Table of Contents

About the Documentation | xiii

Documentation and Release Notes | xiii

Using the Examples in This Manual | xiii

 - Merging a Full Example | xiv
 - Merging a Snippet | xv

Documentation Conventions | xv

Documentation Feedback | xviii

Requesting Technical Support | xviii

 - Self-Help Online Tools and Resources | xix
 - Creating a Service Request with JTAC | xix

ATM Interfaces

ATM Interfaces Overview | 3

ATM Interfaces Overview | 3

ATM Pseudowire Overview | 5

Understanding Inverse Multiplexing for ATM | 6

 - Understanding Asynchronous Transfer Mode | 6
 - Understanding Inverse Multiplexing for ATM | 7
 - How Inverse Multiplexing for ATM Works | 7

Supported Platforms | 8

Understanding ATM IMA Configuration on ACX Series Router | 9

 - IMA Version | 10
 - IMA Frame Length | 10
 - Transmit Clock | 11
 - IMA Group Symmetry | 11
 - Minimum Active Links | 11
 - State Transition Variables: Alpha, Beta, and Gamma | 12
 - IMA Link Addition and Deletion | 12
 - IMA Test Pattern Procedure | 13
 - IMA Group Alarms and Group Defects | 13
 - IMA Link Alarms and Link Defects | 14
| Monitoring Statistics for an ATM1 Interface | 230 |
| Monitoring ATM2 IQ Interfaces | 232 |
| Monitoring ATM2 IQ Interfaces | 232 |
| Displaying the Status of a Specific ATM2 IQ Interface | 232 |
| Displaying Extensive Information for a Specific ATM2 Interface | 236 |
| Monitoring Statistics for an ATM2 Interface | 243 |
| Monitoring ATM MIC Interfaces | 245 |
| Monitoring ATM MIC Interfaces | 245 |
| Displaying the Status of a Specific ATM MIC Interface | 245 |
| Displaying Extensive Information for a Specific ATM MIC Interface | 247 |
| Monitoring Traffic and Error Statistics for an ATM MIC Interface | 252 |
| Configuring Interface Diagnostics Tools to Test the Physical Layer Connections | 254 |
| Configuring Interface Diagnostics Tools to Test the Physical Layer Connections | 254 |
| Configuring Loopback Testing | 254 |
| Configuring BERT Testing | 256 |
| Starting and Stopping a BERT Test | 260 |
| Investigating Interface Steps and Commands for ATM Interfaces | 262 |
| Investigating Interface Steps and Commands for ATM Interfaces | 262 |
| Using Loopback Testing for ATM Interfaces | 262 |
| Using Loopback Testing for ATM Interfaces | 262 |
| Checklist for Using Loopback Testing for ATM Interfaces | 262 |
| Checklist for Using Loopback Testing for ATM Interfaces | 262 |
| Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264 |
| Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264 |
| Creating a Loopback | 265 |
| Creating a Loopback | 265 |
| Creating a Physical Loopback | 265 |
| Creating a Physical Loopback | 265 |
| Configuring a Local Loopback | 265 |
| Configuring a Local Loopback | 265 |
| Setting Clocking to Internal | 268 |
| Setting Clocking to Internal | 268 |
| Verifying That the ATM Interface Is Up | 269 |
| Verifying That the ATM Interface Is Up | 269 |
| Clearing ATM Interface Statistics | 273 |
| Clearing ATM Interface Statistics | 273 |
| Pinging the ATM Interface | 274 |
| Pinging the ATM Interface | 274 |
| Checking for ATM Interface Error Statistics | 275 |
| Checking for ATM Interface Error Statistics | 275 |
| Diagnosing a Suspected Circuit Problem | 281 |
| Diagnosing a Suspected Circuit Problem | 281 |
| Creating a Loop from the Router to the Network | 281 |
| Creating a Loop from the Router to the Network | 281 |
| Creating a Loop to the Router from Various Points in the Network | 282 |
| Creating a Loop to the Router from Various Points in the Network | 282 |
| Locating ATM Alarms and Errors | 283 |
| Locating ATM Alarms and Errors | 283 |
| List of Common ATM Alarms and Error | 283 |
| List of Common ATM Alarms and Error | 283 |
| Displaying ATM1 and ATM2 Alarms and Errors | 284 |
| Displaying ATM1 and ATM2 Alarms and Errors | 284 |
Configuration Statements and Operational Commands

Configuration Statements | 297

advertise-interval | 300
allow-any-vci | 301
annex | 302
aps | 303
atm-encapsulation | 304
atm-options | 305
atm-scheduler-map | 307
authentication-key | 308
buildout (E3 or T3 over ATM Interfaces) | 309
bytes | 310
cbit-parity | 312
cbr | 313
cell-bundle-size | 315
cell-bundle-timeout | 316
down-count | 317
dsl-options | 318
e3-options | 319
encapsulation (Logical Interface) | 321
encapsulation | 326
epd-threshold (Logical Interface) | 333
epd-threshold (Physical Interface) | 335
family | 336
fast-aps-switch | 342
force | 343
forwarding-class (ATM2 IQ Scheduler Maps) | 344
framing (E1, E3, and T1 Interfaces) | 345
high-plp-max-threshold | 347
high-plp-threshold | 348
hold-time (APS) | 349
hold-time (SONET/SDH Defect Triggers) | 350
ilmi | 352
inverse-arp | 353
inner-vlan-id-range | 354
linear-red-profile | 355
linear-red-profiles | 356
lockout | 357
loopback (ADSL, DS0, E1/E3, SONET/SDH, SHDSL, and T1/T3) | 358
low-plp-max-threshold | 360
low-plp-threshold | 361
maximum-vcs | 362
mpls (Interfaces) | 363
multicast-vci | 364
multipoint-destination | 365
neighbor (Automatic Protection Switching for SONET/SDH) | 367
oam-liveness | 368
oam-period | 370
paired-group | 371
passive-monitor-mode | 372
payload-scrambler | 373
pic-type | 374
plp1 | 375
plp-to-clp | 376
pop-all-labels | 377
priority (Schedulers) | 378
promiscuous-mode | 379
protect-circuit | 380
queue-depth | 381
queue-length | 382
receive-options-packets | 383
receive-ttl-exceeded | 384
request | 385
required-depth | 386
revert-time (Interfaces) | 387
rfc-2615 | 388
rtvbr | 389
scheduler-maps (For ATM2 IQ Interfaces) | 391
shaping | 392
t3-options | 394
transmit-weight (ATM2 IQ CoS Forwarding Class) | 395
transmit-weight (ATM2 IQ Virtual Circuit) | 396
trigger | 397
trunk-bandwidth | 399
trunk-id | 400
unit | 401
use-null-cw | 412
up-count | 413
vbr | 414
vc-cos-mode | 416
vci | 417
vci-range | 418
vlan-id (Outer VLAN ID) | 419
vlan-vci-tagging | 420
vpi (ATM CCC Cell-Relay Promiscuous Mode) | 421
vpi (Define Virtual Path) | 422
vpi (Logical Interface and Interworking) | 423
working-circuit | 424
z0-increment | 425

Operational Commands | 427

clear ilmi statistics | 428
ping atm | 429
show class-of-service | 431
show class-of-service forwarding-class | 434
show ilmi | 437
show ilmi statistics | 439
show interfaces (ATM) | 444
Use this guide to configure the Asynchronous Transfer Mode (ATM) over ADSL and SHDSL interfaces. This technology helps you handle various types of traffic streams (voice, data, and video) simultaneously at very high speeds over the same physical connection.

Junos OS Network Interfaces Library for Routing Devices

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.
If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a *full example*. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a *snippet*. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```bash
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```bash
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
   file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the `load` command, see CLI Explorer.

Documentation Conventions

`Table 1 on page xv` defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![i]</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>![!]</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>![!]</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>![!]</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>![.]</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>![.]</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page xvi defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>user@host> configure</code></td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td><code>user@host> show chassis alarms</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>No alarms currently active</code></td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| *Italic text like this* | Represents variables (options for which you substitute a value) in commands or configuration statements. | Configure the machine’s domain name:
[edit]
root@# set system domain-name domain-name |
| **Text like this** | Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components. | • To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.
• The console port is labeled CONSOLE. |
| < > (angle brackets) | Encloses optional keywords or variables. | stub <default-metric metric>; | | | |
| | | broadcast |multicast (string1 | string2 | string3) |
| | | |rsvp {# Required for dynamic MPLS only |
| | | |community name members [community-ids] |
| [] (square brackets) | Encloses a variable for which you can substitute one or more values. | |
| Indention and braces { { }) | Identifies a level in the configuration hierarchy. | [edit]
 routing-options {
 static {
 route default {
 nexthop address;
 retain;
 }
}
} |
| ; (semicolon) | Identifies a leaf statement at a configuration hierarchy level. | |

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols > Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- **Online feedback system**—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- **E-mail**—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
ATM Interfaces

ATM Interfaces Overview | 3
Configuring ATM Interfaces | 29
Configuring Passive Monitoring on ATM Interfaces | 181
ATM Interfaces Overview

Asynchronous Transfer Mode (ATM) is a network protocol designed to facilitate the simultaneous handling of various types of traffic streams (voice, data, and video) at very high speeds over the same physical connection. By always using 53-byte cells, ATM simplifies the design of hardware, enabling it to quickly determine the destination address of each cell. This allows simple switching of network traffic at much higher speeds than are easily accomplished using protocols with variable sizes of transfer units, such as Frame Relay and Transmission Control Protocol/Internet Protocol (TCP/IP).

Although ATM was designed to operate without the requirement of any other networking protocol, other protocols are frequently segmented and encapsulated across multiple, smaller ATM cells. This makes ATM a transport mechanism for preexisting technologies such as Frame Relay and the TCP/IP family of protocols.

ATM relies on the concepts of virtual paths and virtual circuits. A virtual path, represented by a specific virtual path identifier (VPI), establishes a route between two devices in a network. Each VPI can contain multiple virtual circuits, each represented by a virtual circuit identifier (VCI).

VPIs and VCIs are local to the router, which means that only the two devices connected by the VCI or VPI need know the details of the connection. In a typical ATM network, user data might traverse multiple connections, using many different VPI and VCI connections. Each end device, just like each device in the network, needs to know only the VCI and VPI information for the path to the next device.
NOTE: The ATM three-bit payload type identifier (PTI) field is not supported.

With ATM2 intelligent queuing (IQ) interfaces, you can configure virtual path (VP) shaping and Operation, Administration, and Management (OAM) F4 cell flows.

RELATED DOCUMENTATION

- Supported Features on ATM1 and ATM2 IQ Interfaces | 19
- Configuring Communication with Directly Attached ATM Switches and Routers | 53
- Enabling ILMI for Cell Relay | 54
- Configuring Communication with Directly Attached ATM Switches and Routers | 53
- Enabling ILMI for Cell Relay | 54
- Enabling Passive Monitoring on ATM Interfaces | 181
- Removing MPLS Labels from Incoming Packets | 182
- Configuring the ATM PIC Type | 44
- Configuring ATM Cell-Relay Promiscuous Mode | 47
- Configuring ATM Cell-Relay Pseudowire | 82
- Configuring the Maximum Number of ATM1 VCs on a VP | 52
- Configuring Layer 2 Circuit Transport Mode | 61
- Configuring Layer 2 Circuit Trunk Mode Scheduling Overview | 87
- Configuring CoS Queues in Layer 2 Circuit Trunk Mode | 88
- Configuring the Layer 2 Circuit Cell-Relay Cell Maximum Overview | 86
- Configuring the OAM F4 Cell Flows | 100
- Defining Virtual Path Tunnels | 131
- Configuring a Point-to-Point ATM1 or ATM2 IQ Connection | 133
- Configuring a Point-to-Multipoint ATM1 or ATM2 IQ Connection | 134
- Configuring a Multicast-Capable ATM1 or ATM2 IQ Connection | 99
- Configuring Inverse ATM1 or ATM2 ARP | 135
- Defining the ATM Traffic-Shaping Profile Overview | 124
- Configuring the ATM1 Queue Length | 132
- Configuring the ATM2 IQ EPD Threshold | 152
- Configuring Two EPD Thresholds per Queue | 154
- Configuring the ATM2 IQ Transmission Weight | 155
ATM Pseudowire Overview

An Asynchronous Transfer Mode (ATM) pseudowire acts as a Layer 2 circuit or service, which allows the migration of ATM services to an MPLS packet-switched network without having to provision the ATM subscriber or customer edge (CE) device. When you configure an ATM pseudowire, the network between the customer edge (CE) routers appears transparent to the CE routers, making it seem that the CE routers are directly connected across a time-division multiplex (TDM) leased line. ATM pseudowires are primarily used in an ATM service provider’s network to connect existing ATM switches across a higher speed packet-switched network or to provide ATM backhaul services for remote access to existing ATM networks.

On ACX series routers, you configure an ATM pseudowire with Layer 2 encapsulation for Inverse Multiplexing for ATM (IMA).

RELATED DOCUMENTATION

- Understanding Encapsulation on an Interface
- Configuring Inverse Multiplexing for ATM (IMA) on ACX Series | 30
- Pseudowire Overview for ACX Series Universal Metro Routers
- TDM Pseudowires Overview
- Ethernet Pseudowire Overview
Inverse multiplexing for ATM (IMA) is a technique of transporting ATM traffic over a bundle of T1 or E1 interfaces. The following sections explain IMA in detail:

Understanding Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) is a high-speed networking technology that handles data in fixed-size units called cells. It enables high-speed communication between edge routers and core routers in an ATM network.

ATM is designed to facilitate the simultaneous handling of various types of traffic streams (voice, data, and video) at very high speeds over a dedicated connection. ATM uses asynchronous time-division multiplexing (TDM) and it encodes data into 53-byte cells, thereby simplifying the design of hardware and enabling it to quickly determine the destination address of each cell. ATM operates over either fiber optic cables or twisted-pair cables. Each ATM PIC is assigned an ATM switch ID that displays the switch’s IP address and the local interface names of the adjacent Fore ATM switches. For information about ATM PICs, see the platform-specific Hardware Guide.

ATM relies on the concepts of virtual paths (VPs) and virtual circuits (VCs). A virtual path, represented by a specific virtual path identifier (VPI), establishes a route between two devices in a network. Each VPI can contain multiple VCs, each represented by a virtual circuit identifier (VCI). VPIs and VCs are local to the router, which means that only the two devices connected by the VCI or VPI need know the details of the connection. In a typical ATM network, user data might traverse multiple connections, using many different VPI and VCI connections. Each end device, just like each device in the network, needs to know only the VCI and VPI information for the path to the next device.

An ATM interface is indicated by the `at-fpc/pic/port` CLI descriptor.
Understanding Inverse Multiplexing for ATM

Inverse multiplexing is a method where a single data stream is divided into multiple smaller data streams that are transmitted over either fiber optic cables or twisted pair cables and are recombined on the other end to form the original data stream. This concept is useful for attaining high-speed data transmission rates. This concept has been extended to ATM and is called inverse multiplexing for ATM or IMA.

IMA is a technique of transporting ATM traffic over a bundle of T1 or E1 interfaces. IMA divides a single data stream into multiple smaller data streams, that is transmitted at the same time across separate channels (such as T1 or E1 interfaces) and then reconstructed at the other end back into the original data stream.

Two versions of IMA are available—IMA 1.0 (af-phy-0086.000-IMA) and IMA 1.1 (af-phy-0086.001-IMA). You can configure either of these versions, by using the Junos OS CLI. If not specified, IMA 1.1 is selected by default. Note that IMA 1.0 and IMA 1.1 do not interoperate. The IMA v1.1 specification increments the OAM (operations and maintenance) label value used in the IMA OAM cells in order to differentiate v1.1 from v1.0 IMA units.

How Inverse Multiplexing for ATM Works

Figure 1 on page 7 displays IMA frames on different links. An IMA frame consists of ATM cells, an ICP cell, and filler cells (if required).

Figure 1: IMA Frames on Links

On the transmission side of the ATM IMA network, the ATM cell stream (received from the ATM layer) is divided across multiple links in an IMA group on a cell by cell basis. On the receiving end of the ATM IMA network, the cells are recombined to form the original ATM cells stream (with the help of ICP cells), and then passed on to the ATM layer. Figure 2 on page 8 displays an IMA frame being transmitted and received through an IMA group.
IMA Control Protocol (ICP) cells are special cells that are sent over the ATM IMA interface with the ATM cell stream to help align the ATM cells at the receiving end. An ICP cell tracks link differential delay, reduces cell delay variation (CDV), and performs other functions.

When there are no ATM cells to be sent on an IMA frame, the IMA transmitter inserts filler cells to maintain a continuous stream of cells at the physical layer. The filler cells are discarded by the IMA receiver. An OAM cell has codes that define it as an ICP cell or a filler cell.

Supported Platforms

The following are the various Juniper Networks routers and their components that support inverse multiplexing for ATM (IMA):

- **16-port Channelized E1/T1 Circuit Emulation MIC (MIC-3D-16CHE1-T1-CE) on MX Series routers (from Junos OS Release 13.2R1 onward).**
- **4-port Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP (MIC-3D-4COC3-1COC12-CE) on MX Series routers (from Junos OS Release 13.2R1 onward).**
- **4-port Channelized OC3/STM1 Circuit Emulation PIC with SFP (PB-4CHOC3-CE-SFP) on M7i, M10i, M40e, M120, and M320 routers supports channelized OC3/STM1 (down to T1) ATM IMA.**
- **12-port E1/T1 Circuit Emulation PIC (PB-12T1E1-CE-TELCO) on M7i, M10i, M40e, M120, and M320 routers supports discrete T1 ATM IMA.**

NOTE: Circuit Emulation PICs require firmware version **rom-ce-9.3.pbin** or **rom-ce-10.0.pbin** for ATM IMA functionality on M7i, M10i, M40e, M120, and M320 routers running Junos OS Release 10.0R1 or later.

RELATED DOCUMENTATION
Understanding ATM IMA Configuration on ACX Series Router

IN THIS SECTION

- IMA Version | 10
- IMA Frame Length | 10
- Transmit Clock | 11
- IMA Group Symmetry | 11
- Minimum Active Links | 11
- State Transition Variables: Alpha, Beta, and Gamma | 12
- IMA Link Addition and Deletion | 12
- IMA Test Pattern Procedure | 13
- IMA Group Alarms and Group Defects | 13
- IMA Link Alarms and Link Defects | 14
- IMA Group Statistics | 15
- IMA Link Statistics | 16
- IMA Clocking | 17
- Differential Delay | 17
IMA involves inverse multiplexing and demultiplexing of ATM cells in a round-robin sequence among links grouped to form a higher-bandwidth logical link whose rate is the sum of all the link rates. This group of links is called an IMA group. An IMA group can also be defined as a group of links at the transmitting end that is used to establish an IMA virtual link to the receiving end. The IMA virtual link is a virtual link that is established between two IMA units or routers over a number of physical links (in an IMA group). IMA groups terminate at each end of the IMA virtual link.

You can configure 42 IMA groups. Each group can contain from 1 through 32 links.

You can configure a maximum of 16 IMA groups on the 16-port Channelized E1/T1 Circuit Emulation MIC (ACX-MIC-16CHE1-T1-CE) and each group can have from 1 through 8 IMA links. Port numbers starting from 0 through 15 are used for T1/E1 ports; therefore, IMA port numbers start from 16 onward.

You can configure a maximum of 16 IMA groups on the Channelized OC3/STM1 (Multi-Rate) Circuit Emulation MIC with SFP (ACX-MIC-4COC3-1COC12CE).

To configure an IMA group, execute the `set chassis fpc fpc-slot pic pic-slot aggregated devices ima device-count count` configuration command, where `count` results in the creation of interfaces from at-x/y/g through at-x/y/g+count-1. The variable `g` is picked from 16 onward. For example, if the count variable is set to 4, then the new ATM interfaces are created from at-x/y/16 through at-x/y/19.

You can implement inverse multiplexing for ATM (IMA) on Juniper Networks ACX Series routers by configuring an IMA group and its options. The following sections explain the various options that can be set for an IMA group:

IMA Version

Either IMA 1.0 (af-phy-0086.000-IMA) or IMA 1.1 (af-phy-0086.001-IMA) can be selected through the CLI. To choose the IMA specification version, execute the `set interfaces interface-name ima-group-options (1.0|1.1)` configuration command. Note that, if you do not specify the version, IMA 1.1 is selected by default.

NOTE: IMA 1.0 and IMA 1.1 do not interoperate.

The IMA v1.1 specification increments the operations and maintenance (OAM) label value used in the IMA OAM cells in order to differentiate v1.1 from v1.0 IMA units.

IMA Frame Length

An IMA frame consists of ATM cells, an ICP cell, and filler cells (if required). When you configure an IMA group, you can choose a frame length of 32, 64, 128, or 256. The frame length can be selected independently in each direction and in each group. To set the frame length, execute the `set interface interface-name`
frame-length (32 |64 |128 |256) configuration command. Note that if the frame length is not specified, the frame length value of 128 is selected by default.

Transmit Clock

When you create an IMA group, you can configure a common transmit clock timing mode or an independent transmit clock timing mode to reflect the primary reference source (PRS) of the clock for each link in a group. By default, the **common** mode is selected. To select the transmit clock timing mode, execute the `set interface interface-name ima-group-options transmit-clock (common | independent)` configuration command.

IMA Group Symmetry

You can configure an IMA group to allow symmetric or asymmetric cell rate transfer over an IMA virtual link. You can configure the IMA group with one of the following modes:

- Symmetrical configuration and operation—In this mode, on the ATM IMA device, an IMA link must be configured in each direction for all physical links that the ATM IMA device is configured to use. In this mode, the ATM IMA device can transmit and receive ATM layer cells over the physical links on which the IMA links running in both directions are **Active**.

- Symmetrical configuration and asymmetrical operation—In this mode, on the ATM IMA device, an IMA link must be configured in each direction for all physical links that the ATM IMA device is configured to use. In this mode, the ATM IMA device can transmit ATM layer cells over the physical links on which the IMA links in the transmit direction are **Active**, while the IMA links in the receive direction are not **Active** or contrariwise.

Asymmetrical configuration and operation are not supported.

The mode can be configured through the CLI when an IMA group is created. To select the symmetry option, execute the `set interface interface-name ima-group-options symmetry (symmetrical-config-and-operation | symmetrical-config-asymmetrical-operation)` configuration command. By default, symmetrical configuration and operation is selected.

Minimum Active Links

You can set the minimum active links for an IMA group from 1 through 32.

- \(P_{\text{Tx}} \) is the minimum number of links required to be active in the transmit direction for the IMA group to move into the operational state.

- \(P_{\text{Rx}} \) is the minimum number of links required to be active in the receive direction for the IMA group to move into the operational state.

You configure \(P_{\text{Tx}} \) and \(P_{\text{Rx}} \) through the CLI when an IMA group is created. By default, 1 is selected.
For a symmetrical configuration, \(P_{tx} \) is equal to \(P_{rx} \).

To set minimum links, execute the `set interface interface-name ima-group-options minimum-links links` configuration command. By default, symmetrical configuration and operation is selected.

State Transition Variables: Alpha, Beta, and Gamma

Frame synchronization is a process of recovery of the aggregated frames. The frame synchronization states form a basis for the different error and maintenance states. You can configure the IMA frame synchronization link state transition variables as alpha, beta, and gamma. The valid ranges and default values are shown in Table 3 on page 12.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Range</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>1–2</td>
<td>2</td>
<td>Consecutive invalid ICP cells</td>
</tr>
<tr>
<td>beta</td>
<td>1–5</td>
<td>2</td>
<td>Consecutive errored ICP cells</td>
</tr>
<tr>
<td>gamma</td>
<td>1–5</td>
<td>1</td>
<td>Consecutive valid ICP cells</td>
</tr>
</tbody>
</table>

To set the frame synchronization option, execute the `set interface interface-name ima-group-options frame-synchronizationalpha number betanumber gammanumber` configuration command.

IMA Link Addition and Deletion

When an IMA group is up, you can add links to or delete links from the group without dropping cells.

To create an IMA link, you must:

- Configure the encapsulation as ima at the `[edit interfaces interface-name encapsulation]` hierarchy level.
- Configure an ATM interface with one T1 link or one E1 link with the `set interfaces interface-name ima-link-options group-id g` configuration command.

The `interface-name` variable refers to the T1 or E1 interface to be set as an IMA interface link and the variable `g` refers to the port in the `at-x/y/g` interface.

To delete the configured IMA link, you must execute the following configuration commands:

- `delete interfaces interface-name encapsulation ima`
- `delete interfaces interface-name ima-link-options group g`
IMA Test Pattern Procedure

A test pattern procedure is supported for IMA to test the ATM, T1, and E1 interfaces for irregularities. You can use the CLI to start and end the test pattern procedure.

The following options can be set according to the requirement at the [edit interface interface-name ima-group-options test-procedure] hierarchy level:

- **interface interface-name**—Interface name of the IMA link to test.
- **pattern number**—IMA test pattern that can be set from 1 through 254
- **period number**—Length of the IMA test pattern that can be set from 1 second through 4,294,967,294 seconds. Default is 10 seconds.

To perform the test pattern procedure, execute the **test interface interface-name ima-test-start** and **test interface interface-name ima-test-stop** operational mode commands to start and to stop the IMA test, respectively.

IMA Group Alarms and Group Defects

Table 4 on page 13 shows the supported IMA group alarms and their associated IMA standard requirement numbers. This is displayed in the group status and control field of an ICP cell.

Table 4: IMA Group Alarms with IMA Standard Requirement Numbers

<table>
<thead>
<tr>
<th>Alarm</th>
<th>IMA Standard Requirement Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up-FE</td>
<td>R-145</td>
</tr>
<tr>
<td>Config-Aborted</td>
<td>R-146</td>
</tr>
<tr>
<td>Config-Aborted-FE</td>
<td>R-147</td>
</tr>
<tr>
<td>Insufficient-Links</td>
<td>R-148</td>
</tr>
<tr>
<td>Insufficient-Links-FE</td>
<td>R-149</td>
</tr>
<tr>
<td>Blocked-FE</td>
<td>R-150</td>
</tr>
<tr>
<td>Timing-Mismatch</td>
<td>R-151</td>
</tr>
<tr>
<td>Blocked</td>
<td></td>
</tr>
<tr>
<td>Version-Mismatch</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 on page 14 shows the supported IMA group defects and their associated IMA standard requirement numbers. This is displayed in the *group status and control* field of an ICP cell.

Table 5: IMA Group Defects with IMA Standard Requirement Numbers

<table>
<thead>
<tr>
<th>Defects</th>
<th>IMA Standard Requirement Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up-FE</td>
<td>R-145</td>
</tr>
<tr>
<td>Config-Aborted</td>
<td>R-146</td>
</tr>
<tr>
<td>Config-Aborted-FE</td>
<td>R-147</td>
</tr>
<tr>
<td>Insufficient-Links</td>
<td>R-148</td>
</tr>
<tr>
<td>Insufficient-Links-FE</td>
<td>R-149</td>
</tr>
<tr>
<td>Blocked-FE</td>
<td>R-150</td>
</tr>
<tr>
<td>Timing-Mismatch</td>
<td>R-151</td>
</tr>
<tr>
<td>Blocked</td>
<td></td>
</tr>
<tr>
<td>Version-Mismatch</td>
<td></td>
</tr>
</tbody>
</table>

IMA Link Alarms and Link Defects

Table 6 on page 14 shows the supported IMA link alarms that are reported to the IMA unit management with their associated IMA standard requirement numbers.

Table 6: IMA Link Alarms with IMA Standard Requirement Numbers

<table>
<thead>
<tr>
<th>Alarm</th>
<th>IMA Standard Requirement Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIF</td>
<td>R-138</td>
<td>Loss of IMA frame</td>
</tr>
<tr>
<td>LODS</td>
<td>R-139</td>
<td>Link out of delay synchronization</td>
</tr>
<tr>
<td>RFI-IMA</td>
<td>R-140</td>
<td>Remote defect/failure</td>
</tr>
<tr>
<td>Tx-Mis-Connected</td>
<td>R-141</td>
<td>Transmit misconnected</td>
</tr>
<tr>
<td>Rx-Mis-Connected</td>
<td>R-142</td>
<td>Receive misconnected</td>
</tr>
</tbody>
</table>
Table 6: IMA Link Alarms with IMA Standard Requirement Numbers *(continued)*

<table>
<thead>
<tr>
<th>Alarm</th>
<th>IMA Standard Requirement Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx-Unusable-FE</td>
<td>R-143</td>
<td>Transmit unusable far end</td>
</tr>
<tr>
<td>Rx-Unusable-FE</td>
<td>R-144</td>
<td>Receive unusable far end</td>
</tr>
<tr>
<td>Link Fault</td>
<td></td>
<td>Link fault</td>
</tr>
</tbody>
</table>

An IMA unit management is defined by SNMP MIBs.

Table 7 on page 15 shows the supported IMA link defects that are reported to the unit management with their associated IMA standard requirement numbers.

Table 7: IMA Link Defects with IMA Standard Requirement Numbers

<table>
<thead>
<tr>
<th>Defect</th>
<th>IMA Standard Requirement Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIF</td>
<td>R-138</td>
<td>Loss of IMA frame</td>
</tr>
<tr>
<td>LODS</td>
<td>R-139</td>
<td>Link out of delay synchronization</td>
</tr>
<tr>
<td>RFI-IMA</td>
<td>R-140</td>
<td>Remote defect/failure</td>
</tr>
<tr>
<td>Tx-Mis-Connected</td>
<td>R-141</td>
<td>Transmit misconnected</td>
</tr>
<tr>
<td>Rx-Mis-Connected</td>
<td>R-142</td>
<td>Receive misconnected</td>
</tr>
<tr>
<td>Tx-Unusable-FE</td>
<td>R-143</td>
<td>Transmit unusable far end</td>
</tr>
<tr>
<td>Rx-Unusable-FE</td>
<td>R-144</td>
<td>Receive unusable far end</td>
</tr>
<tr>
<td>Link Fault</td>
<td></td>
<td>Link fault</td>
</tr>
</tbody>
</table>

IMA Group Statistics

You can use the `show interfaces` command to display the following IMA group statistics:

- Near-end failure count
- Far-end failure count
- Receive end (Rx) faulty cells due to address mismatch
• Running seconds
• Unavailable seconds

For more information about IMA group statistics, see the `show interfaces` command description in the CLI Explorer.

IMA Link Statistics

Table 8 on page 16 shows the IMA link statistics.

Table 8: IMA Link Statistics with IMA Standard Requirement Numbers

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>IMA Standard Requirement Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx LIF</td>
<td>–</td>
</tr>
<tr>
<td>Rx ICP cells</td>
<td>–</td>
</tr>
<tr>
<td>Rx errored ICP cells</td>
<td>R-106</td>
</tr>
<tr>
<td>Rx LODS</td>
<td>R-106</td>
</tr>
<tr>
<td>Rx ICP violation</td>
<td>R-107</td>
</tr>
<tr>
<td>Rx stuff</td>
<td>O-17</td>
</tr>
<tr>
<td>Near-end Rx SES</td>
<td>R-108</td>
</tr>
<tr>
<td>Near-end Rx UAS</td>
<td>R-110</td>
</tr>
<tr>
<td>Near-end Rx UUS</td>
<td>R-113</td>
</tr>
<tr>
<td>Near-end Rx failure</td>
<td>R-117</td>
</tr>
<tr>
<td>Near-end Tx failure</td>
<td>–</td>
</tr>
<tr>
<td>Far-end Rx SES</td>
<td>R-109</td>
</tr>
<tr>
<td>Far-end Rx UAS</td>
<td>R-111</td>
</tr>
<tr>
<td>Far-end Rx UUS</td>
<td>R-115</td>
</tr>
<tr>
<td>Far-end defects</td>
<td>–</td>
</tr>
<tr>
<td>Far-end Rx failure</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 8: IMA Link Statistics with IMA Standard Requirement Numbers (continued)

<table>
<thead>
<tr>
<th>Performance Parameter</th>
<th>IMA Standard Requirement Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx ICP cells</td>
<td>–</td>
</tr>
<tr>
<td>Tx stuff</td>
<td>O-16</td>
</tr>
<tr>
<td>Near-end Tx UUS</td>
<td>R-112</td>
</tr>
<tr>
<td>Far-end Tx UUS</td>
<td>R-114</td>
</tr>
<tr>
<td>Far-end Tx failure</td>
<td>–</td>
</tr>
</tbody>
</table>

IMA Clocking

Interface clock source is applicable only to IMA links.

You can set the interface clock source as external or internal with the `set interfaces at-x/y/z clocking (external | internal)` configuration command. Note that the `clocking` statement is not applicable to the `at-x/y/g` interface because the IMA group it represents is a virtual interface.

Differential Delay

You can set the maximum differential delay from 1 millisecond through 56 milliseconds among links in an IMA group. By default, a differential delay of 25 milliseconds is set. Execute the `set interfaces interface-name ima-group-options differential-delay delay` configuration command to set the differential delay.

Understanding CoS on ATM IMA Pseudowire Interfaces Overview

IN THIS SECTION

- Cell-Based ATM Policing | 18
- Cell-Based ATM Shaping | 19
- Fixed Classification | 19
ACX Series routers configured with Asynchronous Transfer Mode (ATM) inverse multiplexing for ATM (IMA) pseudowire interfaces support class of service (CoS) features for ingress and egress traffic. Policing is performed by monitoring the configured parameters on incoming traffic to conserve resources by dropping traffic that might not meet those configured parameters. Egress shaping uses queuing and scheduling to control the bandwidth used. Fixed classification is provided per interface.

NOTE: ACX5048 and ACX5096 routers do not support ATM IMA pseudowire configurations.

ATM IMA pseudowires with the following encapsulation are supported:

- atm-ccc-cell-relay
- atm-ccc-vc-mux

The following ATM IMA CoS features are supported:

Cell-Based ATM Policing

Policing, or rate limiting, enables you to limit the amount of traffic that passes into or out of the interface. Policing works with firewall filters to thwart denial-of-service (DoS) attacks. Networks police traffic by limiting the input or output transmission rate of a class of traffic on the basis of user-defined criteria. The ATM policer controls the maximum rate of traffic sent from or received on the interface on which it is applied. To apply limits to the traffic flow, configure the `cdvt` and `peak-rate` parameters within the policer. Define the `policing-action` parameter as `discard`, `discard-tag`, or `count` to set a consequence for the packets that exceed these limits. The consequence of configuring the `discard-tag` statement is usually a higher loss priority so that if those packets encounter downstream congestion, they are discarded first.

On ACX Series routers, policing is cell based and configured in the ingress path of the ATM IMA pseudowire interface at the `[edit firewall]` hierarchy level. The following ATM policing features are supported:

- ATM Adaption Layer 5 (AAL5) pseudowires on which cell-based policing is performed before packet assembly.
- Per-ATM IMA channel policing.
- Traffic classes—Constant bit rate (cbr), real-time variable bit rate (rtvbr), non-real-time variable bit rate (nrtvbr), and unspecified bit rate (ubr). All traffic classes must include the `peak-rate` and `cdvt` statements for the configuration to work. With the `peak-rate` statement, you can limit the maximum traffic allowed by specifying the largest number of cells per second that the policer processes before it drops packets. The `cdvt` statement ensures that the configuration functions correctly.
- For nonconforming cells, the `discard`, `discard-tag`, and `count` actions at the `[edit firewall atm-policer policer-name]` hierarchy level. The `discard-tag` action is applicable to variable bit-rate—nrtvbr and rtvbr—traffic classes.
Cell-Based ATM Shaping

Cell-based ATM shaping uses cell-based queuing and scheduling to determine the maximum amount of traffic that can be transmitted on an ATM IMA pseudowire. Packet-based shaping is not supported. On ACX Series routers, ATM shaping is configured in the egress path of the ATM IMA pseudowire interface at the [edit class-of-service] hierarchy level. The following ATM shaping features are supported:

- **Prioritized bit rate**—Constant bit rate (cbr) is the highest priority, followed by variable bit rate—nrtvbr and rtvbr. Unspecified bit rate (ubr) is similar to the best-effort service for Ethernet traffic.
- **Constant bit rate shaping**—Constant bit rate (cbr) shaping uses the peak cell rate to limit the number of cells per second that the shaper processes before it drops packets.
- **Variable bit rate shaping**—Variable bit rate shaping (nrtvbr and rtvbr) uses peak-rate and sustained-rate.
- **Unspecified bit rate**—Unspecified bit rate (ubr) uses peak-rate with the lowest transmit priority.

The default shaping parameter is unspecified bit rate, which is similar to the best-effort service for Ethernet traffic.

Fixed Classification

Fixed classifiers map all traffic on an interface to the forwarding class and loss priority. The forwarding class determines the output queue. A scheduler uses the loss priority to control packet discard during periods of congestion by associating different drop profiles with different loss priorities. On ACX Series routers, the fixed classifier is associated with the ingress interface. Packetts are assigned on the basis of the type of fixed classification associated with the logical interface. To configure a fixed classifier, include the forwarding-class class-name statement at the [edit class-of-service interface interface-name unit logical-unit-number] hierarchy level.

RELATED DOCUMENTATION

- Configuring Fixed Classification on an ATM IMA Pseudowire | 102
- Configuring Policing on an ATM IMA Pseudowire | 114
- Configuring Shaping on an ATM IMA Pseudowire | 107

Supported Features on ATM1 and ATM2 IQ Interfaces

Table 9 on page 20 lists the supported features on ATM1 and ATM2 IQ interfaces.
<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2 IQ</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM Adaptation Layer 5 (AAL5) circuit cross-connect (CCC)</td>
<td>Supported</td>
<td>Supported</td>
<td>For ATM1 and ATM2 IQ Physical Interface Cards (PICs), you can configure any combination of AAL5 CCC, nonpromiscuous cell relay, and AAL5 permanent virtual connections (PVCs) on the same PIC at the same time. See "Configuring ATM Interface Encapsulation" on page 57.</td>
</tr>
<tr>
<td>Cell-relay accumulation mode: The incoming cells (1 to 8) are</td>
<td>Supported</td>
<td>Not supported</td>
<td>Cell-relay accumulation mode is per PIC, not per port. If you configure accumulation mode, the entire ATM1 PIC uses the configured mode. See "Configuring ATM Interface Encapsulation" on page 57.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>supported</td>
</tr>
<tr>
<td>Cell-relay promiscuous port mode: All cells from 0 through 65,535 of</td>
<td>Supported</td>
<td>Supported</td>
<td>For promiscuous mode, you must configure the port with <code>atm-ccc-cell-relay</code> encapsulation. For ATM2 IQ multiport PICs, you can configure one or more ports in port promiscuous mode, and the other ports with any ATM encapsulation. For ATM2 IQ PICs, you can configure one or more logical interfaces in VPI promiscuous mode, and the other logical interfaces with any ATM encapsulation. For ATM1 PICs, if you configure one port in port mode, all ports on the PIC operate in port mode. Likewise if you configure one logical interface in VPI mode, all logical interfaces on the PIC operate in VPI mode. See "Configuring ATM Cell-Relay Promiscuous Mode" on page 47.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>all VPIs (0 through 255) are sent to or received from an LSP.</td>
</tr>
<tr>
<td>Cell-relay promiscuous VPI mode: All cells in the VCI range</td>
<td>Supported</td>
<td>Supported</td>
<td></td>
</tr>
</tbody>
</table>
Table 9: ATM1 and ATM2 IQ Supported Features (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2 IQ</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell-relay VP shaping</td>
<td>Supported</td>
<td>Supported</td>
<td>For ATM2 PICs, you can configure ATM CC cell relay promiscuous mode. VP promiscuous mode allows incoming traffic on all VCs under the VPI to be bundled and directed to an LSP. Port promiscuous mode allows all traffic coming in on the entire VPI/VCI range to be forwarded to an LSP. In both modes, traffic shaping is not permitted. The ATM2 PIC supports traffic shaping in VP promiscuous mode and cell relay VC mode.</td>
</tr>
<tr>
<td>Cell-relay VCI mode: All cells in a VCI are sent to or received from an LSP.</td>
<td>Supported</td>
<td>Supported</td>
<td>For ATM1 PICs, nonpromiscuous cell-relay VCI, VPI, and port modes are supported on the same PIC with ATM AAL5 PVCs or ATM AAL5 CCC.</td>
</tr>
<tr>
<td>Cell-relay VPI mode: All cells in the VCI range (0 through maximum-vcs) of a single VPI are sent to or received from an LSP.</td>
<td>Supported</td>
<td>Not supported</td>
<td>For ATM2 IQ PICs, nonpromiscuous cell-relay VCI mode is supported on the same PIC with ATM AAL5 PVCs or ATM AAL5 CCC. See "Configuring ATM Interface Encapsulation" on page 57.</td>
</tr>
<tr>
<td>Cell-relay port mode: All cells in the VCI range (0 through maximum-vcs) of all VPIs (0 through 255) are sent to or received from an LSP.</td>
<td>Supported</td>
<td>Not supported</td>
<td>For ATM1 PICs, port mode is supported on the same PIC with ATM AAL5 PVCs or ATM AAL5 CCC. See "Configuring ATM Interface Encapsulation" on page 57.</td>
</tr>
<tr>
<td>Ethernet over ATM encapsulation: Allows ATM interfaces to connect to devices that support only bridged-mode protocol data units (PDUs).</td>
<td>Supported</td>
<td>Supported</td>
<td>See "Configuring ATM Interface Encapsulation" on page 57.</td>
</tr>
</tbody>
</table>
Table 9: ATM1 and ATM2 IQ Supported Features (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2 IQ</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 circuit cell-relay, Layer 2 circuit AAL5, and Layer 2 circuit trunk transport modes: Allow you to send ATM cells or AAL5 PDUs between ATM2 IQ interfaces across a Layer 2 circuit-enabled network. Layer 2 circuits are designed to transport Layer 2 frames between provider edge (PE) routers across a Label Distribution Protocol (LDP)-signaled Multiprotocol Label Switching (MPLS) backbone.</td>
<td>Not supported</td>
<td>Supported</td>
<td>Transport mode is per PIC, not per port. If you configure Layer 2 circuit cell-relay, Layer 2 circuit AAL5, or Layer 2 circuit trunk transport mode, the entire ATM2 IQ PIC uses the configured transport mode. Layer 2 circuit cell-relay mode supports both VP- and port-promiscuous modes. See “Configuring Layer 2 Circuit Transport Mode” on page 61.</td>
</tr>
<tr>
<td>Layer 2 VPN cell relay and Layer 2 VPN AAL5: Allow you to carry ATM cells or AAL5 PDUs over an MPLS backbone.</td>
<td>Supported</td>
<td>Supported</td>
<td>See the Junos OS VPNs Library for Routing Devices.</td>
</tr>
<tr>
<td>Point-to-Point Protocol (PPP) over ATM encapsulation: Associates a PPP link with an ATM AAL5 PVC.</td>
<td>Not supported</td>
<td>Supported</td>
<td>For ATM2 IQ interfaces, the Junos OS supports three PPP over ATM encapsulation types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• atm-ppp-llc—PPP over AAL5 logical link control (LLC).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• atm-ppp-vc-mux—PPP over AAL5 multiplex.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• atm-mlppp-llc—Multilink PPP over AAL5 LLC. Requires a Link Services or Voice Services PIC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See "Configuring PPP over ATM2 Encapsulation Overview" on page 95.</td>
</tr>
</tbody>
</table>

Other ATM Attributes
Table 9: ATM1 and ATM2 IQ Supported Features (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2 IQ</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPD (early packet discard) threshold: Limits the queue size in ATM cells of a particular VC or forwarding class configured over a VC when using VC tunnel class of service (CoS). When the first ATM cell of a new packet is received, the VC's queue depth is checked against the EPD threshold. If the VC's queue depth exceeds the EPD threshold, the first and all subsequent ATM cells in the packet are discarded.</td>
<td>Not supported</td>
<td>Supported</td>
<td>If you are using VC tunnel CoS, the EPD threshold configured at the logical unit level has no effect. You should configure each forwarding class for congestion management using either an individual EPD threshold (in other words, tail drop) or weighted random early detection (WRED) profile. See "Configuring the ATM2 IQ EPD Threshold" on page 152 and "ATM2 IQ VC Tunnel CoS Components Overview" on page 135.</td>
</tr>
<tr>
<td>OAM F4 cell flows: Identify and report virtual path connection (VPC) defects and failures.</td>
<td>Not supported</td>
<td>Supported</td>
<td>See "Configuring the OAM F4 Cell Flows" on page 100.</td>
</tr>
<tr>
<td>OAM F5 loopback cell responses</td>
<td>Supported</td>
<td>Supported</td>
<td>For ATM1 interfaces, when an OAM F5 loopback request is received, the response cell is sent by the PIC. The request and response cells are not counted in the VC, logical interface, or physical interface statistics. For ATM2 IQ interfaces, when an OAM F5 loopback request is received, the response is sent by the Routing Engine. The OAM, VC, logical interface, and physical interface statistics are incremented. See "Defining the ATM OAM F5 Loopback Cell Period" on page 101 and "Configuring the ATM OAM F5 Loopback Cell Threshold" on page 99.</td>
</tr>
<tr>
<td>Passive monitoring mode</td>
<td>Supported</td>
<td>Supported</td>
<td>See "Enabling Passive Monitoring on ATM Interfaces" on page 181.</td>
</tr>
<tr>
<td>PIC type</td>
<td>Supported</td>
<td>Supported</td>
<td>For ATM1 interfaces, you can include the <code>pic-type atm1</code> statement. For ATM2 IQ interfaces, you can include the <code>pic-type atm2</code> statement. See "Configuring the ATM PIC Type" on page 44.</td>
</tr>
</tbody>
</table>
Table 9: ATM1 and ATM2 IQ Supported Features *(continued)*

<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2 IQ</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Ping | Supported | Supported | For ATM1 and ATM2 IQ interfaces, when you issue the ATM ping command, you must include a logical unit number in the interface name, as shown in the following example:
 ping atm interface at-1/0/0.5 vci 0.123 count 3
The logical unit number is 5 on physical interface at-1/0/0.
See the CLI Explorer. |
| Queue length: Limits the queue size in packets of a particular VC. | Supported | Not supported | See "Configuring the ATM1 Queue Length" on page 132. |
| Real-time variable bit rate (VBR): Supports VBR data traffic with average and peak traffic parameters. | Not supported | Supported | Compared to non-real-time VBR, real-time VBR data is serviced at a higher priority. Real-time VBR is suitable for carrying packetized video and audio.
See "Configuring ATM CBR" on page 125. |
Table 9: ATM1 and ATM2 IQ Supported Features (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Shaping rates: Peak and sustained rates of traffic. | Supported | Supported | For ATM1 OC3 interfaces, the rate can be from 33 kilobits per second (Kbps) through 135.6 megabits per second (Mbps); for ATM1 OC12 interfaces, the rate can be from 33 Kbps through 276 Mbps.
For ATM2 IQ OC3 interfaces, the rate can be from 33 Kbps through 135,600,000 bits per second (bps). For ATM2 IQ OC12 interfaces, the rate can be from 33 Kbps through 271,273,396 bps (up to 50 percent of the line rate).
For ATM2 IQ OC48 interfaces, the rate can be from 33 Kbps through 2,170,107,168 bits per second (bps).
For ATM2 IQ DS3 and E3 interfaces, the rate can be from 33 Kbps to the maximum rate. The maximum rate varies depending on the ATM encapsulation and framing you configure:
• For DS3 interfaces with direct ATM encapsulation, the maximum rate is 40,038,968 bps.
• For DS3 interfaces with Physical Layer Convergence Protocol (PLCP) ATM encapsulation, the maximum rate is 36,864,000 bps.
• For E3 interfaces with g.751 framing and direct ATM encapsulation, the maximum rate is 30,801,509 bps.
• For E3 interfaces with g.751 framing PLCP ATM encapsulation, the maximum rate is 27,648,000 bps.
• For E3 interfaces with g.832 framing, the maximum rate is 30,720,000 bps.
See "Defining the ATM Traffic-Shaping Profile Overview" on page 124. |
<table>
<thead>
<tr>
<th>Item</th>
<th>ATM1</th>
<th>ATM2 IQ</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC tunnel CoS: Allows VCs to be opened as VC tunnels.</td>
<td>Not supported</td>
<td>Supported</td>
<td>On M Series routers (except the M320 and M120 routers), a VC tunnel can support four CoS queues. On the M320, M120, and T Series routers, a VC tunnel can support eight CoS queues. Within the VC tunnel, the class-based weighted fair queuing algorithm is used to schedule packet transmission from each queue. You can configure the queue admission policies, such as EPD or WRED, to control the queue size during congestion. See "ATM2 IQ VC Tunnel CoS Components Overview" on page 135.</td>
</tr>
</tbody>
</table>
| VCI management | Supported | Supported | For ATM1 interfaces, you must specify the maximum number of VCs by including the `maximum-vcs` statement in the configuration. This restricts VCs to the range 0 through `maximum-vcs`. See "Configuring the Maximum Number of ATM1 VCs on a VP" on page 52. For ATM2 interfaces, you must not include the `maximum-vcs` statement in the configuration. All ATM2 IQ interfaces support VCI numbers from 0 through 65,535. The total number of VCs that you can open on an ATM2 IQ port depends on two factors:
 - Number of tunnels
 - Sparseness of VCI numbers (the more sparse, the fewer VCs supported)
 For ATM1 and ATM2 IQ interfaces with promiscuous mode, the allowable maximum number of VCs is 65,535. |
| VCI statistics | Supported | Supported | For ATM1 interfaces, multipoint VCI statistics are collected from indirect sources. For ATM2 IQ interfaces, multipoint VCI statistics are collected directly from the PIC. For ATM1 and ATM2 IQ interfaces, point-to-point VCI statistics are the same as logical interface statistics. |
ATM OAM F4 and F5 Cells on ACX Series Routers

Circuit Emulation PICs on ACX Series routers provide Asynchronous Transfer Mode (ATM) support for the following Operations, Administration, and Maintenance (OAM) fault management cell types:

- F4 alarm indication signal (AIS) (end-to-end)
- F4 remote defect indication (RDI) (end-to-end)
- F4 loopback (end-to-end)
- F5 loopback
- F5 AIS
- F5 RDI

ATM OAM is supported on ACX1000, ACX2000, and ACX2200 routers, and on Channelized E1/T1 Circuit Emulation MICs on ACX4000 routers.

The following methods of processing OAM cells that traverse through pseudowires with circuit cross-connect (CCC) encapsulation are supported:

- Virtual path (VP) pseudowires (CCC encapsulation)—In the case of ATM VP pseudowires (all virtual circuits in a VP are transported over a single N-to-one mode pseudowire), all F4 and F5 OAM cells are forwarded through the pseudowire.
- Port pseudowires (CCC encapsulation)—Similar to VP pseudowires, with port pseudowires, all F4 and F5 OAM cells are forwarded through the pseudowire.
- Virtual circuit (VC) pseudowires (CCC encapsulation)—In the case of VC pseudowires, F5 OAM cells are forwarded through the pseudowire, while F4 OAM cells are terminated at the Routing Engine.

For ATM pseudowires, the F4 flow cell is used to manage the VP level. On ACX Series routers with ATM pseudowires (CCC encapsulation), you can configure OAM F4 cell flows to identify and report virtual path connection (VPC) defects and failures. Junos OS supports three types of OAM F4 cells in end-to-end F4 flows:

- Virtual path AIS
- Virtual path RDI
- Virtual path loopback

For OAM F4 and F5 cells, IP termination is not supported. Also, Junos OS does not support segment F4 flows, VPC continuity check, or VP performance management functions. The maximum number of ATM VCs that you can configure on ACX Series routers is 1000.

ACX Series routers do not support the transmission and reception of OAM F5 loopback cells. Therefore, for ATM1 and ATM2 IQ interfaces with an ATM encapsulation, you cannot configure the OAM F5 loopback cell period on virtual circuits on ACX Series routers.
For OAM F4 cells, on each VP, you can configure an interval during which to transmit loopback cells by including the `oam-period` statement at the `[edit interfaces interface-name atm-options vpi vpi-identifier]` hierarchy level. To modify OAM liveness values on a VP, include the `oam-liveness` statement at the `[edit interfaces interface-name atm-options vpi vpi-identifier]` hierarchy level.

For interfaces that are configured for ATM cell-relay promiscuous virtual path identifier (VPI) mode, the show interfaces command output does not display the OAM F4 cell statistics. Also, the `Input OAM cell no buffers` field is not displayed to indicate the number of received OAM cells or raw cells dropped because of non-availability of buffers in the output of the `show interfaces` command for ATM interfaces. You cannot configure a fiber channel separately for OAM cells than the one used for other packets.

Layer 2 cell-relay encapsulation supports the concatenation (aggregation) of multiple ATM cells in a single encapsulated packet that is transmitted on a pseudowire. By default, each frame contains one cell. For ATM interfaces with Layer 2 circuit cell-relay transport mode configured, you can configure the time threshold (in microseconds) that the router uses to concatenate ATM cells and transmit the cells in a single frame on the pseudowire. To set the period for which the ATM cells must be collected to be bundled in a single frame being transmitted on the pseudowire, include the `cell-bundle-timeout` statement at the `[edit interfaces at-fpc/pic/port atm-options]` or the `[edit interfaces at-fpc/pic/port unit logical-unit-number]` hierarchy level.

You can also configure the maximum number of ATM cells per frame on the physical or logical interface. To set the maximum number of cells per frame, include the `cell-bundle-size` statement at the `[edit interfaces at-fpc/pic/port atm-options]` and the `[edit interfaces at-fpc/pic/port unit logical-unit-number]` hierarchy levels. The cell bundle size can be from 1 through 26.

RELATED DOCUMENTATION

- Defining the ATM OAM F5 Loopback Cell Period | 101
- Configuring the ATM OAM F5 Loopback Cell Threshold | 99
- Configuring the Timeout for Bundling of Layer 2 Circuit Cell-Relay Cells | 91
- Configuring the Layer 2 Circuit Cell-Relay Cell Maximum Overview | 86
CHAPTER 2

Configuring ATM Interfaces

IN THIS CHAPTER

- Configuring Inverse Multiplexing for ATM (IMA) on ACX Series | 30
- Example: ATM Pseudowire Base Configuration | 35
- Example: Configuring ATM1 Interfaces | 39
- Example: Configuring ATM2 IQ Interfaces | 42
- Configuring the ATM PIC Type | 44
- Configuring ATM Cell-Relay Promiscuous Mode | 47
- Configuring the Maximum Number of ATM1 VCs on a VP | 52
- Configuring Communication with Directly Attached ATM Switches and Routers | 53
- Enabling ILMI for Cell Relay | 54
- Configuring E3 and T3 Parameters on ATM Interfaces | 55
- Configuring SONET/SDH Parameters on ATM Interfaces | 56
- Configuring ATM Interface Encapsulation | 57
- Configuring Layer 2 Circuit Transport Mode | 61
- Layer 2 Circuit Transport Mode on ATM MICs Overview | 72
- Configuring Layer 2 Circuit Transport Mode on ATM MICs | 73
- Example: Configuring Layer 2 Circuit Transport Mode on ATM MICs | 74
- Configuring a Point-to-Multipoint Connection on ATM MICs | 78
- Configuring ATM Cell-Relay Pseudowire | 82
- Configuring the Layer 2 Circuit Cell-Relay Cell Maximum Overview | 86
- Configuring Layer 2 Circuit Trunk Mode Scheduling Overview | 87
- Configuring CoS Queues in Layer 2 Circuit Trunk Mode | 88
- Configuring the Timeout for Bundling of Layer 2 Circuit Cell-Relay Cells | 91
- Configuring an ATM1 Cell-Relay Circuit Overview | 92
- Configuring PPP over ATM2 Encapsulation Overview | 95
- Configuring a Multicast-able ATM1 or ATM2 IQ Connection | 99
- Configuring the ATM OAM F5 Loopback Cell Threshold | 99
- Configuring the OAM F4 Cell Flows | 100
- Defining the ATM OAM F5 Loopback Cell Period | 101
Inverse multiplexing for ATM (IMA) is a standardized technology used to transport ATM traffic over a bundle of T1 or E1 interfaces, also known as an IMA Group, allowing for an increase in the bandwidth capacity. When you configure IMA on ACX Series routers, you must configure the following:
• The aggregated device count—The device count is the number of IMA group interfaces created on the CT1 or CE1 interfaces. The logical ATM interface that is part of the IMA group has the following naming format: \texttt{at-fpc/pic/port} with the \texttt{port} number taken from the last port on the MIC plus 1. For example, on the ACX2000 router with a 16-port built-in T1/E1 TDM MIC, the IMA group interface numbering starts with \texttt{at-0/0/16} and increments by 1 to \texttt{at-0/0/17}, and so on. On the ACX1000 router with an 8-port built-in T1/E1 TDM MIC, the IMA group interface numbering starts with \texttt{at-0/0/8} and increments by 1 to \texttt{at-0/0/9}, and so on.

• The framing mode—Emulation is a mechanism that duplicates the essential attributes of a service, such as T1 or E1, over a packet-switched network. The built-in channelized T1 and E1 interfaces (CT1 and CE1) on the ACX Series routers can be configured to work in either T1 or E1 mode, and these child T1 and E1 interfaces can be configured to carry ATM services over the packet-switched network.

• One full T1 or E1 interface on the channelized CT1 or CE1 interface—The built-in channelized interface is a non-configurable interface that requires a child T1 or E1 or ATM interface on which you configure the parameters.

• The T1 or E1 interface as a member of the IMA group of the respective IMA link—Each child T1 or E1 interface of a channelized CT1 or CE1 interface is the physical interface over which the ATM signals are carried. This T1 or E1 interface must be specified as a member of an IMA group so that the IMA link will work.

• IMA group interface configuration—Each IMA group interface (\texttt{at-fpc/pic/port}) must be configured with all ATM properties for it to work properly: logical link-layer encapsulation type, the circuit cross-connect protocol suite, and the entire ATM device must be dedicated to the ATM cell relay circuit.

The following sections explain how to create an ATM IMA group and to configure it according to your requirements:

The following sections explain how to create an ATM IMA group and to configure it according to your requirements:

Creating an IMA Group (ATM Interfaces)

To create an IMA group, perform the following steps:

1. In configuration mode, go to the [edit chassis] hierarchy level:

   ```
   [edit]
   user@host# edit chassis
   ```

2. Configure the Flexible Port Concentrator (FPC) slot and the Physical Interface Card (PIC) slot as needed.

   ```
   [edit chassis]
   user@host# set fpc fpc-slot pic pic-slot
   ```
3. Configure the device count. The device count can be set starting from 1 through 42 in the aggregated device options for inverse multiplexing for ATM at the `[edit chassis fpc fpc-slot pic pic-slot]` hierarchy level.

```
[edit chassis fpc fpc-slot pic pic-slot]
user@host# set aggregated-devices ima device-count count
```

This results in the creation of interfaces from at-x/y/g through at-x/y/g+count–1, where the variable count is the number of interfaces and the variable g is picked from 16 onwards.

The PIC is automatically rebooted when a configuration that changes the IMA group count is committed.

Configuring Group ID for an IMA Link on a T1 Interface or an E1 Interface

A group ID is assigned to all links in an IMA group.

To assign a group ID to a T1 or an E1 interface:

1. In configuration mode, go to the `[edit interfaces interface-name]` hierarchy level, where the interface name is `t1-fpc/pic/port:m:n`, `e1-fpc/pic/port:n`, or `t1|e1-fpc/pic/port`.

```
[edit]
user@host# edit interface interface-name
```

2. Configure the encapsulation as `ima`.

```
[edit interface interface-name]
user@host# set encapsulation ima
```

3. Configure the IMA group ID from 16 through 57. Note that this group ID is the same for all T1/E1 interfaces for a particular ATM IMA interface.

```
[edit interface interface-name]
user@host# set ima-link-options group-id number
```

Implement the aforementioned procedure to apply a group ID for all applicable T1 or E1 interfaces.
Configuring ATM Encapsulation Options

To configure the logical link-layer encapsulation for an ATM interface to support IMA:

1. In configuration mode, go to the [edit interfaces interface-name] hierarchy level, where the interface name is at-fpc/pic/port.

 [edit]
 user@host# edit interface interface-name

2. Configure the logical interface (unit) as 0 and set the encapsulation for this logical interface as either ATM cell relay for CCC or ATM VC for CCC.

 [edit interface interface-name]
 user@host# set unit 0 encapsulation (atm-ccc-cell-relay | atm-ccc-vc-mux)

Configuring IMA Group Options

To configure the various options for an IMA group on an ATM interface:

1. In configuration mode, go to the [edit interfaces interface-name ima-group-options] hierarchy level, where the interface name is at-fpc/pic/port.

 [edit]
 user@host# edit interface interface-name ima-group-options

2. Configure the maximum differential delay between the links in the IMA group. You can configure the maximum differential delay from 1 millisecond through 56 milliseconds. By default, 25 milliseconds is set.

 [edit interface interface-name ima-atm-options]
 user@host# set differential-delay delay

3. Configure the frame length of the ICP cell as 32, 64, 128, or 256. By default, 128 is set.

 [edit interface interface-name ima-atm-options]
 user@host# set frame-length length

4. Configure the IMA group frame synchronization state parameters alpha, beta, and gamma.
For the default values and parameter range for alpha, beta, and gamma, see "Understanding ATM IMA Configuration on ACX Series Router" on page 9.

5. Configure IMA group minimum active links. You can configure between 1 to 16 links. 1 is set by default.

6. Configure the symmetry of the IMA group as either symmetrical configuration and operation or symmetrical configuration and asymmetrical operation.

7. Configure a test procedure to start and end the test pattern procedure.

8. Configure a transmit clock to reflect the primary reference source (PRS) of the clock for each link in a group either in common timing mode or independent timing mode. By default, common timing mode is selected.

9. Configure the IMA specification version as either version 1.0 or version 1.1. By default, IMA version 1.1 is selected.
Example: ATM Pseudowire Base Configuration

IN THIS SECTION

- Requirements | 35
- Overview of an ATM Pseudowire With Cell Mode Base Configuration | 35
- Configuring an ATM Pseudowire | 35

Requirements

The following is a list of the hardware and software requirements for this configuration.

- One ACX Series router
- Junos OS Release 12.2 or later

Overview of an ATM Pseudowire With Cell Mode Base Configuration

The configuration shown here is the base configuration of an ATM pseudowire with ATM cell-relay encapsulation on an ACX Series router. This configuration is for one provider edge router. To complete the configuration of an ATM pseudowire, you need to repeat this configuration on another provider edge router in the MPLS network.

Configuring an ATM Pseudowire

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

```
set interfaces at-0/0/0 atm-options vpi 0
set interfaces at-0/0/0 unit 0 encapsulation atm-ccc-cell-relay
```
set interfaces at-0/0/0 unit 0 vci 0.64
set interfaces ct1-0/0/0 no-partition interface-type at
set interfaces ge-0/2/0 unit 0 family inet address 20.1.1.2/24
set interfaces ge-0/2/0 unit 0 family mpls
set interfaces lo0 unit 0 family inet address 70.1.1.1/32
set protocols rsvp interface ge-0/2/0.0
set protocols mpls no-cspf
set protocols mpls label-switched-path PE1-to-PE2 to 40.1.1.1
set protocols mpls interface ge-0/2/0.0
set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface ge-0/2/0.0
set protocols ospf area 0.0.0.0 interface lo0.0 passive
set protocols ldp interface ge-0/2/0.0
set protocols ldp interface lo0.0
set protocols l2circuit neighbor 40.1.1.1 interface at-0/0/0.0 virtual-circuit-id 1

NOTE: To configure an ATM pseudowire with ATM virtual circuit (VC) multiplex encapsulation on CCC circuits, include the `atm-ccc-vc-mux` statement at the `[edit interfaces at-0/0/0 unit 0 encapsulation]` hierarchy level instead of the `atm-ccc-cell-relay` statement shown in this example.

Step-by-Step Procedure

1. Create an ATM interface on a channelized T1 interface (ct1) and enable full channelization with the `no-partition` statement. On the ATM interface, set the ATM virtual circuit identifier (VCI), the virtual path identifier (VPI), and set the encapsulation cell mode.

 [edit]
 user@host# edit interfaces
 [edit interfaces]
 user@host# set ct1-0/0/0 no-partition interface-type at
 user@host# set at-0/0/0 unit 0 vci 0.64
 user@host# set at-0/0/0 unit 0 vpi 0
 user@host# set at-0/0/0 unit 0 encapsulation atm-ccc-cell-relay

2. Create a Gigabit Ethernet interface and enable MPLS on that interface. Create the loopback (lo0) interface:

 [edit interfaces]
3. Enable the MPLS and RSVP protocols on the MPLS interface—ge-0/2/0.0:

```
[edit]
user@host# edit protocols
[edit protocols]
user@host# set rsvp interface ge-0/2/0.0
user@host# set mpls interface ge-0/2/0.0
```

4. Configure LDP. If you configure RSVP for a pseudowire, you must also configure LDP:

```
[edit protocols]
user@host# set protocols ldp interface ge-0/2/0.0
user@host# set protocols ldp interface lo0.0
```

5. Configure a point-to-point label-switched path (LSP) and disable constrained-path LSP computation:

```
[edit protocols]
user@host# set mpls label-switched-path PE1-to-PE2 to 40.1.1.1
user@host# set mpls no-cspf
```

6. Configure OSPF and enable traffic engineering on the MPLS interface—ge-0/2/0.0, and on the loopback (lo0) interface:

```
[edit protocols]
user@host# set ospf traffic-engineering
user@host# set ospf area 0.0.0.0 interface ge-0/2/0.0
user@host# set ospf area 0.0.0.0 interface lo0.0 passive
```

7. Uniquely identify a Layer 2 circuit for the ATM pseudowire:

```
[edit protocols]
user@host# set l2circuit neighbor 40.1.1.1 interface at-0/0/0.0 virtual-circuit-id 1
```
[edit]
user@host# show
interfaces {
 at-0/0/0 {
 atm-options {
 vpi 0;
 }
 unit 0 {
 encapsulation atm-ccc-cell-relay;
 vci 0.64;
 }
 }
 ct1-0/0/0 {
 no-partition interface-type at;
 }
 ge-0/2/0 {
 unit 0 {
 family inet {
 address 20.1.1.2/24;
 }
 family mpls;
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 70.1.1.1/32;
 }
 }
 }
}
protocols {
 rsvp {
 interface ge-0/2/0.0;
 }
 mpls {
 no-cspf;
 label-switched-path PE1-to-PE2 {
 to 40.1.1.1;
 }
 interface ge-0/2/0.0;
 }
}
ospf {
 traffic-engineering;
 area 0.0.0.0 {
 interface ge-0/2/0.0;
 interface lo0.0 {
 passive;
 }
 }
}
ldp {
 interface ge-0/2/0.0;
 interface lo0.0;
}
l2circuit {
 neighbor 40.1.1.1 {
 interface at-0/0/0.0 {
 virtual-circuit-id 1;
 }
 }
}

RELATED DOCUMENTATION

Pseudowire Overview for ACX Series Universal Metro Routers

Example: Configuring ATM1 Interfaces

The following configuration is sufficient to get an ATM1 OC3 or OC12 interface up and running. By default, ATM interfaces use ATM PVC encapsulation.

