route no-community

List of Syntax
Syntax on page 2533
Syntax (EX Series Switches) on page 2533

Syntax

show route no-community
<brief | detail | extensive | terse>
<logical-system (all | logical-system-name)>

Syntax (EX Series Switches)

show route no-community
<brief | detail | extensive | terse>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the route entries in each routing table that are not associated with any community.

Options
none—(Same as brief) Display the route entries in each routing table that are not associated with any community.

brief | detail | extensive | terse—(Optional) Display the specified level of output.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level
view

List of Sample Output
show route no-community on page 2534
show route no-community detail on page 2534
show route no-community extensive on page 2535
show route no-community terse on page 2536

Output Fields
For information about output fields, see the output field tables for the `show route` command, the `show route detail` command, the `show route extensive` command, or the `show route terse` command.

Sample Output

show route no-community

```
show route no-community

inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.0.0/16       *[Static/5] 00:36:27
       > to 192.168.71.254 via fxp0.0
10.209.0.0/16      *[Static/5] 00:36:27
       > to 192.168.71.254 via fxp0.0
10.255.71.52/32    *[Direct/0] 00:36:27
       > via lo0.0
10.255.71.63/32    *[OSPF/10] 00:04:39, metric 1
       > to 35.1.1.2 via ge-3/1/0.0
10.255.71.64/32    *[OSPF/10] 00:00:08, metric 2
       > to 35.1.1.2 via ge-3/1/0.0
10.255.71.240/32   *[OSPF/10] 00:05:04, metric 2
       via so-0/1/2.0
       > via so-0/3/2.0
10.255.71.241/32   *[OSPF/10] 00:05:14, metric 1
       > via so-0/1/2.0
10.255.71.242/32   *[OSPF/10] 00:05:19, metric 1
       > via so-0/3/2.0
172.16.12.0/24    *[OSPF/10] 00:05:14, metric 2
       > via so-0/3/2.0
172.16.14.0/24    *[OSPF/10] 00:00:08, metric 3
       > to 35.1.1.2 via ge-3/1/0.0
       via so-0/1/2.0
       via so-0/3/2.0
172.16.16.0/24    *[OSPF/10] 00:05:14, metric 2
       > via so-0/1/2.0

.......
```

show route no-community detail

```
show route no-community detail

user@host> show route no-community detail
```
inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
10.10.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Age: 38:08
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

10.209.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Age: 38:08
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

show route no-community extensive

user@host> show route no-community extensive

inet.0: 18 destinations, 18 routes (17 active, 0 holddown, 1 hidden)
10.10.0.0/16 (1 entry, 1 announced)
 TSI:
 KRT in-kernel 10.10.0.0/16 -> {192.168.71.254}
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:03:33
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

10.209.0.0/16 (1 entry, 1 announced)
 TSI:
KRT in-kernel 10.209.0.0/16 -> {192.168.71.254}
 *Static Preference: 5
 Next-hop reference count: 22
 Next hop: 192.168.71.254 via fxp0.0, selected
 State: <Active NoReadvrt Int Ext>
 Local AS: 69
 Age: 2:03:33
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

show route no-community terse

user@host> show route no-community terse

inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 10.10.0.0/16</td>
<td>S 5</td>
<td></td>
<td></td>
<td>>192.168.71.254</td>
<td></td>
</tr>
<tr>
<td>* 10.209.0.0/16</td>
<td>S 5</td>
<td></td>
<td></td>
<td>>192.168.71.254</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.52/32</td>
<td>D 0</td>
<td></td>
<td></td>
<td>>192.168.71.254</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.63/32</td>
<td>O 10</td>
<td>1</td>
<td></td>
<td>>35.1.1.2</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.64/32</td>
<td>O 10</td>
<td>2</td>
<td></td>
<td>>35.1.1.2</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.240/32</td>
<td>O 10</td>
<td>2</td>
<td></td>
<td>so-0/1/2.0</td>
<td>so-0/1/2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>so-0/1/2.0</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.241/32</td>
<td>O 10</td>
<td>1</td>
<td></td>
<td>>so-0/1/2.0</td>
<td></td>
</tr>
<tr>
<td>* 10.255.71.242/32</td>
<td>O 10</td>
<td>1</td>
<td></td>
<td>>so-0/3/2.0</td>
<td></td>
</tr>
<tr>
<td>* 172.16.12.0/24</td>
<td>O 10</td>
<td>2</td>
<td></td>
<td>>so-0/3/2.0</td>
<td></td>
</tr>
<tr>
<td>* 172.16.14.0/24</td>
<td>O 10</td>
<td>3</td>
<td></td>
<td>so-0/1/2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>so-0/1/2.0</td>
<td></td>
</tr>
<tr>
<td>* 172.16.16.0/24</td>
<td>O 10</td>
<td>2</td>
<td></td>
<td>>so-0/1/2.0</td>
<td></td>
</tr>
</tbody>
</table>

...
show route output

List of Syntax

Syntax on page 2537
Syntax (EX Series Switches) on page 2537

Syntax

```
show route output (address ip-address | interface interface-name)
   <brief | detail | extensive | terse>
   <logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route output (address ip-address | interface interface-name)
   <brief | detail | extensive | terse>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display the entries in the routing table learned through static routes and interior gateway protocols that are to be sent out the interface with either the specified IP address or specified name.

To view routes advertised to a neighbor or received from a neighbor for the BGP protocol, use the `show route advertising-protocol bgp` and `show route receive-protocol bgp` commands instead.

Options

- **address ip-address**—Display entries in the routing table that are to be sent out the interface with the specified IP address.
- **brief | detail | extensive | terse**—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to `brief`.
- **interface interface-name**—Display entries in the routing table that are to be sent out the interface with the specified name.
- **logical-system (all | logical-system-name)**—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

view

List of Sample Output
Output Fields
For information about output fields, see the output field tables for the `show route` command, the `show route detail` command, the `show route extensive` command, or the `show route terse` command.

Sample Output

show route output address

user@host> **show route output address 172.16.36.1/24**

inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.36.0/24 *[Direct/0] 00:19:56
 > via so-0/1/2.0
 [OSPF/10] 00:19:55, metric 1
 > via so-0/1/2.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

show route output address detail

user@host> **show route output address 172.16.36.1 detail**
inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
172.16.36.0/24 (2 entries, 0 announced)
 *Direct Preference: 0
 Next hop type: Interface
 Next-hop reference count: 1
 Next hop: via so-0/1/2.0, selected
 State: <Active Int>
 Age: 23:00
 Task: IF
 AS path: I
 OSPF Preference: 10
 Next-hop reference count: 1
 Next hop: via so-0/1/2.0, selected
 State: <Int>
 Inactive reason: Route Preference
 Age: 22:59 Metric: 1
 Area: 0.0.0.0
 Task: OSPF
 AS path: I

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

show route output address extensive

The output for the **show route output address extensive** command is identical to that of the **show route output address detail** command. For sample output, see **show route output address detail on page 2538**.

show route output address terse

user@host> **show route output address 172.16.36.1 terse**

inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
show route output interface

user@host> show route output interface so-0/1/2.0

inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.71.240/32 *[OSPF/10] 00:13:00, metric 2
 via so-0/1/2.0
 > via so-0/3/2.0
10.255.71.241/32 *[OSPF/10] 00:13:10, metric 1
 > via so-0/1/2.0
172.16.14.0/24 *[OSPF/10] 00:05:11, metric 3
 to 35.1.1.2 via ge-3/1/0.0
 > via so-0/1/2.0
 > via so-0/3/2.0
172.16.16.0/24 *[OSPF/10] 00:13:10, metric 2
 > via so-0/1/2.0
172.16.36.0/24 *[Direct/0] 00:13:21
 > via so-0/1/2.0
 > via so-0/1/2.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
show route output interface detail

user@host> show route output interface so-0/1/2.0 detail

inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
10.255.71.240/32 (1 entry, 1 announced)
 *OSPF Preference: 10
 Next-hop reference count: 2
 Next hop: via so-0/1/2.0
 Next hop: via so-0/3/2.0, selected
 State: <Active Int>
 Age: 14:52 Metric: 2
 Area: 0.0.0.0
 Task: OSPF
 Announcement bits (1): 0-KRT
 AS path: I

10.255.71.241/32 (1 entry, 1 announced)
 *OSPF Preference: 10
 Next-hop reference count: 4
 Next hop: via so-0/1/2.0, selected
 State: <Active Int>
 Age: 15:02 Metric: 1
 Area: 0.0.0.0
 Task: OSPF
 Announcement bits (1): 0-KRT
 AS path: I

...
inet.0: 28 destinations, 30 routes (27 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path
* 10.255.71.240/32 O 10 2 so-0/1/2.0
 >so-0/3/2.0
* 10.255.71.241/32 O 10 1 >so-0/1/2.0
* 172.16.14.0/24 O 10 3 35.1.1.2
 >so-0/1/2.0
 so-0/3/2.0
* 172.16.16.0/24 O 10 2 >so-0/1/2.0
* 172.16.36.0/24 D 0 >so-0/1/2.0
 O 10 1 >so-0/1/2.0

private1__.inet.0: 2 destinations, 3 routes (2 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

private1__.inet6.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
show route protocol

List of Syntax
Syntax on page 2543
Syntax (EX Series Switches) on page 2543

Syntax

```
show route protocol protocol
<brief | detail | extensive | terse>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route protocol protocol
<brief | detail | extensive | terse>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
ospf2 and ospf3 options introduced in Junos OS Release 9.2.
ospf2 and ospf3 options introduced in Junos OS Release 9.2 for EX Series switches.
flow option introduced in Junos OS Release 10.0.
flow option introduced in Junos OS Release 10.0 for EX Series switches.

Description
Display the route entries in the routing table that were learned from a particular protocol.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output. If you do not specify a level of output, the system defaults to brief.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

protocol—Protocol from which the route was learned:

- access—Access route for use by DHCP application
- access-internal—Access-internal route for use by DHCP application
- aggregate—Locally generated aggregate route
- arp—Route learned through the Address Resolution Protocol
- atmvpn—Asynchronous Transfer Mode virtual private network
• bgp—Border Gateway Protocol
• ccc—Circuit cross-connect
• direct—Directly connected route
• dvmrp—Distance Vector Multicast Routing Protocol
• esis—End System-to-Intermediate System
• flow—Locally defined flow-specification route
• frr—Precomputed protection route or backup route used when a link goes down
• isis—Intermediate System-to-Intermediate System
• ldp—Label Distribution Protocol
• l2circuit—Layer 2 circuit
• l2vpn—Layer 2 virtual private network
• local—Local address
• mpls—Multiprotocol Label Switching
• msdp—Multicast Source Discovery Protocol
• ospf—Open Shortest Path First versions 2 and 3
• ospf2—Open Shortest Path First versions 2 only
• ospf3—Open Shortest Path First version 3 only
• pim—Protocol Independent Multicast
• rip—Routing Information Protocol
• ripng—Routing Information Protocol next generation
• rsvp—Resource Reservation Protocol
• rtarget—Local route target virtual private network
• static—Statically defined route
• tunnel—Dynamic tunnel
• vpn—Virtual private network

NOTE: EX Series switches run a subset of these protocols. See the switch CLI for details.

Required Privilege Level
view
List of Sample Output

show route protocol access on page 2545
show route protocol access-internal extensive on page 2546
show route protocol arp on page 2546
show route protocol bgp on page 2547
show route protocol bgp detail on page 2547
show route protocol bgp detail (Labeled Unicast) on page 2548
show route protocol bgp detail (Aggregate Extended Community Bandwidth) on page 2549
show route protocol bgp extensive on page 2550
show route protocol bgp terse on page 2551
show route protocol direct on page 2551
show route protocol frr on page 2552
show route protocol l2circuit detail on page 2552
show route protocol l2vpn extensive on page 2553
show route protocol ldp on page 2554
show route protocol ldp extensive on page 2555
show route protocol ospf (Layer 3 VPN) on page 2557
show route protocol ospf detail on page 2557
show route protocol rip on page 2558
show route protocol rip detail on page 2558
show route protocol ripng table inet6 on page 2559
show route protocol static detail on page 2559

Output Fields
For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.

Sample Output

show route protocol access

user@host> show route protocol access

inet.0: 30380 destinations, 30382 routes (30379 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

13.160.0.3/32 *[Access/13] 00:00:09
 > to 13.160.0.2 via fe-0/0/0.0
13.160.0.4/32 *[Access/13] 00:00:09
 > to 13.160.0.2 via fe-0/0/0.0
13.160.0.5/32 *[Access/13] 00:00:09
 > to 13.160.0.2 via fe-0/0/0.0
show route protocol access-internal extensive

user@host> show route protocol access-internal 13.160.0.19 extensive

inet.0: 100020 destinations, 100022 routes (100019 active, 0 holddown, 1 hidden)
13.160.0.19/32 (1 entry, 1 announced)
TSI:
KRT in-kernel 13.160.0.19/32 -> {13.160.0.2}
 *Access-internal Preference: 12
 Next-hop reference count: 200000
 Next hop: 13.160.0.2 via fe-0/0/0.0, selected
 State: <Active Int>
 Age: 36
 Task: RPD Unix Domain Server./var/run/rpd_serv.local
 Announcement bits (1): 0-KRT
 AS path: I

show route protocol arp

user@host> show route protocol arp

inet.0: 43 destinations, 43 routes (42 active, 0 holddown, 1 hidden)
inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
cust1.inet.0: 1033 destinations, 2043 routes (1033 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

20.20.1.3/32 [ARP/4294967293] 00:04:35, from 20.20.1.1
 Unusable
20.20.1.4/32 [ARP/4294967293] 00:04:35, from 20.20.1.1
 Unusable
20.20.1.5/32 [ARP/4294967293] 00:04:32, from 20.20.1.1
 Unusable
20.20.1.6/32 [ARP/4294967293] 00:04:34, from 20.20.1.1
 Unusable
20.20.1.7/32 [ARP/4294967293] 00:04:35, from 20.20.1.1
 Unusable
20.20.1.8/32 [ARP/4294967293] 00:04:35, from 20.20.1.1
 Unusable
20.20.1.9/32 [ARP/4294967293] 00:04:35, from 20.20.1.1
 Unusable
20.20.1.10/32 [ARP/4294967293] 00:04:35, from 20.20.1.1
 Unusable
20.20.1.11/32 [ARP/4294967293] 00:04:33, from 20.20.1.1
 Unusable
show route protocol bgp
user@host> show route protocol bgp 192.168.64.0/21

inet.0: 335832 destinations, 335833 routes (335383 active, 0 holddown, 450 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.64.0/21 *[BGP/170] 6d 10:41:16, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 4788 4788 I
 > to 192.168.167.254 via fxp0.0

show route protocol bgp detail
user@host> show route protocol bgp 66.117.63.0/24 detail

inet.0: 335805 destinations, 335806 routes (335356 active, 0 holddown, 450 hidden)
66.117.63.0/24 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 1006436
 Source: 192.168.69.71
 Next hop type: Router, Next hop index: 324
 Next hop: 192.168.167.254 via fxp0.0, selected
 Protocol next hop: 192.168.69.71
 Indirect next hop: 8e166c0 342
 State: <Active Ext>
 Local AS: 69 Peer AS: 10458
 Age: 6d 10:42:42 Metric2: 0
 Task: BGP_10458.192.168.69.71+179
 Announcement bits (3): 0-KRT 2-BGP RT Background 3-Resolve tree 1

 AS path: 10458 14203 2914 4788 4788 I
 Communities: 2914:410 2914:2403 2914:3400
 Accepted
 Localpref: 100
 Router ID: 207.17.136.192
show route protocol bgp detail (Labeled Unicast)

user@host> show route protocol bgp 1.1.1.8/32 detail

inet.0: 45 destinations, 46 routes (45 active, 0 holddown, 0 hidden)
1.1.1.8/32 (2 entries, 2 announced)

State:
*BGP Preference: 1/-101
Next hop type: Indirect, Next hop index: 0
Address: 0xc007f30
Next-hop reference count: 2
Source: 1.1.1.1
Next hop type: Router, Next hop index: 614
Next hop: 20.1.1.2 via ge-0/0/1.0, selected
Label-switched-path lsp1
Label operation: Push 1000126, Push 1000125, Push 1000124, Push 1000123, Push 299872(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl, prop-ttl, prop-ttl(top)
Load balance label: Label 1000126: None; Label 1000125: None; Label 1000124: None;
Label 1000123: None; Label 299872: None;
Label element ptr: 0xc007860
Label parent element ptr: 0xc0089a0
Label element references: 1
Label element child references: 0
Label element lsp id: 0
Session Id: 0x140
Protocol next hop: 1.1.1.4
Label operation: Push 1000126, Push 1000125, Push 1000124, Push 1000123(top)
Label TTL action: prop-ttl, prop-ttl, prop-ttl, prop-ttl
Load balance label: Label 1000126: None; Label 1000125: None; Label 1000124: None;
Label 1000123: None;
Indirect next hop: 0xae8d300 1048576 INH Session ID: 0x142
State:
Local AS: 5 Peer AS: 5
Age: 22:43 Metric2: 2
Validation State: unverified
Task: BGP_5.1.1.1.1
Announcement bits (2): 0-KRT 7-Resolve tree 2
AS path: I
Accepted
Route Labels: 1000123(top) 1000124 1000125 1000126
Localpref: 100
Router ID: 1.1.1.1
show route protocol bgp detail

user@host> show route 10.0.2.0 protocol bgp detail

| inet.0: 20 destinations, 26 routes (20 active, 0 holddown, 0 hidden) |
| 10.0.2.0/30 (2 entries, 1 announced) |

BGP

| Preference: 170/-101 |
| Next hop type: Router, Next hop index: 0 |
| Address: 0xb618990 |
| Next-hop reference count: 3 |
| Source: 10.0.1.1 |
| Next hop: 10.0.0.2 via ge-0/0/0.0 balance 40% |
| Session Id: 0x0 |
| Next hop: 10.0.1.1 via ge-0/0/1.0 balance 60%, selected |
| Session Id: 0x0 |
| State: <Active Ext> |
| Local AS: 65000 Peer AS: 65001 |
| Age: 20:33 |
| Validation State: unverified |
| Task: BGP_65001.10.0.1.1 |
| Announcement bits (3): 0-KRT 2-BGP_Listen.0.0.0.0+179 |
| 3-BGP_RT_Background |
| AS path: 65001 I |
| Communities: bandwidth:65000:60000000 |

Accepted Multipath

| Localpref: 100 |
| Router ID: 128.49.121.137 |

BGP

| Preference: 170/-101 |
| Next hop type: Router, Next hop index: 595 |
| Address: 0xb7a1330 |
| Next-hop reference count: 9 |
| Source: 10.0.0.2 |
| Next hop: 10.0.0.2 via ge-0/0/0.0, selected |
| Session Id: 0x141 |
| State: <NotBest Ext> |
| Inactive reason: Not Best in its group - Active preferred |
| Local AS: 65000 Peer AS: 65001 |
| Age: 20:33 |
| Validation State: unverified |
| Task: BGP_65001.10.0.0.2 |
| AS path: 65001 I |
| Communities: bandwidth:65000:40000000 |
| Accepted MultipathContrib |
| Localpref: 100 |
| Router ID: 128.49.121.132 |
user@host> show route protocol bgp 192.168.64.0/21 extensive

inet.0: 335827 destinations, 335828 routes (335378 active, 0 holddown, 450 hidden)
192.168.64.0/21 (1 entry, 1 announced)
TSI:
KRT in-kernel 1.9.0.0/16 -> {indirect(342)}
Page 0 idx 1 Type 1 val db31a80
 Nexthop: Self
 AS path: [69] 10458 14203 2914 4788 4788 I
 Communities: 2914:410 2914:2403 2914:3400
Path 1.9.0.0 from 192.168.69.71 Vector len 4. Val: 1
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 1006502
 Source: 192.168.69.71
 Next hop type: Router, Next hop index: 324
 Next hop: 192.168.167.254 via fxp0.0, selected
 Protocol next hop: 192.168.69.71
 Indirect next hop: 8e166c0 342
 State: <Active Ext>
 Local AS: 69 Peer AS: 10458
 Age: 6d 10:44:45 Metric2: 0
 Task: BGP_10458.192.168.69.71+179
 Announcement bits (3): 0-KRT 2-BGP RT Background 3-Resolve tree 1

 AS path: 10458 14203 2914 4788 4788 I
 Communities: 2914:410 2914:2403 2914:3400
 Accepted
 Localpref: 100
 Router ID: 207.17.136.192
 Indirect next hops: 1
 Protocol next hop: 192.168.69.71
 Indirect next hop: 8e166c0 342
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 192.168.167.254 via fxp0.0
192.168.0.0/16 Originating RIB: inet.0
 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 192.168.167.254 via fxp0.0
show route protocol bgp terse

user@host> show route protocol bgp 192.168.64.0/21 terse

inet.0: 24 destinations, 32 routes (23 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>A Destination</th>
<th>P Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.64.0/21</td>
<td>B 170</td>
<td>100</td>
<td>>172.16.100.1</td>
<td>10023 21 I</td>
<td></td>
</tr>
</tbody>
</table>

show route protocol direct

user@host> show route protocol direct

inet.0: 335843 destinations, 335844 routes (335394 active, 0 holddown, 450 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.8.0/24	*[Direct/0] 17w0d 10:31:49
	> via fe-1/3/1.0
10.255.165.1/32	*[Direct/0] 25w4d 04:13:18
	> via lo0.0
172.16.30.0/24	*[Direct/0] 17w0d 23:06:26
	> via fe-1/3/2.0
192.168.164.0/22	*[Direct/0] 25w4d 04:13:20
	> via fxp0.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

| 47.0005.80ff.f800.0000.0108.0001.0102.5516.5001/152 |
| *[Direct/0] 25w4d 04:13:21 |
| > via lo0.0 |

inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

| 2001:db8::10:255:165:1/128 |
| *[Direct/0] 25w4d 04:13:21 |
| > via lo0.0 |
| fe80::2a0:a5ff:fe12:ad7/128 |
| *[Direct/0] 25w4d 04:13:21 |
| > via lo0.0 |
show route protocol frr

user@host> show route protocol frr

inet.0: 43 destinations, 43 routes (42 active, 0 holddown, 1 hidden)
inet.3: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
cust1.inet.0: 1033 destinations, 2043 routes (1033 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

20.20.1.3/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.3 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.4/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.4 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.5/32 *[FRR/200] 00:05:35, from 20.20.1.1
> to 20.20.1.5 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.6/32 *[FRR/200] 00:05:37, from 20.20.1.1
> to 20.20.1.6 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.7/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.7 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.8/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.8 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.9/32 *[FRR/200] 00:05:38, from 20.20.1.1
> to 20.20.1.9 via ge-4/1/0.0
 to 10.10.15.1 via ge-0/2/4.0, Push 16, Push 299792(top)
20.20.1.10/32 *[FRR/200] 00:05:38, from 20.20.1.1
...

show route protocol l2circuit detail

user@host> show route protocol l2circuit detail

mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
100000 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via ge-2/0/0.0, selected
 Label operation: Pop Offset: 4
State: <Active Int>
Local AS: 99
Age: 9:52
Task: Common L2 VC
Announcement bits (1): 0-KRT
AS path: I

ge-2/0/0.0 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via so-1/1/2.0 weight 1, selected
 Label-switched-path my-lsp
 Label operation: Push 100000, Push 100000(top)[0] Offset: -4
 Protocol next hop: 10.245.255.63
 Push 100000 Offset: -4
 Indirect next hop: 86af00c0 298
State: <Active Int>
Local AS: 99
Age: 9:52
Task: Common L2 VC
Announcement bits (2): 0-KRT 1-Common L2 VC
AS path: I

l2circuit.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

10.245.255.63:CtrlWord:4:3:Local/96 (1 entry, 1 announced)
 *L2CKT Preference: 7
 Next hop: via so-1/1/2.0 weight 1, selected
 Label-switched-path my-lsp
 Label operation: Push 100000[0]
 Protocol next hop: 10.245.255.63 Indirect next hop: 86af000 296
State: <Active Int>
Local AS: 99
Age: 10:21
Task: l2 circuit
Announcement bits (1): 0-LDP
AS path: I
VC Label 100000, MTU 1500, VLAN ID 512

show route protocol l2vpn extensive
user@host> show route protocol l2vpn extensive

inet.0: 14 destinations, 15 routes (13 active, 0 holddown, 1 hidden)
inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
800001 (1 entry, 1 announced)
TSI:
KRT in-kernel 800001 /36 -> {so-0/0/0.0}
 *L2VPN Preference: 7
 Next hop: via so-0/0/0.0 weight 49087 balance 97%, selected
 Label operation: Pop Offset: 4
 State: <Active Int>
 Local AS: 69
 Age: 7:48
 Task: Common L2 VC
 Announcement bits (1): 0-KRT
 AS path: I

so-0/0/0.0 (1 entry, 1 announced)
TSI:
KRT in-kernel so-0/0/0.0.0 /16 -> {indirect(288)}
 *L2VPN Preference: 7
 Next hop: via so-0/0/1.0, selected
 Label operation: Push 800000 Offset: -4
 Push 800000 Offset: -4
 Indirect next hop: 85142a0 288
 State: <Active Int>
 Local AS: 69
 Age: 7:48
 Task: Common L2 VC
 Announcement bits (2): 0-KRT 1-Common L2 VC
 AS path: I
 Communities: target:69:1 Layer2-info: encaps:PPP,
 control flags:2, mtu: 0

show route protocol ldp

user@host> show route protocol ldp

inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)

inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.16.1/32 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Push 100000
192.168.17.1/32 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0

private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

100064 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Pop
100064(S=0) *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Pop
100080 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Swap 100000

show route protocol ldp extensive

user@host> show route protocol ldp extensive

192.168.16.1/32 (1 entry, 1 announced)
 State: <FlashAll>
 *LDP Preference: 9
 Next-hop reference count: 3
 Next hop: via t1-4/0/0.0, selected
 Label operation: Push 100000
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
 Task: LDP
 Announcement bits (2): 0-Resolve tree 1 2-Resolve tree 2
 AS path: I

