
Junos® OS

Ansible for Junos OS Developer Guide

Published

2023-11-17

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Ansible for Junos OS Developer Guide
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | ix

1 Disclaimer

Ansible for Junos OS Disclaimer | 2

2 Ansible Overview

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Understanding the Ansible Inventory File When Managing Junos Devices | 15

Create and Execute Ansible Playbooks to Manage Junos Devices | 17

Create a Playbook | 18

Execute the Playbook | 21

3 Install Ansible for Junos OS

Ansible for Junos OS Server Requirements | 24

Prerequisite Software | 25

Install the juniper.device Collection and the Juniper.junos Role | 25

Use the Ansible for Junos OS Docker Image | 26

Set up Ansible for Junos OS Managed Nodes | 27

Enabling NETCONF on Junos Devices | 28

Satisfy Requirements for SSHv2 Connections | 29

Configure Telnet Service on Junos Devices | 29

4 Use Ansible to Connect to Junos Devices

Connect to Junos Devices Using Ansible | 32

Connection Methods Overview | 32

Understanding Local and Persistent Ansible Connections | 34

Connect to a Device Using SSH | 36

iii

Connect to a Device Using Telnet | 38

Connect to a Device Using a Serial Console Connection | 39

Authenticate Users Executing Ansible Modules on Junos Devices | 41

Authentication Overview | 41

Understanding the Default Values for Juniper Networks Modules | 42

How to Define Authentication Parameters in the vars: Section for Local and Persistent
Connections | 44

How to Define the provider Parameter in Juniper.junos Modules | 46

How to Authenticate the User Using SSH Keys | 47

Generate and Configure the SSH Keys | 47

Use SSH Keys in Ansible Playbooks | 48

How to Authenticate the User Using a Playbook or Command-Line Password Prompt | 50

How to Authenticate the User Using an Ansible Vault-Encrypted File | 52

How to Authenticate Through a Console Server | 54

5 Use Ansible to Manage Device Operations

Use Ansible to Retrieve Facts from Junos Devices | 57

Use Ansible to Execute Commands and RPCs on Junos Devices | 60

How to Execute Commands with the Juniper Networks Modules | 61

How to Execute RPCs with the Juniper Networks Modules | 62

Understanding the Module Response | 64

How to Specify the Format for the Command or RPC Output | 64

How to Save the Command or RPC Output to a File | 66

Use Ansible with Junos PyEZ Tables to Retrieve Operational Information from Junos
Devices | 69

Module Overview | 69

Understanding Junos PyEZ Tables | 70

How to Use the Juniper Networks Ansible Modules with Junos PyEZ Tables | 71

Specify RPC Arguments | 73

iv

Use Ansible to Halt, Reboot, or Shut Down Junos Devices | 75

Use Ansible to Halt, Reboot, or Shut Down Devices | 76

How to Perform a Halt, Reboot, or Shut Down with a Delay or at a Specified Time | 77

How to Specify the Target Routing Engine | 78

How to Reboot a VM Host | 80

Example: Use Ansible to Reboot Junos Devices | 81

Requirements | 81

Overview | 81

Configuration | 82

Execute the Playbook | 86

Verification | 87

Use Ansible to Install Software on Junos Devices | 88

Use Ansible to Install Software | 89

How to Specify the Software Image Location | 90

Installation Process Overview | 92

How to Specify Timeout Values | 94

How to Specify Installation Options That Do Not Have an Equivalent Module Argument | 94

How to Perform a VM Host Upgrade | 95

How to Perform a Unified ISSU or NSSU | 96

Example: Use Ansible to Install Software | 97

Requirements | 98

Overview | 98

Configuration | 99

Execute the Playbook | 102

Verification | 103

Use Ansible to Restore a Junos Device to the Factory-Default Configuration Settings | 106

How to Use Ansible to Restore the Factory-Default Configuration Settings | 106

Example: Use Ansible to Restore the Factory-Default Configuration Settings | 109

Requirements | 109

Overview | 109

v

Configuration | 110

Execute the Playbook | 113

Verification | 114

Use Junos Snapshot Administrator in Python (JSNAPy) in Ansible Playbooks | 115

Module Overview | 116

Take and Compare Snapshots | 120

Perform Snapcheck Operations | 122

Understanding the jsnapy and juniper_junos_jsnapy Module Output | 123

Enable the jsnapy Callback Plugin | 125

Example: Use Ansible to Perform a JSNAPy Snapcheck Operation | 126

Requirements | 127

Overview | 127

Configuration | 129

Execute the Playbook | 139

Verification | 141

Troubleshoot Ansible Playbook Errors | 142

6 Use Ansible to Manage the Configuration

Use Ansible to Retrieve or Compare Junos OS Configurations | 146

How to Specify the Source Database for the Configuration Data | 147

How to Specify the Scope of the Configuration Data to Return | 148

How to Specify the Format of the Configuration Data to Return | 150

How to Retrieve Configuration Data for Third-Party YANG Data Models | 151

How to Specify Options That Do Not Have an Equivalent Module Argument | 153

How to Save Configuration Data To a File | 154

How to Compare the Active Configuration to a Previous Configuration | 156

Use Ansible to Configure Junos Devices | 159

Module Overview | 160

How to Specify the Configuration Mode | 161

How to Specify the Load Action | 163

vi

How to Specify the Format of the Configuration Data to Load | 164

How to Load Configuration Data as Strings | 165

How to Load Configuration Data from a Local or Remote File | 167

How to Load Configuration Data Using a Jinja2 Template | 169

How to Load the Rescue Configuration | 172

How to Roll Back the Configuration | 173

How to Commit the Configuration | 174

How to Ignore Warnings When Configuring Devices | 177

Example: Use Ansible to Configure Junos Devices | 178

Requirements | 179

Overview | 179

Configuration | 180

Execute the Playbook | 182

Verification | 183

Troubleshoot Playbook Errors | 184

7 Troubleshoot Ansible for Junos OS

Ansible for Junos OS Troubleshooting Summary | 188

Troubleshoot Junos PyEZ (junos-eznc) Install Errors for Ansible Modules | 191

Troubleshoot Ansible Collection, Role, and Module Errors When Managing Junos
Devices | 193

Troubleshoot Ansible Connection Errors When Managing Junos Devices | 196

Troubleshoot Failed or Invalid Connection Errors | 196

Troubleshoot Unknown Host Errors | 198

Troubleshoot Refused Connection Errors | 199

Troubleshoot Ansible Authentication Errors When Managing Junos Devices | 200

Troubleshoot ConnectAuthError Issues | 201

Troubleshoot Attribute conn_type Errors | 202

Troubleshoot Ansible Errors When Configuring Junos Devices | 204

vii

Troubleshoot Configuration Timeout Errors | 204

Troubleshoot Configuration Lock Errors | 205

Troubleshoot Configuration Load Errors | 207

Troubleshoot Commit Errors | 208

viii

About This Guide

Use this guide to automate the provisioning and management of Junos devices with Ansible software.

RELATED DOCUMENTATION

Ansible for Junos OS Module Documentation

Junos PyEZ API Documentation

ix

http://junos-ansible-modules.readthedocs.org/
http://junos-pyez.readthedocs.org/

1
CHAPTER

Disclaimer

Ansible for Junos OS Disclaimer | 2

Ansible for Junos OS Disclaimer

Use of the Ansible for Junos OS software implies acceptance of the terms of this disclaimer, in addition
to any other licenses and terms required by Juniper Networks.

Juniper Networks is willing to make the Ansible for Junos OS software available to you only upon the
condition that you accept all of the terms contained in this disclaimer. Please read the terms and
conditions of this disclaimer carefully.

The Ansible for Junos OS software is provided as is. Juniper Networks makes no warranties of any kind
whatsoever with respect to this software. All express or implied conditions, representations and
warranties, including any warranty of non-infringement or warranty of merchantability or fitness for a
particular purpose, are hereby disclaimed and excluded to the extent allowed by applicable law.

In no event will Juniper Networks be liable for any direct or indirect damages, including but not limited
to lost revenue, profit or data, or for direct, special, indirect, consequential, incidental or punitive
damages however caused and regardless of the theory of liability arising out of the use of or inability to
use the software, even if Juniper Networks has been advised of the possibility of such damages.

2

2
CHAPTER

Ansible Overview

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Understanding the Ansible Inventory File When Managing Junos Devices | 15

Create and Execute Ansible Playbooks to Manage Junos Devices | 17

Understanding Ansible for Junos OS

SUMMARY

You can use Ansible to deploy and manage Junos
devices.

IN THIS SECTION

Ansible for Junos OS Overview | 4

Benefits of Ansible and Ansible for Junos
OS | 5

Additional Resources | 5

Ansible for Junos OS Overview

Ansible is an IT automation framework that is used for infrastructure configuration management. Ansible
supports automating the network infrastructure in addition to the compute and cloud infrastructure, and
Juniper Networks supports using Ansible to manage Junos devices. You can use Ansible to perform
operational and configuration tasks on Junos devices, including retrieving information, managing the
configuration, installing and upgrading Junos OS, and resetting, rebooting, or shutting down managed
devices.

Ansible comes in several varieties. You can use the following applications to manage Junos devices:

• Ansible Core—Free, open-source, base version of Ansible

• Red Hat Ansible Tower—Commercial application that is a superset of Ansible Core with additional
features such as a visual dashboard, role-based access control, job scheduling, and graphical
inventory management

• AWX—Open-source upstream project for Ansible Tower

Ansible uses a client-server architecture. You install the Ansible software on the control node, which is a
Unix-like system that performs operations on one or more managed nodes. Ansible uses an agentless
architecture and thus does not require installing any Ansible-specific software on the managed devices.
Although Ansible typically requires Python on the managed nodes, it is not required to manage Junos
devices. Instead, Ansible for Junos OS requires all tasks to run locally on the Ansible control node and
uses the Junos XML API over NETCONF to interface with Junos devices.

Ansible typically uses a push model in which the server sends state information to the managed nodes
on demand. Ansible modules, which are discrete units of code, perform the requested functions on a
node. The managed node executes the job and returns the result to the server. In general, Ansible

4

modules are idempotent such that executing the same playbook or operation multiple times yields the
same result, because the modules only apply a change if it’s required.

Juniper Networks and Ansible provide modules that enable you to manage Junos devices. The Juniper
Networks modules are distributed through collections or roles, depending on the Ansible release. For
more information about the available collections, roles, and modules, see "Understanding the Ansible for
Junos OS Collections, Roles, and Modules" on page 7.

Ansible is written in Python, but it uses simple YAML syntax to express automation jobs. Thus, Ansible
users can get started quickly, because they do not require extensive knowledge of Python to use
Ansible. Ansible also leverages the Jinja2 templating language to enable dynamic expressions and access
to variables.

Benefits of Ansible and Ansible for Junos OS

• Use a simple, easy-to-learn syntax

• Accelerate the time to deploy new network devices and applications

• Provide an efficient and scalable solution for managing large numbers of devices

• Increase operational efficiency by automating tasks and reducing the manual configuration and
management of devices

• Minimize risk and errors through standardization

• Improve change management processes

• Use an agentless architecture

Additional Resources

This documentation assumes that the reader is familiar with the Ansible framework. Table 1 on page 6
provides resources for using Ansible to manage Junos devices.

5

Table 1: Ansible for Junos OS Resources

Resource Description URL

Ansible for Junos OS
documentation

Documentation detailing how to use
Ansible to manage Junos devices.

https://www.juniper.net/documentation/
product/en_US/ansible-for-junos-os

Ansible for Junos OS
modules overview

Documentation that outlines the
different modules available for
managing Junos devices.

"Understanding the Ansible for Junos OS
Collections, Roles, and Modules" on page
7

Ansible Galaxy Ansible Galaxy website and Juniper
Networks Ansible Galaxy content

https://galaxy.ansible.com

https://galaxy.ansible.com/ui/namespaces/
juniper/

Ansible website and
documentation

Official Ansible website and
documentation.

https://www.ansible.com

https://docs.ansible.com/

GitHub repository Public repository for the Ansible for
Junos OS project. This repository
includes the most current source code,
installation instructions, and release
note summaries for all releases.

https://github.com/Juniper/ansible-junos-
stdlib/

Google Groups forum Forum that addresses questions and
provides general support for Ansible
for Junos OS.

http://groups.google.com/group/junos-
python-ez

Juniper Networks
juniper.device
collection

Download site, API reference
documentation, and sample playbooks
for the Juniper Networks
juniper.device collection.

https://galaxy.ansible.com/ui/repo/
published/juniper/device/

https://ansible-juniper-
collection.readthedocs.io/en/latest/

https://github.com/Juniper/ansible-junos-
stdlib/tree/master/Samples

6

https://www.juniper.net/documentation/product/en_US/ansible-for-junos-os
https://www.juniper.net/documentation/product/en_US/ansible-for-junos-os
https://galaxy.ansible.com
https://galaxy.ansible.com/ui/namespaces/juniper/
https://galaxy.ansible.com/ui/namespaces/juniper/
https://www.ansible.com
https://docs.ansible.com/
https://github.com/Juniper/ansible-junos-stdlib/
https://github.com/Juniper/ansible-junos-stdlib/
http://groups.google.com/group/junos-python-ez
http://groups.google.com/group/junos-python-ez
https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/
https://ansible-juniper-collection.readthedocs.io/en/latest/
https://github.com/Juniper/ansible-junos-stdlib/tree/master/Samples
https://github.com/Juniper/ansible-junos-stdlib/tree/master/Samples

Table 1: Ansible for Junos OS Resources (Continued)

Resource Description URL

Juniper Networks
Juniper.junos role

Download site and API reference
documentation for the Juniper
Networks Juniper.junos role.

https://galaxy.ansible.com/ui/standalone/
roles/juniper/junos/

https://junos-ansible-
modules.readthedocs.io/en/latest/

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Ansible for Junos OS Server Requirements | 24

Set up Ansible for Junos OS Managed Nodes | 27

Create and Execute Ansible Playbooks to Manage Junos Devices | 17

Understanding the Ansible for Junos OS Collections,
Roles, and Modules

SUMMARY

Juniper Networks provides Ansible modules that you
can use to manage Junos devices.

IN THIS SECTION

Understanding Ansible Collections, Roles, and
Modules for Managing Junos Devices | 8

How to Execute Modules on Junos
Devices | 9

Juniper Networks juniper.device
Collection | 12

Juniper Networks Juniper.junos Role | 13

7

https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/
https://junos-ansible-modules.readthedocs.io/en/latest/

Understanding Ansible Collections, Roles, and Modules for Managing
Junos Devices

Ansible is an IT automation framework that is used for infrastructure configuration management. You
use Ansible modules, which are discrete units of code, to perform specific functions on a managed node.
You can execute individual modules on remote hosts to perform ad-hoc tasks, or you can execute
modules through playbooks.

Ansible and Juniper Networks provide Ansible modules that you can use to manage Junos devices. The
Juniper Networks Ansible modules are grouped and distributed through Ansible roles and collections,
which are hosted in the Ansible Galaxy repository. Table 2 on page 8 outlines the different content
sets available for managing Junos devices.

Table 2: Ansible Content Sets for Managing Junos Devices

Content Set Description Ansible Releases

Ansible core modules Ansible modules included in the Ansible base installation.

In Ansible 2.10, the core modules moved from the base
installation into Ansible’s junipernetworks.junos collection.

Ansible 2.1
through Ansible
2.9

juniper.device collection Collection for managing Junos devices, which Juniper
Networks provides and manages as an open-source
project.

Ansible 2.10 and
later

Juniper.junos role Role for managing Junos devices, which Juniper Networks
provides, maintains, and supports.

This role is superseded by the juniper.device collection.

Ansible 2.1 and
later

junipernetworks.junos
collection

Collection for managing Junos devices, which Ansible
provides, maintains, and supports.

Ansible 2.10 and
later

An Ansible role is a set of tasks and supporting variables, files, templates, and modules for configuring a
host. Starting in Ansible 2.10, Ansible supports Ansible Content Collections, a format for distributing
Ansible content that is not included as part of the Ansible base installation. Ansible collections can
include a wider range of content, including modules, playbooks, plugins, and roles. Ansible collections
also have their own repositories and can be developed and released independently from the Ansible
base installation.

8

https://galaxy.ansible.com
https://docs.ansible.com/ansible/2.9/modules/list_of_network_modules.html#junos
https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://galaxy.ansible.com/ui/repo/published/junipernetworks/junos/

In Ansible 2.9 and earlier, you can manage Junos devices by using the modules provided in the Juniper
Networks Juniper.junos role or by using the core modules provided as part of the Ansible base
installation. Starting in Ansible 2.10, the Juniper.junos role and the Ansible core modules are superseded
by the corresponding collection. With the introduction of Juniper Networks’ juniper.device collection, the
modules in the Juniper.junos role were duplicated under new names in the collection and thus retain the
same functionality and parameters as the original modules, with the exception of the provider parameter.
Although the Juniper.junos role can coexist with the juniper.device collection and will work in later
releases, we recommend that you use the juniper.device collection, because new features are only being
added to the collection going forward.

How to Execute Modules on Junos Devices

To use collections and roles that are hosted in the Ansible Galaxy repository, you must first install
Ansible on the control node and then install the collection or role. For more information about installing
the juniper.device collection or Juniper.junos role, see "Ansible for Junos OS Server Requirements" on page
24.

Ansible modules can perform operations on a managed node. Typically, the Ansible control node sends a
module to a managed node, where it is executed and then removed. In this scenario, the managed node
must have the ability to execute the module. Because most Ansible modules are written in Python,
Ansible typically requires Python on the managed node.

The Juniper Networks modules in the juniper.device collection and the Juniper.junos role, however, do not
require Python on the managed nodes. In contrast to the typical operation, you execute the modules
locally on the Ansible control node, and the modules use Junos PyEZ and the Junos XML API over
NETCONF to interface with the managed node. This method of execution enables you to use Ansible to
manage any supported Junos device. Figure 1 on page 10 illustrates the communication between the
Ansible control node and a managed Junos device.

9

Figure 1: Ansible Communication with a Junos Device

To use the modules in the juniper.device collection or the Juniper.junos role, the playbook or command
must:

• Specify the collection or role—To specify the collection or role, include the collections or roles key in
the play. Alternatively, you can omit the collections key and instead reference collection content by its
fully qualified collection name (FQCN), which is the recommended method.

• Execute the modules locally on the control node—To run Ansible modules locally, you define the
connection parameter as local, for example, by including connection: local in your playbook or including
--connection local on the command line.

NOTE: When you use connection: local, Ansible establishes a separate connection to the
device for each task in the play that requires a connection. The juniper.device collection
modules also support using connection: juniper.device.pyez, which still executes the modules
locally but instead establishes a single, persistent connection to a device for all tasks in a play.

• Provide appropriate connection and authentication information to connect to the managed device—
For more information, see:

• "Connect to Junos Devices Using Ansible" on page 32

• "Authenticate Users Executing Ansible Modules on Junos Devices" on page 41

You can execute Ansible modules using any user account that has access to the managed Junos device.
When you execute Ansible modules, Junos OS user account access privileges are enforced, and the class
configured for the Junos OS user account determines the permissions. Thus, if a user executes a module

10

that loads configuration changes onto a device, the user must have permissions to change the relevant
portions of the configuration.

The following playbook executes the juniper.device collection’s facts module to retrieve the device facts
and save them to a file. The example uses existing SSH keys in the default location to authenticate with
the device and thus does not explicitly provide credentials in the playbook.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Retrieve facts from a Junos device
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

Similarly, the following playbook executes the Juniper.junos role’s juniper_junos_facts module to perform
the same operation.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no
 roles:
 - Juniper.junos

 tasks:
 - name: Retrieve facts from a Junos device
 juniper_junos_facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

11

You can also perform ad-hoc operations on the command line. The following command executes the
juniper.device collection’s facts module and retrieves device facts from hosts in inventory group dc1.

user@host$ ansible --connection local -i production dc1 -m juniper.device.facts

Juniper Networks juniper.device Collection

Juniper Networks provides the juniper.device Ansible Content Collection, which is hosted on the Ansible
Galaxy website and includes Ansible modules that enable you to manage Junos devices.

Table 3 on page 12 outlines the modules in the juniper.device collection. In the collection’s initial
release, the collection modules retain the same functionality and parameters as the corresponding
module in the Juniper.junos role, with the exception of the provider parameter, which is not supported for
the collection modules.

For the most current list, documentation, and usage examples for the modules, see https://ansible-
juniper-collection.readthedocs.io/en/latest/.

Table 3: juniper.device Collection Modules

juniper.device Module
Name

Description

command Execute CLI commands on the Junos device and save the output locally.

config Manage the configuration of Junos devices.

facts Retrieve device-specific information from the remote host, including the Junos OS
version, serial number, and hardware model number.

jsnapy Execute Junos Snapshot Administrator in Python (JSNAPy) tests from Ansible.

ping Execute the ping command on Junos devices.

pmtud Perform path MTU discovery on Junos devices.

12

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://galaxy.ansible.com
https://galaxy.ansible.com
https://ansible-juniper-collection.readthedocs.io/en/latest/
https://ansible-juniper-collection.readthedocs.io/en/latest/

Table 3: juniper.device Collection Modules (Continued)

juniper.device Module
Name

Description

rpc Execute Junos OS RPCs.

software Install a Junos OS software package and reboot a Junos device.

system Perform system operations on Junos devices, including resetting, rebooting, or
shutting down the device.

srx_cluster Create an SRX Series chassis cluster for cluster-capable SRX Series Firewalls.

table Use Junos PyEZ operational Tables and Views to retrieve operational information
from Junos devices.