[edit interfaces]
at-fpc/pic/port {
atm-options {
 vpi vpi-identifier maximum-vcs maximum-vcs-value;
 unit 0 { # one unit per VC
 vci vpi-identifier.vci-identifier;
Complex Configuration Example

[edit interfaces]
at-0/0/0 {
 encapsulation atm-pvc;
 atm-options {
 vpi 0 maximum-vcs 1200;
 }
 unit 2 {
 encapsulation atm-snap;
 inverse-arp;
 vci 0.80;
 family inet {
 mtu 1500;
 address 192.168.0.3/32 {
 destination 192.168.0.1;
 }
 }
 }
 unit 3 {
 encapsulation atm-snap;
 vci 0.32;
 oam-period 60;
 family inet {
 mtu 1500;
 address 192.168.4.3/32 {
 destination 192.168.4.2;
 }
 }
 }
}
encapsulation atm-pvc;
atm-options {
 vpi 0 maximum-vcs 1200;
}
unit 2 {
 encapsulation atm-snap;
 inverse-arp;
 vci 0.82;
 family inet {
 mtu 1500;
 address 192.168.5.3/32 {
 destination 192.168.5.2;
 }
 }
}
}
at-0/3/0 {
 encapsulation atm-pvc;
 atm-options {
 vpi 0 maximum-vcs 1200;
 }
 unit 140 {
 encapsulation atm-snap;
 multipoint;
 family inet {
 address 192.168.7.4/24 {
 multipoint-destination 192.168.7.5;
 vci 0.100;
 inverse-arp;
 }
 }
 }
}
at-7/3/0 {
 encapsulation atm-pvc;
 atm-options {
 vpi 0 maximum-vcs 1200;
 }
 unit 0 {
 encapsulation atm-snap;
 vci 0.32;
 family inet {
address 192.168.12.3/32 {
 destination 192.168.12.2;
}

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>ATM Interfaces Overview</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the Maximum Number of ATM1 VCs on a VP</td>
<td>52</td>
</tr>
<tr>
<td>Displaying the Status of a Specific ATM1 Interface</td>
<td>226</td>
</tr>
<tr>
<td>Verifying the Configuration of an ATM1 Interface</td>
<td>213</td>
</tr>
<tr>
<td>Displaying ATM1 and ATM2 Alarms and Errors</td>
<td>284</td>
</tr>
</tbody>
</table>

Example: Configuring ATM2 IQ Interfaces

Configure VP tunnel-shaping and OAM F4 on an ATM2 IQ interface:

```
interfaces {
  at-5/2/0 {
    atm-options {
      vpi 0 {
        shaping {
          vbr peak 10m sustained 6m burst 12;
        }
        oam-period 10;
        oam-liveness {
          up-count 6;
          down-count 5;
        }
      }
      vpi 4 {
        shaping {
          vbr peak 7m sustained 4m burst 24;
        }
      }
    }
  }
}
```
vpi 5 {
 oam-period 10;
 oam-liveness {
 up-count 6;
 down-count 5;
 }
}

vpi 6;

unit 0 {
 vci 0.128;
 transmit-weight 20;
 family inet {
 address 192.168.9.225/32 {
 destination 192.168.9.224;
 }
 }
}

unit 1 {
 vci 0.129;
 transmit-weight 30;
 family inet {
 address 192.168.9.226/32 {
 destination 192.168.9.227;
 }
 }
}

unit 2 {
 vci 5.123;
 shaping {
 vbr peak 60m sustained 4m burst 24;
 }
 family inet {
 address 192.168.9.227/32 {
 destination 192.168.9.230;
 }
 }
}

}

RELATED DOCUMENTATION
Configuring the ATM PIC Type

For ATM1 and ATM2 IQ interfaces, the Junos OS does not determine from the interface name `at-fpc/pic/port` whether your router has an ATM1 or ATM2 IQ PIC installed. You can configure the PIC type as ATM1 or ATM2 IQ by including the `pic-type` statement at the `[edit interfaces interface-name atm-options]` hierarchy level:

```
[edit interfaces interface-name atm-options]
pic-type (atm1 | atm2);
```

On MX Series routers with ATM MICs with SFP, you do not have to configure the PIC type because Junos OS automatically configures the PIC type as ATM MIC.

NOTE: This topic uses the term PIC for ATM MICs where the reference is to a CLI or Junos OS entity.

The following guidelines apply to configuring the ATM PIC type:

- If you include the `pic-type` statement in the configuration, and you include other statements at the `[edit interfaces interface-name atm-options]` hierarchy level that do not match the configured PIC type, the configuration does not commit. For example, you cannot commit a configuration that includes the `pic-type atm2` statement and the `maximum-vcs` statement.

- If you do not include the `pic-type` statement and you do include the `maximum-vcs` statement in the configuration, Junos OS assumes you are configuring an ATM1 interface, and sets the PIC type option accordingly. If you do not include the `maximum-vcs` statement in the configuration, Junos OS assumes you are configuring an ATM2 IQ interface, and sets the PIC type option accordingly.

- On MX Series routers with ATM MICs with SFP, Junos OS automatically sets the PIC type to ATM MIC.

- If you include the `promiscuous-mode` statement in the configuration of an ATM2 interface, you must also include the `pic-type atm2` statement.
Configure the PIC type on an ATM1 and an ATM2 interface.

NOTE: On MX Series routers with ATM MICs with SFP, Junos OS automatically sets the PIC type to ATM MIC.

To configuring the ATM PIC Type:

- **On an ATM1 Interface**

```diff
[edit interfaces]
at-1/0/0 {
atm-options {
  pic-type atm1;
  vpi 0 maximum-vcs 256;
  vpi 1 maximum-vcs 512;
}
...}
```

- **On an ATM2 IQ Interface**

```diff
[edit interfaces]
at-1/1/0 {
atm-options {
  pic-type atm2;
  vpi 0;
  vpi 2 {
    oam-period 6;
  }
}

...}
```

- **On an ATM MIC Interface**

```diff
[edit interfaces]
at-1/1/0 {
atm-options {
  vpi 7;
}
...}
```
Configuring ATM Cell-Relay Promiscuous Mode
For ATM1 and ATM2 IQ with `atm-ccc-cell-relay` encapsulation, you can map all incoming cells from either an interface port or a virtual path (VP) to a single LSP without restricting the VCI number. Promiscuous mode allows you to map traffic from all 65,535 VCIs to a single LSP, or from all 256 VPIs to a single LSP.

To map incoming traffic from a port or VC to an LSP, include the `promiscuous-mode` statement at the [edit interfaces interface-name atm-options] hierarchy level:

```plaintext
[edit interfaces interface-name]
atm-options {
  promiscuous-mode {
    vpi vpi-identifier;
  }
}
```

You can include multiple `vpi` statements in the configuration.

To enable all VCIs in a VPI to open in ATM CCC cell-relay mode, you must also map the logical interface to a VPI by including the `vpi` statement in the logical interface configuration:

```plaintext
vpi vpi-identifier;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Also, note the following:

- For promiscuous mode, you must configure the port with `atm-ccc-cell-relay` encapsulation.
- For ATM1 PICs and ATM2 IQ PICs, changing modes between promiscuous and nonpromiscuous causes all physical interfaces to be deleted and re-added.
- For ATM1 PICs, and ATM2 IQ PICs, when you configure promiscuous mode, you cannot configure VCIs.
- For ATM1 PICs, if you configure one port in port mode, all ports on the PIC operate in port mode. Likewise if you configure one logical interface in VPI mode, all logical interfaces on the PIC must operate in VPI mode.
- For ATM2 IQ PICs, you can configure one or more logical interfaces in VPI promiscuous mode, and the other logical interfaces with any ATM encapsulation.
- For ATM2 IQ PICs, when you configure promiscuous mode, you must also include the `pic-type atm2` statement. For more information, see "Configuring the ATM PIC Type" on page 44.
- For ATM2 IQ multiport PICs, you can configure one or more ports in port promiscuous mode, and the other ports with any ATM encapsulation.
• For interfaces that are configured for cell-relay promiscuous virtual path identifier (VPI) mode, the `show interfaces` command output does not show OAM F4 cell statistics.

To configure ATM Cell-Relay Promiscuous Mode:

1. Use the following statements to configure the port-promiscuous mode:

 Configuring Port-Promiscuous Mode

   ```
   [edit interfaces]
   at-0/2/1 {
      encapsulation atm-ccc-cell-relay; # at the physical interface level only
      atm-options {
         pic-type atm2;
         promiscuous-mode;
      }
      unit 0 {
         allow-any-vci;
      }
   }
   ```

2. Use the following statements to configure the VP-Promiscuous mode:

 Configuring VP-Promiscuous Mode

   ```
   [edit interfaces]
   at-0/2/0 {
      atm-options {
         pic-type atm2;
         promiscuous-mode {
            vpi 0;
            vpi 1;
         }
      }
      unit 0 {
         encapsulation atm-ccc-cell-relay; # at the logical interface level only
         vpi 0;
      }
      unit 1 {
         encapsulation atm-ccc-cell-relay;
         vpi 1;
      }
   }
   ```
3. To map incoming traffic from a port to an LSP, include the `allow-any-vci` statement at the `[edit interfaces interface-name unit 0]` hierarchy level. When you include the `allow-any-vci` statement, you cannot configure other logical interfaces in the same physical interface. Next, you must map unit 0 to an LSP using the CCC connection.

Mapping Incoming Traffic from a Port to an LSP

``` DIFF
[edit interfaces at-1/2/0]
encapsulation atm-ccc-cell-relay;
atm-options {
    promiscuous-mode;
}
unit 0 {
    allow-any-vci;
}
```

4. To map unit 0 to an LSP:

Mapping Unit 0 to an LSP

``` DIFF
protocols {
    connections {
        remote-interface-switch router-a-router-c {
            interface at-1/2/0.0;
        }
        lsp-switch router-a-router-c {
            transmit-lsp lsp1
            receive-lsp lsp2;
        }
    }
}
```
5. To map a VPI to an LSP, you must define the allowed VPIs. You can configure one or more logical interfaces, each mapped to a different VPI. You can then route traffic from each of these interfaces to different LSPs.

Mapping a VPI to an LSP

```
[edit interfaces at-1/1/0]
encapsulation atm-ccc-cell-relay;
atm-options {
    pic-type atm1;
    promiscuous-mode {
        vpi 10;
        vpi 20;
    }
}
unit 0 {
    encapsulation atm-ccc-cell-relay;
    vpi 10;
}
unit 1 {
    encapsulation atm-ccc-cell-relay;
    vpi 20;
}
[edit interfaces at-3/1/0]
encapsulation atm-ccc-cell-relay;
atm-options {
    pic-type atm2;
    promiscuous-mode {
        vpi 10;
        vpi 20;
    }
}
unit 0 {
    encapsulation atm-ccc-cell-relay;
    vpi 10;
}
unit 1 {
    encapsulation atm-ccc-cell-relay;
    vpi 20;
}
[edit protocols]
mpls {
    connections {
        interface-switch router-a-router-c {
            interface at-1/1/0.0;
        }
    }
```
For ATM1 interfaces, you must configure the maximum number of virtual circuits (VCs) allowed on a virtual path (VP) so that sufficient memory on the ATM1 PIC can be allocated for each VC.

To configure the highest-numbered VCs on a VP, include the `maximum-vcs` and `vpi` statements at the `[edit interfaces interface-name atm-options]` hierarchy level:

```
[edit interfaces interface-name atm-options]
  vpi vpi-identifier {
    maximum-vcs maximum-vcs;
  }
```

The VP identifier can be a value from 0 through 255. For most interfaces, you can define a maximum of 4090 VCs per interface, and some interfaces have higher limits. Promiscuous mode removes these limits. For more information, see “Configuring ATM Cell-Relay Promiscuous Mode” on page 47.

All VPIs that you configure in the `atm-options` statement are stored in a single table. If you modify the VPIs—for example, by editing them in configuration mode or by issuing a `load override` command—all VCs on the interface are closed and then reopened, resulting in a temporary loss of connectivity for all the VCs on the interface.

You can also include some of the statements in the `sonet-options` statement to set SONET/SDH parameters on ATM interfaces, as described in “Configuring SONET/SDH Parameters on ATM Interfaces” on page 56.
Configuring Communication with Directly Attached ATM Switches and Routers

For ATM1 and ATM2 IQ interfaces, you can configure communication with directly attached ATM switches and routers to enable querying of the IP addresses and switch port numbers. You query the switch or router by entering the following show command:

```
user@host> show ilmi interface interface-name
```

The router uses VC 0.16 to communicate with the ATM switch or router.

To configure communication between the router and its directly attached ATM switches and routers, include the `ilmi` statement at the `[edit interfaces interface-name atm-options]` hierarchy level:

```
[edit interfaces interface-name atm-options]
ilmi;
```

For example, to configure Communication with Directly Attached ATM Switches and Routers:

1. Enable an interface to communicate directly with an ATM switch or router:

```
[edit interfaces]
at-0/1/0 {  
atm-options {  
  vpi 0;  
ilmi;  
  }  
unit 0 {  
vci 0.120;  
  family inet {  
    address 10.33.33.1/30;  
  }  
  }  
}
```

RELATED DOCUMENTATION

| ilmi | 352 |
Enabling ILMI for Cell Relay

The Junos OS supports standard AAL5 and three Layer 2 circuit transport modes: Layer 2 circuit AAL5, Layer 2 circuit cell-relay, and Layer 2 circuit trunk transport mode.

Integrated local management interface (ILMI) is supported on standard AAL5 interfaces, regardless of encapsulation. To enable ILMI on interfaces with cell-relay encapsulation, you must configure an ATM2 IQ PIC to use Layer 2 circuit trunk transport mode. ILMI is not supported with cell-relay encapsulation when the ATM2 IQ PIC is configured with Layer 2 AAL5 or Layer 2 circuit cell-relay transport mode, as shown in Table 10 on page 54.

Layer 2 circuit cell-relay trunk mode is not supported on ATM OC48 PICs.

Table 10: ILMI Support by Encapsulation Type

<table>
<thead>
<tr>
<th>Encapsulation Type</th>
<th>ILMI Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard AAL5, with any encapsulation type</td>
<td>Yes</td>
</tr>
<tr>
<td>Layer 2 circuit AAL5 mode</td>
<td>No</td>
</tr>
<tr>
<td>Layer 2 circuit cell-relay mode</td>
<td>No</td>
</tr>
<tr>
<td>Layer 2 circuit trunk mode</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For more information about Layer 2 circuit transport modes, see "Configuring Layer 2 Circuit Transport Mode" on page 61.

1. To configure ILMI on an interface with cell-relay encapsulation, include the following statements:

```
[edit chassis fpc slot-number pic pic-number]
  atm-l2circuit-mode trunk trunk;
[edit interfaces at-fpc/pic/port]
  encapsulation atm-ccc-cell-relay;
  atm-options {
    ilmi;
    pic-type atm2;
  }
  unit logical-unit-number {
    trunk-id number;
  }
```

For more information about ILMI, see “Configuring Communication with Directly Attached ATM Switches and Routers” on page 53.
2. On an ATM2 IQ PIC with Layer 2 circuit trunk transport mode, enable ILMI on an interface with cell-relay encapsulation:

```conf
[edit chassis]
fpc 0 {
    pic 1 {
        atm-l2circuit-mode trunk uni;
    }
}

[edit interfaces]
at-0/0/0 {
    encapsulation atm-ccc-cell-relay;
    atm-options {
        pic-type atm2;
        ilmi;
    }
}
```

RELATED DOCUMENTATION

- ATM Interfaces Overview | 3

Configuring E3 and T3 Parameters on ATM Interfaces

For ATM1 and ATM2 IQ interfaces, you can configure ATM E3 and T3 interfaces by including the following statements at the `[edit interfaces at-fpc/pic/port]` hierarchy level:

```conf
[edit interfaces at-fpc/pic/port]
e3-options {
    atm-encapsulation (direct | plcp);
    buildout feet;
    framing (g.751 | g.832);
    loopback (local | remote);
    (payload-scrambler | no-payload-scrambler);
}
t3-options {
    atm-encapsulation (direct | plcp);
    buildout feet;
    (cbit-parity | no-cbit-parity);
}
The following options and default values differ from those described in *E3 Interfaces Overview* and *T3 Interfaces Overview*:

- **atm-encapsulation**—PLCP is the default value. The E3 *line-format* option g.832 supports the direct ATM-encapsulation option only.

- **buildout**—The default value is 10 feet. The number of feet can be any integer value. The range is from 0 through 450 feet (about 137 meters).

- **cbit-parity**—The default option is to enable cbit parity.

- **framing**—There is no default option for E3 interfaces; T3 interfaces use the *cbit-parity* statement in place of the *framing* statement.

- **loopback**—By default, loopback is disabled.

- **payload-scrambler**—The default option is to enable payload scrambling.

In addition, the ATM E3 and T3 PICs support the *clocking* statement at the interface level, as do the SONET/SDH PICs. For more information about E3- and T3-specific parameters, see *E3 Interfaces Overview* and *T3 Interfaces Overview*.

**NOTE:** You must configure all the ports on an ATM E3 or T3 PIC with the same framing and encapsulation. Otherwise, the system will set all the ports on the PIC to the slowest framing and encapsulating configuration. For ATM T3, this is PLCP. For ATM E3, this is G.751 PLCP.

### Configuring SONET/SDH Parameters on ATM Interfaces

When configuring ATM1 and ATM2 IQ SONET/SDH interfaces, you can also include the following statements in the *sonet-options* statement to set SONET/SDH parameters on ATM interfaces:

```plaintext
[edit interfaces at-fpc/pic/port]
sonet-options {
 aps {
 advertise-interval milliseconds;
 authentication-key key;
 force;
 }
}
```
For information about configuring specific SONET/SDH statements, see SONET/SDH Interfaces Overview.

Configuring ATM Interface Encapsulation

To configure ATM encapsulation on a physical interface, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
encapsulation (atm-ccc-cell-relay | atm-pvc | ethernet-over-atm);
```

For ATM interfaces, the physical interface encapsulation can be one of the following:

- **ATM cell-relay**—This encapsulation connects two remote virtual circuits or ATM physical interfaces with an LSP. Traffic on the circuit is ATM cells.
• ATM PVC—ATM PVC encapsulation is defined in RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*.

• Ethernet over ATM—As defined in RFC 1483 (the previous version of RFC 2684), this encapsulation type allows ATM interfaces to connect to devices that support only bridged-mode protocol data units (BPDUs). The Junos OS does not completely support bridging, but accepts BPDU packets as a default gateway. If you use the router as an edge device, then the router acts as a default gateway. It accepts Ethernet LLC/SNAP frames with IP or ARP in the payload, and drops the rest. For packets destined to the Ethernet LAN, a route lookup is done using the destination IP address. If the route lookup yields a full address match, the packet is encapsulated with an LLC/SNAP and media access control (MAC) header, and the packet is forwarded to the ATM interface.

Generally, you configure an interface’s encapsulation at the [edit interfaces interface-name] hierarchy level. However, for ATM encapsulations, you can also configure the encapsulation type that is used inside the ATM cell itself. To do this, include the `encapsulation` statement:

```
encapsulation (atm-ccc-cell-relay | atm-ccc-vc-mux | atm-cisco-nlpid | atm-mlppp-llc | atm-nlpid | atm-ppp-llc |
 atm-ppp-vc-mux | atm-snap | atm-tcc-snap | atm-vc-mux | atm-tcc-vc-mux | ether-over-atm-llc |
 ether-vpls-over-atm-llc);
```

You can include this statement at the following hierarchy levels:

• [edit interfaces interface-name unit logical-unit-number]

• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Table 11 on page 58 shows the logical interface encapsulation types for ATM interfaces.

<table>
<thead>
<tr>
<th>Encapsulation Types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM CCC cell relay</td>
<td>This encapsulation type connects two remote virtual circuits or ATM physical interfaces with an LSP.</td>
</tr>
<tr>
<td></td>
<td>This encapsulation type carries traffic in ATM cells.</td>
</tr>
<tr>
<td></td>
<td>When you use this encapsulation type, you can configure the ccc family only.</td>
</tr>
<tr>
<td>ATM CCC VC multiplex</td>
<td>This encapsulation type is for CCC circuits.</td>
</tr>
<tr>
<td></td>
<td>When you use this encapsulation type, you can configure the ccc family only.</td>
</tr>
<tr>
<td>ATM network layer protocol identifier (NLPID)</td>
<td>When you use this encapsulation type, you can configure the inet family only.</td>
</tr>
<tr>
<td>ATM SNAP</td>
<td></td>
</tr>
</tbody>
</table>
Table 11: ATM Logical Interface Encapsulation Types (continued)

<table>
<thead>
<tr>
<th>Encapsulation Types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM SNAP encapsulation on translational cross-connect (TCC) circuits</td>
<td>When you use this encapsulation type, you can configure the tcc family only.</td>
</tr>
<tr>
<td>ATM VC multiplex</td>
<td>When you use this encapsulation type, you can configure the inet family only.</td>
</tr>
<tr>
<td>ATM VC multiplex on TCC circuits</td>
<td>When you use this encapsulation type, you can configure the tcc family only.</td>
</tr>
<tr>
<td>Cell-relay accumulation mode (CAM)</td>
<td>In this mode, the incoming 1 to 8 cells are packaged into a single packet and forwarded to the LSP. To configure CAM, include the <code>atm-cell-relay-accumulation</code> statement at the <code>[edit chassis fpc slot-number pic pic-number]</code> hierarchy level. This encapsulation type is for ATM1 interfaces only. For more information about CAM, see the <em>Junos OS Administration Library</em>.</td>
</tr>
<tr>
<td>Cisco ATM NLPID</td>
<td>When you use this encapsulation type, you can configure the inet family only.</td>
</tr>
<tr>
<td>Ethernet over ATM</td>
<td>This encapsulation type is for interfaces that carry IPv4 traffic. When you use this encapsulation type, you cannot configure point-to-multipoint interfaces.</td>
</tr>
<tr>
<td>Ethernet VPLS over ATM</td>
<td>This encapsulation type enables a VPLS instance to support bridging between Ethernet interfaces and ATM interfaces, as described in RFC 2684. Use this encapsulation type to support IEEE 802.1p classification binding on ATM VCs. This encapsulation type is for ATM2 IQ interfaces only. When you use this encapsulation type, you cannot configure point-to-multipoint interfaces.</td>
</tr>
<tr>
<td>Multilink PPP over AAL5 LLC</td>
<td>This encapsulation type is for ATM2 IQ interfaces only. When you use this encapsulation type, your router must be equipped with a Link Services or Voice Services PIC.</td>
</tr>
<tr>
<td>PPP over AAL5 LLC</td>
<td>This encapsulation type is for ATM2 IQ interfaces only. When you use this encapsulation type, you cannot configure point-to-multipoint interfaces.</td>
</tr>
<tr>
<td>Encapsulation Types</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PPP over AAL5 multiplex</td>
<td>This encapsulation type is for ATM2 IQ interfaces only.</td>
</tr>
<tr>
<td></td>
<td>When you use this encapsulation type, you cannot configure point-to-multipoint interfaces.</td>
</tr>
</tbody>
</table>
Configuring Layer 2 Circuit Transport Mode
On ATM2 IQ interfaces only, you can configure Layer 2 circuit cell-relay, Layer 2 circuit AAL5, or Layer 2 circuit trunk transport mode.


Layer 2 circuit cell-relay and Layer 2 circuit AAL5 transport modes allow you to send ATM cells between ATM2 IQ interfaces across a Layer 2 circuit-enabled network. Layer 2 circuits are designed to transport Layer 2 frames between PE routers across an LDP-signaled MPLS backbone. You use Layer 2 circuit AAL5 transport mode to send AAL5 segmentation and reassembly protocol data units (SAR-PDUs) over the Layer 2 circuit.

A trunk is a collection of ATM VPs. Layer 2 circuit trunk transport mode allows you to send ATM cells over MPLS trunking.

By default, ATM2 IQ PICs are in standard AAL5 transport mode. Standard AAL5 allows multiple applications to tunnel the protocol data units of their Layer 2 protocols over an ATM virtual circuit. Encapsulation of these Layer 2 protocol data units allows a number of these emulated virtual circuits to be carried in a single tunnel. Protocol data units are segmented at one end of the tunnel and reassembled at the other end. The ingress router reassembles the protocol data units received from the incoming VC and transports each PDU as a single packet.

In contrast, Layer 2 circuit cell-relay and Layer 2 circuit AAL5 transport modes accept a stream of ATM cells, convert these to an encapsulated Layer 2 format, then tunnel them over an MPLS or IP backbone, where a similarly configured router segments these packets back into a stream of ATM cells, to be forwarded to the virtual circuit configured for the far-end router.

In Layer 2 circuit cell-relay transport mode, ATM cells are bundled together and transported in packet form to the far-end router, where they are segmented back into individual ATM cells and forwarded to the ATM virtual circuit configured for the far-end router.

NOTE: When you configure the `cell-bundle-size` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level is 1 and the `atm-ccc-cell-relay` trunk statement is included at the `[edit interfaces interface-name encapsulation]` hierarchy level, ATM cells are not bundled. Each ATM cell is forwarded as a single MPLS packet.

The uses for the four transport modes are defined as follows:

- To tunnel IP packets over an ATM backbone, use the default standard AAL5 transport mode.
- To tunnel a stream of AAL5-encoded ATM SAR-PDUs over an MPLS or IP backbone, use Layer 2 circuit AAL5 transport mode.
• To tunnel a stream of ATM cells over an MPLS or IP backbone, use Layer 2 circuit cell-relay transport mode.

• To transport ATM cells over an MPLS core network that is implemented between other vendors' switches or routers, use Layer 2 circuit trunk transport mode.

**NOTE:** You can transport AAL5-encoded traffic with Layer 2 circuit cell-relay transport mode, because Layer 2 circuit cell-relay transport mode ignores the encoding of the cell data presented to the ingress interface.

When you configure AAL5 mode Layer 2 circuits, the control word carries cell loss priority (CLP) information by default.

The Layer 2 circuit trunk transport mode is not supported on the ATM2 IQ OC48c/STM16 PIC.

To configure Layer 2 circuit AAL5, Layer 2 circuit cell-relay, or Layer 2 circuit trunk mode, you must perform the following tasks:

1. Identify the interface as an ATM2 IQ interface by including the `pic-type atm2` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level:

   ```
 [edit interfaces at-fpc/pic/port atm-options]
 pic-type atm2;
   ```

2. Include the `atm-l2circuit-mode` statement at the `[edit chassis fpc slot-number pic pic-number]` hierarchy level, specifying `aal5`, `cell`, or `trunk`:

   ```
 [edit chassis fpc slot-number pic pic-number]
 atm-l2circuit-mode (aal5 | cell | trunk trunk);
 [edit chassis]
   ```

   By default, the trunk mode uses user-to-network interface (UNI) mode. The trunk option can be UNI or network-to-network interface (NNI). For more information about UNI and NNI, see the *Junos OS VPNs Library for Routing Devices*.

   Transport mode is per PIC, not per port. If you do not include the `atm-l2circuit-mode` statement in the configuration, the ATM2 IQ PIC uses standard AAL5 transport mode. If you configure Layer 2 circuit cell-relay, Layer 2 circuit AAL5 transport mode, or Layer 2 circuit trunk mode, the entire ATM2 PIC uses the configured transport mode.

3. For Layer 2 circuit trunk mode only, you must also configure a trunk identification number by including the `trunk-id` statement:
You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

The trunk identification number can be from 0 through 31; each trunk on an interface must have a unique trunk ID. When you associate a trunk ID number with a logical interface, you are in effect specifying the interfaces that are allowed to send ATM traffic over an LSP. For UNI mode, the trunk ID range is from 0 through 7. For NNI mode, the trunk ID range is from 0 through 31. Trunk IDs on connecting trunks do not need to be the same.

For information about proportional bandwidth sharing in trunk mode, see "Configuring Layer 2 Circuit Trunk Mode Scheduling Overview" on page 87.

For example:

**Configuring Layer 2 Circuit Trunk Transport Mode**

In Figure 3 on page 64, Router A is a local PE router. Router B is a remote PE router. Both Juniper Networks routers have Layer 2 circuit cell-relay capability. You configure an ATM physical interface on Router A in Layer 2 circuit trunk mode and specify trunks that are allowed to send traffic over the LSP. As a cell is received on this interface, it is classified using the CoS bits in the cell header, and encapsulated as a labeled packet. It is then queued on one of the outgoing queues according to its classification and sent over the LSP to Router B. At Router B, the packet label is removed and the raw cell is put on one of the queues of the ATM interface and forwarded to the second ATM switch. To carry the CoS information and CLP of the cell over the network, the CoS and CLP bits are copied into the EXP bits of the MPLS label. This CoS information is used to select the output queues. Using EPD profiles, the CLP is used to determine whether the cell should be dropped.

For more information about ATM CoS capability, see "ATM IQ VC Tunnel CoS Components Overview" on page 135.

Figure 3: Layer 2 Circuit Trunk Topology
On Router A

```conf
[edit chassis]
fpc 0 {
 pic 1 {
 atm-l2circuit-mode trunk uni;
 }
}

[edit interfaces]
at-0/0/0 {
 encapsulation atm-ccc-cell-relay;
 atm-options {
 pic-type atm2;
 ilmi;
 }
 unit 0 {
 trunk-id 0;
 epd-threshold 10240;
 }
 unit 1 {
 trunk-id 1;
 epd-threshold 10240;
 }
 unit 2 {
 trunk-id 2;
 epd-threshold 10240;
 }
 unit 3 {
 trunk-id 3;
 epd-threshold 10240;
 }
 unit 4 {
 trunk-id 4;
 epd-threshold 10240;
 }
 unit 5 {
 trunk-id 5;
 epd-threshold 10240;
 }
 unit 6 {
 trunk-id 6;
 epd-threshold 10240;
 }
}
```
unit 7 {
    trunk-id 7;
    epd-threshold 10240;
}

so-3/0/0 {
    mtu 9192;
    unit 0 {
        family inet {
            address 10.0.1.1/24;
        }
        family mpls;
    }
}

lo0 {
    unit 0 {
        family inet {
            address 172.16.0.1/32;
            address 10.255.245.1/32;
        }
    }
}
[edit protocols]
rsvp {
    interface all;
}
mpls {
    interface all;
}
ldp {
    interface all;
}
ospf {
    traffic-engineering;
    reference-bandwidth 4g;
    area 0.0.0.0 {
        interface all;
        interface fxp0.0 {
            disable;
        }
    }
}
l2circuit {
    neighbor 10.255.245.2 {
interface at-0/1/0.0 {
    virtual-circuit-id 100;
}
interface at-0/1/0.1 {
    virtual-circuit-id 101;
}
interface at-0/1/0.2 {
    virtual-circuit-id 102;
}
interface at-0/1/0.3 {
    virtual-circuit-id 103;
}
interface at-0/1/0.4 {
    virtual-circuit-id 104;
}
interface at-0/1/0.5 {
    virtual-circuit-id 105;
}
interface at-0/1/0.6 {
    virtual-circuit-id 106;
}
interface at-0/1/0.7 {
    virtual-circuit-id 107;
}
}

On Router B

[edit chassis]
fpc 0 {
    pic 1 {
        atm-l2circuit-mode trunk uni;
    }
}
[edit interfaces]
at-0/0/1 {
    encapsulation atm-ccc-cell-relay;
atm-options {
        pic-type atm2;
    }
    unit 0 {
        trunk-id 0;
        epd-threshold 10240;
    }
}
} 
unit 1 { 
    trunk-id 1; 
    epd-threshold 10240; 
} 
unit 2 { 
    trunk-id 2; 
    epd-threshold 10240; 
} 
unit 3 { 
    trunk-id 3; 
    epd-threshold 10240; 
} 
unit 4 { 
    trunk-id 4; 
    epd-threshold 10240; 
} 
unit 5 { 
    trunk-id 5; 
    epd-threshold 10240; 
} 
unit 6 { 
    trunk-id 6; 
    epd-threshold 10240; 
} 
unit 7 { 
    trunk-id 7; 
    epd-threshold 10240; 
} 
} 
so-3/0/1 { 
    mtu 9192; 
    unit 0 { 
        family inet { 
            address 10.0.1.2/24; 
        } 
        family mpls; 
    } 
} 
lo0 { 
    unit 0 { 
        family inet { 
            address 172.16.0.1/32; 
            address 10.255.245.2/32; 
        }
[edit protocols]
  rsvp {
    interface all;
  }
  mpls {
    interface all;
  }
  ldp {
    interface all;
  }
  ospf {
    traffic-engineering;
    reference-bandwidth 4g;
    area 0.0.0.0 {
      interface all;
      interface fxp0.0 {
        disable;
      }
    }
  }
  l2circuit {
    neighbor 10.255.245.1 {
      interface at-0/1/0.0 {
        virtual-circuit-id 100;
      }
      interface at-0/1/0.1 {
        virtual-circuit-id 101;
      }
      interface at-0/1/0.2 {
        virtual-circuit-id 102;
      }
      interface at-0/1/0.3 {
        virtual-circuit-id 103;
      }
      interface at-0/1/0.4 {
        virtual-circuit-id 104;
      }
      interface at-0/1/0.5 {
        virtual-circuit-id 105;
      }
      interface at-0/1/0.6 {
4. For Layer 2 circuit AAL5 mode, configure logical interface encapsulation by including the `encapsulation` statement, specifying the `atm-ccc-vc-mux` encapsulation type:

```
encapsulation atm-ccc-vc-mux;
```

unit 0 {
    encapsulation atm-ccc-vc-mux;
    point-to-point;
    vci 0.32;
}

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

For example:

**Configuring Layer 2 Circuit AAL5 Transport Mode**

```
[edit chassis]
fpc 0 {
 pic 1 {
 atm-l2circuit-mode aal5;
 }
}
[edit interfaces]
at-0/1/0 {
 atm-options {
 pic-type atm2;
 vpi 0;
 }
 unit 0 {
```
5. For Layer 2 circuit cell-relay and Layer 2 circuit trunk modes, configure physical interface encapsulation by including the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level, specifying the `atm-ccc-cell-relay` encapsulation type:

```
[edit interfaces interface-name]
 encapsulation atm-ccc-cell-relay;
```

You can also include the `encapsulation atm-ccc-cell-relay` statement at the `[edit interface interface-name unit logical-unit-number]` hierarchy level. When you use the configuration given in the preceding steps, keep the following points in mind:

- This configuration interoperates between Juniper routers running Junos OS Release 8.2 or earlier.
- This configuration does not interoperate with other network equipment, including a Juniper router running Junos OS Release 8.3 or later.
- For a Juniper router running Junos OS Relase 8.3 or later to interoperate with another Juniper router running Junos OS Release 8.2 or earlier, include the `use-null-cw` statement at the `[edit interfaces interface-name atm-options]` hierarchy level on the router running Junos OS Release 8.3 or later.
- The `use-null-cw` statement inserts (for sending traffic) or strips (for receiving traffic) an extra null control word in the MPLS packet.
- The `use-null-cw` statement is not supported on a router running Junos OS Release 8.2 or earlier.

For more information about Layer 2 circuits, see the *Junos OS VPNs Library for Routing Devices* and the *Junos OS Routing Protocols Library*.

For example:

**Configuring Layer 2 Circuit Cell-Relay Transport Mode**

```
[edit chassis]
fpc 0 {
 pic 1 {
 atm-l2circuit-mode cell;
 }
}
[edit interfaces]
at-0/1/0 {
```
Layer 2 Circuit Transport Mode on ATM MICs Overview

On MX Series routers with ATM MICs, you can configure Layer 2 circuit cell relay or Layer 2 circuit ATM Adaptation Layer 5 (AAL5). Layer 2 circuit cell relay and Layer 2 circuit AAL5 are defined in Encapsulation Methods for Transport of Asynchronous Transfer Mode (ATM) Over MPLS Networks (RFC 4717). Layer 2 circuit cell-relay and Layer 2 circuit AAL5 transport modes allow you to send ATM cells between ATM interfaces across a Layer 2 circuit-enabled network. Layer 2 circuits are designed to transport Layer 2 frames between provider edge (PE) routers across an MPLS backbone.

Layer 2 circuit cell-relay and Layer 2 circuit AAL5 transport modes accept a stream of ATM cells, convert these to an encapsulated Layer 2 format, and then tunnel them over an MPLS or IP backbone, where a similarly configured router segments these packets back into a stream of ATM cells, to be forwarded to the virtual circuit configured for the far-end router. In Layer 2 circuit cell-relay transport mode, ATM cells are bundled together and transported in packet form to the far-end router, where they are segmented back into individual ATM cells and forwarded to the ATM virtual circuit configured for the far-end router. You use Layer 2 circuit AAL5 transport mode to send AAL5 segmentation and reassembly protocol data units (SAR-PDUs) over the Layer 2 circuit.

RELATED DOCUMENTATION

ATM2 IQ VC Tunnel CoS Components Overview | 135
Junos OS VPNs Library for Routing Devices
Junos OS Routing Protocols Library
Configuring Layer 2 Circuit Transport Mode on ATM MICs

To configure Layer 2 circuit AAL5 or Layer 2 circuit cell relay, perform the following tasks:

- For Layer 2 circuit AAL5 mode, configure logical interface encapsulation by including the `encapsulation` statement, specifying the `atm-ccc-vc-mux` encapsulation type:

  ```
 encapsulation atm-ccc-vc-mux;
  ```

  You can include this statement at the following hierarchy levels:

  - `[edit interfaces interface-name unit logical-unit-number]`
  - `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

- For Layer 2 circuit cell-relay mode, configure physical interface encapsulation by including the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level, specifying the `atm-ccc-cell-relay` encapsulation type:

  ```
 [edit interfaces interface-name]
 encapsulation atm-ccc-cell-relay;
  ```

  You can also include the `encapsulation atm-ccc-cell-relay` statement at the `[edit interface interface-name unit logical-unit-number]` hierarchy level.

When you use the configuration given in the preceding steps, keep the following points in mind:

- The chassis-level configuration for `atm-l2-circuit-mode` is not available for ATM MICs.
- The absence of the chassis-level configuration for `atm-l2-circuit-mode` does not indicate null control word.

For more information about Layer 2 circuits, see the Junos OS VPNs Library for Routing Devices and the Junos OS Routing Protocols Library.

RELATED DOCUMENTATION

- Layer 2 Circuit Transport Mode on ATM MICs Overview
- Example: Configuring Layer 2 Circuit Transport Mode on ATM MICs
Example: Configuring Layer 2 Circuit Transport Mode on ATM MICs

This example shows how to configure Layer 2 circuit transport mode on ATM MICs.

Requirements

This example uses the following hardware and software components:

- Junos OS Release 12.1 or later for MX Series routers
- A single MX Series router with an ATM MIC with SFP

Overview

This example provides information about configuring the Layer 2 circuit transport mode on MX Series routers with ATM MICs with SFP. You can configure the Layer 2 circuit cell-relay or Layer 2 circuit AAL5 transport mode. Layer 2 circuit cell-relay and Layer 2 circuit AAL5 transport modes allow you to send ATM cells between ATM interfaces across a Layer 2 circuit-enabled network. Layer 2 circuits are designed to transport Layer 2 frames between provider edge (PE) routers across an MPLS backbone. In Layer 2 circuit cell-relay transport mode, ATM cells are bundled together and transported in packet form to the far-end router, where they are segmented back into individual ATM cells and forwarded to the ATM virtual circuit configured for the far-end router. You use Layer 2 circuit AAL5 transport mode to send AAL5 segmentation and reassembly protocol data units (SAR-PDUs) over the Layer 2 circuit.

Configuration
To configure Layer 2 circuit transport mode, perform these tasks:

**Configuring Layer 2 Circuit AAL5 Transport Mode**

**CLI Quick Configuration**

To quickly configure interface-level Layer 2 circuit AAL5 transport mode, copy and paste the following commands into the CLI:

```
[edit]
set interface at-0/2/2 atm-options vpi 9
set interface at-0/2/2 unit 0 encaps atm-ccc-vc-mux
set interface at-0/2/2 unit 0 vci 9.99
```

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see *Using the CLI Editor in Configuration Mode* in the CLI User Guide.

**Step-by-Step Procedure**

To configure Layer 2 circuit AAL5 transport mode on the ATM MIC with SFP, perform the following tasks:

1. In configuration mode, go to the [edit interfaces] hierarchy level and set the interface as at-0/2/2.

```
[edit]
user@host# edit interfaces at-0/2/2
```

2. Set the ATM virtual path identifier (VPI) to 9, by including the vpi 9 statement.

```
[edit interfaces at-0/2/2]
user@host# set vpi 9
```

3. Configure unit 0 and the physical interface encapsulation.

```
[edit interfaces at-0/2/2]
user@host# edit unit 0
[edit interfaces at-0/2/2 unit 0]
user@host# set encapsulation atm-ccc-vc-mux
```

4. Specify the ATM virtual circuit identifier (VCI) as 9.9.

```
[edit interfaces at-0/2/2 unit 0]
user@host# set vci 9.9
```
Results

To view the configuration of AAL5 transport mode:

```
[edit]
user@host# show
[edit interfaces]
at-0/1/0 {
 atm-options {
 vpi 9;
 }
 unit 0 {
 encapsulation atm-ccc-vc-mux;
 vci 9.9;
 }
}
```

Configuring Layer 2 Circuit Cell-Relay Transport Mode

CLI Quick Configuration

To quickly configure interface-level Layer 2 circuit cell-relay transport mode, copy and paste the following commands into the CLI:

```
[edit]
set interface at-0/2/2 atm-options vpi 10
set interface at-0/2/2 unit 0 encaps atm-ccc-cell-relay
set interface at-0/2/2 unit 0 vci 10.100
```

The following example requires you to navigate various levels in the configuration hierarchy. For instructions on how to do that, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

Step-by-Step Procedure

To configure Layer 2 circuit cell-relay transport mode on the ATM MIC with SFP, perform the following tasks:

1. In configuration mode, go to the [edit interfaces] hierarchy level and set the interface as at-0/2/2.

```
[edit]
user@host# edit interfaces at-0/2/2
```

2. Set the ATM virtual path identifier (VPI) to 10, by including the vpi 10 statement.

```
[edit interfaces at-0/2/2]
```
3. Configure unit 0 and the physical interface encapsulation.

```
user@host# set vpi 10

[edit interfaces at-0/2/2]
user@host# edit unit 0
[edit interfaces at-0/2/2]
user@host# set encapsulation atm-ccc-cell-relay
```

4. Specify the ATM virtual circuit identifier (VCI) as 10.100.

```
[edit interfaces at-0/2/2 unit 0]
user@host# set vci 10.100
```

**Results**

To view the configuration of cell-relay transport mode:

```
[edit]
user@host# show
[edit interfaces]
 at-0/1/0 {
 atm-options {
 vpi 10;
 }
 unit 0 {
 encapsulation atm-ccc-cell-relay;
 vci 10.100;
 }
}
```

**RELATED DOCUMENTATION**

- Configuring Layer 2 Circuit Transport Mode on ATM MICs | 73
Configuring a Point-to-Multipoint Connection on ATM MICs

Starting in Junos OS Release 18.2R1, MX Series routers containing an ATM MIC (model number: MIC-3D-8OC3-2OC12-ATM) with SFP can communicate with multiple devices through ATM links. With this multipoint support, an ATM MIC can communicate with multiple Layer 3 peers in the ATM network through an ATM switch that is connected to multiple devices or ports, using different virtual circuit identifier (VCI). These devices can be accessed through multipoint port of ATM MIC.

NOTE: epd-threshold and shaping options are not supported on multipoint-destination configuration statement for ATM MICs.

To enable the multipoint support on an ATM MIC, configure:

- The multipoint option at the [edit interfaces interface-name unit logical-unit-number] hierarchy to enable communication with multiple Layer 3 peers on an ATM interface.

- The multipoint-destination option with its corresponding vci at the [edit interfaces interface-name unit logical-unit-number family family address address] hierarchy to enable multipoint support on ATM interface.

The inverse-arp option (an optional configuration) to enable inverse ARP for multipoint-destination at the [edit interfaces at-fpc/pic/port unit logical-unit-number family family address address multipoint-destination address] hierarchy. Only responding to inverse ARP request is supported. Generation of Inverse ARP is not supported.

NOTE:
- Multipoint-destination address must be configured under [edit interfaces interface-name unit logical-unit-number family family address address] hierarchy. The multipoint-destination address is the IP Address of the device that need to be accessed. It is also mandatory to mention VCI for a particular device for multipoint destination support. While, Inverse-arp is optional configuration which is required to enable inverse ARP.

- It is mandatory to configure multipoint destination address along with the VCI and VPI for a point-to-multipoint interface.

To configure the multipoint support on ATM MIC, perform the following tasks:

1. In configuration mode, to enable multipoint support navigate to the [edit interfaces interface-name unit logical-unit-number] hierarchy level.
user@host# edit interfaces interface-name unit logical-unit-number

For example:

[edit ]
user@host# edit interfaces at-1/0/0 unit 0

2. By default, all interfaces are assumed to be point-to-point connections. To configure an interface to be a multipoint connection, include the multipoint statement at the [edit interfaces interface-name unit logical-unit-number] hierarchy level.

[edit interfaces interface-name unit logical-unit-number]
user@host# set multipoint

For example:

[edit interfaces at-1/0/0 unit 0]
user@host# set multipoint

3. After enabling multipoint, set the source address. To configure the source address, navigate to the [edit interfaces interface-name unit logical-unit-number family family] hierarchy level.

[edit interfaces interface-name unit logical-unit-number]
user@host# edit family family address address

For example:

[edit interfaces at-1/0/0 unit 0]
user@host# edit family inet address 7.0.0.2/24

4. Configure the multipoint-destination address along with the virtual circuit identifier (VCI) and virtual path identifier (VPI).

NOTE: It is mandatory to configure multipoint destination address along with the VCI and VPI for a point-to-multipoint interface.

[edit interfaces interface-name unit logical-unit-number family family address address]
user@host# set multipoint-destination address vci vpi-identifier.vci-identifier

For example:

[edit interfaces at-1/0/0 unit 0 family inet address 7.0.0.2/24 ]
user@host# set multipoint-destination 7.0.0.3 vci 100.100

5. (Optional) Configure inverse ARP.

[edit interfaces interface-name unit logical-unit-number family family address address multipoint-destination address]
user@host# set inverse-arp

For example:

[edit interfaces at-1/0/0 unit 0 family inet address 7.0.0.2/24 multipoint-destination 7.0.0.3]
user@host# set inverse-arp

6. Execute the show interfaces command to verify whether the interface shows the configured multipoint parameters correctly.

user@host# show interfaces
interfaces {
  at-1/0/0 {
    atm-options {
      vpi 100;
    }
    unit 0 {
      encapsulation atm-snap;
      multipoint;
      family inet {
        address 7.0.0.2/24 {
          multipoint-destination 7.0.0.3 {
            vci 100.100;
            inverse-arp;
          }
        }
      }
    }
  }
}
7. Execute `show interface at-1/0/0` command to verify that point-to-multipoint is shown under the IFL flag field.

```
user@host# show interface at-1/0/0
Logical interface at-1/0/0.0 (Index 362) (SNMP ifIndex 911)
 Flags: Up Point-To-Multipoint << No-Multicast SNMP-Traps 0x4000 Encapsulation:
 ATM-SNAP
 Input packets : 3
 Output packets: 3
 Protocol inet, MTU: 9176
 Max nh cache: 0, New hold nh limit: 0, Curr nh cnt: 0, Curr new hold cnt: 0,
 NH drop cnt: 0
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 7.0.2/24, Local: 7.0.0.2, Broadcast: 7.0.0.255
 VCI 100.120
 Flags: Active, Inverse-ARP
 Multipoint destination: 7.0.0.5 <<<
 Total down time: 0 sec, Last down: Never
 ARP statistics
 Received: 0, Sent: 0, Denied: 0, Operation not supported: 0,
 Bad packet length: 0, Bad protocol: 0, Bad protocol length: 0,
```

Release History Table

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2R1</td>
<td>Starting in Junos OS Release 18.2R1, MX Series routers containing an ATM MIC (model number: MIC-3D-8OC3-2OC12-ATM) with SFP can communicate with multiple devices through ATM links.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- `multipoint`
- `family | 336`
- `multipoint-destination | 365`
- `inverse-arp | 353`
Configuring ATM Cell-Relay Pseudowire

In ATM cell-relay mode, one or more ATM cells are bundled together to form a packet that is sent across the packet-switched network (PSN) using MPLS. In this mode, each ATM cell and its header are transported over the MPLS cloud. The ATM header consisting of the VPI and VCI values is transported across the MPLS cloud or the backhaul network.

By default, all incoming cells are mapped from a single virtual circuit to an ATM pseudowire. For ATM logical interfaces configured with `atm-ccc-cell-relay` encapsulation, you can configure ATM cell-relay pseudowire in VP-promiscuous mode, port-promiscuous mode, and VCC mode.

Promiscuous mode allows you to map all incoming cells from either an interface port or a virtual path (VP) to a single LSP without restricting the VCI number. You can map traffic from all 65,535 VCIs to a single LSP, or from all 256 VPIs to a single LSP. For promiscuous-mode configuration guidelines, see “Configuring ATM Cell-Relay Promiscuous Mode” on page 47.

This topic includes the following tasks:

### Configuring ATM Cell-Relay Pseudowire in Port-Promiscuous Mode

To configure ATM cell-relay pseudowire in port-promiscuous mode:

1. In configuration mode, go to the `[edit interfaces]` hierarchy level and set the interface as at-0/2/2.

   ```
 [edit]
 user@host#edit interfaces at-0/2/2
   ```

2. To map incoming traffic, include the `promiscuous mode` statement at the `[edit interfaces interface-name atm-options]` hierarchy level.

   ```
 [edit interfaces at-0/2/2]
 user@host#set atm-options promiscuous-mode
   ```
3. To configure ATM encapsulation on unit 0, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level.

   ```
 [edit interfaces at-0/2/2]
 user@host#set unit 0 encapsulation atm-ccc-cell-relay
   ```

4. Include the `allow-any-vci` statement at the `[edit interfaces interface-name]` hierarchy level.

   ```
 [edit interfaces at-0/2/2]
 user@host#set unit 0 allow-any-vci
   ```

5. To verify the configuration, you can issue the following operational mode command in configuration mode:

   ```
 [edit]
 user@host#show at-0/2/2
   ```

   ```
 atm-options{
 promiscuous-mode;
 }
 unit 0{
 encapsulation atm-ccc-cell-relay;
 allow-any-vci;
 }
   ```

**Configuring ATM Cell-Relay Pseudowire in VP-Promiscuous Mode**

To configure ATM cell-relay pseudowire in VP-promiscuous mode:

1. In configuration mode, go to the `[edit interfaces]` hierarchy level and set the interface as at-0/2/2.

   ```
 [edit]
 user@host#edit interfaces at-0/2/2
   ```

2. To map incoming traffic to a single LSP and to specify the VPI value as 8, include the `promiscuous mode` statement and `vpi vpi-identifier` statement at the `[edit interfaces interface-name atm-options]` hierarchy level.
3. To configure ATM encapsulation on unit 0, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level.

```
[edit interfaces at-0/2/2]
user@host#set unit 0 encapsulation atm-ccc-cell-relay
```

4. To specify 8 as the VPI value on unit 0, include the `vpi vpi-identifier` statement at the `[edit interfaces interface-name]` hierarchy level.

```
[edit interfaces at-0/2/2]
user@host#set unit 0 vpi 8
```

5. To verify the configuration, you can issue the following operational mode command in configuration mode:

```
[edit]
user@host#show atm-0/2/2
```

```yaml
atm-options{
 vpi 8;
 promiscuous-mode;
}
unit 0{
 encapsulation atm-ccc-cell-relay;
 vpi 8;
}
```

**Configuring ATM Cell-Relay Pseudowire in VCC Mode**

To configure ATM cell-relay pseudowire in VCC mode:

1. In configuration mode, go to the `[edit interfaces]` hierarchy level and set the interface as at-0/2/2.

```
[edit]
user@host#edit interfaces at-0/2/2
```
2. To map incoming traffic to a single LSP and to specify the VPI value as 9, include the **promiscuous mode** statement and **vpi** **vpi-identifier** statement at the `[edit interfaces interface-name atm-options]` hierarchy level.

```
[edit interfaces at-0/2/2]
user@host#set atm-options promiscuous-mode vpi 9
```

3. To configure ATM encapsulation on unit 0, include the **encapsulation** statement at the `[edit interfaces interface-name]` hierarchy level.

```
[edit interfaces at-0/2/2]
user@host#set unit 0 encapsulation atm-ccc-cell-relay
```

4. To specify the VCI value as 9.99 on unit 0, include the **vci** **vci-identifier** statement at the `[edit interfaces interface-name]` hierarchy level.

```
[edit interfaces at-0/2/2]
user@host#set unit 0 vci 9.99
```

5. To verify the configuration, you can issue the following operational mode command in configuration mode:

```
[edit]
user@host#show at-0/2/2
```

```
atm-options{
 vpi 9;
 promiscuous-mode;
}
unit 0{
 encapsulation atm-ccc-cell-relay;
 vci 9.99;
}
```

**RELATED DOCUMENTATION**

- **ATM Cell Relay Pseudowire VPI/VCI Swapping Overview**
Configuring the Layer 2 Circuit Cell-Relay Cell Maximum Overview

By default, each frame contains one cell. For ATM interfaces with Layer 2 circuit cell-relay transport mode configured, you can configure the maximum number of ATM cells per frame on the physical or logical interface. To set the maximum number of cells per frame, include the `cell-bundle-size` statement:

```
cell-bundle-size cells;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name atm-options]`
- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

The cell bundle size can be from 1 through 176.

After 125 microseconds, cell bundling times out. This means that after 125 microseconds if the frame does not contain the configured value, the frame is transmitted anyway.

If you include the `cell-bundle-size` statement at the `[edit interfaces interface-name atm-options]` hierarchy level, then the configured value becomes the default for all the logical interface units configured for that physical interface. If you include the `cell-bundle-size` statement for a logical interface, the logical interface configuration overrides the value configured at the physical interface level.

The transmit rates you configure on the routers at each end of the connection must be the same value.
Class-Based Cell Bundling

For Layer 2 circuit trunk mode only, cell bundling is enhanced by a set of CoS and traffic shaping rules, as follows:

- CBR and real-time variable bit rate (RTVBR) cells are not bundled. They are always sent as single-cell packets.
- Cells with the same CLP bits are bundled together. This means all the cells in a bundle contain the same CLP value.
- Cells with the same CoS bits are bundled together. This means all the cells in a bundle belong to the same class of service.
- As alluded to in the previous rules, several triggers cause early packet transmission, meaning that the packet is transmitted before the number of cells received is equal to the value configured with the cell-bundle-size statement. These triggers are as follows:
  - The next cell is of type CBR or RTVBR.
  - The next cell has a different CLP bit.
  - The next cell has different CoS bits.
  - The 125-microsecond timer expires.

CoS-based cell bundling optimizes the release of a bundle by sending out the cell that triggers early packet transmission as a single-cell packet. This means that when a cell triggers early packet transmission, that cell is not bundled. Consequently, certain input data patterns might cause primarily single-cell packets to be transmitted. For example, say the output interface receives a steady pattern of two cells from a non-RTVBR queue, followed by two cells from a UBR queue. In this case, all transmitted packets contain a single cell because the first cell triggers a transition and is transmitted by itself. The second cell is also transmitted by itself because the third cell triggers another transition, and so on. This effect might not be dramatic with a mix of traffic; it is most evident with steady traffic patterns, as generated by ATM test equipment programmed to emit regular sequences of CoS queue transitions.

Configuring Layer 2 Circuit Trunk Mode Scheduling Overview

For ATM2 IQ interfaces configured to use Layer 2 circuit trunk mode, you can share a scheduler among 32 trunks on an ATM port. A weighted round robin scheduling algorithm ensures each trunk receives a proportional share of the bandwidth when all trunks are active, and redistributes bandwidth that would have otherwise been reserved by an inactive trunk, thus minimizing the latency on each trunk. For general information about Layer 2 circuit trunk mode, see "Configuring Layer 2 Circuit Transport Mode" on page 61.
For general information about ATM CoS scheduling, see “ATM2 IQ VC Tunnel CoS Components Overview” on page 135.

Each trunk is associated with a trunk bandwidth. The trunk bandwidth is the maximum bandwidth used each time a trunk is serviced. We recommend configuring trunk bandwidths so that the ratio between the minimum and maximum bandwidths does not exceed 1:500.

To minimize latency, the Junos OS does not shape the trunks. As cells are received, they are immediately transmitted.

To configure trunk bandwidth, include the `trunk-bandwidth` statement:

```
trunk-bandwidth rate;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

The trunk bandwidth can be from 1,000,000 through 542,526,792 bps. You can specify the rate in bits per second or cells per second (cps). You can specify a bits-per-second value either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000). You can specify a cells-per-second value by entering a decimal number followed by the abbreviation c; values expressed in cells per second are converted to bits per second by means of the formula 1 cps = 384 bps.

The Junos OS rounds off the configured value. Therefore, we recommend that you configure a minimum trunk bandwidth of `1m`. From `1m`, configure values in increments of `500k`.

**RELATED DOCUMENTATION**

- Configuring Layer 2 Circuit Transport Mode | 61
- ATM2 IQ VC Tunnel CoS Components Overview | 135

**Configuring CoS Queues in Layer 2 Circuit Trunk Mode**

On ATM2 IQ interfaces, you can configure ATM CoS scheduling for AAL5 mode and Layer 2 circuit trunk mode. For general information about ATM CoS, see “ATM2 IQ VC Tunnel CoS Components Overview” on page 135.

When you configure CoS scheduling in Layer 2 circuit trunk mode, the trunk is defined on the logical interface, and four CoS queues are opened in the trunk. For each CoS queue, you specify a priority and a
transmit weight. CoS queues are serviced using a weighted round robin (WRR) algorithm. One queue is serviced with strictly high priority and the remaining queues are serviced with the WRR.

For Layer 2 circuit trunk mode, only strict mode is supported. Alternate mode is not supported.

To configure CoS queues in Layer 2 circuit trunk mode, perform the following tasks:

1. Include the `encapsulation atm-ccc-cell-relay` statement at the `[edit interfaces at-fpc/pic/port]` hierarchy level:

   ```
 [edit interfaces at-fpc/pic/port]
 encapsulation (atm-ccc-cell-relay | ether-vpls-over-atm-llc);
   ```

2. Include the `scheduler-maps` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level:

   ```
 [edit interfaces at-fpc/pic/port atm-options]
 scheduler-maps map-name {
 forwarding-class (class-name | assured-forwarding | best-effort | expedited-forwarding | network-control);
 vc-cos-mode strict;
 }
   ```

3. Include the `atm-scheduler-map`, `trunk-bandwidth`, and `trunk-id` statements at the `[edit interfaces at-fpc/pic/port unit logical-unit-number]` hierarchy level:

   ```
 [edit interfaces at-fpc/pic/port unit logical-unit-number]
 atm-scheduler-map (map-name | default);
 trunk-bandwidth rate;
 trunk-id number;
   ```

For information about ATM scheduler maps, see "Configuring an ATM Scheduler Map" on page 138.

For information about trunk identification numbers, see "Configuring Layer 2 Circuit Transport Mode" on page 61. For information about trunk bandwidths, see "Configuring Layer 2 Circuit Trunk Mode Scheduling Overview" on page 87.

Strict mode CoS queue priority works as follows:

- **Scheduling**—One queue has strictly high priority and is always serviced before the remaining queues are serviced by a weighted round robin. This means the packets in a high priority queue are sent first until the queue is empty. Then low priority queues send packets until their weight quota becomes zero or negative.

- **Latency**—Each trunk is associated with a trunk bandwidth. The trunk bandwidth is the maximum bandwidth used each time a trunk is serviced. In the scheduling process, each trunk is serviced in a
WRR. The maximum latency for any trunk to begin transmitting is equal to the sum of the weights of all previously queued trunks. Trunks without data do not affect output scheduling. As long as all the trunks have data, the exact weight proportions are maintained. If a trunk runs out of data during its turn, it is no longer included in the WRR. When the trunk gets more data, the trunk is placed at the end of the queue. For more information, see “Configuring Layer 2 Circuit Trunk Mode Scheduling Overview” on page 87.

Within a single trunk, the maximum latency of a high priority queue is the time it takes to transmit one ATM cell. The latency of a low priority queue is the sum of high priority queue burst time and the transmission time of the remaining low priority queues’ weight.

• Bandwidth distribution—Trunks are serviced in a WRR based on the trunk bandwidth.

Within a single trunk, the high priority queue consumes the bandwidth first regardless of its weight. The remaining bandwidth is distributed to the low priority queues in proportion to their weights.

Consider the following example:

• You configure a trunk with weights of 10 percent, 20 percent, 30 percent, and 40 percent for queues 0, 1, 2, and 3, respectively.

• You configure queue 0 to be a high priority queue.

• Queue 0 does not have cells to transmit.

In this scenario, queues 1, 2, and 3 receive 2/9, 3/9, and 4/9 of the bandwidth, respectively.

NOTE: Constant bit rate (CBR) traffic always enters the strictly high priority queue.

For more information about strict and alternate modes, see “ATM2 IQ VC Tunnel CoS Components Overview” on page 135.

For general information about Layer 2 circuit trunk mode, see “Configuring Layer 2 Circuit Transport Mode” on page 61.

For interfaces configured in trunk mode, you can also configure dual EPD thresholds depending on packet loss priorities (PLPs). For more information, see “Configuring Two EPD Thresholds per Queue” on page 154.

RELATED DOCUMENTATION

Configuring Layer 2 Circuit Transport Mode	61
Configuring an ATM Scheduler Map	138
Configuring Layer 2 Circuit Trunk Mode Scheduling Overview	87
Configuring the Timeout for Bundling of Layer 2 Circuit Cell-Relay Cells

Layer 2 cell-relay encapsulation supports the concatenation (aggregation) of multiple ATM cells in a single encapsulated packet that is transmitted on a pseudowire. By default, each packet contains one cell. For ATM interfaces with Layer 2 circuit cell-relay transport mode configured, you can configure the time threshold (in microseconds) that the router uses to concatenate ATM cells and transmit the cells in a single frame on the pseudowire. To set the period for which the ATM cells must be collected to be bundled in a single frame being transmitted on the pseudowire, include the **cell-bundle-timeout** statement at the `[edit interfaces interface-name atm-options]` or the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level.

Based on this configuration, the router attempts to collect and concatenate ATM cells in a single ATM cell relay-encapsulated packet and transmit the packet on a pseudowire connection. When the router detects that the allotted time interval has expired, the router forwards the packet even if it contains fewer than the specified maximum number of aggregated cells per packet. The cell concatenation or bundling functionality is controlled by the timeout value and the maximum number of cells to be concatenated.

To configure the period for which the ATM cells are aggregated and bundled before they are transmitted in a single frame on a pseudowire connection:

- Specify the number of microseconds for which the ATM cells must be bundled before the timer expires and the cells are transmitted in a single frame.

```
[edit interfaces interface-name atm-options]
user@host# set cell-bundle-timeout microseconds
```

When the router detects that the allotted time interval has expired, the router forwards the MPLS packet even if it contains fewer than the specified maximum number of aggregated cells per packet.

RELATED DOCUMENTATION

- Configuring the Layer 2 Circuit Cell-Relay Cell Maximum Overview
- cell-bundle-timeout
Configuring an ATM1 Cell-Relay Circuit Overview

For ATM1 interfaces, you can create an ATM cell-relay circuit by configuring an entire ATM physical device or an individual VC. When you configure an entire device, only cell-relay encapsulation is allowed on the logical interfaces; for ATM1 PICs, you use the `atm-options` statement to control the number and location of VCs. The configuration of allowed VCs on both ingress and egress ATM interfaces should be the same. For most interfaces, you can define a maximum of 4090 VCs per interface. The highest-numbered VC value you can configure is 4089. Promiscuous mode removes these limits. For more information, see "Configuring ATM Cell-Relay Promiscuous Mode" on page 47.

For ATM1 interfaces, if you are dedicating the entire device to a cell-relay circuit, include the `allow-any-vci` statement in the configuration of `unit 0`:

```
allow-any-vci;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit 0]`
- `[edit logical-systems logical-system-name interfaces interface-name unit 0]`

Once you include this statement, you cannot configure other logical interfaces in the same physical interface.

**NOTE:** When you use ATM CCC cell-relay encapsulation, you must configure the logical encapsulation as `atm-ccc-cell-relay`. You cannot mix different logical encapsulation types on an interface that you have configured with ATM CCC cell-relay physical encapsulation.

**Example: Configuring an ATM1 Cell-Relay Circuit**

To configure an ATM1 cell-relay circuit:

```
[edit interfaces at-1/2/0]
encapsulation atm-ccc-cell-relay;
```
Configuring an Individual VC on a Logical Interface

To configure an individual VC on a logical interface:

```
[edit interfaces at-1/1/0]
encapsulation atm-ccc-cell-relay;
atm-options {
 pic-type atm1;
vpi 0 maximum-vcs 256;
}
unit 0 {
 point-to-point;
 encapsulation atm-ccc-cell-relay;
 allow-any-vci;
}
```

Configuring Non-promiscuous port mode

To configure non-promiscuous port mode:

```
[edit interfaces at-0/0/1]
encapsulation atm-ccc-cell-relay;
atm-options {
 pic-type atm1;
vpi 0 {
 maximum-vcs 100;
 }
vpi 1 {
 maximum-vcs 300;
 }
vpi 4 {
 maximum-vcs 200;
 }
}
unit 0 {
 encapsulation atm-ccc-cell-relay;
}
allow-any-vci;
}

Configuring Nonpromiscuous VPI Mode

To configure non-promiscuous VPI mode:

```plaintext
[edit interfaces at-0/0/1]
encapsulation atm-ccc-cell-relay;
atm-options {
    pic-type atm1;
vpi 0 {
        maximum-vcs 100;
    }
}
unit 0 {
    encapsulation atm-ccc-cell-relay;
vpi 0;
}
```

Configuring Nonpromiscuous VCI Mode

To configure non-promiscuous VCI mode:

```plaintext
[edit interfaces at-0/0/1]
encapsulation atm-ccc-cell-relay;
atm-options {
    pic-type atm1;
vpi 0 {
        maximum-vcs 100;
    }
}
unit 0 {
    encapsulation atm-ccc-cell-relay;
vci 0.50
}
```

RELATED DOCUMENTATION

allow-any-vci	301
atm-options	305
atm-encapsulation	304
Configuring PPP over ATM2 Encapsulation Overview

For ATM2 IQ interfaces, you can configure PPP over AAL5 encapsulation, as described in RFC 2364, PPP over AAL5. PPP over ATM encapsulation associates a PPP link with an ATM AAL5 PVC.

The Junos OS supports three PPP over ATM encapsulation types:

- **atm-ppp-llc**—PPP over AAL5 LLC.
- **atm-ppp-vc-mux**—PPP over ATM AAL5 multiplex.
- **atm-mlppp-llc**—Multilink PPP over ATM AAL5 LLC. For this encapsulation type, your router must be equipped with a Link Services or Voice Services PIC. MLPPP over ATM encapsulation is not supported on ATM2 IQ OC48 interfaces.

To enable PPP over ATM encapsulation, include the `encapsulation` statement, specifying the `atm-mlppp-llc`, `atm-ppp-llc`, or `atm-ppp-vc-mux` encapsulation type:

```
encapsulation (atm-mlppp-llc|atm-ppp-llc|atm-ppp-vc-mux);
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

When you configure PPP over ATM encapsulation, you can enable PPP Challenge Handshake Authentication Protocol (CHAP) and keepalives on the logical interface. For more information about PPP CHAP and keepalives, see Configuring the PPP Challenge Handshake Authentication Protocol and Configuring Keepalives.

NOTE: When you use PPP over ATM encapsulation, we recommend that you not include the `oam-period` statement in the configuration. Instead, we recommend that you enable keepalives to detect connection failures.