192.168.17.1/32 (1 entry, 1 announced)
 State: <FlashAll>
 *LDP Preference: 9
 Next-hop reference count: 3
 Next hop: via t1-4/0/0.0, selected
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
Task: LDP
Announcement bits (2): 0-Resolve tree 1 2-Resolve tree 2
AS path: I

private1__inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

100064 (1 entry, 1 announced)
TSI:
KRT in-kernel 100064 /36 -> (t1-4/0/0.0)
 *LDP Preference: 9
 Next-hop reference count: 2
 Next hop: via t1-4/0/0.0, selected
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
 Task: LDP
 Announcement bits (1): 0-KRT
 AS path: I
 Prefixes bound to route: 192.168.17.1/32

100064(S=0) (1 entry, 1 announced)
TSI:
KRT in-kernel 100064 /40 -> (t1-4/0/0.0)
 *LDP Preference: 9
 Next-hop reference count: 2
 Next hop: via t1-4/0/0.0, selected
 Label operation: Pop
 State: <Active Int>
 Local AS: 64500
 Age: 1d 23:03:58 Metric: 1
 Task: LDP
 Announcement bits (1): 0-KRT
 AS path: I

100080 (1 entry, 1 announced)
TSI:
KRT in-kernel 100080 /36 -> (t1-4/0/0.0)
 *LDP Preference: 9
 Next-hop reference count: 2
 Next hop: via t1-4/0/0.0, selected
 Label operation: Swap 100000
 State: <Active Int>
show route protocol ospf (Layer 3 VPN)

user@host> show route protocol ospf

inet.0: 40 destinations, 40 routes (39 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.4/30 *[OSPF/10] 00:05:18, metric 4
 > via t3-3/2/0.0
10.39.1.8/30 [OSPF/10] 00:05:18, metric 2
 > via t3-3/2/0.0
10.255.14.171/32 *[OSPF/10] 00:05:18, metric 4
 > via t3-3/2/0.0
10.255.14.179/32 *[OSPF/10] 00:05:18, metric 2
 > via t3-3/2/0.0
172.16.233.5/32 *[OSPF/10] 20:25:55, metric 1

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.16/30 [OSPF/10] 00:05:43, metric 1
 > via so-0/2/2.0
10.255.14.173/32 *[OSPF/10] 00:05:43, metric 1
 > via so-0/2/2.0
172.16.233.5/32 *[OSPF/10] 20:26:20, metric 1

show route protocol ospf detail

user@host> show route protocol ospf detail

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.16/30 (2 entries, 0 announced)

OSPF Preference: 10
Nexthop: via so-0/2/2.0, selected
show route protocol rip

user@host> show route protocol rip

inet.0: 26 destinations, 27 routes (25 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.255.14.177/32 *[RIP/100] 20:24:34, metric 2
 > to 10.39.1.22 via t3-0/2/2.0
172.16.233.9/32 *[RIP/100] 00:03:59, metric 1

show route protocol rip detail

user@host> show route protocol rip detail

inet.0: 26 destinations, 27 routes (25 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

VPN-AB.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.255.14.177/32 (1 entry, 1 announced)
 *RIP Preference: 100
 Nexthop: 10.39.1.22 via t3-0/2/2.0, selected
 State: <Active Int>
 Age: 20:25:02 Metric: 2
 Task: VPN-AB-RIPv2
 Announcement bits (2): 0-KRT 2-BGP.0.0.0.0+179
 AS path: I
 Route learned from 10.39.1.22 expires in 96 seconds
show route protocol ripng table inet6

user@host> show route protocol ripng table inet6

inet6.0: 4215 destinations, 4215 routes (4214 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Destination</th>
<th>* [RIPng/100]</th>
<th>Metric</th>
<th>Next hop via</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111::1/128</td>
<td>02:13:33,</td>
<td>2</td>
<td>t3-0/2/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to fe80::2a0:a5ff:fe3d:56</td>
</tr>
<tr>
<td>1111::2/128</td>
<td>02:13:33,</td>
<td>2</td>
<td>t3-0/2/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to fe80::2a0:a5ff:fe3d:56</td>
</tr>
<tr>
<td>1111::3/128</td>
<td>02:13:33,</td>
<td>2</td>
<td>t3-0/2/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to fe80::2a0:a5ff:fe3d:56</td>
</tr>
<tr>
<td>1111::4/128</td>
<td>02:13:33,</td>
<td>2</td>
<td>t3-0/2/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to fe80::2a0:a5ff:fe3d:56</td>
</tr>
<tr>
<td>1111::5/128</td>
<td>02:13:33,</td>
<td>2</td>
<td>t3-0/2/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to fe80::2a0:a5ff:fe3d:56</td>
</tr>
<tr>
<td>1111::6/128</td>
<td>02:13:33,</td>
<td>2</td>
<td>t3-0/2/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to fe80::2a0:a5ff:fe3d:56</td>
</tr>
</tbody>
</table>

show route protocol static detail

user@host> show route protocol static detail

inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

10.5.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 324
 Address: 0x9274010
 Next-hop reference count: 27
 Next hop: 192.168.187.126 via fxp0.0, selected
 Session Id: 0x0
 State: <Active NoReadvrt Int Ext>
 Age: 7w3d 21:24:25
 Validation State: unverified
 Task: RT
 Announcement bits (1): 0-KRT
 AS path: I

10.10.0.0/16 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 324
 Address: 0x9274010
 Next-hop reference count: 27
 Next hop: 192.168.187.126 via fxp0.0, selected
Session Id: 0x0
State: <Active NoReadvrt Int Ext>
Age: 7w3d 21:24:25
Validation State: unverified
Task: RT
Announcement bits (1): 0-KRT
AS path: I

10.13.10.0/23 (1 entry, 1 announced)
 *Static Preference: 5
 Next hop type: Router, Next hop index: 324
 Address: 0x9274010
 Next-hop reference count: 27
 Next hop: 192.168.187.126 via fxp0.0, selected
Session Id: 0x0
State: <Active NoReadvrt Int Ext>
Age: 7w3d 21:24:25
Validation State: unverified
Task: RT
Announcement bits (1): 0-KRT
AS path: I
show route receive-protocol

List of Syntax
Syntax on page 2561
Syntax (EX Series Switches) on page 2561

Syntax

show route receive-protocol protocol neighbor-address
 <brief | detail | extensive | terse>
 <logical-system (all | logical-system-name)

Syntax (EX Series Switches)

show route receive-protocol protocol neighbor-address
 <brief | detail | extensive | terse>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display the routing information as it was received through a particular neighbor using a particular dynamic routing protocol.

Options
brief | detail | extensive | terse—(Optional) Display the specified level of output.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

protocol neighbor-address—Protocol transmitting the route (bgp, dvmrp, msdp, pim, rip, or ripng) and address of the neighboring router from which the route entry was received.

Additional Information
The output displays the selected routes and the attributes with which they were received, but does not show the effects of import policy on the routing attributes.

Required Privilege Level
view

List of Sample Output
show route receive-protocol bgp on page 2565
show route receive-protocol bgp extensive on page 2565
Output Fields

Table 149 on page 2562 describes the output fields for the `show route receive-protocol` command. Output fields are listed in the approximate order in which they appear.

Table 149: show route receive-protocol Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>routing-table-name</code></td>
<td>Name of the routing table—for example, inet.0.</td>
<td>All levels</td>
</tr>
<tr>
<td><code>number destinations</code></td>
<td>Number of destinations for which there are routes in the routing table.</td>
<td>All levels</td>
</tr>
<tr>
<td><code>number routes</code></td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• active</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <code>holddown</code> (routes that are in pending state before being declared inactive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>hidden</code> (routes that are not used because of a routing policy)</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>Destination prefix.</td>
<td>none brief</td>
</tr>
<tr>
<td>MED</td>
<td>Multiple exit discriminator value included in the route.</td>
<td>none brief</td>
</tr>
<tr>
<td><code>destination-prefix (entry, announced)</code></td>
<td>Destination prefix. The <code>entry</code> value is the number of routes for this destination, and the <code>announced</code> value is the number of routes being announced for this destination.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Accepted LongLivedStale</td>
<td>The LongLivedStale flag indicates that the route was marked LLGR-stale by this router, as part of the operation of LLGR receiver mode. Either this flag or the LongLivedStaleImport flag may be displayed for a route. Neither of these flags are displayed at the same time as the Stale (ordinary GR stale) flag.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 149: show route receive-protocol Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted LongLivedStaleImport</td>
<td>The LongLivedStaleImport flag indicates that the route was marked LLGR-stale when it was received from a peer, or by import policy. Either this flag or the LongLivedStale flag may be displayed for a route. Neither of these flags are displayed at the same time as the Stale (ordinary GR stale) flag. Accept all received BGP long-lived graceful restart (LLGR) and LLGR stale routes learned from configured neighbors and import into the inet.0 routing table.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>ImportAccepted LongLivedStaleImport</td>
<td>Accept all received BGP long-lived graceful restart (LLGR) and LLGR stale routes learned from configured neighbors and imported into the inet.0 routing table. The LongLivedStaleImport flag indicates that the route was marked LLGR-stale when it was received from a peer, or by import policy.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route Distinguisher</td>
<td>64-bit prefix added to IP subnets to make them unique.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Label-Base, range</td>
<td>First label in a block of labels and label block size. A remote PE routing device uses this first label when sending traffic toward the advertising PE routing device.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>VPN Label</td>
<td>Virtual private network (VPN) label. Packets are sent between CE and PE routing devices by advertising VPN labels. VPN labels transit over either an RSVP or an LDP label-switched path (LSP) tunnel.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Next hop</td>
<td>Next hop to the destination. An angle bracket (>) indicates that the route is the selected route.</td>
<td>All levels</td>
</tr>
<tr>
<td>Localpref or Lclpref</td>
<td>Local preference value included in the route.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 149: show route receive-protocol Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| AS path | Autonomous system (AS) path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:
 - I—IGP.
 - E—EGP.
 - ?—Incomplete; typically, the AS path was aggregated.
 When AS path numbers are included in the route, the format is as follows:
 - []—Brackets enclose the number that precedes the AS path. This number represents the number of ASs present in the AS path, when calculated as defined in RFC 4271. This value is used the AS-path merge process, as defined in RFC 4893.
 - []—If more than one AS number is configured on the router, or if AS path prepending is configured, brackets enclose the local AS number associated with the AS path.
 - {}—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.
 - ()—Parentheses enclose a confederation.
 - ([])—Parentheses and brackets enclose a confederation set.
 NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance. |

<table>
<thead>
<tr>
<th>Route Labels</th>
<th>Stack of labels carried in the BGP route update.</th>
<th>detail extensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster list</td>
<td>(For route reflected output only) Cluster ID sent by the route reflector.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Originator ID</td>
<td>(For route reflected output only) Address of routing device that originally sent the route to the route reflector.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Communities</td>
<td>Community path attribute for the route. See the Output Field table in the show route detail command for all possible values for this field.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>AIGP</td>
<td>Accumulated interior gateway protocol (AIGP) BGP attribute.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 149: show route receive-protocol Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attrset AS</td>
<td>Number, local preference, and path of the AS that originated the route. These values are stored in the Attrset attribute at the originating routing device.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Layer2-info:encaps</td>
<td>Layer 2 encapsulation (for example, VPLS).</td>
<td>detail extensive</td>
</tr>
<tr>
<td>control flags</td>
<td>Control flags: none or Site Down.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>mtu</td>
<td>Maximum transmission unit (MTU) of the Layer 2 circuit.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>

Sample Output

show route receive-protocol bgp

```
user@host> show route receive-protocol bgp 10.255.245.215
```

```
inet.0: 28 destinations, 33 routes (27 active, 0 holddown, 1 hidden)
Prefix                      Next hop              MED  Lclpref AS path
10.22.1.0/24                10.255.245.215       0    100        I
10.22.2.0/24                10.255.245.215       0    100        I
```

```
show route receive-protocol bgp extensive
user@host> show route receive-protocol bgp 10.255.245.63 extensive
```

```
inet.0: 244 destinations, 244 routes (243 active, 0 holddown, 1 hidden)
Prefix                      Next hop              MED  Lclpref AS path
172.16.1.0/24 (1 entry, 1 announced)
   Next hop: 10.0.50.3
   Localpref: 100
   AS path: I <Originator>
   Cluster list:  10.2.3.1
   Originator ID: 10.255.245.45
172.16.163.0/16 (1 entry, 1 announced)
   Next hop: 111.222.5.254
   Localpref: 100
```
AS path: I <Originator>
Cluster list: 10.2.3.1
Originator ID: 10.255.245.68
172.16.164.0/16 (1 entry, 1 announced)
Next hop: 111.222.5.254
Localpref: 100
AS path: I <Originator>
Cluster list: 10.2.3.1
Originator ID: 10.255.245.45
172.16.195.0/24 (1 entry, 1 announced)
Next hop: 111.222.5.254
Localpref: 100
AS path: I <Originator>
Cluster list: 10.2.3.1
Originator ID: 10.255.245.68
inet.2: 63 destinations, 63 routes (63 active, 0 holddown, 0 hidden)
Prefix | Next hop | MED | Lclpref | AS path
inet.3: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
Prefix | Next hop | MED | Lclpref | AS path
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Prefix | Next hop | MED | Lclpref | AS path
mpls.0: 48 destinations, 48 routes (48 active, 0 holddown, 0 hidden)

show route receive-protocol bgp table extensive

user@host> show route receive-protocol bgp 207.17.136.192 table inet.0 66.117.68.0/24 extensive

inet.0: 227315 destinations, 227316 routes (227302 active, 0 holddown, 13 hidden)
* 66.117.63.0/24 (1 entry, 1 announced)
 Next hop: 207.17.136.29
 Localpref: 100
 AS path: AS2 PA[6]: 14203 2914 3356 29748 33437 AS_TRANS
 AS path: AS4 PA[2]: 33437 393219
 AS path: Merged[6]: 14203 2914 3356 29748 33437 393219
 Communities: 2914:420

show route receive-protocol bgp logical-system extensive

user@host> show route receive-protocol bgp 10.0.0.9 logical-system PE4 extensive

inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)
* 10.0.0.30 (1 entry, 1 announced)
 Accepted
Route Label: 3
Nexthop: 10.0.0.9
AS path: 13979 I

* 10.0.0.4/30 (1 entry, 1 announced)
 Accepted
 Route Label: 3
 Nexthop: 10.0.0.9
 AS path: 13979 I

10.0.0.8/30 (2 entries, 1 announced)
 Accepted
 Route Label: 3
 Nexthop: 10.0.0.9
 AS path: 13979 I

* 10.9.9.1/32 (1 entry, 1 announced)
 Accepted
 Route Label: 3
 Nexthop: 10.0.0.9
 AS path: 13979 I

* 10.100.1.1/32 (1 entry, 1 announced)
 Accepted
 Route Label: 3
 Nexthop: 10.0.0.9
 AS path: 13979 I

* 172.16.44.0/24 (1 entry, 1 announced)
 Accepted
 Route Label: 300096
 Nexthop: 10.0.0.9
 AS path: 13979 I
 AIGP: 203

* 172.16.55.0/24 (1 entry, 1 announced)
 Accepted
 Route Label: 300112
 Nexthop: 10.0.0.9
 AS path: 13979 7018 I
 AIGP: 25

* 172.16.66.0/24 (1 entry, 1 announced)
 Accepted
Route Label: 300144
Nexthop: 10.0.0.9
AS path: 13979 7018 I

* 172.16.99.0/24 (1 entry, 1 announced)
 Accepted
Route Label: 300160
Nexthop: 10.0.0.9
AS path: 13979 7018 I

show route receive-protocol bgp detail (Layer 2 VPN)

user@host> show route receive-protocol bgp 10.255.14.171 detail

inet.0: 68 destinations, 68 routes (67 active, 0 holddown, 1 hidden)
Prefix Nexthop MED Lclpref AS path
inet.3: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
mpls.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
frame-vpn.l2vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
10.255.245.35:1:5:1/96 (1 entry, 1 announced)
 Route Distinguisher: 10.255.245.35:1
 Label-base : 800000, range : 4, status-vector : 0x0
 Nexthop: 10.255.245.35
 Localpref: 100
 AS path: I
 Communities: target:65299:100 Layer2-info: encaps:FRAME RELAY,
 control flags: 0, mtu: 0
bgp.l2vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
10.255.245.35:1:5:1/96 (1 entry, 0 announced)
 Route Distinguisher: 10.255.245.35:1
 Label-base : 800000, range : 4, status-vector : 0x0
 Nexthop: 10.255.245.35
 Localpref: 100
 AS path: I
 Communities: target:65299:100 Layer2-info: encaps:FRAME RELAY,
 control flags:0, mtu: 0
show route receive-protocol bgp extensive (Layer 2 VPN)

User@host> show route receive-protocol bgp 10.255.14.171 extensive

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Localpref</th>
<th>AS path</th>
<th>Communities</th>
<th>Layer2-info</th>
<th>Control flags</th>
<th>MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0: 68</td>
<td>10.255.245.35</td>
<td>100</td>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inet.3: 4</td>
<td>10.255.14.171</td>
<td>100</td>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iso.0: 1</td>
<td>10.255.245.35</td>
<td>100</td>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mpls.0: 10</td>
<td>10.255.245.35</td>
<td>100</td>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frame-vpn.l2vpn.0: 2</td>
<td>10.255.245.35</td>
<td>100</td>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.255.245.35:1:5:1/96</td>
<td>10.255.245.35</td>
<td>100</td>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show route receive-protocol bgp (Layer 3 VPN)

User@host> show route receive-protocol bgp 10.255.14.171

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Localpref</th>
<th>AS path</th>
<th>Communities</th>
<th>Layer2-info</th>
<th>Control flags</th>
<th>MTU</th>
</tr>
</thead>
</table>
show route receive-protocol bgp detail (Layer 3 VPN)

user@host> show route receive-protocol bgp 10.255.14.174 detail
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
bgp.l3vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 * 10.255.14.174:2:10.49.0.0/30 (1 entry, 0 announced)
 Route Distinguisher: 10.255.14.174:2
 VPN Label: 101264
 Nexthop: 10.255.14.174
 Localpref: 100
 AS path: I
 Communities: target:200:100
 AttrSet AS: 100
 Localpref: 100
 AS path: I
 Route Distinguisher: 10.255.14.174:2
 VPN Label: 101280
 Nexthop: 10.255.14.174
 Localpref: 100
 AS path: I
 Communities: target:200:100
 AttrSet AS: 100
 Localpref: 100
 AS path: I
inet6.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

show route receive-protocol bgp detail (Long-Lived Graceful Restart)
user@host> show route receive-protocol bgp 10.4.12.11 detail

bgp.l2vpn.0: 38 destinations, 39 routes (37 active, 0 holddown, 1 hidden)
 * 172.16.1.4:100:172.16.1.4/96 AD (1 entry, 1 announced)
 Accepted LongLivedStale LongLivedStaleImport
 Nexthop: 10.4.12.11
 Localpref: 100
 AS path: I

show route receive-protocol bgp detail (Labeled Unicast)
user@host> show route receive-protocol bgp 1.1.1.1 detail

inet.0: 45 destinations, 46 routes (45 active, 0 holddown, 0 hidden)
 * 1.1.1.8/32 (2 entries, 2 announced)
Accepted
Route Labels: 1000123(top) 1000124 1000125 1000126
Nexthop: 1.1.1.4
Localpref: 100
AS path: I
Entropy label capable, next hop field matches route next hop

inet.3: 15 destinations, 21 routes (6 active, 0 holddown, 14 hidden)
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
mpls.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
inet6.0: 26 destinations, 28 routes (26 active, 0 holddown, 0 hidden)

* 100::1/128 (2 entries, 2 announced)
Accepted
Route Labels: 1000123(top) 1000124 1000125 1000126
Nexthop: ::ffff:1.1.1.4
Localpref: 100
AS path: I

inet6.3: 22 destinations, 23 routes (22 active, 0 holddown, 0 hidden)

show route receive-protocol bgp extensive (Layer 3 VPN)

user@host> show route receive-protocol bgp 10.255.245.63 extensive

inet.0: 244 destinations, 244 routes (243 active, 0 holddown, 1 hidden)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Nexthop</th>
<th>MED</th>
<th>Lclpref</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.0/24</td>
<td>10.0.50.3</td>
<td></td>
<td>100</td>
<td>I <Originator></td>
</tr>
<tr>
<td>172.16.163.0/16</td>
<td>111.222.5.254</td>
<td></td>
<td>100</td>
<td>I <Originator></td>
</tr>
<tr>
<td>172.16.164.0/16</td>
<td>111.222.5.254</td>
<td></td>
<td>100</td>
<td>I <Originator></td>
</tr>
</tbody>
</table>
Localpref: 100
AS path: I <Originator>
Cluster list: 10.2.3.1
Originator ID: 10.255.245.45
172.16.195.0/24 (1 entry, 1 announced)
Nexthop: 111.222.5.254
Localpref: 100
AS path: I <Originator>
Cluster list: 10.2.3.1
Originator ID: 10.255.245.68
inet.2: 63 destinations, 63 routes (63 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
inet.3: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Prefix Nexthop MED Lclpref AS path
mpls.0: 48 destinations, 48 routes (48 active, 0 holddown, 0 hidden)

Show route receive protocol (Segment Routing Traffic Engineering)

show route receive protocol bgp 10.1.1.4

bgp.inetcolor.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

* 50-4.4.4.4-1234<sr6>/96 (1 entry, 0 announced)
 Import Accepted
 Distinguisher: 50
 Color: 1234
 Nexthop: 10.1.1.4
 Localpref: 100
 AS path: 3 I
 Communities: target:1.1.1.1:1

inetcolor.0: 6 destinations, 7 routes (6 active, 0 holddown, 0 hidden)
* 4.4.4.4-1234<c6>/64 (1 entry, 1 announced)
 Import Accepted
 Color: 1234
 Nexthop: 10.1.1.4
 Localpref: 100
 AS path: 3 I
 Communities: target:1.1.1.1:1
user@host# run show route receive-protocol bgp 5001:1::4

bgp.inet6color.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

* 50-2001:1::4-1234<sr6>/192 (1 entry, 0 announced)
 Import Accepted
 Distinguisher: 50
 Color: 1234
 Nexthop: ::ffff:1.1.1.4
 Localpref: 100
 AS path: 3 I
 Communities: target:1.1.1.1

inet6color.0: 6 destinations, 7 routes (6 active, 0 holddown, 0 hidden)

* 2001::5-1234<c6>/160 (1 entry, 1 announced)
 Import Accepted
 Color: 1234
 Nexthop: ::ffff:1.1.1.5
 Localpref: 100
 AS path: 3 I
 Communities: target:2:1
show route table

List of Syntax

Syntax on page 2575
Syntax (EX Series Switches, QFX Series Switches) on page 2575

Syntax

```
show route table routing-table-name
<brief | detail | extensive | terse>
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches, QFX Series Switches)

```
show route table routing-table-name
<brief | detail | extensive | terse>
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Show route table evpn statement introduced in Junos OS Release 15.1X53-D30 for QFX Series switches.

Description

Display the route entries in a particular routing table.

Options

- **brief | detail | extensive | terse**—(Optional) Display the specified level of output.

- **logical-system (all | logical-system-name)**—(Optional) Perform this operation on all logical systems or on a particular logical system.

- **routing-table-name**—Display route entries for all routing tables whose names begin with this string (for example, inet.0 and inet6.0 are both displayed when you run the `show route table inet` command).