Juniper Networks Juniper.junos Role

Juniper Networks provides the Juniper.junos Ansible role, which is hosted on the Ansible Galaxy website
and includes Ansible modules that enable you to manage Junos devices. Starting in Ansible 2.10, the
juniper.device collection supersedes the Juniper.junos role. The modules in the collection have the same
functionality and parameters as the modules in the role, with the exception of the provider parameter.
Although the collection and role can coexist on the same platform and you can continue to use the
Juniper.junos modules in later releases, we recommend that you use the juniper.device collection, because
new features are only being added to the collection going forward.

Table 4 on page 14 summarizes the modules in the Juniper.junos role. For the most current list,
documentation, and usage examples for the modules, see https://junos-ansible-
modules.readthedocs.io/en/latest/.

NOTE: Starting in Juniper.junos Release 2.0.0, the Juniper.junos role includes an enhanced set of
modules. Each new module replaces the functionality of one or more existing modules. The
enhanced modules support a common set of connection and authentication parameters, aliases

13

https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://galaxy.ansible.com
https://junos-ansible-modules.readthedocs.io/en/latest/
https://junos-ansible-modules.readthedocs.io/en/latest/

that enable you to specify the same connection and authentication-related options as the core
modules, and the ability to specify the parameters inside a provider dictionary.

Table 4: Juniper.junos Role Modules

Module Name Description Deprecated Modules as of
Release 2.0.0

juniper_junos_command Execute CLI commands on the Junos device and
save the output locally.

junos_cli

juniper_junos_config Manage the configuration of Junos devices. junos_commit

junos_get_config

junos_install_config

junos_rollback

juniper_junos_facts Retrieve device-specific information from the
remote host, including the Junos OS version, serial
number, and hardware model number.

junos_get_facts

juniper_junos_jsnapy Execute Junos Snapshot Administrator in Python
(JSNAPy) tests from Ansible.

junos_jsnapy

juniper_junos_ping Execute the ping command on Junos devices. junos_ping

juniper_junos_pmtud Perform path MTU discovery on Junos devices. junos_pmtud

juniper_junos_rpc Execute Junos OS RPCs. junos_rpc

juniper_junos_software Install a Junos OS software package and reboot a
Junos device.

junos_install_os

juniper_junos_system Perform system operations on Junos devices,
including resetting, rebooting, or shutting down the
device.

junos_shutdown

junos_zeroize

14

Table 4: Juniper.junos Role Modules (Continued)

Module Name Description Deprecated Modules as of
Release 2.0.0

juniper_junos_srx_cluster Create an SRX Series chassis cluster for cluster-
capable SRX Series Firewalls.

junos_srx_cluster

juniper_junos_table Use Junos PyEZ operational Tables and Views to
retrieve operational information from Junos
devices.

junos_get_table

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the Juniper.junos role includes an enhanced set of modules.

RELATED DOCUMENTATION

Understanding Ansible for Junos OS | 4

Authenticate Users Executing Ansible Modules on Junos Devices | 41

Connect to Junos Devices Using Ansible | 32

Understanding the Ansible Inventory File When
Managing Junos Devices

The Ansible inventory file defines the hosts and groups of hosts upon which commands, modules, and
tasks in a playbook operate. The file can be in one of many formats depending on your Ansible
environment and plugins. Common formats include INI and YAML. The default location for the inventory
file is /etc/ansible/hosts. You can also create project-specific inventory files in alternate locations.

The inventory file can list individual hosts or user-defined groups of hosts. This enables you to define
groups of Junos devices with similar roles upon which to perform the same operational and
configuration tasks. For example, if you are managing one or more data centers, you can create Ansible

15

groups for those switches that require the same set of operations, such as upgrading Junos OS and
rebooting the device.

In order to manage Junos devices using Ansible, you must have a Junos OS login account with
appropriate access privileges on each device where Ansible modules are executed. You must ensure that
usernames and passwords or access keys exist for each host in the file.

The following INI-formatted sample inventory file defines an individual host, host1, and two groups of
hosts, routers and switches:

host1.example.net

[routers]
router1.example.net
router2.example.net

[switches]
switch1.example.net
switch2.example.net

For more information about the Ansible inventory file, see the official Ansible documentation at https://
docs.ansible.com/ansible/latest/user_guide/intro_inventory.html .

RELATED DOCUMENTATION

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Authenticate Users Executing Ansible Modules on Junos Devices | 41

Create and Execute Ansible Playbooks to Manage Junos Devices | 17

Troubleshoot Ansible Connection Errors When Managing Junos Devices | 196

16

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Create and Execute Ansible Playbooks to Manage
Junos Devices

SUMMARY

You can create Ansible playbooks that execute
Juniper Networks modules to perform operational
and configuration tasks on Junos devices.

IN THIS SECTION

Create a Playbook | 18

Execute the Playbook | 21

Juniper Networks supports using Ansible to manage Junos devices, and Ansible and Juniper Networks
provide Ansible modules that enable you to perform operational and configuration tasks on the devices.
This topic outlines how to create a simple Ansible playbook to execute Juniper Networks modules on
Junos devices.

You create Ansible playbooks to handle more complex management tasks. Playbooks consist of one or
more plays, or groups of tasks, that operate on a set of defined hosts. Ansible hosts that are referenced
in the playbook must be defined in the Ansible inventory file, which by default resides at /etc/ansible/
hosts. Each play must specify:

• The hosts on which the tasks operate

• The list of tasks to execute on each host

• Any required variables or module parameters, including authentication parameters, if these are not
defined elsewhere

The Juniper Networks Ansible modules are distributed through the juniper.device collection and the
Juniper.junos role, which are hosted on Ansible Galaxy. To use the Juniper Networks modules in your
playbook, you must install the collection or role on the Ansible control node. For more information
about the Juniper Networks collection, role, and modules, see "Understanding the Ansible for Junos OS
Collections, Roles, and Modules" on page 7.

The Juniper Networks modules do not require Python on Junos devices, because they use Junos PyEZ
and the Junos XML API over NETCONF to interface with the device. Therefore, to perform operations
on Junos devices, you must run modules locally on the Ansible control node, where Python is installed.
You can run the modules locally by including connection: local in the playbook play. When you use
connection: local, Ansible establishes a separate connection to the host for each task in the play that
requires a connection. The juniper.device collection modules also support connection: juniper.device.pyez,
which still executes the modules locally on the Ansible control node but instead establishes a
connection to the host that persists over the execution of all tasks in a play.

17

https://galaxy.ansible.com

By default, Ansible plays automatically gather system facts from the remote host. However, when you
execute the plays locally, Ansible gathers the facts from the Ansible control node instead of the remote
host. To avoid gathering facts for the control node, include gather_facts: no in the playbook.

When you execute the Juniper Networks modules using a NETCONF session over SSH, which is the
default, you must have NETCONF enabled on the Junos device. We recommend that you create a
simple task in the playbook that explicitly tests whether NETCONF is enabled on each device before
executing other tasks. If this task fails for any host, by default, Ansible does not execute the remaining
tasks for this host. Without this test, you might get a generic connection error during playbook
execution that does not indicate whether this or another issue is the cause of any failures.

Playbooks are expressed in YAML. Because YAML is white-space sensitive and indentation is significant,
you should always use spaces rather than tabs when creating playbooks. In YAML, items preceded by a
hyphen (-) are considered list items, and the key: value notation represents a hash. For detailed
information about creating Ansible playbooks, refer to the official Ansible documentation at https://
docs.ansible.com/ansible/latest/user_guide/playbooks.html .

The following sections outline the steps for creating and running a simple playbook that executes
Ansible modules on a Junos device.

Create a Playbook

To create a simple playbook to perform tasks on Junos devices:

1. In your favorite editor, create a new file with a descriptive playbook name that uses the .yaml file
extension.

2. Include three dashes to indicate the start of the YAML document.

3. Provide a descriptive name for the play.

- name: Get Device Facts

4. Define a colon-delimited list of the hosts or groups of hosts on which the modules will operate, or
specify all to indicate all hosts in the inventory file.

18

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

Any hosts or groups referenced in the playbook must be defined in the Ansible inventory file.

- name: Get Device Facts
 hosts: dc1

5. Instruct Ansible to execute the play’s tasks locally on the Ansible control node where Python is
installed because there is no requirement for Python on Junos devices.

• Include connection: local to execute tasks locally but establish a separate connection to the host
for each task in the play that requires a connection.

- name: Get Device Facts
 hosts: dc1
 connection: local

• Include connection: juniper.device.pyez to execute tasks locally but establish a persistent
connection to the host that persists over the execution of all tasks in the play. This connection
type is only supported by the juniper.device collection modules.

- name: Get Device Facts
 hosts: dc1
 connection: juniper.device.pyez

The remaining steps use connection: local. To use the juniper.device collection modules with a
persistent connection, update the final playbook to use connection: juniper.device.pyez.

6. (Optional) Include gather_facts: no to avoid gathering facts for the target host, which for local
connections is the Ansible control node.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

7. Reference the juniper.device collection or the Juniper.junos role, as appropriate for your Ansible
setup.

19

• On Ansible control nodes running Ansible 2.10 or later that have the juniper.device collection
installed, the recommended method is to omit the collections key and instead reference
collection content by its fully qualified collection name (FQCN).

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

• On Ansible control nodes that have the Juniper.junos role installed, include the role.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no
 roles:
 - Juniper.junos

The remaining steps use the juniper.device collection and module names. To use the Juniper.junos
role, update the final playbook to use the role and role module names.

8. Define a tasks section, and include one or more tasks as list items.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:

9. (Optional) As an additional check, create a task to verify NETCONF connectivity for each Junos
device.

- name: Get Device Facts
 hosts: dc1
 connection: local

20

 gather_facts: no

 tasks:
 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 830
 timeout: 5

10. Create tasks that use the Juniper Networks modules, and provide any necessary connection and
authentication parameters.

This example uses existing SSH keys in the default location and does not explicitly provide
credentials for the facts module in the playbook.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 830
 timeout: 5

 - name: Retrieving information from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}/output"

 - name: Print version
 debug:
 var: junos.version

11. (Optional) Define additional plays as needed by repeating steps 3 through 10.

Execute the Playbook

To execute the playbook:

21

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~$ ansible-playbook junos-get-facts.yaml

PLAY [Get Device Facts] ***

TASK [Checking NETCONF connectivity] **************************************
ok: [dc1a.example.net]

TASK [Retrieving information from Junos devices] ***************
ok: [dc1a.example.net]

TASK [Print version] **
ok: [dc1a.example.net] => {
 "junos.version": "19.4R1.10"
}

PLAY RECAP **
dc1a.example.net : ok=3 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

RELATED DOCUMENTATION

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Understanding the Ansible Inventory File When Managing Junos Devices | 15

Authenticate Users Executing Ansible Modules on Junos Devices | 41

22

3
CHAPTER

Install Ansible for Junos OS

Ansible for Junos OS Server Requirements | 24

Set up Ansible for Junos OS Managed Nodes | 27

Ansible for Junos OS Server Requirements

IN THIS SECTION

Prerequisite Software | 25

Install the juniper.device Collection and the Juniper.junos Role | 25

Use the Ansible for Junos OS Docker Image | 26

Juniper Networks supports using Ansible to manage Junos devices and provides Ansible modules that
you can use to perform operational and configuration tasks on the devices. The Juniper Networks
modules are distributed through the following Ansible collections and roles that are hosted on the
Ansible Galaxy website:

• juniper.device collection

• Juniper.junos role

Ansible supports Ansible Content Collections, or collections, starting in Ansible 2.10. With the
introduction of the juniper.device collection, the modules in the Juniper.junos role were duplicated under
new names in the collection and thus retain the same functionality and parameters as the original
modules, with the exception of the provider parameter. Although the Juniper.junos role can coexist with
the juniper.device collection and will work in later releases, new features are only being added to the
juniper.device collection going forward.

You install Ansible on a control node with a Unix-like operating system. You can install Ansible and the
Juniper Networks collection or role directly on the control node or you can use a Docker container. The
Juniper Networks juniper/pyez-ansible Docker image is a lightweight, self-contained system that
bundles Ansible, the Juniper Networks modules, and all dependencies into a single portable container.
The Docker container enables you to quickly run Ansible in interactive mode or as an executable
package on any platform that supports Docker.

To manually install Ansible, the juniper.device collection or Juniper.junos role, and any prerequisite
software on the Ansible control node, see the following sections:

• "Prerequisite Software" on page 25

• "Install the juniper.device Collection and the Juniper.junos Role" on page 25

To use the Ansible for Junos OS Docker image, see the following section:

24

https://galaxy.ansible.com
https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://hub.docker.com/r/juniper/pyez-ansible/tags/

• "Use the Ansible for Junos OS Docker Image" on page 26

Prerequisite Software

Before you install the Juniper Networks juniper.device collection or Juniper.junos role and begin using
Ansible to manage Junos devices, ensure that the Ansible control node has the following software
installed:

• Python 3.7 or later (Recommended version is Python 3.8)

• Ansible 2.5 or later (Ansible 2.10 or later is required to use Ansible collections)

• Junos PyEZ (junos-eznc) Release 2.6.0 or later.

For installation instructions and current information about Junos PyEZ, see:

• Junos PyEZ documentation

• Junos PyEZ GitHub repository

• The jxmlease Python module.

• The xmltodict Python module (required for the juniper.device collection).

• Junos Snapshot Administrator in Python (JSNAPy) Release 1.3.6 or later (required to use the jsnapy
and juniper_junos_jsnapy modules).

For installation instructions and current information about JSNAPy, see:

• JSNAPy GitHub repository

• Junos Snapshot Administrator in Python Documentation

Install the juniper.device Collection and the Juniper.junos Role

Ansible control nodes running Ansible 2.9 or earlier only support installing the Juniper.junos role. On
Ansible control nodes running Ansible 2.10 or later, you can install and use the juniper.device collection
or the Juniper.junos role. However, we recommend migrating playbooks to use the collection.

25

https://www.juniper.net/documentation/product/en_US/junos-pyez
https://github.com/Juniper/py-junos-eznc
https://pypi.org/project/jxmlease/
https://pypi.org/project/xmltodict/
https://github.com/Juniper/jsnapy#installation
https://www.juniper.net/documentation/en_US/junos-snapshot1.0/information-products/pathway-pages/product/1.0/index-python.html

• To install the juniper.device collection from the Ansible Galaxy website, issue the ansible-galaxy
collection install command and specify the juniper.device collection.

user@ansible-cn:~$ ansible-galaxy collection install juniper.device
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Installing 'juniper.device:1.0.0' to '/home/user/.ansible/collections/ansible_collections/
juniper/device'
Downloading https://galaxy.ansible.com/download/juniper-device-1.0.0.tar.gz to /home/
user/.ansible/tmp/ansible-local-23916uzdfbjsk/tmp4nhxnw3v
juniper.device (1.0.0) was installed successfully

• To install the Juniper.junos role from the Ansible Galaxy website, issue the ansible-galaxy install
command and specify the Juniper.junos role.

user@ansible-cn:~$ sudo ansible-galaxy install Juniper.junos
- downloading role 'junos', owned by Juniper
- downloading role from https://github.com/Juniper/ansible-junos-stdlib/archive/2.4.3.tar.gz
- extracting Juniper.junos to /etc/ansible/roles/Juniper.junos
- Juniper.junos (2.4.3) was installed successfully

Use the Ansible for Junos OS Docker Image

Docker is a software container platform that is used to package and run an application and its
dependencies in an isolated container. Juniper Networks provides Docker images, which are
automatically built for every new release of the Juniper Networks modules. The Docker image includes
Python 3, Ansible, Junos PyEZ, the Juniper.junos role and the juniper.device collection (depending on the
release), and Junos Snapshot Administrator in Python along with any required dependencies. You can
run the container in interactive mode or use the container as an executable to run your playbooks.

To use the Ansible for Junos OS Docker image on your Ansible control node:

1. Install Docker.

See the Docker website at https://www.docker.com for instructions on installing and configuring
Docker on your specific operating system.

2. Download the juniper/pyez-ansible Docker image from Docker Hub.

26

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://hub.docker.com/r/juniper/pyez-ansible/tags/
https://www.docker.com
https://hub.docker.com/r/juniper/pyez-ansible/tags/

• To download the latest image, issue the following command:

user@host:~$ docker pull juniper/pyez-ansible

NOTE: The latest Ansible for Junos OS Docker image is built using the most recently
committed code in the Juniper/ansible-junos-stdlib GitHub source repository, which is
under active development and might not be stable.

• To download a specific image, append the appropriate release tag to the image name, for example,
2.0.0.

user@host:~$ docker pull juniper/pyez-ansible:tag

3. Run the container.

For instructions on running the container, see the official usage examples at https://github.com/
Juniper/ansible-junos-stdlib/blob/master/README.md#docker.

RELATED DOCUMENTATION

Set up Ansible for Junos OS Managed Nodes | 27

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Set up Ansible for Junos OS Managed Nodes

IN THIS SECTION

Enabling NETCONF on Junos Devices | 28

Satisfy Requirements for SSHv2 Connections | 29

Configure Telnet Service on Junos Devices | 29

27

https://github.com/Juniper/ansible-junos-stdlib
https://github.com/Juniper/ansible-junos-stdlib/blob/master/README.md#docker
https://github.com/Juniper/ansible-junos-stdlib/blob/master/README.md#docker

Juniper Networks supports using Ansible to manage Junos devices and provides Ansible modules that
you can use to perform operational and configuration tasks on the devices. You do not need to install
any client software on the remote nodes in order to use Ansible to manage the devices. Also, Python is
not required on the managed Junos devices, because the Juniper Networks modules are executed locally
on the Ansible control node and use Junos PyEZ and the Junos XML API over NETCONF to perform the
corresponding operational and configuration tasks.

You can execute Ansible for Junos OS modules using any user account that has access to the managed
Junos device. When you execute Ansible modules, Junos OS user account access privileges are
enforced. The class configured for the Junos OS user account determines the permissions. Thus, if a user
executes a module that loads configuration changes onto a device, the user must have permissions to
change the relevant portions of the configuration. For information about configuring user accounts on
Junos devices, see the Junos OS User Access and Authentication User Guide for Routing Devices .

Juniper Networks provides modules that enable you to connect to Junos devices using NETCONF over
SSH or telnet. To manage devices through a NETCONF session over SSH, you must enable the
NETCONF service over SSH on the managed device and ensure that the device meets requirements for
SSHv2 connections. The modules also enable you to telnet to the device’s management interface or to a
console server that is directly connected to the device’s CONSOLE port. To use Ansible to telnet directly
to the device’s management interface, you must configure the Telnet service on the managed device.

The following sections outline the requirements and required configuration on Junos devices when you
use Ansible to access the device using the different connection protocols.

Enabling NETCONF on Junos Devices

To enable NETCONF over SSH on the default port (830) on a Junos device:

1. Configure the NETCONF-over-SSH service.

[edit system services]
user@host# set netconf ssh

2. Commit the configuration.

[edit system services]
user@host# commit

28

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/user-access.html

Satisfy Requirements for SSHv2 Connections

The NETCONF server communicates with client applications within the context of a NETCONF session.
The server and client explicitly establish a connection and session before exchanging data, and close the
session and connection when they are finished. The Ansible for Junos OS modules access the NETCONF
server using the SSH protocol and standard SSH authentication mechanisms. When you use Ansible to
manage Junos devices, the most convenient way to access a device is to configure SSH keys.

To establish an SSHv2 connection with a Junos device, you must ensure that the following requirements
are met:

• The NETCONF service over SSH is enabled on each device where a NETCONF session will be
established.

• The client application has a user account and can log in to each device where a NETCONF session
will be established.

• The login account used by the client application has an SSH public/private key pair or a text-based
password configured.

• The client application can access the public/private keys or text-based password.

For information about enabling NETCONF on a Junos device and satisfying the requirements for
establishing an SSH session, see the NETCONF XML Management Protocol Developer Guide.

Configure Telnet Service on Junos Devices

The Juniper Networks Ansible modules can telnet directly to a Junos device. To telnet to a Junos device,
you must configure the Telnet service on the device. Configuring Telnet service for a device enables
unencrypted, remote access to the device.

NOTE: Because telnet uses clear-text passwords (therefore creating a potential security
vulnerability), we recommend that you use SSH.

To enable the Telnet service:

1. Configure the service.

[edit system services]
user@host# set telnet

29

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/netconf-guide/netconf.html

2. (Optional) Configure the connection limit, rate limit, and order of authentication, as necessary.

[edit system services]
user@host# set telnet connection-limit connection-limit
user@host# set telnet rate-limit rate-limit
user@host# set telnet authentication-order [radius tacplus password]

3. Commit the configuration.

[edit system services]
user@host# commit

RELATED DOCUMENTATION

Ansible for Junos OS Server Requirements | 24

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

30

4
CHAPTER

Use Ansible to Connect to Junos
Devices

Connect to Junos Devices Using Ansible | 32

Authenticate Users Executing Ansible Modules on Junos Devices | 41

Connect to Junos Devices Using Ansible

SUMMARY

Juniper Networks’ Ansible modules enable you to
connect to Junos devices using SSH, telnet, or serial
console connections.

IN THIS SECTION

Connection Methods Overview | 32

Understanding Local and Persistent Ansible
Connections | 34

Connect to a Device Using SSH | 36

Connect to a Device Using Telnet | 38

Connect to a Device Using a Serial Console
Connection | 39

Juniper Networks provides Ansible modules that you can use to manage Junos devices. The Juniper
Networks modules are distributed through the juniper.device collection and the Juniper.junos role, which
are hosted on Ansible Galaxy. The modules can connect to Junos devices using different protocols and
Ansible connections, which are described in this document.