Example: Configuring PPP over ATM2 IQ Encapsulation

To configure three logical interfaces with PPP over ATM encapsulation:
[edit interfaces]
at-0/1/0 {
 atm-options {
 pic-type atm2;
 vpi 0;
 vpi 2;
 }
 unit 0 {
 encapsulation atm-ppp-llc;
 ppp-options {
 chap {
 access-profile pe-B-ppp-clients;
 local-name "pe-A-at-0/1/0";
 }
 }
 }
 keepalives interval 5 up-count 6 down-count 4;
 vci 0.120;
 family inet address 192.168.13.13/30;
}
unit 1 {
 encapsulation atm-ppp-vc-mux;
 vci 2.120;
 keepalives interval 6 up-count 6 down-count 4;
 family inet address 192.168.14.13/30;
}
unit 2 {
 encapsulation atm-ppp-vc-mux;
 ppp-options {
 chap {
 passive;
 access-profile pe-A-ppp-clients;
 local-name "pe-A-at-0/1/0";
 }
 }
 keepalives interval 5 up-count 6 down-count 4;
 vci 2.121;
 family inet address 192.168.15.13/30;
}
}

Configuring Multilink PPP over ATM2 IQ Encapsulation

To configure multilink PPP over ATM2 IQ encapsulation:
[edit interfaces]
at-0/0/0 {
atm-options {
pic-type atm2;
vpi 10;
}
unit 0 {
encapsulation atm-mlppp-llc;
ppp-options {
chap {
access-profile pe-B-ppp-clients;
local-name "pe-A-at-0/0/0";
}
}
keepalive interval 5 up-count 6 down-count 4;
vci 10.120;
family mlppp {
bundle ls-0/3/0.0;
}
}
}
at-0/0/1 {
atm-options {
pic-type atm2;
vpi 11;
}
unit 1 {
encapsulation atm-mlppp-llc;
ppp-options {
chap {
access-profile pe-B-ppp-clients;
local-name "pe-A-at-0/0/0";
}
}
keepalive interval 5 up-count 6 down-count 4;
vci 11.120;
family mlppp {
bundle ls-0/3/0.0;
}
}
}
at-1/2/3 {
atm-options {
pic-type atm2;
}
vpi 12;
}
unit 2 {
 encapsulation atm-mlppp-llc;
 ppp-options {
 chap {
 access-profile pe-B-ppp-clients;
 local-name "pe-A-at-0/0/0";
 }
 }
 keepalive interval 5 up-count 6 down-count 4;
 vci 12.120;
 family mlppp {
 bundle ls-0/3/0.0;
 }
}
}
}
ls-0/3/0 {
 encapsulation multilink-ppp;
 interleave-fragments;
 keepalive;
 unit 0 {
 mrru 4500;
 short-sequence;
 fragment-threshold 16320;
 drop-timeout 2000;
 encapsulation multilink-ppp;
 interleave-fragments;
 minimum-links 8;
 family inet {
 address 10.10.0.1/32 {
 destination 10.10.0.2;
 }
 }
 family iso;
 family inet6 {
 address 8090::0:1/128 {
 destination 8090::0:2;
 }
 }
 }
}
...
Configuring a Multicast-Capable ATM1 or ATM2 IQ Connection

For ATM1 and ATM2 IQ interfaces, you can configure a multicast-capable connection. By default, ATM connections assume unicast traffic. If your ATM switch performs multicast replication, you can configure the connection to support multicast traffic by including the `multicast-vci` statement:

```
multicast-vci vpi-identifier.vci-identifier;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

`vci-identifier` and `vpi-identifier` are the VCI and VPI identifiers, which define the ATM VCI over which the switch is expecting to receive multicast packets for replication.

You can configure multicast support only on point-to-multipoint ATM connections.

Configuring the ATM OAM F5 Loopback Cell Threshold

For ATM1 and ATM2 IQ interfaces with an ATM encapsulation, you can configure the OAM F5 loopback cell threshold on VCs. This is the minimum number of consecutive OAM F5 loopback cells received before a VC is declared up, or the minimum number of consecutive OAM F5 loopback cells lost before a VC is declared down.

By default, when five consecutive OAM F5 loopback cells are received, the VC is considered to be up, and when five consecutive cells are lost, the VC is considered to be down. To modify these values, include the `oam-liveness` statement:

```
oam-liveness {
    up-count cells;
    down-count cells;
}
```
For a list of hierarchy levels at which you can include this statement, see **oam-liveness**.

The cell count can be a value from 1 through 255.

Configuring the OAM F4 Cell Flows

For ATM2 IQ interfaces, the F4 flow cell is used for management of the VP level. If your router is equipped with an ATM2 IQ PIC, you can configure OAM F4 cell flows to identify and report VPC defects and failures. The Junos OS supports three types of OAM F4 cells in end-to-end F4 flows:

- Virtual Path Alarm Indication Signal (VP-AIS)
- Virtual Path Remote Defect Indication (VP-RDI)
- Virtual Path Loopback

The Junos OS does not support segment F4 flows, VPC continuity check, or VP performance management functions.

On each VP, you can configure an interval during which to transmit loopback cells by including the `oam-period` statement at the `[edit interfaces interface-name atm-options vpi vpi-identifier]` hierarchy level:

```
[edit interfaces interface-name atm-options vpi vpi-identifier]
oam-period (disable | seconds);
```

When you add a VPI at the `atm-options` hierarchy, an end-to-end F4 VCI is automatically opened to send and receive OAM F4, VP-AIS, and VP-RDI cells. If you enable OAM by including the `oam-period` statement in the configuration, the router sends and receives OAM F4 loopback cells.

If the physical ATM interface is configured with encapsulation type `atm-ccc-cell-relay`, then F4 VCIIs are not created, and F4 OAM processing is not performed for the VPIs configured on that interface.

To modify OAM liveness values on a VP, include the `oam-liveness` statement at the `[edit interfaces interface-name atm-options vpi vpi-identifier]` hierarchy level:

```
[edit interfaces interface-name atm-options vpi vpi-identifier]
oam-liveness {
    up-count cells;
    down-count cells;
}
```

`up-count` is the minimum number of consecutive OAM F4 loopback cells received on a VPI before it is declared up.
down-count is the minimum number of consecutive OAM F4 loopback cells lost before a VPI is declared down.

When a VP-AIS or VP-RDI cell is received, the VPI is marked down. When a VP-AIS cell is received on a VPI, a VP-RDI is generated and transmitted on the same VPI. When an OAM F4 loopback request cell is received, the router sends a loopback reply cell, even if the **oam-period** statement is not included in the configuration of the VPI.

When a VPI is marked down because the VPI receives VP-AIS, VP-RDI, VC-AIS, or VC-RDI cells, or because the VPI does not receive down-count consecutive OAM F4 loopback replies, all the VCIs that belong to the VPI are marked down. When a VPI is marked up, all the VCIs that belong to the VPI are marked up. The status of logical interfaces is also changed when the status of the last VCI on that interface is changed.

For a configuration example, see "Example: Configuring ATM2 IQ Interfaces" on page 42.

NOTE: For interfaces that are configured for cell-relay promiscuous virtual path identifier (VPI) mode, the **show interfaces** command output does not show (OAM) F4 cell statistics.

Defining the ATM OAM F5 Loopback Cell Period

For ATM1 and ATM2 IQ interfaces with an ATM encapsulation, you can configure the OAM F5 loopback cell period on virtual circuits. This is the interval at which OAM F5 loopback cells are transmitted.

By default, no OAM F5 loopback cells are sent. To send OAM F5 loopback cells, include the **oam-period** statement:

```
oam-period (disable | seconds);
```

For a list of hierarchy levels at which you can include this statement, see **oam-period**.

The period can be from 1 through 900 seconds. You can also choose the **disable** option to disable the OAM loopback cell transmit feature.

OAM VC-AIS and VC-RDI defect indication cells are used for identifying and reporting VC defects end-to-end. When a physical link or interface failure occurs, intermediate nodes insert OAM AIS cells into all the downstream VCIs affected by the failure. Upon receiving an AIS cell on a VC, the router marks the logical interface down and sends an RDI cell on the same VC to notify the remote end of the error status. When an RDI cell is received on a VC, the router sets the logical interface status to down. When no AIS or RDI cells are received for 3 seconds, the router sets the logical interface status to up. You do not need to configure anything to enable defect indication.
Configuring Fixed Classification on an ATM IMA Pseudowire

You configure fixed classification on the ATM IMA pseudowire logical interface (unit) by specifying a forwarding class, which is applied to all packets received by the logical interface. To complete this configuration, you can define a forwarding class at the [edit class-of-service forwarding-classes] hierarchy level. If you do not define a forwarding class, the default class is used.

The following steps require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

NOTE: CoS fixed classification on an ATM IMA pseudowire is not applicable on ACX5048 and ACX5096 routers.

To configure CoS fixed classification on an ATM IMA pseudowire:

1. Define the ATM IMA pseudowire. For information about defining the ATM IMA pseudowire, see “Configuring Inverse Multiplexing for ATM (IMA) on ACX Series” on page 30.

2. In configuration mode, go to the [edit class-of-service] hierarchy level:

   ```
   [edit]
   user@host# edit class-of-service
   ```

3. Define the forwarding class to apply to the input logical interface, if the default forwarding class is not used:

   ```
   [edit class-of-service]
   user@host# set forwarding-classes class class-name queue-num queue-num
   ```

4. Specify the ATM IMA interface on which to include the forwarding class:

   ```
   [edit class-of-service]
   user@host# edit interfaces at-fpc/pic/port
   ```

5. Configure the logical unit:

   ```
   [edit class-of-service interfaces at-fpc/pic/port]
   user@host# edit unit logical-unit-number
   ```
6. Apply the forwarding class to the logical interface:

[edit class-of-service interfaces at-fpc/pic/port unit logical-unit-number]
user@host# set forwarding-class class-name

After you have configured fixed classification, enter the commit command in configuration mode.

RELATED DOCUMENTATION

- Understanding CoS on ATM IMA Pseudowire Interfaces Overview | 17
- Example: Configuring Fixed Classification on an ATM IMA Pseudowire | 103
- Configuring Policing on an ATM IMA Pseudowire | 114
- Configuring Shaping on an ATM IMA Pseudowire | 107

Example: Configuring Fixed Classification on an ATM IMA Pseudowire

This example shows the configuration of fixed classification on an ATM IMA pseudowire. Fixed classification is configured on the logical interface (unit) of the ATM IMA pseudowire. The software assigns the fixed classification to packets on the basis of the fixed classification parameters associated with the logical interface on which the ATM cells are received.

NOTE: This example is not applicable on ACX5048 and ACX5096 routers.
Requirements

This example uses the following hardware and software components:

- ACX Series router
- Junos OS Release 12.2 or later
- A previously configured ATM IMA pseudowire. For steps to configure an ATM IMA pseudowire, see "Configuring Inverse Multiplexing for ATM (IMA) on ACX Series" on page 30.

Overview

In this example, the configured forwarding class fc-1 is applied to all packets received on the ingress logical interface at-0/0/16 unit 0. The fixed classification classifies all traffic on the logical interface unit zero (0) to queue-num 1.

Configuration

IN THIS SECTION

- Configuring a Forwarding Class | 104
- Applying the Forwarding Class | 105
- Results | 105

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure fixed classification on an ATM IMA Pseudowire, perform these tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

```
set class-of-service forwarding-classes class fc-1 queue-num 1
set class-of-service interfaces at-0/0/16 unit 0 forwarding-class fc-1
```

Configuring a Forwarding Class

Step-by-Step Procedure
To define a forwarding class, which is applied to the ingress logical interface:

1. In configuration mode, go to the following hierarchy level:

```
[edit]
user@host# edit class-of-service forwarding-classes
```

2. Define the forwarding class to apply to the input logical interface:

```
[edit class-of-service forwarding-classes]
user@host# set class fc-1 queue-num 1
```

Applying the Forwarding Class

Step-by-Step Procedure

To apply the forwarding class to the logical ATM IMA pseudowire:

1. Specify the ATM IMA interface on which to include the forwarding class:

```
[edit class-of-service]
user@host# edit interfaces at-0/0/16
```

2. Configure the logical interface:

```
[edit class-of-service interfaces at-0/0/16 ]
user@host# edit unit 0
```

3. Apply the previously configured forwarding class to the logical interface:

```
[edit class-of-service interfaces at-0/0/16 unit 0]
user@host# set forwarding-class fc-1
```

Results

From configuration mode, confirm your configuration by entering the `show` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

In the following example, all packets coming into the router from the `at-0/0/16 unit 0` interface are assigned to the `fc-1` forwarding class:
[edit class-of-service]
user@host# show
forwarding-classes {
 class fc-1 queue-num 1;
}
interfaces {
 at-0/0/16 {
 unit 0 {
 forwarding-class fc-1;
 }
 }
}

After you have completed the configuration, enter the **commit** command from configuration mode.

RELATED DOCUMENTATION

- Understanding CoS on ATM IMA Pseudowire Interfaces Overview | 17
- Configuring Fixed Classification on an ATM IMA Pseudowire | 102
- Example: Configuring Policing on an ATM IMA Pseudowire | 118
- Example: Configuring Shaping on an ATM IMA Pseudowire | 109
Configuring Shaping on an ATM IMA Pseudowire

On ACX Series routers, ATM shaping is applied in the egress direction only. Only cell-based shaping is supported. A traffic control profile, which defines the ATM scheduling parameters, is configured at the [edit class-of-service] hierarchy level. The traffic control profile is then applied to the ATM logical interface configured at the [edit class-of-service] hierarchy level.

NOTE: The configuration of ATM shaping requires the inclusion of the per-unit scheduler statement at the [edit interfaces interface-name] hierarchy level.

NOTE: Configuring shaping on an ATM IMA pseudowire is not applicable on ACX5048 and ACX5096 routers.

The following steps require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure a traffic-shaping profile on an ATM IMA pseudowire:

1. Define the ATM IMA pseudowire. For information about defining the ATM IMA pseudowire, see “Configuring Inverse Multiplexing for ATM (IMA) on ACX Series” on page 30.

2. In configuration mode, go to the [edit class-of-service] hierarchy level:

 [edit]
 user@host# edit class-of-service

3. Specify the traffic-shaping profile:

 [edit class-of-service]
 user@host# edit traffic-control-profiles profile-name

 The following steps describe the traffic control profile options that you can configure. The options include atm-service, delay-buffer-rate, max-burst-size, peak-rate, and sustained-rate.

4. (Optional) Specify the service category that determines the traffic-shaping parameter for the ATM queue at the ATM IMA pseudowire:

 [edit class-of-service traffic-control-profiles profile-name]
Select one of the following service traffic categories, depending on the needs of your network: constant bit rate (cbr), non-real-time variable bit rate (nrtvbr), or real-time variable bit rate (rtvbr). All service traffic categories must include the peak-rate and cdvt statements for the configuration to work. The peak-rate statement limits the maximum traffic allowed and the cdvt statement ensures that the configuration functions correctly.

5. (Optional) Specify the delay-buffer calculation:

 [edit class-of-service traffic-control-profiles profile-name]
 user@host# set delay-buffer-rate cps

 The delay-buffer calculation can be specified as cells per second—1000 cells per second (cps) through 160,000,000,000 cps.

6. (Optional) Define the maximum number of cells that a burst of traffic can contain, from 1 through 4000 cells:

 [edit class-of-service traffic-control-profiles profile-name]
 user@host# set max-burst-size max-burst-size

7. Define the largest number of cells per second that the shaper processes before it drops packets, from 61 cps through 38,641 cps:

 [edit class-of-service traffic-control-profiles profile-name]
 user@host# set peak-rate peak-rate

 The maximum peak rate value depends on the number of links in the IMA bundle—the more the number of links, the higher the possible peak rate.

8. (Optional) Define the normal traffic rate averaged over time, from 61 cps through 38,641 cps:

 [edit class-of-service traffic-control-profiles profile-name]
 user@host# set sustained-rate cps

9. To complete the configuration, configure the per-unit scheduler:

 [edit interfaces interface-name]
 user@host# set per-unit scheduler
After you have configured shaping on the ATM IMA interface, enter the `commit` command from configuration mode.

RELATED DOCUMENTATION

Understanding CoS on ATM IMA Pseudowire Interfaces Overview	17
Example: Configuring Shaping on an ATM IMA Pseudowire	109
Configuring Fixed Classification on an ATM IMA Pseudowire	102
Configuring Policing on an ATM IMA Pseudowire	114

Example: Configuring Shaping on an ATM IMA Pseudowire

The following example shows the configuration of shaping on an ATM IMA pseudowire. On ACX Series routers, the ATM shaper is applied on the egress logical (unit) interface.

NOTE: This example is not applicable on ACX5048 and ACX5096 routers.

Requirements

This example uses the following hardware and software components:

- ACX Series router
- Junos OS Release 12.2 or later
- A previously configured ATM IMA pseudowire. For steps to configure an ATM IMA pseudowire, see "Configuring Inverse Multiplexing for ATM (IMA) on ACX Series" on page 30.
Overview

In this example, an ATM IMA pseudowire logical interfaces (unit 0) is configured with two egress ATM shapers—profile-1 and profile-2. The ATM shaping profiles are configured with the following parameters:

- **atm-service**—ATM service category used to define the bit rate at which traffic is policed.
- **peak-rate**—Top rate at which traffic can burst. This is a mandatory statement that must be included for the configuration to work correctly.
- **sustained-rate**—Normal traffic rate averaged over time.
- **maximum-burst-size**—Maximum number of cells that a burst of traffic can contain.

In addition to the configuration of shaping, this example includes the configuration of tracing operations for the class-of-service (CoS) configuration.

Configuration

To configure shaping on an ATM IMA pseudowire, perform these tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

```plaintext
set class-of-service traffic-control-profiles profile-1 atm-service rtvbr
set class-of-service traffic-control-profiles profile-1 peak-rate 5k
set class-of-service traffic-control-profiles profile-1 sustained-rate 3k
set class-of-service traffic-control-profiles profile-1 max-burst-size 400
set class-of-service traffic-control-profiles profile-2 atm-service cbr
set class-of-service traffic-control-profiles profile-2 peak-rate 1k
set class-of-service interfaces at-0/0/16 unit 0 output-traffic-control-profile profile-1
set interfaces at-0/0/16 per-unit-scheduler
set class-of-service traceoptions file cos
```
To configure shaping on an ATM IMA pseudowire:

1. In configuration mode, go to the [edit class-of-service] hierarchy level:

   ```
   [edit]
   user@host# edit class-of-service
   ```

2. Specify the first traffic control profile:

   ```
   [edit class-of-service]
   user@host# edit traffic-control-profiles profile-1
   ```

3. Specify the ATM real-time variable bit rate rtvbr service traffic category:

   ```
   [edit class-of-service traffic-control-profiles profile-1]
   user@host# set atm-service rtvbr
   ```

4. Define the largest number of cells per second that the shaper processes before it drops packets:

   ```
   [edit class-of-service traffic-control-profiles profile-1]
   user@host# set peak-rate 5k
   ```

5. Define the normal traffic rate averaged over time, from 61 cps through 38,641 cps:

   ```
   [edit class-of-service traffic-control-profiles profile-1]
   user@host# set sustained-rate 3k
   ```

6. Define the maximum number of cells that a burst of traffic can contain, from 1 through 4000 cells:

   ```
   [edit class-of-service traffic-control-profiles profile-1]
   ```
user@host# set max-burst-size 400

7. Specify the second traffic control profile:

[edit class-of-service traffic-control-profiles profile-2]
user@host# edit traffic-control-profiles profile-2

8. Specify the ATM constant bit rate cbr service traffic category:

[edit class-of-service traffic-control-profiles profile-2]
user@host# set atm-service cbr

9. Define the largest number of cells per second that the shaper processes before it drops packets:

[edit class-of-service traffic-control-profiles profile-2]
user@host# set peak-rate 1k

10. Define the largest number of cells per second that the shaper processes before it drops packets:

[edit class-of-service traffic-control-profiles profile-2]
user@host# set peak-rate 1k

11. Apply the first shaping traffic profile to the ATM IMA pseudowire logical interface:

[edit class-of-service]
user@host# edit interfaces at-0/0/16 unit 101 output-traffic-control-profile profile-1

12. Configure the per-unit scheduler:

[edit interfaces at-0/0/16]
user@host# set interfaces at-0/0/16 per-unit-scheduler

Configuring Tracing Operations

Step-by-Step Procedure

To define tracing operations for the class-of-service (CoS) configuration:

1. Configure class-of-service (CoS) tracing options:
2. Create the file to receive the tracing operation output:

```
[edit class-of-service traceoptions]
user@host# set file cos
```

3. Define the maximum size of the file:

```
[edit class-of-service traceoptions]
user@host# set file size 1000000000
```

4. Specify the tracing operation to perform:

```
[edit class-of-service traceoptions]
user@host# set flag all
```

Results

From configuration mode, confirm your configuration by entering the `show` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit class-of-service]
user@host# show
traffic-control-profiles {
    profile-1 {
        atm-service rtvbr;
        peak-rate 5k;
        sustained-rate 3k;
        max-burst-size 400;
    }
    profile-2 {
        atm-service cbr;
        peak-rate 1k;
    }
}
interfaces {
    at-0/0/16 {
        unit 101 {
```
output-traffic-control-profile profile-1;
}
}
}
}
traceoptions {
 file cos size 1000000000;
 flag all;
}

[edit interfaces]
user@host# show
at-0/0/16 {
 per-unit-scheduler;
}

After you have completed the configuration, enter the commit command from configuration mode.

RELATED DOCUMENTATION

Understanding CoS on ATM IMA Pseudowire Interfaces Overview | 17
Configuring Shaping on an ATM IMA Pseudowire | 107
Example: Configuring Fixed Classification on an ATM IMA Pseudowire | 103
Example: Configuring Policing on an ATM IMA Pseudowire | 118

Configuring Policing on an ATM IMA Pseudowire

On ACX Series routers, the ATM policer is attached to the ingress path of the ATM IMA interface, making it an input policer configured at the [edit firewall] hierarchy level. This input policer is then applied to an ATM IMA logical interface. The ATM IMA logical interface must have circuit cross-connect (CCC) family encapsulation configured for the configuration to work.

The following steps require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.
NOTE: Configuring policing on an ATM IMA pseudowire is not applicable on ACX5048 and ACX5096 routers.

This topic includes the following tasks:

1. Configuring an Input Policer | 115
2. Configuring the ATM IMA Interface | 117

Configuring an Input Policer

To configure policing on an ATM IMA pseudowire:

1. Define the ATM IMA pseudowire. For information about defining the ATM IMA pseudowire, see "Configuring Inverse Multiplexing for ATM (IMA) on ACX Series" on page 30.

2. In configuration mode, go to the [edit firewall] hierarchy level:

   ```
   [edit]
   user@host# edit firewall
   ```

3. Define the policer:

   ```
   [edit firewall]
   user@host# edit atm-policer atm-policer-name
   ```

 The following steps describe the ATM policer options that you can configure. The options include: atm-service, cdvt, logical-interface-policer, max-burst-size, peak-rate, policing-action, and sustained-rate.

4. Specify the ATM service category:

   ```
   [edit firewall atm-policer atm-policer-name]
   user@host# set atm-service (cbr | nrt-vbr | rt-vbr | ubr)
   ```

 Select one of the following service categories, depending on the policing needs of your network: constant bit rate (cbr), non-real-time variable bit rate (nrtvbr), real-time variable bit rate (rtvbr), and unspecified bit rate ubr. All service categories must include the peak-rate and cdvt statements for the configuration to work. The peak-rate statement limits the maximum traffic allowed and the cdvt statement ensures that the configuration functions correctly.
5. Apply limits to the traffic flow by configuring the cell delay variation tolerance (cdvt), from 1 microsecond through 1,800,000,000 microseconds:

```
[edit firewall atm-policer atm-policer-name]
user@host# set cdvt cdvt-time
```

6. (Optional) Define the policer as a logical interface policer:

```
[edit firewall atm-policer atm-policer-name]
user@host# set logical-interface-policer
```

The logical interface policer is associated with the interface on which the policer is applied. To configure the policer on multiple interfaces, you must apply this policer on each interface explicitly.

7. (Optional) Define the maximum number of cells that a burst of traffic can contain, from 1 through 4000 cells:

```
[edit firewall atm-policer atm-policer-name]
user@host# set max-burst-size max-burst-size
```

8. Apply limits to the traffic flow by specifying the largest number of cells per second that the policer processes before it drops packets, from 61 cells per second (cps) through 38,641 cps:

```
[edit firewall atm-policer atm-policer-name]
user@host# set peak-rate peak-rate
```

The maximum peak rate value depends on the number of links in the IMA bundle—the more links, the higher the possible peak rate.

9. Define the policing-action parameter to set a consequence for the packets that exceed the traffic limits:

```
[edit firewall atm-policer atm-policer-name]
user@host# set policing-action (discard | discard-tag | count)
```

10. Define the normal traffic rate averaged over time, from 61 cps through 38,641 cps:

```
[edit firewall atm-policer atm-policer-name]
user@host# set sustained-rate cps
```

After you have configured policing, enter the `commit` command from configuration mode.
Configuring the ATM IMA Interface

To create the ATM IMA interface on which to apply the ATM policer:

1. In configuration mode, go to the [edit interfaces] hierarchy level:

```
[edit]
user@host# edit interfaces
```

2. Define the ATM interface:

```
[edit interfaces]
user@host# edit at-fpc/pic/port
```

3. Specify the ATM interface unit:

```
[edit interfaces at-fpc/pic/port]
user@host# edit unit logical-unit-number
```

4. Apply the ATM policer:

```
[edit interfaces at-fpc/pic/port unit logical-unit-number]
user@host# set atm-policer input-atm-policer policer-name
```

5. Specify the encapsulation family type:

```
[edit interfaces at-fpc/pic/port unit logical-unit-number]
user@host# set family ccc
```

After you have configured the ATM IMA interface, enter the `commit` command in configuration mode.

RELATED DOCUMENTATION

- Understanding CoS on ATM IMA Pseudowire Interfaces Overview | 17
- Example: Configuring Policing on an ATM IMA Pseudowire | 118
- Configuring Fixed Classification on an ATM IMA Pseudowire | 102
- Configuring Shaping on an ATM IMA Pseudowire | 107
Example: Configuring Policing on an ATM IMA Pseudowire

This example shows the configuration of policing on an ATM IMA pseudowire. On ACX Series routers, the
ATM policer is an input policer that is applied to the ATM IMA logical interface. The ATM IMA logical
interface must have the circuit cross-connect (CCC) encapsulation family configured for the configuration
to work.

NOTE: This example is not applicable on ACX5048 and ACX5096 routers.

Requirements

This example uses the following hardware and software components:

- ACX Series router
- Junos OS Release 12.2 or later
- A previously configured ATM IMA pseudowire. For steps to configure an ATM IMA pseudowire, see
 “Configuring Inverse Multiplexing for ATM (IMA) on ACX Series” on page 30.

Overview

In this example, the ATM IMA pseudowire logical interfaces (unit 0, unit 1 and unit 2) are configured with
three input ATM polices—policer-1, policer-2, and policer-3. The ATM polices are configured with the
following parameters:

- logical-interface-policer—The logical interface policer is configured explicitly on each logical interface
 (unit).
- atm-service—The ATM service category used to define the bit rate at which traffic is policed.
• **peak-rate**—The peak rate is the top rate at which traffic can burst. This is a mandatory statement that must be included for the configuration to work correctly.

• **sustained-rate**—The sustained rate is the normal traffic rate averaged over time.

• **maximum-burst-size**—The maximum burst size is the maximum number of cells that a burst of traffic can contain.

• **cdvt**—The Cell Delay Variation Tolerance is a mandatory statement that must be included for the configuration to work correctly.

• **policing-action**—The specified policing action used when the traffic exceeds the limits set for the policer.

Configuration

The following steps require you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure policing on an ATM IMA pseudowire, perform these tasks:

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level:

```plaintext
set firewall atm-policer policer-1 logical-interface-policer
set firewall atm-policer policer-1 atm-service rtvbr
set firewall atm-policer policer-1 peak-rate 2k
set firewall atm-policer policer-1 sustained-rate 1800
set firewall atm-policer policer-1 max-burst-size 400
set firewall atm-policer policer-1 cdvt 900001
set firewall atm-policer policer-1 policing-action discard-tag
set firewall atm-policer policer-2 logical-interface-policer
set firewall atm-policer policer-2 atm-service nrtvbr
set firewall atm-policer policer-2 peak-rate 1800
```
set firewall atm-policer policer-2 sustained-rate 1500
set firewall atm-policer policer-2 max-burst-size 300
set firewall atm-policer policer-2 cdvt 999991
set firewall atm-policer policer-2 policing-action discard
set firewall atm-policer policer-3 logical-interface-policer
set firewall atm-policer policer-3 atm-service cbr
set firewall atm-policer policer-3 peak-rate 2k
set firewall atm-policer policer-3 cdvt 800001
set firewall atm-policer policer-3 policing-action count
set interfaces at-0/0/16 unit 0 atm-policer input-atm-policer policer-1
set interfaces at-0/0/16 unit 0 family ccc
set interfaces at-0/0/16 unit 1 atm-policer input-atm-policer policer-2
set interfaces at-0/0/16 unit 1 family ccc
set interfaces at-0/0/16 unit 2 atm-policer input-atm-policer policer-3
set interfaces at-0/0/16 unit 2 family ccc

Configuring an ATM Policer

Step-by-Step Procedure
To configure the ATM policer, which is applied to the logical ATM IMA pseudowire:

1. Define the policer:

 [edit]
 user@host# edit firewall atm-policer policer-1

2. Specify the parameters for policer-1:

 [edit firewall atm-policer policer-1]
 user@host# set logical-interface-policer
 user@host# set atm-service rtvbr
 user@host# set peak-rate 2k
 user@host# set sustained-rate 1800
 user@host# set max-burst-size 400
 user@host# set cdvt 900001
 user@host# set policing-action discard-tag

3. Specify the parameters for policer-2:

 [edit firewall atm-policer policer-2]
 user@host# set logical-interface-policer
 user@host# set atm-service nrtvbr
4. Specify the parameters for policer-3:

```
[edit firewall atm-policer policer-3]
user@host# set logical-interface-policer
user@host# set atm-service cbr
user@host# set peak-rate 2k
user@host# set cdvt 999991
user@host# set policing-action count
```

After you have configured the ATM policers, enter the `commit` command from configuration mode.

Applying the ATM Policer on the ATM IMA Logical Interface

Step-by-Step Procedure

To create the ATM IMA logical interface on which to apply the ATM policers:

1. Define the ATM interface:

```
[edit interfaces]
user@host# edit interfaces at-0/0/16
```

2. Specify the ATM interface unit and apply the first input policer:

```
[edit interfaces at-0/0/16]
user@host# set unit 0 atm-policer input-atm-policer policer-1
```

3. Specify the encapsulation family type for unit 0:

```
[edit interfaces at-0/0/16]
user@host# set unit 0 family ccc
```

4. Specify the ATM interface unit and apply the second input policer:

```
[edit interfaces at-0/0/16]
```
5. Specify the encapsulation family type for unit 1:

[edit interfaces at-0/0/16]
user@host# set unit 1 family ccc

6. Specify the ATM interface unit and apply the third input policer:

[edit interfaces at-0/0/16]
user@host# set unit 2 atm-policer input-atm-policer policer-3

7. Specify the encapsulation family type for unit 2:

[edit interfaces at-0/0/16]
user@host# set unit 2 family ccc

Results

From configuration mode, confirm your configuration by entering the `show` command. If the output does not display the intended configuration, repeat the configuration instructions in this example to correct it.

```
[edit firewall]
user@host# show
atm-policer policer-1 {
    logical-interface-policer;
    atm-service rtvbr;
    peak-rate 2k;
    sustained-rate 1800;
    max-burst-size 400;
    cdvt 900001;
    policing-action discard-tag;
}
atm-policer policer-2 {
    logical-interface-policer;
    atm-service nrtvbr;
    peak-rate 1800;
    sustained-rate 1500;
    max-burst-size 300;
    cdvt 999991;
```
After you have completed the configuration, enter the commit command from configuration mode.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Related Documentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding CoS on ATM IMA Pseudowire Interfaces Overview</td>
<td>17</td>
</tr>
<tr>
<td>Configuring Policing on an ATM IMA Pseudowire</td>
<td>114</td>
</tr>
<tr>
<td>Example: Configuring Fixed Classification on an ATM IMA Pseudowire</td>
<td>103</td>
</tr>
</tbody>
</table>
Defining the ATM Traffic-Shaping Profile Overview

When you use an ATM encapsulation on ATM1 and ATM2 IQ interfaces, you can define bandwidth utilization, which consists of either a constant rate or a peak cell rate, with sustained cell rate and burst tolerance.

These values are used in the ATM generic cell-rate algorithm, which is a leaky bucket algorithm that defines the short-term burst rate for ATM cells, the maximum number of cells that can be included in a burst, and the long-term sustained ATM cell traffic rate.

If your router is equipped with an ATM2 IQ PIC, each VC can have independent shaping parameters. For more information, see “Defining Virtual Path Tunnels” on page 131.

NOTE: When the DS3 or E3 port parameters are not identical on all ports of a multiport ATM DS3 or E3 PIC, the ATM PIC driver might not always use the minimum port shaping rate (of all the ports on a multiport ATM DS3 or E3 PIC) selected for cell transmission shaping. The PIC’s shaping rate is always updated to conform to the last port setting updated by the PIC software driver, rather than use the minimum port (shaping) rate. There is no syslog message to inform the user of the shaping rate decision applied by the software driver.

By default, the bandwidth utilization is unlimited; that is, unspecified bit rate (UBR) is used. Also, by default, buffer usage by VCs is unregulated.

To define limits to bandwidth utilization, include the `shaping` statement:
shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
}

For a list of hierarchy levels at which you can include this statement, see shaping.

The rtvbr statement is supported on ATM2 IQ PICs only. The queue-length statement is supported on ATM1 PICs only.

To configure VP tunnels on ATM2 IQ interfaces, include the shaping statement at the [edit interfaces interface-name atm-options vpi vpi-identifier] hierarchy level:

[edit interfaces interface-name atm-options vpi vpi-identifier]
 shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 }

When configuring ATM traffic shaping, you can do the following:

Configuring ATM CBR

For traffic that does not require the ability to periodically burst to a higher rate, you can specify a constant bit rate (CBR).

To specify a CBR on ATM1 and ATM2 IQ interfaces, include the cbr statement:

```
cbr rate;  
```  

For a list of hierarchy levels at which you can include this statement, see cbr.

For ATM1 OC3 interfaces, the rate can be from 33 Kbps through 135.6 Mbps; for ATM1 OC12 interfaces, the rate can be from 33 Kbps through 276 Mbps.

For ATM2 IQ OC3 and OC12 interfaces, the rate can be from 33 Kbps through 542,526,792 bps.

For ATM2 IQ OC48 interfaces, the rate can be from 33 Kbps through 2,170,107,168 bps.

For ATM2 IQ DS3 and E3 interfaces, the rate can be from 33 Kbps to the maximum rate. The maximum rate varies depending on the ATM encapsulation and framing you configure, as shown in Table 12 on page 126.
Table 12: Shaping Rate Range by Interface Type

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Maximum Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS3 with direct ATM encapsulation</td>
<td>40,038,968 bps</td>
</tr>
<tr>
<td>DS3 with PLCP ATM encapsulation</td>
<td>36,864,000 bps</td>
</tr>
<tr>
<td>E3 with g.751 framing and direct ATM encapsulation</td>
<td>30,801,509 bps</td>
</tr>
<tr>
<td>E3 with g.751 framing PLCP ATM encapsulation</td>
<td>27,648,000 bps</td>
</tr>
<tr>
<td>E3 with g.832 framing</td>
<td>30,720,000 bps</td>
</tr>
</tbody>
</table>

Configuring ATM2 IQ Real-Time VBR

By default, ATM interfaces use UBR; that is, bandwidth utilization is unlimited. For ATM2 IQ interfaces only, you can configure RTVBR, which supports variable bit rate data traffic with average and peak traffic parameters. Compared to non-real-time VBR, RTVBR data is serviced at a higher priority with a relatively small sustainable cell rate (SCR) limit to minimize the delay. Real-time VBR is suitable for carrying packetized video and audio.

To configure RTVBR, include the `rtvbr` statement:

```plaintext
rtvbr peak rate sustained rate burst length;
```

For a list of hierarchy levels at which you can include this statement, see `rtvbr`.

When configuring RTVBR, you can define the following shaping properties:

- Peak rate—Top rate at which traffic can burst.
- Sustained rate—Normal traffic rate averaged over time.
- Burst length—Maximum number of cells that a burst of traffic can contain. It can be a value from 1 through 4000 cells.

The peak and sustained rates can be from 33 Kbps through 542,526,792 bps.

Configuring ATM VBR

By default, ATM interfaces use UBR; that is, bandwidth utilization is unlimited. For ATM1 and ATM2 IQ interfaces, you can configure non-real-time VBR, which supports variable bit rate data traffic with average
and peak traffic parameters. Compared to RTVBR, non-real-time VBR is scheduled with a lower priority and with a larger SCR limit, allowing it to recover bandwidth if it falls behind. Non-real-time VBR is suitable for packet data transfers.

To define VBR on ATM1 and ATM2 IQ interfaces, include the `vbr` statement:

```
vbr peak rate sustained rate burst length;
```

For a list of hierarchy levels at which you can include this statement, see `vbr`.

When configuring VBR, you can define the following shaping properties:

- **Peak rate**—Top rate at which traffic can burst.
- **Sustained rate**—Normal traffic rate averaged over time.
- **Burst length**—Maximum number of cells that a burst of traffic can contain. It can be a value from 1 through 4000 cells.

Specifying ATM1 Shaping Values

For ATM1 interfaces, you can specify the rates in bits per second or cells per second. For OC3c interfaces, the highest rate is 135,631,698 bps (353,207.55 cps), which corresponds to 100 percent of the available line rate. For OC12c interfaces, the highest rate is 271,263,396 bps (706,415.09 cps), which corresponds to 50 percent of the available line rate. Table 13 on page 128 lists some of the other rates you can specify. If you specify a rate that is not listed, it is rounded to the nearest rate.

The exact number of values differs between OC12c and OC3c interfaces. OC12c interfaces have about four times as many value increments as OC3c interfaces.

For OC12c rates between 1/2 of the line rate and 1/128 of the line rate, there are 128 steps between each 1/n value. This means that there is 128 steps between the 1/2 and 1/3 line rate values, and another 128 steps between 1/3 and 1/4 and so on. For rates smaller than 1/127, there are (16,384 minus 127) or 16,257 values. The reason for this is that fractional shaping is ignored at rates below 1/127. This results in a total of about 32,384 distinct rates for OC12c. When n is larger than or equal to 127, the steps are 1/n.

For OC3c, the starting point is full line rate, the fraction/integer breakpoint is about 1/31, and there is a maximum of 4096 scheduler slots for use after 1/31 of line rate, producing about 8032 total distinct rates. When n is larger than or equal to 31, the steps are 1/n.

For ATM1 interfaces, the following formula can be used to predict the actual shaping rate:

- OC3 shaping settings between 135,631,698 bps (OC3 ATM cell line rate) and 4,375,216 bps (1/31 of OC3 ATM cell line rate).
- OC12 shaping settings between 271,263,396 bps (half OC12 ATM cell line rate – the highest rate supported) and 4,271,864 bps (1/127 of OC12 ATM cell line rate).

\[
\text{actual-rate} = \frac{(128 \times \text{line-rate})}{\text{trunc}\left(\frac{(128 \times \text{line-rate})}{\text{desired-rate}}\right)}
\]

line-rate is the maximum available rate on the interface (in bits per second) after factoring out the overhead for SONET/SDH and ATM (per-cell) overheads. For OC3c interfaces, the line rate is calculated as follows:

\[
\text{line-rate} = 155,520,000 \text{ bps} \times \frac{26}{27} \times \frac{48}{53} = 135,631,698.1 \text{ bps}
\]

For OC12c interfaces, the line rate is calculated as follows:

\[
\text{line-rate} = 622,080,000 \text{ bps} \times \frac{26}{27} \times \frac{48}{53} = 542,526,792.45 \text{ bps}
\]

desired-rate is the rate you enter in the `vbr` statement, in bits per second.

The **trunc** operator indicates that all digits to the right of the decimal point should be dropped.

For shaping settings smaller than 1/31 of OC3 ATM cell line rate (4,375,216 bps) and 1/127 of OC12 ATM cell line rate (4,271,864 bps), you can predict the actual shaping rate using the following formula:

\[
\text{actual-rate} = \left(\frac{1}{\text{trunc}\left(\frac{\text{line-rate}}{\text{desired-rate}}\right) + 1} \right) \times \text{line-rate}
\]

For example, for OC12 interfaces, the actual rates for shaping below 4,271,864 bps are calculated as follows:

\[
\begin{align*}
1 / 127 \times 542,526,792.45 \text{ bps} &= 4,271,864 \text{ bps (11124 cells/second)} \\
1 / 128 \times 542,526,792.45 \text{ bps} &= 4,238,490 \text{ bps (11038 cells/second)} \\
1 / 129 \times 542,526,792.45 \text{ bps} &= 4,205,634 \text{ bps (10952 cells/second)} \\
\ldots
\end{align*}
\]

Buffers are shared among all VCs, and by default, there is no limit to the buffer size for a VC. If a VC is particularly slow, it might use all the buffer resources.

Table 13 on page 128 shows ATM1 traffic-shaping rates.

Table 13: ATM1 Traffic-Shaping Rates

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Line Rate (bps)</th>
<th>Line Rate (cps)</th>
<th>Percentage of Total Line Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC3</td>
<td>135,600,000</td>
<td>353,125</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Table 13: ATM1 Traffic-Shaping Rates (continued)

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Line Rate (bps)</th>
<th>Line Rate (cps)</th>
<th>Percentage of Total Line Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>134,542,320</td>
<td>350,370.66</td>
<td>99.22</td>
</tr>
<tr>
<td></td>
<td>133,511,760</td>
<td>347,686.88</td>
<td>98.46</td>
</tr>
<tr>
<td></td>
<td>132,494,760</td>
<td>345,038.44</td>
<td>97.71</td>
</tr>
<tr>
<td></td>
<td>131,491,320</td>
<td>342,425.31</td>
<td>96.97</td>
</tr>
<tr>
<td></td>
<td>130,501,440</td>
<td>339,847.5</td>
<td>96.24</td>
</tr>
<tr>
<td></td>
<td>129,525,120</td>
<td>337,305</td>
<td>95.52</td>
</tr>
<tr>
<td></td>
<td>128,562,360</td>
<td>334,797.81</td>
<td>94.81</td>
</tr>
<tr>
<td></td>
<td>127,626,720</td>
<td>332,361.25</td>
<td>94.12</td>
</tr>
<tr>
<td></td>
<td>126,691,080</td>
<td>329,924.69</td>
<td>93.43</td>
</tr>
<tr>
<td>OC12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>271,263,396</td>
<td>706,415.09</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>270,207,897</td>
<td>703,666.40</td>
<td>49.81</td>
</tr>
<tr>
<td></td>
<td>269,160,579</td>
<td>700,939.01</td>
<td>49.61</td>
</tr>
<tr>
<td></td>
<td>268,121,349</td>
<td>698,232.68</td>
<td>49.42</td>
</tr>
<tr>
<td></td>
<td>267,090,113</td>
<td>695,547.17</td>
<td>49.23</td>
</tr>
<tr>
<td></td>
<td>266,066,779</td>
<td>692,882.24</td>
<td>49.04</td>
</tr>
<tr>
<td></td>
<td>265,051,257</td>
<td>690,237.65</td>
<td>48.85</td>
</tr>
<tr>
<td></td>
<td>264,043,458</td>
<td>687,613.17</td>
<td>48.67</td>
</tr>
<tr>
<td></td>
<td>263,043,293</td>
<td>685,008.58</td>
<td>48.48</td>
</tr>
<tr>
<td></td>
<td>262,050,677</td>
<td>682,423.64</td>
<td>48.30</td>
</tr>
</tbody>
</table>
Example: Specifying ATM1 Shaping Values

Determine the actual rate in ATM1 interfaces when the desired rate is 80 percent of the maximum rate:

- OC3c:

 \[\text{Actual rate} = 135,600,000 \text{ bps} \times 0.8 = 108,480,000 \text{ bps} \]

 Because 108,480,000 bps is greater than 1/31 of OC3 ATM cell line rate:

 \[
 \text{actual-rate} = \frac{(128 \times 135,600,000.1)}{\text{trunc}\left(\frac{(128 \times 135,600,000.1)}{108,480,000}\right)}
 \]
 \[
 \text{actual-rate} = \frac{17,356,800,013}{\text{trunc}\left(\frac{17,356,800,013}{108,480,000}\right)}
 \]
 \[
 \text{actual-rate} = 17,356,800,013 / 160
 \]
 \[
 \text{actual-rate} = 108,480,000 \text{ bps}
 \]

- OC12c:

 \[\text{Actual rate} = 271,263,396 \text{ bps} \times 0.8 = 217,010,716.8 \text{ bps} \]

 Because 217,010,716.8 bps is greater than 1/127 of OC12 ATM cell line rate:

 \[
 \text{actual-rate} = \frac{(128 \times 542,526,792.45)}{\text{trunc}\left(\frac{(128 \times 542,526,792.45)}{217,010,716.8}\right)}
 \]
 \[
 \text{actual-rate} = \frac{69,443,429,434}{\text{trunc}\left(\frac{69,443,429,434}{217,010,716.8}\right)}
 \]
 \[
 \text{actual-rate} = 69,443,429,434 / 320
 \]
 \[
 \text{actual-rate} = 217,010,717 \text{ bps}
 \]

Determine the actual rate in ATM1 interfaces when the desired rate is 3,000,000 bps:

- OC3c:

 Because 3,000,000 bps is smaller than 1/31 of OC3 ATM cell line rate:

 \[
 \text{actual-rate} = \frac{1}{\text{trunc}\left(\frac{\text{line-rate}}{\text{desired-rate}} + 1\right)} \times \text{line-rate}
 \]
 \[
 \text{actual-rate} = \frac{1}{\text{trunc}\left(\frac{135,631,698}{3,000,000} + 1\right)} \times 135,631,698
 \]
 \[
 \text{actual-rate} = \frac{1}{45 + 1} \times 135,631,698
 \]
 \[
 \text{actual-rate} = 2,948,515 \text{ bps}
 \]

- OC12c:

 Because 3,000,000 bps is smaller than 1/127 of OC12 ATM cell line rate:

 \[
 \text{actual-rate} = \frac{1}{\text{trunc}\left(\frac{\text{line-rate}}{\text{desired-rate}} + 1\right)} \times \text{line-rate}
 \]
 \[
 \text{actual-rate} = \frac{1}{\text{trunc}\left(\frac{542,526,792}{3,000,000} + 1\right)} \times 542,526,792
 \]
 \[
 \text{actual-rate} = \frac{1}{180 + 1} \times 542,526,792
 \]
actual-rate = \(\frac{1}{181} \times 542,526,792 \)
actual-rate = 2,997,386 bps

Specifying ATM2 IQ Shaping Values

For ATM2 IQ OC3c interfaces, the maximum available rate is 100 percent of line rate, or 135,600,000 bps. For ATM2 IQ OC12c interfaces, the maximum available rate is 50 percent of line rate, or 271,273,396 bps. You can specify the rates in bits per second or cells per second. Fractional shaping is accurate within 0.5 percent of the desired rate.

Defining Virtual Path Tunnels

For ATM2 IQ interfaces, you can configure shaping on a VPI. When you do this, the VPI is called a VP tunnel. If your router is equipped with an ATM2 IQ PIC, you can configure VP tunnels and a weight for each VC. Each VC is serviced in WRR mode. When VCs have data to send, they send the number of cells equal to their weight before passing control to the next active VC. This allows proportional bandwidth sharing between multiple VCs within a rate-shaped VP tunnel. VP tunnels are not supported on point-to-multipoint interfaces.

If you change or delete VP tunnel traffic shaping, all logical interfaces on a VP are deleted and re-added.

All VPIs you configure on logical interfaces must also be configured on the physical interface, at the [edit interfaces interface-name atm-options] hierarchy level.

When you configure a VPI without shaping parameters, the VPI is a regular VPI; no shaping is attached. VCs that belong to non-shaped VPIs can have VCI shaping.

For point-to-point interfaces, include the shaping statement at the [edit interfaces interface-name atm-options vpi vpi-identifier] hierarchy level:

```plaintext
[edit interfaces interface-name atm-options vpi vpi-identifier]
  shaping {
    (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
    queue-length number;
  }
```

For cbr, vbr, and burst statement usage guidelines, see “Defining the ATM Traffic-Shaping Profile Overview” on page 124. For information about ATM2 IQ shaping values, see Defining the ATM Traffic-Shaping Profile Overview.
Configuring the ATM1 Queue Length

ATM1 PICs contain a transmit buffer pool of 16,382 buffers, which are shared by all the PVCs that you configure on the PIC. Even multiple-port ATM PICs have a single buffer pool shared by all the ports.

By default, the ATM1 PIC allows PVCs to consume all the buffers they require. If the sustained traffic rate for a PVC exceeds its shaped rate, buffers are consumed. Eventually, all buffers on the PIC are consumed, and the other PVCs are underserved. This results in head-of-line blocking.

For each PVC, you prevent this situation by configuring the queue length of the PVC. The queue length is a limit on the number of transmit packets that can be queued. Packets that exceed the limit are dropped.

To limit the queue size of a PVC, include the `queue-length` statement:

```
queue-length number;
```

For a list of hierarchy levels at which you can include this statement, see `queue-length`.

The length can be from 1 through 16,383 packets. The default is 16,383 packets. You should include the `queue-length` statement in the configuration of all the PVCs that you configure on an ATM1 PIC. The `queue-length` statement performs two functions:

- It prevents head-of-line blocking because it limits the number of packets and therefore buffers that can be consumed by each configured PVC.
- It sets the maximum lifetime that can be sustained by packets over the PVC when traffic has oversubscribed the configured shaping contract.

The total value of all the queue lengths must not exceed the total number of packets that can be held in the buffer space available on the PIC. The total number of packets the buffers can hold depends on the size of the physical interface MTU, including all encapsulation overhead. You can use the following formula to calculate the total number of packets the buffer space can hold:

```
16,382 / (Round Up (MTU / 480 ))
```

For example, assuming default MTU settings for all ATM1 interfaces on a PIC, the total number of packets that can be held is:

```
16,382 / ( Round Up ( 4482 / 480 ) ) = 1638 packets
```

Thus, you can configure up to 1638 for the combined queue length of all the PVCs on an ATM1 PIC that uses default MTU settings for all interfaces.

If you set a queue length to a very low value, small bursts in packets transiting the PVC might not be buffered.
The maximum lifetime that packets can sustain while transiting a PVC depends on the shaping rate you configure for the PVC, the setting for the **queue-length** statement, and the physical interface MTU. You can use the following formula to calculate the maximum lifetime that packets can sustain while transiting a PVC:

\[
\frac{(\text{PVC queue-length in packets} \times \text{MTU})}{(\text{PVC shaping in bps} / 8)}
\]

For example, if you configure a PVC on an ATM1 interface with the default MTU, a CBR shaping rate of 3,840,000 bps (10,000 cps), and a queue length of 25 packets. The maximum lifetime is:

\[
\frac{(25 \times 4482)}{(3,840,000 / 8)} = 233 \text{ ms}
\]

This is the worst-case lifetime assuming all packets in the queue are MTU sized, and the traffic using the PVC is oversubscribing its configured shaping contract.

In general, we recommend that you use a maximum lifetime under 500 ms.

If you add or change the queue-length setting on the VC, the logical interface associated with the VC is deleted and re-added.

Configuring a Point-to-Point ATM1 or ATM2 IQ Connection

When you use ATM encapsulation on an interface, you must map each logical interface to a VCI. You can optionally map logical interfaces to a VPI.

For ATM1 and ATM2 IQ interfaces, you can configure a VCI and a VPI on a point-to-point ATM interface by including the `vci` statement:

```plaintext
vci vpi-identifier.vci-identifier;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

For each VCI, configure the VCI and VPI identifiers. The default VPI identifier is 0. For ATM1 interfaces, the VCI identifier cannot exceed the highest-numbered VC configured for the interface with the `vpi` statement, as described in "Configuring the Maximum Number of ATM1 VCs on a VP" on page 52.

VCIs 0 through 31 are reserved for specific ATM values designated by the ATM Forum.
ATM2 IQ interfaces support only one invalid VC counter for all ports. The invalid VC counter is recorded at port 0 only.

When you are configuring point-to-point connections, the maximum transmission unit (MTU) sizes on both sides of the connections must be the same.

Configuring a Point-to-Multipoint ATM1 or ATM2 IQ Connection

An ATM interface can be a point-to-point interface or a point-to-multipoint (also called a multipoint non-broadcast multiaccess [NBMA]) connection.

For ATM1 and ATM2 IQ interfaces, you can configure an NBMA ATM connection by including the following statements:

```
multipoint;
family inet {
  address ip-address {
    multipoint-destination address {
      epd-threshold cells;
      inverse-arp;
      oam-liveness {
        up-count cells;
        down-count cells;
      }
      oam-period (disable | seconds);
      shaping {
        (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
        queue-length number;
      }
      vci vpi-identifier.vci-identifier;
    }
  }
}
```

`ip-address` is the interface’s address. The address must include the destination prefix (for example, `/24`).

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`
For each destination, include one `multipoint-destination` statement. `address` is the address of the remote side of the connection, and `vci-identifier` and `vpi-identifier` are the VCI and optional VPI identifiers for the connection.

When you configure point-to-multipoint connections, all interfaces in the subnet must use the same MTU size.

Configuring Inverse ATM1 or ATM2 ARP

For ATM1 and ATM2 IQ interfaces, you can configure inverse ATM Address Resolution Protocol (ARP), as described in RFC 2225, *Classical IP and ARP over ATM*. When inverse ATM ARP is enabled, the router responds to received inverse ATM ARP requests by providing IP address information to the requesting ATM device.

The router does not initiate inverse ATM ARP requests.

By default, inverse ATM ARP is disabled. To configure a VC to respond to inverse ATM ARP requests, include the `inverse-arp` statement:

```plaintext
inverse-arp;
```

For a list of hierarchy levels at which you can include this statement, see `inverse-arp`.

You must configure ATM LLC subnetwork attachment point (SNAP) encapsulation on the logical interface to support inverse ARP. No other ATM encapsulation types are allowed. For more information, see "Configuring ATM Interface Encapsulation" on page 57.

ATM2 IQ VC Tunnel CoS Components Overview

| IN THIS SECTION |
|-----------------|----------------|
| Configuring ATM2 IQ VC Tunnel CoS Components | 137 |
| Configuring Linear RED Profiles | 137 |
| Configuring an ATM Scheduler Map | 138 |
| Enabling Eight Queues on ATM2 IQ Interfaces | 140 |
| Example: Enabling Eight Queues on T Series, M120, and M320 Routers | 141 |
| Configuring VC CoS Mode | 147 |
| Enabling the PLP Setting to Be Copied to the CLP Bit | 147 |
The ATM2 IQ interface allows multiple IP queues into each VC. On M Series routers (except the M320 and M120 router), a VC tunnel can support four CoS queues. On the M320, M120, and T Series routers for all ATM2 IQ PICs except the OC48 PIC, a VC tunnel can support eight CoS queues. Within a VC tunnel, the WRR algorithm schedules the cell transmission of each queue. You can configure the queue admission policies, such as EPD or WRED, to control the queue size during congestion.

For information about CoS components that apply to all interfaces, see the Class of Service User Guide (Routers and EX9200 Switches).
Configuring ATM2 IQ VC Tunnel CoS Components

To configure ATM2 IQ VC tunnel CoS components, include the following statements at the [edit interfaces at-fpc/pic/port] hierarchy level:

```
[edit chassis fpc slot-number pic pic-number]
max-queues-per-interface number;
[edit interfaces at-fpc/pic/port]
atm-options {
    linear-red-profiles profile-name {
        high-plp-max-threshold percent;
        low-plp-max-threshold percent;
        queue-depth cells high-plp-threshold percent low-plp-threshold percent;
    }
    plp-to-clp;
scheduler-maps map-name {
    forwarding-class class-name {
        epd-threshold cells plp1 cells;
        linear-red-profile profile-name;
        priority (high | low);
        transmit-weight (cells number | percent number);
    }
    vc-cos-mode (alternate | strict);
}
}
unit 0 {
    atm-scheduler-map (map-name | default);
    family family {
        address address {
            destination address;
        }
    }
    plp-to-clp;
    shaping {
        (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
    }
    vci vpi-identifier.vci-identifier;
}
```

This section contains the following topics:

Configuring Linear RED Profiles

Linear RED profiles define CoS virtual circuit drop profiles. You can configure up to 32 linear RED profiles
per port. When a packet arrives, RED checks the queue fill level. If the fill level corresponds to a nonzero drop probability, the RED algorithm determines whether to drop the arriving packet.

To configure linear RED profiles, include the **linear-red-profiles** statement at the **[edit interfaces at-fpc/pic/port atm-options]** hierarchy level:

```
[edit interfaces at-fpc/pic/port atm-options]
linear-red-profiles profile-name {
  high-plp-max-threshold percent;
  low-plp-max-threshold percent;
  queue-depth cells high-plp-threshold percent low-plp-threshold percent;
}
```

The **queue-depth**, **high-plp-threshold**, and **low-plp-threshold** statements are mandatory.

You can define the following options for each RED profile:

- **high-plp-max-threshold**—Define the drop profile fill-level for the high PLP CoS VC. When the fill level exceeds the defined percentage, all packets with high PLP are dropped.
- **low-plp-max-threshold**—Define the drop profile fill-level for the low PLP CoS VC. When the fill level exceeds the defined percentage, all packets with low PLP are dropped.
- **queue-depth**—Define maximum queue depth in the CoS VC drop profile. Packets are always dropped beyond the defined maximum. The range you can configure is from 1 through 64,000 cells.
- **high-plp-threshold**—Define CoS VC drop profile fill-level percentage when linear RED is applied to cells with high PLP. When the fill level exceeds the defined percentage, packets with high PLP are randomly dropped by RED.
- **low-plp-threshold**—Define CoS VC drop profile fill-level percentage when linear RED is applied to cells with low PLP. When the fill level exceeds the defined percentage, packets with low PLP are randomly dropped by RED.

Configuring an ATM Scheduler Map

To define a scheduler map, you associate it with a forwarding class. Each class is associated with a specific queue, as follows:

- **best-effort**—Queue 0
- **expedited-forwarding**—Queue 1
- **assured-forwarding**—Queue 2
- **network-control**—Queue 3
NOTE: For M320, M120, and T Series routers only, you can configure more than four forwarding classes and queues.

When you configure an ATM scheduler map, the Junos OS creates these CoS queues for a VC. The Junos OS prefixes each packet delivered to the VC with the next-hop rewrite data associated with each queue.

To configure an ATM scheduler map, include the `scheduler-maps` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level:

```plaintext
edit interfaces at-fpc/pic/port atm-options
  scheduler-maps map-name {
    forwarding-class class-name {
      epd-threshold cells plp1 cells;
      linear-red-profile profile-name;
      priority (high | low);
      transmit-weight (cells number | percent number);
    }
  }
```

You can define the following options for each forwarding class:

- **epd-threshold** or **linear-red-profile**—An EPD threshold provides a queue of cells that can be stored with tail drop. When a BOP cell is received, the VC’s queue depth is checked against the EPD threshold. If the VC’s queue depth exceeds the EPD threshold, the BOP cell and all subsequent cells in the packet are discarded.

A linear RED profile defines the number of cells using the `queue-depth` statement within the RED profile.

(You configure the `queue-depth` statement at the `[edit interfaces at-fpc/pic/port atm-options linear-red-profiles profile-name]` hierarchy level.)

By default, if you include the `scheduler-maps` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level, the interface uses an EPD threshold that is determined by the Junos OS based on the available bandwidth and other parameters. You can override the default EPD threshold by setting an EPD threshold or a linear RED profile.

- **priority**—By default, queue 0 is high-priority, and the remaining queues are low-priority. You can configure high or low queuing priority for each queue.

- **transmit-weight**—By default, the transmit weight is 95 percent for queue 0, and 5 percent for queue 3. You can configure the transmission weight in number of cells or percentage. Each CoS queue is serviced in WRR mode. When CoS queues have data to send, they send the number of cells equal to their weight before passing control to the next active CoS queue. This allows proportional bandwidth sharing between multiple CoS queues within a rate-shaped VC tunnel. A CoS queue can send from 1 through 32,000 cells...
or from 5 through 100 percent of queued traffic before passing control to the next active CoS queue within a VC tunnel.

The AAL5 protocol prohibits cells from being interleaved on a VC; therefore, a complete packet is always sent. If a CoS queue sends more cells than its assigned weight because of the packet boundary, the deficit is carried over to the next time the queue is scheduled to transmit. If the queue is empty after the cells are sent, the deficit is waived, and the queue’s assigned weight is reset.

NOTE: If you include the scheduler-maps statement at the [edit interfaces at-fpc/pic/port atm-options] hierarchy level, the epd-threshold statement at the [edit interfaces interface-name unit logical-unit-number] or [edit interfaces interface-name unit logical-unit-number address address family family multipoint-destination address] hierarchy level has no effect because either the default EPD threshold, the EPD threshold setting in the forwarding class, or the linear RED profile takes effect instead.

For more information about forwarding classes, see the Class of Service User Guide (Routers and EX9200 Switches).

Enabling Eight Queues on ATM2 IQ Interfaces

By default, ATM2 IQ PICs on T Series, M120, and M320 routers are restricted to a maximum of four egress queues per interface. You can enable eight egress queues on ATM2 IQ interfaces by including the max-queues-per-interface statement at the [edit chassis fpc slot-number pic pic-number] hierarchy level:

```
[edit chassis fpc slot-number pic pic-number]
max-queues-per-interface number;
```

The numerical value can be 4 or 8.

If you include the max-queues-per-interface statement, all ports on the ATM2 IQ PIC use the configured mode.

When you include the max-queues-per-interface statement and commit the configuration, all physical interfaces on the ATM2 IQ PIC are deleted and re-added. Also, the PIC is taken offline and then brought back online immediately. You do not need to manually take the PIC offline and online. You should change modes between four queues and eight queues, or vice versa, only when there is no active traffic going to the ATM2 IQ PIC.

For general information about configuring up to eight forwarding classes and queues on PICs other than ATM2 IQ PICs, see the Class of Service User Guide (Routers and EX9200 Switches).
NOTE: When you are considering enabling eight queues on an ATM2 IQ interface, you should note the following:

- ATM2 IQ interfaces using Layer 2 circuit trunk transport mode support only four CoS queues.
- ATM2 IQ OC48 interfaces support only four CoS queues.
- ATM2 IQ interfaces with MLPPP encapsulation support only four CoS queues.
- You can configure only four RED profiles for the eight queues. Thus, queue 0 and queue 4 share a single RED profile, as do queue 1 and queue 5, queue 2 and queue 6, and queue 3 and queue 7. There is no restriction on EPD threshold per queue.
- The default chassis scheduler allocates resources for queue 0 through queue 3, with 25 percent of the bandwidth allocated to each queue. When you configure the chassis to use more than four queues, you must configure and apply a custom chassis scheduler to override the default. To apply a custom chassis scheduler, include the `scheduler-map-chassis` statement at the `[edit class-of-service interfaces at-fpc/pic/*]` hierarchy level. For more information about configuring and applying a custom chassis scheduler, see the *Class of Service User Guide (Routers and EX9200 Switches)*.

Example: Enabling Eight Queues on T Series, M120, and M320 Routers

In Figure 4 on page 141, Router A generates IP packets with different IP precedence settings. Router B is an M320, M120, or T Series router with two ATM2 IQ interfaces. On Router B, interface *at-6/1/0* receives traffic from Router A, while interface *at-0/1/0* sends traffic to Router C. This example shows the CoS configuration for Router B.

Figure 4: Example Topology for Router with Eight Queues

On Router B:

```
[edit chassis]
fpc 0 {
  pic 1 {
    max-queues-per-interface 8;
  }
}
fpc 6 {
```
pic 1 {
 max-queues-per-interface 8;
}

} [edit interfaces]
at-0/1/0 {
 atm-options {
 linear-red-profiles {
 red_1 queue-depth 1k high-plp-threshold 50 low-plp-threshold 80;
 red_2 queue-depth 2k high-plp-threshold 40 low-plp-threshold 70;
 red_3 queue-depth 3k high-plp-threshold 30 low-plp-threshold 60;
 red_4 queue-depth 4k high-plp-threshold 20 low-plp-threshold 50;
 }
 scheduler-maps {
 sch_red {
 vc-cos-mode strict;
 forwarding-class fc_q0 {
 priority high;
 transmit-weight percent 5;
 linear-red-profile red_1;
 }
 forwarding-class fc_q1 {
 priority low;
 transmit-weight percent 10;
 linear-red-profile red_2;
 }
 forwarding-class fc_q2 {
 priority low;
 transmit-weight percent 15;
 linear-red-profile red_3;
 }
 forwarding-class fc_q3 {
 priority low;
 transmit-weight percent 20;
 linear-red-profile red_4;
 }
 forwarding-class fc_q4 {
 priority low;
 transmit-weight percent 5;
 linear-red-profile red_1;
 }
 forwarding-class fc_q5 {
 priority low;
 transmit-weight percent 10;
 }
linear-red-profile red_2;
}
forwarding-class fc_q6 {
 priority low;
 transmit-weight percent 15;
 linear-red-profile red_3;
}
forwarding-class fc_q7 {
 priority low;
 transmit-weight percent 20;
 linear-red-profile red_4;
}
}
sch_epd {
 vc-cos-mode alternate;
 forwarding-class fc_q0 {
 priority high;
 transmit-weight percent 5;
 epd-threshold 1024;
 }
 forwarding-class fc_q1 {
 priority low;
 transmit-weight percent 10;
 epd-threshold 2048;
 }
 forwarding-class fc_q2 {
 priority low;
 transmit-weight percent 15;
 epd-threshold 3072;
 }
 forwarding-class fc_q3 {
 priority low;
 transmit-weight percent 20;
 epd-threshold 4096;
 }
 forwarding-class fc_q4 {
 priority low;
 transmit-weight percent 5;
 epd-threshold 2048;
 }
 forwarding-class fc_q5 {
 priority low;
 transmit-weight percent 10;
 epd-threshold 3072;
forwarding-class fc_q6 {
 priority low;
 transmit-weight percent 15;
 epd-threshold 4096;
}

forwarding-class fc_q7 {
 priority low;
 transmit-weight percent 20;
 epd-threshold 5120;
}

atm-options {
 vpi 0;
}

unit 0 {
 vci 0.100;
 shaping {
 cbr 1920000;
 }
 atm-scheduler-map sch_red;
 family inet {
 address 172.16.0.1/24;
 }
}

unit 1 {
 vci 0.101;
 shaping {
 vbr peak 1m sustained 384k burst 256;
 }
 atm-scheduler-map sch_epd;
 family inet {
 address 172.16.1.1/24;
 }
}

at-6/1/0 {
 atm-options {
 vpi 0;
 }
 unit 0 {
 vci 0.100;
 }
}
family inet {
 address 10.10.0.1/24;
}
}

unit 1 {
 vci 0.101;
 family inet {
 address 10.10.1.1/24;
 }
}
}

[edit class-of-service]
classifiers {
 inet-precedence inet_classifier {
 forwarding-class fc_q0 {
 loss-priority low code-points 000;
 }
 forwarding-class fc_q1 {
 loss-priority low code-points 001;
 }
 forwarding-class fc_q2 {
 loss-priority low code-points 010;
 }
 forwarding-class fc_q3 {
 loss-priority low code-points 011;
 }
 forwarding-class fc_q4 {
 loss-priority low code-points 100;
 }
 forwarding-class fc_q5 {
 loss-priority low code-points 101;
 }
 forwarding-class fc_q6 {
 loss-priority low code-points 110;
 }
 forwarding-class fc_q7 {
 loss-priority low code-points 111;
 }
 }
}

forwarding-classes {
 queue 0 fc_q0;
 queue 1 fc_q1;
 queue 2 fc_q2;
 queue 3 fc_q3;
Verifying the Configuration

To see the results of this configuration, you can issue the following operational mode commands:

- show interfaces at-0/1/0 extensive
- show interfaces queue at-0/1/0
- show class-of-service forwarding-class
Configuring VC CoS Mode

VC CoS mode defines the CoS queue scheduling priority. By default, the VC CoS mode is alternate. When it is a queue's turn to transmit, the queue transmits up to its weight in cells as specified by the `transmit-weight` statement at the `[edit interfaces at-fpc/pic/port atm-options scheduler-maps map-name forwarding-class class-name]` hierarchy level. The number of cells transmitted can be slightly over the configured or default transmit weight, because the transmission always ends at a packet boundary.

To configure the VC CoS mode, include the `vc-cos-mode` statement at the `[edit interfaces at-fpc/pic/port atm-options scheduler-maps]` hierarchy level:

```plaintext
edit interfaces at-fpc/pic/port atm-options scheduler-maps
vc-cos-mode (alternate | strict);
```

Two modes of CoS scheduling priority are supported:

- **alternate**—Assign high priority to one queue. The scheduling of the queues alternates between the high priority queue and the remaining queues. Every other scheduled packet is from the high priority queue.
- **strict**—Assign strictly high priority to one queue. A queue with strictly high priority is always scheduled before the remaining queues. The remaining queues are scheduled in round-robin fashion.

Enabling the PLP Setting to Be Copied to the CLP Bit

For a PE router with customer edge (CE)-facing, egress, ATM2 IQ interfaces configured with standard AAL5 encapsulation, you can enable the PLP setting to be copied into the CLP bit.

```plaintext
NOTE: This configuration setting is not applicable to Layer 2 circuit encapsulations because the control word captures and preserves CLP information. For more information about Layer 2 circuit encapsulations, see "Configuring Layer 2 Circuit Transport Mode" on page 61.
```

By default, at egress ATM2 IQ interfaces configured with standard AAL5 encapsulation, the PLP information is not copied to the CLP bit. This means the PLP information is not carried beyond the egress interface onto the CE router.

You can enable the PLP information to be copied into the CLP bit by including the `plp-to-clp` statement:

```plaintext
plp-to-clp;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name atm-options]`
Configuring ATM CoS on the Logical Interface

To apply the ATM scheduler map to a logical interface, include the **atm-scheduler-map** statement:

```
atm-scheduler-map (map-name | default);
```

For ATM CoS to take effect, you must configure the VCI and VPI identifiers and traffic shaping on each VC by including the following statements:

```
vci vpi-identifier.vci-identifier;
shaping {
  (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
}
```

You can include these statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

For more information, see "Configuring a Point-to-Point ATM1 or ATM2 IQ Connection" on page 133 and "Defining the ATM Traffic-Shaping Profile Overview" on page 124.

You can also apply a scheduler map to the chassis traffic that feeds the ATM interfaces. For more information, see the Class of Service User Guide (Routers and EX9200 Switches).

Example: Configuring ATM2 IQ VC Tunnel CoS Components

Configure ATM2 IQ VC tunnel CoS components:

```
[edit interfaces]
at-1/2/0 {
  atm-options {
    vpi 0;
    linear-red-profiles red-profile-1 {
      queue-depth 35000 high-plp-threshold 75 low-plp-threshold 25;
    }
    scheduler-maps map-1 {
      vc-cos-mode strict;
      forwarding-class best-effort {
```
priority low;
transmit-weight percent 25;
linear-red-profile red-profile-1;
}
}
}
unit 0 {
vci 0.128;
shaping {
vbr peak 20m sustained 10m burst 20;
}
atm-scheduler-map map-1;
family inet {
address 192.168.0.100/32 {
destination 192.168.0.101;
}
}
}
}

SEE ALSO

Configuring a Point-to-Point ATM1 or ATM2 IQ Connection	133
Defining the ATM Traffic-Shaping Profile Overview	124
atm-scheduler-map	307
vci	417

Configuring ATM Scheduler on Ethernet VPLS over a Bridged ATM Interface

On M7i routers, M10i routers with Enhanced III FPCs, and M320 routers with Enhanced III FPCs, you can attach scheduler maps under ATM logical interfaces configured with Ethernet VPLS over ATM (bridging) encapsulation.