Required Privilege Level

view

RELATED DOCUMENTATION

- `show route summary`

List of Sample Output
Output Fields

Table 137 on page 2354 describes the output fields for the `show route table` command. Output fields are listed in the approximate order in which they appear.
Table 150: show route table Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>routing-table-name</td>
<td>Name of the routing table (for example, inet.0).</td>
</tr>
<tr>
<td>Restart complete</td>
<td>All protocols have restarted for this routing table.</td>
</tr>
<tr>
<td>Restart state:</td>
<td></td>
</tr>
<tr>
<td>• Pending: protocol-name—List of protocols that have not yet completed graceful restart for this routing table.</td>
<td></td>
</tr>
<tr>
<td>• Complete—All protocols have restarted for this routing table.</td>
<td></td>
</tr>
<tr>
<td>For example, if the output shows-</td>
<td></td>
</tr>
<tr>
<td>• LDP.inet.0 : 5 routes (4 active, 1 holddown, 0 hidden)</td>
<td>Restart Pending: OSPF LDP VPN</td>
</tr>
<tr>
<td>This indicates that OSPF, LDP, and VPN protocols did not restart for the LDP.inet.0 routing table.</td>
<td></td>
</tr>
<tr>
<td>• vpls_1.12vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)</td>
<td>Restart Complete</td>
</tr>
<tr>
<td>This indicates that all protocols have restarted for the vpls_1.12vpn.0 routing table.</td>
<td></td>
</tr>
<tr>
<td>number destinations</td>
<td>Number of destinations for which there are routes in the routing table.</td>
</tr>
<tr>
<td>number routes</td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
</tr>
<tr>
<td>• active (routes that are active)</td>
<td></td>
</tr>
<tr>
<td>• holddown (routes that are in the pending state before being declared inactive)</td>
<td></td>
</tr>
<tr>
<td>• hidden (routes that are not used because of a routing policy)</td>
<td></td>
</tr>
</tbody>
</table>
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>route-destination (entry, announced)</td>
<td>Route destination (for example: 10.0.0.1/24). The entry value is the number of routes for this destination, and the announced value is the number of routes being announced for this destination. Sometimes the route destination is presented in another format, such as:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>label stacking</td>
<td>(Next-to-the-last-hop routing device for MPLS only) Depth of the MPLS label stack, where the label-popping operation is needed to remove one or more labels from the top of the stack. A pair of routes is displayed, because the pop operation is performed only when the stack depth is two or more labels.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| **[protocol, preference]** | Protocol from which the route was learned and the preference value for the route.
- A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.
- A hyphen indicates the last active route.
- An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.
In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1's complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value and a lower Preference2 value. |
| **Level** | (IS-IS only). In IS-IS, a single AS can be divided into smaller groups called areas. Routing between areas is organized hierarchically, allowing a domain to be administratively divided into smaller areas. This organization is accomplished by configuring Level 1 and Level 2 intermediate systems. Level 1 systems route within an area. When the destination is outside an area, they route toward a Level 2 system. Level 2 intermediate systems route between areas and toward other ASs. |
| **Route Distinguisher** | IP subnet augmented with a 64-bit prefix. |
| **PMSI** | Provider multicast service interface (MVPN routing table). |
| **Next-hop type** | Type of next hop. For a description of possible values for this field, see Table 141 on page 2426. |
| **Next-hop reference count** | Number of references made to the next hop. |
| **Flood next-hop branches exceed maximum message** | Indicates that the number of flood next-hop branches exceeded the system limit of 32 branches, and only a subset of the flood next-hop branches were installed in the kernel. |
| **Source** | IP address of the route source. |
| **Next hop** | Network layer address of the directly reachable neighboring system. |
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>via</td>
<td>Interface used to reach the next hop. If there is more than one interface available to the next hop, the name of the interface that is actually used is followed by the word Selected. This field can also contain the following information:</td>
</tr>
<tr>
<td></td>
<td>• Weight—Value used to distinguish primary, secondary, and fast reroute backup routes. Weight information is available when MPLS label-switched path (LSP) link protection, node-link protection, or fast reroute is enabled, or when the standby state is enabled for secondary paths. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.</td>
</tr>
<tr>
<td></td>
<td>• Balance—Balance coefficient indicating how traffic of unequal cost is distributed among next hops when a routing device is performing unequal-cost load balancing. This information is available when you enable BGP multipath load balancing.</td>
</tr>
<tr>
<td>via lsp-path-name</td>
<td>Name of the LSP used to reach the next hop.</td>
</tr>
<tr>
<td>Label operation</td>
<td>MPLS label and operation occurring at this routing device. The operation can be pop (where a label is removed from the top of the stack), push (where another label is added to the label stack), or swap (where a label is replaced by another label).</td>
</tr>
<tr>
<td>Interface</td>
<td>(Local only) Local interface name.</td>
</tr>
<tr>
<td>Protocol next hop</td>
<td>Network layer address of the remote routing device that advertised the prefix. This address is used to derive a forwarding next hop.</td>
</tr>
<tr>
<td>Indirect next hop</td>
<td>Index designation used to specify the mapping between protocol next hops, tags, kernel export policy, and the forwarding next hops.</td>
</tr>
<tr>
<td>State</td>
<td>State of the route (a route can be in more than one state). See Table 142 on page 2428.</td>
</tr>
<tr>
<td>Local AS</td>
<td>AS number of the local routing devices.</td>
</tr>
<tr>
<td>Age</td>
<td>How long the route has been known.</td>
</tr>
<tr>
<td>AIGP</td>
<td>Accumulated interior gateway protocol (AIGP) BGP attribute.</td>
</tr>
<tr>
<td>Metricn</td>
<td>Cost value of the indicated route. For routes within an AS, the cost is determined by IGP and the individual protocol metrics. For external routes, destinations, or routing domains, the cost is determined by a preference value.</td>
</tr>
<tr>
<td>MED-plus-IGP</td>
<td>Metric value for BGP path selection to which the IGP cost to the next-hop destination has been added.</td>
</tr>
</tbody>
</table>
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL-Action</td>
<td>For MPLS LSPs, state of the TTL propagation attribute. Can be enabled or disabled for all RSVP-signaled and LDP-signaled LSPs or for specific VRF routing instances.</td>
</tr>
<tr>
<td>Task</td>
<td>Name of the protocol that has added the route.</td>
</tr>
<tr>
<td>Announcement bits</td>
<td>The number of BGP peers or protocols to which Junos OS has announced this route, followed by the list of the recipients of the announcement. Junos OS can also announce the route to the kernel routing table (KRT) for installing the route into the Packet Forwarding Engine, to a resolve tree, a Layer 2 VC, or even a VPN. For example, n-Resolve inet indicates that the specified route is used for route resolution for next hops found in the routing table.</td>
</tr>
</tbody>
</table>
| AS path | AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:

 - **I**—IGP.
 - **E**—EGP.
 - **Recorded**—The AS path is recorded by the sample process (sampled).
 - **?**—Incomplete; typically, the AS path was aggregated.

 When AS path numbers are included in the route, the format is as follows:

 - []—Brackets enclose the number that precedes the AS path. This number represents the number of ASs present in the AS path, when calculated as defined in RFC 4271. This value is used in the AS-path merge process, as defined in RFC 4893.
 - []—If more than one AS number is configured on the routing device, or if AS path prepending is configured, brackets enclose the local AS number associated with the AS path.
 - { }—Braces enclose AS sets, which are groups of AS numbers in which the order does not matter. A set commonly results from route aggregation. The numbers in each AS set are displayed in ascending order.
 - ()—Parentheses enclose a confederation.
 - ([])—Parentheses and brackets enclose a confederation set.

NOTE: In Junos OS Release 10.3 and later, the AS path field displays an unrecognized attribute and associated hexadecimal value if BGP receives attribute 128 (attribute set) and you have not configured an independent domain in any routing instance.
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>validation-state</td>
<td>(BGP-learned routes) Validation status of the route:</td>
</tr>
<tr>
<td></td>
<td>• Invalid—Indicates that the prefix is found, but either the corresponding AS received from the EBGP peer is not the AS that appears in the database, or the prefix length in the BGP update message is longer than the maximum length permitted in the database.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—Indicates that the prefix is not among the prefixes or prefix ranges in the database.</td>
</tr>
<tr>
<td></td>
<td>• Unverified—Indicates that the origin of the prefix is not verified against the database. This is because the database got populated and the validation is not called for in the BGP import policy, although origin validation is enabled, or the origin validation is not enabled for the BGP peers.</td>
</tr>
<tr>
<td></td>
<td>• Valid—Indicates that the prefix and autonomous system pair are found in the database.</td>
</tr>
<tr>
<td>FECs bound to route</td>
<td>Indicates point-to-multipoint root address, multicast source address, and multicast group address when multipoint LDP (M-LDP) inband signaling is configured.</td>
</tr>
<tr>
<td>Primary Upstream</td>
<td>When multipoint LDP with multicast-only fast reroute (MoFRR) is configured, indicates the primary upstream path. MoFRR transmits a multicast join message from a receiver toward a source on a primary path, while also transmitting a secondary multicast join message from the receiver toward the source on a backup path.</td>
</tr>
<tr>
<td>RPF Nexthops</td>
<td>When multipoint LDP with MoFRR is configured, indicates the reverse-path forwarding (RPF) next-hop information. Data packets are received from both the primary path and the secondary paths. The redundant packets are discarded at topology merge points due to the RPF checks.</td>
</tr>
<tr>
<td>Label</td>
<td>Multiple MPLS labels are used to control MoFRR stream selection. Each label represents a separate route, but each references the same interface list check. Only the primary label is forwarded while all others are dropped. Multiple interfaces can receive packets using the same label.</td>
</tr>
<tr>
<td>weight</td>
<td>Value used to distinguish MoFRR primary and backup routes. A lower weight value is preferred. Among routes with the same weight value, load balancing is possible.</td>
</tr>
<tr>
<td>VC Label</td>
<td>MPLS label assigned to the Layer 2 circuit virtual connection.</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit (MTU) of the Layer 2 circuit.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN identifier of the Layer 2 circuit.</td>
</tr>
<tr>
<td>Prefixes bound to route</td>
<td>Forwarding equivalent class (FEC) bound to this route. Applicable only to routes installed by LDP.</td>
</tr>
</tbody>
</table>
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communities</td>
<td>Community path attribute for the route. See Table 143 on page 2431 for all possible values for this field.</td>
</tr>
<tr>
<td>Layer2-info: encaps</td>
<td>Layer 2 encapsulation (for example, VPLS).</td>
</tr>
<tr>
<td>control flags</td>
<td>Control flags: none or Site Down.</td>
</tr>
<tr>
<td>mtu</td>
<td>Maximum transmission unit (MTU) information.</td>
</tr>
<tr>
<td>Label-Base, range</td>
<td>First label in a block of labels and label block size. A remote PE routing device uses this first label when sending traffic toward the advertising PE routing device.</td>
</tr>
<tr>
<td>status vector</td>
<td>Layer 2 VPN and VPLS network layer reachability information (NLRI).</td>
</tr>
<tr>
<td>Accepted Multipath</td>
<td>Current active path when BGP multipath is configured.</td>
</tr>
<tr>
<td>Accepted LongLivedStale</td>
<td>The LongLivedStale flag indicates that the route was marked LLGR-stale by this router, as part of the operation of LLGR receiver mode. Either this flag or the LongLivedStaleImport flag might be displayed for a route. Neither of these flags is displayed at the same time as the Stale (ordinary GR stale) flag.</td>
</tr>
<tr>
<td>Accepted LongLivedStaleImport</td>
<td>The LongLivedStaleImport flag indicates that the route was marked LLGR-stale when it was received from a peer, or by import policy. Either this flag or the LongLivedStale flag might be displayed for a route. Neither of these flags is displayed at the same time as the Stale (ordinary GR stale) flag.</td>
</tr>
<tr>
<td>ImportAccepted LongLivedStaleImport</td>
<td>Accept all received BGP long-lived graceful restart (LLGR) and LLGR stale routes learned from configured neighbors and imported into the inet.0 routing table</td>
</tr>
<tr>
<td>Accepted MultipathContrib</td>
<td>Path currently contributing to BGP multipath.</td>
</tr>
<tr>
<td>Localpref</td>
<td>Local preference value included in the route.</td>
</tr>
<tr>
<td>Router ID</td>
<td>BGP router ID as advertised by the neighbor in the open message.</td>
</tr>
</tbody>
</table>
Table 150: show route table Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Routing Table</td>
<td>In a routing table group, the name of the primary routing table in which the route resides.</td>
</tr>
<tr>
<td>Secondary Tables</td>
<td>In a routing table group, the name of one or more secondary tables in which the route resides.</td>
</tr>
</tbody>
</table>

Table 141 on page 2426 describes all possible values for the Next-hop Types output field.

Table 151: Next-hop Types Output Field Values

<table>
<thead>
<tr>
<th>Next-Hop Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast (bcast)</td>
<td>Broadcast next hop.</td>
</tr>
<tr>
<td>Deny</td>
<td>Deny next hop.</td>
</tr>
<tr>
<td>Discard</td>
<td>Discard next hop.</td>
</tr>
<tr>
<td>Flood</td>
<td>Flood next hop. Consists of components called branches, up to a maximum of 32 branches. Each flood next-hop branch sends a copy of the traffic to the forwarding interface. Used by point-to-multipoint RSVP, point-to-multipoint LDP, point-to-multipoint CCC, and multicast.</td>
</tr>
<tr>
<td>Hold</td>
<td>Next hop is waiting to be resolved into a unicast or multicast type.</td>
</tr>
<tr>
<td>Indexed (idxd)</td>
<td>Indexed next hop.</td>
</tr>
<tr>
<td>Indirect (indr)</td>
<td>Used with applications that have a protocol next hop address that is remote. You are likely to see this next-hop type for internal BGP (IBGP) routes when the BGP next hop is a BGP neighbor that is not directly connected.</td>
</tr>
<tr>
<td>Interface</td>
<td>Used for a network address assigned to an interface. Unlike the router next hop, the interface next hop does not reference any specific node on the network.</td>
</tr>
<tr>
<td>Local (locl)</td>
<td>Local address on an interface. This next-hop type causes packets with this destination address to be received locally.</td>
</tr>
<tr>
<td>Multicast (mcst)</td>
<td>Wire multicast next hop (limited to the LAN).</td>
</tr>
<tr>
<td>Multicast discard (mdsc)</td>
<td>Multicast discard.</td>
</tr>
</tbody>
</table>
Table 151: Next-hop Types Output Field Values *(continued)*

<table>
<thead>
<tr>
<th>Next-Hop Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast group (mgrp)</td>
<td>Multicast group member.</td>
</tr>
<tr>
<td>Receive (recv)</td>
<td>Receive.</td>
</tr>
<tr>
<td>Reject (rjct)</td>
<td>Discard. An ICMP unreachable message was sent.</td>
</tr>
<tr>
<td>Resolve (rslv)</td>
<td>Resolving next hop.</td>
</tr>
<tr>
<td>Routed multicast (mcrt)</td>
<td>Regular multicast next hop.</td>
</tr>
<tr>
<td>Router</td>
<td>A specific node or set of nodes to which the routing device forwards packets that match the route prefix.</td>
</tr>
<tr>
<td></td>
<td>To qualify as a next-hop type router, the route must meet the following criteria:</td>
</tr>
<tr>
<td></td>
<td>• Must not be a direct or local subnet for the routing device.</td>
</tr>
<tr>
<td></td>
<td>• Must have a next hop that is directly connected to the routing device.</td>
</tr>
<tr>
<td>Table</td>
<td>Routing table next hop.</td>
</tr>
<tr>
<td>Unicast (ucst)</td>
<td>Unicast.</td>
</tr>
<tr>
<td>Unilist (ulst)</td>
<td>List of unicast next hops. A packet sent to this next hop goes to any next hop in the list.</td>
</tr>
</tbody>
</table>

Table 142 on page 2428 describes all possible values for the State output field. A route can be in more than one state (for example, `<Active NoReadvrt Int Ext>`).

Table 152: State Output Field Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>Route needs accounting.</td>
</tr>
<tr>
<td>Active</td>
<td>Route is active.</td>
</tr>
<tr>
<td>Always Compare MED</td>
<td>Path with a lower multiple exit discriminator (MED) is available.</td>
</tr>
<tr>
<td>AS path</td>
<td>Shorter AS path is available.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Cisco Non-deterministic MED selection</td>
<td>Cisco nondeterministic MED is enabled, and a path with a lower MED is available.</td>
</tr>
<tr>
<td>Clone</td>
<td>Route is a clone.</td>
</tr>
<tr>
<td>Cluster list length</td>
<td>Length of cluster list sent by the route reflector.</td>
</tr>
<tr>
<td>Delete</td>
<td>Route has been deleted.</td>
</tr>
<tr>
<td>Ex</td>
<td>Exterior route.</td>
</tr>
<tr>
<td>Ext</td>
<td>BGP route received from an external BGP neighbor.</td>
</tr>
<tr>
<td>FlashAll</td>
<td>Forces all protocols to be notified of a change to any route, active or inactive, for a prefix. When not set, protocols are informed of a prefix only when the active route changes.</td>
</tr>
<tr>
<td>Hidden</td>
<td>Route not used because of routing policy.</td>
</tr>
<tr>
<td>IfCheck</td>
<td>Route needs forwarding RPF check.</td>
</tr>
<tr>
<td>IGP metric</td>
<td>Path through next hop with lower IGP metric is available.</td>
</tr>
<tr>
<td>Inactive reason</td>
<td>Flags for this route, which was not selected as best for a particular destination.</td>
</tr>
<tr>
<td>Initial</td>
<td>Route being added.</td>
</tr>
<tr>
<td>Int</td>
<td>Interior route.</td>
</tr>
<tr>
<td>Int Ext</td>
<td>BGP route received from an internal BGP peer or a BGP confederation peer.</td>
</tr>
<tr>
<td>Interior > Exterior > Exterior via Interior</td>
<td>Direct, static, IGP, or EBGP path is available.</td>
</tr>
<tr>
<td>Local Preference</td>
<td>Path with a higher local preference value is available.</td>
</tr>
<tr>
<td>Martian</td>
<td>Route is a martian (ignored because it is obviously invalid).</td>
</tr>
<tr>
<td>MartianOK</td>
<td>Route exempt from martian filtering.</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Next hop address</td>
<td>Path with lower metric next hop is available.</td>
</tr>
<tr>
<td>No difference</td>
<td>Path from neighbor with lower IP address is available.</td>
</tr>
<tr>
<td>NoReadvrt</td>
<td>Route not to be advertised.</td>
</tr>
<tr>
<td>NotBest</td>
<td>Route not chosen because it does not have the lowest MED.</td>
</tr>
<tr>
<td>Not Best in its group</td>
<td>Incoming BGP AS is not the best of a group (only one AS can be the best).</td>
</tr>
<tr>
<td>NotInstall</td>
<td>Route not to be installed in the forwarding table.</td>
</tr>
<tr>
<td>Number of gateways</td>
<td>Path with a greater number of next hops is available.</td>
</tr>
<tr>
<td>Origin</td>
<td>Path with a lower origin code is available.</td>
</tr>
<tr>
<td>Pending</td>
<td>Route pending because of a hold-down configured on another route.</td>
</tr>
<tr>
<td>Release</td>
<td>Route scheduled for release.</td>
</tr>
<tr>
<td>RIB preference</td>
<td>Route from a higher-numbered routing table is available.</td>
</tr>
<tr>
<td>Route Distinguisher</td>
<td>64-bit prefix added to IP subnets to make them unique.</td>
</tr>
<tr>
<td>Route Metric or MED comparison</td>
<td>Route with a lower metric or MED is available.</td>
</tr>
<tr>
<td>Route Preference</td>
<td>Route with lower preference value is available.</td>
</tr>
<tr>
<td>Router ID</td>
<td>Path through a neighbor with lower ID is available.</td>
</tr>
<tr>
<td>Secondary</td>
<td>Route not a primary route.</td>
</tr>
<tr>
<td>Unusable path</td>
<td>Path is not usable because of one of the following conditions:</td>
</tr>
<tr>
<td></td>
<td>• The route is damped.</td>
</tr>
<tr>
<td></td>
<td>• The route is rejected by an import policy.</td>
</tr>
<tr>
<td></td>
<td>• The route is unresolved.</td>
</tr>
<tr>
<td>Update source</td>
<td>Last tiebreaker is the lowest IP address value.</td>
</tr>
</tbody>
</table>

Table 143 on page 2431 describes the possible values for the Communities output field.
Table 153: Communities Output Field Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area-number</td>
<td>4 bytes, encoding a 32-bit area number. For AS-external routes, the value is 0. A nonzero value identifies the route as internal to the OSPF domain, and as within the identified area. Area numbers are relative to a particular OSPF domain.</td>
</tr>
<tr>
<td>bandwidth: local AS number:link-bandwidth-number</td>
<td>Link-bandwidth community value used for unequal-cost load balancing. When BGP has several candidate paths available for multipath purposes, it does not perform unequal-cost load balancing according to the link-bandwidth community unless all candidate paths have this attribute.</td>
</tr>
<tr>
<td>domain-id</td>
<td>Unique configurable number that identifies the OSPF domain.</td>
</tr>
<tr>
<td>domain-id-vendor</td>
<td>Unique configurable number that further identifies the OSPF domain.</td>
</tr>
<tr>
<td>link-bandwidth-number</td>
<td>Link-bandwidth number: from 0 through 4,294,967,295 (bytes per second).</td>
</tr>
<tr>
<td>local AS number</td>
<td>Local AS number: from 1 through 65,535.</td>
</tr>
<tr>
<td>options</td>
<td>1 byte. Currently this is only used if the route type is 5 or 7. Setting the least significant bit in the field indicates that the route carries a type 2 metric.</td>
</tr>
<tr>
<td>origin</td>
<td>(Used with VPNs) Identifies where the route came from.</td>
</tr>
<tr>
<td>ospf-route-type</td>
<td>1 byte, encoded as 1 or 2 for intra-area routes (depending on whether the route came from a type 1 or a type 2 LSA); 3 for summary routes; 5 for external routes (area number must be 0); 7 for NSSA routes; or 129 for sham link endpoint addresses.</td>
</tr>
<tr>
<td>route-type-vendor</td>
<td>Displays the area number, OSPF route type, and option of the route. This is configured using the BGP extended community attribute 0x8000. The format is area-number:ospf-route-type:options.</td>
</tr>
<tr>
<td>rte-type</td>
<td>Displays the area number, OSPF route type, and option of the route. This is configured using the BGP extended community attribute 0x0306. The format is area-number:ospf-route-type:options.</td>
</tr>
<tr>
<td>target</td>
<td>Defines which VPN the route participates in; target has the format 32-bit IP address:16-bit number. For example, 10.19.0.0:100.</td>
</tr>
<tr>
<td>unknown IANA</td>
<td>Incoming IANA codes with a value between 0x1 and 0x7ff. This code of the BGP extended community attribute is accepted, but it is not recognized.</td>
</tr>
</tbody>
</table>
Table 153: Communities Output Field Values (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown OSPF vendor community</td>
<td>Incoming IANA codes with a value above 0x8000. This code of the BGP extended community attribute is accepted, but it is not recognized.</td>
</tr>
<tr>
<td>evpn-mcast-flags</td>
<td>Identifies the value in the multicast flags extended community and whether snooping is enabled. A value of 0x1 indicates that the route supports IGMP proxy.</td>
</tr>
</tbody>
</table>
| evpn-l2-info | Identifies whether Multihomed Proxy MAC and IP Address Route Advertisement is enabled. A value of 0x20 indicates that the proxy bit is set.
 | Use the show bridge mac-ip-table extensive statement to determine whether the MAC and IP address route was learned locally or from a PE device. |

Sample Output

show route table bgp.l2vpn.0

user@host> show route table bgp.l2vpn.0

```
bgp.l2vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

  *[BGP/170] 01:08:58, localpref 100, from 192.168.24.1
  AS path: I
  > to 10.0.16.2 via fe-0/0/1.0, label-switched-path am
```

show route table bgp.l3vpn.0

user@host> show route table bgp.l3vpn.0

```
bgp.l3vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.255.71.15:100:10.255.71.17/32
  *[BGP/170] 00:03:59, MED 1, localpref 100, from
  AS path: I
  > via so-2/1/0.0, Push 100020, Push 100011(top)
10.255.71.15
```

10.255.71.15:200:10.255.71.18/32
show route table bgp.l3vpn.0 detail

user@host> show route table bgp.l3vpn.0 detail

gbgp.l3vpn.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)

10.255.245.12:1:172.16.4.0/8 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 10.255.245.12:1
 Source: 10.255.245.12
 Next hop: 192.168.208.66 via fe-0/0/0.0, selected
 Label operation: Push 182449
 Protocol next hop: 10.255.245.12
 Push 182449
 Indirect next hop: 863a630 297
 State: <Active Int Ext>
 Local AS: 35 Peer AS: 35
 Age: 12:19 Metric2: 1
 Task: BGP_35.10.255.245.12+179
 Announcement bits (1): 0-BGP.0.0.0.0+179
 AS path: 30 10458 14203 2914 3356 I (Atomic) Aggregator: 3356 4.68.0.11
 Communities: 2914:420 target:11111:1 origin:56:78
 VPN Label: 182449
 Localpref: 100
 Router ID: 10.255.245.12