Connection Methods Overview

The Juniper Networks Ansible modules enable you to connect to a Junos device using SSH, telnet, or a
serial console connection. You must use a serial console connection when your terminal or laptop is
physically connected to the CONSOLE port on a Junos device. You can use SSH or telnet to connect to
the device’s management interface or to a console server that is directly connected to the device’s
CONSOLE port.

New or zeroized devices that have factory-default configurations require access through a console
connection. Thus, you can use Ansible to initially configure a device that is not yet configured for remote
access by using either a serial console connection when you are directly connected to the device or by
using telnet or SSH through a console server that is directly connected to the device.

By default, the Juniper Networks modules use SSH to connect to a device. To use telnet or a serial
console connection, set the module’s mode parameter to the appropriate value. To telnet to a device, set
the mode argument equal to "telnet". To use a serial console connection, set the mode argument equal to
"serial". Table 5 on page 33 summarizes the connection modes, their default values for certain
parameters, any required Junos OS configuration, and the Juniper.junos release in which support for that

32

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://galaxy.ansible.com/ui/namespaces/juniper/

connection mode was first introduced. The juniper.device modules support all connection modes as of
their initial release.

Table 5: Connection Modes for the Juniper Networks Ansible Modules

Connection Mode Value of mode
Argument

Default Port Required Junos OS
Configuration

First Supported
Release
(Juniper.junos)

NETCONF over SSH
(default)

– 830
[edit system services]
netconf {
 ssh;
}

1.0.0

Serial console
connection

serial /dev/
ttyUSB0

– 2.0.0

SSH through a
console server

– 22 – 2.2.0

Telnet to Junos
device

telnet 23
[edit system services]
telnet;

1.4.0

Default port added
in 2.0.0

Telnet through a
console server

telnet 23 – 1.4.0

NOTE: Before you can access the management interface using telnet or NETCONF over SSH,
you must first enable the appropriate service at the [edit system services] hierarchy level. Because
telnet uses clear-text passwords (therefore creating a potential security vulnerability), we
recommend that you use SSH.

When you execute the Juniper Networks modules to manage a Junos device, the remote device must be
able to authenticate the Ansible user using credentials appropriate for the given protocol. For more
information, see "Authenticate Users Executing Ansible Modules on Junos Devices" on page 41.

The Juniper Networks modules support different Ansible connections when connecting to Junos
devices, including local (per-task) connections and persistent (per-play) connections. The Ansible

33

connection determines whether Ansible establishes a separate connection to the host for each task in
the play or whether it establishes a single connection to a host that persists over all tasks in the play. For
information about specifying the Ansible connection, see "Understanding Local and Persistent Ansible
Connections" on page 34.

Understanding Local and Persistent Ansible Connections

The Juniper Networks modules do not require Python on Junos devices because they use Junos PyEZ
and the Junos XML API over NETCONF to interface with the device. Therefore, to perform operations
on Junos devices, you must run modules locally on the Ansible control node, where Python is installed.
You can run the modules locally by including connection: local in the playbook play. When you use
connection: local, Ansible establishes a separate connection to the host for each task in the play that
performs operations on the host.

The juniper.device collection modules also support connection: juniper.device.pyez for establishing a
persistent connection to a host. When you use a persistent connection, Ansible still executes the
modules locally on the control node, but it only establishes and maintains a single connection to each
host, which persists over the execution of all tasks in the play. Establishing a persistent connection to a
host can be more efficient for executing multiple tasks than establishing a separate connection to the
host for every task in the play.

Table 6 on page 34 summarizes the Ansible connections and the content sets that support them.

Table 6: Ansible Connections Supported By Juniper Networks Modules

Ansible connection Description Content Set Support

connection: local Execute the modules locally on the Ansible control
node but establish a separate connection to a host
for each task in the play that performs operations
on the host.

juniper.device collection

Juniper.junos role

connection: juniper.device.pyez Execute the modules locally on the Ansible control
node but establish a persistent connection to a host
that persists over the execution of all tasks in the
play.

juniper.device collection

34

NOTE: Ansible has deprecated connection: local. Therefore, when you use the juniper.device
collection modules, we recommend that you use connection: juniper.device.pyez in your playbook
to avoid issues in the event that Ansible removes support for local connections in a later release.

When you use connection: local, Ansible establishes a separate connection to a host for each module,
which means you can define module-specific connection and authentication parameters in the module’s
argument list. By contrast, when you use connection: juniper.device.pyez, the connection persists across all
tasks in the play, and thus you must define the connection and authentication parameters globally for all
modules. You can define the parameters in the vars: section of a play, in addition to providing them
through other means, for example, in an SSH configuration file or in the Ansible inventory file. For
additional details, see "Authenticate Users Executing Ansible Modules on Junos Devices" on page 41.

The following playbook establishes a persistent connection to each host that is used for all tasks in the
play. The user’s credentials, which are stored in an Ansible vault file, are defined in the play’s vars:
section.

- name: Get Device Information
 hosts: dc1
 connection: juniper.device.pyez
 gather_facts: no

 vars:
 user: "{{ admin_username }}"
 passwd: "{{ admin_password }}"

 vars_files:
 - vault-vars.yaml

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

 - name: Get hardware inventory
 juniper.device.command:
 commands: "show chassis hardware"
 dest_dir: "{{ playbook_dir }}"

35

Connect to a Device Using SSH

The Juniper Networks Ansible modules support using SSH to connect to a Junos device. You can
establish a NETCONF session over SSH on the device’s management interface or you can establish an
SSH connection with a console server that is directly connected to the device’s CONSOLE port. The
SSH server must be able to authenticate the user using standard SSH authentication mechanisms, as
described in "Authenticate Users Executing Ansible Modules on Junos Devices" on page 41. To
establish a NETCONF session over SSH, you must also satisfy the requirements outlined in "Set up
Ansible for Junos OS Managed Nodes" on page 27.

The Juniper Networks modules automatically query the default SSH configuration file at ~/.ssh/config, if
one exists, unless the ssh_config parameter specifies a different configuration file. When using SSH to
connect to a Junos device or to a console server connected to the device, the modules first attempt SSH
public key-based authentication and then try password-based authentication. When password-based
authentication is used, the supplied password is used as the device password. When SSH keys are in
use, the supplied password is used as the passphrase for unlocking the private key. If the SSH private
key has an empty passphrase, then a password is not required. However, SSH private keys with empty
passphrases are not recommended.

The following playbook establishes a NETCONF session over SSH with a Junos device and retrieves the
device facts. The playbook uses SSH keys in the default location.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

The Juniper Networks Ansible modules also enable you to connect to a Junos device through an SSH
connection to a console server. In this case, you must specify the login credentials for both the Junos
device and the console server. Use the user and passwd parameters to specify the Junos OS login
credentials, and use the cs_user and cs_passwd parameters to specify the console server credentials. When
SSH keys are in use, cs_passwd is the passphrase for the private key.

36

The following playbook prompts for the user’s credentials for the console server and the Junos device.
The module authenticates with the console server and then the Junos device. If authentication is
successful, the playbook then retrieves the device facts from the managed node and prints the Junos OS
version.

- name: Get Device Facts
 hosts: dc1_con
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "CS_USER"
 prompt: "Console server username"
 private: no
 - name: "CS_PASSWORD"
 prompt: "Console server password"
 private: yes
 - name: "JUNOS_USER"
 prompt: "Junos OS username"
 private: no
 - name: "JUNOS_PASSWORD"
 prompt: "Junos OS password"
 private: yes

 vars:
 cs_user: "{{ CS_USER }}"
 cs_passwd: "{{ CS_PASSWORD }}"
 user: "{{ JUNOS_USER }}"
 passwd: "{{ JUNOS_PASSWORD }}"

 tasks:
 - name: "Retrieve facts from Junos devices"
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

37

The Juniper Networks modules automatically query the default SSH client configuration file at ~/.ssh/
config, if it exists. You can use a different SSH configuration file by including the ssh_config parameter
and specifying the location of the configuration file. For example:

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 vars:
 ssh_config: "/home/admin/.ssh/config_dc"

 tasks:
 - name: "Retrieve facts from Junos devices"
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

Connect to a Device Using Telnet

The Juniper Networks modules enable you to connect to a Junos device using telnet, which provides
unencrypted access to the network device. You can telnet to the device’s management interface or to a
console server that is directly connected to the device’s CONSOLE port. Accessing the device through a
console server enables you to initially configure a new or zeroized device that is not yet configured for
remote access. To telnet to the management interface, you must configure the Telnet service at the [edit
system services] hierarchy level on all devices that require access to the interface.

To telnet to the remote device, set the mode parameter to "telnet" and optionally include the port
parameter to specify a port. When you set mode to "telnet" but omit the port parameter, the value for port
defaults to 23. For persistent connections, define mode and port under the vars: section. For local
connections, you can define the parameters either under the vars: section or as module arguments.

38

The following playbook telnets to a Junos device using port 7016, retrieves the device facts, and saves
them to a file. The module uses the default user and prompts for the login password.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "DEVICE_PASSWORD"
 prompt: "Device password"
 private: yes

 vars:
 passwd: "{{ DEVICE_PASSWORD }}"
 mode: "telnet"
 port: "7016"

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

Connect to a Device Using a Serial Console Connection

The Juniper Networks modules enable you to connect to a Junos device using a serial console
connection, which is useful when you must initially configure a new or zeroized device that is not yet
configured for remote access. To use this connection method, your terminal or laptop must be physically
connected to the Junos device through the CONSOLE port. For detailed instructions about connecting
to the CONSOLE port on a Junos device, see the hardware documentation for your specific device.

To connect to a Junos device through a serial console connection, set the module’s mode parameter to
"serial", and optionally include the port parameter to specify a port. When you set mode to "serial" but
omit the port parameter, the value for port defaults to /dev/ttyUSB0. For persistent connections, define mode
and port under the vars: section. For local connections, you can define the parameters either under the
vars: section or as module arguments.

39

The following playbook connects to a Junos device through the CONSOLE port and then loads and
commits an initial configuration. The module uses the default user and prompts for the login password.

- name: Load Initial Configuration
 hosts: dc1
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "DEVICE_PASSWORD"
 prompt: "Device password"
 private: yes

 tasks:
 - name: Load initial configuration and commit
 juniper.device.config:
 passwd: "{{ DEVICE_PASSWORD }}"
 mode: "serial"
 load: "merge"
 src: "configs/junos.conf"
 register: response
 - name: Print the response
 debug:
 var: response

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Authenticate Users Executing Ansible Modules on Junos Devices | 41

40

Authenticate Users Executing Ansible Modules on
Junos Devices

IN THIS SECTION

Authentication Overview | 41

Understanding the Default Values for Juniper Networks Modules | 42

How to Define Authentication Parameters in the vars: Section for Local and Persistent Connections | 44

How to Define the provider Parameter in Juniper.junos Modules | 46

How to Authenticate the User Using SSH Keys | 47

How to Authenticate the User Using a Playbook or Command-Line Password Prompt | 50

How to Authenticate the User Using an Ansible Vault-Encrypted File | 52

How to Authenticate Through a Console Server | 54

Authentication Overview

Juniper Networks provides Ansible modules that you can use to manage Junos devices. The Juniper
Networks modules are distributed through the juniper.device collection and the Juniper.junos role, which
are hosted on Ansible Galaxy.

The Juniper Networks modules enable you to directly connect to and manage Junos devices using SSH,
telnet, or a serial console connection. The modules also support connecting to the device through an
SSH or telnet connection to a console server that is connected to the device’s CONSOLE port. The remote
device must be able to authenticate the user using a password or other standard SSH authentication
mechanisms, depending on the connection protocol.

When you use Ansible to manage Junos devices, the most convenient way to access the device is to
configure SSH keys. SSH keys enable the remote device to identify trusted users. Alternatively, you can
provide a username and password when you execute modules and playbooks.

For SSH connections, the Juniper Networks modules first attempt SSH public key-based authentication
and then try password-based authentication. When SSH keys are in use, the supplied password is used
as the passphrase for unlocking the private SSH key. When password-based authentication is used, the
supplied password is used as the device password. If SSH public key-based authentication is being used
and the SSH private key has an empty passphrase, then a password is not required. However, SSH

41

https://galaxy.ansible.com/ui/namespaces/juniper/

private keys with empty passphrases are not recommended. To retrieve a password for password-based
authentication or password-protected SSH keys, you can prompt for the password from the playbook or
command-line, or you can create a vault-encrypted data file that securely stores the password.

You can specify connection and authentication parameters for the Juniper Networks modules in the
following ways. If you do not explicitly define the values, default values are used in some cases, as
described in "Understanding the Default Values for Juniper Networks Modules" on page 42. If you
define a parameter’s value in multiple places, Ansible selects the value based on variable precedence, as
outlined in Understanding variable precedence in the official Ansible docs.

• Ansible variables—You can specify the connection and authentication parameter values by using
normal Ansible variables, for example, variables defined in inventory or vault files, in host or group
variables, or using command-line options.

• SSH client configuration file—For SSH connections, the Juniper Networks modules automatically
query the default SSH configuration file at ~/.ssh/config, if one exists, unless you define the
ssh_config option to specify a different configuration file. The modules use any relevant settings in the
SSH configuration file for the given connection, unless you explicitly define variables that override
the setting.

• Module arguments—The juniper.device and Juniper.junos modules support specifying connection and
authentication-related options for local connections (connection: local) as top-level module arguments.
Additionally, Juniper.junos modules support using a provider dictionary in the module arguments as
described in "How to Define the provider Parameter in Juniper.junos Modules" on page 46.

• vars: section—The juniper.device modules support specifying connection and authentication-related
options for local and persistent connections in a play’s vars: section, which is described in "How to
Define Authentication Parameters in the vars: Section for Local and Persistent Connections" on page
44.

This document discusses the different aspects of authentication when using the Juniper Networks
modules to manage Junos devices.

Understanding the Default Values for Juniper Networks Modules

You can explicitly define the connection and authentication parameters for modules that manage Junos
devices. If you do not define a parameter, the module uses a default value in some cases. Table 7 on
page 43 outlines the default values and variable precedence for common connection parameters for
modules in the juniper.device collection and Juniper.junos role. For information about the arguments
accepted for the individual modules, see the API reference documentation for that module.

42

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence

Table 7: Default Values and Variable Precedence for Connection Parameters

Parameter Name Parameter
Aliases

Description Default Value and Variable
Precedence

host hostname

ip

Hostname or IP address of the
remote device with which the
connection should be
established.

{{ inventory_hostname }}

passwd password The user’s password or SSH key
passphrase used to authenticate
with the managed device.

1. ANSIBLE_NET_PASSWORD environment
variable

2. Value specified for -k or --ask-pass
command-line option

ssh_config – Path to an SSH client
configuration file.

If you omit this parameter, the
modules uses the SSH
configuration file in the default
location, if one exists.

~/.ssh/config

ssh_private_key_file ssh_keyfile Path to the SSH private key file
used to authenticate with the
remote device.

If you do not explicitly specify
the path and no default value is
found, then the module uses the
SSH private key file specified in
the user’s SSH configuration or
the operating-system-specific
default.

1. ANSIBLE_NET_SSH_KEYFILE
environment variable

2. Value specified for --private-key
or --key-file command-line option

3. none

user username Username that is used to
authenticate with the managed
node.

1. ANSIBLE_NET_USERNAME environment
variable

2. remote_user as defined by Ansible

3. USER environment variable

43

When executing Juniper Networks modules, the host argument is always required for a connection.
However, you do not have to explicitly specify the host, because it defaults to {{ inventory_hostname }}.

You can execute Juniper Networks modules using any user account that has access to the managed
Junos device. When you execute the modules, Junos OS user account access privileges are enforced,
and the class configured for the Junos OS user account determines the permissions. If you do not
specify a user, the user is set according to the algorithm described for user in Table 7 on page 43. See the
Ansible documentation for the precedence used to define remote_user, which can be defined in a number
of ways, including:

• -u or --user command line option

• ANSIBLE_REMOTE_USER environment variable

• remote_user configuration setting

How to Define Authentication Parameters in the vars: Section for Local
and Persistent Connections

You can define connection and authentication parameters for the juniper.device modules in the play’s
vars: section, in addition to defining them as you normally would through other variables, for example, in
the SSH configuration file, in the Ansible inventory file, as command-line arguments, or as module
arguments. The vars: section enables you to define common connection parameters in a single location
that all modules in the play can use to connect to a host. Additionally, certain Ansible connections
require using the vars: section when you define the parameters within the play, as described here.

The juniper.device modules support the following Ansible connections types:

• local connections, which are defined by using connection: local

• persistent connections, which are defined by using connection: juniper.device.pyez

For both local and persistent connections, Ansible executes modules locally on the control node. When
you use connection: local, Ansible establishes a separate connection to the host for each task in the play
that requires a connection. By contrast, when you use connection: juniper.device.pyez, Ansible establishes
a single, persistent connection to a host, which persists over the execution of all tasks in the play.

NOTE: Ansible has deprecated connection: local. Therefore, when you use the juniper.device
collection modules, we recommend that you use connection: juniper.device.pyez in your playbook
to avoid issues in the event that Ansible removes support for local connections in a later release.

44

You use the same connection and authentication parameters for persistent connections as you do for
local connections, and the default parameter values discussed in "Understanding the Default Values for
Juniper Networks Modules" on page 42 apply to both types of connections. However, when you define
connection and authentication parameters within a play for persistent connections, you must define the
parameters in the vars: section as opposed to defining the parameters as top-level module arguments in
each task because there is only a single connection, and thus the parameters must apply to all tasks in
that play. For local connections, you can define the parameters either in the vars: section or as module
arguments. If you define the parameters in both places, the module arguments take precedence.

The following playbook executes two juniper.device modules on each host in the inventory group. The
play defines the Ansible connection as juniper.device.pyez, which establishes a connection to each host
that persists over the execution of all tasks in the play. The authentication parameters for the persistent
connection are defined within the play’s vars: section. The user and passwd values reference variables
defined in the vault-vars.yaml vault file.

- name: Get Device Facts
 hosts: dc1
 connection: juniper.device.pyez
 gather_facts: no

 vars:
 user: "{{ admin_username }}"
 passwd: "{{ admin_password }}"

 vars_files:
 - vault-vars.yaml

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

 - name: Get hardware inventory
 juniper.device.command:
 commands: "show chassis hardware"
 dest_dir: "{{ playbook_dir }}"

45

How to Define the provider Parameter in Juniper.junos Modules

Starting in Juniper.junos Release 2.0.0, the Juniper.junos modules support the provider parameter in
addition to supporting individual top-level module arguments for each of the connection and
authentication-related parameters. The provider parameter enables you to define the connection and
authentication parameters for multiple modules in one place and easily pass those values to the modules
that use them. Additionally, if you need to update the parameters later, you only need to make the
update in a single location.

NOTE: The juniper.device collection modules do not support using the provider parameter.

The provider argument accepts a dictionary that contains the connection details required to connect to
and authenticate with a device. The host argument is always required for a connection, but you do not
have to explicitly specify a value if the module uses the default value for host. The dictionary can
optionally define additional parameters required for the connection, including user, passwd, and
ssh_private_key_file, among others. For information about the arguments accepted for the individual
modules, see the API reference documentation for that module.

In the following example, the credentials variable is a dictionary that defines the host, user, and passwd
parameters:

vars:
 credentials:
 host: "{{ inventory_hostname }}"
 user: "{{ ansible_user }}"
 passwd: "{{ ansible_password }}"

The following sample playbook uses the single provider argument to pass the connection details to the
juniper_junos_facts module instead of defining individual module arguments. As you add additional tasks
that use the Juniper.junos modules, you can then reference the same dictionary for each module.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no
 roles:
 - Juniper.junos

46

 vars:
 credentials:
 host: "{{ inventory_hostname }}"
 user: "{{ ansible_user }}"
 passwd: "{{ ansible_password }}"

 tasks:
 - name: Retrieve facts from Junos devices
 juniper_junos_facts:
 provider: "{{ credentials }}"
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

How to Authenticate the User Using SSH Keys

IN THIS SECTION

Generate and Configure the SSH Keys | 47

Use SSH Keys in Ansible Playbooks | 48

The Juniper Networks juniper.device and Juniper.junos modules enable you to use SSH keys to connect to
a Junos device or to a console server that is connected to the device. To authenticate a user using SSH
keys, first generate the keys on the Ansible control node and then configure the keys on the device to
which the module will connect, either the managed Junos device or the console server connected to the
Junos device.

Generate and Configure the SSH Keys

To generate SSH keys on the Ansible control node and configure the public key on the remote device:

47

1. On the Ansible control node, generate the public and private SSH key pair for the desired user, and
provide any required options, for example:

[user@localhost]$ cd ~/.ssh
[user@localhost .ssh]$ ssh-keygen -t rsa -b 4096
Enter file in which to save the key (/home/user/.ssh/id_rsa): id_rsa_dc
Enter passphrase (empty for no passphrase): *****
Enter same passphrase again: *****

2. (Optional) Load the key into the native SSH key agent. For example:

[user@localhost .ssh]$ ssh-add ~/.ssh/id_rsa_dc

3. Configure the public key on each device to which the modules will connect, which could include
Junos devices or a console server connected to a Junos device.

The easiest method to configure the public key on a Junos device is to load a file that contains the
public key under the appropriate user account.