The following configuration tasks are required:

- Define the `scheduler-maps` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level, as follows:

 `[edit interfaces at-fpc/pic/port atm-options]`
scheduler-maps map-name {
 forwarding-class (class-name | assured-forwarding | best-effort
 expedited-forwarding | network-control);
 vc-cos-mode strict;
}

- Include the encapsulation `ether-vpls-over-atm-llc` statement at the `[edit interfaces at-fpc/pic/port unit logical-unit-number]` hierarchy level, as follows:

```plaintext
[edit interfaces at-fpc/pic/port unit logical-unit-number]

capsulation ether-vpls-over-atm-llc;
```

- Include the `atm-scheduler-map` at the `[edit interfaces at-fpc/pic/port unit logical-unit-number]` hierarchy level, as follows.

```plaintext
[edit interfaces at-fpc/pic/port unit logical-unit-number]

atm-scheduler-map (map-name | default);
```

The scheduler map configured on the ATM device can be checked by using the PFE command `show atm slot number vpc` on the FPC console.

RELATED DOCUMENTATION

- [Encapsulation][326]
- Example: Configuring ATM Scheduler Map on Ethernet VPLS over Bridged ATM Interfaces | 150

Example: Configuring ATM Scheduler Map on Ethernet VPLS over Bridged ATM Interfaces

This example describes sending packets between routers with ATM2IQ interfaces using Ethernet VPLS over ATM encapsulation.

```plaintext
interfaces {
    at-1/2/3 {
        atm-options {
```
For a proper routing setup, a routing-instance for the VPLS must be setup as well:

routing-instance
 cos-test-v1
 instance-type vpls;
 interface at-1/2/3.0;
 route-distinguisher 10.10.10.1:1;
 vrf-target target:11111:1;
 protocols
 vpls
 site-range 10;
 site cos-test-v1-site1
 site-identifier 1;
 }
The EPD threshold is a limit on the number of transmit cells that can be queued. Cells that exceed the limit are discarded. When a beginning of packet (BOP) cell is received, the VC’s queue depth is checked against the EPD threshold. If the VC’s queue depth exceeds the EPD threshold, the BOP cell and all subsequent cells in the packet are discarded. This prevents a single queue from draining all the buffers on the PIC.

By default, for UBR the EPD threshold is approximately 1 percent of the available cell buffers. If shaping is enabled, the default EPD threshold is proportional to the shaping rate according to the following formula:

\[
\text{default epd-threshold} = \text{number of buffers} \times \text{shaping rate} / \text{line rate}
\]

By default, the software estimates how much buffer space is needed for each PVC. However, you can configure the per-VC buffer space. In general, ATM PVCs need larger buffers for data traffic and smaller buffers for time-sensitive applications. Unnecessarily deep buffers might cause excessive delays on congested PVCs. Overly shallow buffers might cause premature random early detection (RED) or tail packet drops in bursty conditions.

The minimum EPD threshold value is 48 cells. If the default EPD threshold formula results in an EPD threshold of less than 48 cells, the result will be ignored, and the minimum value of 48 cells will be used.

To set the EPD threshold of a PVC, include the `epd-threshold` statement:
For a list of hierarchy levels at which you can include this statement, see `epd-threshold`.

The allowable range for EPD threshold varies by interface type, as shown in Table 14 on page 153.

Table 14: EPD Threshold Range by Interface Type

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>EPD Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-port OC48</td>
<td>48 through 425,984 cells</td>
</tr>
<tr>
<td>1-port and 2-port OC12</td>
<td>48 through 425,984 cells</td>
</tr>
<tr>
<td>2-port OC3, DS3, and E3</td>
<td>48 through 212,992 cells</td>
</tr>
<tr>
<td>4-port DS3 and E3</td>
<td>48 through 106,496 cells</td>
</tr>
</tbody>
</table>

You should include the `epd-threshold` statement in the configuration of all the PVCs that you configure on an ATM2 IQ PIC. The `epd-threshold` statement performs two functions:

- It prevents head-of-line blocking because it limits the number of packets and therefore buffers that can be consumed by each configured PVC.
- It sets the maximum lifetime that can be sustained by packets over the PVC when traffic has oversubscribed the configured shaping contract.

If you add or change the EPD threshold on the VC, the logical interface associated with the VC is deleted and re-added.

On ATM2 IQ DS3 and E3 interfaces, you might be able to enter an EPD threshold or shaping parameter that exceeds the maximum threshold for these interfaces. If the configuration commits, the physical interface might indicate that it is up, but the logical interface fails. As a workaround, configure shaping parameters and EPD thresholds that do not exceed the bandwidth of the interface.

For information about configuring dual EPD thresholds on interfaces configured to use Layer 2 circuit trunk mode, see “Configuring Two EPD Thresholds per Queue” on page 154.

Example: Configuring the EPD Threshold for a Point-to-point ATM2 Interface

To configure the EPD threshold for a point-to-point ATM2 interface:

On a Point-to-Point ATM2 Interface
Example: Configuring the EPD Threshold for a Point-to-multipoint ATM2 Interface

To configure the EPD threshold for a point-to-multipoint ATM2 interface:

On a Point-to-Multipoint ATM2 Interface

```
[edit interfaces at-1/0/0]
unit 0 {
  vci 0.123;
  epd-threshold 1300;
  ...
}
```

Configuring Two EPD Thresholds per Queue

For ATM2 IQ interfaces configured to use Layer 2 circuit trunk mode, you can set two EPD thresholds that depend on the PLPs of the packets. When you set a threshold with the `epd-threshold` statement, it applies to packets that have a PLP of 0. When you set a threshold with the `plp1` statement, it applies to packets that have a PLP of 1. If you include the `plp1` statement in the configuration, you must also include the `epd-threshold` statement.

To configure two EPD thresholds, include the `epd-threshold` and `plp1` statements:

```
epd-threshold cells plp1 cells;
```

You can include these statements at the following hierarchy levels:
The value you set with the `epd-threshold` statement (for PLP0) should be equal to or greater than the value you set with the `plp1` statement. EPD threshold ranges vary by interface type. See Table 14 on page 153.

For general information about EPD thresholds, see "Configuring the ATM2 IQ EPD Threshold" on page 152.

Configuring the ATM2 IQ Transmission Weight

For ATM2 IQ interfaces configured with VPI shaping, you can control the number of cells a VCI can send each time the VCI has a turn to transmit by including the `transmit-weight` statement:

```
transmit-weight cells;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

VPI traffic shaping is not supported on point-to-multipoint interfaces.

The number of cells can be from 1 through 32,000. For a configuration example, see “Example: Configuring ATM2 IQ Interfaces” on page 42.

Configuring ATM-to-Ethernet Interworking

IN THIS SECTION

- ATM-to-Ethernet Interworking | 156
- Enabling ATM-to-Ethernet Interworking | 157
- Configuring the Ethernet Interface | 157
- Configuring Ethernet Encapsulation | 157
- Configuring the Outer VLAN Identifier | 157
- Configuring the Inner VLAN Identifier Range | 158
ATM-to-Ethernet Interworking

The ATM-to-Ethernet interworking feature is useful where ATM2 interfaces are used to terminate ATM DSLAM traffic. The ATM traffic can be forwarded with encapsulation type ccc (circuit cross-connect) to a local or remote Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet IQ2 and IQ2-E interface or label-switched path (LSP). The ATM VPI and VCI are converted to stacked VLAN inner and outer VLAN tags.

These ATM-to-Ethernet interworking circuits can be mapped to individual logical interfaces configured on an ATM2 IQ interface and Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet IQ2 and IQ2-E physical interface.

The ATM-to-Ethernet interworking cross-connect essentially provides Layer 2 switching, and statistics are reported at the logical interface level.

During conversion from ATM to Ethernet, the least significant 12 bits of the ATM cell VCI are copied to the Ethernet frame inner VLAN tag. Cells received on an ATM logical interface configured with encapsulation type vlan-vci-ccc and falling within the configured VCI range are reassembled into packets and forwarded to a designated Ethernet logical interface that is configured with encapsulation type vlan-vci-ccc.

During conversion from Ethernet to ATM, the Ethernet frame inner VLAN tags that fall within the configured range, are copied to the least significant 12 bits of the ATM cell VCI. The ATM logical interface uses its configured VPI when segmenting the Ethernet packets into cells.

ATM-to-Ethernet interworking is supported on M120, M320, and T Series routers.

ATM-to-Ethernet interworking is supported on MX Series routers with aggregated Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces. This feature is available on all Enhanced Queuing (EQ) DPCs and Enhanced DPCS for MX Series routers.

NOTE: This feature is not supported on MX Series routers with ATM interfaces.

For more information on MX Series ATM-to-Ethernet interworking, see the *MX Series Solutions Guide*.
The following sections discuss ATM-to-Ethernet interworking:

Enabling ATM-to-Ethernet Interworking

To enable the ATM-to-Ethernet interworking cross-connect function, include the `vlan-vci-tagging` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
  vlan-vci-tagging;
```

Configuring the Ethernet Interface

Configure the Ethernet or aggregated Ethernet physical interface by including the `encapsulation` statement with the `vlan-vci-ccc` option at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
  encapsulation vlan-vci-ccc;
```

When the encapsulation type `vlan-vci-ccc` is configured on the physical interface, all logical interfaces configured on the Ethernet interface must also have the encapsulation type set to `vlan-vci-ccc`.

Configuring Ethernet Encapsulation

Configure the Ethernet logical interface by including the `encapsulation` statement with the `vlan-vci-ccc` option at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
  encapsulation vlan-vci-ccc;
```

The chassis configuration cannot contain the `atm-l2circuit-mode` statement if any logical interfaces are configured with the `vlan-vci-ccc` encapsulation option.

Configuring the Outer VLAN Identifier

Configure the Ethernet logical interface outer VLAN ID by including the `vlan-id` statement specifying the outer VLAN ID at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
  vlan-id outer-vlan-identifier;
```
It is the administrator’s responsibility to ensure that the outer VLAN tag and VPI match and the inner VLAN tags fall within the VCI range of the VPI.

The allowable VPI range is from 0 to 255. So the outer VLAN tags must not be configured for values above 255.

Configuring the Inner VLAN Identifier Range

Configure the Ethernet logical interface inner VLAN ID range by including the `inner-vlan-id-range` statement and specifying the starting VLAN ID and ending VLAN ID at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
inner-vlan-id-range start start-id end end-id;
```

VLAN IDs 0 and 4095 are reserved by IEEE 801.1q and must not be used for the inner or outer VLAN ID.

VCIs 0 through 31 are reserved for ATM management purposes by convention. Therefore inner VLAN IDs 1 through 31 should not be used.

VLAN ID 1 might be used by Ethernet switches for certain bridge management services, so using VLAN ID 1 for the inner or outer VLAN ID is discouraged.

Configuring the Physical Interface VPI

Configure the ATM physical interface VPI by including the `vpi` statement at the `[edit interfaces interface-name atm-options]` hierarchy level:

```
[edit interfaces interface-name atm-options]
vpi virtual-path-identifier;
```

VPI 0 is reserved, and must not be used.

ATM F4/F5 OAM is not supported for VPIs used in ATM-to-Ethernet interworking cross-connects. Any F4/F5 OAM cells received are discarded.

Only one logical interface may be declared per virtual path specified in the `atm-options` statement hierarchy.

It is not necessary to dedicate all the VPIs of an ATM2 interface for ATM-to-Ethernet interworking cross-connects.
Configuring the ATM Logical Interface

Configure the ATM logical interface by including the `encapsulation` statement and specifying the encapsulation type `vlan-vci-ccc` at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
encapsulation vlan-vci-ccc;
```

An ATM logical interface configured with the encapsulation type `vlan-vci-ccc` only supports the `epd-threshold`, `shaping`, `traps | no-traps`, `disable`, and `description` statements. No other configuration statements are supported. ATM interface CoS features are not supported by logical interfaces configured with the encapsulation type `vlan-vci-ccc`.

The ATM2 OC48 PIC does not support the encapsulation type `vlan-vci-ccc`.

The encapsulation type `vlan-vci-ccc` only supports the `ccc` protocol family. Attempts to configure any other interface protocol family are rejected.

Configuring the Protocol Family

Configure the ATM logical interface protocol family by including the `family` statement and specifying the `ccc` option at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
family ccc;
```

Configuring the Logical Interface VPI

Configure the ATM logical interface virtual path identifier by including the `vpi` statement at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
vpi virtual-path-identifier;
```

VPI 0 is reserved, and must not be used.

It is the administrator’s responsibility to ensure the outer VLAN tag and VPI match and the inner VLAN tags fall within the VCI range of the VPI.

Once a VPI is used in an ATM-to-Ethernet interworking cross-connect, it cannot be used with any other logical interface, even if the `vpi.vci` value falls outside the VCI range for the cross-connect.
Configuring the Logical Interface VCI

Configure the ATM logical interface virtual channel identifier range by including the vci-range statement and specifying the starting VCI and ending VCI at the [edit interfaces interface-name unit logical-unit-number] hierarchy level:

```
[edit interfaces interface-name unit logical-unit-number]
  vci-range start start-vci end end-vci;
```

Do not use VCIs 0 through 31, which are reserved for ATM management purposes by convention.

SEE ALSO

- encapsulation | 321
- family | 336
- inner-vlan-id-range | 354
- vci-range | 418
- vlan-id | 419
- vlan-vci-tagging | 420
- vpi (ATM CCC Cell-Relay Promiscuous Mode) | 421
- vpi (Logical Interface and Interworking) | 423

Example: Configuring ATM-to-Ethernet Interworking

The following example shows the configuration of the ATM and Ethernet interfaces for an ATM-to-Ethernet interworking cross connect. In the example ATM DSLAM traffic is terminated on an ATM2 interface. The ATM traffic is forwarded using encapsulation type vlan-vci-ccc to a local Ethernet IQ2 and IQ2-E interface. See the topology in Figure 5 on page 160.

Figure 5: ATM-to-Ethernet Interworking
In this example, the ATM traffic comes from the DSLAM to the router on ATM interface **at-4/0/0** and is forwarded out on Ethernet interface **ge-2/2/1**.

```plaintext
[edit interfaces]
ge-2/2/1 {
    vlan-vci-tagging;
    encapsulation vlan-vci-ccc;
    unit 0 {
        encapsulation vlan-vci-ccc;
        vlan-id 100;
        inner-vlan-id-range start 100 end 500;
    }
}
at-4/0/0 {
    atm-options {
        vpi 100;
    }
    unit 0 {
        encapsulation vlan-vci-ccc;
        family ccc;
        vpi 100;
        vci-range start 100 end 500;
    }
}
```

RELATED DOCUMENTATION

- **Configuring ATM-to-Ethernet Interworking** | 155

ATM-To-Ethernet Interworking on ATM MICs

ATM-to-Ethernet interworking supports transmission of ATM packets over Ethernet. It specifically provides support for exchange of Layer 2 and Layer 3 Protocol Data Units (PDUs) between ATM and Ethernet domains. On MX Series 5G Universal Routing Platforms with ATM MICs, you can exchange Ethernet frames between ATM and Ethernet domains over a MPLS pseudowire or a Layer 2 cross-connect by using translational cross connect (TCC). For more information about TCC, see *Circuit and Translational Cross-Connects Overview*.

Consider the following basic ATM-to-Ethernet Interworking topology where the provider edge router PE1 is connected to an ATM domain and the Provider Edge router PE2 is connected to an Ethernet domain.
(see Figure 1). The customer edge routers CE1 and CE2 are customer-managed devices. The PE routers are connected by means of an MPLS pseudowire. The ATM traffic on the PE1–CE1 link can comprise untagged Ethernet frames over ATM format. The Ethernet traffic on PE2–CE2 link can comprise untagged, single-VLAN or double-VLAN tagged Ethernet frames depending on the configuration of the PE2 router.

For ATM-to-Ethernet Interworking, the virtual path identifier (VPI) and virtual circuit identifier (VCI) values on the ATM link are mapped to the outer and inner VLAN tag on the Ethernet link. Mapping implies that either the same value is copied or a one-to-one translation is performed. If VLAN translation is enabled, instead of copying the value, a one-to-one translation is performed on the Ethernet facing PE, using a lookup table.

ATM cells that are received on the PE1 router are reassembled into ATM Adaptation Layer 5 (AAL5) logical link control (LLC) frames. The router removes the header and footer and adds two VLAN tags (outer and inner) to the untagged Ethernet payload based on the configuration. The VLAN IDs must correspond to the VPI and VCI of the ATM cell. You must add an MPLS label before transmitting the dual-VLAN-tagged Ethernet frame over the MPLS pseudowire. You can also add other optional MPLS tags.

NOTE: If the AAL5 frame sent by CE1 is not encapsulated with LLC and if the untagged Ethernet payload includes the frame check sequence (FCS), PE1 rejects the AAL5 frame. Also, PE1 can transmit and receive only a dual VLAN-tagged Ethernet frame without FCS. Inclusion of FCS can result in packet drops or data corruption.

On the PE2 router, the MPLS label and optional MPLS tags are removed and the Ethernet frame is transmitted toward the CE2 router. You can modify or remove one or both VLAN tags before forwarding the frame to the CE2 router.

Limitations

Following are the limitations of the ATM-to-Ethernet interworking feature on MX Series routers with ATM MICs:

- The ATM-to-Ethernet interworking feature is not backward compatible or does not interoperate with the ATM-Ethernet interworking feature supported on M Series and T Series Routers. The functionality is the same but the implementation is different.

- The total number of VCIs supported is 4000 for the ATM MIC. This is an existing system limit.

- If an ATM logical interface is configured with vci-range of N VCIs, then N VCIs are deducted from the available pool of 4000 VCIs.

- ATM quality of service (QoS) is not supported with the vlan-vci-ccc encapsulation. If you use the vci-range statement then the vlan-vci-ccc encapsulation supports multiple VCIs on a single logical interface. This is a hardware limitation.
Example: Configuring ATM-to-Ethernet Interworking on ATM MIC

This example shows how to configure the ATM and Ethernet interfaces for an ATM-to-Ethernet interworking cross-connect.

Requirements

This example uses the following hardware and software components:

- One MX Series router with ATM MIC
- One MX Series router with Ethernet MIC
- Junos OS Release 16.1R1 or later release

Overview

Configuring ATM-to-Ethernet Interworking enables exchange of Ethernet frames between an ATM domain and an Ethernet domain on MX Series routers with ATM MIC. The ATM domain can be connected to the Ethernet domain over an MPLS pseudowire.

Topology

Consider a sample topology in which provider edge (PE) router (ATMRouter) is an MX Series router with an ATM MIC and PE router (EthernetRouter) is an MX Series router with an Ethernet MIC. CE1 and CE2 are the customer edge routers or customer-managed devices. ATMRouter and EthernetRouter are connected by means of an MPLS pseudowire. The ATM traffic between ATMRouter and CE1 comprises untagged Ethernet over ATM cells. The Ethernet traffic between EthernetRouter and CE2 comprises double-VLAN-tagged Ethernet frames.
When a packet is sent from CE1 to CE2 (ATM-to-Ethernet), ATMRouter accepts ATM cells from CE1 with virtual circuit identifier (VCI) in the range 10/50 to 10/100 andreassembles ATM cells into AAL5 frames. ATMRouter extracts the Ethernet frame from the AAL5 frame payload. ATMRouter adds two VLAN tags with VLAN IDs corresponding to the virtual path identifier (VPI) and VCI of the received ATM cell. The dual-tagged-Ethernet frame is then encapsulated into a MPLS packet and sent over the pseudowire to EthernetRouter.

EthernetRouter strips the MPLS encapsulation and the dual-VLAN-tagged Ethernet frame is sent to CE2. The outer VLAN ID is rewritten to 20 and the inner VLAN ID remains the same. The packet arrives at CE2.

The reverse happens when a packet is sent from CE2 to CE1.

Configuration

To enable exchange of Ethernet frames between an ATM domain and an Ethernet domain according to the topology mentioned in the overview section, perform these tasks:

Configuring ATMRouter

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure the interfaces on ATMRouter:

1. To configure the MIC to use SONET framing, include the `framing` statement at the `[edit chassis]` hierarchy level.

   ```
   [edit chassis]
   user@host# set fpc 1 pic 0 framing sonet port 0 framing sonet speed oc3-stm1
   ```

2. In configuration mode, go to the `[edit interfaces]` hierarchy level. Configure the Ethernet core interface that connects ATMRouter to EthernetRouter and specify the description of the Ethernet interface for your reference.
3. Configure a logical unit for the Ethernet interface, specify the family as **inet**, and assign an IP address to the interface. Also, specify the family as **mpls** to enable ATMRouter to connect to EthernetRouter.

 [edit interfaces ge-1/0/0]
 user@host# edit unit 0
 user@host# set family inet address 192.0.0.1/24
 user@host # set family mpls
 user@host# top

4. In configuration mode, at the **[edit interfaces]** hierarchy level, configure the ATM interface that connects to CE1 and specify the description of the ATM interface for your reference. Also, define the virtual path identifier for this interface by using the **vpi** statement and specify a value from 1 through 255. The value zero (0) is reserved and must not be used.

 [edit]
 user@host# edit interfaces
 user@host# edit at-1/2/0
 user@host# set description CE1Facing
 user@host# set atm-options vpi 10

5. Configure a logical unit for the ATM interface. Also, configure the ATM logical interface by specifying the encapsulation and the protocol family. The encapsulation type **vlan-vci-vcc** supports only the **ccc** protocol family. Any attempts to configure any other interface protocol family is rejected.

 [edit interfaces at-1/2/0]
 user@host# edit unit 0
 user@host# set encapsulation vlan-vci-vcc family ccc

6. Configure the VPI and VCI for the logical interface. The VPI value 0 is reserved and must not be used. VCI values from 0 through 31 are reserved for ATM management purposes by convention.

 [edit interfaces at-1/2/0 unit 0]
 user@host# set vpi 10 vci-range start 100 end 110
 user@host# top
7. Configure the physical loopback interface at the [edit interfaces] hierarchy level.

```
[edit]
user@host# set interfaces lo0 unit 0 family inet address 198.51.100.1/32
```

8. Configure the route identifier that specifies the routing device’s IP address. The router identifier is used by BGP and OSPF to identify the routing device from which a packet originated. The router identifier is usually the IP address of the local routing device. If you do not configure a router identifier, the IP address of the first interface to come online is used. This is usually the loopback interface. Otherwise, the first hardware interface with an IP address is used.

```
[edit]
user@host # set router-options router-id 198.51.100.1
```

9. At the [edit protocols] hierarchy level, configure the interface on which to configure MPLS as well as the loopback interface.

```
[edit protocols]
user@host# edit mpls
user@host# set interface ge-1/0/0.0
user@host# set interface lo0.0
user@host# top
```

10. At the [edit protocols] hierarchy level, configure a single-area OSPF network by specifying the area ID and associated interfaces (Ethernet interface and the loopback interface).

```
[edit protocols]
user@host# edit ospf
user@host# set area 0.0.0.0 interface ge-1/0/0.0
user@host# set area 0.0.0.0 interface lo0.0
user@host# top
```

11. Create an LDP instance on the Ethernet interface and the loopback interface at the [edit] hierarchy level. LDP is required as the signaling protocol for Layer 2 circuits.

```
[edit]
user@host# edit protocols ldp
user@host# set interface ge-1/0/0.0
user@host# set interface lo0.0
user@host# top
```
12. Establish the Layer 2 circuit by specifying the `l2circuit` statement at the `[edit protocols]` hierarchy level. The neighbor parameter specifies the IP address of the PE neighbor. The interface name refers to the local CE-facing interface that forms the Layer 2 circuit. The VCI ID must match the ID of the PE neighbor.

```
[edit]
user@host# edit protocols l2circuit
user@host# edit neighbor 198.51.100.2 interface at-1/2/0.0
user@host# set static incoming label 1000000 outgoing label 1000000
user@host# set virtual-circuit-id 5
user@host# set no-control-word
user@host# set ignore-encapsulation-mismatch
user@host# set ignore-mtu-mismatch
```

Configuring EthernetRouter

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy. For information about navigating the CLI, see *Using the CLI Editor in Configuration Mode* in the *CLI User Guide*.

To configure the interfaces on EthernetRouter:

1. In configuration mode, go to the `[edit interfaces]` hierarchy level. Configure the Ethernet core interface that connects EthernetRouter to ATMRouter and specify the description of the Ethernet interface for your reference.

```
[edit]
user@host# edit interfaces
user@host# edit ge-1/0/0
user@host# set description PE1Facing
```

2. Configure a logical unit for the Ethernet interface and specify the family as `inet` and assign an IP address to the Ethernet interface. Also, specify the family as `mpls` to enable EthernetRouter to connect to ATMRouter.

```
[edit interfaces ge-1/0/0]
user@host# edit unit 0
user@host# set family inet address 192.0.0.2/24
user@host# set family mpls
user@host# top
```

3. At the `[edit interfaces]` hierarchy level, configure the Ethernet interface that connects to CE2 and specify the description of the interface for your reference. Also, specify `flexible-vlan-tagging` to support...
transmission of 802.1Q VLAN single-tag and dual-tag frames on the same port. Specify extended-vlan-ccc as the encapsulation to enable tagging for translational cross-connect (TCC).

```plaintext
[edit]
user@host# edit interfaces
user@host# edit ge-1/0/0
user@host# set description CE2Facing
user@host# set flexible-vlan-tagging
user@host# set encapsulation extended-vlan-ccc
user@host# set gigether-options ethernet-switch-profile tag-protocol-id [0x8100 0x9100 0x88a8]
```

4. Configure a logical unit for the Ethernet interface. Also, configure mixed tagging. Mixed tagging enables you to configure two logical interfaces on the same Ethernet port, one with single-tag framing and one with dual-tag framing. You can also specify the protocol family.

```plaintext
[edit interfaces ge-1/0/0]
user@host# edit unit 0
user@host# set vlan-tags outer 0x88a8.10 inner-range 0x8100.100-110
user@host# set family ccc;
```

5. Configure the physical loopback interface at the [edit interfaces] hierarchy level.

```plaintext
[edit]
user@host# set interfaces lo0 unit 0 family inet address 198.51.100.2/32
```

6. Configure the route identifier that specifies the routing device’s IP address. The router identifier is used by BGP and OSPF to identify the routing device from which a packet originated. The router identifier is usually the IP address of the local routing device. If you do not configure a router identifier, the IP address of the first interface to come online is used. This is usually the loopback interface. Otherwise, the first hardware interface with an IP address is used.

```plaintext
[edit]
user@host # set router-options router-id 198.51.100.2
```

7. At the [edit protocols] hierarchy level, configure the interface on which to configure MPLS as well as the loopback interface.

```plaintext
[edit protocols]
user@host# edit mpls
user@host# set interface ge-1/0/0.0
```
8. At the `[edit protocols]` hierarchy level, configure a single-area OSPF network by specifying the area ID and associated interfaces (Ethernet interface and the loopback interface).

```
[edit protocols]
user@host# edit ospf
user@host# set area 0.0.0.0 interface ge-1/0/0.0
user@host# set area 0.0.0.0 interface lo0.0
user@host# top
```

9. Create an LDP instance on the Ethernet interface and the loopback interface at the `[edit]` hierarchy level. LDP is required as the signaling protocol for Layer 2 circuits.

```
[edit]
user@host# edit protocols ldp
user@host# set interface ge-1/0/0.0
user@host# set interface lo0.0
user@host# top
```

10. Establish the Layer 2 circuit by specifying the `l2circuit` statement at the `[edit protocols]` hierarchy level. The neighbor parameter specifies the IP address of the PE neighbor. The interface name refers to the local CE-facing interface that forms the Layer 2 circuit. The VCI ID must match the ID of the PE neighbor.

```
[edit]
user@host# edit protocols l2circuit
user@host# edit neighbor 198.51.100.1 interface ge-1/0/1.0
user@host# set static incoming label 1000000 outgoing label 1000000
user@host# set virtual-circuit-id 5
user@host# set no-control-word
user@host# set ignore-encapsulation-mismatch
user@host# set ignore-mtu-mismatch
```

RELATED DOCUMENTATION

- [ATM-To-Ethernet Interworking on ATM MICs](#) | 161
- [Verifying ATM-to-Ethernet Interworking Configuration on ATM MICs](#) | 170
Verifying ATM-to-Ethernet Interworking Configuration on ATM MICs

To verify that the ATM-to-Ethernet interworking feature is configured correctly, perform these tasks on both the routers:

Verifying That The ATM Interface on Router1 Is Configured Correctly

Purpose
To verify that the ATM interface (at-1/2/0) on Router1 is configured correctly.

Action
From operational mode, enter the `show interfaces` command.

```
user@host> show interfaces at-1/2/0 terse
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-1/2/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/2/0.0</td>
<td>up</td>
<td>up</td>
<td>ccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-1/2/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The ATM interface on Router1 is operational.
Verifying The Status of the MIC on Router1

Purpose
To verify the status of the MIC.

Action
From operational mode, enter the `show chassis fpc pic-status` command.

```
user@host> show chassis fpc pic-status

<table>
<thead>
<tr>
<th>Slot</th>
<th>Online</th>
<th>PIC 2</th>
<th>PIC 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>Online 10x 1GE(LAN) -EH SFP</td>
<td>Online 10x 1GE(LAN) -EH SFP</td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>PIC 0</td>
<td>PIC 2</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>2xOC12/8xOC3 CC-CE</td>
<td>Online 10x 1GE(LAN) SFP</td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>PIC 3</td>
<td>PIC 2</td>
</tr>
<tr>
<td>0</td>
<td>Online</td>
<td>4x 10GE(LAN) SFP+</td>
<td></td>
</tr>
</tbody>
</table>
```

Meaning
ATM MIC on FPC slot 1 is online and operational.

Verify That OSPF Configuration on Router1 Is Accurate

Purpose
To verify that routers are adjacent and able to exchange OSPF data.

Action
From operational mode, enter the `show ospf neighbor` command.

```
user@host> show ospf neighbor

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.0.1</td>
<td>ge-1/0/0.0</td>
<td>Full</td>
<td>198.51.100.2</td>
<td>128</td>
<td>36</td>
</tr>
</tbody>
</table>
```

Meaning
The adjacent router is online and can accept OSPF data.
Verify That LDP Configuration on Router1 Is Accurate

Purpose
To view LDP session information.

Action
From operational mode, enter the `show ldp session` command.

```
user@host> show ldp session
```

Meaning
The output indicates that the session is operational and that the connection is open. It also indicates that the session will close in 26 seconds.

Verify That Layer 2 Virtual Circuit Session Configuration on Router1 Is Accurate

Purpose
To view the Layer 2 virtual circuits from the local PE router (Router1) to its neighbors.

Action
From operational mode, enter the `show l2circuit connections` command.

```
user@host> show l2circuit connections
```

Layer-2 Circuit Connections:
Legend for connection status (St):
 EI -- encapsulation invalid NP -- interface h/w not present
 MM -- mtu mismatch Dn -- down
 EM -- encapsulation mismatch VC-Dn -- Virtual circuit Down
 CM -- control-word mismatch Up -- operational
 VM -- vlan id mismatch CF -- Call admission control failure
 OL -- no outgoing label IB -- TDM incompatible bitrate
 NC -- intf encaps not CCC/TCC TM -- TDM misconfiguration
 BK -- Backup Connection ST -- Standby Connection
 CB -- rcvd cell-bundle size bad SP -- Static Pseudowire
 LD -- local site signaled down RS -- remote site standby
 RD -- remote site signaled down HS -- Hot-standby Connection
 XX -- unknown
Legend for interface status
Up -- operational
Dn -- down

Neighbor: 198.51.100.2
Interface Type St Time last up # Up
tran
at-1/0/0.0(vc 5) rmt Up May 24 22:01:44 2016 1
Remote PE: 198.51.100.2, Negotiated control-word: No Encapsulation: VLAN
Incoming label: 299776, Outgoing label: 300192
Negotiated PW status TLV: No
Local interface: at-1/0/0.0, Status: Up, Encapsulation: VLAN Qin-Q and VCI Interworking
Flow Label Transmit: No, Flow Label Receive: No

Meaning
The command output displays the Layer 2 virtual circuits from Router1 to its neighbors.

Verifying That the Ethernet Interface on Router2 Is Configured Correctly

Purpose
To verify that the Ethernet interface (ge-1/0/1) on Router2 is configured correctly.

Action
From operational mode, enter the show interfaces command.

user@host> show interfaces ge-1/0/1 terse

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/0/1</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-1/0/1.0</td>
<td>up</td>
<td>up</td>
<td>ccc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-1/0/1.32767</td>
<td>up</td>
<td>up</td>
<td>multiservice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Meaning
The Ethernet interface on Router2 is operational.

Verifying the Status of the MIC on Router2

Purpose
To verify the status of the MIC.
Action
From operational mode, enter the `show chassis fpc pic-status` command.

```bash
user@host> show chassis fpc pic-status
```

```
Slot 2 Online MPC Type 1 3D Q
PIC 0 Online 10x 1GE(LAN) SFP
PIC 1 Online 10x 1GE(LAN) SFP
PIC 2 Online 2xOC12/8xOC3 CC-CE
PIC 0 Online 4x 10GE(LAN) SFP+
```

Meaning
MIC 2 on MPC slot 2 is online and operational.

Verify That OSPF Configuration on Router2 Is Accurate

Purpose
To verify that routers are adjacent and able to exchange OSPF data.

Action
From operational mode, enter the `show ospf neighbor` command.

```bash
user@host> show ospf neighbor
```

```
Address         Interface             State      ID              Pri  Dead
192.0.0.1        ge-1/0/0.0             Full      198.51.100.0         128   32
```

Meaning
The adjacent router is online and can accept OSPF data.

Verify That LDP Configuration on Router2 Is Accurate

Purpose
To view LDP session information.

Action
From operational mode, enter the `show ldp session` command.

```bash
user@host> show ldp session
```
Meaning
The output indicates that the session is operational and that the connection is open. It also indicates that the session will close in 22 seconds.

Verify That Layer 2 Virtual Circuit Session Configuration on Router2 Is Accurate

Purpose
To view the Layer 2 virtual circuits from the local PE router (Router2) to its neighbors.

Action
From operational mode, enter the `show l2circuit connections` command.

```
user@host> show l2circuit connections
```

Layer-2 Circuit Connections:
Legend for connection status (St)
EI -- encapsulation invalid NP -- interface h/w not present
MM -- mtu mismatch Dn -- down
EM -- encapsulation mismatch VC-Dn -- Virtual circuit Down
CM -- control-word mismatch Up -- operational
VM -- vlan id mismatch CF -- Call admission control failure
OL -- no outgoing label IB -- TDM incompatible bitrate
NC -- intf encaps not CCC/TCC TM -- TDM misconfiguration
BK -- Backup Connection ST -- Standby Connection
CB -- rcvd cell-bundle size bad SP -- Static Pseudowire
LD -- local site signaled down RS -- remote site standby
RD -- remote site signaled down HS -- Hot-standby Connection
XX -- unknown
Legend for interface status
Up -- operational
Dn -- down

Neighbor: 198.51.100.0
 Interface Type St Time last up # Up
 trans
 ge-1/0/1.0(vc 5) rmt Up May 24 22:01:45 2016
 1
 Remote PE: 198.51.100.0, Negotiated control-word: No Encapsulation: VLAN Qin-Q and VCI Interworking
Incoming label: 300192, Outgoing label: 299776
Negotiated PW status TLV: No
Local interface: ge-1/0/1.0, Status: Up, Encapsulation: VLAN
Flow Label Transmit: No, Flow Label Receive: No

Meaning
The command output displays the Layer 2 virtual circuits from Router2 to its neighbors.

RELATED DOCUMENTATION

ATM-To-Ethernet Interworking on ATM MICs | 161
Example: Configuring ATM-to-Ethernet Interworking on ATM MIC | 163

Configuring the Junos OS to Enable ATM2 Intelligent Queuing Layer 2 Circuit Transport Mode

On ATM2 IQ PICs only, you can configure Layer 2 circuit cell relay, Layer 2 circuit ATM Adaptation Layer 5 (AAL5), or Layer 2 circuit trunk mode.

Layer 2 circuit cell relay and Layer 2 circuit AAL5 are defined in the Internet draft draft-martini-l2circuit-encap-mpls-04.txt, Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks.

Layer 2 circuit trunk mode allows you to send ATM cells over Multiprotocol Label Switching (MPLS) trunking.

The four transport modes are defined as follows:

- To tunnel IP packets over an ATM backbone, use the default standard AAL5 transport mode.
- To tunnel a stream of AAL5-encoded ATM segmentation-and-reassembly protocol data units (SAR-PDUs) over an MPLS or IP backbone, use Layer 2 circuit AAL5 transport mode.
- To tunnel a stream of ATM cells over an MPLS or IP backbone, use Layer 2 circuit cell-relay transport mode.
- To transport ATM cells over an MPLS core network that is implemented on some other vendor switches, use Layer 2 circuit trunk mode.
NOTE: You can transport AAL5-encoded traffic with Layer 2 circuit cell-relay transport mode, because Layer 2 circuit cell-relay transport mode ignores the encoding of the cell data presented to the ingress interface.

When you configure AAL5 mode Layer 2 circuits, the control word carries cell loss priority (CLP) information by default.

By default, ATM2 IQ PICs are in standard AAL5 transport mode. Standard AAL5 allows multiple applications to tunnel the protocol data units of their Layer 2 protocols over an ATM virtual circuit. To configure the Layer 2 circuit transport modes, include the `atm-l2circuit-mode` statement at the `[edit chassis fpc slot-number pic pic-number]` hierarchy level:

```
[edit chassis fpc slot-number pic pic-number]
atm-l2circuit-mode (cell | aal5 | trunk trunk);
```

On a TX Matrix or TX Matrix Plus router, include the `atm-l2circuit-mode` statement at the `[edit chassis lcc number fpc slot-number pic pic-number]` hierarchy level:

```
[edit chassis lcc number fpc slot-number pic pic-number]
atm-l2circuit-mode (cell | aal5 | trunk trunk);
```

aal5 tunnels a stream of AAL5-encoded ATM cells over an IP backbone.

cell tunnels a stream of ATM cells over an IP backbone.

trunk transports ATM cells over an MPLS core network that is implemented on some other vendor switches. Trunk mode can be user-to-network interface (UNI) or network-to-network interface (NNI).

NOTE: To determine which vendors support Layer 2 circuit trunk mode, contact Juniper Networks customer support.

RELATED DOCUMENTATION

- Configuring the Junos OS to Support ILMI for Cell Relay Encapsulation on an ATM2 IQ PIC | 180
- Configuring the Junos OS to Enable Idle Cell Format and Payload Patterns for ATM Devices | 178
- Configuring the Junos OS to Use ATM Cell-Relay Accumulation Mode on an ATM1 PIC | 179
Configuring the Junos OS to Enable Idle Cell Format and Payload Patterns for ATM Devices

ATM devices send idle cells to enable the receiving ATM interface to recognize the start of each new cell. The receiving ATM device does not act on the contents of idle cells and does not pass them up to the ATM layer in the ATM protocol stack.

By default, the idle cell format for ATM cells is (4 bytes): 0x00000000. For ATM 2 PICs and ATM MICs, you can configure the format of the idle cell header and payload bytes.

To configure the idle cell header to use the International Telecommunications Union (ITU-T) standard of 0x00000001, include the `itu-t` statement at the `[edit chassis fpc slot-number pic number idle-cell-format]` hierarchy level:

```plaintext
[edit chassis fpc slot-number pic pic-number idle-cell-format]
itu-t;
```

On a TX Matrix or TX Matrix Plus router, include the `itu-t` statement at the `[edit chassis lcc number fpc slot-number pic pic-number idle-cell-format]` hierarchy level:

```plaintext
[edit chassis lcc number fpc slot-number pic pic-number idle-cell-format]
itu-t;
```

By default, the payload pattern is cell payload (48 bytes). To configure the idle cell payload pattern, include the `payload-pattern` statement at the `[edit chassis fpc slot-number pic pic-number idle-cell-format]` hierarchy level:

```plaintext
[edit chassis fpc slot-number pic pic-number idle-cell-format]
payload-pattern payload-pattern-byte;
```

On a TX Matrix router, include the `payload-pattern` statement at the `[edit chassis lcc number fpc slot-number pic pic-number idle-cell-format]` hierarchy level:

```plaintext
[edit chassis lcc number fpc slot-number pic pic-number idle-cell-format]
payload-pattern payload-pattern-byte;
```

The payload pattern byte can range from `0x00` through `0xff`.

For information about the TX Matrix router, see TX Matrix Router and T640 Router Configuration Overview. For information about the TX Matrix Plus router, see TX Matrix Plus Router Configuration Overview.
You can configure an Asynchronous Transfer Mode (ATM) 1 PIC to use cell-relay accumulation mode. In this mode, the incoming cells (one to eight cells) are packaged into a single packet and forwarded to the label-switched path (LSP). At the edge router, this packet is divided into individual cells and transmitted over the ATM interface.

NOTE: When you configure an ATM PIC to use cell-relay accumulation, all ports on the ATM PIC use cell-relay accumulation mode.

To configure an ATM PIC to use cell-relay accumulation mode, include the `atm-cell-relay-accumulation` statement at the `[edit chassis fpc slot-number pic pic-number]` hierarchy level:

```
[edit chassis fpc slot-number pic pic-number ]
atm-cell-relay-accumulation;
```

On a TX Matrix or TX Matrix Plus router, include the `atm-cell-relay-accumulation` statement at the `[edit chassis lcc number fpc slot-number pic pic-number]` hierarchy level:

```
[edit chassis lcc number fpc slot-number pic pic-number]
atm-cell-relay-accumulation;
```
Configuring the Junos OS to Support ILMI for Cell Relay Encapsulation on an ATM2 IQ PIC

Integrated Local Management Interface (ILMI) is supported on AAL5 interfaces, regardless of transport mode. To enable ILMI on interfaces with cell-relay encapsulation, you must configure an ATM2 IQ PIC to use Layer 2 circuit trunk transport mode.

To configure ILMI on an interface with cell-relay encapsulation, include the following statements:

```
[edit chassis fpc slot-number pic pic-number]
atm-l2circuit-mode trunk trunk;
[edit interfaces at-fpc/pic/port]
encapsulation atm-ccc-cell-relay;
atm-options {
    ilmi;
    pic-type atm2;
}
unit logical-unit-number {
    trunk-id number;
}
```

RELATED DOCUMENTATION

- Configuring the Junos OS to Enable ATM2 Intelligent Queuing Layer 2 Circuit Transport Mode
CHAPTER 3

Configuring Passive Monitoring on ATM Interfaces

IN THIS CHAPTER

- Enabling Passive Monitoring on ATM Interfaces | 181
- Removing MPLS Labels from Incoming Packets | 182

Enabling Passive Monitoring on ATM Interfaces

The Monitoring Services I and Monitoring Services II PICs are designed to enable IP services. If you have a Monitoring Services PIC and an ATM PIC installed in an M Series, MX Series, or T Series router, you can monitor IPv4 and IPv6 traffic from another router.

On ATM interfaces, you enable packet flow monitoring by including the `passive-monitor-mode` statement at the `[edit interfaces at-fpc/pic/port]` hierarchy level:

```
[edit interfaces at-fpc/pic/port]
passive-monitor-mode;
```

If you include the `passive-monitor-mode` statement in the configuration, the ATM interface is always up, and the interface does not receive or transmit incoming control packets, such as OAM cell and ILMI.

On monitoring services interfaces, you enable packet flow monitoring by including the `family` statement at the `[edit interfaces mo-fpc/pic/port unit logical-unit-number]` hierarchy level, specifying the `inet` option:

```
[edit interfaces mo-fpc/pic/port unit logical-unit-number]
family inet;
```

For conformity with cflowd record structure, you must include the `receive-options-packets` and `receive-ttl-exceeded` statements at the `[edit interfaces mo-fpc/pic/port unit logical-unit-number family inet]` hierarchy level:

```
[edit interfaces mo-fpc/pic/port unit logical-unit-number family inet]
receive-options-packets;
```
Removing MPLS Labels from Incoming Packets

The Junos OS can forward only IPv4 packets to a Monitoring Services PIC. IPv4 packets with MPLS labels cannot be forwarded to a Monitoring Services PIC. By default, if packets with MPLS labels are forwarded to the Monitoring Services PIC, they are discarded. To monitor packets with MPLS labels, you must remove the MPLS labels as the packets arrive on the interface.

You can remove up to two MPLS labels from an incoming packet by including the `pop-all-labels` statement at the `[edit interfaces interface-name atm-options mpls]` hierarchy level:

```
[edit interfaces interface-name atm-options mpls]
pop-all-labels {
    required-depth number;
}
```

NOTE: On T Series devices, the `pop-all-labels` command can remove up to five MPLS labels from incoming packets.

By default, the `pop-all-labels` statement takes effect for incoming packets with one or two labels. You can specify the number of MPLS labels an incoming packet must have for the `pop-all-labels` statement to take effect by including the `required-depth` statement at the `[edit interfaces interface-name atm-options mpls pop-all-labels]` hierarchy level:

```
[edit interfaces interface-name atm-options mpls pop-all-labels]
required-depth number;
```

The required depth can be 1, 2, or [1 2]. If you include the `required-depth 1` statement, the `pop-all-labels` statement takes effect for incoming packets with one label only. If you include the `required-depth 2` statement, the `pop-all-labels` statement takes effect for incoming packets with two labels only. If you include the `required-depth [1 2]` statement, the `pop-all-labels` statement takes effect for incoming packets...
with one or two labels. A required depth of \([12]\) is equivalent to the default behavior of the *pop-all-labels* statement.

When you remove MPLS labels from incoming packets, note the following:

- The *pop-all-labels* statement has no effect on IP packets with three or more MPLS labels.
- When you enable MPLS label removal, you must configure all ports on a PIC with the same label popping mode and required depth.
- You use the *pop-all-labels* statement to enable passive monitoring applications, not active monitoring.
- You cannot apply MPLS filters or accounting to the MPLS labels because the labels are removed as soon as the packet arrives on the interface.
- The following ATM encapsulation types are not supported on interfaces with MPLS label removal:
 - atm-ccc-cell-relay
 - atm-ccc-vc-mux
 - atm-mlppp-llc
 - atm-tcc-snap
 - atm-tcc-vc-mux
 - ether-over-atm-llc
 - ether-vpls-over-atm-llc

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>atm-options</th>
<th>305</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls</td>
<td>363</td>
</tr>
<tr>
<td>pop-all-labels</td>
<td>377</td>
</tr>
<tr>
<td>required-depth</td>
<td>386</td>
</tr>
</tbody>
</table>
2

PART

ATM-over-ADSL Interfaces

ATM-over-ADSL Interfaces Overview | 187

Configuring ATM-over-ADSL Interfaces | 189
ATM-over-ADSL Interfaces Overview

You configure the underlying ADSL as an ATM interface with an interface name of `at-pim/0/port`. Multiple encapsulation types are supported on both the physical and logical ATM-over-ADSL interface.

You can configure Point-to-Point Protocol over Ethernet (PPPoE) over ATM to connect through DSL lines. For PPPoE on an ATM-over-ADSL interface, you must configure encapsulation on both the physical and logical interfaces. To configure encapsulation on an ATM-over-ADSL physical interface, use Ethernet over ATM encapsulation. To configure encapsulation on an ATM-over-ADSL logical interface, use the PPPoE over AAL5 LLC encapsulation. LLC encapsulation allows a single ATM virtual connection to transport multiple protocols.

NOTE: PPPoE encapsulation is not supported on an M120 router with ATM2 PICs.

When you configure a point-to-point encapsulation such as PPP on a physical interface, the physical interface can have only one logical interface (only one `unit` statement) associated with it.

For more information about configuring PPPoE, see *Configuring PPPoE*.

RELATED DOCUMENTATION

- Configuring the ATM-over-ADSL Virtual Path Identifier | 190
- Configuring the ATM-over-ADSL Physical Interface Operating Mode | 190
- Configuring the ATM-over-ADSL Physical Interface Encapsulation Type | 192
- Configuring the ATM-over-ADSL Logical Interface Encapsulation Type | 192
- Configuring the ATM-over-ADSL Protocol Family | 194
Configuring ATM-over-ADSL Interfaces

IN THIS CHAPTER

- Configuring Physical ATM Interfaces and Logical Interface Properties for ADSL | 189
- Configuring the ATM-over-ADSL Virtual Path Identifier | 190
- Configuring the ATM-over-ADSL Physical Interface Operating Mode | 190
- Configuring the ATM-over-ADSL Physical Interface Encapsulation Type | 192
- Configuring the ATM-over-ADSL Logical Interface Encapsulation Type | 192
- Configuring the ATM-over-ADSL Protocol Family | 194
- Configuring the ATM-over-ADSL Virtual Channel Identifier | 194

Configuring Physical ATM Interfaces and Logical Interface Properties for ADSL

To configure physical ATM interfaces for ADSL, include the vpi 0 statement at the [edit interfaces at-pim/0/port atm-options] hierarchy level, the operating-mode statement at the [edit interfaces at-pim/0/port dsl-options] hierarchy level, and the encapsulation statement at the [edit interfaces at-pim/0/port] hierarchy level:

```plaintext
[edit interfaces at-pim/0/port]
atm-options {
  vpi 0;
}
dsl-options {
  operating-mode mode;
}
encapsulation (atm-pvc | ethernet-over-atm);
```

Configure logical interface properties by including the encapsulation statement, family statement, and vci statement:

```plaintext
unit logical-unit-number {
```
encapsulation (atm-vc-mux | atm-nlpd | atm-cisco-nlpd | atm-snap | atm-ppp-vc-mux | atm-ppp-llc | ether-over-atm-llc | ppp-over-ether-over-atm-llc);
family inet {
 vci vpi-identifier.vci-identifier;
};

You can include these statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

RELATED DOCUMENTATION

- Configuring the ATM-over-ADSL Virtual Path Identifier | 190
- Configuring the ATM-over-ADSL Physical Interface Operating Mode | 190
- Configuring the ATM-over-ADSL Physical Interface Encapsulation Type | 192
- Configuring the ATM-over-ADSL Logical Interface Encapsulation Type | 192
- Configuring the ATM-over-ADSL Protocol Family | 194
- Configuring the ATM-over-ADSL Virtual Channel Identifier | 194

Configuring the ATM-over-ADSL Virtual Path Identifier

Set the ATM virtual path identifier (VPI) to 0 (zero) by including the `vpi 0` statement at the `[edit interfaces at-pim/0/port atm-options]` hierarchy level:

```
[edit interfaces at-pim/0/port atm-options]
  vpi 0;
```

Configuring the ATM-over-ADSL Physical Interface Operating Mode

Configure the ADSL operating mode on the physical ATM interface by including the `operating-mode` statement at the `[edit interfaces at-pim/0/port dsl-options]` hierarchy level:
By default, the mode is auto, which means the ADSL line autonegotiates the setting to match the setting of the DSLAM located at the central office.

Table 15 on page 191 shows the Annex A PIM and Annex B PIM operational modes for ATM-over-ADSL interfaces.

Table 15: ATM-over-ADSL Operational Modes

<table>
<thead>
<tr>
<th>Encapsulation Types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex A PIMs</td>
<td></td>
</tr>
<tr>
<td>adsl2plus</td>
<td>Set the ADSL line to train in the ITU G.992.5 mode.</td>
</tr>
<tr>
<td>ansi-dmt</td>
<td>Set the ADSL line to train in the ANSI T1.413 Issue 2 mode.</td>
</tr>
</tbody>
</table>
| auto | Set the ADSL line to autonegotiate the setting to match the setting of the DSLAM located at the central office.
The ADSL line trains in the ANSI T1.413 Issue 2 (ansi-dmt) or ITU G.992.1 (itu-dmt) mode. |
| itu-dmt | Set the ADSL line to train in the ITU G.992.1 mode. |
| itu-dmt-bis | Set the ADSL line to train in the ITU G.992.3 mode. |
| itu-lite | Set the ADSL line to train in the G.992.2 mode. |
| itu-lite-bis | Set the ADSL line to train in the G.992.4 mode. |
| **Annex B PIMs** | |
| adsl2plus | Set the ADSL line to train in the ITU G.992.5 mode. |
| auto | Set the ADSL line after autonegotiating the setting to match the setting of the DSLAM located at the central office. |
| etsi | Set the ADSL line to train in the ETSI TS 101 388 V1.3.1 mode. |
Table 15: ATM-over-ADSL Operational Modes (continued)

<table>
<thead>
<tr>
<th>Encapsulation Types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>itu-dmt</td>
<td>Set the ADSL line to train in the ITU G.992.1 mode.</td>
</tr>
<tr>
<td>itu-dmt-bis</td>
<td>Set the ADSL line to train in the ITU G.992.3 mode.</td>
</tr>
<tr>
<td>itu-annexb-ur2</td>
<td>Set the ADSL line to train in the ITU G.992.1 Deutsche Telekom UR-2 mode.</td>
</tr>
<tr>
<td>itu-annexb-non-ur2</td>
<td>Set the ADSL line to train in the ITU G.992.1 non-UR-2 mode.</td>
</tr>
<tr>
<td>itu-dmt</td>
<td>Set the ADSL line to train in the ITU G.992.1 mode.</td>
</tr>
</tbody>
</table>

Configuring the ATM-over-ADSL Physical Interface Encapsulation Type

Configure the physical interface encapsulation type by including the `encapsulation` statement at the `edit interfaces at-pim/0/port` hierarchy level:

```
[edit interfaces at-pim/0/port]
encapsulation type;
```

Table 16 on page 193 shows the physical interface encapsulation types for ATM-over-ADSL interfaces.

Configuring the ATM-over-ADSL Logical Interface Encapsulation Type

Configure the logical interface encapsulation type by including the `encapsulation` statement:

```
[edit interfaces at-pim/0/port unit logical-unit-number]
encapsulation type;
```

You can include this statement at the following hierarchy levels:

```
[edit interfaces interface-name unit logical-unit-number]
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Table 16 on page 193 shows the logical interface encapsulation types for ATM-over-ADSL interfaces.
Table 16: ATM-over-ADSL Encapsulation Types

<table>
<thead>
<tr>
<th>Encapsulation Types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
</tr>
<tr>
<td>ether-over-atm</td>
<td>Ethernet over ATM encapsulation. Use this type of encapsulation for interfaces that carry IPv4 traffic.</td>
</tr>
<tr>
<td>atm-pvc</td>
<td>ATM permanent virtual circuits (PVCs).</td>
</tr>
<tr>
<td>Logical Interface</td>
<td></td>
</tr>
<tr>
<td>atm-vc-mux</td>
<td>Use ATM VC multiplex encapsulation. You can only configure the inet family when you use this type of encapsulation.</td>
</tr>
<tr>
<td>atm-nlpd</td>
<td>Use ATM network layer protocol ID (NLPD) encapsulation. You can only configure the inet family when you use this type of encapsulation.</td>
</tr>
<tr>
<td>atm-cisco-nlpd</td>
<td>Use Cisco NLPD encapsulation. You can only configure the inet family when you use this type of encapsulation.</td>
</tr>
<tr>
<td>atm-snap</td>
<td>Use ATM subnetwork attachment point (SNAP) encapsulation.</td>
</tr>
<tr>
<td>atm-ppp-vc-mux</td>
<td>Use PPP over ATM AAL5 multiplex encapsulation.</td>
</tr>
<tr>
<td>atm-ppp-llc</td>
<td>Use ATM PPP over AAL5 logical link control (LLC) encapsulation.</td>
</tr>
<tr>
<td>ether-over-atm-llc</td>
<td>Use Ethernet over LLC encapsulation for interfaces that carry IPv4 traffic. You cannot configure multipoint interfaces if you use this type of encapsulation.</td>
</tr>
</tbody>
</table>
Table 16: ATM-over-ADSL Encapsulation Types (continued)

<table>
<thead>
<tr>
<th>Encapsulation Types</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppp-over-ether-over-atm-llc</td>
<td>Use PPP over Ethernet over ATM LLC encapsulation. You cannot configure the interface address when you use this encapsulation type. Instead, you configure the interface address on the PPP interface.</td>
</tr>
</tbody>
</table>

Configuring the ATM-over-ADSL Protocol Family

Configure the protocol family type by including the `family` statement:

```plaintext
[edit interfaces at-pim/0/port unit logical-unit-number]
family family;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Configuring the ATM-over-ADSL Virtual Channel Identifier

Configure the virtual channel identifier (VCI) type and value by including the `vci` statement:

```plaintext
[edit interfaces at-pim/0/port unit logical-unit-number]
vci vpi-identifier.vci-identifier;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
3
PART

ATM-over-SHDSL Interfaces

Configuring ATM-over-SHDSL Interfaces | 197
CHAPTER 6

Configuring ATM-over-SHDSL Interfaces

IN THIS CHAPTER

- Configuring ATM Mode for SHDSL Overview | 197
- Configuring ATM Mode on the PIM | 199
- Configuring SHDSL Operating Mode on an ATM Physical Interface | 200
- Configuring Encapsulation on the ATM Physical Interface | 201
- Configuring Logical Interface Properties | 201
- Example: Configuring an ATM-over-SHDSL Interface | 203
- Verifying an ATM-over-SHDSL Interface Configuration | 204

Configuring ATM Mode for SHDSL Overview

To configure the ATM mode for SHDSL, include the `pic-mode` statement at the `[edit chassis fpc fpc-number pic 0 shdsl]` hierarchy level:

```
[edit chassis]
fpc fpc-number {
  pic 0 {
    shdsl {
      pic-mode (1-port-atm | 2-port-atm);
    }
  }
}
```

For more information about configuring the ATM mode, see the Junos OS Administration Library and the Junos OS Interfaces and Routing Configuration Guide.

To configure SHDSL operating mode on the physical ATM interface and set the encapsulation, include the `shdsl-options` statement and the `encapsulation` statement at the `[edit interfaces at-pim/0/port]` hierarchy level:
[edit interfaces at-pim/0/port]
shdsl-options {
 annex (annex-a | annex-b);
 line-rate line-rate;
 loopback (local remote);
 snr-margin {
 next margin;
 }
 encapsulation (atm-pvc | ethernet-over-atm)
}

To configure ATM virtual path identifier (VPI) options for the interface, include the vpi statement at the [edit interfaces interface-name atm-options] hierarchy level:

[edit interfaces interface-name]
atm-options {
 vpi vpi-identifier {
 maximum-vcs maximum-vcs;
 oam-liveness {
 up-count cells;
 down-count cells;
 }
 oam-period (disable | seconds);
 }
}

For more information about configuring ATM VPI options, see "Configuring the Maximum Number of ATM1 VCs on a VP" on page 52.

To configure logical interface properties, include the encapsulation statement, family statement, and vci statement:

unit logical-unit-number {
 encapsulation type;
 family inet {
 vci vpi-identifier.vci-identifier;
 }
}

You can include these statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
Configuring ATM Mode on the PIM

You can configure only one mode on each 2-port SHDSL PIM.

The two-wire mode supports autodetection of the line rate or fixed line rate and network speeds from 192 Kbps to 2.3 Kbps in 64-Kbps increments.

For information about configuring Annex A or Annex B, see "Configuring SHDSL Operating Mode on an ATM Physical Interface" on page 200.

To configure the ATM mode for SHDSL, include the `pic-mode` statement at the `[edit chassis fpc fpc-number pic 0 shdsl]` hierarchy level:

```
[edit chassis]
fpc fpc-number {
  pic 0 {
    shdsl {
      pic-mode (1-port-atm | 2-port-atm);
    }
  }
}
```

The default is 2-wire (two-port ATM) mode. To set the default explicitly, specify the `2-port-atm` option. For 4-wire (single-port ATM) mode, specify the `1-port-atm` option.

For more information about configuring the `pic-mode` statement, see the Junos OS Administration Library. For information about configuring the ATM mode, see the Junos OS Interfaces and Routing Configuration Guide.
Configuring SHDSL Operating Mode on an ATM Physical Interface

To configure the SHDSL operating mode on the physical ATM interface, include the `shdsl-options` statement at the `[edit interfaces at-pim/0/port]` hierarchy level:

```
[edit interfaces at-pim/0/port]
shdsl-options {
    annex (annex-a | annex-b);
    line-rate line-rate;
    loopback (local | remote);
    snr-margin {
        snext margin;
    }
}
```

Configure the following SHDSL options:

- **annex**—The type of annex:
 - annex-a—Use for North American SHDSL network implementations.
 - annex-b—Use for European SHDSL network implementations.

- **line-rate**—The SHDSL line rate. The default for 2-wire mode is auto. The default for 4-wire mode is 4608 Kbps.

- **loopback**—A loopback connection, local or remote.
 - local—Use to troubleshoot physical PIC errors. A local loopback loops packets, including both data and timing information, back on the local router's PIM.
 - remote—Use to troubleshoot physical circuit problems between the local router and the remote router. A remote loopback loops packets, including both data and timing information, back on the remote router's PIC.

- **snr-margin**—The SHDSL signal-to-noise ratio (SNR) margin, current or snext. The SNR margin is the difference between the desired SNR and the actual SNR.
 - current—Current SNR is the difference between desired SNR and the actual SNR. When configured, the line trains at higher than current noise margin plus SNR threshold.
 - snext—Self-near-end crosstalk (SENEXT) SNR margin line trains the line at higher than SNEXT threshold.
Configuring Encapsulation on the ATM Physical Interface

To configure the type of encapsulation for the physical ATM interface, include the `encapsulation` statement at the `[edit interfaces at-pim /0/port]` hierarchy level:

```
[edit interfaces at-pim/0/port]
encapsulation (atm-pvc | ether-over-atm);
```

Configure one of the following:

- **atm-pvc**—ATM permanent virtual circuits (PVCs), used for PPP over ATM over SHDSL interfaces. This is the default encapsulation.
- **ether-over-atm**—Ethernet over ATM encapsulation. For interfaces that carry IPv4 traffic, use this type of encapsulation.

RELATED DOCUMENTATION

- Configuring ATM Interface Encapsulation | 57
- Example: Combining Layer 2 and Layer 3 Classification on the Same ATM Physical Interface

Configuring Logical Interface Properties

To configure logical interface properties, include the `encapsulation` statement, `family` statement, and `vci` statement:

```
unit logical-unit-number {
    encapsulation type;
    family inet {
        vci vpi-identifier.vci-identifier;
    }
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

To configure the logical link-layer encapsulation type, include the `encapsulation` statement.
ATM-over-SHDSL interfaces that use inet (IP) protocols support the following encapsulations on the logical interface:

- **atm-vc-mux**—Use ATM VC multiplex encapsulation. You can only configure the inet family when you use this type of encapsulation.
- **atm-nlpd**—Use ATM network layer protocol ID (NLPD) encapsulation. You can only configure the inet family when you use this type of encapsulation.
- **atm-cisco-nlpd**—Use Cisco NLPD encapsulation. You can only configure the inet family when you use this type of encapsulation.

ATM-over-SHDSL for PPP over ATM interfaces support the following encapsulations on the logical interface:

- **atm-ppp-llc**—Use ATM PPP over AAL5 logical link control (LLC) encapsulation.
- **atm-ppp-vc-mux**—Use PPP over ATM AAL5 multiplex encapsulation.

ATM-over-SHDSL interfaces also support the following encapsulations on the logical interface:

- **atm-snap**—Use ATM subnetwork attachment point (SNAP) encapsulation.
- **atm-mlppp-llc**—For ATM2 IQ interfaces only, use MultiLink PPP (MLPPP) over AAL5 LLC. For this encapsulation type, your router must be equipped with a Link Services or Voice Services PIC. MLPPP over ATM encapsulation is not supported on AT-M2 IQ OC48 interfaces.
- **ppp-over-ether-over-atm-llc**—Use PPP over Ethernet over ATM LLC encapsulation. When you use this encapsulation type, you cannot configure the interface address. Instead, you configure the interface address on the PPP interface.

family—The family protocol type.

vci—The virtual channel identifier (VCI) type and value.

vci-identifier—ATM virtual circuit identifier. Unless you configure the interface to use promiscuous mode, this value cannot exceed the largest numbered VC configured for the interface with the maximum-vcs option of the vpi statement. Specify a VCI identifier from 0 through 4089 or 0 through 65,535 with promiscuous mode. VCIs from 0 through 31 are reserved.

vpi-identifier—ATM virtual path identifier. Specify a VPI from 0 through 255. The default is 0.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>unit</th>
<th>401</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation</td>
<td>321</td>
</tr>
<tr>
<td>family</td>
<td>336</td>
</tr>
<tr>
<td>vci</td>
<td>417</td>
</tr>
</tbody>
</table>
Example: Configuring an ATM-over-SHDSL Interface

The following example illustrates an ATM-over-SHDSL interface configuration.

Configuration for the ATM Mode on the PIM

```
[edit chassis]
fpc 6 {
    pic 0 {
        shdsl {
            pic-mode 2-port-atm;
        }
    }
}
```

Configuration for the SHDSL Operating Mode on the Physical ATM Interface

```
[edit interfaces at-6/0/0/0]
shdsl-options {
    annex annex-b;
    line-rate 192;
    loopback local;
    snr-margin {
        current 1;
        snext 2;
    }
}
```

Configuration for the Encapsulation on the Physical ATM Interface

```
[edit interfaces at-6/0/0/0]
encapsulation ethernet-over-atm;
```

Configuration for the Logical Interface
To verify an ATM-over-SHDSL interface configuration, you can issue the following operational mode command:

```
user@host> show interfaces at-pim/0/port extensive
```
Troubleshooting Information
Monitoring and Troubleshooting ATM Interfaces

IN THIS CHAPTER

- Determining ATM Interface Type | 207
- Monitoring ATM Interfaces | 223
- Configuring Interface Diagnostics Tools to Test the Physical Layer Connections | 254
- Investigating Interface Steps and Commands for ATM Interfaces | 262
- Using Loopback Testing for ATM Interfaces | 262
- Locating ATM Alarms and Errors | 283

Determining ATM Interface Type

IN THIS SECTION

- Checklist for Determining ATM Interface Type | 207
- Determining the ATM Interface Type and Configuration | 209
- Determining the ATM Interface Type | 210
- Identifying the ATM Interface Type | 211
- Verifying the ATM Configuration | 213
- Examples of Incorrect Configurations of ATM Options | 217

Checklist for Determining ATM Interface Type

Purpose
To determine the type of Asynchronous Transfer Mode (ATM) interface on your router.

Action
Table 17 on page 208 provides the links and commands for determining the type of ATM interface on your router.
<table>
<thead>
<tr>
<th>Table 17: Checklist for Determining ATM Interface Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks</td>
</tr>
<tr>
<td>“Determining the ATM Interface Type and Configuration” on page 209</td>
</tr>
<tr>
<td>1. Determining the ATM Interface Type on page 210</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. Identifying the ATM Interface Type on page 211</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3. Verifying the ATM Configuration on page 213</td>
</tr>
<tr>
<td>a. Verifying the Configuration of an ATM1 Interface on page 213</td>
</tr>
<tr>
<td>b. Verifying the Configuration of an ATM2 IQ Interface on page 214</td>
</tr>
<tr>
<td>c. Verifying the Configuration of an ATM MIC Interface on page 215</td>
</tr>
<tr>
<td>“Examples of Incorrect Configurations of ATM Options” on page 217</td>
</tr>
<tr>
<td>1. Verifying the Configuration of the VCI on an ATM1 Interface on page 217</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. Verifying the Configuration of the VCI on an ATM2 IQ Interface on page 219</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 17: Checklist for Determining ATM Interface Type (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Verifying the Configuration of Promiscuous Mode on an ATM2 IQ Interface on page 221</td>
<td>show configuration interfaces at-fpc/pic/port
show interfaces terse at-fpc/pic/port
edit
set interfaces interface-name atm-options pic-type atm 2
show
commit
show configuration interfaces at-fpc/pic/port
run show interfaces terse at-fpc/pic/port</td>
</tr>
</tbody>
</table>

SEE ALSO

<table>
<thead>
<tr>
<th>Determining the ATM Interface Type and Configuration</th>
<th>209</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determining the ATM Interface Type</td>
<td>210</td>
</tr>
<tr>
<td>Verifying the ATM Configuration</td>
<td>213</td>
</tr>
<tr>
<td>Examples of Incorrect Configurations of ATM Options</td>
<td>217</td>
</tr>
</tbody>
</table>

Determining the ATM Interface Type and Configuration

Purpose

When you know the type of ATM interface on your router, you can configure it with the correct configuration options.

For ATM1, ATM2 intelligent queuing (IQ) interfaces, and ATM MIC interfaces, the Junos OS does not determine from the interface name `at-fpc/pic/port` whether your routing platform has an ATM1, ATM2 IQ Physical Interface Card (PIC), or ATM Modular Interface Card (MIC) installed.