10.255.245.12:1:4.17.225.0/24 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 10.255.245.12:1
 Source: 10.255.245.12
 Next hop: 192.168.208.66 via fe-0/0/0.0, selected
 Label operation: Push 182465
 Protocol next hop: 10.255.245.12
 Push 182465
 Indirect next hop: 863a8f0 305
 State: <Active Int Ext>
 Local AS: 35 Peer AS: 35
 Age: 12:19 Metric2: 1
 Task: BGP_35.10.255.245.12+179
Announcement bits (1): 0-BGP.0.0.0.0+179
AS path: 30 10458 14203 2914 11853 11853 11853 6496 6496 6496 6496 6496
Communities: 2914:410 target:12:34 target:11111:1 origin:12:34
VPN Label: 182465
Localpref: 100
Router ID: 10.255.245.12

10.255.245.12:1:4.17.226.0/23 (1 entry, 1 announced)
*BGP Preference: 170/-101
Route Distinguisher: 10.255.245.12
Source: 10.255.245.12
Next hop: 192.168.208.66 via fe-0/0/0.0, selected
Label operation: Push 182465
Protocol next hop: 10.255.245.12
Push 182465
Indirect next hop: 86bd210 330
State: <Active Int Ext>
Local AS: 35 Peer AS: 35
Age: 12:19 Metric2: 1
Task: BGP_35.10.255.245.12+179
Announcement bits (1): 0-BGP.0.0.0.0+179
AS path: 30 10458 14203 2914 11853 11853 11853 6496 6496 6496 6496
Communities: 2914:410 target:12:34 target:11111:1 origin:12:34
VPN Label: 182465
Localpref: 100
Router ID: 10.255.245.12

10.255.245.12:1:4.17.251.0/24 (1 entry, 1 announced)
*BGP Preference: 170/-101
Route Distinguisher: 10.255.245.12
Source: 10.255.245.12
Next hop: 192.168.208.66 via fe-0/0/0.0, selected
Label operation: Push 182465
Protocol next hop: 10.255.245.12
Push 182465
Indirect next hop: 86bd210 330
State: <Active Int Ext>
Local AS: 35 Peer AS: 35
Age: 12:19 Metric2: 1
Task: BGP_35.10.255.245.12+179
Announcement bits (1): 0-BGP.0.0.0.0+179
AS path: 30 10458 14203 2914 11853 11853 11853 6496 6496 6496 6496 6496
Communities: 2914:410 target:12:34 target:11111:1 origin:12:34
VPN Label: 182465
Localpref: 100
Router ID: 10.255.245.12
show route table bgp.target.0 (When Proxy BGP Route Target Filtering Is Configured)

user@host> show route table bgp.target.0

bgp.target.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

100:100:100/96
 *[RTarget/5] 00:03:14
 Type Proxy
 for 10.255.165.103
 for 10.255.166.124
 Local

show route table bgp.evpn.0

user@host> show route table bgp.evpn.0

bgp.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2:100.100.100.2:100::0::00:26:88:5f:67:b0/304
 *[BGP/170] 11:00:05, localpref 100, from 100.100.100.2
 AS path: I, validation-state: unverified
 > to 100.64.12.2 via xe-2/2/0.0, label-switched-path R0toR1

2:100.100.100.2:100::0::00:51:51:51:51:51/304
 *[BGP/170] 11:00:05, localpref 100, from 100.100.100.2
 AS path: I, validation-state: unverified
 > to 100.64.12.2 via xe-2/2/0.0, label-switched-path R0toR1

2:100.100.100.3:100::0::00:52:52:52:52:52/304
 *[BGP/170] 10:59:58, localpref 100, from 100.100.100.3
 AS path: I, validation-state: unverified
 > to 100.64.13.3 via ge-2/0/8.0, label-switched-path R0toR2

2:100.100.100.3:100::0::a8:d0:e5:5b:01:c8/304
 *[BGP/170] 10:59:58, localpref 100, from 100.100.100.3
 AS path: I, validation-state: unverified
 > to 100.64.13.3 via ge-2/0/8.0, label-switched-path R0toR2
show route table evpna.evpn.0

user@host> show route table evpna.evpn.0

evpna.evpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

3:100.100.100.10:100::0::10::100.100.100.10/384
 *[EVPN/170] 01:37:09
 Indirect
3:100.100.100.2:100::2000::100.100.100.2/304
 *[EVPN/170] 01:37:12
 Indirect

show route table inet.0

user@host> show route table inet.0

inet.0: 12 destinations, 12 routes (11 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:51:57
 > to 172.16.5.254 via fxp0.0
10.0.0.1/32 *[Direct/0] 00:51:58
 > via at-5/3/0.0
10.0.0.2/32 *[Local/0] 00:51:58
 Local
10.12.12.21/32 *[Local/0] 00:51:57
 Reject
10.13.13.13/32 *[Direct/0] 00:51:58
 > via t3-5/2/1.0
10.13.13.14/32 *[Local/0] 00:51:58
 Local
10.13.13.21/32 *[Local/0] 00:51:58
show route table inet.3

user@host> show route table inet.3

inet.3: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.5/32 *[LDP/9] 00:25:43, metric 10, tag 200
 to 10.2.94.2 via lt-1/2/0.49
 > to 10.2.3.2 via lt-1/2/0.23

show route table inet.3 protocol ospf

user@host> show route table inet.3 protocol ospf

inet.3: 9 destinations, 18 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1.1.1.20/32 [L-OSPF/10] 1d 00:00:56, metric 2
 > to 10.0.10.70 via lt-1/2/0.14, Push 800020
 to 10.0.6.60 via lt-1/2/0.12, Push 800020, Push 800030(top)
1.1.1.30/32 [L-OSPF/10] 1d 00:01:01, metric 3
 > to 10.0.10.70 via lt-1/2/0.14, Push 800030
 to 10.0.6.60 via lt-1/2/0.12, Push 800030
1.1.1.40/32 [L-OSPF/10] 1d 00:01:01, metric 4
 > to 10.0.10.70 via lt-1/2/0.14, Push 800040
 to 10.0.6.60 via lt-1/2/0.12, Push 800040
1.1.1.50/32 [L-OSPF/10] 1d 00:01:01, metric 5
 > to 10.0.10.70 via lt-1/2/0.14, Push 800050
 to 10.0.6.60 via lt-1/2/0.12, Push 800050
1.1.1.60/32 [L-OSPF/10] 1d 00:01:01, metric 6
 > to 10.0.10.70 via lt-1/2/0.14, Push 800060
 to 10.0.6.60 via lt-1/2/0.12, Pop
show route table inet6.0

user@host> show route table inet6.0

inet6.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Route, * = Both

 fec0:0:0:3::/64 *[Direct/0] 00:01:34
 >via fe-0/1/0.0

 fec0:0:0:3::/128 *[Local/0] 00:01:34
 >Local

 fec0:0:0:4::/64 *[Static/5] 00:01:34
 >to fec0:0:0:3::ffff via fe-0/1/0.0

show route table inet6.3

user@router> show route table inet6.3

inet6.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 ::10.255.245.195/128
 *[LDP/9] 00:00:22, metric 1
 > via so-1/0/0.0

 ::10.255.245.196/128
 *[LDP/9] 00:00:08, metric 1
 > via so-1/0/0.0, Push 100008

show route table inetflow detail

user@host> show route table inetflow detail

inetflow.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
10.12.44.1,*/48 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 2
 State: <Active Ext>
 Local AS: 64502 Peer AS: 64500
 Age: 4
 Task: BGP_64500.10.12.99.5+3792
 Announcement bits (1): 0-Flow
 AS path: 64500 I
Communities: traffic-rate:0:0
Validation state: Accept, Originator: 10.12.99.5
Via: 10.12.44.0/24, Active
Localpref: 100
Router ID: 10.255.71.161

10.12.56.1,*/48 (1 entry, 1 announced)
 *Flow Preference: 5
 Next-hop reference count: 2
 State: <Active>
 Local AS: 64502
 Age: 6:30
 Task: RT Flow
 Announcement bits (2): 0-Flow 1-BGP.0.0.0.0+179
 AS path: I
 Communities: 1:1

show route table inetflow.0 extensive (BGP Flowspec Redirect to IP)

user@host> show route table inetflow.0 extensive

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 2.2.2.2,*/term:1 (1 entry, 1 announced)
TSI:
 KRT in dfwd;
 Page 0 idx 0, (group ibgp type Internal) Type 1 val 0xb209500 (adv_entry)
Advertised metrics:
 Nexthop: 21.1.4.5
 Localpref: 100
 AS path: [100] I
 Communities: redirect-to-ip:21.1.4.5:0
Action(s): accept,count
 *Flow Preference: 5
 Next hop type: Indirect, Next hop index: 0
 Address: 0xa2b931c
 Next-hop reference count: 1
 Next hop:
 State: <Active> L
 Local AS: 69
 Age: 2
 Validation State: unverified
 Task: RT Flow
 Announcement bits (1): 0-Flow
 AS path: I
 Communities: redirect-to-ip:21.1.4.5:0
inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
2.2.2.2,*/term:1 (1 entry, 1 announced)
TSI:
KRT in dfwd;
Page 0 idx 0, (group ibgp type Internal) Type 1 val 0xb209500 (adv_entry)
Advertised metrics:
Nexthop: 21.1.4.5
Localpref: 100
AS path: [100] I
Communities: redirect-to-nexthop
Action(s): accept,count
*Flow Preference: 5
Next hop type: Indirect, Next hop index: 0
Address: 0xa2b931c
Next-hop reference count: 1
Next hop:
State: <Active>
Local AS: 69
Age: 2
Validation State: unverified
Task: RT Flow
Announcement bits (1): 0-Flow
AS path: I
Communities: redirect-to-nexthop
regress@10.102.178.210> show route table inetflow.0 extensive
inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
4.4.4.4,*/term:1 (1 entry, 1 announced)
TSI:
KRT in dfwd;
Action(s): accept,count
*BGP Preference: 170/-101
Next hop type: Fictitious, Next hop index: 0
Address: 0xc5e3c30
Next-hop reference count: 3
Next hop: 21.1.4.5
State: <Active Int Ext>
Local AS: 100 Peer AS: 100
Age: 10
Validation State: unverified
Task: BGP_100.1.1.1.1+179
Announcement bits (1): 0-Flow
AS path: I
Communities: redirect-to-nexthop
Accepted
Localpref: 100
Router ID: 1.1.1.1

show route table lsdist.0 extensive

user@host> show route table lsdist.0 extensive

lsdist.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
NODE { AS:4170512532 BGP-LS ID:4170512532 ISO:3245.3412.3456.00 ISIS-L1:0 }/1152
(1 entry, 1 announced)
TSI:
Page 0 idx 0, (group ibgp type Internal) Type 1 val 0xa62f378 (adv_entry)
 Advertised metrics:
 Next-hop: Self
 Localpref: 100
 AS path: [4170512532] I
 Communities:
Path NODE { AS:4170512532 BGP-LS ID:4170512532 ISO:3245.3412.3456.00 ISIS-L1:0 }
Vector len 4. Val: 0
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x95dfc64
 Next-hop reference count: 9
 State: <Active NotInstall>
 Local AS: 4170512532
 Age: 6:05
 Validation State: unverified
 Task: IS-IS
 Announcement bits (1): 0-BGP_RT_Background
 AS path: I
 IPv4 Router-ids:
 128.220.11.197
 Area membership:
 47 00 05 80 ff f8 00 00 00 01 08 00 01
 SPRING-Capabilities: - SRGB block [Start: 800000, Range: 256, Flags: 0xc0]
 SPRING-Algorithms:
 - Algo: 0
LINK { Local { AS:4170512532 BGP-LS ID:4170512532 ISO:3245.3412.3456.00 }.
TSI:
Page 0 idx 0, (group ibgp type Internal) Type 1 val 0xa62f3cc (adv_entry)
Advertised metrics:
 Nexthop: Self
 Localpref: 100
 AS path: [4170512532] I
Communities:
 *IS-IS Preference: 15
 Level: 1
 Next hop type: Fictitious, Next hop index: 0
 Address: 0x95dfc64
 Next-hop reference count: 9
 State: <Active NotInstall>
 Local AS: 4170512532
 Age: 6:05
 Validation State: unverified
 Task: IS-IS
 Announcement bits (1): 0-BGP_RT_Background
 AS path: I
 Color: 32768
 Maximum bandwidth: 1000Mbps
 Reservable bandwidth: 1000Mbps
 Unreserved bandwidth by priority:
 0 1000Mbps
 1 1000Mbps
 2 1000Mbps
 3 1000Mbps
 4 1000Mbps
 5 1000Mbps
 6 1000Mbps
 7 1000Mbps
 Metric: 10
 TE Metric: 10
 LAN IPV4 Adj-SID - Label: 299776, Flags: 0x30,
 Weight: 0, Nbr: 10.220.1.83
PREFIX { Node { AS:4170512532 BGP-LS ID:4170512532 ISO:3245.3412.3456.00 } {IPv4:128.220.11.197/32 } ISIS-L1:0 }/1152 (1 entry, 1 announced) TSI: Page 0 idx 0, (group ibgp type Internal) Type 1 val 0xa62f43c (adv_entry)
Advertised metrics:
 Nexthop: Self
 Localpref: 100
 AS path: [4170512532] I
Communities:
show route table l2circuit.0
user@host> show route table l2circuit.0

l2circuit.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.195:NoCtrlWord:1:1:Local/96
 *[L2CKT/7] 00:50:47
 > via so-0/1/2.0, Push 100049
 via so-0/1/3.0, Push 100049

 *[LDP/9] 00:50:14
 Discard

10.1.1.195:CtrlWord:1:2:Local/96
 *[L2CKT/7] 00:50:47
 > via so-0/1/2.0, Push 100049
 via so-0/1/3.0, Push 100049

 *[LDP/9] 00:50:14
 Discard

show route table lsdist.0
user@host> show route table lsdist.0
lsdist.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

LINK { Local { AS:4 BGP-LS ID:100 IPv4:4.4.4.4 }.{ IPv4:4.4.4.4 } Remote { AS:4 BGP-LS ID:100 IPv4:7.7.7.7 }.{ IPv4:7.7.7.7 } Undefined:0 }/1152
 *[BGP-LS-EPE/170] 00:20:56
Fictitious

LINK { Local { AS:4 BGP-LS ID:100 IPv4:4.4.4.4 }.{ IPv4:4.4.4.4 IfIndex:339 } Remote { AS:4 BGP-LS ID:100 IPv4:7.7.7.7 }.{ IPv4:7.7.7.7 } Undefined:0 }/1152
 *[BGP-LS-EPE/170] 00:20:56
Fictitious

LINK { Local { AS:4 BGP-LS ID:100 IPv4:4.4.4.4 }.{ IPv4:50.1.1.1 } Remote { AS:4 BGP-LS ID:100 IPv4:5.5.5.5 }.{ IPv4:50.1.1.2 } Undefined:0 }/1152
 *[BGP-LS-EPE/170] 00:20:56
Fictitious

show route table mpls

user@host> show route table mpls

mpls.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:13:55, metric 1
 Receive
1 *[MPLS/0] 00:13:55, metric 1
 Receive
2 *[MPLS/0] 00:13:55, metric 1
 Receive
1024 *[VPN/0] 00:04:18
to table red.inet.0, Pop

show route table mpls extensive

user@host> show route table mpls extensive

100000 (1 entry, 1 announced)
TSI:
KRT in-kernel 100000 /36 -> (so-1/0/0.0)
 *LDP Preference: 9
 Next hop: via so-1/0/0.0, selected
 Pop
State: <Active Int>
Age: 29:50 Metric: 1
Task: LDP
Announcement bits (1): 0-KRT
AS path: I
Prefixes bound to route: 10.0.0.194/32

show route table mpls.0

user@host> show route table mpls.0

mpls.0: 18 destinations, 19 routes (18 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 11:39:56, metric 1
 to table inet.0
0(S=0) *[MPLS/0] 11:39:56, metric 1
 to table mpls.0
1 *[MPLS/0] 11:39:56, metric 1
 Receive
2 *[MPLS/0] 11:39:56, metric 1
 to table inet6.0
2(S=0) *[MPLS/0] 11:39:56, metric 1
 to table mpls.0
13 *[MPLS/0] 11:39:56, metric 1
 Receive
303168 *[EVPN/7] 11:00:49, routing-instance pbnn10, route-type
 Ingress-MAC, ISID 0
 to table pbnn10.evpn-mac.0
303184 *[EVPN/7] 11:00:53, routing-instance pbnn10, route-type
 Ingress-IM, ISID 1000
 to table pbnn10.evpn-mac.0
 [EVPN/7] 11:00:53, routing-instance pbnn10, route-type
 Ingress-IM, ISID 2000
 to table pbnn10.evpn-mac.0
303264 *[EVPN/7] 11:00:53, remote-pe 100.100.100.2, routing-instance
 pbnn10, route-type Egress-IM, ISID 1000
 > to 100.1.12.2 via xe-2/2/0.0, label-switched-path R0toR1
303280 *[EVPN/7] 11:00:53, remote-pe 100.100.100.2, routing-instance
 pbnn10, route-type Egress-IM, ISID 2000
 > to 100.1.12.2 via xe-2/2/0.0, label-switched-path R0toR1
303328 *[EVPN/7] 11:00:49, remote-pe 100.100.100.2, routing-instance
 pbnn10, route-type Egress-MAC, ISID 0
 > to 100.1.12.2 via xe-2/2/0.0, label-switched-path R0toR1
show route table mpls.0 detail (PTX Series)
user@host> show route table mpls.0 detail

ge-0/0/2.600 (1 entry, 1 announced)
	*L2VPN Preference: 7
	Next hop type: Indirect
	Address: 0x9438f34
	Next-hop reference count: 2
	Next hop type: Router, Next hop index: 567
	Next hop: 10.0.0.1 via ge-0/0/1.0, selected
	Label operation: Push 299808
	Label TTL action: prop-ttl
	Load balance label: Label 299808:None;
	Session Id: 0x1
	Protocol next hop: 10.255.255.1
	Label operation: Push 299872 Offset: 252
	Label TTL action: no-prop-ttl
	Load balance label: Label 299872:Flow label PUSH;
Composite next hop: 0x9438e58 570 INH Session ID: 0x2
Indirect next hop: 0x9448208 262142 INH Session ID: 0x2
State: <Active Int>
Age: 21 Metric2: 1
Validation State: unverified
Task: Common L2 VC
Announcement bits (2): 0-KRT 2-Common L2 VC
AS path: I

show route table mpls.0 ccc ge-0/0/1.1004 detail

user@host> show route table mpls.0 ccc ge-0/0/1.1004 detail

mpls.0: 121 destinations, 121 routes (121 active, 0 holddown, 0 hidden)
ge-0/0/1.1004 (1 entry, 1 announced)
 *EVPN Preference: 7
 Next hop type: List, Next hop index: 1048577
 Address: 0xdc14770
 Next-hop reference count: 3
 Next hop: ELNH Address 0xd011e30
 Next hop type: Indirect, Next hop index: 0
 Address: 0xd011e30
 Next-hop reference count: 3
 Protocol next hop: 100.100.100.1
 Label operation: Push 301952
 Composite next hop: 0xd011dc0 754 INH Session ID: 0x146
 Indirect next hop: 0xb69a890 1048615 INH Session ID: 0x146
 Next hop type: Router, Next hop index: 735
 Address: 0xd00e530
 Next-hop reference count: 23
 Next hop: 100.46.1.2 via ge-0/0/5.0
 Label-switched-path pe4_to_pe1
 Label operation: Push 300320
 Label TTL action: prop-ttl
 Load balance label: Label 300320: None;
 Label element ptr: 0xd00e580
 Label parent element ptr: 0x0
 Label element references: 18
 Label element child references: 16
 Label element lsp id: 5
 Next hop: ELNH Address 0xd012070
 Next hop type: Indirect, Next hop index: 0
 Address: 0xd012070
 Next-hop reference count: 3
 Protocol next hop: 100.100.100.2
 Label operation: Push 301888
 Composite next hop: 0xd012000 755 INH Session ID: 0x143
show route table mpls.0 protocol evpn

user@host> show route table mpls.0 protocol evpn
mpls.0: 121 destinations, 121 routes (121 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

299872 *[EVPN/7] 02:30:58, routing-instance mhevpn, route-type
Ingress-IM, vlan-id 10
 to table mhevpn.evpn-mac.0

300016 *[EVPN/7] 02:30:38, routing-instance VS-1, route-type Ingress-IM,
vlan-id 110
 to table VS-1.evpn-mac.0

300032 *[EVPN/7] 02:30:38, routing-instance VS-1, route-type Ingress-IM,
vlan-id 120
 to table VS-1.evpn-mac.0

300048 *[EVPN/7] 02:30:38, routing-instance VS-1, route-type Ingress-IM,
vlan-id 130
 to table VS-1.evpn-mac.0

300064 *[EVPN/7] 02:30:38, routing-instance VS-2, route-type Ingress-IM,
vlan-id 210
 to table VS-2.evpn-mac.0

300080 *[EVPN/7] 02:30:38, routing-instance VS-2, route-type Ingress-IM,
vlan-id 220
 to table VS-2.evpn-mac.0

300096 *[EVPN/7] 02:30:38, routing-instance VS-2, route-type Ingress-IM,
vlan-id 230
 to table VS-2.evpn-mac.0

300112 *[EVPN/7] 02:27:06, routing-instance mhevpn, route-type
Egress-MAC, ESI 00:44:44:44:44:44:44:44:44:44
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3

300128 *[EVPN/7] 02:29:22, routing-instance mhevpn, route-type
Ingress-Aliasing
 to table mhevpn.evpn-mac.0

300144 *[EVPN/7] 02:27:06, routing-instance VS-1, route-type Egress-MAC,
ESI 00:44:44:44:44:44:44:44:44:44
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3

300160 *[EVPN/7] 02:29:22, routing-instance VS-1, route-type
Ingress-Aliasing
 to table VS-1.evpn-mac.0

300176 *[EVPN/7] 02:27:07, routing-instance VS-2, route-type Egress-MAC,
ESI 00:44:44:44:44:44:44:44:44:44
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3

300192 *[EVPN/7] 02:29:22, routing-instance VS-2, route-type
Ingress-Aliasing
 to table VS-2.evpn-mac.0

300208 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance
VS-1, route-type Egress-IM, vlan-id 120
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300224 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance mhevpn, route-type Egress-IM, vlan-id 10
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300240 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance VS-1, route-type Egress-IM, vlan-id 110
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300256 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance VS-1, route-type Egress-IM, vlan-id 130
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300272 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance VS-2, route-type Egress-IM, vlan-id 210
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300288 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance VS-2, route-type Egress-IM, vlan-id 220
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300304 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance VS-2, route-type Egress-IM, vlan-id 230
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300432 *[EVPN/7] 02:27:06, routing-instance mhevpn, route-type
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
300480 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance
 VS-1, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300496 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance
 VS-2, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300560 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance
 VS-1, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300592 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance
 VS-2, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
300608 *[EVPN/7] 02:29:23
 > via ge-0/0/1.1001, Pop
300624 *[EVPN/7] 02:29:23
 > via ge-0/0/1.2001, Pop
301232 *[EVPN/7] 02:29:17
 > via ge-0/0/1.1002, Pop
301296 *[EVPN/7] 02:29:10
 > via ge-0/0/1.1003, Pop
301312 *[EVPN/7] 02:27:06
 > via ae10.2003, Pop
to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301360 *[EVPN/7] 02:29:01
 > via ge-0/0/1.1004, Pop
301408 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance
 vpws1004, route-type Egress, vlan-id 2004
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
301456 *[EVPN/7] 02:27:06
 > via ae10.1010, Pop
to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301552 *[EVPN/7] 02:27:07, routing-instance VS-1, route-type Egress-MAC,

> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301648 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance vpws1010, route-type Egress, vlan-id 2010
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
301664 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance mhevpn, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
301680 *[EVPN/7] 02:27:07, remote-pe 100.100.100.2, routing-instance mhevpn, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301712 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance VS-2, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301728 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance VS-1, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301744 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance VS-2, route-type Egress-IM, vlan-id 230
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301760 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance vpws1010, route-type Egress, vlan-id 2010
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301776 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance mhevpn, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301792 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance VS-1, route-type Egress-IM, vlan-id 130
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301808 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance vpws1004, route-type Egress, vlan-id 2004
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301824 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance mhevpn, route-type Egress-IM, vlan-id 10
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301840 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance vpws1002, route-type Egress, vlan-id 2002
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301856 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
vpws1003, route-type Egress, vlan-id 2003
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301872 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
vpws1003, route-type Egress Protection, vlan-id 2003
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301888 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
vpws1010, route-type Egress Protection, vlan-id 1010
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301904 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-2, route-type Egress-IM, vlan-id 220
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301920 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-2, route-type Egress-IM, vlan-id 210
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
301936 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-IM, vlan-id 230
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301952 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-SH, vlan-id 230
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301968 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-IM, vlan-id 220
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
301984 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-IM, vlan-id 210
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302000 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-SH, vlan-id 210
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302016 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-IM, vlan-id 210
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302032 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-2, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302048 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-2, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302064 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302080 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-2, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302096 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-1, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302112 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-1, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302128 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302144 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302160 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-1, route-type Egress-IM, vlan-id 120
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302176 *[EVPN/7] 02:27:07, remote-pe 100.100.100.1, routing-instance
VS-1, route-type Egress-IM, vlan-id 110
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302192 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-IM, vlan-id 130
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302208 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-SH, vlan-id 130
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302224 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-IM, vlan-id 120
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302240 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-SH, vlan-id 120
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302256 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-IM, vlan-id 110
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302272 *[EVPN/7] 02:27:07, remote-pe 100.100.100.3, routing-instance
VS-1, route-type Egress-SH, vlan-id 110
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302288 *[EVPN/7] 02:27:06, remote-pe 100.100.100.1, routing-instance
mhevpn, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302304 *[EVPN/7] 02:27:06, remote-pe 100.100.100.1, routing-instance
mhevpn, route-type Egress-MAC
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302320 *[EVPN/7] 02:27:06, remote-pe 100.100.100.3, routing-instance
mhevpn, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302336 *[EVPN/7] 02:27:06, remote-pe 100.100.100.3, routing-instance
mhevnp, route-type Egress-MAC
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302352 *[EVPN/7] 02:27:06, remote-pe 100.100.100.3, routing-instance
vpws1004, route-type Egress, vlan-id 2004
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302368 *[EVPN/7] 02:27:06, remote-pe 100.100.100.3, routing-instance
mhevpn, route-type Egress-IM, vlan-id 10
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302384 *[EVPN/7] 02:27:06, remote-pe 100.100.100.3, routing-instance
mhevnp, route-type Egress-SH, vlan-id 10
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302400 *[EVPN/7] 02:26:21
> via ge-0/0/1.3001, Pop
302432 *[EVPN/7] 02:26:21, remote-pe 100.100.100.3, routing-instance
vpws3001, route-type Egress, vlan-id 40000
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302448 *[EVPN/7] 02:26:21, remote-pe 100.100.100.1, routing-instance
vpws3001, route-type Egress, vlan-id 40000
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302464 *[EVPN/7] 02:26:20, remote-pe 100.100.100.2, routing-instance
vpws3001, route-type Egress, vlan-id 40000
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
302480 *[EVPN/7] 02:26:14
> via ge-0/0/1.3016, Pop
302512 *[EVPN/7] 02:26:14, remote-pe 100.100.100.1, routing-instance
vpws3016, route-type Egress, vlan-id 40016
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302528 *[EVPN/7] 02:26:14, remote-pe 100.100.100.2, routing-instance
vpws3016, route-type Egress, vlan-id 40016
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
302560 *[EVPN/7] 02:26:06
> via ae10.3011, Pop
302592 *[EVPN/7] 02:26:07, remote-pe 100.100.100.1, routing-instance
vpws3011, route-type Egress, vlan-id 401100
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302608 *[EVPN/7] 02:26:07, remote-pe 100.100.100.2, routing-instance
vpws3011, route-type Egress, vlan-id 401100
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
302624 *[EVPN/7] 02:26:07, remote-pe 100.100.100.3, routing-instance
vpws3011, route-type Egress Protection, vlan-id 301100
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302656 *[EVPN/7] 02:25:59
> via ae10.3006, Pop
to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
302688 *[EVPN/7] 02:26:00, remote-pe 100.100.100.2, routing-instance
vpws3006, route-type Egress, vlan-id 401000
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
302704 *[EVPN/7] 02:26:00, remote-pe 100.100.100.1, routing-instance
vpws3006, route-type Egress, vlan-id 400600
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
302720 *[EVPN/7] 02:25:59, remote-pe 100.100.100.3, routing-instance
vpws3006, route-type Egress Protection, vlan-id 300600
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
ge-0/0/1.1001 *[EVPN/7] 02:29:23
> via ge-0/0/1.2001
ge-0/0/1.2001 *[EVPN/7] 02:29:23
> via ge-0/0/1.1001
ge-0/0/1.1002 *[EVPN/7] 02:27:06
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
ae10.2003 *[EVPN/7] 02:29:10
> via ge-0/0/1.1003
ge-0/0/1.1003 *[EVPN/7] 02:27:06
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
 > via ae10.2003
ge-0/0/1.1004 *[EVPN/7] 02:27:06
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
ae10.1010 *[EVPN/7] 02:27:06
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
ge-0/0/1.3001 *[EVPN/7] 02:26:20
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe2
 > to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe3
ge-0/0/1.3016 *[EVPN/7] 02:26:13
> to 100.46.1.2 via ge-0/0/5.0, label-switched-path pe4_to_pe1
ae10.3011 *[EVPN/7] 02:26:06
show route table mpls.0 protocol ospf

user@host> show route table mpls.0 protocol ospf

mpls.0: 29 destinations, 29 routes (29 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

299952 *[L-OSPF/10] 23:59:42, metric 0
 > to 10.0.10.70 via lt-1/2/0.14, Pop
 to 10.0.6.60 via lt-1/2/0.12, Swap 800070, Push 800030(top)
299952(S=0) *[L-OSPF/10] 23:59:42, metric 0
 > to 10.0.10.70 via lt-1/2/0.14, Pop
 to 10.0.6.60 via lt-1/2/0.12, Swap 800070, Push 800030(top)
299968 *[L-OSPF/10] 23:59:48, metric 0
 > to 10.0.6.60 via lt-1/2/0.12, Pop

show route table mpls.0 extensive (PTX Series)

user@host> show route table mpls.0 extensive

ge-0/0/2.600 (1 entry, 1 announced)
TSI:
KRT in-kernel ge-0/0/2.600.0 /32 -> (composite(570))
 *L2VPN Preference: 7
 Next hop type: Indirect
 Address: 0x9438f34
 Next-hop reference count: 2
 Next hop type: Router, Next hop index: 567
 Next hop: 10.0.0.1 via ge-0/0/1.0, selected
 Label operation: Push 299808
 Label TTL action: prop-ttl
 Load balance label: Label 299808:None
 Session Id: 0x1
 Protocol next hop: 10.255.255.1
 Label operation: Push 299872 Offset: 252
Label TTL action: no-prop-ttl
Load balance label: Label 299872:Flow label PUSH;
Composite next hop: 0x9438ed8 570 INH Session ID: 0x2
Indirect next hop: 0x9448208 262142 INH Session ID: 0x2
State: <Active Int>
Age: 47 Metric2: 1
Validation State: unverified
Task: Common L2 VC
Announcement bits (2): 0-KRT 2-Common L2 VC
AS path: I
Composite next hops: 1
 Protocol next hop: 10.255.255.1 Metric: 1
 Label operation: Push 299872 Offset: 252
 Label TTL action: no-prop-ttl
 Load balance label: Label 299872:Flow label PUSH;
 Composite next hop: 0x9438ed8 570 INH Session ID: 0x2
 Indirect next hop: 0x9448208 262142 INH Session ID: 0x2
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.0.1 via ge-0/0/1.0
 Session Id: 0x1
 10.255.255.1/32 Originating RIB: inet.3
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.0.1 via ge-0/0/1.0

show route table mpls.0 (RSVP Route—Transit LSP)

user@host> show route table mpls.0

mpls.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 0 *[MPLS/0] 00:37:31, metric 1
 Receive
 1 *[MPLS/0] 00:37:31, metric 1
 Receive
 2 *[MPLS/0] 00:37:31, metric 1
 Receive
 13 *[MPLS/0] 00:37:31, metric 1
 Receive
300352 *[RSVP/7/1] 00:08:00, metric 1
 > to 10.64.0.106 via ge-1/0/1.0, label-switched-path lspl_p2p
show route table vpls_1 detail

user@host> show route table vpls_1 detail

vpls_1.l2vpn.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete

172.16.1.11:1000:1:1/96 (1 entry, 1 announced)
*L2VPN Preference: 170/-1
Receive table: vpls_1.l2vpn.0
Next-hop reference count: 2
State: <Active Int Ext>
Age: 4:29:47 Metric2: 1
Task: vpls_1-l2vpn
Announcement bits (1): 1-BGP.0.0.0.0+179
AS path: I
Communities: Layer2-info: encaps:VPLS, control flags:Site-Down
Label-base: 800000, range: 8, status-vector: 0xFF

show route table vpn-a

user@host> show route table vpn-a

vpn-a.l2vpn.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both
192.168.16.1:1:1:1/96
 * [VPN/7] 05:48:27
 Discard
192.168.24.1:1:2:1/96
 * [BGP/170] 00:02:53, localpref 100, from 192.168.24.1
 AS path: I
 > to 10.0.16.2 via fe-0/0/1.0, label-switched-path am
192.168.24.1:1:3:1/96
 * [BGP/170] 00:02:53, localpref 100, from 192.168.24.1
show route table vpn-a.mdt.0
user@host> show route table vpn-a.mdt.0

vpn-a.mdt.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

* [MVPN/70] 01:23:05, metric2 1
 Indirect

* [BGP/170] 00:57:49, localpref 100, from 10.255.14.218
 AS path: I
 > via so-0/0/0.0, label-switched-path r0e-to-r1

* [BGP/170] 00:57:49, localpref 100, from 10.255.14.217
 AS path: I
 > via so-0/0/1.0, label-switched-path r0-to-r2

show route table VPN-A detail
user@host> show route table VPN-A detail

VPN-AB.inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
10.255.179.9/32 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 10.255.179.13:200
 Next hop type: Indirect
 Next-hop reference count: 5
 Source: 10.255.179.13
 Next hop type: Router, Next hop index: 732
 Next hop: 10.39.1.14 via fe-0/3/0.0, selected
 Label operation: Push 299824, Push 299824(top)
 Protocol next hop: 10.255.179.13
 Push 299824
 Indirect next hop: 8f275a0 1048574
 State: (Secondary Active Int Ext)
 Local AS: 1 Peer AS: 1
 Age: 3:41:06 Metric: 1 Metric2: 1
 Task: BGP_1.10.255.179.13+64309
Announcement bits (2): 0-KRT 1-BGP RT Background
AS path: I
Communities: target:1:200 rte-type:0.0.0.0:1:0
Import Accepted
VPN Label: 299824 TTL Action: vrf-ttl-propagate
Localpref: 100
Router ID: 10.255.179.13
Primary Routing Table bgp.13vpn.0

show route table VPN-AB.inet.0

user@host> show route table VPN-AB.inet.0

VPN-AB.inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.39.1.0/30 *[OSPF/10] 00:07:24, metric 1
 > via so-7/3/1.0
10.39.1.4/30 *[Direct/0] 00:08:42
 > via so-5/1/0.0
10.39.1.6/32 *[Local/0] 00:08:46
 Local
10.255.71.16/32 *[Static/5] 00:07:24
 > via so-2/0/0.0
10.255.71.17/32 *[BGP/170] 00:07:24, MED 1, localpref 100, from
10.255.71.15
 AS path: I
 > via so-2/1/0.0, Push 100020, Push 100011(top)
10.255.71.18/32 *[BGP/170] 00:07:24, MED 1, localpref 100, from
10.255.71.15
 AS path: I
 > via so-2/1/0.0, Push 100021, Push 100011(top)
10.255.245.245/32 *[BGP/170] 00:08:35, localpref 100
 AS path: 2 I
 > to 10.39.1.5 via so-5/1/0.0
10.255.245.246/32 *[OSPF/10] 00:07:24, metric 1
 > via so-7/3/1.0

show route table VPN_blue.mvpn-inet6.0

user@host> show route table VPN_blue.mvpn-inet6.0
show route table vrf1.mvpn.0 extensive

user@host> show route table vrf1.mvpn.0 extensive

1:10.255.50.77:1:10.255.50.77/240 (1 entry, 1 announced)
 *MVPN Preference: 70
 PMSI: Flags 0x0: Label 0: RSVP-TE:
 Session_13[10.255.50.77:0:25624:10.255.50.77]
 Next hop type: Indirect
 Address: 0xbbe2c944
 Next-hop reference count: 360
 Protocol next hop: 10.255.50.77
 Indirect next hop: 0x0 - INH Session ID: 0x0
 State: <Active Int Ext>
 Age: 53:03 Metric2: 1
 Validation State: unverified
 Task: mvpn global task
 Announcement bits (3): 0-PIM.vrf1 1-mvpn global task 2-rt-export
 AS path: I
show route table inetflow detail

user@host> show route table inetflow detail

inetflow.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
10.12.44.1,*/48 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 2
 State: <Active Ext>
 Local AS: 64502 Peer AS: 64500
 Age: 4
 Task: BGP_64500.10.12.99.5+3792
 Announcement bits (1): 0-Flow
 AS path: 64500 I
 Communities: traffic-rate:0:0
 Validation state: Accept, Originator: 10.12.99.5
 Via: 10.12.44.0/24, Active
 Localpref: 100
 Router ID: 10.255.71.161

10.12.56.1,*/48 (1 entry, 1 announced)
 *Flow Preference: 5
 Next-hop reference count: 2
 State: <Active>
 Local AS: 64502
 Age: 6:30
 Task: RT Flow
 Announcement bits (2): 0-Flow 1-BGP.0.0.0.0+179
 AS path: I
 Communities: 1:1

user@host> show route table green.l2vpn.0 (VPLS Multihoming with FEC 129)

green.l2vpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.2:100:10.1.1.2/96 AD
 *[VPLS/170] 1d 03:11:03, metric2 1
 Indirect

10.1.1.4:100:10.1.1.4/96 AD
 *[BGP/170] 1d 03:11:02, localpref 100, from 10.1.1.4
 AS path: I, validation-state: unverified
 > via ge-1/2/1.5

10.1.1.2:100:1.0/96 MH
user@host> show route table red extensive

red.inet.0: 364481 destinations, 714087 routes (364480 active, 48448 holddown, 1 hidden)
10.0.0.0/32 (3 entries, 1 announced)
 State: <OnList CalcForwarding>
TSI:
 KRT in-kernel 10.0.0.0/32 -> {composite(1048575)} Page 0 idx 1 Type 1 val 0x934342c

 Nexthop: Self
 AS path: [2] I
 Communities: target:2:1
Path 10.0.0.0 from 10.3.0.0 Vector len 4. Val: 1
 @BGP Preference: 170/-1
 Route Distinguisher: 2:1
 Next hop type: Indirect
 Address: 0x258059e4
 Next-hop reference count: 2
 Source: 2.2.0.0
 Next hop type: Router
 Next hop: 10.1.1.4 via ge-1/2/1.5, selected
 Label operation: Push 707633
 Label TTL action: prop-ttl
 Session Id: 0x17d8
 Protocol next hop: 10.2.0.0
 Push 16
 Composite next hop: 0x25805988 - INH Session ID: 0x193c
 Indirect next hop: 0x23e900 - INH Session ID: 0x193c
 State: <Secondary Active Int Ext ProtectionPath ProtectionCand>
 Local AS: 2 Peer AS: 2
Age: 23 Metric2: 35
Validation State: unverified
Task: BGP_172.16.2.0.0+34549
AS path: I
Communities: target:2:1
Import Accepted
VPN Label: 16
Localpref: 0
Router ID: 10.2.0.0
Primary Routing Table bgp.13vpn.0
Composite next hops: 1
 Protocol next hop: 10.2.0.0 Metric: 35
 Push 16
 Composite next hop: 0x25805988 - INH Session ID: 0x193c
 Indirect next hop: 0x23eea900 - INH Session ID: 0x193c
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.1.1.1 via ge-1/1/9.0
 Session Id: 0x17d8
 2.2.0.0/32 Originating RIB: inet.3
 Metric: 35 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.1.1.1 via ge-1/1/9.0

BGP Preference: 170/-1
Route Distinguisher: 2:1
Next hop type: Indirect
Address: 0x9347028
Next-hop reference count: 3
Source: 10.3.0.0
Next hop type: Router, Next hop index: 702
Next hop: 10.1.4.2 via ge-1/0/0.0, selected
Label operation: Push 634278
Label TTL action: prop-ttl
Session Id: 0x17d9
Protocol next hop: 10.3.0.0
Push 16
Composite next hop: 0x93463a0 1048575 INH Session ID: 0x17da
Indirect next hop: 0x91e8800 1048574 INH Session ID: 0x17da
State: <Secondary NotBest Int Ext ProtectionPath ProtectionCand>
Inactive reason: Not Best in its group - IGP metric
Local AS: 2 Peer AS: 2
Age: 3:34 Metric2: 70
Validation State: unverified
Task: BGP_172.16.3.0.0+32805
Announcement bits (2): 0-KRT 1-BGP_RT_Background
AS path: I
Communities: target:2:1
Import Accepted
VPN Label: 16
Localpref: 0
Router ID: 10.3.0.0
Primary Routing Table bgp.13vpn.0
Composite next hops: 1
 Protocol next hop: 10.3.0.0 Metric: 70
 Push 16
 Composite next hop: 0x93463a0 1048575 INH Session ID: 0x17da
 Indirect next hop: 0x91e8800 1048574 INH Session ID: 0x17da

 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.1.4.2 via ge-1/0/0.0
 Session Id: 0x17d9
 10.3.0.0/32 Originating RIB: inet.3
 Metric: 70 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.1.4.2 via ge-1/0/0.0

#Multipath Preference: 255
 Next hop type: Indirect
 Address: 0x24afca30
 Next-hop reference count: 1
 Next hop type: Router
 Next hop: 10.1.1.1 via ge-1/1/9.0, selected
 Label operation: Push 707633
 Label TTL action: prop-ttl
 Session Id: 0x17d8
 Next hop type: Router, Next hop index: 702
 Next hop: 10.1.4.2 via ge-1/0/0.0
 Label operation: Push 634278
 Label TTL action: prop-ttl
 Session Id: 0x17d9
 Protocol next hop: 10.2.0.0
 Push 16
 Composite next hop: 0x25805988 - INH Session ID: 0x193c
 Indirect next hop: 0x23eea900 - INH Session ID: 0x193c Weight 0x1

 Protocol next hop: 10.3.0.0
 Push 16
show route table bgp.evpn.0 extensive | no-more (EVNP)

user@host> show route table bgp.evpn.0 extensive | no-more

cmpxh nph: 0x93463a0 1048575 INH Session ID: 0x17da
Indr nph: 0x91e8800 1048574 INH Session ID: 0x17da Weight: 0x4000

State: <ForwardingOnly Int Ext>
Inactive reason: Forwarding use only
Age: 23 Metric2: 35
Validation State: unverified
Task: RT
AS path: I
Communities: target:2:1

bgp.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
2:1000:10::100::00:aa:aa:aa:aa/304 (1 entry, 0 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 1000:10
 Next hop type: Indirect
 Address: 0x9420fd0
 Next-hop reference count: 12
 Source: 10.2.3.4
 Protocol next hop: 10.2.3.4
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0

State: Local AS: 17 Peer AS:17 Age:21:12 Metric2:1 Validation State: unverified
Task: BGP_17.1.2.3.4+50756
AS path: I
Communities: target:1111:8388708 encapsulation0:0:0:0:3
Import Accepted
Route Label: 100
ESI: 00:00:00:00:00:00:00:00:00:00
Localpref: 100
Router ID: 10.2.3.4
Secondary Tables: default-switch.evpn.0
Indirect next hops: 1
 Protocol next hop: 10.2.3.4 Metric: 1
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.10.10.1 via xe-0/0/1.0
 Session Id: 0x2
1.2.3.4/32 Originating RIB: inet.0
Metric: 1 Node path count: 1
Forwarding nexthops: 2
 Nexthop: 10.92.78.102 via em0.0

2:1000:10::200::00:bb:bb:bb:bb:bb/304 (1 entry, 0 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 1000:10
 Next hop type: Indirect
 Address: 0x9420fd0
 Next-hop reference count: 12
 Source: 10.2.3.4
 Protocol next hop: 10.2.3.4
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 State: Local AS:17 Peer AS:17 Age:19:43 Metric2:1 Validation State:unverified
 Task: BGP_17.1.2.3.4+50756
 AS path: I
 Communities: target:2222:22 encapsulation0:0:0:0:3
 Import Accepted
 Route Label: 200
 ESI: 00:00:00:00:00:00:00:00:00:00
 Localpref: 100
 Router ID: 10.2.3.4
 Secondary Tables: default-switch.evpn.0
 Indirect next hops: 1
 Protocol next hop: 10.2.3.4 Metric: 1
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.10.10.1 via xe-0/0/1.0
 Session Id: 0x2
 10.2.3.4/32 Originating RIB: inet.0
 Metric: 1
 Forwarding nexthops: 2
 Nexthop: 10.92.78.102 via em0.0

2:1000:10::300::00:cc:cc:cc:cc:cc/304 (1 entry, 0 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 1000:10
 Next hop type: Indirect
 Address: 0x9420fd0
 Next-hop reference count: 12
 Source: 10.2.3.4
Protocol next hop: 10.2.3.4
Indirect next hop: 0x2 no-forward INH Session ID: 0x0
State: Local AS:17 Peer AS:17 Age:17:21 Metric2:1 Validation State: unverified Task: BGP 17,1,2,3,4+50756
AS path: I
Communities: target:3333:33 encapsulation0:0:0:0:3
Import Accepted
Route Label: 300
ESI: 00:00:00:00:00:00:00:00:00:00
Localpref: 100
Router ID: 10.2.3.4
Secondary Tables: default-switch.evpn.0
Indirect next hops: 1
 Protocol next hop: 10.2.3.4 Metric: 1
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.10.10.1 via xe-0/0/1.0
 Session Id: 0x2
 10.2.3.4/32 Originating RIB: inet.0
 Metric: 1
 Node path count: 1
 Forwarding nexthops: 2
 Nexthop: 10.92.78.102 via em0.0

3:1000:10::100::1.2.3.4/304 (1 entry, 0 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 1000:10
 PMSI: Flags 0x0: Label 100: Type INGRESS-REPLICATION 1.2.3.4
 Next hop type: Indirect
 Address: 0x9420fd0
 Next-hop reference count: 12
 Source: 10.2.3.4
 Protocol next hop: 10.2.3.4
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 State: Local AS:17 Peer AS:17 Age:37:01 Metric2:1 Validation State: unverified Task: BGP 17.1.2.3.4+50756
 AS path: I
 Communities: target:1111:8388708 encapsulation0:0:0:0:3
 Import Accepted
 Localpref: 100
 Router ID: 10.2.3.4
 Secondary Tables: default-switch.evpn.0
 Indirect next hops: 1
 Protocol next hop: 10.2.3.4 Metric: 1
Indirect next hop: 0x2 no-forward INH Session ID: 0x0
Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.10.10.1 via xe-0/0/1.0
 Session Id: 0x2
10.2.3.4/32 Originating RIB: inet.0
 Metric: 1
 Forwarding nexthops: 2
 Nexthop: 10.92.78.102 via em0.0

3:1000:10::200::1.2.3.4/304 (1 entry, 0 announced)
 *BGP
 Preference: 170/-101
 Route Distinguisher: 1000:10
 PMSI: Flags 0x0: Label 200: Type INGRESS-REPLICATION 1.2.3.4
 Next hop type: Indirect
 Address: 0x9420fd0
 Next-hop reference count: 12
 Source: 10.2.3.4
 Protocol next hop: 10.2.3.4
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 State: Local AS: 17 Peer AS: 17 Age:35:22 Metric2:1 Validation
 AS path:I Communities: target:2222:22 encapsulation):0:0:0:0:3
 Import Accepted
 Localpref: 100
 Router ID: 10.2.3.4
 Secondary Tables: default-switch.evpn.0
 Indirect next hops: 1
 Protocol next hop: 10.2.3.4 Metric: 1
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.10.10.1 via xe-0/0/1.0
 Session Id: 0x2
 10.2.3.4/32 Originating RIB: inet.0
 Metric: 1
 Forwarding nexthops: 2
 Nexthop: 10.92.78.102 via em0.0

3:1000:10::300::1.2.3.4/304 (1 entry, 0 announced)
 *BGP
 Preference: 170/-101
 Route Distinguisher: 1000:10
 PMSI: Flags 0x0: Label 300: Type INGRESS-REPLICATION 1.2.3.4
show route table default-switch.evpn.0 extensive

The following shows the partial output listing for the EVPN VNI table.

user@host> show route table default-switch.evpn.0 extensive

3:1000:10::100::00:aa:aa:aa:aa:aa:aa:aa:aa/304 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 10.255.0.1:00
 PMSI: Flags 0x0: Label 100: Type INGRESS-REPLICATION 1.2.3.4
 Next hop type: Indirect, Next hop index: 0
 Address: 0xcebfad0
 Next-hop reference count: 26
 Source: 10.255.0.1
 Protocol next hop: 10.255.0.1
 Indirect next hop: 0x2 no-forward INH Session ID: 0x0
 State: <Secondary Active Int Ext>
 Local AS: 100 Peer AS: 100
 Age: 1:35:30 Metric2: 2
 Validation State: unverified
show route table evpn1.evpn-mcsn

The following shows the output listing for the multicast information used by the rpd and mcsnoood.

user@host> show route table default-switch.evpn-mcsn.1

default-switch.evpn-mcsn.1: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.14,0.0,0.0,0/48 *[Multicast/180] 00:01:02
 to 1.1.1.1 via vtep.32770
 to 1.2.2.2 via vtep.32771
 to 1.6.6.6 via vtep.32769
 to 1.3.3.3 via vtep.32772

0.14,0.0,0.0,224.0.0.0/52*[Multicast/180] 00:01:02
 to 1.1.1.1 via vtep.32770
 to 1.2.2.2 via vtep.32771
 to 1.6.6.6 via vtep.32769
 to 1.3.3.3 via vtep.32772

0.14,0.0,0.0,225.1.1.1/80*[Multicast/180] 00:00:06
 to 1.1.1.1 via vtep.32770
 to 1.2.2.2 via vtep.32771
 to 1.6.6.6 via vtep.32769
 to 1.3.3.3 via vtep.32772

show route table evpn1 (Multihomed Proxy MAC and IP Address)

The following shows a partial output listing for an EVPN instance. This indicates when Multihomed Proxy MAC and IP Address Route Advertisement is enabled.

user@host> show route table evpn-1

2:666:11010003::1002::00:00:00:00:00:02::102.1.1.2/304 MAC/IP (1 entry, 1 announced)
TSI:
Page 0 idx 0, (group vteps type Internal) Type 1 val 0xb20eb10 (adv_entry)
 Advertised metrics:
Nexthop: 103.1.1.1
Localpref: 100
AS path: [666] I
Communities: target:666:1002 evpn-12-info:0x20:proxy (mtu 0)
Path 2:666:11010003::1002::00:00:00:00:02::102.1.1.2 Vector len 4. Val: 0
 *EVPN Preference: 170
 Next hop type: Indirect, Next hop index: 0
 Address: 0xc3a9cf0
 Next-hop reference count: 36
 Protocol next hop: 103.1.1.1
 Indirect next hop: 0x0 - INH Session ID: 0x0
 State: <Active Int Ext>
show route terse

List of Syntax

Syntax on page 2631

Syntax (EX Series Switches) on page 2631

Syntax

```
show route terse
<logical-system (all | logical-system-name)>
```

Syntax (EX Series Switches)

```
show route terse
```

Release Information

Command introduced before Junos OS Release 7.4.

Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display a high-level summary of the routes in the routing table.

NOTE: For BGP routes, the `show route terse` command displays the local preference attribute and MED instead of the metric1 and metric2 values. This is mostly due to historical reasons.

To display the metric1 and metric2 value of a BGP route, use the `show route extensive` command.

Options

none—Display a high-level summary of the routes in the routing table.

logical-system (all | logical-system-name)—(Optional) Perform this operation on all logical systems or on a particular logical system.

Required Privilege Level

`view`

List of Sample Output

show route terse on page 2634

Output Fields
Table 154 on page 2632 describes the output fields for the `show route terse` command. Output fields are listed in the approximate order in which they appear.

Table 154: show route terse Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>routing-table-name</td>
<td>Name of the routing table (for example, inet.0).</td>
</tr>
<tr>
<td>number destinations</td>
<td>Number of destinations for which there are routes in the routing table.</td>
</tr>
<tr>
<td>number routes</td>
<td>Number of routes in the routing table and total number of routes in the following states:</td>
</tr>
<tr>
<td></td>
<td>• active (routes that are active)</td>
</tr>
<tr>
<td></td>
<td>• holdown (routes that are in the pending state before being declared inactive)</td>
</tr>
<tr>
<td></td>
<td>• hidden (routes that are not used because of a routing policy)</td>
</tr>
<tr>
<td>route key</td>
<td>Key for the state of the route:</td>
</tr>
<tr>
<td></td>
<td>• +—A plus sign indicates the active route, which is the route installed from the routing table into the forwarding table.</td>
</tr>
<tr>
<td></td>
<td>• - —A hyphen indicates the last active route.</td>
</tr>
<tr>
<td></td>
<td>• *—An asterisk indicates that the route is both the active and the last active route. An asterisk before a to line indicates the best subpath to the route.</td>
</tr>
<tr>
<td>A</td>
<td>Active route. An asterisk (*) indicates this is the active route.</td>
</tr>
<tr>
<td>V</td>
<td>Validation status of the route:</td>
</tr>
<tr>
<td></td>
<td>• ?—Not evaluated. Indicates that the route was not learned through BGP.</td>
</tr>
<tr>
<td></td>
<td>• I—Invalid. Indicates that the prefix is found, but either the corresponding AS received from the EBGP peer is not the AS that appears in the database, or the prefix length in the BGP update message is longer than the maximum length permitted in the database.</td>
</tr>
<tr>
<td></td>
<td>• N—Unknown. Indicates that the prefix is not among the prefixes or prefix ranges in the database.</td>
</tr>
<tr>
<td></td>
<td>• V—Valid. Indicates that the prefix and autonomous system pair are found in the database.</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination of the route.</td>
</tr>
</tbody>
</table>
Table 154: show route terse Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Protocol through which the route was learned:</td>
</tr>
<tr>
<td></td>
<td>• A—Aggregate</td>
</tr>
<tr>
<td></td>
<td>• B—BGP</td>
</tr>
<tr>
<td></td>
<td>• C—CCC</td>
</tr>
<tr>
<td></td>
<td>• D—Direct</td>
</tr>
<tr>
<td></td>
<td>• G—GMPLS</td>
</tr>
<tr>
<td></td>
<td>• I—IS-IS</td>
</tr>
<tr>
<td></td>
<td>• L—L2CKT, L2VPN, LDP, Local</td>
</tr>
<tr>
<td></td>
<td>• K—Kernel</td>
</tr>
<tr>
<td></td>
<td>• M—MPLS, MSDP</td>
</tr>
<tr>
<td></td>
<td>• O—OSPF</td>
</tr>
<tr>
<td></td>
<td>• P—PIM</td>
</tr>
<tr>
<td></td>
<td>• R—RIP, RIPng</td>
</tr>
<tr>
<td></td>
<td>• S—Static</td>
</tr>
<tr>
<td></td>
<td>• T—Tunnel</td>
</tr>
</tbody>
</table>

| **Prf** | Preference value of the route. In every routing metric except for the BGP LocalPref attribute, a lesser value is preferred. In order to use common comparison routines, Junos OS stores the 1’s complement of the LocalPref value in the Preference2 field. For example, if the LocalPref value for Route 1 is 100, the Preference2 value is -101. If the LocalPref value for Route 2 is 155, the Preference2 value is -156. Route 2 is preferred because it has a higher LocalPref value and a lower Preference2 value. |

Metric 1	First metric value in the route. For routes learned from BGP, this is the MED metric.
Metric 2	Second metric value in the route. For routes learned from BGP, this is the IGP metric.
Next hop	Next hop to the destination. An angle bracket (>) indicates that the route is the selected route.
AS path	AS path through which the route was learned. The letters at the end of the AS path indicate the path origin, providing an indication of the state of the route at the point at which the AS path originated:
	• I—IGP.
	• E—EGP.
	• ?—Incomplete; typically, the AS path was aggregated.
Sample Output

show route terse

```plaintext
user@host> show route terse

inet.0: 10 destinations, 12 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

<table>
<thead>
<tr>
<th>Destination</th>
<th>P</th>
<th>Prf</th>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Next hop</th>
<th>AS path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 172.16.1.1/32</td>
<td>O</td>
<td>10</td>
<td>1</td>
<td></td>
<td>&gt;10.0.0.2</td>
<td>I</td>
</tr>
<tr>
<td>? 172.16.1.1/32</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2.2.0.2/32</td>
<td>B</td>
<td>170</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 10.0.0.0/30</td>
<td>D</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? 10.0.0.0/30</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 10.0.0.1/32</td>
<td>L</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 10.0.0.4/30</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 10.0.0.8/30</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.1.1/32</td>
<td>B</td>
<td>170</td>
<td>90</td>
<td></td>
<td></td>
<td>200 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 192.168.2.3/32</td>
<td>B</td>
<td>170</td>
<td>100</td>
<td></td>
<td></td>
<td>200 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 172.16.233.5/32</td>
<td>O</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>MultiRecv</td>
</tr>
</tbody>
</table>
```

```
show validation database

Syntax

show validation database
<brief | detail>
<instance instance-name>
<logical-system logical-system-name>
<mismatch>
<origin-autonomous-system as-number>
<record ip-prefix>
<session ip-address>

Release Information
Command introduced in Junos OS Release 12.2.

Description
Display information about the route validation database when resource public key infrastructure (RPKI) BGP route validation is configured. You can query all route validation records that match a given prefix or origin-autonomous-system. In addition, you can filter the output by a specific RPKI cache session.

Options
none—Display all route validation database entries.

brief | detail—(Optional) Display the specified level of output.

instance instance-name—(Optional) Display information about route validation database entries for the specified routing instance. The instance name can be master for the main instance, or any valid configured instance name or its prefix.

logical-system logical-system-name—(Optional) Perform this operation on a particular logical system.

mismatch—(Optional) Filter the output by mismatched origin autonomous systems.

origin-autonomous-system as-number—(Optional) Filter the output by mismatched origin autonomous systems. The mismatch qualifier is useful for finding conflicting origin-autonomous-system information between RPKI caches. Mismatches might occur during cache reconfiguration.

record ip-prefix—(Optional) Filter the output by route validation records that match a given prefix.

session ip-address—(Optional) Filter the output by a specific RPKI cache session.

Required Privilege Level
view
List of Sample Output

show validation database on page 2636

Output Fields

Table 155 on page 2636 describes the output fields for the `show validation database` command. Output fields are listed in the approximate order in which they appear.

Table 155: show validation database Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Route validation (RV) record prefix. RV records are received from the cache server and can also be configured statically at the <code>edit routing-options validation static</code> hierarchy level.</td>
<td>All levels</td>
</tr>
<tr>
<td>Origin-AS</td>
<td>Legitimate originator autonomous system (AS).</td>
<td>All levels</td>
</tr>
<tr>
<td>Session</td>
<td>IP address of the RPKI cache server.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the route validation records. The state can be <code>valid</code>, <code>invalid</code> or <code>unknown</code>.</td>
<td>All levels</td>
</tr>
<tr>
<td>Mismatch</td>
<td>Conflicting origin-autonomous-system information between RPKI caches when nonstop active routing (NSR) is configured.</td>
<td>All levels</td>
</tr>
<tr>
<td>IPv4 records</td>
<td>Number of IPv4 route validation records.</td>
<td>All levels</td>
</tr>
<tr>
<td>IPv6 records</td>
<td>Number of IPv6 route validation records.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show validation database

```
user@host> show validation database
```
RV database for instance master

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Origin-AS</th>
<th>Session</th>
<th>State</th>
<th>Mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.0/24-32</td>
<td>1</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.2.0/24-32</td>
<td>2</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.3.0/24-32</td>
<td>3</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.4.0/24-32</td>
<td>4</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.5.0/24-32</td>
<td>5</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.6.0/24-32</td>
<td>6</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.7.0/24-32</td>
<td>7</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>172.16.8.0/24-32</td>
<td>8</td>
<td>10.0.77.1</td>
<td>valid</td>
<td></td>
</tr>
<tr>
<td>192.168.1.100</td>
<td>26234</td>
<td>192.168.1.100</td>
<td>valid *</td>
<td></td>
</tr>
<tr>
<td>192.168.1.200</td>
<td>3320</td>
<td>192.168.1.200</td>
<td>invalid *</td>
<td></td>
</tr>
<tr>
<td>internal</td>
<td>0</td>
<td>internal</td>
<td>valid</td>
<td></td>
</tr>
</tbody>
</table>

IPv4 records: 14
IPv6 records: 0
show validation group

Syntax

```
show validation group
<instance instance-name>
<logical-system logical-system-name>
```

Release Information

Command introduced in Junos OS Release 12.2.

Description

Display information about route validation redundancy groups.

Options

- **none**—Display information about all route validation groups.
- **instance instance-name**—(Optional) Display information about route validation groups for the specified routing instance. The instance name can be master for the main instance, or any valid configured instance name or its prefix.
- **logical-system logical-system-name**—(Optional) Perform this operation on a particular logical system.

Required Privilege Level

- **view**

RELATED DOCUMENTATION

- *Use Case and Benefit of Origin Validation for BGP*
- *Understanding Origin Validation for BGP*
- *Example: Configuring Origin Validation for BGP*

List of Sample Output

- show validation group on page 2639

Output Fields

Table 156 on page 2639 describes the output fields for the `show validation group` command. Output fields are listed in the approximate order in which they appear.
Table 156: show validation group Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Group name.</td>
</tr>
<tr>
<td>Maximum sessions</td>
<td>Number of concurrent sessions for each group. The default is 2. The number is configurable with the <code>max-sessions</code> statement.</td>
</tr>
<tr>
<td>Session</td>
<td>Resource public key infrastructure (RPKI) cache session IP address.</td>
</tr>
<tr>
<td>State</td>
<td>State of the connection between the routing device and the cache server. Up means that the connection is established. Connect means that the connection is not established.</td>
</tr>
<tr>
<td>Preference</td>
<td>Each cache server has a preference. Higher preferences are preferred. During a session start or restart, the routing device attempts to start a session with the cache server that has the numerically highest preference. The routing device connects to multiple cache servers in preference order. The default preference is 100. The preference is configurable with the <code>preference</code> statement.</td>
</tr>
</tbody>
</table>

Sample Output

```
show validation group

user@host> show validation group

master
 Group: test, Maximum sessions: 3
 Session 10.255.255.11, State: Up, Preference: 100
 Session 10.255.255.12, State: Up, Preference: 100
Group: test2, Maximum sessions: 2
 Session 10.255.255.13, State: Connect, Preference: 100
```
show validation replication database

Syntax

```
show validation replication database
 <brief | detail>
 <instance instance-name>
 <logical-system logical-system-name>
 <origin-autonomous-system as-number>
 <record ip-prefix>
 <session ip-address>
```

Release Information
Command introduced in Junos OS Release 12.2.

Description
Display the state of the nonstop active routing (NSR) records. The output is the same as the output of the `show validation database` command, except for the Mismatch column.

Options

```
none—Display all route validation database entries.
brief | detail—(Optional) Display the specified level of output.
instance instance-name—(Optional) Display information about route validation database entries for the specified routing instance. The instance name can be master for the main instance, or any valid configured instance name or its prefix.
logical-system logical-system-name—(Optional) Perform this operation on a particular logical system.
origin-autonomous-system as-number—(Optional) Filter the output by mismatched origin autonomous systems. The mismatch qualifier is useful for finding conflicting origin-autonomous-system information between resource public key infrastructure (RPKI) caches. Mismatches might occur during cache reconfiguration.
record ip-prefix—(Optional) Filter the output by route validation records that match a given prefix.
session ip-address—(Optional) Filter the output by a specific RPKI cache session.
```

Required Privilege Level
view

RELATED DOCUMENTATION
List of Sample Output

**show validation replication database** on page 2641

Output Fields

Table 157 on page 2641 describes the output fields for the **show validation replication database** command. Output fields are listed in the approximate order in which they appear.

Table 157: show validation replication database Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Route validation (RV) record prefix. RV records are received from the cache server and can also be configured statically at the [edit routing-options validation static] hierarchy level.</td>
<td>All levels</td>
</tr>
<tr>
<td>Origin-AS</td>
<td>Legitimate originator autonomous system (AS).</td>
<td>All levels</td>
</tr>
<tr>
<td>Session</td>
<td>IP address of the RPKI cache server.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the route validation records. The state can be valid or invalid.</td>
<td>All levels</td>
</tr>
<tr>
<td>IPv4 records</td>
<td>Number of IPv4 route validation records.</td>
<td>All levels</td>
</tr>
<tr>
<td>IPv6 records</td>
<td>Number of IPv6 route validation records.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

**show validation replication database**

```
user@host> show validation replication database

RV database for instance master

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Origin-AS</th>
<th>Session</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.0/24-32</td>
<td>1</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>IPv4 Address Block</th>
<th>Service Port</th>
<th>Server Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.0/24-32</td>
<td>2</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>172.16.3.0/24-32</td>
<td>3</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>172.16.4.0/24-32</td>
<td>4</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>172.16.5.0/24-32</td>
<td>5</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>172.16.6.0/24-32</td>
<td>6</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>172.16.7.0/24-32</td>
<td>7</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>172.16.8.0/24-32</td>
<td>8</td>
<td>10.0.77.1</td>
<td>valid</td>
</tr>
<tr>
<td>72.9.224.0/19-24</td>
<td>26234</td>
<td>192.168.1.100</td>
<td>valid</td>
</tr>
<tr>
<td>72.9.224.0/19-24</td>
<td>3320</td>
<td>192.168.1.200</td>
<td>invalid</td>
</tr>
<tr>
<td>10.0.0.0/8-32</td>
<td>0</td>
<td>internal</td>
<td>valid</td>
</tr>
</tbody>
</table>

IPv4 records: 14
IPv6 records: 0
show validation session

Syntax

```
show validation session
 <brief | detail>
 <destination>
 <instance instance-name>
 <logical-system logical-system-name>
```

Release Information
Command introduced in Junos OS Release 12.2.

Description
Display information about all sessions or a specific session with a resource public key infrastructure (RPKI) cache server.

Options
none—Display information about all sessions.

```
destination—(Optional) Display information about a specific session.
```

```
brief | detail—(Optional) Display the specified level of output.
```

```
instance instance-name—(Optional) Display information about sessions for the specified routing instance.
 The instance name can be master for the main instance, or any valid configured instance name or its prefix.
```

```
logical-system logical-system-name—(Optional) Perform this operation on a particular logical system.
```

Required Privilege Level
view

RELATED DOCUMENTATION

Use Case and Benefit of Origin Validation for BGP
Understanding Origin Validation for BGP
Example: Configuring Origin Validation for BGP

List of Sample Output
show validation session brief on page 2646
show validation session detail on page 2646
Output Fields

Table 158 on page 2644 describes the output fields for the show validation session command. Output fields are listed in the approximate order in which they appear.

Table 158: show validation session Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session</td>
<td>IP address of the RPKI cache server.</td>
<td>All levels</td>
</tr>
<tr>
<td>State</td>
<td>State of the connection between the routing device and the cache server. <strong>Up</strong> means that the connection is established. <strong>Connect</strong> means that the connection is not established.</td>
<td>All levels</td>
</tr>
<tr>
<td>Flaps</td>
<td>Number of attempts to establish a session.</td>
<td>None and brief</td>
</tr>
<tr>
<td>Uptime</td>
<td>Length of time that the session has remained established.</td>
<td>None and brief</td>
</tr>
<tr>
<td>#IPv4/IPv6 records</td>
<td>Number of IPv4 and IPv6 route validation records.</td>
<td>None and brief</td>
</tr>
<tr>
<td>Session index</td>
<td>Every session has an index number.</td>
<td>detail</td>
</tr>
<tr>
<td>Group</td>
<td>Name of the group to which the session belongs</td>
<td>detail</td>
</tr>
<tr>
<td>Preference</td>
<td>Each cache server has a preference. Higher preferences are preferred. During a session start or restart, the routing device attempts to start a session with the cache server that has the numerically highest preference. The routing device connects to multiple cache servers in preference order. The default preference is 100. The preference is configurable with the preference statement.</td>
<td>detail</td>
</tr>
<tr>
<td>Port</td>
<td>TCP port number for the outgoing connection with the cache server. The well-known RPKI port is TCP port 2222. For a given deployment, an RPKI cache server might listen on some other TCP port number. If so, you can configure the alternative port number with the port statement.</td>
<td>detail</td>
</tr>
</tbody>
</table>
### Table 158: show validation session Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh time</td>
<td>Liveliness check interval for an RPKI cache server. Every refresh-time (seconds), a serial query protocol data unit (PDU) with the last known serial number is transmitted. The hold-time must be at least 2 x the refresh-time.</td>
<td>detail</td>
</tr>
<tr>
<td>Hold time</td>
<td>Length of time in seconds that the session between the routing device and the cache server is considered operational without any activity. After the hold time expires, the session is dropped. The hold-time is 600 seconds, by default, and must be at least 2 x the refresh-time. If the hold time expires, the session is considered to be down. This, in turn, triggers a session restart event. During a session restart, the routing device attempts to start a session with the cache server that has the numerically highest preference.</td>
<td>detail</td>
</tr>
<tr>
<td>Record Life time</td>
<td>Amount of time that route validation (RV) records learned from a cache server are valid. RV records expire if the session to the cache server goes down and remains down for the record-lifetime (seconds).</td>
<td>detail</td>
</tr>
<tr>
<td>Serial (Full Update)</td>
<td>Number of full serial updates.</td>
<td>detail</td>
</tr>
<tr>
<td>Serial (Incremental Update)</td>
<td>Number of incremental serial updates.</td>
<td>detail</td>
</tr>
<tr>
<td>Session flaps</td>
<td>Number of attempts to establish a session.</td>
<td>detail</td>
</tr>
<tr>
<td>Session uptime</td>
<td>Length of time that the session has remained established.</td>
<td>detail</td>
</tr>
<tr>
<td>Last PDU received</td>
<td>Time when the most recent PDU was received.</td>
<td>detail</td>
</tr>
<tr>
<td>IPv4 prefix count</td>
<td>Number of IPv4 sessions.</td>
<td>detail</td>
</tr>
<tr>
<td>IPv6 prefix count</td>
<td>Number of IPv6 sessions.</td>
<td>detail</td>
</tr>
</tbody>
</table>
Sample Output

show validation session brief

user@host> show validation session brief

<table>
<thead>
<tr>
<th>Session</th>
<th>State</th>
<th>Flaps</th>
<th>Uptime</th>
<th>#IPv4/IPv6 records</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.0.2</td>
<td>up</td>
<td>2</td>
<td>00:01:37</td>
<td>13/0</td>
</tr>
<tr>
<td>10.255.255.11</td>
<td>up</td>
<td>3</td>
<td>00:00:01</td>
<td>1/0</td>
</tr>
<tr>
<td>10.255.255.12</td>
<td>connect</td>
<td>2</td>
<td></td>
<td>64/68</td>
</tr>
</tbody>
</table>

show validation session detail

user@host> show validation session detail

Session 10.0.77.1, State: up
- Group: test, Preference: 100
- Local IPv4 address: 10.0.77.2, Port: 2222
- Refresh time: 300s
- Session flaps: 14, Last Session flap: 5h13m18s ago
- Hold time: 900s
- Record Life time: 3600s
- Serial (Full Update): 0
- Serial (Incremental Update): 0
- Session flaps 2
- Session uptime: 00:48:35
- Last PDU received: 00:03:35
- IPv4 prefix count: 71234
- IPv6 prefix count: 345
show validation statistics

Syntax

```
show validation statistics
<instance instance-name>
<logical-system logical-system-name>
```

Release Information
Command introduced in Junos OS Release 12.2.

Description
Display route validation statistics.

Options

- **none**—Display statistics for all routing instances.
- **instance instance-name**—(Optional) Display information for the specified routing instance. The instance name can be master for the main instance, or any valid configured instance name or its prefix.
- **logical-system logical-system-name**—(Optional) Perform this operation on a particular logical system.

Required Privilege Level
view

RELATED DOCUMENTATION

- *Use Case and Benefit of Origin Validation for BGP*
- *Understanding Origin Validation for BGP*
- *Example: Configuring Origin Validation for BGP*

List of Sample Output

show validation statistics on page 2649

Output Fields

Table 159 on page 2647 describes the output fields for the `show validation statistics` command. Output fields are listed in the approximate order in which they appear.