[edit]
[user@router]# set system login user username authentication load-key-file URL
[user@router]# commit

4. Verify that the key works by logging in to the device using the key.

[user@localhost]$ ssh -i ~/.ssh/id_rsa_dc router.example.com
Enter passphrase for key '/home/user/.ssh/id_rsa_dc':
user@router>

Use SSH Keys in Ansible Playbooks

After generating the SSH key pair and configuring the public key on the remote device, you can use the
key to connect to the device. The Juniper Networks modules automatically query the default SSH
configuration file at ~/.ssh/config, if one exists, unless you define the ssh_config option to specify a
different configuration file. The modules use any relevant settings in the SSH configuration file for the
given connection, unless you explicitly define variables that override the setting. In addition, the
modules automatically look for keys in the default location and keys that are actively loaded in an SSH
key agent.

To define specific settings for SSH keys, you can include the appropriate arguments in your Ansible
playbook. Define the arguments in the location appropriate for your set of modules and Ansible

48

connection, for example, in the vars: section for plays that use the juniper.device modules with a
persistent connection. The arguments to include are determined by the location of the key, whether the
key is actively loaded into an SSH key agent, whether the key is password-protected, and whether the
user’s SSH configuration file already defines settings for that host.

• To connect to a Junos device using SSH keys that are actively loaded into the native SSH key agent
or that are in the default location and do not have password protection, you do not need to define
any connection or authentication-related arguments, unless they differ from the default.

 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

• To connect to a Junos device using SSH keys that are not in the default location and do not have
password protection, set the ssh_private_key_file argument to the path of the SSH private key file. For
example:

 juniper.device.facts:
 ssh_private_key_file: "/home/user/.ssh/id_rsa_alternate"
 savedir: "{{ playbook_dir }}"

Alternatively, you can specify the path of the SSH private key by defining it in the SSH configuration
file; by setting the ANSIBLE_NET_SSH_KEYFILE environment variable; or by defining the --private-key or --
key-file command-line option when you execute the playbook.

• To connect to a Junos device using a password-protected SSH key file, which is the recommended
method, you can reference the SSH key file passphrase in the passwd argument or provide the
password by using normal Ansible variables or command-line options.

It is the user's responsibility to obtain the SSH key file passphrase in a secure manner appropriate for
their environment. It is best practice to either prompt for it during each invocation of the playbook or
store the variables using an encrypted vault rather than storing the credentials in an unencrypted

49

format. For example, you can execute the playbook with the --ask-pass command-line option and
provide the SSH key file passphrase when prompted, as shown here:

 juniper.device.facts:
 ssh_private_key_file: "/home/user/.ssh/id_rsa_dc"
 savedir: "{{ playbook_dir }}"

[user@localhost]$ ansible-playbook playbook.yaml --ask-pass
SSH password:

For more information about using a prompt or encrypted vault file for the SSH key passphrase, see
"How to Authenticate the User Using a Playbook or Command-Line Password Prompt" on page 50
and "How to Authenticate the User Using an Ansible Vault-Encrypted File" on page 52.

For instructions on using SSH keys to connect to a console server, see "How to Authenticate Through a
Console Server" on page 54.

How to Authenticate the User Using a Playbook or Command-Line
Password Prompt

To authenticate a user executing Ansible modules, you can prompt for the user’s credentials when you
execute the playbook. For example, you can define an interactive prompt in the playbook, or you can
execute the playbook with the -k or --ask-pass command-line option to prompt for the password. When
SSH keys are in use, the supplied password is used as the passphrase for unlocking the private SSH key.
When password-based authentication is used, the supplied password is used as the device password.

To define an interactive prompt in the playbook to obtain the user’s password or SSH key passphrase:

1. Include code under vars_prompt: that prompts for the user’s password or SSH key passphrase (and
optionally the username) and stores the value in a variable.

- name: Get Device Facts
 hosts: all
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "USERNAME"

50

 prompt: "Username"
 private: no
 - name: "DEVICE_PASSWORD"
 prompt: "Device password"
 private: yes

2. Set the user and passwd parameters so each references its respective variable.

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 user: "{{ USERNAME }}"
 passwd: "{{ DEVICE_PASSWORD }}"
 savedir: "{{ playbook_dir }}"
 - name: Print facts
 debug:
 var: junos.version

3. Execute the playbook, which prompts for the username and password and does not echo the
password on the command line because the variable is set to private: yes.

[user@localhost]$ ansible-playbook playbook.yaml
User name: user
Device password:

Alternatively, you can execute a playbook with the -k or --ask-pass command-line option to prompt for
the password or passphrase. Consider the following playbook, which uses the default username:

- name: Get Device Facts
 hosts: all
 connection: local
 gather_facts: no

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print facts

51

 debug:
 var: junos.version

Execute the playbook, and include the -k or --ask-pass command-line option, which prompts for the
password and does not echo the password on the command line.

[user@localhost]$ ansible-playbook playbook.yaml --ask-pass
SSH password:

PLAY [Get Device Facts] ***
...

How to Authenticate the User Using an Ansible Vault-Encrypted File

You can create an Ansible vault that securely stores saved passwords and other sensitive connection and
authentication values in an vault-encrypted data file. Your playbook can then reference those variables
in the location appropriate for your set of modules and Ansible connection type, for example, in the
play’s vars: section or as module arguments.

To create and use an Ansible vault file containing required variables, including passwords:

1. Create a vault-encrypted data file, and specify the password required to encrypt, decrypt, edit, and
use the data file.

[root@localhost]# ansible-vault create vault-vars.yaml
Vault password:
Confirm Vault password:

2. Define the required variables in the file and save it.

[root@localhost]# ansible-vault edit vault-vars.yaml
Vault password:

Vault variables
root_username: root
root_password: password

52

3. Verify that the file is encrypted.

[root@localhost]# cat vault-vars.yaml
$ANSIBLE_VAULT;1.1;AES256
31415961343966623035373532313264333633663764353763393066643131306565636463326634
3730326165666565356665343137313161234569336336640a653939633331663935376362376666
65653737653262363235353261626135312345663665396262376339623737366238653436306663
6430376633306339360a343065363331313532633036343866376330623634653538353132314159
3835

4. In the playbook, include the vault-encrypted variable file, and reference the required variables in the
location appropriate for your modules and Ansible connection type.

- name: Get Device Facts
 hosts: dc1
 connection: local
 gather_facts: no

 vars_files:
 - vault-vars.yaml

 vars:
 user: "{{ root_username }}"
 passwd: "{{ root_password }}"

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 - name: Print version
 debug:
 var: junos.version

NOTE: If you instead define the actual user and passwd variables in the vault, the modules pick
them up automatically, and you do not need to explicitly define them in the playbook.

53

5. Execute the playbook with the --ask-vault-pass option, which prompts for the vault password.

[root@localhost]# ansible-playbook playbook-name.yaml --ask-vault-pass
Vault password:

PLAY [Get Device Facts] ***
...

How to Authenticate Through a Console Server

The Juniper Networks Ansible modules can connect to Junos devices through a console server. For SSH
connections through a console server, you need to provide the authentication credentials for both the
console server and the Junos device. You can provide either a device password or a password-protected
SSH key file for the console server authentication.

To connect to a Junos device through a console server, you must provide the following parameters in
your playbook, if there is no default value or the default value is not appropriate:

• host—Console server hostname or IP address

• user and passwd—Junos OS login credentials

• cs_user—Console server username

• cs_passwd—Device password or SSH key file passphrase required to authenticate with the console
server

In the following example, the credentials for the Junos OS user and the console server user are defined
in an Ansible vault file. The vault variables are then referenced in the playbook. In this case, the cs_passwd
argument is the passphrase for the SSH key specified in the ssh_private_key_file argument.

- name: Get Device Facts
 hosts: dc1_con
 connection: local
 gather_facts: no

 vars_files:
 - vault-vars.yaml

54

 vars:
 host: "{{ inventory_hostname }}"
 user: "{{ junos_username }}"
 passwd: "{{ junos_password }}"
 cs_user: "{{ cs_username }}"
 cs_passwd: "{{ cs_key_password }}"
 ssh_private_key_file: "/home/user/.ssh/id_rsa_dc"

 tasks:
 - name: Retrieve facts from Junos devices
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

RELATED DOCUMENTATION

Troubleshoot Ansible Authentication Errors When Managing Junos Devices | 200

Connect to Junos Devices Using Ansible | 32

Understanding Ansible for Junos OS | 4

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

55

5
CHAPTER

Use Ansible to Manage Device
Operations

Use Ansible to Retrieve Facts from Junos Devices | 57

Use Ansible to Execute Commands and RPCs on Junos Devices | 60

Use Ansible with Junos PyEZ Tables to Retrieve Operational Information from
Junos Devices | 69

Use Ansible to Halt, Reboot, or Shut Down Junos Devices | 75

Use Ansible to Install Software on Junos Devices | 88

Use Ansible to Restore a Junos Device to the Factory-Default Configuration
Settings | 106

Use Junos Snapshot Administrator in Python (JSNAPy) in Ansible Playbooks | 115

Use Ansible to Retrieve Facts from Junos Devices

Juniper Networks supports using Ansible to manage Junos devices and provides Ansible modules that
enable you to perform operational and configuration tasks on the devices. The modules do not require
Python on the managed device because they use Junos PyEZ and the Junos XML API over NETCONF to
interface with the device. Therefore, when you use Ansible to perform operations on Junos devices, you
must execute the Ansible modules locally on the control node. As a result, Ansible defaults to gathering
facts from the Ansible control node instead of the managed node.

Juniper Networks provides modules that enable you to gather device facts, including the active
configuration, from Junos devices. Table 8 on page 57 outlines the available modules. The modules use
the Junos PyEZ fact gathering system to retrieve the device facts. For more information about the Junos
PyEZ fact gathering system and the complete list of returned dictionary keys, see jnpr.junos.facts.

Table 8: Modules to Gather Facts

Content Set Module Name

juniper.device collection facts

Juniper.junos role juniper_junos_facts

The facts and juniper_junos_facts modules return the device facts in the ansible_facts.junos dictionary. The
modules also enable you to save the returned data in a file on the local Ansible control node. To specify
the directory in which to save the retrieved information, include the savedir module argument, and
define the path to the target directory. When you include the savedir argument, the playbook generates
the following files for each device, where hostname is the value of the hostname fact retrieved from the
device, which might be different from the hostname passed to the module:

• hostname-facts.json—Device facts in JSON format

• hostname-inventory.xml—Device’s hardware inventory in XML format

For example, the following playbook retrieves the device facts for each device in the inventory group
and saves the data for each device in separate files in the playbook directory on the Ansible control
node. Because the playbook runs the Juniper Networks module locally, Ansible defaults to gathering
facts from the control node. The playbook includes the gather_facts: no argument to prevent Ansible from
gathering facts from the control node and instead uses the facts module in the juniper.device collection to
retrieve the facts from the managed device. To authenticate with the device, the example uses existing

57

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.facts.html
https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/facts.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_facts.html

SSH keys in the default location and thus does not explicitly provide credentials for the facts module in
the playbook.

- name: Get device facts
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Retrieve device facts and save to file
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

By default, the facts and juniper_junos_facts modules do not return the device configuration. To return the
active configuration for a device, in addition to the device facts, include the config_format option, and
specify the format in which to return the configuration. Acceptable format values are 'json', 'set', 'text'
and 'xml'. The requested format must be supported by the Junos OS release running on the device.

When you include the config_format option, the ansible_facts.junos dictionary in the module response
includes the config key with the configuration in the specified format in a single multi-line string. If the
savedir option is included, the configuration data is not written to the file.

TIP: To use Ansible to retrieve configuration data from a Junos device and save the data to a file,
use the config or juniper_junos_config module instead of the facts or juniper_junos_facts module. For
more information, see "Use Ansible to Retrieve or Compare Junos OS Configurations" on page
146.

The playbook in the next example performs the following operations:

• Retrieves the device facts and active configuration for each device in the inventory group

• Saves the facts and hardware inventory for each device in separate files in the playbook directory on
the Ansible control node

• Prints the configuration for each device to standard output

- name: Get device facts and configuration
 hosts: dc1

58

 connection: local
 gather_facts: no

 tasks:
 - name: Retrieve device facts and configuration and save facts to file
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"
 config_format: "xml"
 register: result

 - name: Print configuration
 debug:
 var: result.ansible_facts.junos.config

user@ansible-cn:~$ ansible-playbook facts.yaml
PLAY [Get device facts and configurations] **********************************

TASK [Retrieve device facts and configuration and save facts to file] *******
ok: [dc1a.example.net]

TASK [Print configuration] **
ok: [dc1a.example.net] => {
 "result.ansible_facts.junos.config": "<configuration commit-seconds=\"1605564153\" commit-
localtime=\"2020-11-16 14:02:33 PST\" commit-user=\"admin\">\n
<version>20191212.201431_builder.r1074901</version>\n
[...output truncated...]
</configuration>\n"
}

PLAY RECAP **
dc1a.example.net : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Use Ansible to Execute Commands and RPCs on Junos Devices | 60

Use Ansible with Junos PyEZ Tables to Retrieve Operational Information from Junos Devices | 69

59

Use Ansible to Execute Commands and RPCs on
Junos Devices

SUMMARY

Use the Juniper Networks Ansible modules to
execute operational mode commands and RPCs on
Junos devices.

IN THIS SECTION

How to Execute Commands with the Juniper
Networks Modules | 61

How to Execute RPCs with the Juniper
Networks Modules | 62

Understanding the Module Response | 64

How to Specify the Format for the Command
or RPC Output | 64

How to Save the Command or RPC Output to
a File | 66

Juniper Networks supports using Ansible to manage Junos devices and provides Ansible modules that
enable you to execute operational mode commands and remote procedure calls (RPCs) on the devices.
Table 9 on page 60 outlines the modules.

Table 9: Command and RPC Modules

Content Set Module Name

juniper.device collection command

rpc

Juniper.junos role juniper_junos_command

juniper_junos_rpc

The following sections discuss how to the use the modules, parse the module response, specify the
output format, and save the output to a file.

60

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/command.html
https://ansible-juniper-collection.readthedocs.io/en/latest/rpc.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_command.html
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_rpc.html

NOTE: To more easily extract targeted data from operational output, you can also use the table
or juniper_junos_table module with custom or predefined Junos PyEZ operational tables. For more
information, see "Use Ansible with Junos PyEZ Tables to Retrieve Operational Information from
Junos Devices" on page 69.

How to Execute Commands with the Juniper Networks Modules

The command and juniper_junos_command modules enable you to execute operational mode commands on
Junos devices. The modules require one argument, commands, which is a list of one or more Junos OS
operational mode commands to execute on the device.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_command module replaces the
functionality of the junos_cli module.

The following playbook executes two operational mode commands on each device in the inventory
group and displays the module response in standard output. In this example, the command module
authenticates with the device by using SSH keys in the default location.

- name: Get device information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get software and uptime information
 juniper.device.command:
 commands:
 - "show version"
 - "show system uptime"
 register: junos_result

 - name: Print response
 debug:
 var: junos_result

61

For information about the module’s response and output format, see "Understanding the Module
Response" on page 64 and "How to Specify the Format for the Command or RPC Output" on page 64.

How to Execute RPCs with the Juniper Networks Modules

The Junos XML API is an XML representation of Junos OS configuration statements and operational
mode commands. It defines an XML equivalent for all statements in the Junos OS configuration
hierarchy and many of the operational mode commands that you issue in the Junos OS CLI. Each
operational mode command with a Junos XML counterpart maps to a request tag element and, if
necessary, a response tag element. Request tags are used in remote procedure calls (RPCs) within
NETCONF or Junos XML protocol sessions to request information from a Junos device. The server
returns the response using Junos XML elements enclosed within the response tag element.

The rpc and juniper_junos_rpc modules enable you to execute RPCs on Junos devices. The modules require
one argument, rpcs, which is a list of one or more Junos OS RPCs to execute on the device.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_rpc module replaces the
functionality of the junos_rpc module.

The following playbook executes the get-interface-information RPC, which is equivalent to the show
interfaces operational mode command, on each device in the inventory group and displays the module
response in standard output. In this example, the rpc module authenticates with the device by using SSH
keys in the default location.

- name: Execute RPC
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get interface information
 juniper.device.rpc:
 rpcs: "get-interface-information"
 register: junos_result

 - name: Print response

62

 debug:
 var: junos_result

NOTE: For information about mapping CLI commands to RPC request tags, see the Junos XML
API Explorer for operational tags.

For information about the module’s response and output format, see "Understanding the Module
Response" on page 64 and "How to Specify the Format for the Command or RPC Output" on page 64.

The rpc and juniper_junos_rpc modules support the kwargs option, which enables you to specify keyword
arguments and values for the RPCs. The value of kwargs can be a single dictionary of keywords and
values, or it can be a list of dictionaries that supply arguments for multiple RPCs. There must be a one-
to-one correspondence between the items in the kwargs list and the RPCs in the rpcs list. If you execute
multiple RPCs, and an RPC does not require any arguments, set the corresponding list item equal to an
empty dictionary {}. If an individual RPC argument does not require a value, set its value equal to True.

NOTE: You must use underscores in RPC arguments in place of hyphens, which can cause
exceptions or errors in certain circumstances.

The following playbook executes the specified RPCs on each device in the inventory group and displays
the module response in standard output. The get-interface-information RPC requests terse level output for
the lo0.0 interface, and the get-lldp-interface-neighbors RPC requests information for the ge-0/0/0
interface. The get-software-information RPC uses an empty dictionary to execute the RPC with no
additional arguments.

- name: Get Device Information
 hosts: dc1a
 connection: local
 gather_facts: no

 tasks:
 - name: Get device information
 juniper.device.rpc:
 rpcs:
 - "get-interface-information"
 - "get-lldp-interface-neighbors"
 - "get-software-information"
 kwargs:

63

https://apps.juniper.net/xmlapi/operTags.jsp
https://apps.juniper.net/xmlapi/operTags.jsp

 - interface_name: "lo0.0"
 terse: True
 - interface_device: "ge-0/0/0"
 - {}
 register: junos_result

 - name: Print response
 debug:
 var: junos_result

Understanding the Module Response

The Juniper Networks command and RPC modules store the RPC reply from the device within several
different keys in the module response. The data for each key is structured as follows:

• stdout—RPC reply is a single multi-line string.

• stdout_lines—RPC reply is a list of single line strings.

• parsed_output—RPC reply is parsed into a JavaScript Object Notation (JSON) data structure. This key is
only returned when the format of the data is XML or JSON.

If the module executes a single command or RPC, the module’s response places the returned keys at the
top level. If the module executes multiple commands or RPCs, the module’s response instead includes a
results key, which is a list of dictionaries. Each element in the list corresponds to a single command or
RPC and includes all the keys that would be returned for that command or RPC.

In some instances, command or RPC output can be extensive, and it might be necessary to suppress the
output in the module’s response. To omit the output keys in the module’s response, include
return_output: false in that module’s argument list.

How to Specify the Format for the Command or RPC Output

The Juniper Networks command and RPC modules store the RPC reply from the device within several
different keys in the module response: stdout, stdout_lines, and parsed_output. The parsed_output key, which is
only present when the command or RPC output format is XML or JSON, contains data that is parsed
into a JSON data structure.

The stdout and stdout_lines keys contain data in the default format defined for the module. By default, the
command and juniper_junos_command modules return the command output in text format, and the rpc and

64

juniper_junos_rpc modules return the RPC output in XML format. To specify a different output format,
include the formats argument, and set the value equal to the desired format. To request text format,
Junos XML elements, or JSON format, use 'text', 'xml', or 'json' respectively. The requested format must
be supported by the device on which the command or RPC is executed.

The formats parameter takes either a string or a list of strings. When you execute multiple commands or
RPCs and only specify a single format, the output format is the same for all executed commands and
RPCs. To specify a different format for the output of each command or RPC, set the formats argument to
a list of the desired formats. The list must specify the same number of formats as there are commands or
RPCs.

The following playbook executes two RPCs on each device in the inventory group and requests text
format for the output of all executed RPCs:

- name: Get device information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get software and system uptime information
 juniper.device.rpc:
 rpcs:
 - "get-software-information"
 - "get-system-uptime-information"
 formats: "text"
 register: junos_result

 - name: Print response
 debug:
 var: junos_result

When the playbook is executed, the stdout and stdout_lines keys in the module response contain the RPC
reply in text format.

The following playbook executes two RPCs on each device in the inventory group and requests the
output for the first RPC in text format and the output for the second RPC in JSON format:

- name: Get device information
 hosts: dc1

65

 connection: local
 gather_facts: no

 tasks:
 - name: Get software and system uptime information
 juniper.device.rpc:
 rpcs:
 - "get-software-information"
 - "get-system-uptime-information"
 formats:
 - "text"
 - "json"
 register: junos_result

 - name: Print response
 debug:
 var: junos_result

How to Save the Command or RPC Output to a File

When you use the Juniper Networks modules to execute a command or RPC on a device, you can save
the returned data in a file on the local Ansible control node by including the dest or dest_dir module
arguments. Whereas the dest_dir option saves the output for each command or RPC in separate files for
a device, the dest option saves the output for all commands and RPCs in the same file for a device. If an
output file already exists with the target name, the module overwrites the file.

To specify the directory on the local Ansible control node where the retrieved data is saved, include the
dest_dir argument, and define the path to the target directory. The module stores the output for each
command or RPC executed on a device in a separate file named hostname_name.format where:

• hostname—Hostname of the device on which the command or RPC is executed.

• name—Name of the command or RPC executed on the managed device. The module replaces spaces
in the command name with underscores (_).

• format—Format of the output, which can be json, text, or xml.