Action

To determine the type of ATM interface on your router and to check your ATM interface configuration, follow these steps:

1. Determining the ATM Interface Type on page 210
2. Verifying the ATM Configuration on page 213

SEE ALSO
Determining the ATM Interface Type

Purpose
To determine the type of ATM interface on your router, use the following Junos OS command-line interface (CLI) operational mode command:

Action

```
user@host> show chassis hardware
```

Sample Output

```
Hardware inventory:
<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>50992</td>
<td>M10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 03</td>
<td>710-001950</td>
<td>HB2090</td>
<td></td>
</tr>
<tr>
<td>Power Supply B</td>
<td>Rev 04</td>
<td>740-002497</td>
<td>LJ23082 AC</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>Rev 04</td>
<td>710-001995</td>
<td>HC5151</td>
<td></td>
</tr>
<tr>
<td>Routing Engine</td>
<td>97000000792694801</td>
<td>RE-2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEB</td>
<td>REV 06</td>
<td>710-003310</td>
<td>HH0211 E-FEB</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>REV 06</td>
<td>750-002992</td>
<td>HP2711 4x F/E, 100 BASE-TX</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 02</td>
<td>750-005718</td>
<td>BE6774 1x OC-12 ATM-II IQ, MM</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>REV 04</td>
<td>750-002971</td>
<td>HC8106 4x OC-3 SONET, MM</td>
<td></td>
</tr>
<tr>
<td>FPC 0</td>
<td>E-FPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 03</td>
<td>750-00612</td>
<td>AA7399 2x OC-3 ATM, MM</td>
<td></td>
</tr>
<tr>
<td>PIC 3</td>
<td>REV 02</td>
<td>750-000618</td>
<td>AE2070 4x T3</td>
<td></td>
</tr>
</tbody>
</table>
```

Meaning
The sample output shows the hardware inventory. The ATM2 IQ interface is in Flexible PIC Concentrator (FPC) slot 0, and PIC slot 1, which translates to `at-fpc/pic/port` or `at-0/1/0`. The ATM1 interface name is `at-1/1/0`.
Identifying the ATM Interface Type

Purpose
Display information about the type of ATM interface.

Action
To determine the type of ATM interface on your router:

```
host1#show chassis hardware
```

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>JN115736EAFC</td>
<td>MX240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 07 760-021404 ABAA5038</td>
<td>MX240 Backplane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPM Board</td>
<td>REV 03 760-021392 ABBA2758</td>
<td>Front Panel Display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM 0</td>
<td>Rev 01 740-022697 QCS0937C07K</td>
<td>PS 1.2-1.7kW; 100-240V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM 1</td>
<td>Rev 01 740-022697 QCS0939C04X</td>
<td>PS 1.2-1.7kW; 100-240V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM 2</td>
<td>Rev 01 740-022697 QCS0937C06B</td>
<td>PS 1.2-1.7kW; 100-240V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM 3</td>
<td>Rev 01 740-022697 QCS0937C07U</td>
<td>PS 1.2-1.7kW; 100-240V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 12 740-013063 9009042291</td>
<td>RE-S-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 12 740-013063 9009042266</td>
<td>RE-S-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB 0</td>
<td>REV 06 710-021523 ABBC1435</td>
<td>MX SCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB 1</td>
<td>REV 06 710-021523 ABBC1497</td>
<td>MX SCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPC 2</td>
<td>REV 14 750-031088 YH8446</td>
<td>MPC Type 2 3D Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>REV 06 711-030884 YH9612</td>
<td>MPC PMB 2G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC 0</td>
<td>REV 10 750-036132 ZP7062</td>
<td>2xOC12/8xOC3 CC-CE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC 1</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>2xOC12/8xOC3 CC-CE</td>
</tr>
<tr>
<td>PIC 2</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>BUILTIN</td>
<td>2xOC12/8xOC3 CC-CE</td>
</tr>
<tr>
<td>Xcvr 0</td>
<td>NON-JNPR</td>
<td>23393-00492</td>
<td>UNKNOWN</td>
<td></td>
</tr>
<tr>
<td>Xcvr 1</td>
<td>NON-JNPR</td>
<td>23393-00500</td>
<td>UNKNOWN</td>
<td></td>
</tr>
</tbody>
</table>
Meaning

On an MX Series router with an ATM MIC with SFP, the ATM interface is in FPC slot 2 and PIC slot 2, which translates to at-fpc/pic/port or at-2/2/0.

Table 18 on page 212 lists the `show chassis hardware` command output fields.

Table 18: show chassis hardware Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Information about the backplane, routing engine, power entry modules (PEM), and fan trays. Also displays information about the FPCs and associated PICs and MPCs and associated MICs or DPCs.</td>
</tr>
<tr>
<td>Version</td>
<td>Revision level of the chassis component.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Part number of the chassis component.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the chassis component. The serial number of the backplane is also the serial number of the router or switch chassis. Use this serial number when you need to contact Juniper Networks Customer Support about the router or switch chassis.</td>
</tr>
<tr>
<td>Description</td>
<td>Brief description of the hardware component.</td>
</tr>
</tbody>
</table>

SEE ALSO

Verifying the Configuration of an ATM MIC Interface | 215
Monitoring ATM MIC Interfaces | 245

Monitoring Traffic and Error Statistics for an ATM MIC Interface | 252

show chassis hardware

Verifying the ATM Configuration

The supported set of configuration options varies between the ATM1 and ATM2 IQ interfaces. If you configure an ATM1 interface using ATM2 IQ configuration options, the configuration does not commit. The same occurs if you configure an ATM2 IQ interface with ATM1 options. See the Junos Network Interfaces Configuration Guide for more information on the options supported for ATM1 and ATM2 IQ interfaces.

1. Verifying the Configuration of an ATM1 Interface | 213
2. Verifying the Configuration of an ATM2 IQ Interface | 214
3. Verifying the Configuration of an ATM MIC Interface | 215

Verifying the Configuration of an ATM1 Interface

Purpose
The Junos OS assumes an ATM1 interface configuration if you include the `maximum-vcs` statement without the `pic-type` statement at the `[edit interfaces at-fpc/pic/port atm-options]` hierarchy level.

Action
To check the configuration of an ATM1 interface, use the following Junos OS CLI operational mode command:

```sh
user@host> show configuration interfaces at-fpc/pic/port
```

Sample Output 1

```sh
user@host> show configuration interfaces at-0/1/0

atm-options {
    vpi 1 {
        maximum-vcs 1024;
    }
}
unit 100 {
    vci 1.100;
    family inet {
        address 25.25.25.2/30;
    }
}
```
Sample Output 2

user@host> show configuration interfaces at-1/0/0

atm-options {
 pic-type atm1;
 vpi 0 maximum-vcs 256;
 vpi 1 maximum-vcs 512;
}

Meaning
The sample output shows the correct configuration of an ATM1 interface. Sample output 1 shows the maximum-vcs statement configured on an ATM interface. Because the pic-type statement is not included in the configuration, this interface is assumed to be an ATM1 interface. Use the show chassis hardware command to verify that the interface is an ATM1. Otherwise this could be the incorrect configuration of an ATM2 IQ interface. Sample output 2 shows the correct configuration of an ATM1 interface with the pic-type statement and the maximum-vcs statement.

SEE ALSO

| ATM Interfaces User Guide for Routing Devices
| Verifying the Configuration of an ATM2 IQ Interface

Purpose
ATM2 IQ interfaces must not have the maximum-vcs statement included in the configuration.

Action
To check the configuration on an ATM2 IQ interface, use the following CLI operational mode command:

user@host> show configuration interfaces at-fpc/pic/port

Sample Output 1

user@host> show configuration interfaces at-0/1/0

atm-options {
 vpi 1;
}
unit 100 {
 vci 1.100;
 family inet {

Meaning
The sample output shows the correct configuration of an ATM2 IQ interface. The first example shows that the interface at-0/1/0 has ATM options configured and the logical interface at-0/1/0.100. Sample output 2 shows another interface at-2/2/0 with the PIC type configured.

NOTE: The ATM2 IQ interface does not have the maximum-vcs statement included in the configuration.

SEE ALSO
- ATM Interfaces User Guide for Routing Devices
- Verifying the Configuration of an ATM MIC Interface

Purpose
Verify that the ATM MIC interface is configured correctly. ATM MIC interfaces do not have the **maximum-cvs** and **pic-type** statements included in the configuration.

Action

To check the configuration of the ATM MIC interface:

```
user@host> show configuration interfaces at-2/2/0
```

```plaintext
atm-options {
  vpi 7;
}
unit 100 {
  encapsulation atm-vc-mux;
  vci 7.100
  family inet {
    address 10.10.10.1/32;
    destination 10.10.20.1
  }
}
```

Meaning

The sample output shows the correct configuration of an ATM MIC interface. The sample output shows that the interface **at-2/2/0** has ATM options configured.

NOTE: The ATM MIC interface does not have the **maximum-cvs** statement or the **pic-type** statement included in the configuration.

SEE ALSO

- Checklist for Determining ATM Interface Type | 207
- Determining the ATM Interface Type and Configuration | 209
- Examples of Incorrect Configurations of ATM Options | 217
- Identifying the ATM Interface Type | 211
- Monitoring ATM MIC Interfaces | 245
Examples of Incorrect Configurations of ATM Options

Even though ATM1 and ATM2 IQ interfaces may be configured with the incorrect options, the configuration may commit but the logical interface may not come up. Here are some examples of incorrectly configured options:

1. **Verifying the Configuration of the VCI on an ATM1 Interface** | 217
2. **Verifying the Configuration of the VCI on an ATM2 IQ Interface** | 219
3. **Verifying the Configuration of Promiscuous Mode on an ATM2 IQ Interface** | 221

Verifying the Configuration of the VCI on an ATM1 Interface

Purpose

If your configuration of the virtual channel identifier (VCI) is incorrect, the logical interface is not created.

Action

To verify that VCI is configured correctly on your ATM1 interface, follow these steps:

1. Verify the configuration with the following Junos OS CLI operational mode command:

```
user@host> show configuration interfaces at-fpc/pic/port
```

For example, the following output shows an *incorrectly* configured ATM1 interface:

```
user@host> show configuration interfaces at-1/2/0

atm-options {
    vpi 1;
} <<< the maximum-vcs statement is missing
unit 100 {
    vci 1.100;
    family inet {
        address 25.25.25.2/30;
    }
}
```

2. Check if the logical interface unit 100 is created with the following command:

```
user@host> show interfaces terse at-fpc/pic/port
```

For example, the following output shows that the link is not created:

```
user@host> show interfaces terse at-1/2/0
```
3. Include the `maximum-vcs` statement in the configuration:

```bash
user@host> edit
user@host# edit interfaces interface-name atm-options vpi vpi-identifier maximum-vcs maximum-vcs
user@host# show
user@host# commit
```

For example, the following output shows a correctly configured ATM1 interface:

```bash
user@host> show configuration interfaces at-0/1/0
```

```bash
atm-options {
  vpi 1 {
    maximum-vcs 1024;
  }
}
unit 100 {
  vci 1.100;
  family inet {
    address 25.25.25.2/30;
  }
}
```

1. Check that the logical interface is created with the following command:

```bash
user@host> run show interfaces terse at-fpc/pic/port
```

For example, the following output shows that the link is created:

```bash
user@host# run show interfaces terse at-1/2/0
```

```
Interface          Admin Link  Proto Local               Remote
at-1/2/0            up       up
at-1/2/0.100        up       up  inet 25.25.25.2/30
```

Meaning
The steps above show that initially the logical interface at-1/2/0.100 is not created because the maximum-vcs statement is not included in the ATM1 configuration. When that statement is included, the logical interface is created.

SEE ALSO

ATM Interfaces User Guide for Routing Devices

Verifying the Configuration of the VCI on an ATM2 IQ Interface

Purpose

If your configuration of the VCI is incorrect, the logical interface is not created.

Action

To check that VCI is configured correctly on your ATM2 IQ interface, follow these steps:

1. Check the configuration with the following Junos OS CLI operational mode command:

   ```
   user@host> show configuration interfaces at-fpc/pic/port
   ```

 For example, the following output shows an incorrectly configured ATM2 IQ interface:

   ```
   user@host> show configuration interfaces at-0/1/0
   ```

   ```
   atm-options {
   vpi 1 {
      maximum-vcs 200; <<< incorrectly included
   } } unit 100 {
   vci 1.100;
   family inet {
      address 25.25.25.1/30;
   }
   }
   ```

2. Check if the logical interface unit 100 is created with the following command:

   ```
   user@host> show interfaces terse at-fpc/pic/port
   ```

 For example, the following output shows that the link is not created:

   ```
   user@host> show interfaces terse at-0/1/0
   ```
3. Delete the incorrect `maximum-vcs` statement from the configuration:

```
user@host> edit
user@host# edit interfaces interface-name atm-options vpi vpi-identifier
user@host# delete maximum-vcs
user@host# show
user@host# commit
```

For example, the following output shows a correctly configured ATM2 IQ interface:

```
user@host> show configuration interfaces at-0/1/0

atm-options {
    vpi 1 {
        }
    unit 100 {
        vci 1.100;
        family inet {
            address 25.25.25.1/30;
        }
    }
}
```

4. Check that the logical interface is created with the following command:

```
user@host> show interfaces terse at-fpc/pic/port
```

For example, the following output shows that the link is created:

```
user@host> show interfaces terse at-0/1/0

Interface Admin Link Proto Local Remote
at-0/1/0 up up
at-0/1/0.100 up up inet 25.25.25.1/30
```

Meaning
The steps above show that initially the logical interface at-0/1/0.100 is not created because the maximum-vcs statement is included in the ATM2 IQ configuration. When that statement is deleted, the logical interface is created.

SEE ALSO

ATM Interfaces User Guide for Routing Devices

Verifying the Configuration of Promiscuous Mode on an ATM2 IQ Interface

Purpose
If your configuration of promiscuous mode is incorrect, the logical interface is not created. ATM2 IQ interfaces must have the pic-type atm2 statement included if you are including the promiscuous-mode statement in the configuration.

Action
To check that promiscuous mode is configured correctly on your ATM2 IQ interface, follow these steps:

1. Check the configuration with the following Junos OS CLI operational mode command:

 user@host> show configuration interfaces at-fpc/pic/port

 For example, the following output shows promiscuous mode incorrectly configured on an ATM2 IQ interface:

 user@host> show configuration interfaces at-1/2/0

 encapsulation atm-ccc-cell-relay;
 atm-options {
 promiscuous-mode { <<< the pic-type statement is missing
 vpi 1;
 }
 }
 unit 1 {
 vpi 1;
 }

2. Check if the logical interface unit 1 is created with the following command:

 user@host> run show interfaces terse at-fpc/pic/port

 For example, the following output shows that the link is not created:
user@host# run show interfaces terse at-0/1/0

```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-0/1/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<<< missing logical interface at-0/1/0.1
```

3. Include the `pic-type` statement in the configuration:

```
user@host> edit
user@host# set interfaces interface-name atm-options pic-type atm2
user@host# show
user@host# commit
```

For example, the following output shows promiscuous mode correctly configured on an ATM2 IQ interface:

```
user@host> show configuration interfaces at-0/1/0

encapsulation atm-ccc-cell-relay;
atm-options {
    pic-type atm2;
    promiscuous-mode {
        vpi 1;
    }
}
unit 1 {
    vpi 1;
}
```

4. Check that the logical interface is created with the following command:

```
user@host> run show interfaces terse at-fpc/pic/port
```

For example, the following output shows that the link is created:

```
user@host#  run show interfaces terse at-0/1/0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-0/1/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-0/1/0.1</td>
<td>up</td>
<td>up</td>
<td>ccc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Meaning
The steps above show that initially the logical interface at-0/1/0.1 is not created because the pic-type statement is not included with the promiscuous-mode statement in the ATM2 IQ configuration. When that statement is included, the logical interface is created.

SEE ALSO

ATM Interfaces User Guide for Routing Devices

SEE ALSO

Checklist for Determining ATM Interface Type | 207
Determining the ATM Interface Type and Configuration | 209
Verifying the ATM Configuration | 213
ATM Interfaces User Guide for Routing Devices

RELATED DOCUMENTATION

Investigating Interface Steps and Commands
Monitoring ATM Interfaces | 223
Using Loopback Testing for ATM Interfaces | 262
Locating ATM Alarms and Errors | 283

Monitoring ATM Interfaces

IN THIS SECTION

> Checklist for Monitoring ATM Interfaces | 224
> Monitoring ATM Interfaces | 225
> Monitoring ATM1 Interfaces | 226
> Monitoring ATM2 IQ Interfaces | 232
> Monitoring ATM MIC Interfaces | 245
Checklist for Monitoring ATM Interfaces

Purpose
To monitor Asynchronous Transfer Mode (ATM) interfaces and begin the process of isolating ATM interface problems when they occur.

Action
Table 19 on page 224 provides the links and commands for monitoring ATM interfaces.

Table 19: Checklist for Monitoring ATM Interfaces

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Monitoring ATM Interfaces" on page 225</td>
<td>show interfaces terse at*</td>
</tr>
<tr>
<td>"Monitoring ATM1 Interfaces" on page 226</td>
<td>show interfaces at-fpc/pic/port</td>
</tr>
<tr>
<td>1. Displaying the Status of a Specific ATM1 Interface on page 226</td>
<td>show interfaces at-fpc/pic/port</td>
</tr>
<tr>
<td>2. Displaying Extensive Status Information for a Specific ATM1 Interface on page 227</td>
<td>show interfaces at-fpc/pic/port extensive</td>
</tr>
<tr>
<td>3. "Monitoring Statistics for an ATM1 Interface" on page 230</td>
<td>monitor interface at-fpc/pic/port</td>
</tr>
<tr>
<td>"Monitoring ATM2 IQ Interfaces" on page 232</td>
<td>show interfaces terse at-fpc/pic/port</td>
</tr>
<tr>
<td>1. Displaying the Status of a Specific ATM2 IQ Interface on page 232</td>
<td>show interfaces at-fpc/pic/port</td>
</tr>
<tr>
<td>2. Displaying Extensive Information for a Specific ATM2 IQ Interface on page 236</td>
<td>show interfaces at-fpc/pic/port extensive</td>
</tr>
<tr>
<td>3. Monitoring Statistics for an ATM2 Interface on page 230</td>
<td>monitor interface at-fpc/pic/port</td>
</tr>
<tr>
<td>"Monitoring ATM MIC Interfaces" on page 245</td>
<td>show interfaces terse at-fpc/pic/port</td>
</tr>
<tr>
<td>1. Displaying the Status of a Specific ATM MIC Interface on page 245</td>
<td>show interfaces at-fpc/pic/port</td>
</tr>
<tr>
<td>2. Displaying Extensive Information for a Specific ATM MIC Interface on page 247</td>
<td>show interfaces at-fpc/pic/port extensive</td>
</tr>
<tr>
<td>3. Monitoring Traffic and Error Statistics for an ATM MIC Interface on page 252</td>
<td>monitor interface at-fpc/pic/port</td>
</tr>
</tbody>
</table>
Monitoring ATM Interfaces

Purpose
By monitoring ATM interfaces, you begin the process of isolating ATM interface problems when they occur. The following command provides the status of all ATM interfaces on the router. See "Checklist for Determining ATM Interface Type" on page 207 for information on how to determine the ATM interface type.

Action
To display the status of all ATM interfaces, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> show interfaces terse at *
```

Sample Output
The following sample output is for an ATM1 interface:

```
user@host> show interfaces terse at *

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-2/0/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.100</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.16.5.1/24</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.101</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.16.250.253/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.200</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>20.20.20.1/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.300</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>30.30.30.1/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.400</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>40.40.40.1/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.32767</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-2/0/1</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td>down</td>
</tr>
<tr>
<td>at-2/0/1.10</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
<td>10.10.100.1/30</td>
</tr>
</tbody>
</table>
```

Meaning
The sample output lists only the ATM interfaces and shows the status of both the physical and logical interfaces. See Table 20 on page 226 for a description of what the output means. You cannot determine from this output whether the interfaces are ATM1 or ATM2 intelligent queuing (IQ). See "Checklist for Determining ATM Interface Type" on page 207 for information on how to determine the ATM interface type.
Table 20: Status of ATM Interfaces

<table>
<thead>
<tr>
<th>Physical Interface</th>
<th>Logical Interface</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-2/0/0</td>
<td>at-2/0/0.100</td>
<td>Both the physical and logical links are up and running on this interface. By default on an ATM interface, if the physical link is up, the logical link is also up. However, for ATM 1 or ATM2 IQ interfaces with an ATM encapsulation and OAM configured for the VC, even if the physical interface is up, the logical link for a VC can be down due to a VC misconfiguration.</td>
</tr>
<tr>
<td>Admin Up</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Up</td>
<td>Link Up</td>
<td></td>
</tr>
</tbody>
</table>

at-2/0/1	at-2/0/1.10	The physical link is down on this interface and therefore the logical interface is down also.
Admin Up	Admin Up	
Link Down	Link Down	

SEE ALSO

- *ATM Interfaces User Guide for Routing Devices*

Monitoring ATM1 Interfaces

To monitor an ATM1 interface, follow these steps:

1. Displaying the Status of a Specific ATM1 Interface | 226
2. Displaying Extensive Status Information for a Specific ATM1 Interface | 227
3. Monitoring Statistics for an ATM1 Interface | 230

Displaying the Status of a Specific ATM1 Interface

Purpose

To display the status of a specific ATM interface, use the following Junos OS CLI operational mode command:

Action

```
user@host> show interfaces at-fpc/pic/port
```

Meaning
The first line of the sample output shows that the physical link is down and therefore the logical link is down also. This means that the interface cannot pass packets.

Further down the sample output, look for active alarms and defects. If there are any, and to further diagnose the problem, see "Displaying Extensive Status Information for a Specific ATM1 Interface" on page 227 to display more extensive information about the ATM interface and the physical interface that is down.

SEE ALSO

ATM Interfaces User Guide for Routing Devices

Displaying Extensive Status Information for a Specific ATM1 Interface

Purpose
To display extensive status information about a specific interface, use the following Junos OS CLI operational mode command:

Action

```
user@host> show interfaces at-fpc/pic/port extensive
```

Sample Output

```
user@host> show interfaces at-2/0/1 extensive

Physical interface: at-2/0/1, Enabled, Physical link is Down
Interface index: 23, SNMP ifIndex: 43, Generation: 22
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC3, Loopback: None, Payload scrambler: Enabled
Device flags : Present Running Down
Link flags : None
Hold-times : Up 0 ms, Down 0 ms
Statistics last cleared: 2002-07-29 14:28:14 EDT (00:18:00 ago)
Traffic statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps

Input errors:
  Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0

Output errors:
```
Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0
SONET alarms : LOL, LOS
SONET defects : LOL, LOF, LOS, SEF, AIS-L, AIS-P, RDI-P, PLM-P
SONET PHY:

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0 OK</td>
</tr>
<tr>
<td>PHY Light</td>
<td>1079</td>
<td>0 Light Missing</td>
</tr>
</tbody>
</table>

SONET section:

- BIP-B1: 0 0
- SEF: 1079 0 Defect Active
- LOS: 1079 0 Defect Active
- LOF: 1079 0 Defect Active
- ES-S: 1079
- SES-S: 1079
- SEFS-S: 1079

SONET line:

- BIP-B2: 0 0
- REI-L: 0 0
- RDI-L: 0 0 OK
- AIS-L: 1079 0 Defect Active
- BERR-SF: 0 0 OK
- BERR-SD: 0 0 OK
- ES-L: 1079
- SES-L: 1079
- UAS-L: 1079
- ES-LFE: 0
- SES-LFE: 0
- UAS-LFE: 0

SONET path:

- BIP-B3: 0 0
- REI-P: 0 0
- LOF-P: 0 0 OK
- AIS-P: 1079 0 Defect Active
- RDI-P: 1079 0 Defect Active
- UNEQ-P: 0 0 OK
- PLM-P: 1079 0 Defect Active
- ES-P: 1079
- SES-P: 1079
- UAS-P: 1079
- ES-PFE: 1079
- SES-PFE: 1079
- UAS-PFE: 1079

Received SONET overhead:

F1 : 0x00, J0 : 0x00, K1 : 0xff, K2 : 0xff
S1 : 0x00, C2 : 0xff, C2(cmp) : 0x13, F2 : 0x00
Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00, V5 : 0x00
V5(cmp) : 0x00

Transmitted SONET overhead:
F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
Z4 : 0x00, V5 : 0x00

ATM status:
HCS state: Hunt
LOC : OK

ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 38110991,
Output idle cell count: 18446744069795695321,
Output VC queue drops: 0, Input no buffers: 0, Input timeouts: 0, Input bad CRCs: 0,
Input invalid VCs: 0, Input OAM cell no buffers: 0

PFE configuration:
Destination slot: 2

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth %</th>
<th>Buffer %</th>
<th>Priority</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-forwarding</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>2 assured-forwarding</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>3 network-control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
</tbody>
</table>

Logical interface at-2/0/1.10 (Index 30) (SNMP ifIndex 65) (Generation 29)
Flags: Device-Down Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP

Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

Protocol inet, MTU: 4470, Flags: None, Generation: 32 Route table: 0
Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
Meaning
The sample output is for an OC3 ATM interface and shows the statistics for the SONET media, as well as the Input and Output ATM errors. Error details include input and output errors, active alarms and defects, and media-specific errors.

If the physical link is down, look at the active alarms and defects for the ATM interface and check the ATM media accordingly. See "List of Common ATM Alarms and Error" on page 283 for an explanation of ATM alarms.

SEE ALSO

| ATM Interfaces User Guide for Routing Devices

Monitoring Statistics for an ATM1 Interface

Purpose
To monitor statistics for an ATM1 interface, use the following Junos OS CLI operational mode command:

Action

```
user@host> monitor interface at-fpc/pic/port
```

CAUTION: We recommend that you use this command only for diagnostic purposes. Do not leave it on during normal router operations because real-time monitoring of traffic consumes additional CPU and memory resources.
Sample Output

```
user@host>  monitor interface at-2/0/0

host                          Seconds: 68                  Time: 13:52:33
Interface: at-2/0/0, Enabled, Link is Up
Encapsulation: ATM-PVC, Speed: OC3
Traffic statistics:                                           Current delta
   Input bytes:                    1528168 (2142968 bps)           [1528000]
   Output bytes:                   1540192 (2165880 bps)           [1540000]
   Input packets:                     1002 (175 pps)                  [1000]
   Output packets:                    1002 (175 pps)                  [1000]
Error statistics:                                      
   Input errors:                         0                               [0]
   Input drops:                          0                               [0]
   Input framing errors:                 0                               [0]
   Policed discards:                     0                               [0]
   L3 incompletes:                       0                               [0]
   L2 channel errors:                    0                               [0]
   L2 mismatch timeouts:                 0                               [0]
   Carrier transitions:                  0                               [0]
   Output errors:                        0                               [0]
   Output drops:                         0                               [0]
   Aged packets:                         0                               [0]
ATM statistics:                                                
   Input cell count                  33049                           [33034]
   Input invalid vc                  0                               [0]
   Output cell count 89231368868           [23664462]
   Output idle cell count 18446744072746574220        [23631438]
Active alarms : None
Active defects: None
SONET error counts/seconds:
   LOS count                          0                               [0]
   LOF count                          0                               [0]
   SEF count                          0                               [0]
   ES-S                               0                               [0]
   SES-S                              0                               [0]
SONET statistics:
   BIP-B1                             0                               [0]
   BIP-B2                             0                               [0]
   REI-L                              0                               [0]
   BIP-B3                             0                               [0]
   REI-P                              0                               [0]
```
Meaning
The sample output checks for and displays common interface failures and any increases in framing errors. Information from this command can help you narrow down possible causes of an interface problem.

NOTE: If you are accessing the router from the console connection, make sure you set the CLI terminal type using the `set cli terminal` command.

SEE ALSO

* ATM Interfaces User Guide for Routing Devices

SEE ALSO

* ATM Interfaces User Guide for Routing Devices

Monitoring ATM2 IQ Interfaces

To monitor an ATM2 interface, follow these steps:

1. Displaying the Status of a Specific ATM2 IQ Interface | 232
2. Displaying Extensive Information for a Specific ATM2 Interface | 236
3. Monitoring Statistics for an ATM2 Interface | 243

Displaying the Status of a Specific ATM2 IQ Interface

Purpose
To display the status of a specific ATM2 IQ interface, use the following Junos OS CLI operational mode commands:

Action

```
user@host> show interfaces terse at-fpc/pic/port
user@host> show interfaces at-fpc/pic/port
```
Sample Output 1

```
user@host> show interfaces terse at-2/2/0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-2/2/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.100</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.16.5.1/24</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.101</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.16.250.253/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.200</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>20.20.20.1/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.300</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>30.30.30.1/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.400</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>40.40.40.1/30</td>
<td></td>
</tr>
<tr>
<td>at-2/2/0.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Sample Output 2

```
user@host> show interfaces at-2/2/0

Physical interface: at-2/2/0, Enabled, Physical link is Up
  Interface index: 138, SNMP ifIndex: 26
  Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC12,
  Loopback: None,
  Payload scrambler: Enabled
  Device flags   : Present Running
  Link flags     : None
  CoS queues     : 4 supported
  Current address: 00:90:69:d6:d5:3a
  Last flapped   : 2004-05-03 14:32:52 UTC (02:41:35 ago)
  Input rate     : 0 bps (0 pps)
  Output rate    : 0 bps (0 pps)
  SONET alarms   : None
  SONET defects  : None
  VPI 1
    Flags: Active
    Total down time: 0 sec, Last down: Never
  Traffic statistics:
    Input packets: 0
    Output packets: 18

Logical interface at-2/2/0.100 (Index 67) (SNMP ifIndex 36)
  Flags: Point-To-Multipoint SNMP-Traps Encapsulation: Ether-over-ATM-LLC
  Input packets : 0
  Output packets: 7
  Protocol inet, MTU: 1500
    Flags: None
  Addresses, Flags: Is-Preferred Is-Primary
```
Destination: 172.16.5/24, Local: 172.16.5.1, Broadcast: 172.16.5.255

VCI 1.100
Flags: Active, Shaping, Multicast
VBR, Peak: 66kbps, Sustained: 66kbps, Burst size: 40
Total down time: 0 sec, Last down: Never
EPD threshold: 0, Transmit weight cells: 0
Input packets : 0
Output packets: 14

Logical interface at-2/2/0.101 (Index 68) (SNMP ifIndex 37)
Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
Input packets : 0
Output packets: 2
Protocol inet, MTU: 4470
Flags: None
Addresses, Flags: Is-Preferred Is-Primary

VCI 1.101
Flags: Active
Total down time: 0 sec, Last down: Never
EPD threshold: 0, Transmit weight cells: 0
Input packets : 0
Output packets: 2

Logical interface at-2/2/0.200 (Index 69) (SNMP ifIndex 8280)
Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
Input packets : 0
Output packets: 0
Protocol inet, MTU: 4470
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 20.20.20.0/30, Local: 20.20.20.1, Broadcast: 20.20.20.3

VCI 1.200
Flags: Active
Total down time: 0 sec, Last down: Never
EPD threshold: 0, Transmit weight cells: 0
Input packets : 0
Output packets: 0

Logical interface at-2/2/0.300 (Index 70) (SNMP ifIndex 8281)
Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
Input packets : 0
Output packets: 0
Protocol inet, MTU: 4470
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Meaning
The first line of the sample output shows that the physical link and all logical links are up. This means that the interface can pass packets.

Further down the sample output, look for active alarms and defects. If there are any, and to further diagnose the problem, see “Displaying Extensive Information for a Specific ATM2 Interface” on page 236 to display more extensive information about the ATM interface and the physical interface that is down.

SEE ALSO
Displaying Extensive Information for a Specific ATM2 Interface

Purpose
To display extensive status information about a specific ATM2 interface, use the following Junos OS CLI operational mode command:

Action

```bash
user@host> show interfaces at-fpc/pic/port extensive
```

Sample Output

```plaintext
user@host> show interfaces at-2/2/0 extensive

Physical interface: at-2/2/0, Enabled, Physical link is Up
  Interface index: 138, SNMP ifIndex: 26, Generation: 21
  Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC12,
  Loopback: None,
  Payload scrambler: Enabled
  Device flags   : Present Running
  Link flags     : None
  CoS queues     : 4 supported
  Hold-times     : Up 0 ms, Down 0 ms
  Current address: 00:90:69:d6:d5:3a
  Last flapped   : 2004-05-03 14:32:52 UTC (02:42:30 ago)
  Statistics last cleared: Never

  Traffic statistics:
  Input  bytes :         0          0 bps
  Output bytes :       1600          0 bps
  Input  packets:        0          0 pps
  Output packets:       18          0 pps

  Input errors:
  Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
  L3 incompletes: 0,
  L2 channel errors: 0, L2 mismatch timeouts: 0

  Output errors:
  Carrier transitions: 1, Errors: 0, Drops: 0, Aged packets: 0

  Queue counters:     Queued packets  Transmitted packets  Dropped packets
  0 assured-forward  18             18                   0
  1 expedited-forward 0               0                   0
  2 best-effort       0               0                   0
```
3 network-cont 0 0 0
SONET alarms : None
SONET defects : None

<table>
<thead>
<tr>
<th>SONET PHY:</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>PHY Light</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

SONET section:

BIP-B1	1	13	
SEF	0	0	OK
LOS	0	0	OK
LOF	0	0	OK
ES-S	1		
SES-S	0		
SEFS-S	0		

SONET line:

BIP-B2	1	196	
REI-L	1	291	
RDI-L	0	0	OK
AIS-L	0	0	OK
BERR-SF	0	0	OK
BERR-SD	0	0	OK
ES-L	1		
SES-L	0		
UAS-L	0		
ES-LFE	1		
SES-LFE	0		
UAS-LFE	0		

SONET path:

BIP-B3	1	36	
REI-P	1	211	
LOP-P	0	0	OK
AIS-P	0	0	OK
RDI-P	0	0	OK
UNEQ-P	0	0	OK
PLM-P	0	0	OK
ES-P	1		
SES-P	0		
UAS-P	0		
ES-PFE	1		
SES-PFE	0		
UAS-PFE	0		

Received SONET overhead:

| F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00 |
| S1 : 0x00, C2 : 0x13, C2(cmp) : 0x13, F2 : 0x00 |
Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00

Transmitted SONET overhead:
 F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
 S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
 Z4 : 0x00

ATM status:
 HCS state: Sync
 LOC : OK

ATM Statistics:
 Uncorrectable HCS errors: 177, Correctable HCS errors: 3, Tx cell FIFO overruns: 0,
 Rx cell FIFO overruns: 0, Rx cell FIFO underruns: 0, Input cell count: 4,
 Output cell count: 13785683517, Output idle cell count: 0, Output VC queue drops: 0,
 Input no buffers: 0, Input length errors: 0, Input timeouts: 0, Input invalid VCs: 2,
 Input bad CRCs: 0, Input OAM cell no buffers: 0

Packet Forwarding Engine configuration:
 Destination slot: 2
 VPI 1
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Traffic statistics:
 Input bytes : 0
 Output bytes : 1600
 Input packets: 0
 Output packets: 18

Logical interface at-2/2/0.100 (Index 67) (SNMP ifIndex 36) (Generation 11)
 Flags: Point-To-Multipoint SNMP-Traps Encapsulation: Ether-over-ATM-LLC
 Traffic statistics:
 Input bytes : 0
 Output bytes : 896
 Input packets: 0
 Output packets: 7
 Local statistics:
 Input bytes : 0
 Output bytes : 896
 Input packets: 0
 Output packets: 7
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
Protocol inet, MTU: 1500, Generation: 17, Route table: 0
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 172.16.5/24, Local: 172.16.5.1, Broadcast: 172.16.5.255,
 Generation: 16
VCI 1.100
 Flags: Active, Shaping, Multicast
 VBR, Peak: 66kbps, Sustained: 66kbps, Burst size: 40
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
 ATM per-VC transmit statistics:
 Tail queue packet drops: 0
 Traffic statistics:
 Input bytes : 0
 Output bytes : 1512
 Input packets: 0
 Output packets: 14

Logical interface at-2/2/0.101 (Index 68) (SNMP ifIndex 37) (Generation 12)
 Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
 Traffic statistics:
 Input bytes : 0
 Output bytes : 200
 Input packets: 0
 Output packets: 2
 Local statistics:
 Input bytes : 0
 Output bytes : 200
 Input packets: 0
 Output packets: 2
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps

Protocol inet, MTU: 4470, Generation: 18, Route table: 0
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 172.16.250.252/30, Local: 172.16.250.253, Broadcast:
 172.16.250.255,
 Generation: 18
VCI 1.101
 Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 184
 Input packets: 0
 Output packets: 2

Logical interface at-2/2/0.200 (Index 69) (SNMP ifIndex 8280) (Generation 13)
 Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Protocol inet, MTU: 4470, Generation: 19, Route table: 0
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 20.20.20.0/30, Local: 20.20.20.1, Broadcast: 20.20.20.3,
 Generation: 20
 VCI 1.200
 Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
 ATM per-VC transmit statistics:
 Tail queue packet drops: 0
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-2/2/0.300 (Index 70) (SNMP ifIndex 8281) (Generation 14)
 Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
 Traffic statistics:
 Input bytes : 0
Protocol inet, MTU: 4470, Generation: 20, Route table: 0

- **Flags:** None
- **Addresses, Flags:** Is-Preferred Is-Primary
- **Destination:** 30.30.30.0/30, **Local:** 30.30.30.1, **Broadcast:** 30.30.30.3, **Generation:** 22

VCI 1.300

- **Flags:** Active
- **Total down time:** 0 sec, **Last down:** Never
- **EPD threshold:** 0, **Transmit weight cells:** 0

ATM per-VC transmit statistics:

- **Tail queue packet drops:** 0

Traffic statistics:

<table>
<thead>
<tr>
<th>Bytes/_packets</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes</td>
<td>0</td>
</tr>
<tr>
<td>Input packets</td>
<td>0</td>
</tr>
<tr>
<td>Output packets</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical interface at-2/2/0.400 (Index 72) (SNMP ifIndex 8282) (Generation 15)

- **Flags:** Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP

Traffic statistics:

<table>
<thead>
<tr>
<th>Bytes/_packets</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes</td>
<td>0</td>
</tr>
<tr>
<td>Input packets</td>
<td>0</td>
</tr>
<tr>
<td>Output packets</td>
<td>0</td>
</tr>
</tbody>
</table>

Local statistics:

<table>
<thead>
<tr>
<th>Bytes/_packets</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bytes</td>
<td>0</td>
</tr>
<tr>
<td>Output bytes</td>
<td>0</td>
</tr>
<tr>
<td>Input packets</td>
<td>0</td>
</tr>
<tr>
<td>Output packets</td>
<td>0</td>
</tr>
</tbody>
</table>
Input packets: 0 0 pps
Output packets: 0 0 pps

Protocol inet, MTU: 4470, Generation: 21, Route table: 0
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
 Destination: 40.40.40.0/30, Local: 40.40.40.1, Broadcast: 40.40.40.3,
Generation: 24
VCI 1.400
Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-2/2/0.32767 (Index 71) (SNMP ifIndex 27) (Generation 9)
Flags: Point-To-Multipoint No-Multicast SNMP-Traps Encapsulation: ATM-VCMUX
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
VCI 1.4
Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Meaning
The sample output is for an OC12 ATM interface and shows the statistics for the SONET media, as well as the Input and Output ATM errors. Error details include input and output errors, active alarms and defects, and media-specific errors.

If the physical link is down, look at the active alarms and defects for the ATM interface and check the ATM media accordingly. See “List of Common ATM Alarms and Error” on page 283 for an explanation of ATM alarms.

SEE ALSO

Displaying the Status of a Specific ATM2 IQ Interface | 232
Monitoring Statistics for an ATM2 Interface | 243
Monitoring ATM2 IQ Interfaces | 232

Monitoring Statistics for an ATM2 Interface

Purpose

To monitor statistics for an ATM2 interface, use the following Junos OS CLI operational mode command:

Action

```bash
user@host> monitor interface at-fpc/pic/port
```

CAUTION: We recommend that you use this command only for diagnostic purposes. Do not leave it on during normal router operations because real-time monitoring of traffic consumes additional CPU and memory resources.

Sample Output

```bash
user@host> monitor interface at-2/2/0
```

```
host                          Seconds: 5                   Time: 17:16:49
Delay: 3/0/3
Interface: at-2/2/0, Enabled, Link is Up
Encapsulation: ATM-PVC, Speed: OC12
Traffic statistics:                        Current delta
Input bytes:                          0 (0 bps)                       [0]
Output bytes:                      1600 (0 bps)                       [0]
Input packets:                        0 (0 pps)                       [0]
Output packets:                      18 (0 pps)                       [0]
Error statistics:
```


Meaning

The sample output checks for and displays common interface failures and any increases in framing errors. Information from this command can help you narrow down possible causes of an interface problem.

NOTE:
If you are accessing the router from the console connection, make sure you set the CLI terminal type using the `set cli terminal` command.

SEE ALSO

- Displaying the Status of a Specific ATM2 IQ Interface | 232
- Displaying Extensive Information for a Specific ATM2 Interface | 236
- Monitoring ATM2 IQ Interfaces | 232

SEE ALSO

- Checklist for Monitoring ATM Interfaces | 224
- Monitoring ATM Interfaces | 225
- Monitoring ATM1 Interfaces | 226
Monitoring ATM MIC Interfaces

IN THIS SECTION

- Displaying the Status of a Specific ATM MIC Interface | 245
- Displaying Extensive Information for a Specific ATM MIC Interface | 247
- Monitoring Traffic and Error Statistics for an ATM MIC Interface | 252

To monitor the status of ATM MIC interfaces, perform the following tasks:

Displaying the Status of a Specific ATM MIC Interface

Purpose
Display the status of a specific ATM MIC interface.

Action
To display the summary information about a specific ATM MIC interface:

```
user@host> show interfaces terse at-2/2/0
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>at-2/2/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at-2/2.100</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>10.10.10.1</td>
<td>--> 10.10.20.1</td>
</tr>
<tr>
<td>at-2/2.32767</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display the status of a specific ATM MIC interface:

```
user@host> show interfaces at-2/2/0
```

Sample Output

Physical interface: at-2/2/0, Enabled, Physical link is Up
Interface index: 146, SNMP ifIndex: 510
Link-level type: ATM-PVC, MTU: 9192, Clocking: Internal, SONET mode, Speed: OC3, Loopback: None, Payload scrambler: Enabled
Device flags : Present Running
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Schedulers : 0
Current address: 00:26:88:da:a6:74
Last flapped : 2012-03-07 11:02:11 PST (5w4d 15:45 ago)
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)
SONET alarms : None
SONET defects : None

VPI 7
 Flags: Active
 Total down time: 0 sec, Last down: Never

Traffic statistics:
 Input packets: 0
 Output packets: 0

Logical interface at-2/2/0.100 (Index 347) (SNMP ifIndex 518)
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-VCMUX
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: 2040
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.10.20.1, Local: 10.10.10.1

VCI 7.100
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

Logical interface at-2/2/0.32767 (Index 348) (SNMP ifIndex 519)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x4000
 Encapsulation: ATM-VCMUX
 Input packets : 0
 Output packets: 0

VCI 7.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

Meaning
The first line of the sample output shows that the physical link and all logical links are up. This means that the interface can pass packets.
Further down the sample output, look for active alarms and defects. If there are any, and to further diagnose the problem, see "Displaying Extensive Information for a Specific ATM MIC Interface" on page 247 to display more extensive information about the ATM interface and the physical interface that is down.

Table 21 on page 247 lists the `show interfaces terse` command output fields.

Table 21: show interfaces terse Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface name.</td>
</tr>
<tr>
<td>Admin</td>
<td>The administrative status of the interface. Possible values: up or down.</td>
</tr>
<tr>
<td>Link</td>
<td>Status of the link. Possible values: up or down.</td>
</tr>
<tr>
<td>Proto</td>
<td>Protocol family configured on the logical interface.</td>
</tr>
<tr>
<td>Local</td>
<td>Local IP address of the logical interface.</td>
</tr>
<tr>
<td>Remote</td>
<td>Remote IP address of the logical interface.</td>
</tr>
</tbody>
</table>

For information about the output fields of the `show interfaces` command, see `show interfaces (ATM)`.

Displaying Extensive Information for a Specific ATM MIC Interface

Purpose
Display extensive information for a specific ATM MIC interface.

Action
To display extensive status information about a specific ATM MIC interface:

```
user@host>show interfaces at-2/2/0 extensive
```

Physical interface: at-2/2/0, Enabled, Physical link is Up
Interface index: 146, SNMP ifIndex: 510, Generation: 421
Link-level type: ATM-PVC, MTU: 9192, Clocking: Internal, SONET mode, Speed: OC3, Loopback: None, Payload scrambler: Enabled
Device flags : Present Running
Link flags : None
CoS queues : 8 supported, 8 maximum usable queues
Schedulers : 0
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:26:88:da:a6:74
Last flapped: 2012-03-07 11:02:11 PST (5w4d 15:58 ago)

Statistics last cleared: Never

Traffic statistics:

- Input bytes: 0 0 bps
- Output bytes: 0 0 bps
- Input packets: 0 0 pps
- Output packets: 0 0 pps

IPv6 transit statistics:

- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Input errors:

- Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0

Output errors:

- Carrier transitions: 1, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0, Resource errors: 0

Egress queues: 8 supported, 4 in use

Queue counters:

<table>
<thead>
<tr>
<th>Queue</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue number:

- 0 best-effort
- 1 expedited-forwarding
- 2 assured-forwarding
- 3 network-control

SONET alarms: None

SONET defects: None

SONET PHY:

<table>
<thead>
<tr>
<th>PHY</th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>PHY Light</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
</tbody>
</table>

SONET section:

<table>
<thead>
<tr>
<th>Section</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIP-B1</td>
<td>1</td>
</tr>
<tr>
<td>SEF</td>
<td>0</td>
</tr>
<tr>
<td>LOS</td>
<td>0</td>
</tr>
<tr>
<td>LOF</td>
<td>0</td>
</tr>
<tr>
<td>ES-S</td>
<td>1</td>
</tr>
<tr>
<td>SES-S</td>
<td>0</td>
</tr>
<tr>
<td>SEFS-S</td>
<td>0</td>
</tr>
</tbody>
</table>
SONET line:
 BIP-B2 1 75
 REI-L 1 36
 RDI-L 0 0 OK
 AIS-L 0 0 OK
 BERR-SF 0 0 OK
 BERR-SD 0 0 OK
 ES-L 1
 SES-L 0
 UAS-L 0
 ES-LFE 1
 SES-LFE 0
 UAS-LFE 0

SONET path:
 BIP-B3 1 23
 REI-P 1 34
 LOP-P 0 0 OK
 AIS-P 0 0 OK
 RDI-P 0 0 OK
 UNEQ-P 0 0 OK
 PLM-P 0 0 OK
 ES-P 1
 SES-P 0
 UAS-P 0
 ES-PFE 1
 SES-PFE 0
 UAS-PFE 0

Payload pointer:
 Current pointer : 0
 Pointer increment count : 0
 Pointer decrement count : 0
 New pointer NDF count : 1

Received SONET overhead:
 F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00
 S1 : 0x00, C2 : 0x13, C2(cmp) : 0x13, F2 : 0x00
 Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00

Transmitted SONET overhead:
 F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
 S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
 Z4 : 0x00

ATM status:
 HCS state: Sync
 LOC : OK

ATM Statistics:
Uncorrectable HCS errors: 7, Correctable HCS errors: 0,
Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 0,
Output idle cell count: 1210483921034, Output VC queue drops: 0,
Input no buffers: 0, Input length errors: 0, Input timeouts: 0,
Input invalid VCs: 0, Input bad CRCs: 0, Input OAM cell no buffers: 0
Packet Forwarding Engine configuration:
Destination slot: 2
VPI 7
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-2/2/0.100 (Index 347) (SNMP ifIndex 518)
(Generation 660)
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-VCMUX
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Protocol inet, MTU: 2040, Generation: 457, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.10.20.1, Local: 10.10.10.1, Broadcast: Unspecified,
 Generation: 621
VCI 7.100
 Flags: Active
 Total down time: 0 sec, Last down: Never
 ATM per-VC transmit statistics:
Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-2/2/0.32767 (Index 348) (SNMP ifIndex 519)
(Generation 661)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x4000
 Encapsulation: ATM-VCMUX
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 VCI 7.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 ATM per-VC transmit statistics:
 Tail queue packet drops: 0
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Meaning
The sample output is for an OC3 ATM interface and shows the statistics for the SONET media, as well as the Input and Output ATM errors. Error details include input and output errors, active alarms and defects, and media-specific errors.
If the physical link is down, look at the active alarms and defects for the ATM interface and check the ATM media accordingly. See "List of Common ATM Alarms and Error" on page 283 for an explanation of ATM alarms.

For information about the output fields of the `show interfaces extensive` command, see `show interfaces (ATM)`.

Monitoring Traffic and Error Statistics for an ATM MIC Interface

Purpose
Monitor traffic and error statistics for an ATM MIC interface.

Action
To display real-time statistics, updated every second, for an ATM MIC interface:

```
user@host> monitor interface at-2/2/0
```

```
host                           Seconds: 5                   Time: 04:02:22
Delay: 0/0/3                   Interface: at-2/2/0, Enabled, Link is Up
Encapsulation: ATM-PVC, Speed: OC3
Traffic statistics:
    Input bytes:                         0 (0 bps)
    Output bytes:                        0 (0 bps)
    Input packets:                       0 (0 pps)
    Output packets:                      0 (0 pps)
Error statistics:
    Input errors:                        0
    Input drops:                         0
    Input framing errors:                0
    Policed discards:                    0
    L3 incompletes:                      0
    L2 channel errors:                   0
    L2 mismatch timeouts:                0  Carrier transitiZ
```
Meaning

The sample output displays common interface failures and any increase in framing errors. Information from this command can help you narrow down possible causes of an interface problem.

NOTE: If you are accessing the router from the console connection, make sure you set the CLI terminal type using the `set cli terminal` command.

For information about the output fields of the `monitor interfaces (ATM)` command, see `monitor interface`.

SEE ALSO

- Verifying the Configuration of an ATM MIC Interface | 215
- Identifying the ATM Interface Type | 211

RELATED DOCUMENTATION

- Investigating Interface Steps and Commands
- Determining ATM Interface Type | 207
Configuring Interface Diagnostics Tools to Test the Physical Layer Connections

IN THIS SECTION

- Configuring Loopback Testing | 254
- Configuring BERT Testing | 256
- Starting and Stopping a BERT Test | 260

Configuring Loopback Testing

Loopback testing allows you to verify the connectivity of a circuit. You can configure any of the following interfaces to execute a loopback test: aggregated Ethernet, Fast Ethernet, Gigabit Ethernet, E1, E3, NxDS0, serial, SONET/SDH, T1, and T3.

The physical path of a network data circuit usually consists of segments interconnected by devices that repeat and regenerate the transmission signal. The transmit path on one device connects to the receive path on the next device. If a circuit fault occurs in the form of a line break or a signal corruption, you can isolate the problem by using a loopback test. Loopback tests allow you to isolate segments of the circuit and test them separately.

To do this, configure a line loopback on one of the routers. Instead of transmitting the signal toward the far-end device, the line loopback sends the signal back to the originating router. If the originating router receives back its own Data Link Layer packets, you have verified that the problem is beyond the originating router. Next, configure a line loopback farther away from the local router. If this originating router does not receive its own Data Link Layer packets, you can assume that the problem is on one of the segments between the local router and the remote router’s interface card. In this case, the next troubleshooting step is to configure a line loopback closer to the local router to find the source of the problem.

The following types of loopback testing are supported by Junos OS:

- DCE local—Loops packets back on the local data circuit-terminating equipment (DCE).
- DCE remote—Loops packets back on the remote DCE.
• Local—Useful for troubleshooting physical PIC errors. Configuring local loopback on an interface allows transmission of packets to the channel service unit (CSU) and then to the circuit toward the far-end device. The interface receives its own transmission, which includes data and timing information, on the local router's PIC. The data received from the CSU is ignored. To test a local loopback, issue the `show interfaces interface-name` command. If PPP keepalives transmitted on the interface are received by the PIC, the Device Flags field contains the output Loop-Detected.

• Payload—Useful for troubleshooting the physical circuit problems between the local router and the remote router. A payload loopback loops data only (without clocking information) on the remote router's PIC. With payload loopback, overhead is recalculated.

• Remote—Useful for troubleshooting the physical circuit problems between the local router and the remote router. A remote loopback loops packets, including both data and timing information, back on the remote router's interface card. A router at one end of the circuit initiates a remote loopback toward its remote partner. When you configure a remote loopback, the packets received from the physical circuit and CSU are received by the interface. Those packets are then retransmitted by the PIC back toward the CSU and the circuit. This loopback tests all the intermediate transmission segments.

Table 22 on page 255 shows the loopback modes supported on the various interface types.

Table 22: Loopback Modes by Interface Type

<table>
<thead>
<tr>
<th>Interface</th>
<th>Loopback Modes</th>
<th>Usage Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated Ethernet, Fast Ethernet, Gigabit Ethernet</td>
<td>Local</td>
<td>Configuring Ethernet Loopback Capability</td>
</tr>
<tr>
<td>Circuit Emulation E1</td>
<td>Local and remote</td>
<td>Configuring E1 Loopback Capability</td>
</tr>
<tr>
<td>Circuit Emulation T1</td>
<td>Local and remote</td>
<td>Configuring T1 Loopback Capability</td>
</tr>
<tr>
<td>E1 and E3</td>
<td>Local and remote</td>
<td>Configuring E1 Loopback Capability and Configuring E3 Loopback Capability</td>
</tr>
<tr>
<td>NxDS0</td>
<td>Payload</td>
<td>Configuring NxDS0 IQ and IQE Interfaces, Configuring T1 and NxDS0 Interfaces, Configuring Channelized OC12/STM4 IQ and IQE Interfaces [SONET Mode], Configuring Fractional E1 IQ and IQE Interfaces, and Configuring Channelized T3 IQ Interfaces</td>
</tr>
<tr>
<td>Serial (V.35 and X.21)</td>
<td>Local and remote</td>
<td>Configuring Serial Loopback Capability</td>
</tr>
</tbody>
</table>
Table 22: Loopback Modes by Interface Type (continued)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Loopback Modes</th>
<th>Usage Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial (EIA-530)</td>
<td>DCE local, DCE remote, local, and remote</td>
<td>Configuring Serial Loopback Capability</td>
</tr>
<tr>
<td>SONET/SDH</td>
<td>Local and remote</td>
<td>Configuring SONET/SDH Loopback Capability to Identify a Problem as Internal or External</td>
</tr>
<tr>
<td>T1 and T3</td>
<td>Local, payload, and remote</td>
<td>Configuring T1 Loopback Capability and Configuring T3 Loopback Capability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See also Configuring the T1 Remote Loopback Response</td>
</tr>
</tbody>
</table>

To configure loopback testing, include the `loopback` statement:

```
user@host# loopback mode;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name aggregated-ether-options]`
- `[edit interfaces interface-name ds0-options]`
- `[edit interfaces interface-name e1-options]`
- `[edit interfaces interface-name e3-options]`
- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`
- `[edit interfaces interface-name serial-options]`
- `[edit interfaces interface-name sonet-options]`
- `[edit interfaces interface-name t1-options]`
- `[edit interfaces interface-name t3-options]`

Configuring BERT Testing

To configure BERT:

- Configure the duration of the test.
You can configure the BERT period to last from 1 through 239 seconds on some PICs and from 1 through 240 seconds on other PICs. By default, the BERT period is 10 seconds.

- Configure the error rate to monitor when the inbound pattern is received.

```
[edit interfaces interface-name interface-type-options]
user@host#bert-error-rate rate;
```

`rate` is the bit error rate. This can be an integer from 0 through 7, which corresponds to a bit error rate from 10^{-0} (1 error per bit) to 10^{-7} (1 error per 10 million bits).

- Configure the bit pattern to send on the transmit path.

```
[edit interfaces interface-name interface-type-options]
user@host#bert-algorithm algorithm;
```

`algorithm` is the pattern to send in the bit stream. For a list of supported algorithms, enter a `?` after the `bert-algorithm` statement; for example:

```
[edit interfaces t1-0/0/0 t1-options]
user@host#  set bert-algorithm ?
```

Possible completions:
- `pseudo-2e11-o152` Pattern is $2^{11} - 1$ (per 0.152 standard)
- `pseudo-2e15-o151` Pattern is $2^{15} - 1$ (per 0.152 standard)
- `pseudo-2e20-o151` Pattern is $2^{20} - 1$ (per 0.151 standard)
- `pseudo-2e20-o153` Pattern is $2^{20} - 1$ (per 0.153 standard)
- ...

For specific hierarchy information, see the individual interface types.
NOTE: The four-port E1 PIC supports only the following algorithms:

- **pseudo-2e11-o152** Pattern is $2^{11} - 1$ (per O.152 standard)
- **pseudo-2e15-o151** Pattern is $2^{15} - 1$ (per O.151 standard)
- **pseudo-2e20-o151** Pattern is $2^{20} - 1$ (per O.151 standard)
- **pseudo-2e23-o151** Pattern is 2^{23} (per O.151 standard)

When you issue the `help` command from the CLI, all BERT algorithm options are displayed, regardless of the PIC type, and no commit check is available. Unsupported patterns for a PIC type can be viewed in system log messages.

NOTE: The 12-port T1/E1 Circuit Emulation (CE) PIC supports only the following algorithms:

- **all-ones-repeating** Repeating one bits
- **all-zeros-repeating** Repeating zero bits
- **alternating-double-ones-zeros** Alternating pairs of ones and zeros
- **alternating-ones-zeros** Alternating ones and zeros
- **pseudo-2e11-o152** Pattern is $2^{11} - 1$ (per O.152 standard)
- **pseudo-2e15-o151** Pattern is $2^{15} - 1$ (per O.151 standard)
- **pseudo-2e20-o151** Pattern is $2^{20} - 1$ (per O.151 standard)
- **pseudo-2e7** Pattern is $2^{7} - 1$
- **pseudo-2e9-o153** Pattern is $2^{9} - 1$ (per O.153 standard)
- **repeating-1-in-4** 1 bit in 4 is set
- **repeating-1-in-8** 1 bit in 8 is set
- **repeating-3-in-24** 3 bits in 24 are set

When you issue the `help` command from the CLI, all BERT algorithm options are displayed, regardless of the PIC type, and no commit check is available. Unsupported patterns for a PIC type can be viewed in system log messages.
NOTE: The IQE PICs support only the following algorithms:

all-ones-repeating Repeating one bits
all-zeros-repeating Repeating zero bits
alternating-double-ones-zeros Alternating pairs of ones and zeros
alternating-ones-zeros Alternating ones and zeros
pseudo-2e9-o153 Pattern is $2^9 - 1$ (per 0.153 (511 type) standard)
pseudo-2e11-o152 Pattern is $2^{11} - 1$ (per 0.152 and 0.153 (2047 type) standards)
pseudo-2e15-o151 Pattern is $2^{15} - 1$ (per 0.151 standard)
pseudo-2e20-o151 Pattern is $2^{20} - 1$ (per 0.151 standard)
pseudo-2e20-o153 Pattern is $2^{20} - 1$ (per 0.153 standard)
pseudo-2e23-o151 Pattern is $2^{23} - 1$ (per 0.151 standard)
repeating-1-in-4 1 bit in 4 is set
repeating-1-in-8 1 bit in 8 is set
repeating-3-in-24 3 bits in 24 are set

When you issue the help command from the CLI, all BERT algorithm options are displayed, regardless of the PIC type, and no commit check is available. Unsupported patterns for a PIC type can be viewed in system log messages.

NOTE: BERT is supported on the PDH interfaces of the Channelized SONET/SDH OC3/STM1 (Multi-Rate) MIC with SFP and the DS3/E3 MIC. The following BERT algorithms are supported:

all-ones-repeating Repeating one bits
all-zeros-repeating Repeating zero bits
alternating-double-ones-zeros Alternating pairs of ones and zeros
alternating-ones-zeros Alternating ones and zeros
repeating-1-in-4 1 bit in 4 is set
repeating-1-in-8 1 bit in 8 is set
repeating-3-in-24 3 bits in 24 are set
pseudo-2e9-o153 Pattern is $2^9 - 1$ (per 0.153 standard)
pseudo-2e11-o152 Pattern is $2^{11} - 1$ (per 0.152 standard)
pseudo-2e15-o151 Pattern is $2^{15} - 1$ (per 0.151 standard)
pseudo-2e20-o151 Pattern is $2^{20} - 1$ (per 0.151 standard)
pseudo-2e20-o153 Pattern is $2^{20} - 1$ (per 0.153 standard)
pseudo-2e23-o151 Pattern is 2^{23} (per 0.151 standard)
Table 23 on page 260 shows the BERT capabilities for various interface types.

Table 23: BERT Capabilities by Interface Type

<table>
<thead>
<tr>
<th>Interface</th>
<th>T1 BERT</th>
<th>T3 BERT</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-port T1/E1 Circuit Emulation</td>
<td>Yes (ports 0–11)</td>
<td>–</td>
<td>• Limited algorithms</td>
</tr>
<tr>
<td>4-port Channelized OC3/STM1 Circuit Emulation</td>
<td>Yes (port 0–3)</td>
<td>–</td>
<td>• Limited algorithms</td>
</tr>
<tr>
<td>E1 or T1</td>
<td>Yes (port 0–3)</td>
<td>Yes (port 0–3)</td>
<td>• Single port at a time</td>
</tr>
<tr>
<td>E3 or T3</td>
<td>Yes (port 0–3)</td>
<td>Yes (port 0–3)</td>
<td>• Single port at a time</td>
</tr>
<tr>
<td>Channelized OC12</td>
<td>–</td>
<td>Yes (channel 0–11)</td>
<td>• Single channel at a time</td>
</tr>
<tr>
<td>Channelized STM1</td>
<td>Yes (channel 0–62)</td>
<td>–</td>
<td>• Multiple channels</td>
</tr>
<tr>
<td>Channelized T3 and Multichannel T3</td>
<td>Yes (channel 0–27)</td>
<td>Yes (port 0–3 on channel 0)</td>
<td>• Multiple ports and channels</td>
</tr>
</tbody>
</table>

These limitations do not apply to channelized IQ interfaces. For information about BERT capabilities on channelized IQ interfaces, see Channelized IQ and IQE Interfaces Properties.

Starting and Stopping a BERT Test

Before you can start the BERT test, you must disable the interface. To do this, include the `disable` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
```
After you configure the BERT properties and commit the configuration, begin the test by issuing the `test interface interface-name interface-type bert-start` operational mode command:

```
user@host> test interface interface-name interface-type bert-start
```

The test runs for the duration you specify with the `bert-period` statement. If you want to terminate the test sooner, issue the `test interface interface-name interface-type bert-stop` command:

```
user@host> test interface interface-name interface-type bert-stop
```

For example:

```
user@host> test interface t3-1/2/0 t3 bert-start
user@host> test interface t3-1/2/0 t3 bert-stop
```

To view the results of the BERT test, issue the `show interfaces extensive | find BERT` command:

```
user@host> show interfaces interface-name extensive | find BERT
```

For more information about running and evaluating the results of the BERT procedure, see the CLI Explorer.

NOTE: To exchange BERT patterns between a local router and a remote router, include the `loopback remote` statement in the interface configuration at the remote end of the link. From the local router, issue the `test interface` command.

RELATED DOCUMENTATION

- `show interfaces diagnostics optics (Gigabit Ethernet, 10-Gigabit Ethernet, 40-Gigabit Ethernet, 100-Gigabit Ethernet, and Virtual Chassis Port)`
Investigating Interface Steps and Commands for ATM Interfaces

This section includes the following information to assist you when troubleshooting ATM interfaces:

The "Monitoring ATM Interfaces" on page 223 section helps you determine the nature of the interface problem. The "Using Loopback Testing for ATM Interfaces" on page 262 section provides information to help you isolate the source of the problem. The "Locating ATM Alarms and Errors" on page 283 section explains some of the alarms and errors for the media.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Monitoring ATM Interfaces</th>
<th>223</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Loopback Testing for ATM Interfaces</td>
<td>262</td>
</tr>
<tr>
<td>Locating ATM Alarms and Errors</td>
<td>283</td>
</tr>
</tbody>
</table>

Using Loopback Testing for ATM Interfaces

IN THIS SECTION

- Checklist for Using Loopback Testing for ATM Interfaces | 262
- Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264
- Creating a Loopback | 265
- Setting Clocking to Internal | 268
- Verifying That the ATM Interface Is Up | 269
- Clearing ATM Interface Statistics | 273
- Pinging the ATM Interface | 274
- Checking for ATM Interface Error Statistics | 275
- Diagnosing a Suspected Circuit Problem | 281

Checklist for Using Loopback Testing for ATM Interfaces

Purpose
To use loopback testing for ATM interfaces.
Table 24 on page 263 provides links and commands for using loopback testing for ATM interfaces.

Table 24: Checklist for Using Loopback Testing for ATM Interfaces

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface" on page 264</td>
<td></td>
</tr>
<tr>
<td>1. Creating a Loopback on page 265</td>
<td>Connect the transmit port to the receive port.</td>
</tr>
<tr>
<td>a. Creating a Physical Loopback on page 265</td>
<td>[edit interfaces interface-name (sonet-options</td>
</tr>
<tr>
<td>b. Configuring a Local Loopback on page 265</td>
<td></td>
</tr>
<tr>
<td>2. Setting Clocking to Internal on page 268</td>
<td>[edit interfaces interface-name] set clocking internal show commit</td>
</tr>
<tr>
<td>3. Verifying That the ATM Interface Is Up on page 269</td>
<td>show interfaces at-fpc/port/pic</td>
</tr>
<tr>
<td>4. Clearing ATM Interface Statistics on page 273</td>
<td>clear interfaces statistics at-fpc/port/pic</td>
</tr>
<tr>
<td>5. Pinging the ATM Interface on page 274</td>
<td>ping interface at-fpc/port/pic local-IP-address bypass-routing count 1000 rapid</td>
</tr>
<tr>
<td>6. Checking for ATM Interface Error Statistics on page 275</td>
<td>show interfaces at-fpc/port/pic extensive</td>
</tr>
<tr>
<td>"Diagnosing a Suspected Circuit Problem" on page 281</td>
<td></td>
</tr>
<tr>
<td>1. Creating a Loop from the Router to the Network on page 281</td>
<td>[edit interfaces interface-name (sonet-options</td>
</tr>
<tr>
<td>2. Creating a Loop to the Router from Various Points in the Network on page 282</td>
<td>Perform Steps 2 through 6 from "Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface" on page 264.</td>
</tr>
</tbody>
</table>
Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface

Problem

Description: When you suspect a hardware problem, perform the following steps to verify if there is a hardware problem.

Solution

To diagnose a suspected hardware problem with an ATM1 or ATM2 IQ interface, follow these steps:

1. Creating a Loopback on page 265
2. Setting Clocking to Internal on page 268
3. Verifying That the ATM Interface Is Up on page 269
4. Clearing ATM Interface Statistics on page 273
5. Pinging the ATM Interface on page 274
6. Checking for ATM Interface Error Statistics on page 275

SEE ALSO

- Checklist for Using Loopback Testing for ATM Interfaces | 262
- Creating a Loopback | 265
- Setting Clocking to Internal | 268
- Verifying That the ATM Interface Is Up | 269
- Clearing ATM Interface Statistics | 273
- Pinging the ATM Interface | 274
- Checking for ATM Interface Error Statistics | 275
- Diagnosing a Suspected Circuit Problem | 281
Creating a Loopback

You can create a physical loopback or configure a local loopback to help diagnose a suspected hardware problem. Creating a physical loopback is recommended because it allows you to test and verify the transmit and receive ports.

If a field engineer is not available to create the physical loopback, you can configure a local loopback for the interface. The local loopback creates a loopback internally in the Physical Interface Card (PIC).

Creating a Physical Loopback
Create a physical loopback from the transmit port to the receive port.

NOTE: Make sure you use single-mode fiber for a single-mode port and multimode fiber for a multimode port for SONET media.

1. To create a physical loopback at the port, connect the transmit port to the receive port using a known good cable.

When you create and test a physical loopback, you are testing the transmit and receive ports of the PIC. This action is recommended if a field engineer is available to create the physical loop as it provides a more complete test of the PIC.

SEE ALSO

| ATM Interfaces User Guide for Routing Devices |

Configuring a Local Loopback

Purpose
Because ATM interfaces can be either SONET or T3, you use the `sonet-options` or `t3-options` statements to configure a local loopback. Figure 6 on page 266 illustrates a local loopback configured for an ATM interface.

Figure 6: Local Loopback

![Diagram of Local Loopback](image)

Action

To configure a local loopback without physically connecting the transmit port to the receive port, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit interfaces interface-name (sonet-options | t3-options)
   ```

2. Configure the loopback:

   ```
   [edit interfaces interface-name (sonet-options | t3-options)]
   user@host# set loopback local
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

For example:

```
[edit interfaces (t3-1/0/0 t3-options)]
user@host# show
loopback local;
```
4. Commit the change:

```
user@host# commit
```

For example:

```
[edit interfaces t3-1/0/0 t3-options]
user@host# commit
commit complete
```

Meaning

When you create a local loopback, you create an internal loop on the interface being tested. A local loopback loops the traffic internally on that PIC. A local loopback tests the interconnection of the PIC but does not test the transmit and receive ports.