Table 159: show validation statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total RV records</td>
<td>Group name.</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Total Replication RV records</td>
<td>Number of concurrent sessions for each group. The default is 2. The number is configurable with the <code>max-sessions</code> statement.</td>
</tr>
<tr>
<td>Prefix entries</td>
<td>Resource public key infrastructure (RPKI) cache session IP address.</td>
</tr>
<tr>
<td>Origin-AS entries</td>
<td>State of the connection between the routing device and the cache server. <strong>Up</strong> means that the connection is up. <strong>Connect</strong> means that the connection is not up.</td>
</tr>
<tr>
<td>Memory utilization</td>
<td>Each cache server has a preference. Higher preferences are preferred. During a session start or restart, the routing device attempts to start a session with the cache server that has the numerically highest preference. The routing device connects to multiple cache servers in preference order. The default preference is 100. The preference is configurable with the <code>preference</code> statement.</td>
</tr>
<tr>
<td>Policy origin-validation requests</td>
<td>Number of queries for validation state of a given instance and prefix.</td>
</tr>
<tr>
<td>Valid</td>
<td>Number of valid prefixes reported by the validation query.</td>
</tr>
<tr>
<td>Invalid</td>
<td>Number of invalid prefixes reported by the validation query.</td>
</tr>
<tr>
<td>Unknown</td>
<td>Number of unknown prefixes reported by the validation query. This means that the prefix is not found in the database.</td>
</tr>
<tr>
<td>BGP import policy reevaluation notifications</td>
<td>A change, addition, or deletion of a route validation record triggers a BGP import reevaluation for all exact matching and more specific prefixes.</td>
</tr>
<tr>
<td>inet.0</td>
<td>Number of IPv4 route validation records that have been added, deleted, or changed.</td>
</tr>
<tr>
<td>inet6.0</td>
<td>Number of IPv6 route validation records that have been added, deleted, or changed.</td>
</tr>
</tbody>
</table>
Sample Output

show validation statistics

user@host> show validation statistics

Total RV records: 453455
  Total Replication RV records: 453455
    Prefix entries: 35432
    Origin-AS entries: 124400
  Memory utilization: 16.31MB
Policy origin-validation requests: 234995
  valid: 23445
  invalid: 14666
  unknown: 34567
BGP import policy reevaluation notifications: 460268
  inet.0: 435345
  inet6.0: 3454
**test policy**

**Syntax**

```
test policy policy-name prefix
```

**Release Information**

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

**Description**

Test a policy configuration to determine which prefixes match routes in the routing table.

**NOTE:** If you are using the test policy command on a logical system, you must first set the CLI to the logical system context. For example, if you want to test a routing policy that is configured on logical system R2, first run the `set cli logical-system R2` command.

**Options**

- `policy-name`—Name of a policy.
- `prefix`—Destination prefix to match.

**Additional Information**

All prefixes in the default unicast routing table (inet.0) that match prefixes that are the same as or longer than the specific prefix are processed by the `from` clause in the specified policy. All prefixes accepted by the policy are displayed. The test policy command evaluates a policy differently from the BGP import process. When testing a policy that contains an `interface` match condition in the `from` clause, the test policy command uses the match condition. In contrast, BGP does not use the `interface` match condition when evaluating the policy against routes learned from internal BGP (IBGP) or external BGP (EGBP) multihop peers.

When testing a policy, you can see the length of time (in microseconds) required to evaluate the policy and the number of times it has been executed by running the `show policy policy-name statistics` command.

**Required Privilege Level**

view

**RELATED DOCUMENTATION**

- Understanding Routing Policy Tests | 697
List of Sample Output

test policy on page 2651

Output Fields

For information about output fields, see the output field tables for the show route command, the show route detail command, the show route extensive command, or the show route terse command.

Sample Output

test policy

user@host> test policy test-statics 172.16.0.1/8

inet.0: 44 destinations, 44 routes (44 active, 0 holddown, 0 hidden)
Prefixes passing policy:

172.16.3.0/8 *[BGP/170] 16:22:46, localpref 100, from 10.255.255.41
   AS Path: 50888 I
   > to 10.11.4.32 via en0.2, label-switched-path 12
172.16.3.1/32 *[IS-IS/18] 2d 00:21:46, metric 0, tag 2
   > to 10.0.4.7 via fxp0.0
172.16.3.2/32 *[IS-IS/18] 2d 00:21:46, metric 0, tag 2
   > to 10.0.4.7 via fxp0.0
172.16.3.3/32 *[IS-IS/18] 2d 00:21:46, metric 0, tag 2
   > to 10.0.4.7 via fxp0.0
172.16.3.4/32 *[IS-IS/18] 2d 00:21:46, metric 0, tag 2
   > to 10.0.4.7 via fxp0.0
Policy test-statics: 5 prefixes accepted, 0 prefixes rejected
CHAPTER 39

Firewall Filters Operational Commands

IN THIS CHAPTER

- show firewall policer | 2654
- show interfaces filters | 2656
- show pfe filter hw summary | 2658
show firewall policer

Syntax

```
show firewall policer
 <policer-name>
```

Release Information

Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Display statistics about configured policers.

Options

none—Display the count of policed packets for all configured policers.

`policer-name`—(Optional) Display the count of policed packets for the specified policer.

Required Privilege Level

view

RELATED DOCUMENTATION

- Verifying That Firewall Filters Are Operational | 758
- Verifying That Two-Color Policers Are Operational | 1981
- Overview of Firewall Filters | 1516
- Overview of Policers | 1940

List of Sample Output

- show firewall policer on page 2655
- show firewall policer policer-name on page 2655

Output Fields

Table 160 on page 2654 lists the output fields for the show firewall policer command. Output fields are listed in the approximate order in which they appear.

Table 160: show firewall policer Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>Name of the filter that is configured at the [edit firewall family family-name filter] hierarchy level.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 160: show firewall policer Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Policers</strong></td>
<td>Display policer information:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Filter—Name of filter that specifies the policer action modifier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Name—Name of policer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets—Number of packets that matched the filter term in which the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>policer action modifier is specified. This is the number of packets that</td>
<td></td>
</tr>
<tr>
<td></td>
<td>exceed the rate limits that the policer specifies.</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output

**show firewall policer**

```
user@switch> show firewall policer

Filter: egress-vlan-filter
Filter: ingress-port-filter
Policers:
Name Packets
icmp-connection-policer 0
tcp-connection-policer 0
Filter: ingress-vlan-rogue-block
```

**show firewall policer policer-name**

```
user@switch> show firewall policer tcp-connection-policer

Filter: ingress-port-filter
Policers:
Name Packets
tcp-connection-policer 0
```
show interfaces filters

Syntax

    show interfaces filters
    <interface-name>

Release Information
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display firewall filters that are configured on each interface in a switch.

Options
none—Display firewall filter information about all interfaces.

interface-name—(Optional) Display firewall filter information about a particular interface.

Required Privilege Level
view

RELATED DOCUMENTATION

| show firewall | 2678 |

List of Sample Output
show interfaces filters on page 2657
show interfaces filters interface-name on page 2657

Output Fields
Table 161 on page 2656 lists the output fields for the show interfaces filters command. Output fields are listed in the approximate order in which they appear.

Table 161: show interfaces filters Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Admin</td>
<td>Interface state: up or down.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link</td>
<td>Link state: up or down.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 161: show interfaces filters Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proto</td>
<td>Protocol that is configured on the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input Filter</td>
<td>Name of the firewall filter to be evaluated when packets are received on the interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Output Filter</td>
<td>Name of the firewall filter to be evaluated when packets are transmitted on the interface.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

show interfaces filters

user@switch> show interfaces filters

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/6</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/6.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/7</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/8</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/9</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/10</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/10.0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

show interfaces filters interface-name

user@switch> show interfaces filters ge-0/0/6

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Filter</th>
<th>Output Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/6</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/6.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**show pfe filter hw summary**

**Syntax**

```
show pfe filter hw summary
```

**Release Information**

Command introduced in Junos OS Release 14.1X53-D10 for the QFX Series.

**Description**

Display a summary of the access control list (ACL; also known as firewall filter) ternary content-addressable memory (TCAM) hardware utilization to show the allocated, used, and free TCAM entry space.

Command supported on standalone QFX Series switches, QFX5100-only (pure QFX5100) Virtual Chassis Fabric (VCF), QFX5100-only (pure QFX5100) Virtual Chassis (VC), and QFX3500-only (pure QFX3500) VC.

**Required Privilege Level**

view

**RELATED DOCUMENTATION**

| Planning the Number of Firewall Filters to Create | 1520 |

**List of Sample Output**

*show pfe filter hw summary on page 2659*

**Output Fields**

Table 162 on page 2659 lists the output fields for the `show pfe filter hw summary` command. Output fields are listed in the approximate order in which they appear.
Table 162: show pfe filter hw summary Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group</strong></td>
<td>ACL ingress and egress filter groups:</td>
</tr>
<tr>
<td></td>
<td>• iRACL group—ingress routing ACL filter group</td>
</tr>
<tr>
<td></td>
<td>• iVACL group—ingress VLAN ACL filter group</td>
</tr>
<tr>
<td></td>
<td>• iPACL group—ingress port ACL filter group</td>
</tr>
<tr>
<td></td>
<td>• ePACL group—egress port ACL filter group</td>
</tr>
<tr>
<td></td>
<td>• eVACL group—egress VLAN ACL filter group</td>
</tr>
<tr>
<td></td>
<td>• eRACL group—egress routing ACL filter group</td>
</tr>
<tr>
<td></td>
<td>• eRACL IPV6 group—egress IPv6 routing ACL filter group</td>
</tr>
<tr>
<td><strong>Group-ID</strong></td>
<td>Internal identification number of the filter group.</td>
</tr>
<tr>
<td><strong>Allocated</strong></td>
<td>Number of TCAM filter entries allocated to the filter group.</td>
</tr>
<tr>
<td><strong>Used</strong></td>
<td>Number of TCAM filter entries used by the filter group.</td>
</tr>
<tr>
<td><strong>Free</strong></td>
<td>Number of TCAM filter entries available for use by the filter group.</td>
</tr>
</tbody>
</table>

Sample Output

show pfe filter hw summary

user@switch> show pfe filter hw summary

<table>
<thead>
<tr>
<th>Group</th>
<th>Group-ID</th>
<th>Allocated</th>
<th>Used</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt; Ingress filter groups:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iRACL group</td>
<td>14</td>
<td>512</td>
<td>4</td>
<td>508</td>
</tr>
<tr>
<td>iVACL group</td>
<td>13</td>
<td>512</td>
<td>2</td>
<td>510</td>
</tr>
<tr>
<td>iPACL group</td>
<td>12</td>
<td>256</td>
<td>2</td>
<td>254</td>
</tr>
<tr>
<td>&gt; Egress filter groups:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ePACL group</td>
<td>20</td>
<td>256</td>
<td>3</td>
<td>253</td>
</tr>
<tr>
<td>eVACL group</td>
<td>21</td>
<td>256</td>
<td>4</td>
<td>252</td>
</tr>
<tr>
<td>eRACL group</td>
<td>22</td>
<td>256</td>
<td>245</td>
<td>11</td>
</tr>
<tr>
<td>eRACL IPV6 group</td>
<td>24</td>
<td>256</td>
<td>3</td>
<td>253</td>
</tr>
</tbody>
</table>
CHAPTER 40

Traffic Policer Operational Commands

IN THIS CHAPTER

• clear firewall | 2662
• clear firewall | 2665
• show firewall | 2667
• show firewall | 2678
• show firewall filter version | 2683
• show firewall log | 2685
• show firewall prefix-action-stats | 2689
• show interfaces policers | 2692
• show policer | 2695
• show policer | 2697
clear firewall

List of Syntax
Syntax on page 2662
Syntax (EX Series Switches) on page 2662

Syntax

```
clear firewall (all | counter counter-name | filter filter-name | log (all | logical-system-name) | logical-system logical-system-name)
```

Syntax (EX Series Switches)

```
clear firewall (all | counter counter-name | filter filter-name | log (all | logical-system-name) | policer counter (all | counter-id counter-index))
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
`logical-system` option introduced in Junos OS Release 9.3.
`log` option introduced before Junos OS Release 11.4.

Description
Clear statistics about configured firewall filters.

When you clear the counters of a filter, this impacts not only the counters shown by the CLI, but also the ones tracked by SNMP2.

Subscriber management uses firewall filters to capture and report the volume-based service accounting counters that are used for subscriber billing. The `clear firewall` command also clears the service accounting counters that are reported to the RADIUS accounting server. For this reason, you must be cautious in specifying which firewall statistics you want to clear.

**NOTE:** The `clear firewall` command cannot be used to clear the Routing Engine filter counters on a backup Routing Engine that is enabled for graceful Routing Engine switchover (GRES).

If you clear statistics for firewall filters that are applied to Trio-based DPCs and that also use the `prefix-action` action on matched packets, wait at least 5 seconds before you enter the `show firewall prefix-action-stats` command. A 5-second pause between issuing the `clear firewall` and `show firewall prefix-action-stats` commands avoids a possible timeout of the `show firewall prefix-action-stats` command.

Options
all—Clear the packet and byte counts for all filters. On EX Series switches, this option also clears the packet counts for all policer counters.

counter counter-name—Clear the packet and byte counts for a filter counter that has been configured with the counter firewall filter action.

filter filter-name—Clear the packet and byte counts for the specified firewall filter.

log (all | logical-system-name)—Clear log entries for IPv4 firewall filters that have then log as an action. Use log all to clear all log entries or log logical-system-name to clear log entries for the specified logical system.

logical-system logical-system-name—Clear the packet and byte counts for the specified logical system.

policer counter (all | counter-id counter-index)—(EX8200 switches only) Clear all policer counters using the policer counter all command, or clear a specific policer counter using the policer counter counter-id counter-index command. The value of counter-index can be 0, 1, or 2.

Required Privilege Level

clear

RELATED DOCUMENTATION

show firewall | 2667

List of Sample Output

clear firewall all on page 2663

clear firewall (counter counter-name) on page 2663

clear firewall (filter filter-name) on page 2664

clear firewall (policer counter all) (EX8200 Switch) on page 2664

clear firewall (policer counter counter-id counter-index) (EX8200 Switch) on page 2664

Sample Output

clear firewall all

user@host> clear firewall all

clear firewall (counter counter-name)

user@host> clear firewall counter port-filter-counter
clear firewall (filter filter-name)
user@host> clear firewall filter ingress-port-filter

clear firewall (policer counter all) (EX8200 Switch)
user@switch> clear firewall policer counter all

clear firewall (policer counter counter-id counter-index) (EX8200 Switch)
user@switch> clear firewall policer counter counter-id 0
clear firewall

Syntax

```
clear firewall (all | counter counter-name | filter filter-name)
```

Release Information

Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description

Clear statistics provided by firewall filters.

When you clear the counters of a filter, this not only impacts the counters shown by the CLI, but also the ones tracked by SNMP 2.

Options

- **all**—Clear the packet and byte counts for all firewall filter counters and clear the packet counts for all policer counters.

- **counter counter-name**—Clear the packet and byte counts for the specified firewall filter counter.

- **filter filter-name**—Clear the packet and byte counts for the specified firewall filter.

- **policer counter (all | counter-id counter-index)**—Clear all policer counters using the `policer counter all` command, or clear a specific policer counter using the `policer counter counter-id counter-index` command. The value of `counter-index` can be 0, 1, or 2.

Required Privilege Level

```
clear
```

RELATED DOCUMENTATION

- Verifying That Firewall Filters Are Operational | 758
- Verifying That Two-Color Policers Are Operational | 1981
- Overview of Firewall Filters | 1516
- Overview of Policers | 1940
Sample Output

`clear firewall all`

```
user@switch> clear firewall all
```

`clear firewall counter`

```
user@switch> clear firewall counter port-filter-counter
```

`clear firewall filter`

```
user@switch> clear firewall filter ingress-port-filter
```
show firewall

List of Syntax
Syntax on page 2667
Syntax (EX Series Switches) on page 2667

Syntax

show firewall
<application (CFM | eswd | RMPS)>
<counter counter-name>
<detail>
<filter filter-name>
<filter regex regular-expression>
<logical-system (all | logical-system-name)>
<terse>

Syntax (EX Series Switches)

show firewall
<application (CFM | eswd | RMPS)>
<counter counter-name>
<detail>
<filter filter-name>
<filter regex regular-expression>
<log (detail | interface interface-name)>
<policer counters (detail | counter-id counter-index (detail))>
<terse>

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
Option logical-system introduced in Junos OS Release 9.3.
Option terse introduced in Junos OS Release 9.4.
Option policer counters introduced in Junos OS Release 12.2 for EX Series switches.
Option detail introduced in Junos OS Release 12.3 for EX Series switches.
Option detail introduced in Junos OS Release 14.1 for MX Series routers.
Option regex regular-expression introduced in Junos OS Release 14.2.
Option lsp introduced in Junos OS Evolved Release 18.3R1.

Description
Display enhanced statistics and counters for all configured firewall filters.
If you query for options on the `show firewall filter` command, on Junos OS systems, you will see this output, which includes the configured Flowspec filters:

```
show firewall filter ?
```

Possible completions:
- `<filtername>`: Filter name
- `__flowspec_default_inet__` # Flowspec filter name
- `application`: Owner application
- `counter`: Counter name
- `logical-system`: Name of logical system, or 'all'
- `regex`: Show filter using regular expression
- `version`: Show filter version installed

However, on Junos OS Evolved systems, the Flowspec filters names are not shown here. To view Flowspec filters, use the `show firewall application routing` command.

**Options**

- `none`—(Optional) Display statistics and counters for all configured firewall filters and counters. For EX Series switches, this command also displays statistics about all configured policers.

- `application (CFM | eswd | RMPS)`—(Optional) Show firewall elements owned by the selected software component:
  - Connectivity Fault Management (CFM)
  - Ethernet switching daemon (eswd)—Shows only on devices that support it.
  - Resource Management and Packet Steering (RMPS)

- `counter counter-name`—(Optional) Name of a filter counter.

- `detail`—(EX Series switches and MX Series routers only) (Optional) Display firewall filter statistics and enhanced policer statistics and counters.

- `filter filter-name`—(Optional) Name of a configured filter.

- `filter regex regular-expression`—(Optional) Regular expression that matches the names of a subset of filters.

- `logical-system (all | logical-system-name)`—(Optional) Perform this operation on all logical systems or on a particular logical system.

- `log`—(Optional) Display log entries for firewall filters.

- `log <(detail | interface interface-name)>`—(EX Series switches only) (Optional) Display detailed log entries of firewall activity or log information about a specific interface.
policer counters <(detail | counter-id counter-index <detail>)>—(EX8200 switches only) (Optional) Display enhanced policer counter statistics in brief or in detail.

terse—(Optional) Display firewall filter names only.

**Required Privilege Level**
view

**RELATED DOCUMENTATION**

<table>
<thead>
<tr>
<th>clear firewall</th>
<th>2662</th>
</tr>
</thead>
<tbody>
<tr>
<td>show firewall log</td>
<td>2685</td>
</tr>
<tr>
<td>Verifying That Firewall Filters Are Operational</td>
<td>1627</td>
</tr>
<tr>
<td>Verifying That Policers Are Operational</td>
<td>1509</td>
</tr>
<tr>
<td>show policer</td>
<td>2697</td>
</tr>
<tr>
<td>Enhanced Policer Statistics Overview</td>
<td></td>
</tr>
</tbody>
</table>

**List of Sample Output**

- show firewall filter (MX Series Router and EX Series Switch) on page 2672
- show firewall filter (non MX Series Router and EX Series Switch) on page 2672
- show firewall filter (Dynamic Input Filter) on page 2673
- show firewall (Logical Systems) on page 2673
- show firewall (counter counter-name) on page 2673
- show firewall log on page 2674
- show firewall policer counters (EX8200 Switch) on page 2674
- show firewall policer counters (detail) (EX8200 Switch) on page 2675
- show firewall policer counters (counter-id counter-index) (EX8200 Switch) on page 2675
- show firewall policer counters (counter-id counter-index detail) (EX8200 Switch) on page 2676
- show firewall detail on page 2676
- show firewall application cfm (Junos OS Evolved) on page 2676

**Output Fields**

Table 163 on page 2670 lists the output fields for the `show firewall` command. Output fields are listed in the approximate order in which they appear.
### Table 163: show firewall Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| **Filter** | Name of a filter that has been configured with the `filter` statement at the [edit firewall] hierarchy level.  

Except on EX Series switches:  
- When an interface-specific filter is displayed, the name of the filter is followed by the full interface name and by either `-i` for an input filter or `-o` for an output filter.  
- When dynamic filters are displayed, the name of the filter is followed by the full interface name and by either `-in` for an input filter or `-out` for an output filter. When a logical system–specific filter is displayed, the name of the filter is prefixed with two underscore (`_`) characters and the name of the logical system (for example, `_ls1/filter1`).  
- When a service filter is displayed that uses a service set, the separator between the service-set name and the service-filter name is a semicolon (`;`).  

**NOTE:** For bridge family filter, the `ip-protocol` match criteria is supported only for IPv4 and not for IPv6. This is applicable for line cards that support the Junos Trio chipset, such as the MX 3D MPC line cards. |
| **Counters** | Display filter counter information:  
- **Name**—Name of a filter counter that has been configured with the `counter` firewall filter action.  
- **Bytes**—Number of bytes that match the filter term under which the `counter` action is specified.  
- **Packets**—Number of packets that matched the filter term under which the `counter` action is specified.  

**NOTE:** On M and T Series routers, firewall filters cannot count `ip-options` packets on a per option type and per interface basis. A limited work around is to use the `show pfe statistics ip options` command to see `ip-options` statistics on a per Packet Forwarding Engine (PFE) basis. See `show pfe statistics ip` for sample output. |
Table 163: show firewall Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policers</td>
<td>Display policer information:</td>
</tr>
<tr>
<td></td>
<td>• <strong>Name</strong>—Name of policer.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Bytes</strong>—(For two-color policers on MX Series routers and EX Series switches, and for hierarchical policers on interfaces hosted on MICs and MPCs in MX Series routers) Number of bytes that match the filter term under which the policer action is specified. This is only the number out-of-specification (out-of-spec) byte counts, not all the bytes in all packets policed by the policer. For other combinations of policer type, device, and line card type, this field is blank.</td>
</tr>
<tr>
<td></td>
<td>• <strong>Packets</strong>—Number of packets that matched the filter term under which the policer action is specified. This is only the number of out-of-specification (out-of-spec) packet counts, not all packets policed by the policer.</td>
</tr>
<tr>
<td>Policer Counter Index</td>
<td>(EX8200 switch only) Global management counter ID. The counter ID value (counter-index) can be 0, 1, or 2.</td>
</tr>
<tr>
<td>Green</td>
<td>(EX8200 switch only) Number of packets within the limits. The number of packets is smaller than the committed information rate (CIR).</td>
</tr>
<tr>
<td>Yellow</td>
<td>(EX8200 switch only) Number of packets partially within the limits. The number of packets is greater than the CIR, but the burst size is within the excess burst size (EBS) limit.</td>
</tr>
<tr>
<td>Discard</td>
<td>(EX8200 switch only) Number of discarded packets.</td>
</tr>
<tr>
<td>Bytes</td>
<td>(EX8200 switch only) Number of green, yellow, red, or discarded packets in bytes.</td>
</tr>
<tr>
<td>Packets</td>
<td>(EX8200 switch only) Number of green, yellow, red, or discarded packets.</td>
</tr>
<tr>
<td>Filter name</td>
<td>(EX8200 switch only) Name of the filter with a term associated to a policer.</td>
</tr>
<tr>
<td>Term name</td>
<td>(EX8200 switch only) Name of the term associated with a policer.</td>
</tr>
<tr>
<td>Policer name</td>
<td>(EX8200 switch only) Name of the policer that is associated with a global management counter.</td>
</tr>
</tbody>
</table>
Table 163: show firewall Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
</table>
| P1-t1      | • OOS packet statistics for packets that are marked out-of-specification (out-of-spec) by the policer. Changes to all packets that have out-of-spec actions, such as discard, color marking, or forwarding-class, are included in this counter.  
  • Offered packet statistics for traffic subjected to policing.  
  • Transmitted packet statistics for traffic that is not discarded by the policer. When the policer action is discard, the statistics are the same as the in-spec statistics; when the policer action is non-discard (loss-priority or forwarding-class), the statistics are included in this counter. |
show firewall filter (Dynamic Input Filter)

user@host> show firewall filter dfwd-ge-5/0/0.1-in

Filter: dfwd-ge-5/0/0.1-in
Counters:
Name                                     Bytes  Packets
cl-ge-5/0/0.1-in                         0       0

show firewall (Logical Systems)

user@host> show firewall

Filter: __lrl/test
Counters:
Name                                     Bytes  Packets
icmp                                      420     5
Filter: __default_bpdu_filter__
Filter: __lrl/inet_filter1
Counters:
Name                                     Bytes  Packets
inet_tcp_count                            0       0
inet_udp_count                            0       0
Filter: __lrl/inet_filter2
Counters:
Name                                     Bytes  Packets
inet_icmp_count                           0       0
inet_pim_count                            0       0
Filter: __lr2/inet_filter1
Counters:
Name                                     Bytes  Packets
inet_tcp_count                            0       0
inet_udp_count                            0       0

show firewall (counter counter-name)

user@host> show firewall counter icmp-counter

Filter: ingress-port-voip-class-filter
Counters:
### show firewall log