66

The following playbook executes two RPCs on each device in the inventory group and saves the output
for each RPC for each device in a separate file in the playbook directory on the Ansible control node:

- name: Get device information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get software and uptime information
 juniper.device.rpc:
 rpcs:
 - "get-software-information"
 - "get-system-uptime-information"
 dest_dir: "{{ playbook_dir }}"

The resulting output files for host dc1a.example.net are:

• dc1a.example.net_get-software-information.xml

• dc1a.example.net_get-system-uptime-information.xml

Similarly, the following playbook executes the equivalent commands on each device in the inventory
group and saves the output for each command for each device in a separate file in the playbook
directory on the Ansible control node:

- name: Get device information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get software and uptime information
 juniper.device.command:
 commands:
 - "show version"
 - "show system uptime"
 dest_dir: "{{ playbook_dir }}"

The resulting output files for host dc1a.example.net are:

67

• dc1a.example.net_show_version.text

• dc1a.example.net_show_system_uptime.text

To specify the path and filename to which all command or RPC output for a target node is saved on the
local Ansible control node, include the dest argument, and define the filename or the full path of the file.
If you include the dest argument, but omit the directory, the files are saved in the playbook directory. If
you execute commands or RPCs on multiple devices, the dest argument must include a variable such as
{{ inventory_hostname }} to differentiate the filename for each device. If you do not differentiate the
filenames, the output file for each device will overwrite the output file of the other devices.

The following playbook executes RPCs on each device in the inventory group. The output for all RPCs is
stored in a separate file for each device, and the file is placed in the playbook directory on the Ansible
control node. Each file is uniquely identified by the device hostname.

- name: Get device information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get software and uptime information
 juniper.device.rpc:
 rpcs:
 - "get-software-information"
 - "get-system-uptime-information"
 dest: "{{ inventory_hostname }}-system-information.xml"

For example, the resulting output file for host dc1a.example.net is dc1a.example.net-system-
information.xml and contains the output for all RPCs executed on the device.

If you are saving the data to a file and do not want to duplicate the command or RPC output in the
module’s response, you can optionally include return_output: false in the module’s argument list. Setting
return_output to false causes the module to omit the output keys in the module’s response. Doing this
might be necessary if the devices return a significant amount of data.

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_command module replaces the functionality of
the junos_cli module.

68

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_rpc module replaces the functionality of the
junos_rpc module.

RELATED DOCUMENTATION

Use Ansible with Junos PyEZ Tables to Retrieve Operational Information from Junos Devices | 69

Use Ansible to Retrieve Facts from Junos Devices | 57

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Use Ansible with Junos PyEZ Tables to Retrieve
Operational Information from Junos Devices

IN THIS SECTION

Module Overview | 69

Understanding Junos PyEZ Tables | 70

How to Use the Juniper Networks Ansible Modules with Junos PyEZ Tables | 71

Specify RPC Arguments | 73

Module Overview

Junos PyEZ operational (op) Tables provide a simple and efficient way to extract information from
complex operational command output. Juniper Networks provides Ansible modules that enable you to
leverage Junos PyEZ op Tables from within Ansible playbooks. Table 10 on page 70 outlines the
modules.

69

Table 10: Junos PyEZ Table Modules

Content Set Module Name

juniper.device collection table

Juniper.junos role juniper_junos_table

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_table module replaces the
functionality of the junos_get_table module.

NOTE: The modules do not work with configuration Tables and Views.

Understanding Junos PyEZ Tables

Junos PyEZ is a microframework for Python that enables you to manage and automate Junos devices.
Junos PyEZ supports using simple YAML definitions, which are referred to as Tables and Views, to
retrieve and filter operational command output and configuration data from Junos devices.

Junos PyEZ operational (op) Tables extract information from the output of operational commands or
RPCs. The Junos PyEZ jnpr.junos.op modules contain predefined Table and View definitions for some
common RPCs. You can also create custom Tables and Views.

When you use Ansible to manage Junos devices, the table and juniper_junos_table modules can use Junos
PyEZ Tables to retrieve data from a device. The modules can reference the predefined operational Tables
and Views that are included with the Junos PyEZ distribution, or they can reference user-defined Tables
and Views that reside on the Ansible control node.

For general information about Junos PyEZ Tables and Views, see the following sections and related
documentation in the Junos PyEZ Developer Guide:

• Understanding Junos PyEZ Tables and Views

• Junos PyEZ Predefined Operational Tables and Views

70

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/table.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_table.html
https://www.juniper.net/documentation/product/en_US/junos-pyez
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/topics/concept/junos-pyez-tables-and-views-overview.html
https://www.juniper.net/documentation/en_US/junos-pyez/topics/reference/general/junos-pyez-tables-op-predefined.html

How to Use the Juniper Networks Ansible Modules with Junos PyEZ
Tables

The table and juniper_junos_table modules can include the following arguments to specify the Table to use:

• file—Filename of the YAML file that defines the Junos PyEZ Table and View.

• path—(Optional) Path to the directory containing the YAML file with the Table and View definitions.
The default file path is the location of the predefined Junos PyEZ op Tables, which reside in the
Junos PyEZ install path under the jnpr/junos/op directory.

• table—(Optional) Name of the Table that will be used to retrieve the data. This option is only required
when a file contains multiple Table definitions or the file contains a single Table that does not include
"Table" in its name.

For example, the following task retrieves data by using a custom table named FPCTable, which is defined
in the fpc.yaml file located in the playbook directory:

 tasks:
 - name: Get FPC info
 juniper.device.table:
 file: "fpc.yaml"
 path: "{{ playbook_dir }}"
 table: "FPCTable"

The module’s response includes the resource key, which contains a list of items returned by the Table.
Each list item is a dictionary containing the field names defined by the View and the value extracted
from the data for each of the corresponding fields.

Consider the following predefined Table and View, ArpTable and ArpView, in the arp.yml file of the Junos
PyEZ distribution. ArpTable executes the <get-arp-table-information> RPC with the <no-resolve/> option,
which is equivalent to the show arp no-resolve CLI command. The corresponding View extracts the MAC
address, IP address, and interface name for each <arp-table-entry> item in the response.

ArpTable:
 rpc: get-arp-table-information
 args:
 no-resolve: True
 item: arp-table-entry
 key: mac-address
 view: ArpView

71

ArpView:
 fields:
 mac_address: mac-address
 ip_address: ip-address
 interface_name: interface-name

The following Ansible playbook executes the table module, which uses ArpTable to retrieve Address
Resolution Protocol (ARP) information from Junos devices. Because ArpTable is included with the Junos
PyEZ distribution and resides in the default directory for the predefined Junos PyEZ op Tables, the path
module argument is not required to specify the file location. In addition, because ArpTable is the only
Table defined in the file and includes ”Table" in its name, the table argument is not required to specify the
Table.

- name: Get ARP information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get ARP information using Junos PyEZ Table
 juniper.device.table:
 file: "arp.yml"
 register: result

 - name: Print response
 debug:
 var: result

The playbook output, which is truncated for brevity, includes the corresponding fields, as defined by the
View, for each <arp-table-entry> item returned by the device.

TASK [Print response] ***
ok: [dc1a.example.net] => {
 "result": {
 "changed": false,
 "failed": false,
 "msg": "Successfully retrieved 2 items from ArpTable.",
 "resource": [
 {

72

 "interface_name": "em0.0",
 "ip_address": "10.0.0.5",
 "mac_address": "02:01:00:00:00:05"
 },
 {
 "interface_name": "fxp0.0",
 "ip_address": "198.51.100.10",
 "mac_address": "30:7c:5e:48:4b:40"
 },
]
 }
}

The following Ansible playbook leverages the predefined Junos PyEZ operational Table, OspfInterfaceTable
to retrieve information about OSPF interfaces on Junos devices. The ospf.yml file defines multiple Tables
and Views, so the module call includes the table argument to specify which Table to use.

- name: Get OSPF information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get OSPF interface information
 juniper.device.table:
 file: "ospf.yml"
 table: "OspfInterfaceTable"
 register: result

 - name: Print response
 debug:
 var: result

Specify RPC Arguments

Junos PyEZ operational Tables have an optional args key that defines the default command options and
arguments for the RPC executed by that Table. The application executes the RPC with the default

73

options unless the user overrides the defaults. In Junos PyEZ applications, you can override the default
command options or pass additional options and arguments to the RPC when calling the get() method.

The table and juniper_junos_table modules also enable you to override the default command options
defined in the Table or pass additional options and arguments to the RPC by using the kwargs argument.
The kwargs value is a dictionary of command options and values, which must be supported by the RPC
and the device on which the RPC is executed.

For example, the predefined Junos PyEZ op Table EthPortTable in the ethport.yml file executes the <get-
interface-information> RPC with the media command option and returns information for all interfaces that
match the given regular expression for the interface name.

EthPortTable:
 rpc: get-interface-information
 args:
 media: True
 interface_name: '[afgxe][et]-*'
 args_key: interface_name
 item: physical-interface
 view: EthPortView

The following Ansible playbook uses EthPortTable to extract information about the interfaces on Junos
devices. The kwargs argument includes interface_name: "ge-1/0/0", which overrides the EthPortTable default
for interface_name and instructs the module to retrieve the requested fields for only the ge-1/0/0
interface.

- name: Get interface information
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Get interface information for Ethernet interfaces
 juniper.device.table:
 file: "ethport.yml"
 kwargs:
 interface_name: "ge-1/0/0"
 register: result

 - name: Print response

74

 debug:
 var: result

For more information about the default and user-supplied command options and arguments in Junos
PyEZ Tables, see Defining Junos PyEZ Operational Tables and Using Junos PyEZ Operational Tables and
Views.

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_table module replaces the functionality of the
junos_get_table module.

RELATED DOCUMENTATION

Use Ansible to Execute Commands and RPCs on Junos Devices | 60

Use Ansible to Retrieve Facts from Junos Devices | 57

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Use Ansible to Halt, Reboot, or Shut Down Junos
Devices

SUMMARY

Use the Juniper Networks Ansible modules to halt,
reboot, or shut down Junos devices.

IN THIS SECTION

Use Ansible to Halt, Reboot, or Shut Down
Devices | 76

How to Perform a Halt, Reboot, or Shut Down
with a Delay or at a Specified Time | 77

How to Specify the Target Routing
Engine | 78

How to Reboot a VM Host | 80

75

https://www.juniper.net/documentation/en_US/junos-pyez/topics/task/program/junos-pyez-tables-op-defining.html
https://www.juniper.net/documentation/en_US/junos-pyez/topics/task/program/junos-pyez-tables-op-data-retrieving-manipulating.html
https://www.juniper.net/documentation/en_US/junos-pyez/topics/task/program/junos-pyez-tables-op-data-retrieving-manipulating.html

Example: Use Ansible to Reboot Junos
Devices | 81

Use Ansible to Halt, Reboot, or Shut Down Devices

Juniper Networks supports using Ansible to manage Junos devices and provides Ansible modules that
enable you to halt, reboot, or shut down a device. Table 11 on page 76 outlines the available modules.

Table 11: Modules to Halt, Reboot, or Shut Down Devices

Content Set Module Name

juniper.device collection system

Juniper.junos role juniper_junos_system

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the
functionality of the junos_shutdown and junos_zeroize modules.

You can use the modules to request the following operations on Junos devices. By default, the modules
immediately execute the requested operation and perform the operation on all Routing Engines in a dual
Routing Engine or Virtual Chassis setup.

• An immediate system halt, reboot, or shutdown

• A halt, reboot, or shutdown operation with an optional delay

• A halt, reboot, or shutdown operation scheduled at a specific date and time

The system and juniper_junos_system modules require one argument, action, which defines the action that
the module performs. Table 12 on page 77 defines the action parameter value that is required to halt,
reboot, or shut down a device and provides a brief description of each action as well as the
corresponding CLI command. For information about the "zeroize" action, see "Use Ansible to Restore a
Junos Device to the Factory-Default Configuration Settings" on page 106.

76

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/system.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_system.html

Table 12: system and juniper_junos_system action Parameter Values

Value of action Parameter Description Equivalent CLI Command

"halt" Gracefully shut down the Junos OS software but
maintain system power

request system halt

"reboot" Reboot the Junos OS software request system reboot

"shutdown" Gracefully shut down the Junos OS software and power
off the Routing Engines

request system power-off

The following Ansible playbook uses the system module with action: "reboot" to immediately reboot all
Routing Engines on the hosts in the specified inventory group.

- name: Reboot Junos devices
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Reboot all REs on the device
 juniper.device.system:
 action: "reboot"

How to Perform a Halt, Reboot, or Shut Down with a Delay or at a
Specified Time

To delay the halt, reboot, or shut down operation by a specified number of minutes, set the optional
in_min parameter to the number of minutes that the system should wait before executing the operation.
The following task requests a reboot of all Routing Engines in 30 minutes:

- name: Reboot Junos devices
 hosts: dc1

77

 connection: local
 gather_facts: no

 tasks:
 - name: Reboot all REs in 30 minutes
 juniper.device.system:
 action: "reboot"
 in_min: 30

To schedule the halt, reboot, or shutdown at a specific time, include the at parameter, which takes a
string that can be specified in one of the following ways:

• now—Immediately initiate the halt, reboot, or shut down of the software.

• +minutes—Number of minutes from now when the requested action is initiated.

• yymmddhhmm—Absolute time at which to initiate the requested action, specified as year, month, day,
hour, and minute.

• hh:mm—Absolute time on the current day at which to initiate the requested action, specified in 24-
hour time.

The following task schedules a system shutdown of all Routing Engines at 22:30 on the current day:

 tasks:
 - name: Shut down all REs at 22:30 on the current day
 juniper.device.system:
 action: "shutdown"
 at: "22:30"

How to Specify the Target Routing Engine

By default, the system and juniper_junos_system modules perform the requested operation on all Routing
Engines in a dual Routing Engine or Virtual Chassis setup. You can also instruct the modules to perform
the operation on only the Routing Engine to which the application is connected or to perform the
operation on all Routing Engines except the one to which the application is connected.

To specify the Routing Engines, you use the all_re and other_re parameters. Table 13 on page 79
summarizes the all_re and other_re values that are required to execute the requested operation on
specific Routing Engines.

78

Table 13: Parameters for Specifying Routing Engines

Affected Routing Engines all_re Parameter other_re Parameter

All Routing Engines (default) Omit or set to True –

Only the connected Routing Engine Set to False –

All Routing Engines except the Routing Engine to which the
application is connected

– Set to True

To explicitly indicate that the operation should be performed on all Routing Engines in a dual Routing
Engine or Virtual Chassis setup, include the all_re: True argument, which is the default.

- name: Reboot Junos devices
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Reboot all Routing Engines
 juniper.device.system:
 action: "reboot"
 all_re: True

To perform the requested action on only the Routing Engine to which the application is connected,
include the all_re: False argument.

 tasks:
 - name: Reboot only the connected Routing Engine
 juniper.device.system:
 action: "reboot"
 all_re: False

79

To perform the requested action on all Routing Engines in the system except for the Routing Engine to
which the application is connected, include the other_re: True argument.

 tasks:
 - name: Shut down all other Routing Engines
 juniper.device.system:
 action: "shutdown"
 other_re: True

How to Reboot a VM Host

On devices that have Routing Engines with VM host support, Junos OS runs as a virtual machine (VM)
over a Linux-based host (VM host). The system and juniper_junos_system modules support the vmhost
argument, which enables you to reboot a VM Host. When you include the action: "reboot" and
vmhost: True arguments, the system reboots the host OS and compatible Junos OS on all Routing Engines
by executing the <request-vmhost-reboot> RPC, which corresponds to the request vmhost reboot operational
mode command.

The following playbook performs a VM host reboot, which reboots both the host OS and the guest
Junos OS.

- name: Reboot VM Hosts
 hosts: vm_hosts
 connection: local
 gather_facts: no

 tasks:
 - name: Reboot VM host
 juniper.device.system:
 action: "reboot"
 vmhost: True
 all_re: False

80

Example: Use Ansible to Reboot Junos Devices

IN THIS SECTION

Requirements | 81

Overview | 81

Configuration | 82

Execute the Playbook | 86

Verification | 87

The system module in the juniper.device collection enables you to halt, reboot, or shut down a Junos
device. This example uses the system module to reboot a Junos device.

Requirements

This example uses the following hardware and software components:

• Configuration management server running Ansible 2.10 or later with the juniper.device collection
installed

• Junos device with NETCONF enabled and a user account configured with appropriate permissions

• SSH public/private key pair configured for the appropriate user on the Ansible control node and
Junos device

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the system module to reboot a Junos device. The
value of the module’s action argument defines the operation to execute on the host.

When calling the module from a playbook, we recommend that you use an interactive prompt to confirm
that the user does intend to reboot the specified devices. If a user unintentionally runs the playbook and
there is no check, it could adversely affect any networks that require the impacted devices. As a
precaution, this playbook uses an interactive prompt to verify that the user intends to reboot the
devices and requires that the user manually type 'yes' on the command line to execute the module. If the
Confirmation check task fails, the Ansible control node skips the other tasks in the play for that device.

This playbook includes the Checking NETCONF connectivity task, which utilizes the wait_for module to try to
establish a NETCONF session with the Junos device using the default NETCONF port 830. If the control

81

node fails to establish a NETCONF session with the device during playbook execution, then it skips the
remaining tasks in the play for that device.

The task that reboots the device executes the system module provided that the confirmation and
NETCONF checks were successful. The action argument is set to the value "reboot", which indicates that
the software should be rebooted. The in_min: 2 argument instructs the module to wait for the specified
number of minutes before executing the reboot command. This provides time for any users to log out of
the system.

The task stores the module result in the result variable and notifies two handlers. The pause_for_reboot
handler waits a specified amount of time after the reboot operation is initiated to prevent the wait_reboot
handler from falsely detecting that the device is online before the reboot takes place. The wait_reboot
handler then tries to establish a session with the device to verify that the device comes back online after
the reboot. The wait_time_after_reboot variable defines the length of time that the control node attempts
to reconnect with the device.

Configuration

IN THIS SECTION

Creating and Executing the Ansible Playbook | 82

Results | 84

Creating and Executing the Ansible Playbook

Step-by-Step Procedure

To create a playbook that uses the system module to reboot a Junos device:

1. Include the boilerplate for the playbook and this play, which executes the modules locally.

- name: Reboot Junos devices
 hosts: dc1
 connection: local
 gather_facts: no

82

2. Define or import any necessary variables.

 vars:
 wait_time_after_reboot: 300
 netconf_port: 830

3. Create an interactive prompt to prevent users from accidentally executing the module without first
understanding the implications.

 vars_prompt:
 - name: "reboot_confirmation"
 prompt: "This playbook reboots devices. Enter 'yes' to continue"
 private: no

4. Create the task that confirms the user’s intent.

 tasks:
 - name: Confirmation check
 fail: msg="Playbook run confirmation failed"
 when: reboot_confirmation != "yes"

5. (Optional) Create a task to verify NETCONF connectivity.

 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: 5

6. Create the task to reboot the device after a specified number of minutes and then notify the
handlers.

 - name: Reboot all Routing Engines on the Junos device
 juniper.device.system:
 action: "reboot"
 in_min: 2
 all_re: True
 register: result

83

 notify:
 - pause_for_reboot
 - wait_reboot

7. (Optional) Create a task to print the response.

 - name: Print response
 debug:
 var: result

8. Create the handler that pauses after rebooting and the handler that verifies that the device comes
back online after rebooting.

The handler names should be the same as those referenced in the reboot task.

 handlers:
 - name: pause_for_reboot
 pause:
 seconds: 180
 when: result.reboot
 - name: wait_reboot
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: "{{ wait_time_after_reboot }}"
 when: result.reboot

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the
intended code, repeat the instructions in this example to correct the playbook.

- name: Reboot Junos devices
 hosts: dc1
 connection: local
 gather_facts: no

 vars:
 wait_time_after_reboot: 300

84

 netconf_port: 830

 vars_prompt:
 - name: "reboot_confirmation"
 prompt: "This playbook reboots devices. Enter 'yes' to continue"
 private: no

 tasks:
 - name: Confirmation check
 fail: msg="Playbook run confirmation failed"
 when: reboot_confirmation != "yes"

 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: 5

 - name: Reboot all Routing Engines on the Junos device
 juniper.device.system:
 action: "reboot"
 in_min: 2
 all_re: True
 register: result
 notify:
 - pause_for_reboot
 - wait_reboot

 - name: Print response
 debug:
 var: result

 handlers:
 - name: pause_for_reboot
 pause:
 seconds: 180
 when: result.reboot
 - name: wait_reboot
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"

85

 timeout: "{{ wait_time_after_reboot }}"
 when: result.reboot

Execute the Playbook

IN THIS SECTION

Procedure | 86

Procedure

Step-by-Step Procedure

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~/ansible$ ansible-playbook ansible-pb-junos-reboot.yaml
This playbook reboots devices. Enter 'yes' to continue: yes

PLAY [Reboot Junos devices] **

TASK [Confirmation check] **
skipping: [dc1a.example.net]

TASK [Checking NETCONF connectivity] ***
ok: [dc1a.example.net]

TASK [Reboot all Routing Engines on the Junos device] *************
changed: [dc1a.example.net]

TASK [Print response] **
ok: [dc1a.example.net] => {
 "result": {
 "action": "reboot",
 "all_re": true,
 "changed": true,
 "failed": false,

86

 "media": false,
 "msg": "reboot successfully initiated. Response got Shutdown at Fri Dec 11 17:36:50
2020. [pid 11595]",
 "other_re": false,
 "reboot": true,
 "vmhost": false
 }
}

RUNNING HANDLER [pause_for_reboot] ***
Pausing for 180 seconds
(ctrl+C then 'C' = continue early, ctrl+C then 'A' = abort)
ok: [dc1a.example.net]

RUNNING HANDLER [wait_reboot] **
ok: [dc1a.example.net]

PLAY RECAP ***
dc1a.example.net : ok=5 changed=1 unreachable=0 failed=0 skipped=1
rescued=0 ignored=0

Verification

IN THIS SECTION

Verify the Reboot | 87

Verify the Reboot

Purpose

Verify that the Junos device successfully rebooted.