NOTE: Remember to delete the loopback statement after completing the test.

SEE ALSO

- *ATM Interfaces User Guide for Routing Devices*

SEE ALSO

- Checklist for Using Loopback Testing for ATM Interfaces | 262
- Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264
- Setting Clocking to Internal | 268
- Verifying That the ATM Interface Is Up | 269
- Clearing ATM Interface Statistics | 273
- Pinging the ATM Interface | 274
- Checking for ATM Interface Error Statistics | 275
- Diagnosing a Suspected Circuit Problem | 281
Setting Clocking to Internal

Purpose

Clocking is set to internal because there is no external clock source in a loopback connection.

Action

To configure clocking to internal, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit interfaces interface-name
   ```

2. Configure the clocking to internal:

   ```
   user@host# set clocking internal
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:

   ```
   [edit interfaces t3-1/0/0]
   user@host# show
   clocking internal;
   ```

4. Commit the change:

   ```
   user@host# commit
   ```

 For example:

   ```
   [edit interfaces t3-1/0/0]
Meaning

The clock source for the interface is set to the internal Stratum 3 clock.

SEE ALSO

Checklist for Using Loopback Testing for ATM Interfaces	262
Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface	264
Creating a Loopback	265
Verifying That the ATM Interface Is Up	269
Clearing ATM Interface Statistics	273
Pinging the ATM Interface	274
Checking for ATM Interface Error Statistics	275
Diagnosing a Suspected Circuit Problem	281

Verifying That the ATM Interface Is Up

Purpose

Displaying the status of the ATM interface provides the information you need to determine whether the physical link is up or down.

Action

To verify that the status of the ATM interface is up, use the following Junos OS CLI operational mode command:

```
user@host# show interfaces at-fpc/pic/port
```

Sample Output 1

The following sample output is for an OC3 ATM interface:
show interfaces at-2/0/0

Physical interface: at-2/0/0, Enabled, Physical link is Up

Interface index: 22, SNMP ifIndex: 42
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC3, Loopback: Local, Payload scrambler: Enabled

Device flags: Present Running

Link flags: None
Input rate: 0 bps (0 pps)
Output rate: 0 bps (0 pps)

SONET alarms: None

SONET defects: None

Logical interface at-2/0/0.0 (Index 29) (SNMP ifIndex 49)
Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
Input packets: 0
Output packets: 0

Protocol inet, MTU: 4470, Flags: None
Addresses, Flags: Is-Preferred Is-Primary
   Destination: 192.168.1.0/30, Local: 192.168.1.1

VCI 1.100
Flags: Active
Total down time: 0 sec, Last down: Never

Traffic statistics:
   Input packets: 0
   Output packets: 0

Sample Output 2

The following sample output is for a T3 ATM interface:

show interfaces at-0/1/0

Physical interface: at-0/1/0, Enabled, Physical link is Up

Interface index: 90, SNMP ifIndex: 18
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, Speed: T3, Loopback: None, Payload scrambler: Enabled,
Mode: C/Bit parity, Line buildout: 10, ATM Encapsulation: PLCP

Device flags: Present Running

Link flags: None
Current address: 00:90:69:0c:c0:1f
Last flapped: 2002-08-14 16:25:07 UTC (00:00:42 ago)
Input rate: 0 bps (0 pps)
Output rate: 0 bps (0 pps)
Active alarms: None  
Active defects: None

Sample Output 3  
The following sample output is for an OC3 ATM interface:

```
user@host> show interfaces at-2/0/1
Physical interface: at-2/0/1, Enabled, Physical link is Down
 Interface index: 23, SNMP ifIndex: 43
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC3
 , Loopback: None, Payload scrambler: Enabled
 Device flags: Present Running Down
 Link flags : None
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 SONET alarms : LOL, LOS
 SONET defects : LOL, LOF, LOS, SEF, AIS-L, AIS-P, RDI-P, PLM-P
 Logical interface at-2/0/1.10 (Index 30) (SNMP ifIndex 65)
 Flags: Device-Down Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: 4470, Flags: None
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 192.168.100.0/30, Local: 192.168.100.1
 VCI 2.100
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Traffic statistics:
 Input packets: 0
 Output packets: 0
```

Sample Output 4  
The following sample output is for a T3 ATM interface:

```
user@host> show interfaces at-0/1/0
Physical interface: at-0/1/0, Enabled, Physical link is Down
 Interface index: 90, SNMP ifIndex: 18
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, Speed: T3 , Loopback:
 None, Payload scrambler: Enabled,
```
Meaning

Sample output 1 shows that the physical link is up and there are no SONET alarms or defects.

Sample output 2 shows that the physical link is up and there are no active alarms or defects.

Sample output 3 shows that the physical link, the device flags, and interface flags are down, and that there are SONET alarms and defects. When you see that the physical link is down, there may be a problem with the port.

Sample output 4 shows that the physical link, the device flags, and interface flags are down, and that there are active alarms and defects. When you see that the physical link is down, there may be a problem with the port.

For more information about problem situations and actions to take for a physical link that is down, see Table 25 on page 272.

Table 25: Problems and Solutions for a Physical Link That Is Down

<table>
<thead>
<tr>
<th>Problem</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable mismatch</td>
<td>Verify that the cable connection is correct.</td>
</tr>
<tr>
<td>Damaged fiber or coax cable or dirty fiber cable</td>
<td>Verify that the cable can successfully loop a known good port of the same type.</td>
</tr>
<tr>
<td>Too much or too little optical attenuation (for an OC3 or OC12 ATM interface)</td>
<td>Verify that the attenuation is correct per the PIC optical specification.</td>
</tr>
<tr>
<td>The transmit port is not transmitting within the dBm optical range per the specifications (for an OC3 or OC12 ATM interface)</td>
<td>Verify that the Tx power of the optics is within range of the PIC optical specification.</td>
</tr>
</tbody>
</table>
Clearing ATM Interface Statistics

Purpose

You must reset ATM interface statistics before you initiate the ping test. Resetting the statistics provides a clean start so that previous input or output errors and packet statistics do not interfere with the current investigation.

Action

To clear all statistics for the interface, use the following Junos OS CLI operational mode command:

```
user@host> clear interfaces statistics at-fpc/pic/port
```

Sample Output

```
user@host> clear interfaces statistics at-4/0/2
user@host>
```

Meaning
This command clears the interface statistics counters for interface at-4/0/2 only.

### SEE ALSO

- Checklist for Using Loopback Testing for ATM Interfaces | 262
- Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264
- Creating a Loopback | 265
- Setting Clocking to Internal | 268
- Verifying That the ATM Interface Is Up | 269
- Pinging the ATM Interface | 274
- Checking for ATM Interface Error Statistics | 275
- Diagnosing a Suspected Circuit Problem | 281

### Pinging the ATM Interface

**Purpose**

After you have put the port in a local loopback, run the ping test using the following Junos OS CLI operational mode command:

**Action**

```
user@host> ping interface at-fpc/pic/port-IP-address bypass-routing count 1000 rapid
```

**Sample Output**

```
user@host> ping interface at-2/0/0.0 192.168.1.1 bypass-routing count 1000 rapid

PING 192.168.1.1 (192.168.1.1): 56 data bytes
!!!
!!!
!!!
!!!
!!!
!!!
```

--- 192.168.1.1 ping statistics ---
1000 packets transmitted, 1000 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.423/0.740/26.822/0.829 ms

### Meaning

This command sends 1000 ping packets out of the interface to the local IP address. The ping should complete successfully with no packet loss. If there is any persistent packet loss, open a case with the Juniper Networks Technical Assistance Center (JTAC) at support@juniper.net, or at 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States).

### SEE ALSO

- Checklist for Using Loopback Testing for ATM Interfaces | 262
- Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264
- Creating a Loopback | 265
- Setting Clocking to Internal | 268
- Verifying That the ATM Interface Is Up | 269
- Clearing ATM Interface Statistics | 273
- Checking for ATM Interface Error Statistics | 275
- Diagnosing a Suspected Circuit Problem | 281

### Checking for ATM Interface Error Statistics

#### Purpose

Persistent interface error statistics indicate that you need to open a case with JTAC.

#### Action

To check the local interface for error statistics, use the following Junos OS CLI operational mode command:

```
user@host> show interfaces at-fpc/pic/port extensive
```
Sample Output

The following sample output is for an OC3 ATM interface:

```
user@host> show interfaces at-2/0/0 extensive
Physical interface: at-2/0/0, Enabled, Physical link is Up
 Interface index: 22, SNMP ifIndex: 42, Generation: 21
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC3
 Device flags : Present Running
 Link flags : None
 Hold-times : Up 0 ms, Down 0 ms
Statistics last cleared: 2002-07-29 14:28:14 EDT (00:00:26 ago)
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Input errors:
 Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0
SONET alarms : None
SONET defects : None
SONET PHY: Seconds Count State
 PLL Lock 0 0 OK
 PHY Light 0 0 OK
SONET section:
 BIP-B1 0 0
 SEF 0 0 OK
 LOS 0 0 OK
 LOF 0 0 OK
 ES-S 0
 SES-S 0
 SEFS-S 0
SONET line:
 BIP-B2 0 0
 REI-L 0 0
 RDI-L 0 0 OK
 AIS-L 0 0 OK
 BERR-SF 0 0 OK
 BERR-SD 0 0 OK
 ES-L 0
```
SES-L                     0
UAS-L                     0
ES-LFE                    0
SES-LFE                   0
UAS-LFE                   0
SONET path:
  BIP-B3                    0            0
  REI-P                     0            0
  LOP-P                     0            0  OK
  AIS-P                     0            0  OK
  RDI-P                     0            0  OK
  UNEQ-P                    0            0  OK
  PLM-P                     0            0  OK
  ES-P                      0
  SES-P                     0
  UAS-P                     0
  ES-PFE                    0
  SES-PFE                   0
  UAS-PFE                   0
Received SONET overhead:
  F1      : 0x00, J0      : 0x00, K1      : 0x00, K2      : 0x00
  S1      : 0x00, C2      : 0x13, C2(cmp) : 0x13, F2      : 0x00
  Z3      : 0x00, Z4      : 0x00, S1(cmp) : 0x00, V5      : 0x00
  V5(cmp) : 0x00
Transmitted SONET overhead:
  F1      : 0x00, J0      : 0x01, K1      : 0x00, K2      : 0x00
  S1      : 0x00, C2      : 0x13, F2      : 0x00, Z3      : 0x00
  Z4      : 0x00, V5      : 0x00
ATM status:
  HCS state:     Sync
  LOC      :       OK
ATM Statistics:
  Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns:
  0, Rx cell FIFO overruns: 0,
  Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 8830024,
  Output idle cell count: 8830026,
  Output VC queue drops: 0, Input no buffers: 0, Input length errors: 0, Input
timeouts: 0, Input invalid VCs: 0,
  Input bad CRCs: 0, Input OAM cell no buffers: 0
PFE configuration:
  Destination slot: 2
  CoS transmit queue  Bandwidth  Buffer  Priority  Limit
                        %      bps  %    bytes
  0 best-effort        0      0   0      0   low      none
Sample Output

The following sample output is for a T3 ATM interface:

```
user@host> show interfaces at-0/1/0 extensive
Physical interface: at-0/1/0, Enabled, Physical link is Up
 Interface index: 90, SNMP ifIndex: 18, Generation: 89
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, Speed: T3, Loopback:
```

None, Payload scrambler: Enabled,
Mode: C/Bit parity, Line buildout: 10, ATM Encapsulation: PLCP
Device flags : Present Running
Link flags   : None
Hold-times   : Up 0 ms, Down 0 ms
Current address: 00:90:69:0c:c0:1f
Last flapped : 2002-08-14 16:25:07 UTC (00:00:21 ago)
Statistics last cleared: 2002-08-14 16:25:26 UTC (00:00:02 ago)
Traffic statistics:
  Input bytes : 0 0 bps
  Output bytes: 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps
Input errors:
  Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
L3 incompletes: 0, L2 channel errors: 0,
  L2 mismatch timeouts: 0
Output errors:
  Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0
Active alarms : None
Active defects : None
DS3 media: 

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>Reframing</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>AIS</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOF</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOS</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>YELLOW</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>EXZ</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LCV</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCV</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FERR</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LES</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PES</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PSES</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SEFS</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>UAS</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

PLCP defects: 

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOF</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>YELLOW</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

ATM defects: 

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

ATM status: 

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HCS state</td>
<td>Sync</td>
</tr>
</tbody>
</table>
LOC : OK

PLCP statistics (errored seconds):
  Framing errors  : 0(0)
  Bit interleaved parity errors: 0(0)
  Far end block errors  : 0(0)

ATM Statistics:
  Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0, Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 96041, Output idle cell count: 96040, Input VC queue drops: 0, Input no buffers: 0, Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0, Input bad CRCs: 0, Input OAM cell no buffers: 0

Packet Forwarding Engine configuration:
  Destination slot: 0
  %          bps   %        bytes
  CoS transmit queue | Bandwidth | Buffer Priority | Limit
  0 best-effort     95 42499200  95 0 low none
  3 network-control 5 2236800   5 0 low none

Meaning
Check for any error statistics that may appear in the output. There should not be any input or output errors. If there are any persistent input or output errors, open a case with the JTAC at support@juniper.net, or at 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States).

SEE ALSO

- Checklist for Using Loopback Testing for ATM Interfaces | 262
- Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264
- Creating a Loopback | 265
- Setting Clocking to Internal | 268
- Verifying That the ATM Interface Is Up | 269
- Clearing ATM Interface Statistics | 273
- Pinging the ATM Interface | 274
- Diagnosing a Suspected Circuit Problem | 281
Diagnosing a Suspected Circuit Problem

When you suspect a circuit problem, it is important to work with the transport-layer engineer to resolve the problem. The transport-layer engineer may ask you to create a loop from the router to the network, or the engineer may create a loop to the router from various points in the network.

To diagnose a suspected circuit problem, follow these steps:

1. Creating a Loop from the Router to the Network | 281
2. Creating a Loop to the Router from Various Points in the Network | 282

Creating a Loop from the Router to the Network

Purpose

Creating a loop from the router to the network allows the transport-layer engineer to test the router from various points in the network. This helps the engineer isolate where the problem might be located. Figure 7 on page 281 illustrates a loop from a router to the network.

Figure 7: Loop from the Router to the Network

![Loop from the Router to the Network](image)

Action

To create a loop from the router to the network, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
 [edit]
 user@host# edit interfaces interface-name (sonet-options | t3-options)
   ```

2. Configure the remote loopback:

   ```
 [edit interfaces interface-name (sonet-options | t3-options)]
 user@host# set loopback remote
   ```

3. Verify the configuration:

   ```
 user@host# show
   ```
For example:

[edit interfaces t3-1/0/0 t3-options]
user@host# show
loopback remote;

4. Commit the change:

user@host# commit

For example:

[edit interfaces t3-1/0/0 t3-options]
user@host# commit
commit complete

SEE ALSO

Creating a Loop to the Router from Various Points in the Network | 282

Creating a Loop to the Router from Various Points in the Network

Purpose

The transport-layer engineer creates a loop to the router from various points in the network. You can then perform tests to verify the connection from the router to that loopback in the network.

Action

After the transport-layer engineer has created the loop to the router from the network, you must verify the connection from the router to the loopback in the network. Follow Steps 2 through 6 in “Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface” on page 264. Keep in mind that any problems encountered in the test indicate a problem with the connection from the router to the loopback in the network.

By performing tests to loopbacks at various points in the network, you can isolate the source of the problem.
SEE ALSO

Creating a Loop from the Router to the Network | 281

SEE ALSO

Checklist for Using Loopback Testing for ATM Interfaces | 262
Diagnosing a Suspected Hardware Problem with an ATM1 or ATM2 IQ Interface | 264
Creating a Loopback | 265
Setting Clocking to Internal | 268
Verifying That the ATM Interface Is Up | 269
Clearing ATM Interface Statistics | 273
Pinging the ATM Interface | 274
Checking for ATM Interface Error Statistics | 275

RELATED DOCUMENTATION

Investigating Interface Steps and Commands

Determining ATM Interface Type | 207
Monitoring ATM Interfaces | 223
Locating ATM Alarms and Errors | 283

Locating ATM Alarms and Errors

IN THIS SECTION

- List of Common ATM Alarms and Error | 283
- Displaying ATM1 and ATM2 Alarms and Errors | 284

List of Common ATM Alarms and Error

Purpose
To check Asynchronous Transfer Mode (ATM) alarms and errors on both ATM1 and ATM2 IQ interfaces.
Action

Table 26 on page 284 provides links and commands for checking ATM alarms and errors.

Table 26: List of Common ATM Alarms and Error

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Displaying ATM1 and ATM2 Alarms and Errors” on page 284</td>
<td><code>show interfaces at-fpc/pic/port extensive</code></td>
</tr>
<tr>
<td></td>
<td>See List of Common SONET Alarms and Errors.</td>
</tr>
<tr>
<td></td>
<td>See Checklist of Common T3 Alarms and Errors.</td>
</tr>
</tbody>
</table>

SEE ALSO

| Displaying ATM1 and ATM2 Alarms and Errors | 284 |

Displaying ATM1 and ATM2 Alarms and Errors

Purpose

The alarms and errors that appear on an ATM1 or an ATM2 IQ interface are identical. ATM alarms and errors are dependent on the ATM interface media. If the ATM interface is an OC3 or OC12 interface media, the media statistics are SONET statistics. If the ATM interface is a T3 interface media, the media statistics are T3 statistics.

For information on determining the type of ATM interface on your router, see “Checklist for Determining ATM Interface Type” on page 207.

Action

To display ATM alarms and errors, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> show interfaces at-fpc/pic/port extensive
```

Sample Output 1

```
user@host> show interfaces at-2/0/0 extensive

Physical interface: at-2/0/0, Enabled, Physical link is Up
 Interface index: 22, SNMP ifIndex: 42, Generation: 21
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode, Speed: OC3
 , Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
```
Link flags : None
Hold-times : Up 0 ms, Down 0 ms

Statistics last cleared: 2002-07-29 14:28:14 EDT (00:00:26 ago)

Traffic statistics:
  Input  bytes : 0   0 bps
  Output bytes : 0   0 bps
  Input  packets: 0   0 pps
  Output packets: 0   0 pps

Input errors:
  Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
  L3 incompletes: 0, L2 channel errors: 0,
  L2 mismatch timeouts: 0

Output errors:
  Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0

SONET alarms : None
SONET defects : None

SONET PHY:

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PHY Light</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SONET section:

BIP-B1	0	0	
SEF	0	0	OK
LOS	0	0	OK
LOF	0	0	OK
ES-S	0		
SES-S	0		
SEFS-S	0		

SONET line:

BIP-B2	0	0	
REI-L	0	0	
RDI-L	0	0	OK
AIS-L	0	0	OK
BERR-SF	0	0	OK
BERR-SD	0	0	OK
ES-L	0		
SES-L	0		
UAS-L	0		
ES-LFE	0		
SES-LFE	0		
UAS-LFE	0		

SONET path:

BIP-B3	0	0	
REI-P	0	0	
LOP-P	0	0	OK
AIS-P                     0            0  OK
RDI-P                     0            0  OK
UNEQ-P                    0            0  OK
PLM-P                     0            0  OK
ES-P                      0
SES-P                     0
UAS-P                     0
ES-PFE                    0
SES-PFE                   0
UAS-PFE                   0

Received SONET overhead:
  F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00
  S1 : 0x00, C2 : 0x13, C2(cmp) : 0x13, F2 : 0x00
  Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00, V5 : 0x00
  V5(cmp) : 0x00

Transmitted SONET overhead:
  F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
  S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
  Z4 : 0x00, V5 : 0x00

ATM status:
  HCS state:   Sync
  LOC :       OK

ATM Statistics:
  Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0,
  Rx cell FIFO overruns: 0,
  Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 8830024,
  Output idle cell count: 8830026,
  Output VC queue drops: 0, Input no buffers: 0, Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0,
  Input bad CRCs: 0, Input OAM cell no buffers: 0

PFE configuration:
  Destination slot: 2

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth %</th>
<th>Bandwidth bps</th>
<th>Buffer %</th>
<th>Buffer bytes</th>
<th>Priority</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>1 expedited-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>2 assured-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>3 network-control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
</tbody>
</table>

Logical interface at-2/0/0.0 (Index 29) (SNMP ifIndex 49) (Generation 28)
  Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP

Traffic statistics:
  Input bytes : 0
  Output bytes : 0
  Input packets: 0
Output packets: 0

Local statistics:
  Input bytes : 0
  Output bytes : 0
  Input packets: 0
  Output packets: 0

Transit statistics:
  Input bytes : 0 0 bps
  Output bytes : 0 0 bps
  Input packets: 0 0 pps
  Output packets: 0 0 pps

Protocol inet, MTU: 4470, Flags: None, Generation: 31 Route table: 0
  Addresses, Flags: Is-Preferred Is-Primary
    Destination: 192.168.1.0/30, Local: 192.168.1.1, Broadcast: Unspecified, Generation: 59

VCI 1.100
  Flags: Active
  Total down time: 0 sec, Last down: Never
  ATM per-VC transmit statistics:
    Tail queue packet drops: 0

Traffic statistics:
  Input bytes : 0
  Output bytes : 0
  Input packets: 0
  Output packets: 0

**Meaning**

Sample output 1 shows the error statistics for an OC3 ATM interface. SONET alarms and errors fall into three different areas of the output: section, line, and path. See *List of Common SONET Alarms and Errors* for information on SONET alarms.

**Sample Output 2**

```
user@host> show interfaces at-3/1/0 extensive

Physical interface: at-3/1/0, Enabled, Physical link is Up
 Interface index: 57, SNMP ifIndex: 66, Generation: 56
 Description: customer
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, Speed: T3, Loopback: None,
 Payload scrambler: Disabled, Mode: C/Bit parity, Line build-out: 10, ATM
 Encapsulation: PLCP
 Device flags : Present Running
```
Link flags     : None
Hold-times     : Up 0 ms, Down 0 ms
Statistics last cleared: 2002-07-30 15:36:58 UTC (00:00:02 ago)
Traffic statistics:
<table>
<thead>
<tr>
<th></th>
<th>Input bytes: 270798</th>
<th>Output bytes: 2260295</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input packets</td>
<td>2001</td>
<td>Output packets: 2506</td>
</tr>
<tr>
<td></td>
<td>986 pps</td>
<td>1235 pps</td>
</tr>
<tr>
<td>Input errors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output errors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Active alarms : None
Active defects : None

**DS3 media:**

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>Reframing</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>AIS</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOF</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>LOS</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>YELLOW</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>EXZ</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LCV</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PCV</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FERR</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LES</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PES</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSES</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEFS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAS</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLCP defects:</td>
<td>Seconds</td>
<td>Count</td>
<td>State</td>
</tr>
<tr>
<td>LOF</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>YELLOW</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ATM defects:</td>
<td>Seconds</td>
<td>Count</td>
<td>State</td>
</tr>
<tr>
<td>LCD</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ATM status:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCS state:</td>
<td>Hunt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOC</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLCP statistics (errored seconds):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framing errors</td>
<td>0(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit interleaved parity errors: 0(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Far end block errors</td>
<td>0(0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0,
Rx cell FIFO overruns: 0, Rx cell FIFO underruns: 0, Input cell count: 7716,
Output cell count: 191980, Output idle cell count: 144302, Output VC queue
drops: 0,
Input no buffers: 0, Input length errors: 0, Input timeouts: 0, Input invalid
VCs: 0,
Input bad CRCs: 0, Input OAM cell no buffers: 0

PFE configuration:
Destination slot: 3

<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth %</th>
<th>Bandwidth bps</th>
<th>Buffer %</th>
<th>Buffer bytes</th>
<th>Priority</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>1 expedited-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>2 assured-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
<tr>
<td>3 network-control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
<td>none</td>
</tr>
</tbody>
</table>

Logical interface at-3/1/0.0 (Index 25) (SNMP ifIndex 85) (Generation 44)
Flags: Point-To-Point Inverse-ARP SNMP-Traps Encapsulation: ATM-SNAP

Traffic statistics:
Input bytes : 270798
Output bytes : 2260295
Input packets: 2001
Output packets: 2506

Local statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Transit statistics:
Input bytes : 270798 1067704 bps
Output bytes : 2260295 8911952 bps
Input packets: 2001 986 pps
Output packets: 2506 1235 pps

Protocol inet, MTU: 4470, Flags: None, Generation: 51 Route table: 0

Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.10.65.176/30, Local: 10.10.65.177, Broadcast: Unspecified,
Generation: 88

VCI 0.5
Flags: Active, Inverse-ARP
Total down time: 0 sec, Last down: Never
ATM per-VC transmit statistics:
Tail queue packet drops: 0
Traffic statistics:
Sample output 2 shows the error statistics for a T3 ATM interface. See Checklist of Common T3 Alarms and Errors for information on T3 alarms.

Table 27 on page 290 describes the input and output errors that appear in the extensive output for an ATM interface.

Table 27: ATM Interface Input and Output Errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>Reason for Error</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input Errors</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>Sum of the incoming frame aborts and frame check sequence (FCS) errors.</td>
<td></td>
</tr>
<tr>
<td>Drops</td>
<td>Number of packets dropped by the output queue of the I/O Manager ASIC.</td>
<td>If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s random early detection (RED) mechanism.</td>
</tr>
<tr>
<td>Invalid VCs</td>
<td>Number of cells that arrived for a nonexistent virtual circuit (VC).</td>
<td></td>
</tr>
<tr>
<td>Framing errors</td>
<td>Sum of ATM Adaptation Layer (AAL5) packets that have FCS errors, AAL5 packets that have reassembly timeout errors, and AAL5 packets that have length errors.</td>
<td></td>
</tr>
<tr>
<td>Policed discards</td>
<td>Frames that the incoming packet match code discarded because they were not recognized or of interest.</td>
<td>Usually, this field reports protocols that the Junos OS does not handle.</td>
</tr>
<tr>
<td>L3 incompletes</td>
<td>Number of packets discarded due to the packets failing Layer 3 header checks.</td>
<td>Increments when the incoming packet fails Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with less than 20 bytes of available IP header would be discarded and this counter would increment.</td>
</tr>
</tbody>
</table>
Table 27: ATM Interface Input and Output Errors  *(continued)*

<table>
<thead>
<tr>
<th>Error</th>
<th>Description</th>
<th>Reason for Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 channel errors</td>
<td>Errors that occurred when the software could not find a valid logical interface for an incoming frame.</td>
<td>This counter increments when the software cannot find a valid logical interface for an incoming frame.</td>
</tr>
<tr>
<td>L2 mismatch timeouts</td>
<td>Count of malformed or short packets.</td>
<td>Count of malformed or short packets that cause the incoming packet handler to discard the frame as unreadable.</td>
</tr>
<tr>
<td><strong>Output Errors</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Carrier transitions</strong></td>
<td>Number of times the interface went from down to up.</td>
<td>This number should not increment quickly and should increase only when the cable is unplugged, the far-end system is powered down and up, or a similar problem occurs. If it increments quickly (perhaps once every 10 seconds), then the cable, the far-end system, or the Physical Interface Card (PIC) is broken.</td>
</tr>
<tr>
<td>Errors</td>
<td>Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td>Drops</td>
<td>Number of packets dropped by the output queue of the I/O Manager ASIC.</td>
<td>If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
</tr>
<tr>
<td>Aged packets</td>
<td>Number of packets that remained in shared packet SDRAM for so long that the system automatically purged them.</td>
<td>The value in this field should never increment. If it does, it is most likely a software bug or possibly broken hardware.</td>
</tr>
</tbody>
</table>

**Table 28 on page 291** lists ATM media-specific alarms and defects that can render the interface unable to pass packets. When a defect persists for a certain amount of time, it is promoted to an alarm. Based on the router configuration, an alarm can ring the red or yellow alarm bell on the router or trigger the red or yellow alarm LED on the craft interface. For complete explanations of most of these alarms and defects, see Chapter 6 in **GR-253, Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria**.

Table 28: ATM Active Alarms and Defects

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Alarm indication signal</td>
</tr>
<tr>
<td>AIS-L</td>
<td>Alarm indication signal (line)</td>
</tr>
</tbody>
</table>
Table 28: ATM Active Alarms and Defects (continued)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS-P</td>
<td>Alarm indication signal (path)</td>
</tr>
<tr>
<td>BERR</td>
<td>Bit error rate</td>
</tr>
<tr>
<td>BERR-SD</td>
<td>Bit error rate defect–signal degrade</td>
</tr>
<tr>
<td>BERR-SF</td>
<td>Bit error rate fault–signal fail</td>
</tr>
<tr>
<td>EXZ</td>
<td>Excessive zeros</td>
</tr>
<tr>
<td>FERF</td>
<td>Far end receive failures</td>
</tr>
<tr>
<td>IDLE</td>
<td>Idle code detected</td>
</tr>
<tr>
<td>LCD</td>
<td>Loss of cell delineation</td>
</tr>
<tr>
<td>LCV</td>
<td>Line code violation</td>
</tr>
<tr>
<td>LOC</td>
<td>Loss of cell delineation</td>
</tr>
<tr>
<td>LOF</td>
<td>Loss of frame</td>
</tr>
<tr>
<td>LOL</td>
<td>Loss of light</td>
</tr>
<tr>
<td>LOP</td>
<td>Loss of pointer</td>
</tr>
<tr>
<td>LOS</td>
<td>Loss of signal</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-locked loop out of lock</td>
</tr>
<tr>
<td>PLCP_LOF</td>
<td>Loss of PLCP frame alarm</td>
</tr>
<tr>
<td>PLCP_YLW</td>
<td>Alarm at the remote end</td>
</tr>
<tr>
<td>PLCP</td>
<td></td>
</tr>
<tr>
<td>PLM-P</td>
<td>Payload label mismatch</td>
</tr>
<tr>
<td>RDI</td>
<td>Remote defect indication</td>
</tr>
<tr>
<td>RDI-L</td>
<td>Remote defect indication (line)</td>
</tr>
</tbody>
</table>
Table 28: ATM Active Alarms and Defects (continued)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDI-P</td>
<td>Remote defect indication (path)</td>
</tr>
<tr>
<td>REI</td>
<td>Remote error indication</td>
</tr>
<tr>
<td>SEF</td>
<td>Severely errored frame</td>
</tr>
<tr>
<td>UNEQ</td>
<td>Unequipped</td>
</tr>
<tr>
<td>YLW</td>
<td>Remote defect indication (yellow alarm)</td>
</tr>
</tbody>
</table>

SEE ALSO

- List of Common ATM Alarms and Error | 283

RELATED DOCUMENTATION

- Investigating Interface Steps and Commands
- Determining ATM Interface Type | 207
- Monitoring ATM Interfaces | 223
- Using Loopback Testing for ATM Interfaces | 262
Configuration Statements and Operational Commands

Configuration Statements  | 297
Operational Commands  | 427
CHAPTER 8

Configuration Statements

IN THIS CHAPTER

- advertise-interval | 300
- allow-any-vci | 301
- annex | 302
- aps | 303
- atm-encapsulation | 304
- atm-options | 305
- atm-scheduler-map | 307
- authentication-key | 308
- buildout (E3 or T3 over ATM Interfaces) | 309
- bytes | 310
- cbit-parity | 312
- cbr | 313
- cell-bundle-size | 315
- cell-bundle-timeout | 316
- down-count | 317
- dsl-options | 318
- e3-options | 319
- encapsulation (Logical Interface) | 321
- encapsulation | 326
- epd-threshold (Logical Interface) | 333
- epd-threshold (Physical Interface) | 335
- family | 336
- fast-aps-switch | 342
- force | 343
- forwarding-class (ATM2 IQ Scheduler Maps) | 344
- framing (E1, E3, and T1 Interfaces) | 345
- high-plp-max-threshold | 347
- high-plp-threshold | 348
hold-time (APS) | 349
hold-time (SONET/SDH Defect Triggers) | 350
imi | 352
inverse-arp | 353
inner-vlan-id-range | 354
linear-red-profile | 355
linear-red-profiles | 356
lockout | 357
loopback (ADSL, DS0, E1/E3, SONET/SDH, SHDSL, and T1/T3) | 358
low-plp-max-threshold | 360
low-plp-threshold | 361
maximum-vcs | 362
mpls (Interfaces) | 363
multicast-vci | 364
multipoint-destination | 365
neighbor (Automatic Protection Switching for SONET/SDH) | 367
oam-liveness | 368
oam-period | 370
paired-group | 371
passive-monitor-mode | 372
payload-scrambler | 373
pic-type | 374
plp1 | 375
plp-to-clp | 376
pop-all-labels | 377
priority (Schedulers) | 378
promiscuous-mode | 379
protect-circuit | 380
queue-depth | 381
queue-length | 382
receive-options-packets | 383
receive-ttl-exceeded | 384
request | 385
required-depth | 386
- revert-time (Interfaces) | 387
- rfc-2615 | 388
- rtvbr | 389
- scheduler-maps (For ATM2 IQ Interfaces) | 391
- shaping | 392
- t3-options | 394
- transmit-weight (ATM2 IQ CoS Forwarding Class) | 395
- transmit-weight (ATM2 IQ Virtual Circuit) | 396
- trigger | 397
- trunk-bandwidth | 399
- trunk-id | 400
- unit | 401
- use-null-cw | 412
- up-count | 413
- vbr | 414
- vc-cos-mode | 416
- vci | 417
- vci-range | 418
- vlan-id (Outer VLAN ID) | 419
- vlan-vci-tagging | 420
- vpi (ATM CCC Cell-Relay Promiscuous Mode) | 421
- vpi (Define Virtual Path) | 422
- vpi (Logical Interface and Interworking) | 423
- working-circuit | 424
- z0-increment | 425
advertise-interval

Syntax

```
advertise-interval milliseconds;
```

Hierarchy Level

```
[edit interfaces interface-name sonet-options aps]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Modify the Automatic Protection Switching (APS) interval at which the protect and working routers send packets to their neighbors to advertise that they are operational. A router considers its neighbor to be operational for a period, called the hold time, that is, by default, three times the advertisement interval.

Options

- `milliseconds`—Interval between advertisement packets.

Range: 1 through 65,534 milliseconds

Default: 1000 milliseconds

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring APS Timers
allow-any-vci

Syntax

allow-any-vci;

Hierarchy Level

[edit interfaces interface-name unit 0],
[edit logical-systems logical-system-name interfaces interface-name unit 0]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro routers.

Description

Dedicate entire ATM device to ATM cell relay circuit.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring an ATM1 Cell-Relay Circuit Overview | 92 |
annex

Syntax

```
annex (annex-a | annex-b);
```

Hierarchy Level

```
[edit interfaces interface-name shdsl-options],
[edit interfaces interface-name sonet-options aps],
[edit logical-systems logical-system-name interfaces interface-name shdsl-options]
```

Release Information

Statement introduced in Junos OS Release 7.4.

Description

For M320 and M120 routers only, for Multiplex Section Protection (MSP) switching on SDH interfaces, set `annex-b`. You must also configure the working protection circuit under the `[edit interfaces so-fpc/pic/port sonet-options aps]` hierarchy level.

Default

`annex-b`

Options

`annex-a`—Use for North American SHDSL network implementations.

`annex-b`—Use for European SHDSL network implementations.

Required Privilege Level

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.
aps

Syntax

```plaintext
aps {
 advertise-interval milliseconds;
 annex-b
 authentication-key key;
 (break-before-make | no-break-before-make);
 fast-aps-switch;
 force;
 hold-time milliseconds;
 lockout;
 neighbor address;
 paired-group group-name;
 preserve-interface;
 protect-circuit group-name;
 request;
 revert-time seconds;
 switching-mode (bidirectional | unidirectional);
 working-circuit group-name;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name sonet-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure Automatic Protection Switching (APS) on the router.

For DS3 channels on a channelized OC12 interface, configure APS on channel 0 only. If you configure APS on channels 1 through 11, it is ignored.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
**atm-encapsulation**

**Syntax**

atm-encapsulation (direct | plcp);

**Hierarchy Level**

[edit interfaces at-fpc/pic/port e3-options],
[edit interfaces at-fpc/pic/port t3-options]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure encapsulation for E3 and T3 traffic over ATM interfaces.

**Default**

Physical Layer Convergence Protocol (PLCP) encapsulation is the default for T3 traffic and for E3 traffic using G.751 framing.

**Options**

direct—Use direct encapsulation. G.832 framing on E3 interfaces requires direct encapsulation.

plcp—Use PLCP encapsulation.

**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

Configuring E3 and T3 Parameters on ATM Interfaces | 55
enapsulation | 326
atm-options

Syntax

```plaintext
atm-options {
 cell-bundle-size cells;
 ilmi;
 linear-red-profiles profile-name {
 high-plp-max-threshold percent;
 low-plp-max-threshold percent;
 queue-depth cells high-plp-threshold percent low-plp-threshold percent;
 }
 mpls {
 pop-all-labels {
 required-depth number;
 }
 }
 pic-type (atm1 | atm2);
 plp-to-clp;
 promiscuous-mode {
 vpi vpi-identifier;
 }
 scheduler-maps map-name {
 forwarding-class class-name {
 epd-threshold cells plp1 cells;
 linear-red-profile profile-name;
 priority (high | low);
 transmit-weight (cells number | percent number);
 }
 vc-cos-mode (alternate | strict);
 }
 use-null-cw;
 vpi vpi-identifier {
 maximum-vcs maximum-vcs;
 oam-liveness {
 up-count cells;
 down-count cells;
 }
 oam-period (disable | seconds);
 shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
 }
 }
}
```
Hierarchy Level

[edit interfaces interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro Routers.

Description
Configure ATM-specific physical interface properties.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

NOTE: Certain options apply only to specific platforms.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Interface Encapsulations Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>multipoint-destination</td>
</tr>
<tr>
<td>shaping</td>
</tr>
<tr>
<td>vci</td>
</tr>
</tbody>
</table>
atm-scheduler-map

Syntax

atm-scheduler-map (map-name | default);

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Associate a scheduler map with a virtual circuit on a logical interface.

Options
map-name—Name of scheduler map that you define at the [edit interfaces interface-name atm-options scheduler-maps] hierarchy level.

default—The default scheduler mapping.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| ATM2 IQ VC Tunnel CoS Components Overview | 135 |
| scheduler-maps (For ATM2 IQ Interfaces) | 391 |
**authentication-key**

**Syntax**

```
authentication-key key;
```

**Hierarchy Level**

```
[edit interfaces interface-name sonet-options aps]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure the Automatic Protection Switching (APS) authentication key (password).

**Options**

`key`—Authentication password. It can be 1 through 8 characters long. Configure the same key for both the working and protect routers.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

---

**RELATED DOCUMENTATION**

*Configuring Basic Automatic Protect Switching*

For information about the `authentication-key` statement at the `[edit interfaces interface-name unit unit-number family inet address address (vrrp-group | vrrp-inet6-group) group-number]` or `[edit logical-systems logical-system-name interfaces interface-name unit unit-number family (inet | inet6) address address (vrrp-group | vrrp-inet6-group) group-number]` hierarchy level, see the *High Availability User Guide*. 
buildout (E3 or T3 over ATM Interfaces)

Syntax

buildout feet;

Hierarchy Level

[edit interfaces at-fpc/pic/port e3-options],
[edit interfaces at-fpc/pic/port t3-options]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For E3 and T3 traffic over ATM interfaces, set the buildout value.

Options

- **feet**—The buildout value in feet.

Range: 0 through 450 feet (137 meters)
Default: 10 feet (3 meters)

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring E3 and T3 Parameters on ATM Interfaces | 55
**bytes**

**Syntax**

```plaintext
bytes {
 c2 value;
 e1-quiet value;
 f1 value;
 f2 value;
 s1 value;
 z3 value;
 z4 value;
}
```

**Hierarchy Level**

```
[edit interfaces interface-name sonet-options]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Set values in some SONET/SDH header bytes.

**Options**

- **c2 value**—Path signal label SONET/SDH overhead byte. SONET/SDH frames use the C2 byte to indicate the contents of the payload inside the frame. SONET/SDH interfaces use the C2 byte to indicate whether the payload is scrambled.
  
  **Range:** 0 through 255
  
  **Default:** 0xCF

- **e1-quiet value**—Default idle byte sent on the orderwire SONET/SDH overhead bytes. The router does not support the orderwire channel, and hence sends this byte continuously.
  
  **Range:** 0 through 255
  
  **Default:** 0x7F

- **f1 value, f2 value, z3 value, z4 value**—SONET/SDH overhead bytes.
  
  **Range:** 0 through 255
  
  **Default:** 0x00

- **s1 value**—Synchronization message SONET overhead byte. This byte is normally controlled as a side effect of the system reference clock configuration and the state of the external clock coming from an interface if the system reference clocks have been configured to use an external reference.
Range: 0 through 255
Default: 0xCC

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

*Configuring SONET/SDH Header Byte Values to Identify Error Conditions*

*no-concatenate*
**cbit-parity**

**Syntax**

```
(cbit-parity | no-cbit-parity);
```

**Hierarchy Level**

```
[edit interfaces interface-name t3-options]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For T3 interfaces only, enable or disable C-bit parity mode, which controls the type of framing that is present on the transmitted T3 signal. When C-bit parity mode is enabled, the C-bit positions are used for the far-end block error (FEBE), far-end alarm and control (FEAC), terminal data link, path parity, and mode indicator bits, as defined in ANSI T1.107a-1989. For ATM and ATM2 IQ2 and IQ2-E interfaces, M23 framing is used when the `no-cbit-parity` statement is included. For all other interfaces, M13 framing is used when the `no-cbit-parity` statement is included.

**Default**

C-bit parity mode is enabled.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- [Configuring E3 and T3 Parameters on ATM Interfaces](#) | 55
- [Disabling T3 C-Bit Parity Mode](#)
cbr

Syntax

cbr rate;

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options vpi vpi-identifier shaping],
[edit interfaces at-fpc/pic/port unit logical-unit-number address address family family multipoint-destination address shaping],
[edit interfaces at-fpc/pic/port unit logical-unit-number shaping],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number address address family family multipoint-destination address shaping],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number shaping]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM encapsulation only, define a constant bit rate bandwidth utilization in the traffic-shaping profile.

Default
Unspecified bit rate (UBR); that is, bandwidth utilization is unlimited.

Options

rate—Peak rate, in bits per second (bps) or cells per second (cps). You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000). You can also specify a value in cells per second by entering a decimal number followed by the abbreviation c; values expressed in cells per second are converted to bits per second by means of the formula 1 cps = 384 bps.

For ATM1 and ATM2 OC3 interfaces, the maximum available rate is 100 percent of line-rate, or 135,600,000 bps. For ATM1 OC12 interfaces, the maximum available rate is 50 percent of line-rate, or 271,263,396 bps. For ATM2 IQ interfaces, the maximum available rate is 542,526,792 bps.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
cell-bundle-size

Syntax

    cell-bundle-size cells;

Hierarchy Level

    [edit interfaces at-fpc/pic/port atm-options],
    [edit interfaces at-fpc/pic/port unit logical-unit-number],
    [edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces using ATM Layer 2 circuit cell-relay transport mode only, configure the maximum number of ATM cells per frame.

NOTE: For MIC-3D-8OC3-2OC12-ATM on MX104 routers, ensure that the configured cell-bundle-size is less than 30 for an ATM interface that is configured with atm-ccc-cell-relay encapsulation. If the configured cell-bundle-size is greater than or equal to 30 and the traffic is passing through the interface at line rate, it might lead to AFEB crash.

Options

    cells—Maximum number of cells.

Default: 1 cell

Range: 1 through 176 cells

Required Privilege Level

    interface—To view this statement in the configuration.
    interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

    Configuring the Layer 2 Circuit Cell-Relay Cell Maximum Overview | 86
cell-bundle-timeout

Syntax

cell-bundle-timeout microseconds;

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options],
[edit interfaces at-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ interfaces using ATM Layer 2 circuit cell-relay transport mode only, configure the period for which the ATM cells are aggregated and bundled before they are transmitted in a single frame on a pseudowire connection. When the router detects that the allotted time interval has expired, the router forwards the MPLS packet even if it contains fewer than the specified maximum number of aggregated cells per packet.

Options

 microseconds—Number of microseconds for which the ATM cells are accumulated in a single packet before they are transmitted over a pseudowire.

Default: 125 microseconds

Range: 1 through 125 microseconds

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring the Timeout for Bundling of Layer 2 Circuit Cell-Relay Cells | 91 |
down-count

Syntax

down-count cells;

Hierarchy Level

[edit interfaces interface-name atm-options vpi vpi-identifier oam-liveness],  
[edit interfaces interface-name unit logical-unit-number oam-liveness],  
[edit interfaces interface-name unit logical-unit-number family family address address multipoint-destination address oam-liveness],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number oam-liveness],  
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family address address multipoint-destination address oam-liveness]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM encapsulation only, configure Operation, Administration, and Maintenance (OAM) F5 loopback cell count thresholds. This feature is not supported on ATM-over-SHDSL interfaces.

For ATM2 IQ PICs only, configure OAM F4 loopback cell count thresholds at the [edit interfaces interface-name atm-options vpi vpi-identifier] hierarchy level.

Options

- **cells**—Minimum number of consecutive OAM F4 or F5 loopback cells lost before a VC is declared down.

  Range: 1 through 255

  Default: 5 cells

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring the ATM OAM F5 Loopback Cell Threshold | 99
### dsl-options

**Syntax**

```text
dsl-options {
 loopback local;
 operating-mode mode;
}
```

**Hierarchy Level**

[edit interfaces at-fpc/pic/port]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For J Series Services Routers only, modify the properties of the digital subscriber line for an ATM interface.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- ATM-over-ADSL Overview | 187
- Junos OS Interfaces and Routing Configuration Guide
**e3-options**

**Syntax**

```
e3-options {
 atm-encapsulation (direct | plcp);
 bert-algorithm algorithm;
 bert-error-rate rate;
 bert-period seconds;
 buildout feet;
 compatibility-mode (digital-link | kentrox | larscom) <subrate value>;
 fcs (16 | 32);
 framing (g.751 | g.832);
 idle-cycle-flag value;
 invert-data;
 loopback (local | remote);
 (payload-scrambler | no-payload-scrambler);
 start-end-flag value;
 (unframed | no-unframed);
}
```

**Hierarchy Level**

```
[edit interfaces interface-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure E3-specific physical interface properties.

For ATM1 interfaces, you can configure a subset of E3 options statements.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- E3 Interfaces Overview
- T3 Interfaces Overview
atm-options | 305
encapsulation (Logical Interface)

Syntax


Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],
[edit interfaces rlqs number unit logical-unit-number]
[edit protocols evpn]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers (ethernet.vlan-ccc, and vlan-tcc options only).
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro Routers. Only the atm-ccc-cell-relay and atm-ccc-vc-mux options are supported on ACX Series routers.
Statement introduced in Junos OS Release 17.3R1 for QFX10000 Series switches (ethernet-ccc and vlan-ccc options only).

Description

Configure a logical link-layer encapsulation type. Not all encapsulation types are supported on the switches. See the switch CLI.

Options

atm-ccc-cell-relay—Use ATM cell-relay encapsulation.

atm-ccc-vc-mux—Use ATM virtual circuit (VC) multiplex encapsulation on CCC circuits. When you use this encapsulation type, you can configure the ccc family only.

atm-cisco-nlpid—Use Cisco ATM network layer protocol identifier (NLPID) encapsulation. When you use this encapsulation type, you can configure the inet family only.

atm-mlppp-llc—For ATM2 IQ interfaces only, use Multilink Point-to-Point (MLPPP) over AAL5 LLC. For this encapsulation type, your router must be equipped with a Link Services or Voice Services PIC. MLPPP over ATM encapsulation is not supported on ATM2 IQ OC48 interfaces.
**atm-nlpid**—Use ATM NLPIID encapsulation. When you use this encapsulation type, you can configure the inet family only.

**atm-ppp-llc**—(ATM2 IQ interfaces and MX Series routers with MPC/MIC interfaces using the ATM MIC with SFP only) Use PPP over AAL5 LLC encapsulation.

**atm-ppp-vc-mux**—(ATM2 IQ interfaces and MX Series routers with MPC/MIC interfaces using the ATM MIC with SFP only) Use PPP over ATM AAL5 multiplex encapsulation.

**atm-snap**—(All interfaces including MX Series routers with MPC/MIC interfaces using the ATM MIC with SFP) Use ATM subnetwork attachment point (SNAP) encapsulation.

**atm-tcc-snap**—Use ATM SNAP encapsulation on translational cross-connect (TCC) circuits.

**atm-tcc-vc-mux**—Use ATM VC multiplex encapsulation on TCC circuits. When you use this encapsulation type, you can configure the tcc family only.

**atm-vc-mux**—(All interfaces including MX Series routers with MPC/MIC interfaces using the ATM MIC with SFP) Use ATM VC multiplex encapsulation. When you use this encapsulation type, you can configure the inet family only.

**ether-over-atm-llc**—(All IP interfaces including MX Series routers with MPC/MIC interfaces using the ATM MIC with SFP) For interfaces that carry IP traffic, use Ethernet over ATM LLC encapsulation. When you use this encapsulation type, you cannot configure multipoint interfaces.

**ether-vpls-over-atm-llc**—For ATM2 IQ interfaces only, use the Ethernet virtual private LAN service (VPLS) over ATM LLC encapsulation to bridge Ethernet interfaces and ATM interfaces over a VPLS routing instance (as described in RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*). Packets from the ATM interfaces are converted to standard ENET2/802.3 encapsulated Ethernet frames with the frame check sequence (FCS) field removed.

**ether-vpls-over-fr**—For E1, T1, E3, T3, and SONET interfaces only, use the Ethernet virtual private LAN service (VPLS) over Frame Relay encapsulation to support Bridged Ethernet over Frame Relay encapsulated TDM interfaces for VPLS applications, per RFC 2427, *Multiprotocol Interconnect over Frame Relay*.

**NOTE:** The SONET/SDH OC3/STM1 (Multi-Rate) MIC with SFP, the Channelized SONET/SDH OC3/STM1 (Multi-Rate) MIC with SFP, and the DS3/E3 MIC do not support Ethernet over Frame Relay encapsulation.

**ether-vpls-over-ppp**—For E1, T1, E3, T3, and SONET interfaces only, use the Ethernet virtual private LAN service (VPLS) over Point-to-Point Protocol (PPP) encapsulation to support Bridged Ethernet over PPP-encapsulated TDM interfaces for VPLS applications.

**ethernet**—Use Ethernet II encapsulation (as described in RFC 894, *A Standard for the Transmission of IP Datagrams over Ethernet Networks*).
ethernet-ccc—Use Ethernet CCC encapsulation on Ethernet interfaces.

ethernet-vpls—Use Ethernet VPLS encapsulation on Ethernet interfaces that have VPLS enabled and that must accept packets carrying standard Tag Protocol ID (TPID) values.

NOTE: The built-in Gigabit Ethernet PIC on an M7i router does not support extended VLAN VPLS encapsulation.

ethernet-vpls-fr—Use in a VPLS setup when a CE device is connected to a PE router over a time-division multiplexing (TDM) link. This encapsulation type enables the PE router to terminate the outer layer 2 Frame Relay connection, use the 802.1p bits inside the inner Ethernet header to classify the packets, look at the MAC address from the Ethernet header, and use the MAC address to forward the packet into a given VPLS instance.

frame-relay-ccc—Use Frame Relay encapsulation on CCC circuits. When you use this encapsulation type, you can configure the ccc family only.

frame-relay-ether-type—Use Frame Relay ether type encapsulation for compatibility with Cisco Frame Relay. The physical interface must be configured with flexible-frame-relay encapsulation.

frame-relay-ether-type-tcc—Use Frame Relay ether type TCC for Cisco-compatible Frame Relay on TCC circuits to connect different media. The physical interface must be configured with flexible-frame-relay encapsulation.

frame-relay-ppp—Use PPP over Frame Relay circuits. When you use this encapsulation type, you can configure the ppp family only.

frame-relay-tcc—Use Frame Relay encapsulation on TCC circuits for connecting different media. When you use this encapsulation type, you can configure the tcc family only.

gre-fragmentation—For adaptive services interfaces only, use GRE fragmentation encapsulation to enable fragmentation of IPv4 packets in GRE tunnels. This encapsulation clears the do not fragment (DF) bit in the packet header. If the packet’s size exceeds the tunnel’s maximum transmission unit (MTU) value, the packet is fragmented before encapsulation.

multilink-frame-relay-end-to-end—Use MLFR FRF.15 encapsulation. This encapsulation is used only on multilink, link services, and voice services interfaces and their constituent T1 or E1 interfaces, and is supported on LSQ and redundant LSQ interfaces.

multilink-ppp—Use MLPPP encapsulation. This encapsulation is used only on multilink, link services, and voice services interfaces and their constituent T1 or E1 interfaces.

ppp-over-ether—Use PPP over Ethernet encapsulation to configure an underlying Ethernet interface for a dynamic PPPoE logical interface on M120 and M320 routers with Intelligent Queuing 2 (IQ2) PICs, and on MX Series routers with MPCs.
**ppp-over-ether-over-atm-llc**—(MX Series routers with MPCs using the ATM MIC with SFP only) For underlying ATM interfaces, use PPP over Ethernet over ATM LLC encapsulation. When you use this encapsulation type, you cannot configure the interface address. Instead, configure the interface address on the PPP interface.

**vlan-bridge**—Use Ethernet VLAN bridge encapsulation on Ethernet interfaces that have IEEE 802.1Q tagging, flexible-ethernet-services, and bridging enabled and that must accept packets carrying TPID 0x8100 or a user-defined TPID.

**vlan-ccc**—Use Ethernet virtual LAN (VLAN) encapsulation on CCC circuits. When you use this encapsulation type, you can configure the ccc family only.

**vlan-vci-ccc**—Use ATM-to-Ethernet interworking encapsulation on CCC circuits. When you use this encapsulation type, you can configure the ccc family only.

**vlan-tcc**—Use Ethernet VLAN encapsulation on TCC circuits. When you use this encapsulation type, you can configure the tcc family only.

**vlan-vpls**—Use Ethernet VLAN encapsulation on VPLS circuits.

**vxlan**—Use VXLAN data plane encapsulation for EVPN.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

Configuring Layer 2 Switching Cross-Connects Using CCC
Configuring the Encapsulation for Layer 2 Switching TCCs
Configuring Interface Encapsulation on Logical Interfaces
Configuring the CCC Encapsulation for LSP Tunnel Cross-Connects
Circuit and Translational Cross-Connects Overview
Identifying the Access Concentrator
Configuring ATM Interface Encapsulation | 57
Configuring VLAN and Extended VLAN Encapsulation
Configuring ATM-to-Ethernet Interworking | 155
Configuring Interface Encapsulation on PTX Series Packet Transport Routers
Configuring CCC Encapsulation for Layer 2 VPNs
Configuring TCC Encapsulation for Layer 2 VPNs and Layer 2 Circuits
Configuring ATM for Subscriber Access
Understanding CoS on ATM IMA Pseudowire Interfaces Overview | 17
Configuring Policing on an ATM IMA Pseudowire | 114
encapsulation

List of Syntax

Syntax for Physical Interfaces: M Series, MX Series, QFX Series, T Series, PTX Series on page 326
Syntax for Physical Interfaces: SRX Series on page 326
Syntax for Logical Interfaces: SRX Series on page 326

Syntax for Physical Interfaces: M Series, MX Series, QFX Series, T Series, PTX Series

```
encapsulation (atm-ccc-cell-relay | atm-pvc | cisco-hdlc | cisco-hdlc-ccc | cisco-hdlc-tcc | ethernet-bridge | ethernet-ccc
 | ethernet-over-atm | ethernet-tcc | ethernet-vpls | ethernet-vpls-fr | ether-vpls-over-atm-llc | ethernet-vpls-ppp
 | extended-frame-relay-ccc | extended-frame-relay-ether-type-tcc | extended-frame-relay-tcc
 | extended-vlan-bridge | extended-vlan-ccc | extended-vlan-tcc | extended-vlan-vpls | flexible-ethernet-services
 | flexible-frame-relay | frame-relay | frame-relay-ccc | frame-relay-ether-type | frame-relay-ether-type-tcc
 | frame-relay-port-ccc | frame-relay-tcc | generic-services | multilink-frame-relay-uni-nni | ppp | ppp-ccc | ppp-tcc
 | vlan-ccc | vlan-vci-ccc | vlan-vpls);
```

Syntax for Physical Interfaces: SRX Series

```
encapsulation (ether-vpls-ppp | ethernet-bridge | ethernet-ccc | ethernet-tcc | ethernet-vpls
 | extended-frame-relay-ccc | extended-frame-relay-tcc | extended-vlan-bridge | extended-vlan-ccc
 | extended-vlan-tcc | extended-vlan-vpls | flexible-ethernet-services | frame-relay-port-ccc | vlan-ccc | vlan-vpls);
```

Syntax for Logical Interfaces: SRX Series

```
encapsulation (dix | ether-vpls-fr | frame-relay-ppp | ppp-over-ether | vlan-bridge | vlan-ccc | vlan-tcc | vlan-vpls);
```

Physical Interfaces: M Series, MX Series, QFX Series, T Series, PTX Series

```
[edit interfaces interface-name],
[edit interfaces ri sq number: number]
```

Logical Interfaces

```
[edit interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.5.
Statement introduced in Junos OS Release 11.1 for EX Series switches.
Statement introduced in Junos OS Release 12.1X48 for PTX Series Packet Transport Routers (flexible-ethernet-services, ethernet-ccc, and ethernet-tcc options only).

**Description**
For M Series, MX Series, QFX Series, T Series, PTX Series, specify the physical link-layer encapsulation type.

For SRX Series, specify logical link layer encapsulation.

**NOTE:** Not all encapsulation types are supported on the switches. See the switch CLI.

**Default**

```plaintext
ppp—Use serial PPP encapsulation.
```
Physical Interface Options and Logical Interface Options

[Warning: element unresolved in stylesheets: <title> (in <config-options> ). This is probably a new element that is not yet supported in the stylesheets.]

Physical Interface Options and Logical Interface Options

For physical interfaces:

NOTE: Frame Relay, ATM, PPP, SONET, and SATSOP options are not supported on EX Series switches.

- **atm-ccc-cell-relay**—Use ATM cell-relay encapsulation.
- **atm-pvc**—Defined in RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*. When you configure physical ATM interfaces with ATM PVC encapsulation, an RFC 2684-compliant ATM Adaptation Layer 5 (AAL5) tunnel is set up to route the ATM cells over a Multiprotocol Label Switching (MPLS) path that is typically established between two MPLS-capable routers using the Label Distribution Protocol (LDP).
- **cisco-hdlc**—Use Cisco-compatible High-Level Data Link Control (HDLC) framing. E1, E3, SONET/SDH, T1, and T3 interfaces can use Cisco HDLC encapsulation. Two related versions are supported:
  - CCC version (**cisco-hdlc-ccc**)—The logical interface does not require an encapsulation statement. When you use this encapsulation type, you can configure the **ccc** family only.
  - TCC version (**cisco-hdlc-tcc**)—Similar to CCC and has the same configuration restrictions, but used for circuits with different media on either side of the connection.
- **cisco-hdlc-ccc**—Use Cisco-compatible HDLC framing on CCC circuits.
- **cisco-hdlc-tcc**—Use Cisco-compatible HDLC framing on TCC circuits for connecting different media.
- **ethernet-bridge**—Use Ethernet bridge encapsulation on Ethernet interfaces that have bridging enabled and that must accept all packets.
- **ethernet-over-atm**—For interfaces that carry IPv4 traffic, use Ethernet over ATM encapsulation. When you use this encapsulation type, you cannot configure multipoint interfaces. As defined in RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*, this encapsulation type allows ATM interfaces to connect to devices that support only bridge protocol data units (BPDUs). Junos OS does not completely support bridging, but accepts BPU packets as a default gateway. If you use the router as an edge device, then the router acts as a default gateway. It accepts Ethernet LLC/SNAP frames with IP or ARP in the payload, and drops the rest. For packets destined to the Ethernet LAN, a route lookup is done using the destination IP address. If the route lookup yields a full address match, the packet is encapsulated with an LLC/SNAP and MAC header, and the packet is forwarded to the ATM interface.
- **ethernet-tcc**—For interfaces that carry IPv4 traffic, use Ethernet TCC encapsulation on interfaces that must accept packets carrying standard TPID values. For 8-port, 12-port, and 48-port Fast Ethernet PICs, TCC is not supported.
- **ethernet-vpls**—Use Ethernet VPLS encapsulation on Ethernet interfaces that have VPLS enabled and that must accept packets carrying standard TPID values. On M Series routers, except the M320 router, the 4-port Fast Ethernet TX PIC and the 1-port, 2-port, and 4-port, 4-slot Gigabit Ethernet PICs can use the Ethernet VPLS encapsulation type.

- **ethernet-vpls-fr**—Use in a VPLS setup when a CE device is connected to a PE device over a time division multiplexing (TDM) link. This encapsulation type enables the PE device to terminate the outer Layer 2 Frame Relay connection, use the 802.1p bits inside the inner Ethernet header to classify the packets, look at the MAC address from the Ethernet header, and use the MAC address to forward the packet into a given VPLS instance.

- **ethernet-vpls-ppp**—Use in a VPLS setup when a CE device is connected to a PE device over a time division multiplexing (TDM) link. This encapsulation type enables the PE device to terminate the outer Layer 2 PPP connection, use the 802.1p bits inside the inner Ethernet header to classify the packets, look at the MAC address from the Ethernet header, and use it to forward the packet into a given VPLS instance.

- **ether-vpls-over-atm-llc**—For ATM intelligent queuing (IQ) interfaces only, use the Ethernet virtual private LAN service (VPLS) over ATM LLC encapsulation to bridge Ethernet interfaces and ATM interfaces over a VPLS routing instance (as described in RFC 2684, *Multiprotocol Encapsulation over ATM Adaptation Layer 5*). Packets from the ATM interfaces are converted to standard ENET2/802.3 encapsulated Ethernet frames with the frame check sequence (FCS) field removed.

- **extended-frame-relay-ccc**—Use Frame Relay encapsulation on CCC circuits. This encapsulation type allows you to dedicate DLCIs 1 through 1022 to CCC. When you use this encapsulation type, you can configure the **CCC** family only.

- **extended-frame-relay-ether-type-tcc**—Use extended Frame Relay ether type TCC for Cisco-compatible Frame Relay for DLCIs 1 through 1022. This encapsulation type is used for circuits with different media on either side of the connection.

- **extended-frame-relay-tcc**—Use Frame Relay encapsulation on TCC circuits to connect different media. This encapsulation type allows you to dedicate DLCIs 1 through 1022 to TCC.

- **extended-vlan-bridge**—Use extended VLAN bridge encapsulation on Ethernet interfaces that have IEEE 802.1Q VLAN tagging and bridging enabled and that must accept packets carrying TPID 0x8100 or a user-defined TPID.

- **extended-vlan-ccc**—Use extended VLAN encapsulation on CCC circuits with Gigabit Ethernet and 4-port Fast Ethernet interfaces that must accept packets carrying 802.1Q values. Extended VLAN CCC encapsulation supports TPIDs 0x8100, 0x9100, and 0x9901. When you use this encapsulation type, you can configure the **CCC** family only. For 8-port, 12-port, and 48-port Fast Ethernet PICs, extended VLAN CCC is not supported. For 4-port Gigabit Ethernet PICs, extended VLAN CCC is not supported.

- **extended-vlan-tcc**—For interfaces that carry IPv4 traffic, use extended VLAN encapsulation on TCC circuits with Gigabit Ethernet interfaces on which you want to use 802.1Q tagging. For 4-port Gigabit Ethernet PICs, extended VLAN TCC is not supported.
• **extended-vlan-vpls**—Use extended VLAN VPLS encapsulation on Ethernet interfaces that have VLAN 802.1Q tagging and VPLS enabled and that must accept packets carrying TPIDs 0x8100, 0x9100, and 0x9901. On M Series routers, except the M320 router, the 4-port Fast Ethernet TX PIC and the 1-port, 2-port, and 4-port, 4-slot Gigabit Ethernet PICs can use the Ethernet VPLS encapsulation type.

**NOTE:** The built-in Gigabit Ethernet PIC on an M7i router does not support extended VLAN VPLS encapsulation.

• **flexible-ethernet-services**—For Gigabit Ethernet IQ interfaces and Gigabit Ethernet PICs with small form-factor pluggable transceivers (SFPs) (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), and for Gigabit Ethernet interfaces, use flexible Ethernet services encapsulation when you want to configure multiple per-unit Ethernet encapsulations. Aggregated Ethernet bundles can use this encapsulation type. This encapsulation type allows you to configure any combination of route, TCC, CCC, Layer 2 virtual private networks (VPNs), and VPLS encapsulations on a single physical port. If you configure flexible Ethernet services encapsulation on the physical interface, VLAN IDs from 1 through 511 are no longer reserved for normal VLANs.

• **flexible-frame-relay**—For IQ interfaces only, use flexible Frame Relay encapsulation when you want to configure multiple per-unit Frame Relay encapsulations. This encapsulation type allows you to configure any combination of TCC, CCC, and standard Frame Relay encapsulations on a single physical port. Also, each logical interface can have any DLCI value from 1 through 1022.

• **frame-relay**—Use Frame Relay encapsulation is defined in RFC 1490, *Multiprotocol Interconnect over Frame Relay*. E1, E3, link services, SONET/SDH, T1, T3, and voice services interfaces can use Frame Relay encapsulation.

• **frame-relay-ccc**—Use Frame Relay encapsulation on CCC circuits. This encapsulation is same as standard Frame Relay for DLCIs 0 through 511. DLCIs 512 through 1022 are dedicated to CCC. The logical interface must also have **frame-relay-ccc** encapsulation. When you use this encapsulation type, you can configure the **ccc** family only.

• **frame-relay-ether-type**—Use Frame Relay ether type encapsulation for compatibility with the Cisco Frame Relay. IETF frame relay encapsulation identifies the payload format using NLPID and SNAP formats. Cisco-compatible Frame Relay encapsulation uses the Ethernet type to identify the type of payload.

**NOTE:** When the encapsulation type is set to Cisco-compatible Frame Relay encapsulation, ensure that the LMI type is set to ANSI or Q933-A.

• **frame-relay-ether-type-tcc**—Use Frame Relay ether type TCC for Cisco-compatible Frame Relay on TCC circuits to connect different media. This encapsulation is Cisco-compatible Frame Relay for DLCIs 0 through 511. DLCIs 512 through 1022 are dedicated to TCC.
- **frame-relay-port-ccc**—Use Frame Relay port CCC encapsulation to transparently carry all the DLCIs between two customer edge (CE) routers without explicitly configuring each DLCI on the two provider edge (PE) routers with Frame Relay transport. The connection between the two CE routers can be either user-to-network interface (UNI) or network-to-network interface (NNI); this is completely transparent to the PE routers. When you use this encapsulation type, you can configure the **ccc** family only.

- **frame-relay-tcc**—This encapsulation is similar to Frame Relay CCC and has the same configuration restrictions, but used for circuits with different media on either side of the connection.

- **generic-services**—Use generic services encapsulation for services with a hierarchical scheduler.

- **multilink-frame-relay-uni-nni**—Use MLFR UNI NNI encapsulation. This encapsulation is used on link services, voice services interfaces functioning as FRF.16 bundles, and their constituent T1 or E1 interfaces, and is supported on LSQ and redundant LSQ interfaces.

- **ppp**—Use serial PPP encapsulation. This encapsulation is defined in RFC 1661, *The Point-to-Point Protocol (PPP) for the Transmission of Multiprotocol Datagrams over Point-to-Point Links*. PPP is the default encapsulation type for physical interfaces. E1, E3, SONET/SDH, T1, and T3 interfaces can use PPP encapsulation.

- **ppp-ccc**—Use serial PPP encapsulation on CCC circuits. When you use this encapsulation type, you can configure the **ccc** family only.

- **ppp-tcc**—Use serial PPP encapsulation on TCC circuits for connecting different media. When you use this encapsulation type, you can configure the **tcc** family only.

- **vlan-ccc**—Use Ethernet VLAN encapsulation on CCC circuits. VLAN CCC encapsulation supports TPID 0x8100 only. When you use this encapsulation type, you can configure the **ccc** family only.

- **vlan-vci-ccc**—Use ATM-to-Ethernet interworking encapsulation on CCC circuits. When you use this encapsulation type, you can configure the **ccc** family only. All logical interfaces configured on the Ethernet interface must also have the encapsulation type set to **vlan-vci-ccc**.

- **vlan-vpls**—Use VLAN VPLS encapsulation on Ethernet interfaces with VLAN tagging and VPLS enabled. Interfaces with VLAN VPLS encapsulation accept packets carrying standard TPID values only. On M Series routers, except the M320 router, the 4-port Fast Ethernet TX PIC and the 1-port, 2-port, and 4-port, 4-slot Gigabit Ethernet PICs can use the Ethernet VPLS encapsulation type.