```shell
user@host> show firewall log
Log:
<table>
<thead>
<tr>
<th>Time</th>
<th>Filter</th>
<th>Action</th>
<th>Interface</th>
<th>Protocol</th>
<th>Src Addr</th>
<th>Dest Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00:53</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
<tr>
<td>08:00:52</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
<tr>
<td>08:00:51</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
<tr>
<td>08:00:50</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
<tr>
<td>08:00:49</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
<tr>
<td>08:00:48</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
<tr>
<td>08:00:47</td>
<td>pfe</td>
<td>R</td>
<td>ge-1/0/1.0</td>
<td>ICMP</td>
<td>192.168.3.5</td>
<td>192.168.3.4</td>
</tr>
</tbody>
</table>
```

### show firewall policer counters (EX8200 Switch)

```shell
user@switch> show firewall policer counters
Policer Counter Index 0:
<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green:</td>
<td>73</td>
<td>15914</td>
</tr>
<tr>
<td>Yellow:</td>
<td>9</td>
<td>1962</td>
</tr>
<tr>
<td>Discard:</td>
<td>119</td>
<td>25942</td>
</tr>
</tbody>
</table>

Policer Counter Index 1:
<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow:</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discard:</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Policer Counter Index 2:

<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discard</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**show firewall policer counters (detail) (EX8200 Switch)**

`user@switch> show firewall policer counters detail`

Policer Counter Index 0:

<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>73</td>
<td>15914</td>
</tr>
<tr>
<td>Yellow</td>
<td>9</td>
<td>1962</td>
</tr>
<tr>
<td>Discard</td>
<td>119</td>
<td>25942</td>
</tr>
</tbody>
</table>

Filter name          Term name          Policer name
---------------------------------------------------------
myfilter             polcr-term-1        myfilter-polcr-1
inet-filter-ae       ae-snmp            policer-1
inet-filter-ae       ae-ssh             policer-2

Policer Counter Index 1:

<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discard</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Filter name          Term name          Policer name
---------------------------------------------------------

Policer Counter Index 2:

<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yellow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discard</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Filter name          Term name          Policer name
---------------------------------------------------------

**show firewall policer counters (counter-id counter-index) (EX8200 Switch)**

`user@switch> show firewall policer counters counter-id 0`

Policer Counter Index 0:

<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
</table>

show firewall policer counters (counter-id counter-index) (EX8200 Switch)
show firewall policer counters (counter-id counter-index detail) (EX8200 Switch)

user@switch> show firewall policer counters counter-id 0 detail

Policer Counter Index 0:

<table>
<thead>
<tr>
<th></th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>73</td>
<td>15914</td>
</tr>
<tr>
<td>Yellow</td>
<td>9</td>
<td>1962</td>
</tr>
<tr>
<td>Discard</td>
<td>119</td>
<td>25942</td>
</tr>
</tbody>
</table>

Filter name      Term name           Policer name
myfilter          polcr-term-1        myfilter-polcr-1
inet-filter-ae    ae-snmp             policer-1
inet-filter-ae    ae-ssh              policer-2

show firewall detail

user@host> show firewall detail

Filter: __default_bpdu_filter__

Filter: foo
Counters:
Name               Bytes      Packets
cl                 17652140   160474

Policers:
Name               Bytes      Packets
P1-t1
   OOS              0          18286
   Offered         0 18446744073709376546
   Transmitted     0 18446744073709358260

show firewall application cfm (Junos OS Evolved)

user@host> show firewall application cfm

2676
Filter: __cfm_filter_et-0/0/0__

Counters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>cfm_cc_term_lvl_0</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_1</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_2</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_3</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_4</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_5</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_6</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_cc_term_lvl_7</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_ethtype_term</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_0</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_1</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_2</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_3</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_4</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_5</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_6</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_lt_term_lvl_7</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>cfm_ucast_term_536</strong></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show firewall

Syntax

show firewall
<application (CFM | eswd | RMPS)>
<counter counter-name>
<filter filter-name>
<log <detail | interface interface-name>>
<terse>

Release Information
Command introduced in Junos OS Release 11.1 for the QFX Series.
Command introduced in Junos OS Release 14.1X53-D20 for the OCX Series.

Description
Display statistics about configured firewall filters.

Options
application (CFM | eswd | RMPS)—(Optional) Show firewall elements owned by the selected software component:
  • Connectivity Fault Management (CFM)
  • Ethernet switching daemon (eswd)—Shows only on devices that support it.
  • Resource Management and Packet Steering (RMPS)

counter counter-name—(Optional) Display statistics about a particular firewall filter counter.

filter filter-name—(Optional) Display statistics about a particular firewall filter.

log—(Optional) Display log entries for all firewall filter activity.

terse—(Optional) Display firewall filter names only.

Required Privilege Level
view

RELATED DOCUMENTATION

Verifying That Firewall Filters Are Operational | 758
Verifying That Two-Color Policers Are Operational | 1981
Overview of Firewall Filters | 1516
Overview of Policers | 1940

List of Sample Output
- `show firewall` on page 2680
- `show firewall filter filter-name` on page 2680
- `show firewall counter counter-name` on page 2681
- `show firewall log` on page 2681
- `show firewall log detail` on page 2681

Output Fields
`Table 164 on page 2679` lists the output fields for the `show firewall` command. Output fields are listed in the approximate order in which they appear.

`Table 164: show firewall Output Fields`

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filter</strong></td>
<td>Name of the filter that is configured at the <code>[edit firewall family family-name filter]</code> hierarchy level.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Counters</strong></td>
<td>Display filter counter information:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Name—Name of a filter counter that has been configured with the <code>count</code> firewall filter action modifier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bytes—Number of bytes that match the filter term where the <code>count</code> action modifier was specified.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets—Number of packets that matched the filter term where the <code>count</code> action modifier was specified.</td>
<td></td>
</tr>
<tr>
<td><strong>Policers</strong></td>
<td>Display policer information:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• Name—Name of the policer that is configured at the <code>[edit firewall policer]</code> hierarchy level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Packets—Number of packets that matched the filter term where the <code>policer</code> action modifier was specified. This is the number of packets that exceeded the rate limits that the policer specifies.</td>
<td></td>
</tr>
<tr>
<td><strong>Action</strong></td>
<td>Filter action:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• <code>A</code>—Accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>D</code>—Discard</td>
<td></td>
</tr>
<tr>
<td><strong>Interface</strong></td>
<td>Interface on which the firewall filter is applied.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Protocol</strong></td>
<td>Name of the packet protocol.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Packet Length</strong></td>
<td>Length of the packet.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 164: show firewall Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Src Addr</strong></td>
<td>Source address of the packet.</td>
<td>All levels</td>
</tr>
<tr>
<td><strong>Dest Addr</strong></td>
<td>Destination address of the packet.</td>
<td>All levels</td>
</tr>
</tbody>
</table>

Sample Output

**show firewall**

user@switch> show firewall

Filter: egress-vlan-watch-employee
Counters:
Name                                      Bytes | Packets
counter-employee-web                      0      | 0

Filter: ingress-port-limit-tcp-icmp
Counters:
Name                                      Bytes | Packets
icmp-counter                               560    | 10

Policers:
Name                                      Packets
icmp-connection-policer                    10
tcp-connection-policer                     0

Filter: ingress-vlan-rogue-block
Filter: ingress-vlan-limit-guest

**show firewall filter filter-name**

user@switch> show firewall filter ingress-port-limit-tcp-icmp

Filter: ingress-port-limit-tcp-icmp
Counters:
Name                                      Bytes | Packets
icmp-counter                               560    | 10

Policers:
Name                                      Packets
icmp-connection-policer                    10
 tcp-connection-policer                     0
**show firewall counter counter-name**

```
user@switch> show firewall counter icmp-counter
```

<table>
<thead>
<tr>
<th>Filter: ingress-port-voip-class-filter</th>
<th>Counters:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Bytes</td>
<td>Packets</td>
<td></td>
</tr>
<tr>
<td>icmp-counter</td>
<td>560</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

**show firewall log**

```
user@switch> show firewall log
```

<table>
<thead>
<tr>
<th>Log :</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>08:00:53</td>
</tr>
<tr>
<td>08:00:52</td>
</tr>
<tr>
<td>08:00:51</td>
</tr>
<tr>
<td>08:00:50</td>
</tr>
<tr>
<td>08:00:49</td>
</tr>
<tr>
<td>08:00:48</td>
</tr>
<tr>
<td>08:00:47</td>
</tr>
</tbody>
</table>

**show firewall log detail**

```
user@switch> show firewall log detail
```

<table>
<thead>
<tr>
<th>Log :</th>
</tr>
</thead>
</table>

Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 1020, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 49245, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 49245, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 49245, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 49245, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 49245, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
Time of Log: 2010-10-13 10:37:17 PDT, Filter: f, Filter action: accept, Name of
interface: fxp0.0
Name of protocol: TCP, Packet Length: 49245, Source address: 172.17.22.108:829,
Destination address: 192.168.70.66:513
show firewall filter version

Syntax

show firewall filter version <filter-name>

Release Information
Command introduced in Junos OS Release 10.2R2.

Description
Display the version number of the installed firewall filter in the Routing Engine.

Options
none—(Optional) Display the version number of all installed firewall filters.

filter-name—(Optional) Name of a configured filter. If you specify the name of a filter, only the version number of that filter is displayed.

Additional Information
The initial version number is 1. This number increments by one when you modify the firewall filter settings or an associated prefix action. The maximum version number is 4,294,967,295. When the version number reaches 4,294,967,295, this number is reset to 1.

Required Privilege Level
view

List of Sample Output
show firewall filter version on page 2684

Output Fields
Table 165 on page 2683 lists the output fields for the show firewall filter version command. Output fields are listed in the approximate order in which they appear.

Table 165: show firewall filter version Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>Name of a filter that has been configured with the filter statement at the [edit firewall] hierarchy level.</td>
</tr>
<tr>
<td>Version</td>
<td>Display the version number of the firewall filter.</td>
</tr>
</tbody>
</table>
Sample Output

show firewall filter version

user@host> show firewall filter version

<table>
<thead>
<tr>
<th>Filter</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>10</td>
</tr>
</tbody>
</table>
show firewall log

List of Syntax
Syntax on page 2685
Syntax (EX Series Switches) on page 2685

Syntax

```
show firewall log
 <detail>
 <extensive>
 <interface interface-name>
 <logical-system (logical-system-name | all)>
```

Syntax (EX Series Switches)

```
show firewall log
 <detail>
 <interface interface-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.
extensive option introduced in Junos OS Release 16.1.
logical-system option introduced in Junos OS Release 9.3.

Description
Display log information about firewall filters.

Options
none—Display log information about firewall filters.
detail—(Optional) Display detailed information.
extensive—(Optional) Display hex dump of packet captured by log action.
interface interface-name—(Optional) Display log information about a specific interface.
logical-system (logical-system-name | all)—(Optional) Perform this operation on all logical systems or on a particular system.

Required Privilege Level
view

List of Sample Output
Output Fields

Table 166 on page 2686 lists the output fields for the `show firewall log` command. Output fields are listed in the approximate order in which they appear.

Table 166: show firewall log Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Log</td>
<td>Time that the event occurred.</td>
</tr>
</tbody>
</table>
| Filter           | • Displays the name of a configured firewall filter or service filter only if the packet hit the filter’s log action in a kernel filter (in the control plane). For any traffic that reaches the Routing Engine, the packets hit the log action in the kernel.  
  • For all other logged packets (packet hit the filter’s log action in the Packet Forwarding Engine), this field displays pfe instead of a configured filter name. |
| Filter Action    | Filter action:                                                                    |
|                  | • A—Accept                                                                        |
|                  | • D—Discard                                                                       |
|                  | • R—Reject                                                                        |
| Name of Interface| • Displays a physical interface name if the packet arrived at a port on a line card. |
|                  | • Displays local if the packet was generated by the device’s internal Ethernet interface, em1 or fxp1, which connects the Routing Engine with the router’s packet-forwarding components. |
| Name of protocol | Packet’s protocol name: egp, gre, icmp, ipip, ospf, pim, rsvp, tcp, or udp.       |
| Packet length    | Length of the packet.                                                             |
| Source address   | Packet’s source address.                                                          |
| Destination address | Packet’s destination address and port.                                         |

Sample Output

```
show firewall log

user@host>show firewall log
```
show firewall log detail

user@host> show firewall log detail


show firewall log extensive

user@host> show firewall log extensive

Time of Log: 2016-01-17 22:16:21 PST, Filter: pfe, Filter action: accept, Name of interface: xe-0/0/1.0
Name of protocol: UDP, Packet Length: 98, Source address: 203.0.113.1, Destination address: 203.0.113.1
show firewall prefix-action-stats

List of Syntax
Syntax (filter-specific mode) on page 2689
Syntax (term-specific mode) on page 2689

Syntax (filter-specific mode)

```plaintext
show firewall prefix-action-stats filter filter-name prefix-action prefix-action-name
<from number to number>
<logical-system (logical-system-name | all)>
```

Syntax (term-specific mode)

```plaintext
show firewall prefix-action-stats filter filter-name prefix-action prefix-action-name-term-name
<from number to number>
<logical-system (logical-system-name | all)>
```

Release Information
Command introduced before Junos OS Release 7.4.
logical-system option introduced in Junos OS Release 9.3.

Description
Display prefix action statistics about configured firewall filters.

If you clear statistics for firewall filters that are applied to MPCs and that also use the prefix-action action on matched packets, wait at least 5 seconds before you enter the show firewall prefix-action-stats command. A 5-second pause between issuing the clear firewall and show firewall prefix-action-stats commands avoids a possible timeout of the show firewall prefix-action-stats command.

By default, policers operate in term-specific mode.

See "Filter-Specific Policer Overview" on page 1807 for information about how to configure policers in filter-specific mode.

Options
filter filter-name—Name of a filter.

prefix-action prefix-action-name—Name of a prefix action.

from number to number—(Optional) Starting and ending counter or policer.

logical-system (logical-system-name | all)—(Optional) Perform this operation on all logical systems or on a particular system.
List of Sample Output

**show firewall prefix-action-stats on page 2690**

**Output Fields**

Table 167 on page 2690 lists the output fields for the `show firewall prefix-action-stats` command. Output fields are listed in the approximate order in which they appear.

### Table 167: show firewall prefix-action-stats Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter</td>
<td>Filter name.</td>
</tr>
<tr>
<td></td>
<td>Filters configured for logical systems include the name of the filter prefixed with the two underscore characters (__), and the name of the logical system (for example, <code>__ls1/filter1</code>).</td>
</tr>
</tbody>
</table>

### Sample Output

The following sample output assumes that the policer `act1` is in term mode and that there is a term named `term1` configured in the firewall filter `test`.

**show firewall prefix-action-stats**

```
user@host> show firewall prefix-action-stats filter test prefix-action act1-term1 from 0 to 9
```

<table>
<thead>
<tr>
<th>Filter: test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counters:</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>act1-0</td>
</tr>
<tr>
<td>act1-1</td>
</tr>
<tr>
<td>act1-2</td>
</tr>
<tr>
<td>act1-3</td>
</tr>
<tr>
<td>act1-4</td>
</tr>
<tr>
<td>act1-5</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>act1-6</td>
</tr>
<tr>
<td>act1-7</td>
</tr>
<tr>
<td>act1-8</td>
</tr>
<tr>
<td>act1-9</td>
</tr>
</tbody>
</table>

Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>act1-0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>act1-9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
show interfaces policers

Syntax

```
show interfaces policers
<interface-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display all policers that are installed on each interface in a system.

Options

- `none`—Display policer information about all interfaces.
- `interface-name`—(Optional) Display filter information about a particular interface.

Additional Information

For information about how to configure policers, see the Junos Policy Framework Configuration Guide. For related operational mode commands, see the Junos Routing Protocols and Policies Command Reference.

Required Privilege Level

`view`

List of Sample Output

- show interfaces policers on page 2693
- show interfaces policers interface-name on page 2693
- show interfaces policers (PTX Series Packet Transport Routers) on page 2694

Output Fields

Table 168 on page 2692 lists the output fields for the `show interfaces policers` command. Output fields are listed in the approximate order in which they appear.

Table 168: show interfaces policers Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Name of the interface.</td>
</tr>
<tr>
<td>Admin</td>
<td>Interface state: up or down.</td>
</tr>
<tr>
<td>Link</td>
<td>Link state: up or down.</td>
</tr>
</tbody>
</table>
Table 168: show interfaces policers Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proto</td>
<td>Protocol configured on the interface.</td>
</tr>
<tr>
<td>Input Policer</td>
<td>Policer to be evaluated when packets are received on the interface. It has the format interface-name-in-policer.</td>
</tr>
<tr>
<td>Output Policer</td>
<td>Policer to be evaluated when packets are transmitted on the interface. It has the format interface-name-out-policer.</td>
</tr>
</tbody>
</table>

Sample Output

**show interfaces policers**

```
user@host> show interfaces policers
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>so-2/0/0.0-in-policer</td>
<td>so-2/0/0.0-out-policer</td>
</tr>
<tr>
<td>gr-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mt-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pd-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe-0/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/0/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>so-2/0/0.0-in-policer</td>
<td>so-2/0/0.0-out-policer</td>
</tr>
<tr>
<td>so-2/1/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**show interfaces policers interface-name**

```
user@host> show interfaces policers so-2/1/0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-2/1/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>so-2/1/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>so-2/1/0.0-in-policer</td>
<td>so-2/1/0.0-out-policer</td>
</tr>
</tbody>
</table>
show interfaces policers (PTX Series Packet Transport Routers)

```bash
user@host> show interfaces policers em0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Input Policer</th>
<th>Output Policer</th>
</tr>
</thead>
<tbody>
<tr>
<td>em0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>em0.0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td>inet</td>
</tr>
</tbody>
</table>
show policer

Syntax

```
show policer
 <policer-name>
```

Release Information
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description
Display statistics about configured policers.

Options

- **none**—Display the count of policed packets for all configured policers in the system.
- **policer-name**—(Optional) Display the count of policed packets for the specified policer.

Required Privilege Level
view

RELATED DOCUMENTATION

- Example: Configuring Firewall Filters for Port, VLAN, and Router Traffic on EX Series Switches | 1467
- Verifying That Firewall Filters Are Operational | 1627
- Verifying That Policers Are Operational | 1509
- Firewall Filters for EX Series Switches Overview | 1352
- Understanding the Use of Policers in Firewall Filters | 1950

List of Sample Output

- show policer on page 2696
- show policer (policer-name) on page 2696

Output Fields

| Table 169 on page 2696 lists the output fields for the **show policer** command. Output fields are listed in the approximate order in which they appear. | 2695 |
### Table 169: show policer Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Filter</strong></td>
<td>Name of filter that is configured with the <code>filter</code> statement at the <code>[edit firewall]</code> hierarchy level.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
| **Policers** | Display policer information:  
  - Filter—Name of filter that specifies the policer action.  
  - Name—Name of policer.  
  - Packets—Number of packets that matched the filter term where the policer action is specified. This is the number of packets that exceed the rate limits that the policer specifies. | All levels |

### Sample Output

**show policer**

```plaintext
user@host> show policer

Filter: egress-vlan-filter
Filter: ingress-port-filter
Policers:
Name Packets
icmp-connection-policer 0
tcp-connection-policer 0
Filter: ingress-vlan-rogue-block
```

**show policer (policer-name)**

```plaintext
user@host> show policer tcp-connection-policer

Filter: ingress-port-filter
Policers:
Name Packets
tcp-connection-policer 0
```
show policer

Syntax

```
show policer
<detail>
<policer-name>
```

Release Information
Command introduced before Junos OS Release 7.4.
The command `show policer detail` was introduced in Junos OS Release 12.3.

Description
Display the number of policed packets for a given policer or an aggregate policer. An aggregate policer is an aggregate of different policers on the same logical interface.

Options
detail—(Optional) Display additional statistics and counters. Requires the `enhanced-policer` statement to be enabled at the `[edit chassis]` hierarchy level.

```
NOTE: show policer detail is not available for the following counters: three color policers, hierarchical policers, prefix-specific actions, LSP policers and other nexthop policers, and fast-update-filters on devices running MPC1 or MPC2 line cards.
```

policer-name—(Optional) Display the number of policed packets for the specified policer.

<null>—Displays the number of policed packets for all configured policers.

Required Privilege Level
view

List of Sample Output
show policer (MX Series) on page 2698
show policer (non MX Series Router) on page 2698
show policer (Aggregate Policer, non MX Series Router) on page 2699
show policer detail (MX Series Router running MPC 1 or MPC 2 line cards) on page 2699

Output Fields
Table 160 on page 2654 lists the output fields for the `show policer` command. Output fields are listed in the approximate order in which they appear.
### Table 170: show policer Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the policer. Policier detail also includes the following statistics:</td>
</tr>
<tr>
<td></td>
<td><strong>OOS</strong>—Packet statistics for packets that are marked out-of-specification by the policer. Changes to all packets that have out-of-specification actions, such as discard, color marking, or forwarding-class, are included in this counter.</td>
</tr>
<tr>
<td></td>
<td><strong>Offered</strong>—Packet statistics for traffic subjected to policing.</td>
</tr>
<tr>
<td></td>
<td><strong>Transmitted</strong>—Packet statistics for traffic that is not discarded by the policer. When the policer action is discard, the statistics are the same as the within-specification statistics; when the policer action is non-discard (loss-priority or forwarding-class), the statistics are included in this counter.</td>
</tr>
<tr>
<td>Bytes</td>
<td>• (For two-color policers on MX Series routers, and for hierarchical policers on MS-DPC, MIC, and MPC interfaces on MX Series routers)—Total number of bytes policed by the specified policer.</td>
</tr>
<tr>
<td></td>
<td>For other combinations of policer type, device, and line card type, this field is blank.</td>
</tr>
<tr>
<td></td>
<td>• (T Series and M10i)—Not applicable. The Bytes information is not displayed.</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets policed by the specified policer.</td>
</tr>
</tbody>
</table>

### Sample Output

**show policer (MX Series)**

```
user@host> show policer

Policers:
Name Bytes Packets
__default_arp_policer__ 314520 5242
pol-2M-ge-1/2/0.1-inet-i 10372300 103723
pol-2M-ge-1/2/0.1-inet6-i 7727800 77278
pol-2M-ge-1/2/0.1-mpls-i 7070336 67984
pol-2M-ge-1/2/0.1001-vpls-i 65153700 651537
pol-2M-ge-1/2/0.2001-vpls-i 65180900 651809
pol-2M-ge-1/2/0.3001-ccc-i 62202144 647939
```

**show policer (non MX Series Router)**

```
user@host> show policer

2698
```
Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>default_arp_policer</strong></td>
<td>NA</td>
<td>5242</td>
</tr>
<tr>
<td>pol-2M-ge-1/2/0.1-inet-i</td>
<td>NA</td>
<td>103723</td>
</tr>
<tr>
<td>pol-2M-ge-1/2/0.1-inet6-i</td>
<td>NA</td>
<td>77278</td>
</tr>
<tr>
<td>pol-2M-ge-1/2/0.1-mpls-i</td>
<td>NA</td>
<td>67984</td>
</tr>
<tr>
<td>pol-2M-ge-1/2/0.1001-vpls-i</td>
<td>NA</td>
<td>651537</td>
</tr>
<tr>
<td>pol-2M-ge-1/2/0.2001-vpls-i</td>
<td>NA</td>
<td>651809</td>
</tr>
<tr>
<td>pol-2M-ge-1/2/0.3001-ccc-i</td>
<td>NA</td>
<td>647939</td>
</tr>
</tbody>
</table>

**show policer (Aggregate Policer, non MX Series Router)**

```
user@host> show policer
```

Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>default_arp_policer</strong></td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>P1-ae0.0-log_int-o</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>P2-ge-7/0/2.0-inet-o</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>P2-ge-7/0/2.0-inet6-o</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_term</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc1</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc1</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc1</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc2</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc1</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td><strong>policer_tmpl</strong>-_fc2</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>

**show policer detail (MX Series Router running MPC 1 or MPC 2 line cards)**

```
user@host> show policer detail
```

Policers:

<table>
<thead>
<tr>
<th>Name</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>default_arp_policer</strong></td>
<td>OOS</td>
<td>0</td>
</tr>
<tr>
<td>Offered</td>
<td>0</td>
<td>496</td>
</tr>
<tr>
<td>Transmitted</td>
<td>0</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>P1-xe-1/0/0.0-inet-i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OOS</td>
<td>0</td>
<td>11329</td>
</tr>
<tr>
<td>Offered</td>
<td>0</td>
<td>111188</td>
</tr>
<tr>
<td>Transmitted</td>
<td>0</td>
<td>99859</td>
</tr>
</tbody>
</table>