87

Action

When you execute the playbook, review the output of the wait_reboot task for each device.

RUNNING HANDLER [wait_reboot] ***
ok: [dc1a.example.net]

Meaning

The wait_reboot result indicates whether the control node successfully established a session with the
device after it rebooted. If the result indicates success, the device is online.

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the functionality of the
junos_shutdown and junos_zeroize modules.

RELATED DOCUMENTATION

Use Ansible to Restore a Junos Device to the Factory-Default Configuration Settings | 106

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Use Ansible to Install Software on Junos Devices

SUMMARY

Use the Juniper Networks Ansible modules to install
software on Junos devices.

IN THIS SECTION

Use Ansible to Install Software | 89

How to Specify the Software Image
Location | 90

Installation Process Overview | 92

88

How to Specify Timeout Values | 94

How to Specify Installation Options That Do
Not Have an Equivalent Module
Argument | 94

How to Perform a VM Host Upgrade | 95

How to Perform a Unified ISSU or
NSSU | 96

Example: Use Ansible to Install
Software | 97

Use Ansible to Install Software

Juniper Networks supports using Ansible to manage Junos devices and provides modules that enable
you to install or upgrade the software image on a device. Table 14 on page 89 outlines the modules.

Table 14: Software Modules

Content Set Module Name

juniper.device collection software

Juniper.junos role juniper_junos_software

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_software module replaces the
functionality of the junos_install_os module.

The following sections discuss how to specify the software image location and the general software
installation process and options when using the modules to install software packages on Junos devices.
They also discuss how to perform more specialized upgrade scenarios such as a VM host upgrade, a
unified in-service software upgrade (unified ISSU), or a nonstop software upgrade (NSSU) on devices
that support these features.

• "How to Specify the Software Image Location" on page 90

• "Installation Process Overview" on page 92

89

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/software.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_software.html

• "How to Specify Timeout Values" on page 94

• "How to Specify Installation Options That Do Not Have an Equivalent Module Argument" on page
94

• "How to Perform a VM Host Upgrade" on page 95

• "How to Perform a Unified ISSU or NSSU" on page 96

How to Specify the Software Image Location

When you use the software or juniper_junos_software module to install software on Junos devices, you can
download the software package to the Ansible control node, and the modules, by default, copy the
package to the target device before performing the installation. For mixed Virtual Chassis environments,
the packages must reside on the Ansible control node. For standalone devices or non-mixed Virtual
Chassis environments, you can also instruct the module to install a software image that already resides
on the target Junos device or resides at a URL that is reachable from the target device.

Table 15 on page 90 outlines the module arguments that you must set depending on the software
package location. The module must always include either the local_package, pkg_set, or remote_package
argument. The no_copy argument defaults to false, which instructs the module to copy the software
package from the specified location on the control node to the target device.

Table 15: Module Arguments for Software Package Location

Software
Package
Location

no_copy
Parameter

local_package or pkg_set Parameter remote_package Parameter

Ansible
control node

Omit or set to
false

For standalone devices or non-mixed
Virtual Chassis environments:

Set local_package to the file path,
including the filename, of the software
package on the local control node. File
paths are relative to the playbook
directory.

(Optional) File path on the target
device to which the software
package is copied. The default
directory is /var/tmp.

If remote_package includes a
filename, it must match the
filename specified in local_package.

90

Table 15: Module Arguments for Software Package Location (Continued)

Software
Package
Location

no_copy
Parameter

local_package or pkg_set Parameter remote_package Parameter

For mixed Virtual Chassis
environments:

Set pkg_set to a list of the file paths,
including the filenames, of one or
more software packages on the local
control node. File paths are relative to
the playbook directory.

–

Remote
Location

– – URL from the perspective of the
target Junos device from which the
software package is installed.

Target device Set to true – File path on the target device where
the software package must already
reside. The default directory is /var/
tmp.

If the software package resides on the Ansible control node, include the local_package argument to install
software on a standalone Junos device or on members in a non-mixed Virtual Chassis, or include the
pkg_set argument to install software on the members in a mixed Virtual Chassis. The module argument
specifies the absolute or relative file path to the software package or packages on the local control node.

The local_package argument is a single string specifying the software image path. The pkg_set argument
contains a list of strings that specify the necessary software image paths, in no particular order, for the
various Virtual Chassis members. For example:

pkg_set:
 - 'software/jinstall-qfx-5-13.2X51-D35.3-domestic-signed.tgz'
 - 'software/jinstall-ex-4300-13.2X51-D35.3-domestic-signed.tgz'

By default, when you include the local_package or pkg_set argument, the module copies any software
packages to the /var/tmp directory on the target Junos device (individual device or Virtual Chassis
primary device). If you want to copy the local_package image to a different directory, define the
remote_package argument and specify the target directory. If the remote_package argument includes a

91

filename, the filenames of the local_package and remote_package arguments must be identical, or the module
generates an error.

If the software package already resides on the target Junos device, the module must include the
no_copy: True argument as well the remote_package argument, which specifies the file path to an existing
software package on the target device. If remote_package does not specify a directory, the default is /var/
tmp.

If the software package resides at a location other than the Ansible control node or target device, the
module must include the remote_package argument and specify the location of the software package. The
value of remote_package is a URL from the perspective of the target Junos device. For information about
acceptable URL formats, see Format for Specifying Filenames and URLs in Junos OS CLI Commands.

Installation Process Overview

To use Ansible to install a software package on a Junos device, execute the software or
juniper_junos_software module, and provide any necessary arguments. For example:

- name: Perform a Junos OS software upgrade
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Upgrade Junos OS
 juniper.device.software:
 local_package: "software/jinstall-ppc-17.3R1.10-signed.tgz"
 no_copy: false
 validate: True
 register: response
 - name: Print the response
 debug:
 var: response

When you execute the software or juniper_junos_software module, it performs the following operations:

1. Compares the Junos OS version specified in the version argument, or in the software package
filename if the version argument is omitted, to the installed version on the managed device. If the
installed and desired versions are identical, the module skips the remaining installation steps and sets
changed and failed to false.

92

https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-software-formats-filenames-urls.html
https://ansible-juniper-collection.readthedocs.io/en/latest/software.html
https://junos-ansible-modules.readthedocs.io/en/stable/juniper_junos_software.html

2. If the software package is located on the Ansible control node, and the no_copy parameter is omitted
or set to False, the module performs the following operations:

• Computes the checksum of the local software package or packages using the algorithm specified
in the checksum_algorithm argument, if the checksum is not already provided in the checksum
argument. Acceptable checksum_algorithm values are md5, sha1, and sha256. The default is md5.

• Performs a storage cleanup on the target device to create space for the software package, unless
the cleanfs argument is set to false.

• SCP or FTP copies any packages to the target device.

When the module includes local_package, the package is copied to the remote_package directory, or if
remote_package is not specified, to the /var/tmp directory, if a file with the same name and
checksum does not already reside in the target location on the device. When the module includes
pkg_set, the packages are always copied to the /var/tmp directory on the Virtual Chassis primary
device.

NOTE: If the cleanfs argument is omitted or set to true, the module copies the software
package to the device even if it already exists in the target location, because the storage
cleanup operation removes the existing file. If cleanfs: false is present and the file already
resides at the target location, the module skips the file copy operation.

• Computes the checksum of each remote file and compares it to the value of the local file.

Once the software package is on the target device, whether downloaded there initially or copied over by
the module, the module then performs the following operations:

1. Validates the configuration against the new package if the validate parameter is set to true.

NOTE: By default, the software and juniper_junos_software modules do not validate the software
package or bundle against the existing configuration as a prerequisite to adding the software
package. To ensure that the active configuration will work with the new software image, set
the validate argument to true.

2. Installs the package on each individual Routing Engine, unless all_re is set to false.

3. Reboots each upgraded Routing Engine, unless the reboot argument is set to false.

The software and juniper_junos_software modules enable you to log the progress of the installation by
including the logfile module argument. By default, only messages of severity level WARNING or higher
are logged. To log messages of severity level INFO or higher, which is required to log messages for the
general installation process, execute the playbook with the -v or --verbose command-line option.

93

How to Specify Timeout Values

The Juniper Networks software modules perform operations over a NETCONF session. The default time
for a NETCONF RPC to time out is 30 seconds. During the installation process, certain operations
increase the RPC timeout interval as follows:

• Copying and installing the package on the device—1800 seconds (30 minutes)

• Computing the checksum—300 seconds (5 minutes)

• Performing a storage cleanup—300 seconds (5 minutes)

In some cases, the installation process, checksum calculation, or storage cleanup might exceed these
time intervals. You can change the timeout value for these operations by setting the install_timeout,
checksum_timeout, and cleanfs_timeout arguments to the required number of seconds in the module’s
argument list. For example:

 - name: Upgrade Junos OS
 juniper.device.software:
 local_package: "software/jinstall-ppc-17.3R1.10-signed.tgz"
 validate: True
 install_timeout: 2000
 checksum_timeout: 420
 cleanfs_timeout: 600

How to Specify Installation Options That Do Not Have an Equivalent
Module Argument

When you use the software or juniper_junos_software module to install software on a device, the module
invokes the appropriate RPC for the given installation arguments, for example, the <request-package-add>
RPC for standard Junos OS installations, the <request-vmhost-package-add> RPC for VM host upgrades, the
<request-package-in-service-upgrade> RPC for unified ISSU scenarios, and so on. The modules support
explicit arguments for many of the installation options, for example, the validate option. The modules
also support the kwargs argument, which enables you to include any additional options that are
supported by the RPC but which do not have an equivalent module argument. The kwargs argument takes
a dictionary of key/value pairs of additional supported options.

For the current list of options supported by the modules, see the API reference documentation for that
module. For a list of all available options for a specific RPC, see the documentation for the equivalent
command or search for the RPC’s request tag in the Junos XML API Explorer.

94

https://apps.juniper.net/xmlapi/operTags.jsp

NOTE: The modules should only include installation options that are supported on the target
Junos device.

In the following playbook, the software module installs a new software image on the target hosts. The
module includes the kwargs argument with unlink: True. This argument, which removes the software
package from the directory after a successful upgrade, is equivalent to including the <unlink/> option in
the <request-package-add> RPC.

- name: Perform a Junos OS software upgrade
 hosts: router1
 connection: local
 gather_facts: no

 tasks:
 - name: Upgrade Junos OS
 juniper.device.software:
 local_package: "software/jinstall-ppc-17.3R1.10-signed.tgz"
 kwargs:
 unlink: True
 register: response
 - name: Print the response
 debug:
 var: response

How to Perform a VM Host Upgrade

On devices that have Routing Engines with VM host support, Junos OS runs as a virtual machine (VM)
over a Linux-based host (VM host). A VM host upgrade, which upgrades the host OS and compatible
Junos OS, requires a VM Host Installation Package (junos-vmhost-install-x.tgz) and is performed using
the request vmhost software add operational mode command, which corresponds to the <request-vmhost-
package-add> RPC.

The software and juniper_junos_software modules support the vmhost: True argument for performing a VM
host upgrade. When the argument is present, the module performs the installation using the <request-
vmhost-package-add> RPC.

95

The following playbook upgrades and reboots the Junos OS and host OS on the devices:

- name: Upgrade VM Hosts
 hosts: vm_hosts
 connection: local
 gather_facts: no

 tasks:
 - name: Perform a VM host upgrade
 juniper.device.software:
 local_package: "junos-vmhost-install-qfx-x86-64-18.1R1.9.tgz"
 vmhost: True
 register: response
 - name: Print the response
 debug:
 var: response

How to Perform a Unified ISSU or NSSU

The software and juniper_junos_software modules support performing a unified in-service software upgrade
(unified ISSU) or a nonstop software upgrade (NSSU) on devices that support the feature and meet the
necessary requirements. For more information about the unified ISSU and NSSU features, see the
software documentation for your product.

The unified ISSU feature enables you to upgrade between two different Junos OS releases with no
disruption on the control plane and with minimal disruption of traffic. To perform a unified in-service
software upgrade, the software or juniper_junos_software module must include the issu: True argument. For
example:

- name: Perform a Junos OS software upgrade
 hosts: mx1
 connection: local
 gather_facts: no

 tasks:
 - name: Perform a unified ISSU
 juniper.device.software:

96

 local_package: "junos-install-mx-x86-64-17.2R1.13.tgz"
 issu: True
 register: response
 - name: Print the response
 debug:
 var: response

The NSSU feature enables you to upgrade the Junos OS software running on a switch or Virtual Chassis
with redundant Routing Engines with minimal disruption to network traffic. To perform a nonstop
software upgrade, the software or juniper_junos_software module must include the nssu: True argument. For
example:

- name: Perform a Junos OS software upgrade
 hosts: ex1
 connection: local
 gather_facts: no

 tasks:
 - name: Perform an NSSU
 juniper.device.software:
 local_package: "jinstall-ex-4300–17.3R1.10-signed.tgz"
 nssu: True
 register: response
 - name: Print the response
 debug:
 var: response

Example: Use Ansible to Install Software

IN THIS SECTION

Requirements | 98

Overview | 98

Configuration | 99

Execute the Playbook | 102

97

Verification | 103

This example uses the software module in the juniper.device collection to install a software image on a
Junos device.

Requirements

This example uses the following hardware and software components:

• Configuration management server running Ansible 2.10 or later with the juniper.device collection
installed

• Junos device with NETCONF enabled and a user account configured with appropriate permissions

• SSH public/private key pair configured for the appropriate user on the Ansible control node and
Junos device

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the software module to upgrade Junos OS on the
hosts in the specified inventory group. In this example, the software image resides on the Ansible control
node, and the module copies the image to the target device before installing it. The module does not
explicitly define a host argument, so the module operates on the default host, which is
{{ inventory_hostname }}.

This playbook includes the Checking NETCONF connectivity task, which utilizes the wait_for module to try to
establish a NETCONF session with the Junos device using the default NETCONF port 830. If the control
node fails to establish a NETCONF session with a device during playbook execution, then it skips the
remaining tasks in the play for that device.

The Install Junos OS package task executes the software module provided that the NETCONF check was
successful. The version argument defines the desired Junos OS version as it would be reported by the
show version command on the Junos device. During playbook execution, the module first checks that the
requested version is not already installed on the device. If the requested version is different from the
currently installed version, the module installs the requested version.

The local_package argument defines the path of the Junos OS software package on the Ansible control
node. During the installation, the module performs a storage cleanup operation on the target device,
copies the software image to the /var/tmp directory on the device, verifies the file’s checksum, validates
the new software against the active configuration, and then installs the software on each Routing Engine

98

on the target host. By default, the software module reboots each Routing Engine after the installation
completes; however, this task explicitly sets reboot: True for clarity.

The task stores the module result in the response variable and notifies one handler. If the user does not
execute the playbook using check mode, the wait_reboot handler then tries to establish a session with the
device to verify that the device is back online. The wait_time variable defines the length of time that the
control node attempts to reconnect with the device.

This example includes the logfile parameter to log the progress of the installation. This is important for
debugging purposes should the installation fail as well as for logging the dates and times of installations
on the devices. The user executing the playbook must have permissions to write to the specified log file.
By default, only messages of severity level WARNING or higher are logged. In this example, the
playbook is executed with the -v option to log messages of severity level INFO or higher to monitor the
installation.

Configuration

IN THIS SECTION

Creating the Ansible Playbook | 99

Results | 101

Creating the Ansible Playbook

To create a playbook that uses the software module to install a software image on a Junos device:

1. Include the boilerplate for the playbook and this play, which executes the modules locally.

- name: Install Junos OS
 hosts: mx1
 connection: local
 gather_facts: no

2. Define or import any necessary variables, which for this example, includes the desired Junos OS
version and the path to the new image, among others.

 vars:
 OS_version: "20.3R1.8"

99

 OS_package: "junos-install-mx-x86-64-20.3R1.8.tgz"
 pkg_dir: "software"
 log_dir: "{{ playbook_dir }}"
 netconf_port: 830
 wait_time: 3600

3. (Optional) Create a task to verify NETCONF connectivity.

 tasks:
 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: 5

4. Create the task to install the Junos OS package on the device and notify the handler.

 - name: Install Junos OS package
 juniper.device.software:
 version: "{{ OS_version }}"
 local_package: "{{ pkg_dir }}/{{ OS_package }}"
 reboot: True
 validate: True
 logfile: "{{ log_dir }}/software.log"
 register: response
 notify:
 - wait_reboot

5. (Optional) Create a task to print the module response.

 - name: Print response
 debug:
 var: response

6. Create the handler that verifies that the device comes back online after rebooting.

100

The handler name should be the same as that referenced in the installation task.

 handlers:
 - name: wait_reboot
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: "{{ wait_time }}"
 when: not response.check_mode

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the
intended code, repeat the instructions in this example to correct the playbook.

- name: Install Junos OS
 hosts: mx1
 connection: local
 gather_facts: no

 vars:
 OS_version: "20.3R1.8"
 OS_package: "junos-install-mx-x86-64-20.3R1.8.tgz"
 pkg_dir: "software"
 log_dir: "{{ playbook_dir }}"
 netconf_port: 830
 wait_time: 3600

 tasks:
 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: 5

 - name: Install Junos OS package
 juniper.device.software:
 version: "{{ OS_version }}"
 local_package: "{{ pkg_dir }}/{{ OS_package }}"
 reboot: True

101

 validate: True
 logfile: "{{ log_dir }}/software.log"
 register: response
 notify:
 - wait_reboot

 - name: Print response
 debug:
 var: response

 handlers:
 - name: wait_reboot
 wait_for:
 host: "{{ inventory_hostname }}"
 port: "{{ netconf_port }}"
 timeout: "{{ wait_time }}"
 when: not response.check_mode

Execute the Playbook

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~/ansible$ ansible-playbook -v ansible-pb-junos-install-os.yaml
Using /etc/ansible/ansible.cfg as config file

PLAY [Install Junos OS] **

TASK [Checking NETCONF connectivity] ***************************************
ok: [mx1a.example.com] => {"changed": false, "elapsed": 0, "match_groupdict": {},
"match_groups": [], "path": null, "port": 830, "search_regex": null, "state": "started"}

TASK [Install Junos OS package] **
changed: [mx1a.example.com] => {"changed": true, "check_mode": false, "msg": "Package /home/
user/ansible/software/junos-install-mx-x86-64-20.3R1.8.tgz successfully installed. Response
from device is: \nVerified junos-install-mx-x86-64-20.3R1.8 signed by
PackageProductionECP256_2020 method ECDSA256+SHA256\n
[...output truncated...]
NOTICE: 'pending' set will be activated at next reboot... Reboot successfully initiated.
Reboot message: Shutdown NOW! [pid 83918]"}

102

TASK [Print response] **
ok: [mx1a.example.com] => {
 "response": {
 "changed": true,
 "check_mode": false,
 "failed": false,
 "msg": "Package /home/user/ansible/software/junos-install-mx-x86-64-20.3R1.8.tgz
successfully installed. Response from device is: \nVerified junos-install-mx-x86-64-20.3R1.8
signed by PackageProductionECP256_2020 method ECDSA256+SHA256\nVerified manifest signed by
PackageProductionECP256_2020 method ECDSA256+SHA256\n
[...output truncated...]
NOTICE: 'pending' set will be activated at next reboot... Reboot successfully initiated.
Reboot message: Shutdown NOW! [pid 83918]"
 }
}

RUNNING HANDLER [wait_reboot] **
ok: [mx1a.example.com] => {"changed": false, "elapsed": 209, "match_groupdict": {},
"match_groups": [], "path": null, "port": 830, "search_regex": null, "state": "started"}

PLAY RECAP ***
mx1a.example.com : ok=4 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

Verification

IN THIS SECTION

Verify the Installation | 103

Verify the Installation

Purpose

Verify that the software installation was successful.