**NOTE:**
- Label-switched interfaces (LSIs) do not support VLAN VPLS encapsulation. Therefore, you can only use VLAN VPLS encapsulation on a PE-router-to-CE-router interface and not a core-facing interface.

- Starting with Junos OS release 13.3, a commit error occurs when you configure **vlan-vpls** encapsulation on a physical interface and configure **family inet** on one of the logical units. Previously, it was possible to commit this invalid configuration.
For logical interfaces:

- **frame-relay**—Configure a Frame Relay encapsulation when the physical interface has multiple logical units, and the units are either point to point or multipoint.

- **multilink-frame-relay-uni-nni**—Link services interfaces functioning as FRF.16 bundles can use Multilink Frame Relay UNI NNI encapsulation.

- **ppp**—For normal mode (when the device is using only one ISDN B-channel per call). Point-to-Point Protocol is for communication between two computers using a serial interface.

- **ppp-over-ether**—This encapsulation is used for underlying interfaces of pp0 interfaces.

**Required Privilege Level**

**interface**—To view this statement in the configuration.

**interface-control**—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Understanding Physical Encapsulation on an Interface
- Configuring Interface Encapsulation on Physical Interfaces
- Configuring CCC Encapsulation for Layer 2 VPNs
- Configuring Layer 2 Switching Cross-Connects Using CCC
- Configuring TCC Encapsulation for Layer 2 VPNs and Layer 2 Circuits
- Configuring ATM Interface Encapsulation
- Configuring ATM-to-Ethernet Interworking
- Configuring VLAN and Extended VLAN Encapsulation
- Configuring Layer 2 Wholesale VLAN Interfaces
- Configuring Interfaces for Layer 2 Circuits
- Configuring Interface Encapsulation on PTX Series Packet Transport Routers
- Configuring MPLS LSP Tunnel Cross-Connects Using CCC
- Configuring TCC
- Configuring VPLS Interface Encapsulation
- Configuring Interfaces for VPLS Routing
- Defining the Encapsulation for Switching Cross-Connects
- Configuring an MPLS-Based Layer 2 VPN (CLI Procedure)
epd-threshold (Logical Interface)

Syntax

epd-threshold cells plp1 cells;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit interfaces interface-name unit logical-unit-number address address family family multipoint-destination address],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number address address family family multipoint-destination address]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description
For ATM2 IQ interfaces only, define the early packet discard (EPD) threshold on a VC. The EPD threshold is a limit on the number of transmit packets that can be queued. Packets that exceed the limit are discarded. For interfaces configured in trunk mode, you can also configure dual EPD thresholds depending on the packet loss priorities (PLPs).

Default
Approximately 1 percent of the available cell buffers. If shaping is enabled, the default EPD threshold is proportional to the shaping rate according to the following formula:

\[
\text{default epd-threshold} = \text{number of buffers} \times \text{shaping rate} / \text{line rate}
\]

The minimum EPD threshold value is 48 cells. If the default EPD threshold formula results in an EPD threshold of less than 48 cells, the result will be ignored, and the minimum value of 48 cells will be used.

Options

cells—Maximum number of cells.

Range: For 1-port and 2-port OC12 interfaces, 48 through 425,984 cells

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
RELATED DOCUMENTATION

- Configuring the ATM2 IQ EPD Threshold | 152
- Configuring Two EPD Thresholds per Queue | 154
epd-threshold (Physical Interface)

Syntax

```
epd-threshold cells plp1 cells;
```

Hierarchy Level

```
[edit interfaces at-fpc/pic/port atm-options scheduler-maps map-name forwarding-class class-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, define the EPD threshold on a VC. The EPD threshold is a limit on the number of transmit packets that can be queued. Packets that exceed the limit are discarded.

Default

If you do not include either the `epd-threshold` or the `linear-red-profile` statement in the forwarding class configuration, the Junos OS uses an EPD threshold based on the available bandwidth and other parameters.

Options

```
cells—Maximum number of cells.
```

Range: For 1-port and 2-port OC12 interfaces, 48 through 425,984 cells. For 1-port OC48 interfaces, 48 through 425,984 cells. For 2-port OC3, DS3, and E3 interfaces, 48 through 212,992 cells. For 4-port DS3 and E3 interfaces, 48 through 106,496 cells.

The `plp1` statement is explained separately.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring an ATM Scheduler Map | 138
- linear-red-profile | 355
family

Syntax

family family {
    accounting {
        destination-class-usage;
        source-class-usage {
            (input | output | input output);
        }
    }
    access-concentrator name;
    address address {
        ... the address subhierarchy appears after the main [edit interfaces interface-name unit logical-unit-number family family-name] hierarchy ...
    }
    bundle interface-name;
    core-facing;
    demux-destination {
        destination-prefix;
    }
    demux-source {
        source-prefix;
    }
    direct-connect;
    duplicate-protection;
    dynamic-profile profile-name;
    filter {
        group filter-group-number;
        input filter-name;
        input-list [filter-names];
        output filter-name;
        output-list [filter-names];
    }
    interface-mode (access | trunk);
    ipsec-sa sa-name;
    keep-address-and-control;
    mac-validate (loose | strict);
    max-sessions number;
    max-sessions-vsa-ignore;
    mtu bytes;
    multicast-only;
    nd6-stale-time seconds;
    negotiate-address;
    no-neighbor-learn;
no-redirects;
policer {
    arp policer-template-name;
    input policer-template-name;
    output policer-template-name;
}
primary;
protocols [inet iso mpls];
proxy inet-address address;
receive-options-packets;
receive-ttl-exceeded;
remote (inet-address address | mac-address address);
rpf-check {
    fail-filter filter-name
    mode loose;
}
sampling {
    input;
    output;
}
service {
    input {
        post-service-filter filter-name;
        service-set service-set-name <service-filter filter-name>;
    }
    output {
        service-set service-set-name <service-filter filter-name>;
    }
}
service-name-table table-name;
short-cycle-protection <lockout-time-min minimum-seconds lockout-time-max maximum-seconds> <filter [aci]>;
(translate-discard-eligible | no-translate-discard-eligible);
(translate-fecn-and-becn | no-translate-fecn-and-becn);
translate-plp-control-word-de;
unnumbered-address interface-name destination address destination-profile profile-name;
vlan-id number;
vlan-id-list [number number-number];
address address {
  arp ip-address (mac | multicast-mac) mac-address <publish>;
  broadcast address;
  destination address;
  destination-profile name;
  eui-64;
  master-only;
  multipoint-destination address dlci dlci-identifier;
  multipoint-destination address {
    epd-threshold cells;
    inverse-arp;
    oam-liveness {
      up-count cells;
      down-count cells;
    }
    oam-period (disable | seconds);
    shaping {
      (cbr rate | rtvbr burst length peak rate sustained rate | vbr burst length peak rate sustained rate);
      queue-length number;
    }
    vci vpi-identifier.vci-identifier;
  }
  preferred;
  primary;
  vrrp-group group-id {
    (accept-data | no-accept-data);
    advertise-interval seconds;
    authentication-key key;
    authentication-type authentication;
    fast-interval milliseconds;
    (preempt | no-preempt) {
      hold-time seconds;
    }
    priority number;
    track {
      interface interface-name {
        bandwidth-threshold bits-per-second priority-cost priority;
        priority-cost priority;
      }
      priority-hold-time seconds;
      route prefix routing-instance instance-name priority-cost priority;
    }
  }
  virtual-address [ addresses ];
virtual-link-local-address ipv6-address;
}
}

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.
Option max-sessions-vsa-ignore introduced in Junos OS Release 11.4.

Description
Configure protocol family information for the logical interface.

NOTE: Not all subordinate statements are available to every protocol family.
Options

family—Protocol family:

- any—Protocol-independent family used for Layer 2 packet filtering

  NOTE: This option is not supported on T4000 Type 5 FPCs.

- bridge—(M Series and T Series routers only) Configure only when the physical interface is configured with ethernet-bridge type encapsulation or when the logical interface is configured with vlan-bridge type encapsulation. You can optionally configure this protocol family for the logical interface on which you configure VPLS.

- ethernet-switching—(M Series and T Series routers only) Configure only when the physical interface is configured with ethernet-bridge type encapsulation or when the logical interface is configured with vlan-bridge type encapsulation.

- ccc—Circuit cross-connect protocol suite. You can configure this protocol family for the logical interface of CCC physical interfaces. When you use this encapsulation type, you can configure the ccc family only.

- inet—Internet Protocol version 4 suite. You must configure this protocol family for the logical interface to support IP protocol traffic, including Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), Internet Control Message Protocol (ICMP), and Internet Protocol Control Protocol (IPCP).


- iso—International Organization for Standardization Open Systems Interconnection (ISO OSI) protocol suite. You must configure this protocol family for the logical interface to support IS-IS traffic.

- mlfr-end-to-end—Multilink Frame Relay FRF.15. You must configure this protocol or multilink Point-to-Point Protocol (MLPPP) for the logical interface to support multilink bundling.

- mlfr-uni-nni—Multilink Frame Relay FRF.16. You must configure this protocol or mlfr-end-to-end for the logical interface to support link services and voice services bundling.

- multilink-ppp—Multilink Point-to-Point Protocol. You must configure this protocol (or mlfr-end-to-end) for the logical interface to support multilink bundling.

- mpls—Multiprotocol Label Switching (MPLS). You must configure this protocol family for the logical interface to participate in an MPLS path.

- pppoe—Point-to-Point Protocol over Ethernet

- tcc—Translational cross-connect protocol suite. You can configure this protocol family for the logical interface of TCC physical interfaces.
• **tnp**—Trivial Network Protocol. This protocol is used to communicate between the Routing Engine and the router's packet forwarding components. The Junos OS automatically configures this protocol family on the router's internal interfaces only, as discussed in *Understanding Internal Ethernet Interfaces*.

• **vpls**—(M Series and T Series routers only) Virtual private LAN service. You can optionally configure this protocol family for the logical interface on which you configure VPLS. VPLS provides an Ethernet-based point-to-multipoint Layer 2 VPN to connect customer edge (CE) routers across an MPLS backbone. When you configure a VPLS encapsulation type, the `family vpls` statement is assumed by default.

MX Series routers support dynamic profiles for VPLS pseudowires, VLAN identifier translation, and automatic bridge domain configuration.

For more information about VPLS, see the *Junos OS VPNs Library for Routing Devices*.

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Configuring the Protocol Family*
fast-aps-switch

Syntax

fast-aps-switch;

Hierarchy Level

[edit interfaces interface-name sonet-optionsaps]

Release Information

Statement introduced in Junos OS Release 12.1.

Description

(M320 routers with Channelized OC3/STM1 Circuit Emulation PIC with SFP only, EX Series switches, and MX series routers with Channelized OC3/STM1 Circuit Emulation PIC with SFP only using container interfaces) Reduce the Automatic Protection Switching (APS) switchover time in Layer 2 circuits.

NOTE:

• The fast APS switching feature is supported only within a single chassis on a MX series router using a container interface.

• Configuring this statement reduces the APS switchover time only when the Layer 2 circuit encapsulation type for the interface receiving traffic from a Layer 2 circuit neighbor is SAToP.

• When the fast-aps-switch statement is configured in revertive APS mode, you must configure an appropriate value for revert time to achieve reduction in APS switchover time.

• To prevent the logical interfaces in the data path from being shut down, configure appropriate hold-time values on all the interfaces in the data path that support TDM.

• The fast-aps-switch statement cannot be configured when the APS annex-b option is configured.

• The interfaces that have the fast-aps-switch statement configured cannot be used in virtual private LAN service (VPLS) environments.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.
force

Syntax

force (protect | working);

Hierarchy Level

[edit interfaces interface-name sonet-options aps]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Perform a forced switch between the protect and working circuits. This statement is honored only if there are no higher-priority reasons to switch. It can be overridden by a signal failure on the protect circuit, thus causing a switch to the working circuit.

Options

protect—Request the circuit to become the protect circuit.

working—Request the circuit to become the working circuit.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Switching Between the Working and Protect Circuits

request | 385
forwarding-class (ATM2 IQ Scheduler Maps)

Syntax

```plaintext
forwarding-class class-name {
epd-threshold cells plp1 cells;
linear-red-profile profile-name;
priority (high | low);
transmit-weight (cells number | percent number);
}
```

Hierarchy Level

```
[edit interfaces at-fpc/pic/port atm-options scheduler-maps map-name]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ interfaces only, define forwarding class name and option values.

Options
class-name—Name of forwarding class.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- ATM2 IQ VC Tunnel CoS Components Overview | 135
- Applying Scheduler Maps to ATM Interfaces
framing (E1, E3, and T1 Interfaces)

Syntax

framing (g704 | g704-no-crc4 | g.751 | g.832 | unframed | sf | esf);

Hierarchy Level

[edit interfaces ce1-fpc/pic/port],
[edit interfaces ct1-fpc/pic/port],
[edit interfaces at-fpc/pic/port e3-options],
[edit interfaces e1-fpc/pic/port e1-options],
[edit interfaces t1-fpc/pic/port t1-options]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro Routers.

Description
Configure the framing format.

**NOTE:** When configuring CE1 or CT1 interfaces on 10-port Channelized E1/T1 IQE PICs, the framing statement must be included at the [edit interfaces ce1-fpc/pic/port] or [edit interfaces ct1-fpc/pic/port] hierarchy level as appropriate.

Default
esf for T1 interfaces; g704 for E1 interfaces. There is no default value for E3 over ATM interfaces.

Options

esf—Extended superframe (ESF) mode for T1 interfaces.

g704—G.704 framing format for E1 interfaces.

g704-no-crc4—G.704 framing with no cyclic redundancy check 4 (CRC4) for E1 interfaces.

g.751—G.751 framing format for E3 over ATM interfaces.

g.832—G.832 framing format for E3 over ATM interfaces.

sf—Superframe (SF) mode for T1 interfaces.

unframed—Unframed mode for E1 interfaces.
**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring E1 Framing
- Configuring E3 and T3 Parameters on ATM Interfaces  |  55
- Configuring T1 Framing
**high-plp-max-threshold**

**Syntax**

```
high-plp-max-threshold percent;
```

**Hierarchy Level**

```
[edit interfaces at-fpc/pic/port atm-options linear-red-profiles profile-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For ATM2 IQ interfaces only, define the drop profile fill-level for the high PLP CoS VC. When the fill level exceeds the defined percentage, all packets are dropped.

**Options**

`percent`—Fill-level percentage when linear random early discard (RED) is applied to cells with PLP.

**Required Privilege Level**

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- ATM2 IQ VC Tunnel CoS Components Overview | 135
- low-plp-max-threshold | 360
- low-plp-threshold | 361
- queue-depth | 381
high-plp-threshold

Syntax

```
high-plp-threshold percent;
```

Hierarchy Level

```
[edit interfaces at-fpc/pic/port atm-options linear-red-profiles profile-name]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, define CoS VC drop profile fill-level percentage when linear RED is applied to cells with high PLP. When the fill level exceeds the defined percentage, packets with high PLP are randomly dropped by RED. This statement is mandatory.

Options

- **percent**—Fill-level percentage when linear RED is applied to cells with PLP.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- ATM2 IQ VC Tunnel CoS Components Overview | 135
- high-plp-max-threshold | 347
- low-plp-max-threshold | 360
- low-plp-threshold | 361
- queue-depth | 381
**hold-time (APS)**

**Syntax**

```plaintext
hold-time milliseconds;
```

**Hierarchy Level**

```plaintext
[edit interfaces interface-name sonet-options aps]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
Hold-time value to use to determine whether a neighbor APS router is operational.

**Options**

- `milliseconds`—Hold-time value.

**Range:** 1 through 65,534 milliseconds  
**Default:** 3000 milliseconds (3 times the advertisement interval)

**Required Privilege Level**
interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

*Configuring APS Timers*

- advertise-interval | 300
hold-time (SONET/SDH Defect Triggers)

Syntax

```
hold-time up milliseconds down milliseconds;
```

Hierarchy Level

```
[edit interfaces interface-name sonet-options trigger defect]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM over SONET/SDH and SONET/SDH interfaces only, apply up and down hold times to SONET/SDH defect triggers. When you apply a down hold time to a defect, the defect must remain present for at least the hold-time period before the interface is marked down. When you apply an up hold time to a defect, the defect must remain absent for at least the hold-time period before the interface is marked up, assuming no other defect is outstanding.

**NOTE:**

- When up or down hold times are applied to SONET defect triggers of a 10-Gigabit Ethernet WAN-PHY interface, only the defects generated in the WAN Interface Sublayer (WIS) are damped. Therefore, if the hold times are applied to SONET defect triggers only, a 10-Gigabit Ethernet WAN-PHY interface might be marked up or down because of the faults that are generated in other layers, such as the Physical Coding Sublayer (PCS) or Physical Medium Attachment Sublayer (PMA), 10 Gigabit Media Independent Interface (XGMII) Extender Sublayer (XGXS), and Media Access Control (MAC). To damp the interface up or down events of a 10-Gigabit Ethernet WAN-PHY interface, you need to apply up or down hold-times for the interface at the [edit interfaces interface-name] hierarchy level.

- On M Series and T Series platforms with Channelized SONET IQ PICs and Channelized SONET IQE PICs, the SONET defect alarm trigger `hold-time` statement is not supported.

Default

If you do not include this statement, when a defect is detected the interface is marked down immediately, and when the defect becomes absent the interface is marked up immediately.

Options

- `down milliseconds`—Hold time to wait before the interface is marked down.
Range: 1 through 65,534 milliseconds
Default: No hold time

up milliseconds—Hold time to wait before the interface is marked up.

Range: 1 through 65,534 milliseconds
Default: No hold time

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring SONET/SDH Defect Triggers
hold-time (Physical Interface)
ilmi

Syntax

.ilmi;

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Enable the router to communicate with directly attached ATM switches and routers. The router uses the VC 0.16 to communicate with the ATM switch or router. Once configured, you can display the IP address and port number of an ATM switch or router using the `show interfaces interface-name switch-id` command.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Communication with Directly Attached ATM Switches and Routers | 53

show ilmi | 437

show ilmi statistics | 439
inverse-arp

Syntax

inverse-arp;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit interfaces interface-name unit logical-unit-number family inet address address multipoint-destination destination],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address multipoint-destination destination]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description
For ATM encapsulation, enable responses to receive inverse ATM ARP requests. For Frame Relay encapsulation, enable responses to receive inverse Frame Relay ARP requests.

Default
Inverse ARP is disabled on all ATM and Frame Relay interfaces.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Inverse ATM1 or ATM2 ARP | 135
Configuring Inverse Frame Relay ARP
inner-vlan-id-range

Syntax

inner-vlan-id-range start start-id end end-id;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],

Release Information

Statement introduced in Junos OS Release 9.0.

Description

The range of VLAN IDs to be used in the ATM-to-Ethernet interworking cross-connect. Specify the starting VLAN ID and ending VLAN ID.

Options

start-id—The lowest VLAN ID to be used.

dend-id—The highest VLAN ID to be used.

Range: 32 through 4094

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring ATM-to-Ethernet Interworking | 155
linear-red-profile

Syntax

    linear-red-profile profile-name;

Hierarchy Level

    [edit interfaces at-fpc/pic/port atm-options scheduler-maps map-name forwarding-class class-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, assign a linear RED profile to a specified forwarding class. To define the linear RED profiles, include the `linear-red-profiles` statement at the [edit interfaces at-fpc/pic/port atm-options] hierarchy level.

Default

If you do not include either the `epd-threshold` or the `linear-red-profile` statement in the forwarding class configuration, the Junos OS uses an EPD threshold based on the available bandwidth and other parameters.

Options

`profile-name`—Name of the linear RED profile.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Configuring an ATM Scheduler Map</th>
<th>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear-red-profiles</td>
<td>356</td>
</tr>
<tr>
<td>Applying Scheduler Maps to ATM Interfaces</td>
<td></td>
</tr>
<tr>
<td>epd-threshold</td>
<td></td>
</tr>
</tbody>
</table>
linear-red-profiles

Syntax

```
linear-red-profiles profile-name {
 high-plp-threshold percent;
 low-plp-threshold percent;
 queue-depth cells;
}
```

Hierarchy Level

```
[edit interfaces at-fpc/pic/port atm-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, define CoS virtual circuit drop profiles for RED. When a packet arrives, RED checks the queue fill level. If the fill level corresponds to a nonzero drop probability, the RED algorithm determines whether to drop the arriving packet.

Options

`profile-name`—Name of the drop profile.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

ATM2 IQ VC Tunnel CoS Components Overview  |  135
Configuring Linear RED Profiles on ATM Interfaces
lockout

Syntax

lockout;

Hierarchy Level

[edit interfaces interface-name sonet-options aps]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure a lockout of protection, forcing the use of the working circuit and locking out the protect circuit regardless of anything else.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Switching Between the Working and Protect Circuits
loopback (ADSL, DS0, E1/E3, SONET/SDH, SHDSL, and T1/T3)

Syntax

```
loopback (local | payload | remote);
```

Hierarchy Level

```
[edit interfaces ce1-fpc/pic/port],
[edit interfaces ct1-fpc/pic/port],
[edit interfaces t1-fpc/pic/port],
[edit interfaces interface-name ds0-options],
[edit interfaces interface-name dsl-options],
[edit interfaces interface-name e1-options],
[edit interfaces interface-name e3-options],
[edit interfaces interface-name shdsl-options],
[edit interfaces interface-name sonet-options],
[edit interfaces interface-name t1-options],
[edit interfaces interface-name t3-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro Routers.

Description

Configure a loopback connection. To turn off the loopback capability, remove the `loopback` statement from the configuration.

**NOTE:** When configuring CE1 or CT1 interfaces on 10-port Channelized E1/T1 IQE PICs, the `loopback` statement must be included with the `local` or `remote` option at the `[edit interfaces ce1-fpc/pic/port]` or `[edit interfaces ct1-fpc/pic/port]` hierarchy level as appropriate.

When configuring T1 interfaces on 10-port Channelized E1/T1 IQE PICs, the `loopback` statement must be included with the `payload` option at the `[edit interfaces t1-fpc/pic/port]` hierarchy level.

**NOTE:** When configuring CE1 or CT1 interfaces on the 16-port Channelized E1/T1 MIC (MIC-3D-16CHE1-T1-CE), you must include the `loopback` statement at the `[edit interfaces ce1-fpc/pic/port]` hierarchy level, or `[edit interfaces ct1-fpc/pic/port]`
To configure loopback on channelized IQ and IQE PICs, SONET/SDH level, use the `sonet-options loopback` statement `local` and `remote` options at the controller interface (coc48, cstm16, coc12, cstm4, coc3, cstm1). It is ignored for path-level interfaces `so-fpc/pic/port` or `so-fpc/pic/port:channel`.

Options

`local`—Loop packets, including both data and timing information, back on the local router’s PIC. NxDS0 IQ interfaces do not support local loopback.

`payload`—For channelized T3, T1, and NxDS0 IQ interfaces only, loop back data only (without clocking information) on the remote router’s PIC. With payload loopback, overhead is recalculated. Neither ATM-over-asymmetrical digital subscriber line (ADSL) interfaces nor ATM-over-SHDSL interfaces support payload loopback.

`remote`—Loop packets, including both data and timing information, back on the remote router’s interface card. NxDS0 IQ interfaces do not support remote loopback.

**Required Privilege Level**

*interface*—To view this statement in the configuration.

*interface-control*—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring E3 and T3 Parameters on ATM Interfaces | 55
- Configuring E1 Loopback Capability
- Configuring E3 Loopback Capability
- Configuring SONET/SDH Loopback Capability to Identify a Problem as Internal or External
- Configuring SHDSL Operating Mode on an ATM Physical Interface | 200
- Configuring T1 Loopback Capability
- Configuring T3 Loopback Capability
- feac-loop-respond
**low-plp-max-threshold**

**Syntax**

low-plp-max-threshold percent;

**Hierarchy Level**

[edit interfaces at-fpc/pic/port atm-options linear-red-profiles profile-name]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For ATM2 IQ interfaces only, define the drop profile fill-level for the low PLP CoS VC. When the fill level exceeds the defined percentage, all packets are dropped.

**Options**

*percent*—Fill-level percentage when linear RED is applied to cells with PLP.

**Required Privilege Level**

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- ATM2 IQ VC Tunnel CoS Components Overview | 135
- high-plp-max-threshold | 347
- low-plp-threshold | 361
- Configuring Linear RED Profiles on ATM Interfaces
- high-plp-max-threshold
- queue-depth | 381
low-plp-threshold

Syntax

low-plp-threshold percent;

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options linear-red-profiles profile-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, define the CoS VC drop profile fill-level percentage when linear RED is applied to cells with low PLP. When the fill level exceeds the defined percentage, packets with low PLP are randomly dropped by RED. This statement is mandatory.

Options

percent—Fill-level percentage when linear RED is applied to cells with low PLP.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

ATM2 IQ VC Tunnel CoS Components Overview	135
high-plp-max-threshold	347
high-plp-threshold	348
Configuring Linear RED Profiles on ATM Interfaces	
high-plp-max-threshold	
high-plp-threshold	
low-plp-max-threshold	360
queue-depth	381
**maximum-vcs**

**Syntax**

```
maximum-vcs maximum-vcs;
```

**Hierarchy Level**

```
[edit interfaces at-fpc/pic/port atm-options vpi vpi-identifier]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For ATM1 interfaces, configure the maximum number of virtual circuits (VCs) allowed on a virtual path (VP). When configuring ATM1 interfaces on the router, you must include this statement.

For a configured virtual path identifier (VPI), valid virtual channel identifier (VCI) numbers are from 0 through \( \text{maximum-vcs} \text{ value} – 1 \). VCI numbers 0 through 31 are reserved by the ATM Forum. It is recommended that you use a VCI number higher than 31 when connecting to an ATM switch.

**Options**

- `maximum-vcs`—Maximum number of VCs on the VP.

**Range:** 1 through 4090

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring the Maximum Number of ATM1 VCs on a VP | 52
- multipoint-destination | 365
- promiscuous-mode | 379
- vci | 417
mpls (Interfaces)

Syntax

```plaintext
gmpls {
 pop-all-labels {
 required-depth number;
 }
}
```

Hierarchy Level

```
[edit interfaces interface-name atm-options],
[edit interfaces interface-name sonet-options],
[edit interfaces interface-name fastether-options],
[edit interfaces interface-name gigether-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For passive monitoring on ATM and SONET/SDH interfaces and 10-Gigabit Ethernet interfaces in WAN PHY mode, process incoming IP packets that have MPLS labels.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Removing MPLS Labels from Incoming Packets | 182
- Enabling Packet Flow Monitoring on SONET/SDH Interfaces
- Junos OS Services Interfaces Library for Routing Devices
multicast-vci

Syntax

`multicast-vci vpi-identifier vci-identifier;`

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM encapsulation only, and for point-to-multipoint ATM logical interfaces only, enable the support of multicast on the interface. You can configure multicast support on the interface if the ATM switch performs multicast replication.

Options

- **vci-identifier**—ATM virtual circuit identifier.
  
  Range: 0 through 16,384

- **vpi-identifier**—ATM virtual path identifier.
  
  Range: 0 through 255

  Default: 0

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring a Multicast-Capable ATM1 or ATM2 IQ Connection	99
multipoint-destination	365
vci	417
**multipoint-destination**

Syntax

```plaintext
multipoint-destination address dlci dlci-identifier;
multipoint-destination address {
 epd-threshold cells;
 inverse-arp;
 oam-liveness {
 down-count cells;
 up-count cells;
 }
 oam-period (disable | seconds);
 shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
 }
 vci vpi-identifier.vci-identifier;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name unit logical-unit-number family family address address],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family address address]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For point-to-multipoint Frame Relay or ATM interfaces only, enable the support of multicast on the interface. You can configure multicast support on the interface if the Frame Relay or ATM switch performs multicast replication.

Options

- **address**—Address of the remote side of the point-to-multipoint connection.
- **dlci-identifier**—For Frame Relay interfaces, the data-link connection identifier.
  
  **Range:** 0 through 0xFFFFFFFF (24 bits)

- **vci-identifier**—For ATM interfaces, the virtual circuit identifier.
  
  **Range:** 0 through 16,384

- **vpi-identifier**—For ATM interfaces, the virtual path identifier.
Range: 0 through 255
Default: 0

The remaining statements are explained separately. See CLI Explorer.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring a Point-to-Point ATM1 or ATM2 IQ Connection | 133
- Configuring a Point-to-Multipoint Frame Relay Connection
  - dlci
  - encapsulation (Logical Interface) | 321
neighbor (Automatic Protection Switching for SONET/SDH)

Syntax

```plaintext
neighbor address;
```

Hierarchy Level

```plaintext
[edit interfaces interface-name sonet-options aps]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
If you are configuring one router to be the working router and a second to be the protect router, configure the address of the remote interface. You configure this on one or both of the interfaces.

The address you specify for the neighbor must never be routed through the interface on which APS is configured, or instability will result. We strongly recommend that you directly connect the working and protect routers and that you configure the interface address of this shared network as the neighbor address.

Options

- `address`—Neighbor’s address.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- [Configuring Basic Automatic Protect Switching](#)
oam-liveness

Syntax

```plaintext
oam-liveness {
 down-count cells;
 up-count cells;
}
```

Hierarchy Level

```plaintext
[edit interfaces interface-name atm-options vpi vpi-identifier],
[edit interfaces interface-name unit logical-unit-number],
[edit interfaces interface-name unit logical-unit-number family family address address multipoint-destination address],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family address address multipoint-destination address]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description

For ATM encapsulation only, configure Operation, Administration, and Maintenance (OAM) F5 loopback cell count thresholds. Not supported on ATM-over-SHDSL interfaces.

For ATM2 IQ PICs only, configure OAM F4 loopback cell count thresholds at the `[edit interfaces interface-name atm-options vpi vpi-identifier]` hierarchy level.

Options

`down-count cells`—Minimum number of consecutive OAM F4 or F5 loopback cells lost before a VC is declared down.

**Range:** 1 through 255

**Default:** 5 cells

`up-count cells`—Minimum number of consecutive OAM F4 or F5 loopback cells received before a VC is declared up.

**Range:** 1 through 255

**Default:** 5 cells

Required Privilege Level

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.
RELATED DOCUMENTATION

- Configuring the ATM OAM F5 Loopback Cell Threshold | 99
**oam-period**

**Syntax**

```plaintext
oam-period (disable | seconds);
```

**Hierarchy Level**

- `[edit interfaces interface-name atm-options vpi vpi-identifier]`
- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit interfaces interface-name unit logical-unit-number family family address address multipoint-destination address]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family address address multipoint-destination address]`

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

**Description**

For ATM encapsulation only, configure the OAM F5 loopback cell period. Not supported on ATM-over-SHDSL interfaces.

For ATM2 IQ PICs only, configure the OAM F4 loopback cell period at the `[edit interfaces interface-name atm-options vpi vpi-identifier]` hierarchy level.

**Default**

If you omit this statement, OAM F5 loopback cells are not initiated, but the interface still responds if it receives OAM F5 loopback cells.

**Options**

- `disable`—Disable the OAM loopback cell transmit feature.
- `seconds`—OAM loopback cell period.

**Range:** 1 through 900 seconds

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.
paired-group

Syntax

paired-group group-name;

Hierarchy Level

[edit interfaces interface-name sonet-options aps]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure load sharing between two working protect circuit pairs.

Options

group-name—Circuit’s group name, as configured with the protect-circuit or working-circuit statement.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring APS Load Sharing

working-circuit | 424
passive-monitor-mode

Syntax

```
passive-monitor-mode;
```

Hierarchy Level

```
[edit interfaces interface-name],
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Monitor packet flows from another router. If you include this statement in the configuration, the interface does not send keepalives or alarms, and does not participate actively on the network.

This statement is supported on ATM, Ethernet, and SONET/SDH interfaces. For more information, see *ATM Interfaces User Guide for Routing Devices*.

For ATM and Ethernet interfaces, you can include this statement on the physical interface only.

For SONET/SDH interfaces, you can include this statement on the logical interface only.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Enabling Passive Monitoring on ATM Interfaces | 181
- Passive Monitoring on Ethernet Interfaces Overview
- Enabling Packet Flow Monitoring on SONET/SDH Interfaces
- multiservice-options
- Junos OS Services Interfaces Library for Routing Devices
payload-scrambler

Syntax

(payload-scrambler | no-payload-scrambler);

Hierarchy Level

[edit interfaces interface-name e3-options],
[edit interfaces interface-name sonet-options],
[edit interfaces interface-name t3-options]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Enable or disable HDLC scrambling on an E3, a SONET/SDH, or a T3 interface. This type of scrambling provides better link stability. Both sides of a connection must either use or not use scrambling.

If you commit a T3 interface configuration that has HDLC payload scrambling enabled, the interface must also be configured to be compatible with the channel service unit (CSU) at the remote end of the line.

Disable payload scrambling on an E3 interface if Digital Link compatibility mode is used.

On a channelized OC12 interface, the sonet payload-scrambler statement is ignored. To configure scrambling on the DS3 channels on the interface, you can include the t3-options payload-scrambler statement in the configuration for each DS3 channel.

NOTE: The payload-scrambler statement at the [edit interfaces interface-name e3-options] hierarchy level is not valid for IQE PICs.

Default
Payload scrambling is disabled on all E3 and T3 interfaces; it is enabled by default on E3/T3 over ATM interfaces and on SONET/SDH interfaces.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION
**pic-type**

**Syntax**

```
pic-type (atm1 | atm2);
```

**Hierarchy Level**

```
[edit interfaces at-fpc/pic/port atm-options]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
For ATM interfaces, configure the type of ATM PIC installed in your router.

**Options**
- **atm1**—ATM1 PIC.
- **atm2**—ATM2 IQ PIC.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Configuring the ATM PIC Type | 44
plp1

Syntax

plp1 cells;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit interfaces interface-name unit logical-unit-number address address family family multipoint-destination address],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number address address family family multipoint-destination address]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for QFX Series switches.

Description
For ATM2 IQ interfaces only, define the EPD threshold on a VC. The EPD threshold is a limit on the number of transmit packets that can be queued. Packets that exceed the limit are discarded. This threshold applies to packets that have a PLP of 1.

Default
EPD threshold is unregulated.

Options
cells—Maximum number of cells.

Range: For 1-port and 2-port OC12 interfaces, 1 through 425,984 cells
For 1-port OC48 interfaces, 1 through 425,984 cells
For 2-port OC3, DS3, and E3 interfaces, 1 through 212,992 cells
For 4-port DS3 and E3 interfaces, 1 through 106,496 cells

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Two EPD Thresholds per Queue | 154
- Configuring an ATM Scheduler Map | 138
- linear-red-profile | 355
plp-to-clp

Syntax

plp-to-clp;

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options],
[edit interfaces at-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces at--fpc/pic/port unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ interfaces only, enable the PLP setting to be copied to the cell-loss priority (CLP) bit.

Default
If you omit this statement, the Junos OS does not copy the PLP setting to the CLP bit.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Enabling the PLP Setting to Be Copied to the CLP Bit | 147
- Copying the Packet Loss Priority to the CLP Bit on ATM Interfaces
pop-all-labels

Syntax

```plaintext
pop-all-labels {
 required-depth number;
}
```

Hierarchy Level

```
[edit interfaces interface-name atm-options mpls],
[edit interfaces interface-name sonet-options mpls],
[edit interfaces interface-name fastether-options mpls],
[edit interfaces interface-name gigether-options mpls]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Metro Routers.

Description

For passive monitoring on ATM, SONET/SDH, Fast Ethernet, and Gigabit Ethernet interfaces only, removes up to two MPLS labels from incoming IP packets. For passive monitoring on T Series devices, removes up to five MPLS labels from incoming IP packets.

This statement has no effect on IP packets with more than two MPLS labels, or IP packets with more than five MPLS labels on T Series devices. Packets with MPLS labels cannot be processed by the Monitoring Services PIC; if packets with MPLS labels are forwarded to the Monitoring Services PIC, they are discarded.

The remaining statement is explained separately. See CLI Explorer.

Default

If you omit this statement, the MPLS labels are not removed, and the packet is not processed by the Monitoring Services PIC.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Removing MPLS Labels from Incoming Packets | 182
- Enabling Packet Flow Monitoring on SONET/SDH Interfaces
priority (Schedulers)

Syntax

priority (high | low);

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options scheduler-maps map-name forwarding-class class-name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ interfaces only, assign queuing priority to a forwarding class.

Options
low—Forwarding class has low priority.

high—Forwarding class has high priority.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

ATM2 IQ VC Tunnel CoS Components Overview | 135
promiscuous-mode

Syntax

promiscuous-mode {
    vpi vpi-identifier;
}

Hierarchy Level

[edit interfaces interface-name atm-options]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro Routers.

Description
For ATM interfaces with atm-ccc-cell-relay encapsulation, map all incoming cells from either an interface port or a VP to a single label-switched path (LSP) without restricting the VCI number. Promiscuous mode allows you to map traffic from all 65,535 VCIs to a single LSP, or from all 256 VPIs to a single LSP.

NOTE: In ACX Series routers, the statement supports only Inverse Multiplexing for ATM (IMA).

Options

vpi-identifier—Open this VPI in promiscuous mode.

Range: 0 through 255

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring ATM Cell-Relay Promiscuous Mode | 47 |
| vpi (ATM CCC Cell-Relay Promiscuous Mode) | 421 |
**protect-circuit**

**Syntax**

```
protect-circuit group-name;
```

**Hierarchy Level**

```
[edit interfaces interface-name sonet-options aps]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure the protect router in an APS circuit pair. When the working interface fails, APS brings up the protection circuit and the traffic is moved to the protection circuit.

**Options**

- `group-name`—Circuit’s group name.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Configuring Basic Automatic Protect Switching*
  - working-circuit | 424
queue-depth

Syntax

queue-depth cells;

Hierarchy Level

[edit interfaces interface-name atm-options linear-red-profiles profile-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, define maximum queue depth in the CoS VC drop profile. Packets are always dropped beyond the defined maximum. This statement is mandatory; there is no default configuration.

Default

Buffer usage is unregulated.

Options

cells—Maximum number of cells the queue can contain.

Range: 1 through 64,000 cells

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| ATM2 IQ VC Tunnel CoS Components Overview | 135 |
| Configuring Linear RED Profiles on ATM Interfaces |
| high-plp-threshold | 348 |
| low-plp-threshold | 361 |
queue-length

Syntax

queue-length number;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number address address family family ]
[edit interfaces interface-name unit logical-unit-number shaping ],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number address address family family ]
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number shaping ]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description

For ATM1 interfaces only, define the maximum queue length in the traffic-shaping profile. For ATM1 PICs, each VC has its own independent shaping parameters.

Default
Buffer usage is unregulated.

Options

number—Maximum number of packets the queue can contain.

Range: 1 through 16,383 packets
Default: 16,383 packets

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring the ATM1 Queue Length | 132
receive-options-packets

Syntax

receive-options-packets;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number family inet],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For a Monitoring Services PIC and an ATM or SONET/SDH PIC installed in an M160, M40e, or T Series router, guarantee conformity with cflowd records structure. This statement is required when you enable passive monitoring.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Enabling Passive Monitoring on ATM Interfaces | 181
Enabling Packet Flow Monitoring on SONET/SDH Interfaces
**receive-ttl-exceeded**

**Syntax**

```
receive-ttl-exceeded;
```

**Hierarchy Level**

```
[edit interfaces interface-name unit logical-unit-number family inet],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For Monitoring Services PIC and an ATM or SONET/SDH PIC installed in an M160, M40e, or T Series router, guarantee conformity with cflowd records structure. This statement is required when you enable passive monitoring.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- Enabling Passive Monitoring on ATM Interfaces | 181
- Enabling Packet Flow Monitoring on SONET/SDH Interfaces
**request**

**Syntax**

```plaintext
request (protect | working);
```

**Hierarchy Level**

```
[edit interfaces interface-name sonet-options aps]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Perform a manual switch between the protect and working circuits. This statement is honored only if there are no higher-priority reasons to switch.

**Options**

- `protect`—Request that the circuit become the protect circuit.
- `working`—Request that the circuit become the working circuit.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Configuring Switching Between the Working and Protect Circuits*

force | 343
required-depth

Syntax

required-depth number;

Hierarchy Level

[edit interfaces interface-name atm-options mpls pop-all-labels],
[edit interfaces interface-name sonet-options mpls pop-all-labels],
[edit interfaces interface-name fastether-options mpls pop-all-labels],
[edit interfaces interface-name gigether-options mpls pop-all-labels]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Metro Routers.

Description
For passive monitoring on ATM and SONET/SDH interfaces only, specify the number of MPLS labels an incoming packet must have for the pop-all-labels statement to take effect.

If you include the required-depth 1 statement, the pop-all-labels statement takes effect for incoming packets with one label only. If you include the required-depth 2 statement, the pop-all-labels statement takes effect for incoming packets with two labels only.

Options

number—Number of MPLS labels on incoming IP packets.

Range: 1 or 2 labels

Default: If you omit this statement, the pop-all-labels statement takes effect for incoming packets with one or two labels. The default is equivalent to including the required-depth [1 2] statement.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Removing MPLS Labels from Incoming Packets  |  182

Enabling Packet Flow Monitoring on SONET/SDH Interfaces

Junos OS Services Interfaces Library for Routing Devices
**revert-time** (Interfaces)

**Syntax**

```
revert-time seconds;
```

**Hierarchy Level**

```
[edit interfaces interface-name sonet-options aps]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure APS revertive mode.

**Default**

APS operates in nonrevertive mode.

**Options**

- **seconds**—Amount of time to wait after the working circuit has again become functional before making the working circuit active again.

  **Range:** 1 through 65,535 seconds

  **Default:** None (APS operates in nonrevertive mode)

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**RELATED DOCUMENTATION**

- *Configuring Revertive Mode*
rfc-2615

Syntax

rfc-2615;

Hierarchy Level

[edit interfaces interface-name sonet-options]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Include this statement to enable features described in RFC 2615, PPP over SONET/SDH.

Default
Settings required by RFC 1619, PPP over SONET/SDH.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring PPP Support on SONET/SDH Interfaces
rtvbr

Syntax

rtvbr peak rate sustained rate burst length;

Hierarchy Level

[edit interfaces interface-name atm-options vpi vpi-identifier shaping ],
[edit interfaces interface-name unit logical-unit-number address address family family
multipoint-destination address shaping ],
[edit interfaces interface-name unit logical-unit-number shaping ],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number shaping ],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number address address family
family multipoint-destination address shaping ]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ PICs only, define the real-time variable bandwidth utilization in the traffic-shaping profile.

When you configure the real-time bandwidth utilization, you must specify all three options (burst, peak, and sustained). You can specify the rate in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000). You can also specify the rate in cells per second by entering a decimal number followed by the abbreviation c; values expressed in cells per second are converted to bits per second using the formula 1 cps = 384 bps.

Default
If the rtvbr statement is not included, bandwidth utilization is unlimited.

Options
burst length—Burst length, in cells. If you set the length to 1, the peak traffic rate is used.

Range: 1 through 4000 cells

peak rate—Peak rate, in bits per second or cells per second.

Range: For ATM2 IQ OC3 and OC12 interfaces, 33 Kbps through 542,526,792 bps. For ATM2 IQ OC48 interfaces, 33 Kbps through 2,170,107,168 bps. For ATM2 IQ DS3 and E3 interfaces, 33 Kbps through the maximum rate, which depends on the ATM encapsulation and framing you configure.

sustained rate—Sustained rate, in bps or cps.
Range: For ATM2 IQ OC3 and OC12 interfaces, 33 Kbps through 542,526,792 bps. For ATM2 IQ OC48 interfaces, 33 Kbps through 2,170,107,168 bps. For ATM2 IQ DS3 and E3 interfaces, from 33 Kbps through the maximum rate, which depends on the ATM encapsulation and framing you configure.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring ATM CBR | 125
- Configuring ATM2 IQ Real-Time VBR | 124
- Applying Scheduler Maps to Logical ATM Interfaces
  - cbr | 313
  - vbr | 414
scheduler-maps (For ATM2 IQ Interfaces)

Syntax

```
scheduler-maps map-name {
 forwarding-class (class-name | assured-forwarding | best-effort | expedited-forwarding | network-control);
 vc-cos-mode (alternate | strict);
}
```

Hierarchy Level

```
[edit at-fpc/pic/port interface-name atm-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, define CoS parameters assigned to forwarding classes.

Options

- **map-name**—Name of the scheduler map.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

RELATED DOCUMENTATION

- ATM2 IQ VC Tunnel CoS Components Overview | 135
- Applying Scheduler Maps to ATM Interfaces
- atm-scheduler-map | 307
shaping

Syntax

```sh
shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
}
```

Hierarchy Level

```sh
[edit interfaces interface-name atm-options vpi vpi-identifier],
[edit interfaces interface-name unit logical-unit-number],
[edit interfaces interface-name unit logical-unit-number address address family family multipoint-destination address],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number address address family family multipoint-destination address]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM encapsulation only, define the traffic-shaping profile.

For Circuit Emulation PICs, specify traffic shaping in the ingress and egress directions.

For ATM2 IQ interfaces, changing or deleting VP tunnel traffic shaping causes all logical interfaces on a VP to be deleted and then re-added.

VP tunnels are not supported on multipoint interfaces.

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Defining Virtual Path Tunnels  | 131
- Defining the ATM Traffic-Shaping Profile Overview  | 124
- Configuring ATM QoS or Shaping
Applying Scheduler Maps to Logical ATM Interfaces
**t3-options**

**Syntax**

```ruby
t3-options {
 atm-encapsulation (direct | plcp);
 bert-algorithm algorithm;
 bert-error-rate rate;
 bert-period seconds;
 (cbit-parity | no-cbit-parity);
 compatibility-mode (digital-link | kentrox | larscom) <subrate value>;
 fcs (16 | 32);
 (feac-loop-respond | no-feac-loop-respond);
 idle-cycle-flag value;
 (long-buildout | no-long-buildout);
 (loop-timing | no-loop-timing);
 loopback (local | payload | remote);
 start-end-flag value;
}
```

**Hierarchy Level**

```plaintext
[edit interfaces interface-name]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Configure T3-specific physical interface properties, including the properties of DS3 channels on a channelized OC12 interface. The `long-buildout` statement is not supported for DS3 channels on a channelized OC12 interface.

On T3 interfaces, the default encapsulation is PPP.

For ATM1 interfaces, you can configure a subset of E3 options statements.

The remaining statements are explained separately. See [CLI Explorer](#).

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**RELATED DOCUMENTATION**
transmit-weight (ATM2 IQ CoS Forwarding Class)

Syntax

transmit-weight (cells number | percent number);

Hierarchy Level

[edit interfaces interface-name atm-options scheduler-maps map-name forwarding-class class-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces only, assign a transmission weight to a forwarding class.

Default

95 percent for queue 0, 5 percent for queue 3.

Options

percent percent—Transmission weight of the forwarding class as a percentage of the total bandwidth.

Range: 5 through 100

cells number—Transmission weight of the forwarding class as a number of cells.

Range: 0 through 32,000

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

ATM2 IQ VC Tunnel CoS Components Overview | 135
transmit-weight (ATM2 IQ Virtual Circuit)

Syntax

```
transmit-weight number;
```

Hierarchy Level

```[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ PICs only, configure the transmission weight.

Each VC is serviced in weighted round robin (WRR) mode. When VCs have data to send, they send the number of cells equal to their weight before passing control to the next active VC. This allows proportional bandwidth sharing between multiple VCs within a rate-shaped VP tunnel. VP tunnels are not supported on multipoint interfaces.

Options

```
number—Number of cells a VC sends before passing control to the next active VC within a VP tunnel.
```

Range: 1 through 32,767

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

```
Configuring the ATM2 IQ Transmission Weight | 155
```
trigger

Syntax

```
trigger {
  defect ignore;
  defect hold-time up milliseconds down milliseconds;
}
```

Hierarchy Level

```
[edit interfaces interface-name sonet-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM over SONET/SDH, SONET/SDH interfaces, and 10-Gigabit Ethernet interfaces in WAN PHY mode, configure SONET/SDH defect triggers to be ignored.

Default

If you do not include this statement, all SONET/SDH defect triggers are honored.

Options

`defect`—Defect to ignore or hold. It can be one of the following:

- `ais-l`—Line alarm indication signal
- `ais-p`—Path alarm indication signal
- `ber-sd`—Bit error rate signal degrade
- `ber-sf`—Bit error rate signal fault
- `locd` (ATM only)—Loss of cell delineation
- `lof`—Loss of frame
- `lol`—PHY loss of light
- `lop-p`—Path loss of pointer
- `los`—Loss of signal
- `pll`—PHY phase-locked loop out of lock
- `plm-p`—Path payload (signal) label mismatch
- `rfi-l`—Line remote failure indication
• rfi-p—Path remote failure indication
• uneq-p—Path unequipped

The remaining statements are explained separately. See CLI Explorer.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring SONET/SDH Defect Triggers
trunk-bandwidth

Syntax

trunk-bandwidth rate;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM2 IQ interfaces configured to use Layer 2 circuit trunk mode, configure a scheduler so that unused bandwidth from any inactive trunk is proportionally shared among the active trunks.

During congestion, each trunk receives a proportional share of the leftover bandwidth, thus minimizing the latency on each trunk.

Options

rate—Peak rate, in bits per second (bps) or cells per second (cps). You can specify a value in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000). You can also specify a value in cells per second by entering a decimal number followed by the abbreviation c; values expressed in cells per second are converted to bits per second by means of the formula 1 cps = 384 bps.

Range: 1,000,000 through 542,526,792 bps

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring Layer 2 Circuit Trunk Mode Scheduling Overview | 87
trunk-id

Syntax

trunk-id number;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ interfaces with ATM CCC cell-relay encapsulation, configure the trunk identification number.

When you associate a trunk ID number with a logical interface, you are in effect specifying the interfaces that are allowed to send ATM traffic over an LSP.

Options

number—A valid trunk identifier.

Range: For UNI mode, 0 through 7. For NNI mode, 0 through 31.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Layer 2 Circuit Transport Mode | 61
Syntax

unit logical-unit-number {
 accept-source-mac {
 mac-address mac-address {
 policer {
 input cos-policer-name;
 output cos-policer-name;
 }
 }
 }
 accounting-profile name;
 advisory-options {
 downstream-rate rate;
 upstream-rate rate;
 }
 allow-any-vci;
 atm-scheduler-map (map-name | default);
 auto-configure {
 agent-circuit-identifier {
 dynamic-profile profile-name;
 }
 line-identity {
 include {
 accept-no-ids;
 circuit-id;
 remote-id;
 }
 dynamic-profile profile-name;
 }
 }
 backup-options {
 interface interface-name;
 }
 bandwidth rate;
 cell-bundle-size cells;
 clear-dont-fragment-bit;
 compression {
 rtp {
 maximum-contexts number <force>;
 f-max-period number;
 queues [queue-numbers];
 port {
 ...
minimum port-number;
maximum port-number;
}
}
}
compression-device interface-name;
copy-tos-to-outer-ip-header;
demux {
 inet {
 address-source address;
 auto-configure {
 address-ranges {
 authentication {
 password password-string;
 username-include {
 auth-server-realm realm-string;
 delimiter delimiter-character;
 domain-name domain-name;
 interface-name;
 source-address;
 user-prefix user-prefix-string;
 }
 }
 }
 dynamic-profile profile-name {
 network ip-address {
 range name {
 low lower-limit;
 high upper-limit;
 }
 }
 }
 }
 }
 inet6 {
 address-source address;
 auto-configure {
 address-ranges {
 authentication {
 password password-string;
 username-include {
 auth-server-realm realm-string;
 delimiter delimiter-character;
 domain-name domain-name;
 interface-name;
 source-address;
 user-prefix user-prefix-string;
 }
 }
 }
 dynamic-profile profile-name {
 network ip-address {
 }
 }
 }
 }
}
range name {
 low lower-limit;
 high upper-limit;
}
}
}
}
}

demux-destination family;
demux-source family;
demux-options {
 underlying-interface interface-name;
}
description text;
etree-ac-role (leaf | root);
interface {
 l2tp-interface-id name;
 (dedicated | shared);
}
dialer-options {
 activation-delay seconds;
 callback;
callback-wait-period time;
deactivation-delay seconds;
dial-string [dial-string-numbers];
idle-timeout seconds;
incoming-map {
 caller caller-id | accept-all;
 initial-route-check seconds;
 load-interval seconds;
 load-threshold percent;
 pool pool-name;
 redial-delay time;
 watch-list {
 [routes];
 }
}
}
disable;
disable-mlppp-inner-ppp-pfc;
dcli dlci-identifier;
drop-timeout milliseconds;
dynamic-call-admission-control {
 activation-priority priority;
 bearer-bandwidth-limit kilobits-per-second;
}
encapsulation type;
epd-threshold cells plp1 cells;
family family-name {
 ... the family subhierarchy appears after the main [edit interfaces interface-name unit logical-unit-number] hierarchy
 ...
}
fragment-threshold bytes;
host-prefix-only;
inner-vlan-id-range start start-id end end-id;
input-vlan-map {
 (pop | pop-pop | pop-swap | push | push-push | swap |
 swap-push | swap-swap);
 inner-tag-protocol-id tpid;
 inner-vlan-id number;
 tag-protocol-id tpid;
 vlan-id number;
}
interleave-fragments;
inverse-arp;
layer2-policer {
 input-policer policer-name;
 input-three-color policer-name;
 output-policer policer-name;
 output-three-color policer-name;
}
link-layer-overhead percent;
minimum-links number;
mrru bytes;
multicast-dlci dlci-identifier;
multicast-vci vpi-identifier.vci-identifier;
multilink-max-classes number;
multipoint;
oam-liveness {
 up-count cells;
 down-count cells;
}
oam-period (disable | seconds);
output-vlan-map {
 (pop | pop-pop | pop-swap | push | push-push | swap |
 swap-push | swap-swap);
 inner-tag-protocol-id tpid;
 inner-vlan-id number;
 tag-protocol-id tpid;
}

passive-monitor-mode;
peer-unit unit-number;
plp-to-clp;
point-to-point;
ppp-options {
 mru size;
 mtu (size | use-lower-layer);
 chap {
 access-profile name;
 default-chap-secret name;
 local-name name;
 passive;
 }
 compression {
 acfc;
 pfc;
 }
 dynamic-profile profile-name;
 ipcp-suggest-dns-option;
 lcp-restart-timer milliseconds;
 loopback-clear-timer seconds;
 ncp-restart-timer milliseconds;
 pap {
 access-profile name;
 default-pap-password password;
 local-name name;
 local-password password;
 passive;
 }
}

pppoe-options {
 access-concentrator name;
 auto-reconnect seconds;
 (client | server);
 service-name name;
 underlying-interface interface-name;
}
pppoe-underlying-options {
 access-concentrator name;
 direct-connect;
 dynamic-profile profile-name;
 max-sessions number;
}
proxy-arp;
service-domain (inside | outside);
shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
}
short-sequence;
targeted-distribution;
transmit-weight number;
(traps | no-traps);
trunk-bandwidth rate;
trunk-id number;
tunnel {
 backup-destination address;
 destination address;
 key number;
 routing-instance {
 destination routing-instance-name;
 }
 source source-address;
 ttl number;
}
vci vpi-identifier.vci-identifier;
vci-range start start-vci end end-vci;
vpi vpi-identifier;
vlan-id number;
vlan-id-range number-number;
vlan-tags inner tpid.vlan-id outer tpid.vlan-id;
family family {
 accounting {
 destination-class-usage;
 source-class-usage {
 (input | output | input output);
 }
 }
 access-concentrator name;
 address address {
 ... the address subhierarchy appears after the main [edit interfaces interface-name unit logical-unit-number
 family family-name] hierarchy ...
 }
 bundle interface-name;
 core-facing;
 demux-destination {
 destination-prefix;
 }
 demux-source {
 source-prefix;
 }
 direct-connect;
 duplicate-protection;
 dynamic-profile profile-name;
 filter {
 group filter-group-number;
 input filter-name;
 input-list [filter-names];
 output filter-name;
 output-list [filter-names];
 }
 interface-mode (access | trunk);
 ipsec-sa so-name;
 keep-address-and-control;
 mac-validate (loose | strict);
 max-sessions number;
 mtu bytes;
 multicast-only;
 no-redirects;
 policer {
 arp policer-template-name;
 input policer-template-name;
 output policer-template-name;
 }
 primary;
protocols [inet iso mpls];
proxy inet-address address;
receive-options-packets;
receive-ttl-exceeded;
remote (inet-address address | mac-address address);
rpf-check {
 fail-filter filter-name
 mode loose;
}
sampling {
 input;
 output;
}
service {
 input {
 post-service-filter filter-name;
 service-set service-set-name <service-filter filter-name>;
 }
 output {
 service-set service-set-name <service-filter filter-name>;
 }
}
service-name-table table-name
targeted-options {
 backup backup;
 group group;
 primary primary;
 weight ($junos-interface-target-weight | weight-value);
}
(translate-discard-eligible | no-translate-discard-eligible);
(translate-fecn-and-becn | no-translate-fecn-and-becn);
translate-plp-control-word-de;
unnumbered-address interface-name destination address destination-profile profile-name;
vlan-id number;
vlan-id-list [number number-number];
address address {
 arp ip-address (mac | multicast-mac) mac-address <publish>;
 broadcast address;
 destination address;
 destination-profile name;
 eui-64;
 master-only;
 multipoint-destination address {
 dlci dlci-identifier;
 epd-threshold cells <plp1 cells>;
 inverse-arp;
 oam-liveness {
 up-count cells;
 down-count cells;
 }
 oam-period (disable | seconds);
 shaping {
 (cbr rate | rtvbr burst length peak rate sustained rate | vbr burst length peak rate sustained rate);
 queue-length number;
 }
 vci vpi-identifier.vci-identifier;
 }
 preferred;
 primary;
 (vrrp-group | vrrp-inet6-group) group-number {
 (accept-data | no-accept-data);
 advertise-interval seconds;
 authentication-type authentication;
 authentication-key key;
 fast-interval milliseconds;
 (preempt | no-preempt) {
 hold-time seconds;
 }
 priority number;
 track {
 interface interface-name {
 bandwidth-threshold bits-per-second priority-cost number;
 }
 priority-hold-time seconds;
 route ip-address/prefix-length routing-instance instance-name priority-cost cost;
 }
 virtual-address [addresses];
 virtual-link-local-address ipv6-address;
 vrrp-inherit-from {
active-interface interface-name;
active-group group-number;

Hierarchy Level

[edit interfaces interface-name],
[edit logical-systems logical-system-name interfaces interface-name],
[edit interfaces interface-set interface-set-name interface interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Range increased for static pseudowire interfaces to 1,073,741,823 in Junos OS Release 18.3R1.

Description
Configure a logical interface on the physical device. You must configure a logical interface to be able to use the physical device.

Options
logical-unit-number—Number of the logical unit.

Range: 0 through 1,073,741,823 for demux, PPPoE, and pseudowire static interfaces. 0 through 16,385 for all other static interface types.

etree-ac-role (leaf | root)—To configure an interface as either leaf or root.

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring Logical Interface Properties | 201 |
| Junos OS Services Interfaces Library for Routing Devices |
use-null-cw

Syntax

use-null-cw;

Hierarchy Level

[edit interfaces interface-name atm-options]

Release Information

Statement introduced in Junos OS Release 8.3.

Description

Insert (for sending traffic) or strip (for receiving traffic) a null control word in MPLS packets when an MPLS Layer 2 circuit is configured with cell transport mode on a router running Junos OS Release 8.3 or later. When cell relay transport mode is configured, the use-null-cw statement allows interoperability between routers running Junos OS Release 8.2 and earlier and those running Junos OS Release 8.3 and later.

NOTE: The use-null-cw statement is supported only on routers running Junos OS Release 8.3 or later.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Layer 2 Circuit Transport Mode | 61
up-count

Syntax

```
up-count cells;
```

Hierarchy Level

```
[edit interfaces interface-name atm-options vpi vpi-identifier oam-liveness],
[edit interfaces interface-name unit logical-unit-number oam-liveness],
[edit interfaces interface-name unit logical-unit-number family family address address multipoint-destination address oam-liveness],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number oam-liveness],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family family address address multipoint-destination address oam-liveness]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM encapsulation only, configure Operation, Administration, and Maintenance (OAM) F5 loopback cell count thresholds. Not supported on ATM-over-SHDSL interfaces.

For ATM2 IQ PICs only, configure OAM F4 loopback cell count thresholds at the [edit interfaces interface-name atm-options vpi vpi-identifier] hierarchy level.

Options

- **cells**—Minimum number of consecutive OAM F4 or F5 loopback cells received before a VC is declared up.

Range: 1 through 255

Default: 5 cells

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring the ATM OAM F5 Loopback Cell Threshold | 99
vbr

Syntax

```
vbr peak rate sustained rate burst length;
```

Hierarchy Level

```
[edit interfaces interface-name atm-options vpi vpi-identifier shaping],
[edit interfaces interface-name unit logical-unit-number address address family family multipoint-destination address shaping ],
[edit interfaces interface-name unit logical-unit-number shaping ],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number address address family family multipoint-destination address shaping ],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number shaping ]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM encapsulation only, define the variable bandwidth utilization in the traffic-shaping profile.

When you configure the variable bandwidth utilization, you must specify all three options (burst, peak, and sustained). You can specify the rate in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000). You can also specify the rate in cells per second by entering a decimal number followed by the abbreviation c; values expressed in cells per second are converted to bits per second by means of the formula 1 cps = 384 bps.

Default

If the vbr statement is not specified, bandwidth utilization is unlimited.

Options

- **burst length**—Burst length, in cells. If you set the length to 1, the peak traffic rate is used.

 Range: 1 through 4000 cells

- **peak rate**—Peak rate, in bits per second or cells per second.

 Range: For ATM1 interfaces, 33 Kbps through 135.6 Mbps (ATM OC3); 33 Kbps through 276 Mbps (ATM OC12). For ATM2 IQ OC3 and OC12 interfaces, 33 Kbps through 542,526,792 bps. For ATM2 IQ OC48 interfaces, 33 Kbps through 2,170,107,168 bps. For ATM2 IQ DS3 and E3 interfaces, from 33 Kbps through the maximum rate, which depends on the ATM encapsulation and framing you configure.

- **sustained rate**—Sustained rate, in bits per second or cells per second.
Range: For ATM1 interfaces, 33 Kbps through 135.6 Mbps (ATM OC3); 33 Kbps through 276 Mbps (ATM OC12). For ATM2 IQ OC3 and OC12 interfaces, 33 Kbps through 542,526,792 bps. For ATM2 IQ OC48 interfaces, 33 Kbps through 2,170,107,168 bps. For ATM2 IQ DS3 and E3 interfaces, from 33 Kbps through the maximum rate, which depends on the ATM encapsulation and framing you configure.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring ATM CBR | 125
- Applying Scheduler Maps to Logical ATM Interfaces
 - cbr | 313
 - rtvbr | 389
 - shaping | 392
vc-cos-mode

Syntax

```plaintext
vc-cos-mode (alternate | strict);
```

Hierarchy Level

```
[edit interfaces interface-name atm-options scheduler-maps map-name]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For ATM2 IQ interfaces only, specify packet-scheduling priority value for ATM2 IQ VC tunnels.

Options
- **alternate**—VC CoS queue has high priority. The scheduling of the queues alternates between the high-priority queue and the remaining queues, so every other scheduled packet is from the high-priority queue.
- **strict**—VC CoS queue has strictly high priority. A queue with strict high priority is always scheduled before the remaining queues. The remaining queues are scheduled in round-robin fashion.

Default: alternate

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- **ATM2 IQ VC Tunnel CoS Components Overview** | 135
- **Applying Scheduler Maps to ATM Interfaces**
vci

Syntax

```
vci vpi-identifier.vci-identifier;
```

Hierarchy Level

```
[edit interfaces at-fpc/pic/port unit logical-unit-number],
[edit interfaces at-fpc/pic/port unit logical-unit-number family family address address multipoint-destination address],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number family family address multipoint-destination address]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 11.1 for the QFX Series.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro routers.

Description

For ATM point-to-point logical interfaces only, configure the virtual circuit identifier (VCI) and virtual path identifier (VPI).

To configure a VPI for a point-to-multipoint interface, specify the VPI in the `multipoint-destination` statement.

VCIs 0 through 31 are reserved for specific ATM values designated by the ATM Forum.

Options

- **vci-identifier**—ATM virtual circuit identifier. Unless you configure the interface to use promiscuous mode, this value cannot exceed the highest-numbered VC configured for the interface with the `maximum-vcs` option of the `vpi` statement.

 Range: 0 through 4089 or 0 through 65,535 with promiscuous mode, with VCIs 0 through 31 reserved.

- **vpi-identifier**—ATM virtual path identifier.

 Range: 0 through 255

 Default: 0

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.
vci-range

Syntax

vci-range start start-vci end end-vci;

Hierarchy Level

[edit interfaces at-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number]

Release Information
Statement introduced in Junos OS Release 9.0.

Description
Range of VCI values used in ATM-to-Ethernet interworking cross-connects. VCI 0 through 31 are reserved. VCI 0 through 31 should not be used.

Options

start-vci—Lowest number VCI in the range.

end-vci—Highest number VCI in the range.

Range: 0 through 255

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
vlan-id (Outer VLAN ID)

Syntax

```
vlan-id outer-vlan-id;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Release Information
Statement introduced in Junos OS Release 9.0.

Description
The outer VLAN ID to be used in ATM-to-Ethernet interworking cross-connects. Outer VLAN IDs are converted to the ATM VPI. The outer VLAN ID must match the VPI value configured. The allowable VPI range is 0 to 255. Do not configure the outer VLAN ID to be greater than 255.

Options
```
outer-vlan-id—Outer VLAN ID number.
```

Range: 0 through 4094

Required Privilege Level
```
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```

RELATED DOCUMENTATION
```
Configuring ATM-to-Ethernet Interworking | 155
```
vlan-vci-tagging

Syntax

```
vlan-vci-tagging;
```

Hierarchy Level

```
[edit interfaces interface-name],
[edit logical-systems logical-system-name interfaces interface-name]
```

Release Information

Statement introduced in Junos OS Release 9.0.

Description

Enable the ATM-to-Ethernet interworking cross-connect function on a Gigabit Ethernet, 10-Gigabit Ethernet, or aggregated Ethernet interface.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring ATM-to-Ethernet Interworking | 155
vpi (ATM CCC Cell-Relay Promiscuous Mode)

Syntax

vpi vpi-identifier;

Hierarchy Level

[edit interfaces at-fpc/pic/port atm-options promiscuous-mode]

Release Information

Statement introduced before Junos OS Release 7.4.
Junos OS Release 12.2 for the ACX Series Universal Metro routers.

Description

For ATM interfaces, allow all VCIs in this VPI to open in ATM CCC cell-relay mode.

When you include vpi statements at the [edit interfaces interface-name atm-options promiscuous-mode] hierarchy level, the specified VPIs open in promiscuous mode.

Options

vpi-identifier—ATM virtual path identifier. This is one of the VPIs that you define in the vci statement. (For a list of hierarchy levels at which you can include the vci statement, see vci.)

Range: 0 through 255

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

| Configuring ATM Cell-Relay Promiscuous Mode | 47 |
vpi (Define Virtual Path)

Syntax

```plaintext
vpi vpi-identifier {
  maximum-vcs maximum-vcs;
  oam-liveness {
    up-count cells;
    down-count cells;
  }
  oam-period (disable | seconds);
  shaping {
    (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
    queue-length number;
  }
}
```

Hierarchy Level

```
[edit interfaces at-fpc/pic/port atm-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For ATM interfaces, configure the virtual path (VP).

NOTE: Certain options apply only to specific platforms.

Options

- **vpi-identifier**—ATM virtual path identifier. This is one of the VPIs that you define in the vci statement. (For a list of hierarchy levels at which you can include the vci statement, see vci.)

Range: 0 through 255

The remaining statements are explained separately. Search for a statement in CLI Explorer or click a linked statement in the Syntax section for details.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.
vpi (Logical Interface and Interworking)

Syntax

```plaintext
vpi virtual-path-identifier;
```

Hierarchy Level

```plaintext
[edit interfaces at-fpc/pic/port unit logical-unit-number],
[edit logical-systems logical-system-name interfaces at-fpc/pic/port unit logical-unit-number]
```

Release Information

Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 12.2 for the ACX Series Universal Metro routers.

Description

VPI used in an ATM-to-Ethernet interworking cross-connect.

Options

- `virtual-path-identifier`—VPI to be used.

Range: 0 through 255

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring ATM-to-Ethernet Interworking | 155
- Configuring ATM Cell-Relay Promiscuous Mode | 47
working-circuit

Syntax

working-circuit group-name;

Hierarchy Level

[edit interfaces interface-name sonet-options aps]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure the working router in an APS circuit pair.