103

Action

The playbook output should indicate any failed tasks. However, you can also review the contents of the
log file defined in the playbook for details about the installation. Sample log file output is shown here.
Some output has been omitted for brevity.

user@ansible-cn:~/ansible$ cat software.log
2020-12-11 00:24:49,478 - paramiko.transport - INFO - Connected (version 2.0, client OpenSSH_7.5)
2020-12-11 00:24:49,632 - paramiko.transport - INFO - Authentication (publickey) successful!
2020-12-11 00:24:57,923 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 344145920 / 3441301038 (10%)
2020-12-11 00:25:05,976 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 688275456 / 3441301038 (20%)
2020-12-11 00:25:13,949 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 1032404992 / 3441301038 (30%)
2020-12-11 00:25:22,051 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 1376534528 / 3441301038 (40%)
2020-12-11 00:25:30,357 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 1720664064 / 3441301038 (50%)
2020-12-11 00:25:38,360 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 2064793600 / 3441301038 (60%)
2020-12-11 00:25:46,575 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 2408923136 / 3441301038 (70%)
2020-12-11 00:25:54,983 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 2753052672 / 3441301038 (80%)
2020-12-11 00:26:03,066 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 3097182208 / 3441301038 (90%)
2020-12-11 00:26:11,330 - jnpr.ansible_module.software - INFO - [mx1a.example.com] b'junos-
install-mx-x86-64-20.3R1.8.tgz': 3441301038 / 3441301038 (100%)
2020-12-11 00:26:11,331 - jnpr.ansible_module.software - INFO - [mx1a.example.com] after copy,
computing checksum on remote package: /var/tmp/junos-install-mx-x86-64-20.3R1.8.tgz
...
2020-12-11 00:26:27,623 - jnpr.ansible_module.software - INFO - [mx1a.example.com] checksum
check passed.
2020-12-11 00:26:27,623 - jnpr.ansible_module.software - INFO - [mx1a.example.com] validating
software against current config, please be patient ...
...
2020-12-11 00:30:55,725 - jnpr.ansible_module.software - INFO - [mx1a.example.com] software
validate package-result: 0
Output:
Removing /packages/sets/previous
Verified junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020 method

104

ECDSA256+SHA256
Verified manifest signed by PackageProductionECP256_2020 method ECDSA256+SHA256
Checking PIC combinations
Adding junos-mx-x86-64-20.3R1.8 ...
...
Validating against /config/juniper.conf.gz
mgd: commit complete
Validation succeeded

2020-12-11 00:30:55,725 - jnpr.ansible_module.software - INFO - [mx1a.example.com] installing
software on RE0 ... please be patient ...
...
2020-12-11 00:33:56,203 - jnpr.ansible_module.software - INFO - [mx1a.example.com] software
pkgadd package-result: 0
Output:
Verified junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020 method
ECDSA256+SHA256
...
2020-12-11 00:33:56,250 - jnpr.ansible_module.software - INFO - [mx1a.example.com] installing
software on RE1 ... please be patient ...
...
2020-12-11 00:37:18,562 - jnpr.ansible_module.software - INFO - [mx1a.example.com] software
pkgadd package-result: 0
Output:
Pushing /var/tmp/junos-install-mx-x86-64-20.3R1.8.tgz to re1:/var/tmp/junos-install-mx-
x86-64-20.3R1.8.tgz
Verified junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020 method
ECDSA256+SHA256
...
<?xml version="1.0" encoding="UTF-8"?><nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:f6f6a59c-fedd-49fc-9cb3-9848f419a5b7">
<request-reboot><both-routing-engines/><in>0</in></request-reboot></nc:rpc>]]>]]>
2020-12-11 00:37:19,880 - ncclient.operations.rpc - INFO - [host mx1a.example.com session-id
46151]
 Requesting 'CloseSession'

Meaning

The log file contents indicate that the image was successfully copied and installed on both Routing
Engines on the target device.

105

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_software module replaces the functionality of
the junos_install_os module.

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Use Ansible to Halt, Reboot, or Shut Down Junos Devices | 75

Use Ansible to Restore a Junos Device to the Factory-Default Configuration Settings | 106

Use Ansible to Restore a Junos Device to the
Factory-Default Configuration Settings

SUMMARY

Use the Juniper Networks Ansible modules to
restore a Junos device to its factory-default
configuration settings.

IN THIS SECTION

How to Use Ansible to Restore the Factory-
Default Configuration Settings | 106

Example: Use Ansible to Restore the Factory-
Default Configuration Settings | 109

How to Use Ansible to Restore the Factory-Default Configuration
Settings

Juniper Networks supports using Ansible to manage Junos devices and provides modules that enable
you to restore a device to its factory-default configuration settings. Table 16 on page 107 outlines the
modules.

106

Table 16: Modules to Zeroize Devices

Content Set Module Name

juniper.device collection system

Juniper.junos role juniper_junos_system

To use the system or juniper_junos_system module to restore a device to its factory-default configuration
settings, set the module’s action argument to 'zeroize'. After a device is restored to the factory-default
configuration settings, you must log in through the console as root in order to access the device.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the
functionality of the junos_shutdown and junos_zeroize modules.

The action: "zeroize" argument causes the module to execute the request system zeroize operational
command on the target host. This command removes all configuration information on the specified
Routing Engines, resets all key values on the device, and then reboots the device and resets it to the
factory-default configuration settings. The zeroize operation removes all data files, including customized
configuration and log files, by unlinking the files from their directories, and it also removes all user-
created files from the system including all plain-text passwords, secrets, and private keys for SSH, local
encryption, local authentication, IPsec, RADIUS, TACACS+, and SNMP. For more information, see
request system zeroize.

The following Ansible playbook uses the juniper.device collection’s system module with action: "zeroize" to
reset all Routing Engines on each host in the inventory group to the factory-default configuration
settings.

- name: Restore Junos devices to factory-default configuration
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Restore all Routing Engines to factory-default configuration
 juniper.device.system:
 action: "zeroize"

107

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/system.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_system.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/ref/command/request-system-zeroize.html

By default, the action: "zeroize" operation resets all Routing Engines in a dual Routing Engine or Virtual
Chassis setup to the factory-default configuration settings. You can also instruct the module to perform
the operation on only the Routing Engine to which the application is connected.

To explicitly indicate that the operation should be performed on all Routing Engines in a dual Routing
Engine or Virtual Chassis setup, include the all_re: True argument, which is the default.

 tasks:
 - name: Restore all Routing Engines to factory-default configuration
 juniper.device.system:
 action: "zeroize"
 all_re: True

To perform the requested action on only the Routing Engine to which the application is connected,
include the all_re: False argument.

 tasks:
 - name: Restore connected Routing Engine to factory-default configuration
 juniper.device.system:
 action: "zeroize"
 all_re: False

To instruct the module to also scrub all memory and media, in addition to removing all configuration and
log files, include the media: True argument. Including the media: True argument is equivalent to executing
the request system zeroize media operational mode command. The media option scrubs every storage device
attached to the system, including disks, flash memory devices, removable USBs, and so on. The duration
of the scrubbing process is dependent on the size of the media being erased.

 tasks:
 - name: Restore device to the factory-default configuration and scrub media
 juniper.device.system:
 action: "zeroize"
 media: True

108

Example: Use Ansible to Restore the Factory-Default Configuration
Settings

IN THIS SECTION

Requirements | 109

Overview | 109

Configuration | 110

Execute the Playbook | 113

Verification | 114

This example demonstrates how to use the system module in the juniper.device collection to restore a
Junos device to its factory-default configuration settings. You can execute the module using any type of
connection; however, once you reset the device, you can only access it again as root through a console
server or the CONSOLE port. This example connects to the devices through a console server.

Requirements

This example uses the following hardware and software components:

• Configuration management server running Ansible 2.10 or later with the juniper.device collection
installed

• Junos device that has access to the console port through a console server and has a user account
configured with appropriate permissions

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the system module to reset each host in the
inventory group to its factory-default configuration settings. The value of the module’s action argument
defines the operation to execute on the host. Setting action to "zeroize" executes the request system zeroize
command on each host. This command removes all configuration information on the Routing Engines,
resets all key values on the device, and then reboots the device and resets it to the factory-default
configuration settings.

109

NOTE: The request system zeroize command removes all data files, including customized
configuration and log files, by unlinking the files from their directories. The command also
removes all user-created files from the system including all plain-text passwords, secrets, and
private keys for SSH, local encryption, local authentication, IPsec, RADIUS, TACACS+, and
SNMP.

When calling the module from a playbook, we recommend that you use an interactive prompt to confirm
that the user does intend to reset the devices. If a user unintentionally runs the playbook and there is no
check, it could inadvertently revert devices back to factory-default configurations and disrupt any
networks that require those devices. As a precaution, this playbook uses an interactive prompt to verify
that the user intends to reset the devices and requires that the user manually type 'yes' on the command
line in order to execute the module. If the Confirmation check task fails, the Ansible control node skips the
other tasks in the play for that device.

The task that restores the hosts to the factory-default configuration executes the system module
provided that the confirmation check was successful. The mode: "telnet" and port: 23 arguments instruct
the module to telnet to port 23 of the console server. The password parameter is set to the value of the
password variable, which the playbook prompts for during execution. After the reboot, you must log in
through the console as root in order to access the device.

Configuration

IN THIS SECTION

Creating and Executing the Ansible Playbook | 110

Results | 112

Creating and Executing the Ansible Playbook

Step-by-Step Procedure

To create a playbook that uses the system module to restore a Junos device to its factory-default
configuration settings:

110

1. Include the boilerplate for the playbook and this play, which executes the modules locally.

- name: Restore Junos devices to factory-default configuration settings
 hosts: dc1_console
 connection: local
 gather_facts: no

2. Create an interactive prompt for the password variable, if the user credentials are not already passed in
through some other means.

 vars_prompt:
 - name: "device_password"
 prompt: "Device password"
 private: yes

3. Create an interactive prompt to prevent the accidental execution of the module.

 - name: reset_confirmation
 prompt: >
 This playbook resets hosts to factory-default configurations!
 Enter 'yes' to continue.
 default: "no"
 private: no

4. Create the task that confirms the users intent.

 tasks:
 - name: Confirmation check
 fail: msg="Playbook run confirmation failed"
 when: reset_confirmation != "yes"

5. Create the task to reset all Routing Engines on the device to the factory-default configuration
settings.

 - name: Restore all Routing Engines to factory-default configuration
 juniper.device.system:
 password: "{{ device_password }}"

111

 mode: "telnet"
 port: 23
 action: "zeroize"
 timeout: 120
 register: result

6. (Optional) Create a task to print the response.

 - name: Print response
 debug:
 var: result

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the
intended code, repeat the instructions in this example to correct the playbook.

- name: Restore Junos devices to factory-default configuration settings
 hosts: dc1_console
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "device_password"
 prompt: "Device password"
 private: yes

 - name: reset_confirmation
 prompt: >
 This playbook resets hosts to factory-default configurations!
 Enter 'yes' to continue.
 default: "no"
 private: no

 tasks:
 - name: Confirmation check
 fail: msg="Playbook run confirmation failed"
 when: reset_confirmation != "yes"

112

 - name: Restore all Routing Engines to factory-default configuration
 juniper.device.system:
 password: "{{ device_password }}"
 mode: "telnet"
 port: 23
 action: "zeroize"
 timeout: 120
 register: result

 - name: Print response
 debug:
 var: result

Execute the Playbook

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

root@ansible-cn:~/ansible# ansible-playbook ansible-pb-junos-zeroize.yaml
Device password:
This playbook resets hosts to factory-default configurations! Enter 'yes' to continue.
 [no]: yes

PLAY [Restore Junos devices to factory-default configuration settings]

TASK [Confirmation check] **
skipping: [dc1a-console.example.net]

TASK [Restore all Routing Engines to factory-default configuration] ****
changed: [dc1a-console.example.net]

TASK [Print response] **
ok: [dc1a-console.example.net] => {
 "result": {
 "action": "zeroize",
 "all_re": true,
 "changed": true,
 "failed": false,
 "media": false,
 "msg": "zeroize successfully initiated.",

113

 "other_re": false,
 "reboot": false
 "vmhost": false
 }
}

PLAY RECAP **
dc1a-console.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=1
rescued=0 ignored=0

Verification

IN THIS SECTION

Verify Playbook Execution | 114

Verify Playbook Execution

Purpose

Verify that the Junos devices were successfully reset to the factory-default configuration.

Action

Access the device through the console port as root. The device should now be in Amnesiac state.

Amnesiac <ttyd0>

login:

Meaning

The Amnesiac prompt is indicative of a device that is booting from a factory-default configuration and that
does not have a hostname configured.

114

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the functionality of the
junos_shutdown and junos_zeroize modules.

RELATED DOCUMENTATION

Use Ansible to Halt, Reboot, or Shut Down Junos Devices | 75

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Use Junos Snapshot Administrator in Python
(JSNAPy) in Ansible Playbooks

SUMMARY

Execute JSNAPy tests as part of an Ansible playbook
to capture and audit runtime environment snapshots
of Junos devices.

IN THIS SECTION

Module Overview | 116

Take and Compare Snapshots | 120

Perform Snapcheck Operations | 122

Understanding the jsnapy and
juniper_junos_jsnapy Module Output | 123

Enable the jsnapy Callback Plugin | 125

Example: Use Ansible to Perform a JSNAPy
Snapcheck Operation | 126

Junos® Snapshot Administrator in Python (JSNAPy) enables you to capture and audit runtime
environment snapshots of your network Junos devices. You can capture and verify the configuration and
operational status of a device and verify changes to a device. Juniper Networks provides Ansible
modules that enable you to execute JSNAPy tests against Junos devices as part of an Ansible playbook.
Table 17 on page 116 outlines the available modules.

115

Table 17: JSNAPy Modules

Content Set Module Name

juniper.device collection jsnapy

Juniper.junos role juniper_junos_jsnapy

You must install Junos Snapshot Administrator in Python on the Ansible control node in order to use the
modules. For installation instructions and information about creating JSNAPy configuration and test
files, see the Junos Snapshot Administrator in Python Documentation.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_jsnapy module replaces the
functionality of the junos_jsnapy module.

The following sections discuss how to use the modules in Ansible playbooks.

Module Overview

The jsnapy and juniper_junos_jsnapy modules enable you to execute many of the same JSNAPy functions
from an Ansible playbook as you can execute using JSNAPy on the command line, including:

• capturing and saving a runtime environment snapshot

• comparing two snapshots

• capturing a snapshot and immediately evaluating it

The modules require specifying the action argument and either the config_file or the test_files argument.
The action argument specifies the JSNAPy action to perform. Table 18 on page 117 outlines the valid
action values and the equivalent JSNAPy commands.

116

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/jsnapy.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
http://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_jsnapy.html
https://www.juniper.net/documentation/en_US/junos-snapshot1.0/information-products/pathway-pages/product/1.0/index-python.html

Table 18: jsnapy and juniper_junos_jsnapy action Argument Values

action Value Description Equivalent JSNAPy Command

check Compare two existing snapshots based on the given test cases, or
if no test cases are supplied, compare the snapshots node by
node.

jsnapy --check

snap_post Take snapshots for the commands or RPCs specified in the test
files after making changes on the given devices.

jsnapy --snap

snap_pre Take snapshots for the commands or RPCs specified in the test
files prior to making changes on the given devices.

jsnapy --snap

snapcheck Take snapshots of the commands or RPCs specified in the test
files and immediately evaluate the snapshots against pre-defined
criteria in the test cases.

jsnapy --snapcheck

When you execute JSNAPy on the command line, JSNAPy performs the requested action on the hosts
specified in the hosts section of the configuration file. In contrast, the Ansible modules execute the
requested action on the hosts in the Ansible inventory group defined in the playbook. As a result, the
module can either reference a configuration file, ignoring the hosts section, or it can directly reference
one or more test files.

Thus, in addition to the action argument, the jsnapy and juniper_junos_jsnapy modules also require either
the config_file or the test_files argument to specify the JSNAPy configuration file or the JSNAPy test
files to use for the given action. Table 19 on page 118 outlines the config_file and test_files arguments.

117

Table 19: jsnapy and juniper_junos_jsnapy File Arguments

Module
argument

Value Additional Information

config_file Absolute or relative file
path to a JSNAPy
configuration file.

If the path is relative, the module checks for the configuration file
in the following locations and in the order indicated:

• Ansible playbook directory

• dir argument directory, if provided

• /etc/jsnapy/testfiles directory (only if the dir argument is
omitted)

If the configuration file references test files by using a relative file
path, the module first checks for the test files in the playbook
directory and then checks for the test files in the default testfiles
directory, which will vary depending on the JSNAPy release and
your environment.

test_files Absolute or relative file
path to a JSNAPy test file.
This can be a single file
path or a list of file paths.

For each test file that specifies a relative path, the module checks
for the file in the following locations and in the order indicated:

• Ansible playbook directory

• dir argument directory, if provided

• /etc/jsnapy/testfiles directory (only if the dir argument is
omitted)

The config_file and test_files arguments can take an absolute or relative file path. When using a relative
file path, you can optionally include the dir module argument to specify the directory in which the files
reside. If a config_file or test_files argument uses a relative file path, the module first checks for the file
under the Ansible playbook directory, even if the dir argument is present. If the file does not exist under
the playbook directory, the module checks under the dir argument directory, if it is specified, or under
the /etc/jsnapy/testfiles directory, if the dir argument is omitted. The playbook generates an error
message if the file is not found.

The following sample playbook performs the snap_pre action using the
configuration_interface_status.yaml configuration file. If the configuration file does not exist in the

118

playbook directory, the module checks for the file in the user’s home directory under the jsnapy/
testfiles subdirectory.

- name: Junos Snapshot Administrator tests
 hosts: dc1a
 connection: local
 gather_facts: no

 tasks:
 - name: Take a pre-maintenance snapshot of the interfaces
 juniper.device.jsnapy:
 action: "snap_pre"
 dir: "~/jsnapy/testfiles"
 config_file: "configuration_interface_status.yaml"

NOTE: Starting in Junos Snapshot Administrator in Python Release 1.3.0, the default location for
configuration and test files is ~/jsnapy/testfiles. However, the default location inside a virtual
environment or for earlier releases is /etc/jsnapy/testfiles.

The module performs the requested action on the hosts specified in the Ansible playbook, even if the
module references a configuration file that includes a hosts section. The module reports failed if it
encounters an error and fails to execute the JSNAPy tests. It does not report failed if one or more of the
JSNAPy tests fail. To check the JSNAPy test results, register the module’s response, and use the assert
module to verify the expected result in the response.

Junos Snapshot Administrator in Python logs information regarding its operations to the /var/log/
jsnapy/jsnapy.log file by default. The jsnapy and juniper_junos_jsnapy modules can optionally include the
logfile argument, which specifies the path to a writable file on the Ansible control node where
information for the particular task is logged. The level of information logged in the file is determined by
Ansible’s verbosity level and debug options. By default, only messages of severity level WARNING or
higher are logged. To log messages equal to or higher than severity level INFO or severity level DEBUG,
execute the playbook with the -v or -vv command-line option, respectively.

When you execute JSNAPy tests in an Ansible playbook, you can enable the jsnapy callback plugin to
capture and summarize information for failed JSNAPy tests. To enable the callback plugin, add the
callback_whitelist = jsnapy statement to the Ansible configuration file. For more information, see "Enable
the jsnapy Callback Plugin" on page 125.

119

Take and Compare Snapshots

JSNAPy enables you to capture runtime environment snapshots of your network Junos devices before
and after a change and then compare the snapshots to verify the expected changes or identify
unexpected issues. The jsnapy and juniper_junos_jsnapy Ansible modules enable you to take and compare
JSNAPy snapshots as part of an Ansible playbook. The modules save each snapshot for each host in a
separate file in the default JSNAPy snapshot directory using a predetermined filename. For more
information about the output files, see "Understanding the jsnapy and juniper_junos_jsnapy Module
Output" on page 123.

To take baseline snapshots of one or more devices prior to making changes, set the module’s action
argument to snap_pre, and specify a configuration file or one or more test files.

The following playbook saves PRE snapshots for each device in the Ansible inventory group. The task
references the configuration_interface_status.yaml configuration file in the ~/jsnapy/testfiles directory
and logs messages to the jsnapy_tests.log file in the playbook directory.

- name: Junos Snapshot Administrator tests
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Take a pre-maintenance snapshot of the interfaces
 juniper.device.jsnapy:
 action: "snap_pre"
 dir: "~/jsnapy/testfiles"
 config_file: "configuration_interface_status.yaml"
 logfile: "jsnapy_tests.log"

To take a snapshot of one or more devices after performing changes, set the module’s action argument to
snap_post, and specify a configuration file or one or more test files.

The following playbook saves POST snapshots for each device in the Ansible inventory group. The task
references the same configuration_interface_status.yaml configuration file in the ~/jsnapy/testfiles
directory and logs messages to the jsnapy_tests.log file in the playbook directory.

- name: Junos Snapshot Administrator tests
 hosts: dc1
 connection: local

120

 gather_facts: no

 tasks:
 - name: Take a post-maintenance snapshot of the interfaces
 juniper.device.jsnapy:
 action: "snap_post"
 dir: "~/jsnapy/testfiles"
 config_file: "configuration_interface_status.yaml"
 logfile: "jsnapy_tests.log"

When the jsnapy or juniper_junos_jsnapy module performs a snap_pre action or a snap_post action, it saves
each snapshot for each host in a separate file using auto-generated filenames that contain a 'PRE' or
'POST' tag, respectively. To compare the PRE and POST snapshots to quickly verify the updates or identify
any issues that might have resulted from the changes, set the module’s action argument to check, and
specify the same configuration file or test files that were used to take the snapshots.

When the module performs a check action, the preexisting PRE and POST snapshots for each test on
each device are compared and evaluated against the criteria defined in the tests: section of the test files.
If the test files do not define any test cases, JSNAPy instead compares the snapshots node by node. To
check the test results, register the module’s response, and use the assert module to verify the expected
result in the response.

The following playbook compares the snapshots taken for previously executed snap_pre and snap_post
actions for every device in the Ansible inventory group. The results are evaluated using the criteria in the
test files that are referenced in the configuration file. The playbook registers the module’s response as
'test_result' and uses the assert module to verify that all tests passed on the given device.

- name: Junos Snapshot Administrator tests
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Compare PRE and POST snapshots
 juniper.device.jsnapy:
 action: "check"
 dir: "~/jsnapy/testfiles"
 config_file: "configuration_interface_status.yaml"
 logfile: "jsnapy_tests.log"
 register: test_result

 - name: Verify JSNAPy tests passed

121

 assert:
 that:
 - "test_result.passPercentage == 100"

When you run the playbook, the assertions quickly identify which devices failed the tests.

user@host:~$ ansible-playbook jsnapy-interface-check.yaml

PLAY [Junos Snapshot Administrator tests] *************************************

TASK [Compare PRE and POST snapshots] ***
ok: [dc1a.example.net]
ok: [dc1b.example.net]

TASK [Verify JSNAPy tests passed] ***
ok: [dc1b.example.net] => {
 "changed": false,
 "msg": "All assertions passed"
}
fatal: [dc1a.example.net]: FAILED! => {
 "assertion": "test_result.passPercentage == 100",
 "changed": false,
 "evaluated_to": false,
 "msg": "Assertion failed"
}
 to retry, use: --limit @/home/user/jsnapy-interface-check.retry

PLAY RECAP **
dc1b.example.net : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0
dc1a.example.net : ok=1 changed=0 unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

Perform Snapcheck Operations

JSNAPy enables you to take snapshots for the commands or RPCs specified in JSNAPy test files and
immediately evaluate the snapshots against pre-defined criteria in the test cases. The jsnapy and

122

juniper_junos_jsnapy Ansible modules enable you to perform a JSNAPy snapcheck operation as part of an
Ansible playbook.