Options

group-name—Circuit’s group name.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

Configuring Basic Automatic Protect Switching

protect-circuit | 380
z0-increment

Syntax

```
(z0-increment | no-z0-increment);
```

Hierarchy Level

```
[edit interfaces interface-name sonet-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure an incremental STM ID rather than a static one.

Default

`no-Z0-increment`

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

- Configuring an Incrementing STM ID to Interoperate with Older Equipment in SDH Mode
- `sonet-options`
CHAPTER 9

Operational Commands

IN THIS CHAPTER

- clear ilmi statistics | 428
- ping atm | 429
- show class-of-service | 431
- show class-of-service forwarding-class | 434
- show ilmi | 437
- show ilmi statistics | 439
- show interfaces (ATM) | 444
clear ilmi statistics

Syntax

clear ilmi statistics

Release Information
Command introduced before Junos OS Release 7.4.

Description
Set Integrated Local Management Interface (ILMI) statistics to zero.

Options
This command has no options.

Required Privilege Level
clear

RELATED DOCUMENTATION

| show ilmi statistics | 439 |

List of Sample Output
clear ilmi statistics on page 428

Output Fields
When you enter this command, you are provided feedback on the status of your request.

Sample Output
clear ilmi statistics

user@host> clear ilmi statistics
ping atm

Syntax

```
ping atm interface interface-name  vci vci
  <brief>
  <count count>
  <end-to-end | segment>
  <interval seconds>
  <sequence-number sequence-number>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Check the reachability of a remote Asynchronous Transfer Mode (ATM) node. All packets are 53 bytes. Type Ctrl+c to interrupt a ping atm command.

Options
- `interface interface-name`—Interface to use to send the ATM ping requests. For ATM 1 and ATM 2 interfaces, you must include a logical unit number in the interface name.
- `vci vci`—ATM point-to-point virtual circuit identifier. It can be a virtual circuit identifier (vci) or a virtual private identifier (vpi.vci).
- `brief`—(Optional) Display only the ATM ping summary statistics. These are displayed after you type Ctrl+c to interrupt the ping atm command.
- `count count`—(Optional) Number of ping requests to send. The range of values is 0 through 10,000. The default value is an unlimited number of requests.
- `end-to-end`—(Optional) Cells are sent to the end node. This is the default.
- `segment`—(Optional) Cells are sent only to the intermediate node.
- `interval seconds`—(Optional) How often to send ping requests. The range of values, in seconds, is 1 through 10,000. The default value is 1.
- `sequence-number sequence-number`—(Optional) Starting sequence number (correlation tag). The range of values is 0 through 65,568. The default value is 1.

Required Privilege Level
network

List of Sample Output
ping atm on page 430
Output Fields

When you enter this command, you are provided feedback on the status of your request. An exclamation point (!) indicates that an echo reply was received. A period (.) indicates that an echo reply was not received within the timeout period. An x indicates that an echo reply was received with an error code. Packets with an error code are not counted in the received packets count. They are accounted for separately.

Sample Output

ping atm

user@host> ping atm interface -4/0/1.0 vci 0.33

53 byte oam cell received on (vpi=0 vci=33): seq=1
53 byte oam cell received on (vpi=0 vci=33): seq=2
^C[abort]
--- atmping statistics ---
5 cells transmitted, 5 cells received, 0% cell loss
show class-of-service

Syntax

```
show class-of-service
```

Release Information

Command introduced before Junos OS Release 7.4.
Command introduced in Junos OS Release 9.0 for EX Series switches.

Description

Display the entire class-of-service (CoS) configuration, including system-chosen defaults. Executing this command is equivalent to executing all `show class-of-service` commands in succession.

Options

This command has no options.

Required Privilege Level

view

List of Sample Output

show class-of-service on page 431

Output Fields

See the output field descriptions for the commands.

Sample Output

```
show class-of-service
```

```
user@host>  show class-of-service

<table>
<thead>
<tr>
<th>Forwarding class</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>0</td>
</tr>
<tr>
<td>expedited-forwarding</td>
<td>1</td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>2</td>
</tr>
<tr>
<td>network-control</td>
<td>3</td>
</tr>
</tbody>
</table>

Code point type: dscp

<table>
<thead>
<tr>
<th>Alias</th>
<th>Bit pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>001010</td>
</tr>
<tr>
<td>af12</td>
<td>001100</td>
</tr>
<tr>
<td>af13</td>
<td>001110</td>
</tr>
</tbody>
</table>
```
Code point type: dscp-ipv6
 Alias Bit pattern
 af11 001010
 af12 001100
 af13 001110

Code point type: exp
 Alias Bit pattern
 af11 100
 af12 101
 be 000

Code point type: ieee-802.1
 Alias Bit pattern
 af11 100
 af12 101
 be 000

Classifier: dscp-default, Code point type: dscp, Index: 6
 Code point Forwarding class Loss priority
 000000 best-effort low
 000001 best-effort low
 000010 best-effort low

Classifier: dscp-ipv6-default, Code point type: dscp-ipv6, Index: 7
 Code point Forwarding class Loss priority
 000000 best-effort low
 000001 best-effort low
 000010 best-effort low

Loss-priority-map: frame-relay-de-default, Code point type: frame-relay-de, Index: 12
 Code point Loss priority
 0 low
 1 high

Rewrite rule: dscp-default, Code point type: dscp, Index: 23
 Forwarding class Loss priority Code point
 best-effort low 000000
 best-effort high 000000
 expedited-forwarding low 101110

Rewrite rule: dscp-ipv6-default, Code point type: dscp-ipv6, Index: 24
Forwarding class Loss priority Code point
best-effort low 000000
best-effort high 000000

Drop profile: <default-drop-profile>, Type: discrete, Index: 1
 Fill level Drop probability
 100 100

Scheduler map: <default>, Index: 2

Scheduler: <default-be>, Forwarding class: best-effort, Index: 16
 Transmit rate: 95 percent, Rate Limit: none, Buffer size: 95 percent, Priority: low
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

Physical interface: fe-0/0/0, Index: 137
Queues supported: 8, Queues in use: 4
 Scheduler map: <default>, Index: 2

Logical interface: fe-0/0/0.0, Index: 69
 Object Name Type Index
 Adaptive-shaper fr-shaper 35320
 Classifier ipprec-compatibility ip 11

Physical interface: fe-0/0/1, Index: 138
Queues supported: 8, Queues in use: 4
 Scheduler map: <default>, Index: 2
 ...
show class-of-service forwarding-class

Syntax

```
show class-of-service forwarding-class <forwarding-class-map-name>
```

Release Information

Command introduced before Junos OS Release 7.4.

Description

Display the mapping of forwarding class maps and names to queue numbers.

Options

`forwarding-class-map-name`—(Optional) Display the forwarding class configuration for a specific forwarding class map name. If this option is omitted, information for all forwarding class maps will be displayed.

Required Privilege Level

view

List of Sample Output

- show class-of-service forwarding-class on page 435
- show class-of-service forwarding-class forwarding-class-map-name on page 435

Output Fields

Table 29 on page 434 describes the output fields for the `show class-of-service forwarding-class` command. Output fields are listed in the approximate order in which they appear.

Table 29: show class-of-service forwarding-class Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarding class map</td>
<td>Classification of a packet affecting the forwarding, scheduling, and marking policies applied as the packet transits the router.</td>
</tr>
<tr>
<td>ID</td>
<td>Forwarding class identifier.</td>
</tr>
<tr>
<td>Queue</td>
<td>Queue corresponding to the forwarding class name.</td>
</tr>
<tr>
<td>Restricted Queue</td>
<td>(T Series platforms only) Forwarding class restricted queue number. The queue number assigned if the PIC is restricted to four queues.</td>
</tr>
<tr>
<td>Fabric Priority</td>
<td>(M320 and T Series platforms only) Forwarding class queue priority.</td>
</tr>
</tbody>
</table>
Sample Output

```
show class-of-service forwarding-class
```

```
user@host> show class-of-service forwarding-class
```

<table>
<thead>
<tr>
<th>Forwarding class map FCMAP1</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>fc1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc7</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>fc8</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc9</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc11</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc12</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc13</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc14</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>fc15</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>low</td>
</tr>
</tbody>
</table>

Sample Output

```
show class-of-service forwarding-class forwarding-class-map-name
```

```
user@host> show class-of-service forwarding-class FCMAP1
```

<table>
<thead>
<tr>
<th>Forwarding class map FCMAP1</th>
<th>ID</th>
<th>Queue</th>
<th>Restricted queue</th>
<th>Fabric Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>fc1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc5</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc7</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>fc8</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>fc9</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>low</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>fc10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc11</td>
<td>11</td>
<td>5</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>fc12</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc13</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>low</td>
</tr>
<tr>
<td>fc14</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>fc15</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>low</td>
</tr>
</tbody>
</table>
show ilmi

Syntax

```bash
show ilmi
<all | interface interface-name>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display Integrated Local Management Interface (ILMI) information.

Options
none—Display information for all ILMI-enabled ATM devices.

all | interface interface-name—(Optional) Display IP addresses and port names for all ILMI-enabled ATM devices or for a particular device.

Required Privilege Level
view

List of Sample Output
show ilmi all on page 438
show ilmi interface on page 438

Output Fields
Table 30 on page 437 lists the output fields for the show ilmi command. Output fields are listed in the approximate order in which they appear.

Table 30: show ilmi Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
</tr>
<tr>
<td>VCI</td>
<td>Virtual connection identifier.</td>
</tr>
<tr>
<td>Peer IP address</td>
<td>IP address of the peer.</td>
</tr>
<tr>
<td>Peer interface name</td>
<td>Port interface name of the peer.</td>
</tr>
</tbody>
</table>
Sample Output

show ilmi all

user@host> show ilmi all

Physical interface: at-6/2/1, VCI: 0.16
 Peer IP address: 192.168.4.24, Peer interface name: 1C4
Physical interface: at-6/3/0, VCI: 0.16
 Peer IP address: 192.168.7.6, Peer interface name: 2C3
Physical interface: at-6/4/0, VCI: 0.16
 Peer IP address: 192.168.9.10, Peer interface name: 1C2

show ilmi interface

user@host> show ilmi interface at-6/2/1

Physical interface: at-6/2/1, VCI: 0.16
 Peer IP address: 192.168.4.24, Peer interface name: 1C4
show ilmi statistics

Syntax

show ilmi statistics

Release Information
Command introduced before Junos OS Release 7.4.

Description
Display input and output Integrated Local Management Interface (ILMI) statistics.

Options
This command has no options.

Required Privilege Level
view

RELATED DOCUMENTATION

| clear ilmi statistics | 428 |

List of Sample Output
show ilmi statistics on page 442

Output Fields
Table 31 on page 440 lists the output fields for the show ilmi statistics command. Output fields are listed in the approximate order in which they appear.
Table 31: show ilmi statistics Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
</tr>
</tbody>
</table>
Table 31: show ilmi statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information about received ILMI packets:</td>
</tr>
<tr>
<td></td>
<td>• Packets—Total number of messages delivered to the ILMI entity from the transport service.</td>
</tr>
<tr>
<td></td>
<td>• Bad versions—Total number of messages delivered to the ILMI entity that were for an unsupported ILMI version.</td>
</tr>
<tr>
<td></td>
<td>• Bad community names—Total number of messages delivered to the ILMI entity that did not use an ILMI community name.</td>
</tr>
<tr>
<td></td>
<td>• Bad community uses—Total number of messages delivered to the ILMI entity that represented an ILMI operation that was not allowed by the ILMI community named in the message.</td>
</tr>
<tr>
<td></td>
<td>• ASN parse errors—Total number of ASN.1 or BER errors encountered by the ILMI entity when decoding received ILMI messages.</td>
</tr>
<tr>
<td></td>
<td>• Too big s—Total number of ILMI packets delivered to the ILMI entity with an error status field of tooBig.</td>
</tr>
<tr>
<td></td>
<td>• No such names—Total number of ILMI packets delivered to the ILMI entity with an error status field of noSuchName.</td>
</tr>
<tr>
<td></td>
<td>• Bad values—Total number of ILMI packets delivered to the ILMI entity with an error status field of badValue.</td>
</tr>
<tr>
<td></td>
<td>• Read only s—Total number of valid ILMI packets delivered to the ILMI entity with an error status field of readOnly.</td>
</tr>
<tr>
<td></td>
<td>• General errors—Total number of ILMI packets delivered to the ILMI entity with an error status field of genErr.</td>
</tr>
<tr>
<td></td>
<td>• Total request varbinds—Total number of objects retrieved successfully by the ILMI entity as a result of receiving valid ILMI GetRequest and GetNext packets.</td>
</tr>
<tr>
<td></td>
<td>• Total set varbinds—Total number of objects modified successfully by the ILMI entity as a result of receiving valid ILMI SetRequest packets.</td>
</tr>
<tr>
<td></td>
<td>• Get requests—Total number of ILMI GetRequest packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• Get nexts—Total number of ILMI GetNext packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• Set requests—Total number of ILMI SetRequest packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• Get responses—Total number of ILMI GetResponse packets that have been accepted and processed by the ILMI entity.</td>
</tr>
<tr>
<td></td>
<td>• Traps—Total number of ILMI traps received by the ILMI entity.</td>
</tr>
</tbody>
</table>
| | • **Silent drops**—Total number of **GetRequest**, **GetNextRequest**, **GetBulkRequest**, **SetRequest**, and **InformRequest** packets delivered to the ILMI entity that were silently dropped because the size of a reply containing an alternate response packet with an empty variable-bindings field was greater than either a local constraint or the maximum message size associated with the originator of the requests.
Table 31: show ilmi statistics Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy drops</td>
<td>Total number of GetRequest, getNextRequest, GetBulkRequest, SetRequest, and InformRequest packets delivered to the ILMI entity that were silently dropped because the transmission of the (possibly translated) message to a proxy target failed in such a way (other than a timeout) that no response packet could be returned.</td>
</tr>
<tr>
<td>Output</td>
<td>Information about transmitted ILMI packets:</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of messages passed from the ILMI entity to the transport service.</td>
</tr>
<tr>
<td>Too bigs</td>
<td>Total number of ILMI packets generated by the ILMI entity with an error status field of tooBig.</td>
</tr>
<tr>
<td>No such names</td>
<td>Total number of ILMI packets generated by the ILMI entity with an error status field of noSuchName.</td>
</tr>
<tr>
<td>Bad values</td>
<td>Total number of ILMI packets generated by the ILMI entity with an error status field of badValue.</td>
</tr>
<tr>
<td>General errors</td>
<td>Total number of ILMI packets generated by the ILMI entity with an error status field of genErr.</td>
</tr>
<tr>
<td>Get requests</td>
<td>Total number of ILMI GetRequest packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td>Get nexts</td>
<td>Total number of ILMI GetNext packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td>Set requests</td>
<td>Total number of ILMI SetRequest packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td>Get responses</td>
<td>Total number of ILMI GetResponse packets that have been generated by the ILMI entity.</td>
</tr>
<tr>
<td>Traps</td>
<td>Total number of ILMI traps generated by the ILMI entity.</td>
</tr>
</tbody>
</table>

Sample Output

show ilmi statistics

user@host> show ilmi statistics

ILMI statistics:
Input:
Packets: 0, Bad versions: 0, Bad community names: 0,
Bad community uses: 0, ASN parse errors: 0,
Too bigs: 0, No such names: 0, Bad values: 0,
Read onlys: 0, General errors: 0,
Total request varbinds: 0, Total set varbinds: 0,
Get requests: 0, Get nexts: 0, Set requests: 0,
Get responses: 0, Traps: 0,
Silent drops: 0, Proxy drops 0
Output:
 Packets: 0, Too bigs: 0, No such names: 0,
 Bad values: 0, General errors: 0,
 Get requests: 0, Get nexts: 0, Set requests: 0,
 Get responses: 0, Traps: 0
show interfaces (ATM)

Syntax

```
show interfaces at-fpc/pic/port
<brief | detail | extensive | terse>
<descriptions>
<media>
<snmp-index snmp-index>
<statistics>
```

Release Information
Command introduced before Junos OS Release 7.4.

Description
(M Series and T Series routers only) Display status information about the specified ATM interface.

Options
at-fpc/pic/port—Display standard information about the specified ATM interface.
brief | detail | extensive | terse—(Optional) Display the specified level of output.
descriptions—(Optional) Display interface description strings.
media—(Optional) Display media-specific information about network interfaces.
snmp-index snmp-index—(Optional) Display the SNMP index of the interface.
statistics—(Optional) Display static interface statistics.

Required Privilege Level
view

List of Sample Output
show interfaces (ATM, IMA Group) on page 466
show interfaces extensive (ATM IMA Group) on page 467
show interfaces (ATM1, SONET Mode) on page 469
show interfaces brief (ATM1, SONET Mode) on page 469
show interfaces detail (ATM1, SONET Mode) on page 470
show interfaces extensive (ATM1, SONET Mode) on page 471
show interfaces (ATM2, SDH Mode) on page 474
show interfaces brief (ATM2, SDH Mode) on page 476
show interfaces detail (ATM2, SDH Mode) on page 476
show interfaces extensive (ATM2, SDH Mode) on page 478
show interfaces (ATM2, SONET Mode) on page 482
Output Fields

Table 32 on page 445 lists the output fields for the `show interfaces` (ATM) command. Output fields are listed in the approximate order in which they appear.

Table 32: ATM show interfaces Output Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical interface</td>
<td>Name of the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Enabled</td>
<td>State of the interface. Possible values are described in the "Enabled Field" section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Description</td>
<td>Configured interface description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Interface index</td>
<td>Physical interface's index number, which reflects its initialization sequence.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>SNMP index number for the physical interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Link-level type</td>
<td>Encapsulation being used on the physical interface:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• ATM-CCC-CELL-RELAY—ATM cell relay for CCC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-CCC-VC-MUX—ATM virtual circuit (VC) for CCC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-CISCO-NLPID—Cisco-compatible ATM NLPID encapsulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-MIPP-LLC—ATM MLPPP over ATM Adaptation Layer 5 (AAL5)/logical link control (LLC).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-NLPID—ATM NLPID encapsulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-PPP-LLC—ATM PPP over AAL5/LLC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-PPP-VC-MUX—ATM PPP over raw AAL5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-PVC—ATM permanent virtual circuits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-SNAP—ATM LLC/SNAP encapsulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-TCC-SNAP—ATM LLC/SNAP for translational cross-connection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-TCC-VC-MUX—ATM VC for translational cross-connection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATM-VC-MUX—ATM VC multiplexing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ETHER-OVER-ATM-LLC—Ethernet over ATM (LLC/SNAP) encapsulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ETHER-VPLS-OVER-ATM-LLC—Ethernet VPLS over ATM (bridging) encapsulation.</td>
<td></td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the physical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Clocking</td>
<td>Reference clock source: Internal or External.</td>
<td>All levels</td>
</tr>
<tr>
<td>framing Mode</td>
<td>Framing mode: SONET or SDH.</td>
<td>All levels</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed at which the interface is running as represented by the interface type (for example, OC3, ADSL2+, and SHDSL(2-wire).)</td>
<td>All levels</td>
</tr>
<tr>
<td>Loopback</td>
<td>Whether loopback is enabled and the type of loopback (local or remote).</td>
<td>All levels</td>
</tr>
<tr>
<td>Payload scrambler</td>
<td>Whether payload scrambling is enabled.</td>
<td>All levels</td>
</tr>
<tr>
<td>Device flags</td>
<td>Information about the physical device. Possible values are described in the “Device Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Link flags</td>
<td>Information about the link. Possible values are described in the “Link Flags” section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS queues</td>
<td>Number of CoS queues configured.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Hold-times</td>
<td>Current interface hold-time up and hold-time down, in milliseconds.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Current address</td>
<td>Ethernet MAC address for this interface for Ethernet over ATM encapsulation.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Last flapped</td>
<td>Date, time, and how long ago the interface went from down to up. The format is Last flapped: year-month-day hour:minute:second timezone (hour:minute:second ago). For example, Last flapped: 2002-04-26 10:52:40 PDT (04:33:20 ago).</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Input Rate</td>
<td>Input rate in bits per second (bps) and packets per second (pps).</td>
<td>None specified</td>
</tr>
<tr>
<td>Output Rate</td>
<td>Output rate in bps and pps.</td>
<td>None specified</td>
</tr>
<tr>
<td>Statistics last cleared</td>
<td>Time when the statistics for the interface were last set to zero.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Statistics for traffic on the interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the interface</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input errors</td>
<td>Input errors on the interface whose definitions are as follows:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the incoming frame aborts and frame check sequence (FCS) errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the input queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s random early detection (RED) mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Invalid VCs—Number of cells that arrived for a nonexistent VC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Framing errors—Sum of AAL5 packets that have FCS errors, reassembly timeout errors, and length errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Policed discards—Number of frames that the incoming packet match code discarded because they were not recognized or not of interest. Usually, this field reports protocols that the Junos OS does not handle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L3 incompletes—Number of incoming packets discarded because they failed Layer 3 (usually IPv4) sanity checks of the header. For example, a frame with less than 20 bytes of available IP header is discarded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 channel errors—Number of times the software did not find a valid logical interface for an incoming frame.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 mismatch timeouts—Number of malformed or short packets that caused the incoming packet handler to discard the frame as unreadable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output errors</td>
<td>Output errors on the interface. The following paragraphs explain the counters whose meaning might not be obvious:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Carrier transitions—Number of times the interface has gone from down to up. This number does not normally increment quickly, increasing only when the cable is unplugged, the far-end system is powered down and up, or another problem occurs. If the number of carrier transitions increments quickly, increasing only when the cable is unplugged, the far-end system is powered down and then up, or another problem occurs. If it increments quickly (perhaps once every 10 seconds), the cable, the far-end system, or the PIC or PIM is malfunctioning.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Errors—Sum of the outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drops—Number of packets dropped by the output queue of the I/O Manager ASIC. If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aged packets—Number of packets that remained so long in shared packet SDRAM that the system automatically purged them. The value in this field should never increment. If it does, it is most likely a software bug or possibly malfunctioning hardware.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MTU errors—Number of packets larger than the MTU threshold.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resource errors—Sum of transmit drops.</td>
<td></td>
</tr>
<tr>
<td>Egress queues</td>
<td>Total number of egress queues supported on the specified interface.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Queue counters</td>
<td>CoS queue number and its associated user-configured forwarding class name.</td>
<td>detail extensive</td>
</tr>
<tr>
<td></td>
<td>• Queued packets—Number of queued packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmitted packets—Number of transmitted packets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dropped packets—Number of packets dropped by the ASIC’s RED mechanism.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Physical interface queue counters of ATM2 PICs displayed by the `show interfaces at-fpc/pic/port detail` command show the packet forwarding stream statistics associated with the ATM2 ports. Since multiple ports of the ATM2 PICs (except for the ATM2 dual-port OC12) share one packet forwarding stream, the physical interface queue counters reflect the aggregate of ATM2 port statistics.
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET alarms</td>
<td>SONET media-specific defects that prevent the interface from passing packets. When a defect persists for a certain period, it is promoted to an alarm. Based on the router configuration, an alarm can ring the red or yellow alarm bell on the router or light the red or yellow alarm LED on the craft interface. See these fields for possible alarms and defects: SONET PHY, SONET section, SONET line, and SONET path.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>SONET defects</td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>SONET PHY</td>
<td>Counts of specific SONET errors with detailed information.</td>
<td>extensive</td>
</tr>
<tr>
<td>SONET section</td>
<td>Counts of specific SONET errors with detailed information.</td>
<td>extensive</td>
</tr>
</tbody>
</table>

- **Seconds**—Number of seconds the defect has been active.
- **Count**—Number of times that the defect has gone from inactive to active.
- **State**—State of the error. State other than **OK** indicates a problem.

Subfields are:

- **PLL Lock**—Phase-locked loop
- **PHY Light**—Loss of optical signal

- **BIP-B1**—Bit interleaved parity for SONET section overhead
- **SEF**—Severely errored framing
- **LOL**—Loss of light
- **LOF**—Loss of frame
- **ES-S**—Errored seconds (section)
- **SES-S**—Severely errored seconds (section)
- **SEFS-S**—Severely errored framing seconds (section)
Table 32: ATM show interfaces Output Fields (*continued*)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| SONET line | Active alarms and defects, plus counts of specific SONET errors with detailed information.
 • **Seconds**—Number of seconds the defect has been active.
 • **Count**—Number of times that the defect has gone from inactive to active.
 • **State**—State of the error. State other than OK indicates a problem.
 Subfields are:
 • **BIP-B2**—Bit interleaved parity for SONET line overhead
 • **REI-L**—Remote error indication (near-end line)
 • **RDI-L**—Remote defect indication (near-end line)
 • **AIS-L**—Alarm indication signal (near-end line)
 • **BERR-SF**—Bit error rate fault signal failure
 • **BERR-SD**—Bit error rate defect signal degradation
 • **ES-L**—Errored seconds (near-end line)
 • **SES-L**—Severely errored seconds (near-end line)
 • **UAS-L**—Unavailable seconds (near-end line)
 • **ES-LFE**—Errored seconds (far-end line)
 • **SES-LFE**—Severely errored seconds (far-end line)
 • **UAS-LFE**—Unavailable seconds (far-end line) | extensive |
<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET path</td>
<td>Active alarms and defects, plus counts of specific SONET errors with detailed information.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. State other than OK indicates a problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BIP-B3—Bit interleaved parity for SONET section overhead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• REI-P—Remote error indication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LOP-P—Loss of pointer (path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS-P—Path alarm indication signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RDI-P—Path remote defect indication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UNEQ-P—Path unequipped</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PLM-P—Path payload (signal) label mismatch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ES-P—Errored seconds (near-end STS path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SES-P—Severely errored seconds (near-end STS path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UAS-P—Unavailable seconds (near-end STS path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ES-PFE—Errored seconds (far-end STS path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SES-PFE—Severely errored seconds (far-end STS path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UAS-PFE—Unavailable seconds (far-end STS path)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Received SONET overhead</th>
<th>Transmitted SONET overhead</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Values of the received and transmitted SONET overhead:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• C2—Signal label. Allocated to identify the construction and content of the STS-level SPE and for PDI-P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• F1—Section user channel byte. This byte is set aside for the purposes of users.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K1 and K2—These bytes are allocated for APS signaling for the protection of the multiplex section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• J0—Section trace. This byte is defined for STS-1 number 1 of an STS-N signal. Used to transmit a 1-byte fixed-length string or a 16-byte message so that a receiving terminal in a section can verify its continued connection to the intended transmitter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• S1—Synchronization status. The S1 byte is located in the first STS-1 of an STS-N.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Z3 and Z4—Allocated for future use.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH alarms</td>
<td>SDH media-specific defects that can prevent the interface from passing packets. When a defect persists for a certain period, it is promoted to an alarm. Based on the router configuration, an alarm can ring the red or yellow alarm bell on the router or light the red or yellow alarm LED on the craft interface. See these fields for possible alarms and defects: SDH PHY, SDH regenerator section, SDH multiplex section, and SDH path.</td>
<td>All levels</td>
</tr>
<tr>
<td>SDH defects</td>
<td>SDH PHY Active alarms and defects, plus counts of specific SDH errors with detailed information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. State other than OK indicates a problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PLL Lock—Phase-locked loop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PHY Light—Loss of optical signal</td>
<td></td>
</tr>
<tr>
<td>SDH regenerator</td>
<td>SDH regenerator section Active alarms and defects, plus counts of specific SDH errors with detailed information.</td>
<td>extensive</td>
</tr>
<tr>
<td>section</td>
<td>• Seconds—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. State other than OK indicates a problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RS-BIP8—24-bit BIP for multiplex section overhead (B2 bytes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OOF—Out of frame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LOS—Loss of signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LOF—Loss of frame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RS-ES—Errored seconds (near-end regenerator section)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RS-SES—Severely errored seconds (near-end regenerator section)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RS-SEFS—Severely errored framing seconds (regenerator section)</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| **SDH multiplex section** | Active alarms and defects, plus counts of specific SDH errors with detailed information.
 - **Seconds**—Number of seconds the defect has been active.
 - **Count**—Number of times that the defect has gone from inactive to active.
 - **State**—State of the error. State other than OK indicates a problem.
 Subfields are:
 - **MS-BIP24**—8-bit BIP for high-order path overhead (B3 byte)
 - **MS-FEBE**—Far-end block error (multiplex section)
 - **MS-FERF**—Far-end remote fail (multiplex section)
 - **MS-AIS**—Alarm indication signal (multiplex section)
 - **BERR-SF**—Bit error rate fault (signal failure)
 - **BERR-SD**—Bit error rate defect (signal degradation)
 - **MS-ES**—Errored seconds (near-end multiplex section)
 - **MS-SES**—Severely errored seconds (near-end multiplex section)
 - **MS-UAS**—Unavailable seconds (near-end multiplex section)
 - **MS-ES-FE**—Errored seconds (far-end multiplex section)
 - **MS-SES-FE**—Severely errored seconds (far-end multiplex section)
 - **MS-UAS-FE**—Unavailable seconds (far-end multiplex section) | extensive |
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH path</td>
<td>Active alarms and defects, plus counts of specific SDH errors with detailed information.</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• Seconds—Number of seconds the defect has been active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Count—Number of times that the defect has gone from inactive to active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• State—State of the error. State other than OK indicates a problem.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subfields are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-BIP8—8-bit BIP for regenerator section overhead (B1 byte)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-FEBE—Far-end block error (high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-LOP—Loss of pointer (high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-AIS—High-order-path alarm indication signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-FERF—Far-end remote fail (high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-UNEQ—Unequipped (high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-PLM—Payload label mismatch (high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-ES—Errored seconds (near-end high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-SES—Severely errored seconds (near-end high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-UAS—Unavailable seconds (near-end high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-ES-FE—Errored seconds (far-end high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-SES-FE—Severely errored seconds (far-end high-order path)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HP-UAS-FE—Unavailable seconds (far-end high-order path)</td>
<td></td>
</tr>
<tr>
<td>Received SDH overhead</td>
<td>Values of the received and transmitted SONET overhead:</td>
<td>extensive</td>
</tr>
<tr>
<td>Transmitted SDH overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C2—Signal label. This byte is allocated to identify the construction and content of the STS-level SPE and for PDI-P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• F1—Section user channel byte. This byte is set aside for the purposes of users.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K1 and K2—These bytes are allocated for APS signaling for the protection of the multiplex section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• J0—Section trace. This byte is defined for STS-1 number 1 of an STS-N signal. This byte is used to transmit a 1-byte fixed-length string or a 16-byte message so that a receiving terminal in a section can verify its continued connection to the intended transmitter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• S1—Synchronization status. The S1 byte is located in the first STS-1 of an STS-N.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Z3 and Z4—These bytes are allocated for future use.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received path trace</td>
<td>SONET/SDH interfaces allow path trace bytes to be sent inband across the SONET/SDH link. Juniper Networks and other router manufacturers use these bytes to help diagnose misconfigurations and network errors by setting the transmitted path trace message so that it contains the system hostname and name of the physical interface. The received path trace value is the message received from the router at the other end of the fiber. The transmitted path trace value is the message that this router transmits.</td>
<td>extensive</td>
</tr>
<tr>
<td>Transmitted path trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATM Status</td>
<td>ATM state information:</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>• HCS State—Status of the header check sequence. ATM uses the HCS field in the cell header in the cell delineation process to frame ATM cell boundaries. The HCS is an FCS-8 calculation over the first four octets of the ATM cell header.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LOC—Current loss of cell (LOC) delineation state. OK means that no LOC is currently asserted.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM Statistics</td>
<td></td>
<td>extensive</td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM statistics for the interface:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Uncorrectable HCS errors—Number of cells dropped because the cell delineation failed. These errors most likely indicate that a SONET/SDH layer problem has occurred.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Correctable HCS errors—Number of correctable HCS errors that occurred. The cell delineation process can recover from these errors and locate the ATM cell boundary, although the framing process is not quite stable. The ATM cell is not dropped. This counter increases when the cell delineation process changes its state from present to sync (for example, when a cable is plugged into the interface).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following error statistics are from the framer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tx cell FIFO overruns—Number of overruns in the transmit FIFO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rx cell FIFO overruns—Number of overruns in the receive FIFO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rx cell FIFO underruns—Number of underruns in the receive FIFO.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input cell count—Number of ATM cells received by the interface (not including idle cells).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Output cell count—Number of ATM cells transmitted by the interface (including idle cells).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Output idle cell count—Number of idle cells sent by the port. When ATM has nothing to send, it sends idle cells to fill the time slot.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Output VC queue drops—Number of packets dropped by a port on the PIC. Packets are dropped because of queue limits on the VCs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The following error statistics are from the SAR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input no buffers—Number of AAL5 packets dropped because no channel blocks or buffers were available to handle them.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input length errors—Number of AAL5 packets dropped because their length was incorrect. Usually, these errors occur because a cell has been corrupted or lost, or because the length field was corrupted. They can also mean the AAL5 length field was zero.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input timeouts—Number of AAL5 packets dropped because of a reassembly timeout.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input invalid VCs—Number of AAL5 packets dropped because the header was unrecognized (because the VC was not correct or not configured).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input bad CRCs—Number of AAL5 packets dropped because of frame check sequence errors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Input OAM cell no buffers—Number of received OAM cells or raw cells</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dropped because no buffers were available to handle them.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• L2 circuit out-of-sequence packets—(Layer 2 AAL5 mode) Number of AAL5 packets that are out of sequential order.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Denied packets count—The number of packets dropped due to VLAN priority deny packets or due to an error forwarding configuration that might cause a negative frame length, that is, the stripping size is larger than the packet size.</td>
<td></td>
</tr>
<tr>
<td>Packet Forwarding</td>
<td>Information about the configuration of the Packet Forwarding Engine:</td>
<td>extensive</td>
</tr>
<tr>
<td>Engine configuration</td>
<td>• Destination slot—FPC slot number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CoS information</td>
<td>extensive</td>
</tr>
<tr>
<td></td>
<td>Information about the CoS queue for the physical interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CoS transmit queue—Queue number and its associated user-configured forwarding class name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bandwidth %—Percentage of bandwidth allocated to the queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bandwidth bps—Bandwidth allocated to the queue (in bps).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Buffer %—Percentage of buffer space allocated to the queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Buffer usec—Amount of buffer space allocated to the queue, in microseconds. This value is nonzero only if the buffer size is configured in terms of time.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Priority—Queue priority: low or high.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limit—Displayed if rate limiting is configured for the queue. Possible values are none and exact. If exact is configured, the queue transmits only up to the configured bandwidth, even if excess bandwidth is available. If none is configured, the queue transmits beyond the configured bandwidth if bandwidth is available.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields *(continued)*

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPI</td>
<td>(ATM2) Virtual path identifier information:</td>
<td>detail extensive none</td>
</tr>
<tr>
<td></td>
<td>Flags—VPI flags can be one or more of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active (virtual path is up)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OAM (operation and maintenance is enabled)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Shaping (shaping is configured)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CBR, Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OAM, Period—Interval at which OAM F4 loopback cells are sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Up count—Number of F4 OAM cells required to consider the virtual path up; the range is 1 through 255.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Down count—Number of F4 OAM cells required to consider the virtual path down; the range is 1 through 255.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total down time—Total number of seconds the VPI has been down since it was opened, using the format Total down time: hh:mm:ss or Never.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Last down—Time of last Down transition, using the format Last down: hh:mm:ss ago or Never.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OAM F4 cell statistics—(Nonpromiscuous mode) OAM F4 statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total received—Number of OAM F4 cells received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total sent—Number of OAM F4 cells sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loopback received—Number of OAM F4 loopback cells received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loopback sent—Number of OAM F4 loopback cells sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Last received—Time at which the last OAM F4 cell was received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Last sent—Time at which the last OAM F4 cell was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RDI received—Number of OAM F4 cells received with the remote defect indication bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RDI sent—Number of OAM F4 cells sent with the RDI bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS received—Number of OAM F4 cells received with the alarm indication signal bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS sent—Number of OAM F4 cells sent with the AIS bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traffic statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the VPI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the VPI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the VPI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the VPI.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical interface</td>
<td>Name of the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Index</td>
<td>Logical interface index number, which reflects its initialization sequence.</td>
<td>detail extensivenone</td>
</tr>
<tr>
<td>SNMP ifIndex</td>
<td>Logical interface SNMP interface index number.</td>
<td>detail extensivenone</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the logical interface. Possible values are described in the "Logical Interface Flags" section under Common Output Fields Description.</td>
<td>All levels</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation on the logical interface.</td>
<td>All levels</td>
</tr>
<tr>
<td>Traffic statistics</td>
<td>Total number of bytes and packets received and transmitted on the logical interface. These statistics are the sum of the local and transit statistics. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes a while (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Local statistics</td>
<td>Statistics for traffic received from and transmitted to the Routing Engine. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes a while (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Transit statistics</td>
<td>Statistics for traffic transiting the router. When a burst of traffic is received, the value in the output packet rate field might briefly exceed the peak cell rate. It takes a while (generally, less than 1 second) for this counter to stabilize.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Input packets</td>
<td>Number of packets received on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>Output packets</td>
<td>Number of packets transmitted on the logical interface.</td>
<td>None specified</td>
</tr>
<tr>
<td>protocol-family</td>
<td>Protocol family configured on the logical interface. If the protocol is inet, the IP address of the interface is also displayed.</td>
<td>brief</td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Protocol family configured on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>MTU</td>
<td>MTU size on the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Route table</td>
<td>Routing table in which the logical interface address is located. For example, 0 refers to the routing table inet.0.</td>
<td>detail extensive</td>
</tr>
<tr>
<td>Flags</td>
<td>Information about the protocol family flags. Possible values are described in the "Family Flags" section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Addresses, Flags</td>
<td>Information about the address flags. Possible values are described in the "Addresses Flags" section under Common Output Fields Description.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Destination</td>
<td>IP address of the remote side of the connection.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Local</td>
<td>IP address of the logical interface.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast address.</td>
<td>detail extensive none</td>
</tr>
<tr>
<td>Generation</td>
<td>Unique number for use by Juniper Networks technical support only.</td>
<td>detail extensive</td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCI</td>
<td>Virtual circuit identifier number and information:</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>● Flags—VCI flags:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Active—VCI is up and in working condition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● CCC down—VCI CCC is not in working condition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Closed—VCI is closed because the user disabled the logical or physical interface from the CLI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Configured—VCI is configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Down—VCI is not in working condition. The VCI might have alarms, defects, F5 AIS/RDI, or no response to OAM loopback cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● ILMI—VCI is up and in working condition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● OAM—OAM loopback is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Multicast—VCI is a multicast VCI or DLCI.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Multipoint destination—VCI is configured as a multipoint destination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● None—No VCI flags.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Passive-OAM—Passive OAM is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Shaping—Shaping is enabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Sustained—Shaping rate is set to Sustained.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Unconfigured—VCI is not configured.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Total down time—Total number of seconds the VCI has been down, using the format Total down time: hh:mm:ss or Never.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● Last down—Time of last Down transition, using the format Last down: hh:mm:ss.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● EPD threshold—(ATM2 only) Threshold at which a packet is dropped when the queue size (in number of cells) exceeds the early packet-discard (EPD) value.</td>
<td></td>
</tr>
<tr>
<td>Field Name</td>
<td>Field Description</td>
<td>Level of Output</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>VCI (continued)</td>
<td>• Transmit weight cells—(ATM2 only) Amount of bandwidth assigned to this queue.</td>
<td>All levels</td>
</tr>
<tr>
<td></td>
<td>• ATM per-VC transmit statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tail queue packet drops—Number of packets dropped because of bandwidth constraints. This value indicates that packets are queued to send out at a rate faster than allowed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OAM F4 cell statistics—(Nonpromiscuous mode) OAM F4 statistics:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total received—Number of OAM F4 cells received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Total sent—Number of OAM F4 cells sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loopback received—Number of OAM F4 loopback cells received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loopback sent—Number of OAM F4 loopback cells sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Last received—Time at which the last OAM F4 cell was received.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Last sent—Time at which the last OAM F4 cell was sent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RDI received—Number of OAM F4 cells received with the remote defect indication bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RDI sent—Number of OAM F4 cells sent with the RDI bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS received—Number of OAM F4 cells received with the alarm indication signal bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AIS sent—Number of OAM F4 cells sent with the AIS bit set.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Traffic statistics—Number and rate of bytes and packets received and transmitted on the physical interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input bytes—Number of bytes received on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output bytes—Number of bytes transmitted on the interface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input packets—Number of packets received on the interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Output packets—Number of packets transmitted on the interface.</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMA group</td>
<td></td>
<td>detail extensive, none</td>
</tr>
<tr>
<td>properties</td>
<td>• Version—The specified IMA specification version, either IMA 1.0 or IMA 1.1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Frame length—The specified frame size, which can be 32, 64, 128, or 256.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Differential delay—Maximum differential delay among links in milliseconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Symmetry—Either Common Transmit Clock or Independent Transmit Clock timing mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmit clock—The specified IMA clock mode, either common or independent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimum links—The number of minimum active links specified in both transmit and receive directions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Transmit—The per-PIC limit on the number of minimum active links in the transmit direction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Receive—The per-PIC limit on the number of minimum active links in the receive direction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Frame synchronization—The specified IMA frame synchronization state transition variables (Alpha, Beta, and Gamma) and their specified values.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alpha—The number of consecutive invalid ICP cells for IFSM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beta—The number of consecutive errored ICP cells for IFSM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gamma—The number of consecutive valid ICP cells for IFSM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Links—The number of IMA links assigned to the IMA group.</td>
<td></td>
</tr>
<tr>
<td>IMA group</td>
<td></td>
<td>detail extensive, none</td>
</tr>
<tr>
<td>alarms</td>
<td>• Start-up-FE—Far-end group alarm status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Config-Aborted—Near-end configuration aborted group alarm status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Config-Aborted-FE—Far-end configuration aborted group alarm status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Insufficient-Links—Near-end insufficient links group alarm status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Insufficient-Links-FE—Far-end insufficient links group alarm status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Blocked-FE—Far-end blocked group alarm status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GR-Timing-Mismatch—Group timing mismatch alarm status</td>
<td></td>
</tr>
</tbody>
</table>
Table 32: ATM show interfaces Output Fields (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Level of Output</th>
</tr>
</thead>
</table>
| IMA group defects | • Start-up-FE—Far-end group defect status
| | • Config-Aborted—Near-end configuration aborted group defect status | detail extensive |
| | • Config-Aborted-FE—Far-end configuration aborted group defect status | none |
| | • Insufficient-Links—Near-end insufficient links group defect status | none |
| | • Insufficient-Links-FE—Far-end insufficient links group defect status | none |
| | • Blocked-FE—Far-end blocked group defect status | none |
| | • GR-Timing-Mismatch—Group timing mismatch defect status | none |
| IMA Group state | Near-end and far-end group status | detail extensive |
| IMA group media | IMA group media status, including seconds, count and state for the following media parameters: | detail extensive |
| | • FC | none |
| | • FC-FE | none |
| | • Addr-Mismatch | none |
| | • Running | none |
| | • UAS | none |

Sample Output

show interfaces (ATM, IMA Group)

user@host> show interfaces at-1/0/0

Physical interface: at-1/0/0, Enabled, Physical link is Up
IMA group properties:
 Version : 1.1
 Frame length : 128
 Differential delay : 25 milliseconds
 Symmetry : Symmetrical Configuration and Operation
 Transmit clock : Common
 Minimum links : Transmit: 1, Receive: 1
 Frame synchronization: Alpha: 2, Beta: 2, Gamma: 1
 Links : None
IMA group alarms : Start-up-FE Config-Aborted Config-Aborted-FE
Insufficient-Links Insufficient-Links-FE Blocked-FE GR-Timing-Mismatch
IMA group defects : Start-up-FE Config-Aborted Config-Aborted-FE
show interfaces extensive (ATM IMA Group)

user@host> show interfaces at-0/0/10 extensive

Physical interface: at-0/0/10, Enabled, Physical link is Up
 Interface index: 178, SNMP ifIndex: 540, Generation: 531
 Link-level type: ATM-PVC, MTU: 2048, Speed: Unspecified, Loopback: None, Payload scrambling: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 8 supported, 4 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:00:5e:00:53:0a
 Last flapped : 2012-03-16 16:49:15 PDT (2d 07:12 ago)
 Statistics last cleared: 2012-03-16 16:56:58 PDT (2d 07:05 ago)
 Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Input errors:
 Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0, Resource errors: 0
 IMA group properties:
Version : 1.1
Frame length : 128
Differential delay : 25 milliseconds
Symmetry : Symmetrical Configuration and Operation
Transmit clock : Common
Minimum links : Transmit: 1, Receive: 1
Frame synchronization: Alpha: 2, Beta: 2, Gamma: 1
Link #1 : t1-0/0/4 up
IMA Group alarms : None
IMA Group defects : None

IMA Group state:
 Near end : Operational
 Far end : Operational
IMA group media: Seconds Count State
 FC 0
 FC-FE 0
 Addr-Mismatch 0
 Running 198306
UAS 0
ATM status:
 HCS state: Sync
 LOC : OK
ATM Statistics:
 Uncorrectable HCS errors: 0, Correctable HCS errors: 0, Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
 Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 0, Output idle cell count: 0,
 Output VC queue drops: 0, Input no buffers: 0, Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0,
 Input bad CRCs: 0, Input OAM cell no buffers: 0
Packet Forwarding Engine configuration:
 Destination slot: 0
VPI 2
 Flags: Active
 Total down time: 0 sec, Last down: Never
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-0/0/10.602 (Index 71) (SNMP ifIndex 1057) (Generation 17226)
Flags: Point-To-Point SNMP-Traps CCC-Down 0x0 Encapsulation: ATM-CCC-Cell-Relay

L2 circuit cell bundle size: 1, bundle timeout: 125 usec, timeout count: 0
L2 circuit out-of-sequence count: 0, denied packets count: 0

show interfaces (ATM1, SONET Mode)

```
user@host> show interfaces at-1/0/0
```

Physical interface: at-1/0/0, Enabled, Physical link is Up
 Interface index: 300, SNMP ifIndex: 194
 Description: to allspice at-1/0/0
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
 Speed: OC3, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 4 supported, 4 maximum usable queues
 Current address: 00:00:5e:00:53:fe
 Last flapped : 2006-02-24 14:28:12 PST (6d 01:51 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 SONET alarms : None
 SONET defects : None

Logical interface at-1/0/0.0 (Index 64) (SNMP ifIndex 204)
 Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: 4470
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.220.24/30, Local: 192.168.220.26,
 Broadcast: 192.168.220.27
 Protocol iso, MTU: 4470
 Flags: None
 VCI 0.128
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

show interfaces brief (ATM1, SONET Mode)

```
user@host> show interfaces at-1/0/0 brief
```
Physical interface: at-1/0/0, Enabled, Physical link is Up
 Description: to allspice at-1/0/0
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
 Speed: OC3, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None

Logical interface at-1/0/0.0
 Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP
 inet 192.168.220.26/30
 iso
 VCI 0.128
 Flags: Active
 Total down time: 0 sec, Last down: Never

show interfaces detail (ATM1, SONET Mode)

user@host> show interfaces at-1/0/0 detail

Physical interface: at-1/0/0, Enabled, Physical link is Up
 Interface index: 300, SNMP ifIndex: 194, Generation: 183
 Description: to allspice at-1/0/0
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
 Speed: OC3, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 4 supported, 4 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:00:5e:00:53:fe
 Last flapped : 2006-02-24 14:28:12 PST (6d 01:55 ago)
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 Egress queues: 4 supported, 4 in use
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0
 SONET alarms : None
 SONET defects : None
show interfaces extensive (ATM1, SONET Mode)

user@host> show interfaces at-1/0/0 extensive

Physical interface: at-1/0/0, Enabled, Physical link is Up
Interface index: 300, SNMP ifIndex: 194, Generation: 183
Description: to allspice at-1/0/0
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
Speed: OC3, Loopback: None, Payload scrambler: Enabled
Device flags : Present Running
Link flags : None
CoS queues : 4 supported, 4 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:fe
Last flapped : 2006-02-24 14:28:12 PST (6d 01:56 ago)
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
Input errors:
 Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, Resource errors: 0
Output errors:
 Carrier transitions: 1, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0, Resource errors: 0
Egress queues: 4 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0
SONET alarms : None
SONET defects : None
SONET PHY: Seconds Count State
 PLL Lock 0 0 OK
 PHY Light 0 0 OK
SONET section:
 BIP-B1 0 0
 SEF 0 0 OK
 LOS 0 0 OK
 LOF 0 0 OK
 ES-S 0
 SES-S 0
 SEFS-S 0
SONET line:
 BIP-B2 0 0
 REI-L 0 0
 RDI-L 0 0 OK
 AIS-L 0 0 OK
BERR-SF 0 0 OK
BERR-SD 0 0 OK
ES-L 0
SES-L 0
UAS-L 0
ES-LFE 0
SES-LFE 0
UAS-LFE 0
SONET path:
BIP-B3 0 0
REI-P 0 0
LOP-P 0 0 OK
AIS-P 0 0 OK
RID-P 0 0 OK
UNEQ-P 1 1 OK
PLM-P 0 0 OK
ES-P 1
SES-P 1
UAS-P 0
ES-PFE 0
SES-PFE 0
UAS-PFE 0
Received SONET overhead:
F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, C2(cmp) : 0x13, F2 : 0x00
Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00
Transmitted SONET overhead:
F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
Z4 : 0x00
ATM status:
HCS state: Sync
LOC : OK
ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0,
Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 0,
Output idle cell count: 0, Output VC queue drops: 0, Input no buffers: 0,
Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0,
Input bad CRCs: 0, Input OAM cell no buffers: 0
Packet Forwarding Engine configuration:
Destination slot: 1
CoS information:
CoS transmit queue Bandwidth Buffer Priority Limit

Logical interface at-1/0/0.0 (Index 64) (SNMP ifIndex 204) (Generation 5)
Flags: Point-To-Point SNMP-Traps Encapsulation: ATM-SNAP

Traffic statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Local statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

Transit statistics:
- Input bytes: 0 (0 bps)
- Output bytes: 0 (0 bps)
- Input packets: 0 (0 pps)
- Output packets: 0 (0 pps)

Protocol inet, MTU: 4470, Generation: 13, Route table: 0
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.220.24/30, Local: 192.168.220.26,
 Broadcast: 192.168.220.27, Generation: 14

Protocol iso, MTU: 4470, Generation: 14, Route table: 0
Flags: None
VCI 0.128
Flags: Active
Total down time: 0 sec, Last down: Never

ATM per-VC transmit statistics:
Tail queue packet drops: 0
Traffic statistics:
- Input bytes: 0
- Output bytes: 0
- Input packets: 0
- Output packets: 0

show interfaces (ATM2, SDH Mode)

user@host> show interfaces at-0/2/1
Physical interface: at-0/2/1, Enabled, Physical link is Up

Interface index: 154, SNMP ifIndex: 42

Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SDH mode, Speed: OC3,
Loopback: None, Payload scrambler: Enabled

Device flags : Present Running

Link flags : None

CoS queues : 4 supported, 4 maximum usable queues

Current address: 00:00:5e:00:53:3f

Last flapped : 2006-03-24 13:29:58 PST (00:04:48 ago)

Input rate : 0 bps (0 pps)

Output rate : 0 bps (0 pps)

SDH alarms : None

SDH defects : None

VPI 0

 Flags: Active
 Total down time: 0 sec, Last down: Never

Traffic statistics:

 Input packets: 0
 Output packets: 0

Logical interface at-0/2/1.0 (Index 75) (SNMP ifIndex 51)

 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-SNAP

 Input packets : 0
 Output packets: 0

 Protocol inet, MTU: 4470

 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.12.6, Local: 10.0.12.5

 Protocol iso, MTU: 4470

 Flags: None

VCI 0.128

 Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 2129, Transmit weight cells: 0

 Input packets : 0
 Output packets: 0

Logical interface at-0/2/1.32767 (Index 76) (SNMP ifIndex 50)

 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x4000

 Encapsulation: ATM-VCMUX

 Input packets : 0
 Output packets: 0

VCI 0.4

 Flags: Active
show interfaces brief (ATM2, SDH Mode)

user@host> show interfaces at-0/2/1 brief

Physical interface: at-0/2/1, Enabled, Physical link is Up
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SDH mode,
 Speed: OC3, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None

Logical interface at-0/2/1.0
 Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-SNAP
 inet 10.0.12.5 --> 10.0.12.6
 iso
 VCI 0.128
 Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 2129, Transmit weight cells: 0

Logical interface at-0/2/1.32767
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x4000
 Encapsulation: ATM-VCMUX
 VCI 0.4
 Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0

show interfaces detail (ATM2, SDH Mode)

user@host> show interfaces at-0/2/1 detail

Physical interface: at-0/2/1, Enabled, Physical link is Up
 Interface index: 154, SNMP ifIndex: 42, Generation: 40
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SDH mode, Speed: OC3,
 Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 4 supported, 4 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:3f
Last flapped: 2006-03-24 13:29:58 PST (00:05:10 ago)
Statistics last cleared: Never
Traffic statistics:
Input bytes: 0 0 bps
Output bytes: 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Egress queues: 4 supported, 4 in use

Queue counters: Queued packets Transmitted packets Dropped packets
0 best-effort 0 0 0
1 expedited-fo 0 0 0
2 assured-forw 0 0 0
3 network-cont 0 0 0
SDH alarms: None
SDH defects: None
VPI 0
Flags: Active
Total down time: 0 sec, Last down: Never
Traffic statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Logical interface at-0/2/1.0 (Index 75) (SNMP ifIndex 51) (Generation 25)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-SNAP
Traffic statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Local statistics:
Input bytes: 0
Output bytes: 0
Input packets: 0
Output packets: 0
Transit statistics:
Input bytes: 0 0 bps
Output bytes: 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps
Protocol inet, MTU: 4470, Generation: 62, Route table: 0
Flags: None
show interfaces extensive (ATM2, SDH Mode)

user@host> show interfaces at-0/2/1 extensive
Physical interface: at-0/2/1, Enabled, Physical link is Up
Interface index: 154, SNMP ifIndex: 42, Generation: 40
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SDH mode, Speed: OC3,
Loopback: None, Payload scrambler: Enabled
Device flags : Present Running
Link flags : None
CoS queues : 4 supported, 4 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:3f
Last flapped : 2006-03-24 13:29:58 PST (00:06:49 ago)
Statistics last cleared: Never
Traffic statistics:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>bytes : 0</td>
<td>0 bps</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>bytes : 0</td>
<td>0 bps</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>packets: 0</td>
<td>0 pps</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>packets: 0</td>
<td>0 pps</td>
<td></td>
</tr>
</tbody>
</table>

Input errors:
Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
Resource errors: 0

Output errors:
Carrier transitions: 3, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
Resource errors: 0

Egress queues: 4 supported, 4 in use

<table>
<thead>
<tr>
<th>Queue</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SDH alarms : None

SDH defects : None

SDH PHY:

<table>
<thead>
<tr>
<th></th>
<th>Seconds</th>
<th>Count</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Lock</td>
<td>0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>PHY Light</td>
<td>1</td>
<td>1</td>
<td>OK</td>
</tr>
</tbody>
</table>

SDH regenerator section:

	2	8828	
RS-BIP8			
OOF	2	2	OK
LOS	2	1	OK
LOF	2	1	OK
RS-ES	4		
RS-SES	3		
RS-SEFS	2		

SDH multiplex section:

| | 2 | 771 |
| MS-BIP24 | | |
MS-FEBE 1 17476
MS-FERF 2 OK
MS-AIS 2 OK
BERR-SF 0 OK
BERR-SD 0 OK
MS-ES 4
MS-SES 2
MS-UAS 0
MS-ES-FE 3
MS-SES-FE 2
MS-UAS-FE 0

SDH path:
HP-BIP8 1 6
HP-FEBE 1 251
HP-LOP 0 OK
HP-AIS 2 OK
HP-FERF 3 2 OK
HP-UNEQ 1 1 OK
HP-PLM 2 OK
HP-ES 4
HP-SES 3
HP-UAS 0
HP-ES-FE 3
HP-SES-FE 3
HP-UAS-FE 0

Received SDH overhead:
F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, C2(cmp) : 0x13, F2 : 0x00
Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00

Transmitted SDH overhead:
F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
Z4 : 0x00

ATM status:
HCS state: Sync
LOC: OK

ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0,
Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 0,
Output idle cell count: 0, Output VC queue drops: 0, Input no buffers: 0,
Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0,
Input bad CRCs: 0, Input OAM cell no buffers: 0
Packet Forwarding Engine configuration:
Destination slot: 0
VPI 0
Flags: Active
Total down time: 0 sec, Last down: Never
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-0/2/1.0 (Index 75) (SNMP ifIndex 51) (Generation 25)
Flags: Point-To-Point SNMP-Traps 0x4000 Encapsulation: ATM-SNAP
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
Protocol inet, MTU: 4470, Generation: 62, Route table: 0
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.12.6, Local: 10.0.12.5, Broadcast: Unspecified,
 Generation: 58
Protocol iso, MTU: 4470, Generation: 63, Route table: 0
Flags: None
VCI 0.128
Flags: Active
Total down time: 0 sec, Last down: Never
EPD threshold: 2129, Transmit weight cells: 0
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
Output packets: 0
Logical interface at-0/2/1.32767 (Index 76) (SNMP ifIndex 50) (Generation 26)
Flags: Point-To-Multipoint No-Multicast SNMP-Traps 0x4000
Encapsulation: ATM-VCMUX
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
VCI 0.4
Flags: Active
Total down time: 0 sec, Last down: Never
EPD threshold: 0, Transmit weight cells: 0
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

show interfaces (ATM2, SONET Mode)

user@host> show interfaces at-0/3/1

Physical interface: at-0/3/1, Enabled, Physical link is Up
 Interface index: 139, SNMP ifIndex: 67
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
 Speed: OC3, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 4 supported, 4 maximum usable queues
 Current address: 00:00:5e:00:53:5e
 Last flapped : 2006-03-13 17:46:36 PST (16:01:12 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 SONET alarms : None
 SONET defects : None
 VPI 0
Flags: Active, OAM, Shaping
CBR, Peak: 50kbps
OAM, Period 30 sec, Up count: 10, Down count: 10
Total down time: 0 sec, Last down: Never
OAM F4 cell statistics:
Total received: 4, Total sent: 4
Loopback received: 4, Loopback sent: 4
RDI received: 0, RDI sent: 0
AIS received: 0
Traffic statistics:
Input packets: 4
Output packets: 30

VPI 10
Flags: Active
Total down time: 0 sec, Last down: Never
Traffic statistics:
Input packets: 0
Output packets: 0

Logical interface at-0/3/1.0 (Index 78) (SNMP ifIndex 77)
Flags: Point-To-Point Copy-PLP-To-CLP SNMP-Traps 0x4000
Encapsulation: ATM-SNAP
Input packets: 0
Output packets: 0
Protocol inet, MTU: 4470
Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.0.59.5, Local: 10.0.59.6
Protocol iso, MTU: 4470
Flags: None
VCI 0.128
Flags: Active
Total down time: 0 sec, Last down: Never
EPD threshold: 2129, Transmit weight cells: 10
Input packets: 0
Output packets: 0

Logical interface at-0/3/1.32767 (Index 79) (SNMP ifIndex 76)
Flags: Point-To-Multipoint Copy-PLP-To-CLP No-Multicast SNMP-Traps 0x4000
Encapsulation: ATM-VCMUX
Input packets: 4
Output packets: 30
VCI 0.16
Flags: Active, ILMI
Total down time: 0 sec, Last down: Never
show interfaces brief (ATM2, SONET Mode)

user@host> show interfaces at-0/3/1 brief

Physical interface: at-0/3/1, Enabled, Physical link is Up
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
Speed: OC3, Loopback: None, Payload scrambler: Enabled
Device flags : Present Running
Link flags : None

Logical interface at-0/3/1.0
 Flags: Point-To-Point Copy-PLP-To-CLP SNMP-Traps 0x4000
 Encapsulation: ATM-SNAP
 inet 10.0.59.6 --> 10.0.59.5
 iso
 VCI 0.128
 Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 2129, Transmit weight cells: 10

Logical interface at-0/3/1.32767
 Flags: Point-To-Multipoint Copy-PLP-To-CLP No-Multicast SNMP-Traps 0x4000
 Encapsulation: ATM-VCMUX
 VCI 0.16
 Flags: Active, ILMI
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
 VCI 0.4
show interfaces detail (ATM2, SONET Mode)

user@host> show interfaces at-0/3/1 detail

Physical interface: at-0/3/1, Enabled, Physical link is Up
 Interface index: 139, SNMP ifIndex: 67, Generation: 22
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
 Speed: OC3, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 4 supported, 4 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:00:5e:00:53:5e
 Last flapped : 2006-03-13 17:46:36 PST (16:02:39 ago)
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 312, 0 bps
 Output bytes : 2952, 0 bps
 Input packets: 6, 0 pps
 Output packets: 50, 0 pps
 Egress queues: 4 supported, 4 in use
 Queue counters:
<table>
<thead>
<tr>
<th>Queue</th>
<th>Queued packets</th>
<th>Transmitted packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>44</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-fo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forw</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-cont</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>
 SONET alarms : None
 SONET defects : None

VPI 0
 Flags: Active, OAM, Shaping
 CBR, Peak: 50kbps
 OAM, Period 30 sec, Up count: 10, Down count: 10
 Total down time: 0 sec, Last down: Never
 OAM F4 cell statistics:
 Total received: 6, Total sent: 6
 Loopback received: 6, Loopback sent: 6
 Last received: 00:00:29, Last sent: 00:00:29
 RDI received: 0, RDI sent: 0
 AIS received: 0
 Traffic statistics:
Input bytes : 312
Output bytes : 2952
Input packets: 6
Output packets: 50

VPI 10
Flags: Active
Total down time: 0 sec, Last down: Never
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-0/3/1.0 (Index 78) (SNMP ifIndex 77) (Generation 20)
Flags: Point-To-Point Copy-PLP-To-CLP SNMP-Traps 0x4000
Encapsulation: ATM-SNAP
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
Protocol inet, MTU: 4470, Generation: 38, Route table: 0
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.59.5, Local: 10.0.59.6, Broadcast: Unspecified,
 Generation: 44
Protocol iso, MTU: 4470, Generation: 39, Route table: 0
 Flags: None
VCI 0.128
Flags: Active
Total down time: 0 sec, Last down: Never
EPD threshold: 2129, Transmit weight cells: 10
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Logical interface at-0/3/1.32767 (Index 79) (SNMP ifIndex 76) (Generation 21)
Flags: Point-To-Multipoint Copy-PLP-To-CLP No-Multicast SNMP-Traps 0x4000
Encapsulation: ATM-VCMUX

Traffic statistics:
Input bytes : 360
Output bytes : 3302
Input packets: 6
Output packets: 50

Local statistics:
Input bytes : 360
Output bytes : 3302
Input packets: 6
Output packets: 50

VCI 0.16
Flags: Active, ILMI
Total down time: 0 sec, Last down: Never
EPD threshold: 0, Transmit weight cells: 0

ATM per-VC transmit statistics:
Tail queue packet drops: 0

Traffic statistics:
Input bytes : 0
Output bytes : 2640
Input packets: 0
Output packets: 44

VCI 0.4
Flags: Active, OAM
OAM, Period 30 sec, Up count: 10, Down count: 10
Total down time: 0 sec, Last down: Never
EPD threshold: 2129, Transmit weight cells: 0

ATM per-VC transmit statistics:
Tail queue packet drops: 0

Traffic statistics:
Input bytes : 312
Output bytes : 312
Input packets: 6
Output packets: 6

OAM F4 cell statistics:
Total received: 6, Total sent: 6
Loopback received: 6, Loopback sent: 6
show interfaces extensive (ATM2, SONET Mode)

user@host> show interfaces at-0/3/1 extensive

Physical interface: at-0/3/1, Enabled, Physical link is Up
Interface index: 139, SNMP ifIndex: 67, Generation: 22
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
Speed: OC3, Loopback: None, Payload scrambler: Enabled
Device flags : Present Running
Link flags : None
CoS queues : 4 supported, 4 maximum usable queues
Hold-times : Up 0 ms, Down 0 ms
Current address: 00:00:5e:00:53:5e
Last flapped : 2006-03-13 17:46:36 PST (16:04:12 ago)
Statistics last cleared: Never
Traffic statistics:
 Input bytes : 520 0 bps
 Output bytes: 4240 0 bps
 Input packets: 10 0 pps
 Output packets: 72 0 pps
Input errors:
 Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0,
 L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
 Resource errors: 0
Output errors:
 Carrier transitions: 1, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
 Resource errors: 0
Egress queues: 4 supported, 4 in use
Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 62 62 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 10 10 0
SONET alarms : None
SONET defects : None
SONET PHY: Seconds Count State
 PLL Lock 0 0 OK
 PHY Light 0 0 OK
SONET section:
 BIP-B1 0 0
SEF 0 0 OK
LOS 0 0 OK
LOF 0 0 OK
ES-S 0
SES-S 0
SEFS-S 0

SONET line:
BIP-B2 0 0
REI-L 0 0
RDI-L 0 0 OK
AIS-L 0 0 OK
BERR-SF 0 0 OK
BERR-SD 0 0 OK
ES-L 0
SES-L 0
UAS-L 0
ES-LFE 0
SES-LFE 0
UAS-LFE 0

SONET path:
BIP-B3 0 0
REI-P 0 0
LOP-P 0 0 OK
AIS-P 0 0 OK
RDI-P 0 0 OK
UNEQ-P 1 1 OK
PLM-P 0 0 OK
ES-P 1
SES-P 1
UAS-P 0
ES-PFE 0
SES-PFE 0
UAS-PFE 0

Received SONET overhead:
F1 : 0x00, J0 : 0x00, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, C2(cmp) : 0x13, F2 : 0x00
Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00

Transmitted SONET overhead:
F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
S1 : 0x00, C2 : 0x13, F2 : 0x00, Z3 : 0x00
Z4 : 0x00

ATM status:
HCS state: Sync
LOC : OK
ATM Statistics:
Uncorrectable HCS errors: 0, Correctable HCS errors: 0,
Tx cell FIFO overruns: 0, Rx cell FIFO overruns: 0,
Rx cell FIFO underruns: 0, Input cell count: 0, Output cell count: 0,
Output idle cell count: 0, Output VC queue drops: 0, Input no buffers: 0,
Input length errors: 0, Input timeouts: 0, Input invalid VCs: 0,
Input bad CRCs: 0, Input OAM cell no buffers: 0

Packet Forwarding Engine configuration:
Destination slot: 0
VPI 0
 Flags: Active, OAM, Shaping
 CBR, Peak: 50kbps
 OAM, Period 30 sec, Up count: 10, Down count: 10
 Total down time: 0 sec, Last down: Never
OAM F4 cell statistics:
 Total received: 10, Total sent: 10
 Loopback received: 10, Loopback sent: 10
 Last received: 00:00:02, Last sent: 00:00:02
 RDI received: 0, RDI sent: 0
 AIS received: 0
 Traffic statistics:
 Input bytes : 520
 Output bytes : 4240
 Input packets: 10
 Output packets: 72
VPI 10
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-0/3/1.0 (Index 78) (SNMP ifIndex 77) (Generation 20)
 Flags: Point-To-Point Copy-PLP-To-CLP SNMP-Traps 0x4000
 Encapsulation: ATM-SNAP
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
Output bytes : 0
Input packets: 0
Output packets: 0

Transit statistics:
Input bytes : 0 0 bps
Output bytes : 0 0 bps
Input packets: 0 0 pps
Output packets: 0 0 pps

Protocol inet, MTU: 4470, Generation: 38, Route table: 0
Flags: None

Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.59.5, Local: 10.0.59.6, Broadcast: Unspecified,
 Generation: 44

Protocol iso, MTU: 4470, Generation: 39, Route table: 0
Flags: None

VCI 0.128
Flags: Active
 Total down time: 0 sec, Last down: Never
 EPD threshold: 2129, Transmit weight cells: 10
ATM per-VC transmit statistics:
 Tail queue packet drops: 0
Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

Logical interface at-0/3/1.32767 (Index 79) (SNMP ifIndex 76) (Generation 21)
Flags: Point-To-Multipoint Copy-PLP-To-CLP No-Multicast SNMP-Traps 0x4000
Encapsulation: ATM-VCMUX
Traffic statistics:
 Input bytes : 660
 Output bytes : 5473
 Input packets: 11
 Output packets: 83
Local statistics:
 Input bytes : 660
 Output bytes : 5473
 Input packets: 11
 Output packets: 83

VCI 0.16
Flags: Active, ILMI
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
ATM per-VC transmit statistics:
Tail queue packet drops: 0

Traffic statistics:
Input bytes : 0
Output bytes : 4320
Input packets: 0
Output packets: 72

VCI 0.4
Flags: Active, OAM
OAM, Period 30 sec, Up count: 10, Down count: 10
Total down time: 0 sec, Last down: Never
EPD threshold: 2129, Transmit weight cells: 0

ATM per-VC transmit statistics:
Tail queue packet drops: 0

Traffic statistics:
Input bytes : 572
Output bytes : 572
Input packets: 11
Output packets: 11

OAM F4 cell statistics:
Total received: 11, Total sent: 11
Loopback received: 11, Loopback sent: 11
Last received: 00:00:18, Last sent: 00:00:18
RDI received: 0, RDI sent: 0
AIS received: 0, AIS sent: 0