To take a snapshot and immediately evaluate it based on the pre-defined set of criteria in the tests:
section of the test files, set the module’s action argument to snapcheck, and specify a configuration file or
one or more test files. To check the test results, register the module’s response, and use the assert
module to verify the expected result in the response.

For example, for each device in the Ansible inventory group, the following playbook saves a separate
snapshot for each command or RPC in the test files, registers the module’s response, and uses the assert
module to verify that all tests defined in the test files passed on that device.

- name: Junos Snapshot Administrator tests
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Take a snapshot and immediately evaluate it
 juniper.device.jsnapy:
 action: "snapcheck"
 dir: "~/jsnapy/testfiles/"
 test_files:
 - "test_interface_status.yaml"
 - "test_bgp_neighbor.yaml"
 logfile: "jsnapy_tests.log"
 register: test_result

 - name: Verify JSNAPy tests passed
 assert:
 that:
 - "test_result.passPercentage == 100"

Understanding the jsnapy and juniper_junos_jsnapy Module Output

When the jsnapy or juniper_junos_jsnapy module performs a snap_pre, snap_post, or snapcheck action, it
automatically saves the snapshots in the JSNAPy snapshots directory. The modules use the default
JSNAPy directories unless you modify the JSNAPy configuration file to specify a different location. The
module creates a separate file for each command or RPC executed on each device in the Ansible

123

inventory group. Table 20 on page 124 outlines the filenames of the snapshot files for each value of the
action argument.

NOTE: Starting in Junos Snapshot Administrator in Python Release 1.3.0, the default directories
for the JSNAPy test files and snapshots are ~/jsnapy/testfiles and ~/jsnapy/snapshots,
respectively. However, the default directories inside a virtual environment or for earlier releases
are /etc/jsnapy/testfiles and /etc/jsnapy/snapshots.

Table 20: JSNAPy Output Filenames

action value Output Files

snap_pre hostname_PRE_hash_command.format

snap_post hostname_POST_hash_command.format

snapcheck hostname_snap_temp_hash_command.format
or
hostname_PRE_hash_command.format

where:

• hostname—Hostname of the device on which the command or RPC is executed.

• (PRE | POST | snap_temp)—Tag identifying the action. The snapcheck operation uses the PRE tag in
current releases; in earlier releases the operation uses the snap_temp tag.

• hash—Hash generated from kwargs for test files that include the rpc and kwargs keys.

If test files use the same RPC but include different arguments, and the RPCs are executed on the
same host, the hash ensures unique output filenames in those cases. If a test file defines the command
key or if a test file defines the rpc key but does not include the kwargs key, the hash is omitted.

• command—Command or RPC executed on the managed device. The module replaces whitespace and
special characters in the command or RPC name with underscores (_).

• format—Format of the output, for example, xml.

124

NOTE: The jsnapy and juniper_junos_jsnapy modules only differentiate the snapshot filenames for a
given action based on hostname and command or RPC. As a result, if the module takes snapshots
on the same device for the same action using test files that define the same command or RPC,
the module will generate snapshots with the same filename, and the new file will overwrite the
old file.

For example, if the module includes action: "snap_pre" and references test files that execute the show
chassis fpc and show interfaces terse commands on devices dc1a.example.net and dc1b.example.net, the
resulting files are:

user@ansible-cn:~$ ls jsnapy/snapshots
dc1a.example.net_PRE_show_chassis_fpc.xml
dc1a.example.net_PRE_show_interfaces_terse.xml
dc1b.example.net_PRE_show_chassis_fpc.xml
dc1b.example.net_PRE_show_interfaces_terse.xml

If the module includes action: "snap_post" and references a test file that executes the get-interface-
information RPC with kwargs item interface_name: lo0 on device dc1a.example.net, the resulting file is:

dc1a.example.net_POST_r1w59I99HXxC3u0VXXshbw==_get_interface_information.xml

In addition to generating the snapshot files, the jsnapy and juniper_junos_jsnapy modules can also return
the following keys in the module response:

• action—JSNAPy action performed by the module.

• changed—Indicates if the device’s state changed. Since JSNAPy only reports on state, the value is
always false.

• failed—Indicates if the playbook task failed.

• msg—JSNAPy test results.

Enable the jsnapy Callback Plugin

When you execute JSNAPy tests against Junos devices and one or more tests fail, it can be difficult to
identify and extract the failed tests if the output is extensive. The jsnapy callback plugin enables you to

125

easily extract and summarize the information for failed JSNAPy tests. When you enable the jsnapy
callback plugin and execute a playbook that includes JSNAPy tests, the plugin summarizes the
information for the failed JSNAPy tests after the playbook PLAY RECAP.

The jsnapy callback plugin is not enabled by default. To enable the jsnapy callback plugin, add the
callback_whitelist = jsnapy statement to the Ansible configuration file.

[defaults]
callback_whitelist = jsnapy

When you enable the jsnapy callback plugin and run a playbook, the plugin summarizes the failed
JSNAPy tests in a human-readable format. For example:

...
PLAY RECAP **
qfx10002-01 : ok=3 changed=0 unreachable=0 failed=1
qfx10002-02 : ok=3 changed=0 unreachable=0 failed=1
qfx5100-01 : ok=1 changed=0 unreachable=0 failed=1

JSNAPy Results for: qfx10002-01 ***
Value of 'peer-state' not 'is-equal' at '//bgp-information/bgp-peer' with {"peer-as": "64502",
"peer-state": "Active", "peer-address": "198.51.100.21"}
Value of 'peer-state' not 'is-equal' at '//bgp-information/bgp-peer' with {"peer-as": "64510",
"peer-state": "Idle", "peer-address": "192.168.0.1"}
Value of 'oper-status' not 'is-equal' at '//interface-information/physical-interface[normalize-
space(admin-status)='up' and logical-interface/address-family/address-family-name]' with {"oper-
status": "down", "name": "et-0/0/18"}

JSNAPy Results for: qfx10002-02 ***
Value of 'peer-state' not 'is-equal' at '//bgp-information/bgp-peer' with {"peer-as": "64502",
"peer-state": "Active", "peer-address": "198.51.100.21"}

Example: Use Ansible to Perform a JSNAPy Snapcheck Operation

IN THIS SECTION

Requirements | 127

126

Overview | 127

Configuration | 129

Execute the Playbook | 139

Verification | 141

Troubleshoot Ansible Playbook Errors | 142

The jsnapy module enables you to execute JSNAPy tests against Junos devices as part of an Ansible
playbook. This examples uses the jsnapy module to perform a snapcheck action to verify the operational
state of Junos devices after applying specific configuration changes.

Requirements

This example uses the following hardware and software components:

• Ansible control node running:

• Python 3.7 or later

• Ansible 2.10 or later with the juniper.device collection installed

• Junos PyEZ Release 2.6.0 or later

• Junos Snapshot Administrator in Python Release 1.3.6 or later

Before executing the Ansible playbook, be sure you have:

• Junos devices with NETCONF over SSH enabled and a user account configured with appropriate
permissions

• SSH public/private key pair configured for the appropriate user on the Ansible control node and
Junos device

• Existing Ansible inventory file with required hosts defined

Overview

In this example, the Ansible playbook configures BGP peering sessions on three Junos devices and uses
the jsnapy module to verify that the BGP session is established for each neighbor address. If the
playbook verifies that the sessions are established on a device, it confirms the commit for the new
configuration. If the playbook does not confirm the commit, the Junos device automatically rolls back to
the previously committed configuration. The Ansible project defines the group and host variables for the
playbook under the group_vars and host_vars directories, respectively.

127

The playbook has two plays. The first play, Load and commit BGP configuration, generates and assembles the
configuration, loads the configuration on the device, and commits it using a commit confirmed
operation. If the configuration is updated, one handler is notified. The play executes the following tasks:

Remove build
directory

Deletes the existing build directory for the given device, if present.

Create build
directory

Creates a new, empty build directory for the given device.

Build BGP
configuration

Uses the template module with the Jinja2 template and host variables to render the
BGP configuration for the given device and save it to a file in the device’s build
directory.

Assemble
configuration
parts

Uses the assemble module to assemble the device configuration file from the files in
that device’s build directory.

In this example, only the BGP configuration file will be present, and thus the
resulting configuration file is identical to the BGP configuration file rendered in the
previous task. If you later add new tasks to generate additional configuration files
from other templates, the assemble module will combine all files into a single
configuration.

Load and commit
config, require
confirmation

Loads the configuration onto the Junos device and commits the configuration using a
commit confirmed operation, which requires explicit confirmation for the commit to
become permanent. If this task makes a change to the configuration, it also notifies
the handler that pauses playbook execution for a specified amount of time to allow
the BGP peers to establish connections before the second play is executed.

If the requested configuration is already present on the device, the config module
does not load and commit the configuration. In this case, the module returns
changed: false, and thus does not notify the handler.

The second play, Verify BGP, performs a JSNAPy snapcheck operation on each device using the tests in the
JSNAPy test files and confirms the commit, provided that all the tests pass. The play executes the
following tasks:

Execute
snapcheck

Performs a JSNAPy snapcheck operation, which in this case, validates that the BGP
session is established for each of the device’s neighbors and that there are no down
peers.

In this example, the playbook directly references JSNAPy test files by setting the
test_files argument equal to the list of JSNAPy test files. The dir argument specifies the
directory where the test files are stored.

128

Confirm commit Executes a commit check operation, which confirms the previous commit operation,
provided that the first playbook play updated the configuration and that all of the
JSNAPy tests passed. If the playbook updates the configuration but does not confirm
the commit, the Junos device automatically rolls the configuration back to the
previously committed configuration.

NOTE: You can confirm the previous commit operation with either a commit check
or commit operation on the device, which corresponds to the check: true or
commit: true argument, respectively, in the config module.

Verify BGP
configuration

(Optional) Explicitly indicates whether the JSNAPy tests passed or failed on the given
device. This task is not specifically required, but it more easily identifies when the
JSNAPy tests fail and on which devices.

Configuration

IN THIS SECTION

Define the Group Variables | 129

Define the Jinja2 Template and Host Variables | 130

Create the JSNAPy Test Files | 133

Create the Ansible Playbook | 134

Results | 137

Define the Group Variables

Step-by-Step Procedure

To define the group variables:

129

• In the group_vars/all file, define variables for the build directory and for the filenames of the
configuration and log files.

build_dir: "{{ playbook_dir }}/build_conf/{{ inventory_hostname }}"
junos_conf: "{{ build_dir }}/junos.conf"
logfile: "junos.log"

Define the Jinja2 Template and Host Variables

Define the Jinja2 Template

To create the Jinja2 template that is used to generate the BGP configuration:

1. Create a file named bgp-template.j2 in the project’s playbook directory.

2. Add the BGP configuration template to the file.

interfaces {
{% for neighbor in neighbors %}
 {{ neighbor.interface }} {
 unit 0 {
 description "{{ neighbor.name }}";
 family inet {
 address {{ neighbor.local_ip }}/30;
 }
 }
 }
{% endfor %}
 lo0 {
 unit 0 {
 family inet {
 address {{ loopback }}/32;
 }
 }
 }
}
protocols {
 bgp {
 group underlay {
 import bgp-in;
 export bgp-out;

130

 type external;
 local-as {{ local_asn }};
 multipath multiple-as;
{% for neighbor in neighbors %}
 neighbor {{ neighbor.peer_ip }} {
 peer-as {{ neighbor.asn }};
 }
{% endfor %}
 }
 }
 lldp {
{% for neighbor in neighbors %}
 interface "{{ neighbor.interface }}";
{% endfor %}
 }
}
routing-options {
 router-id {{ loopback }};
 forwarding-table {
 export bgp-ecmp;
 }
}

policy-options {
 policy-statement bgp-ecmp {
 then {
 load-balance per-packet;
 }
 }
 policy-statement bgp-in {
 then accept;
 }
 policy-statement bgp-out {
 then {
 next-hop self;
 accept;
 }
 }
}

131

Define the Host Variables

To define the host variables that are used with the Jinja2 template to generate the BGP configuration:

1. In the project’s host_vars directory, create a separate file named hostname.yaml for each host.

2. Define the variables for host r1 in the r1.yaml file.

loopback: 192.168.0.1
local_asn: 64521
neighbors:
 - interface: ge-0/0/0
 name: to-r2
 asn: 64522
 peer_ip: 198.51.100.2
 local_ip: 198.51.100.1
 peer_loopback: 192.168.0.2
 - interface: ge-0/0/1
 name: to-r3
 asn: 64523
 peer_ip: 198.51.100.6
 local_ip: 198.51.100.5
 peer_loopback: 192.168.0.3

3. Define the variables for host r2 in the r2.yaml file.

loopback: 192.168.0.2
local_asn: 64522
neighbors:
 - interface: ge-0/0/0
 name: to-r1
 asn: 64521
 peer_ip: 198.51.100.1
 local_ip: 198.51.100.2
 peer_loopback: 192.168.0.1
 - interface: ge-0/0/1
 name: to-r3
 asn: 64523
 peer_ip: 198.51.100.10

132

 local_ip: 198.51.100.9
 peer_loopback: 192.168.0.3

4. Define the variables for host r3 in the r3.yaml file.

loopback: 192.168.0.3
local_asn: 64523
neighbors:
 - interface: ge-0/0/0
 name: to-r1
 asn: 64521
 peer_ip: 198.51.100.5
 local_ip: 198.51.100.6
 peer_loopback: 192.168.0.1
 - interface: ge-0/0/1
 name: to-r2
 asn: 64522
 peer_ip: 198.51.100.9
 local_ip: 198.51.100.10
 peer_loopback: 192.168.0.2

Create the JSNAPy Test Files

Step-by-Step Procedure

The jsnapy module references JSNAPy test files in the ~/jsnapy/testfiles directory. To create the JSNAPy
test files:

1. Create the jsnapy_test_file_bgp_states.yaml file, which executes the show bgp neighbor command and
tests that the BGP peer state is established.

bgp_neighbor:
 - command: show bgp neighbor
 - ignore-null: True
 - iterate:
 xpath: '//bgp-peer'
 id: './peer-address'
 tests:
 # Check if peers are in the established state

133

 - is-equal: peer-state, Established
 err: "Test Failed!! peer <{{post['peer-address']}}> state is not Established, it is
<{{post['peer-states']}}>"
 info: "Test succeeded!! peer <{{post['peer-address']}}> state is <{{post['peer-
state']}}>"

2. Create the jsnapy_test_file_bgp_summary.yaml file, which executes the show bgp summary command
and asserts that the BGP down peers count must be 0.

bgp_summary:
 - command: show bgp summary
 - item:
 xpath: '/bgp-information'
 tests:
 - is-equal: down-peer-count, 0
 err: "Test Failed!! down-peer-count is not equal to 0. It is equal to <{{post['down-
peer-count']}}>"
 info: "Test succeeded!! down-peer-count is equal to <{{post['down-peer-count']}}>"

Create the Ansible Playbook

Define the First Play to Configure the Device

To create the first play, which renders the configuration, loads it on the device, and commits the
configuration as a commit confirmed operation:

1. Include the boilerplate for the playbook and the first play, which executes the modules locally.

- name: Load and commit BGP configuration
 hosts: bgp_routers
 connection: local
 gather_facts: no

2. Create the tasks that replace the existing build directory with an empty directory, which will store the
new configuration files.

 tasks:
 - name: Remove build directory

134

 file:
 path: "{{ build_dir }}"
 state: absent

 - name: Create build directory
 file:
 path: "{{ build_dir }}"
 state: directory

3. Create the task that renders the BGP configuration from the Jinja2 template file and host variables
and stores it in the bgp.conf file in the build directory for that host.

 - name: Build BGP configuration
 template:
 src: "{{ playbook_dir }}/bgp-template.j2"
 dest: "{{ build_dir }}/bgp.conf"

4. Create a task to assemble the configuration files in the build directory into the final junos.conf
configuration file.

 - name: Assemble configuration parts
 assemble:
 src: "{{ build_dir }}"
 dest: "{{ junos_conf }}"

5. Create the task that loads the configuration on the device, performs a commit operation that requires
confirmation, and notifies the given handler, provided the configuration was changed.

 - name: Load and commit config, require confirmation
 juniper.device.config:
 load: "merge"
 format: "text"
 src: "{{ junos_conf }}"
 confirm: 5
 comment: "config by Ansible"
 logfile: "{{ logfile }}"
 register: config_result

 # Notify handler, only if configuration changes.

135

 notify:
 - Waiting for BGP peers to establish connections

6. Create a handler that pauses playbook execution if the device configuration is updated, and set the
pause time to an appropriate value for your environment.

 handlers:
 - name: Waiting for BGP peers to establish connections
 pause: seconds=60

Define the Second Play to Perform JSNAPy Operations

To create the second play, which performs a JSNAPy snapcheck operation and confirms the committed
configuration, provided that the configuration changed and the JSNAPy tests passed:

1. Include the boilerplate for the second play, which executes the modules locally.

- name: Verify BGP
 hosts: bgp_routers
 connection: local
 gather_facts: no

2. Create a task to perform a JSNAPy snapcheck operation based on the tests in the given JSNAPy test
files, and register the module’s response.

 tasks:
 - name: Execute snapcheck
 juniper.device.jsnapy:
 action: "snapcheck"
 dir: "~/jsnapy/testfiles"
 test_files:
 - "jsnapy_test_file_bgp_states.yaml"
 - "jsnapy_test_file_bgp_summary.yaml"
 logfile: "{{ logfile }}"
 register: snapcheck_result

136

3. Create the task to confirm the commit provided that the given conditions are met.

 # Confirm commit only if configuration changed and JSNAPy tests pass
 - name: Confirm commit
 juniper.device.config:
 check: true
 commit: false
 diff: false
 logfile: "{{ logfile }}"
 when:
 - config_result.changed
 - "snapcheck_result.passPercentage == 100"

4. (Optional) Create a task that uses the assert module to assert that the JSNAPy tests passed.

 - name: Verify BGP configuration
 assert:
 that:
 - "snapcheck_result.passPercentage == 100"
 msg: "JSNAPy test on {{ inventory_hostname }} failed"

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the
intended code, repeat the instructions in this section to correct the playbook.

- name: Load and commit BGP configuration
 hosts: bgp_routers
 connection: local
 gather_facts: no

 tasks:
 - name: Remove build directory
 file:
 path: "{{ build_dir }}"
 state: absent

 - name: Create build directory

137

 file:
 path: "{{ build_dir }}"
 state: directory

 - name: Build BGP configuration
 template:
 src: "{{ playbook_dir }}/bgp-template.j2"
 dest: "{{ build_dir }}/bgp.conf"

 - name: Assemble configuration parts
 assemble:
 src: "{{ build_dir }}"
 dest: "{{ junos_conf }}"

 - name: Load and commit config, require confirmation
 juniper.device.config:
 load: "merge"
 format: "text"
 src: "{{ junos_conf }}"
 confirm: 5
 comment: "config by Ansible"
 logfile: "{{ logfile }}"
 register: config_result

 # Notify handler, only if configuration changes.
 notify:
 - Waiting for BGP peers to establish connections

 handlers:
 - name: Waiting for BGP peers to establish connections
 pause: seconds=60

- name: Verify BGP
 hosts: bgp_routers
 connection: local
 gather_facts: no

 tasks:
 - name: Execute snapcheck
 juniper.device.jsnapy:
 action: "snapcheck"
 dir: "~/jsnapy/testfiles"

138

 test_files:
 - "jsnapy_test_file_bgp_states.yaml"
 - "jsnapy_test_file_bgp_summary.yaml"
 logfile: "{{ logfile }}"
 register: snapcheck_result

 # Confirm commit only if configuration changed and JSNAPy tests pass
 - name: Confirm commit
 juniper.device.config:
 check: true
 commit: false
 diff: false
 logfile: "{{ logfile }}"
 when:
 - config_result.changed
 - "snapcheck_result.passPercentage == 100"

 - name: Verify BGP configuration
 assert:
 that:
 - "snapcheck_result.passPercentage == 100"
 msg: "JSNAPy test on {{ inventory_hostname }} failed"

Execute the Playbook

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~/ansible$ ansible-playbook ansible-pb-bgp-configuration.yaml
PLAY [Load and commit BGP configuration] *************************************

TASK [Remove build directory] **
changed: [r1]
changed: [r2]
changed: [r3]

TASK [Create build directory] **
changed: [r1]
changed: [r2]
changed: [r3]

139

TASK [Build BGP configuration] ***
changed: [r2]
changed: [r1]
changed: [r3]

TASK [Assemble configuration parts] **
changed: [r3]
changed: [r2]
changed: [r1]

TASK [Load and commit config, require confirmation] **************************
changed: [r2]
changed: [r1]
changed: [r3]

RUNNING HANDLER [Waiting for BGP peers to establish connections] *************
Pausing for 60 seconds
(ctrl+C then 'C' = continue early, ctrl+C then 'A' = abort)
ok: [r3]

PLAY [Verify BGP] **

TASK [Execute snapcheck] ***
ok: [r2]
ok: [r1]
ok: [r3]

TASK [Confirm commit] **
ok: [r2]
ok: [r1]
ok: [r3]

TASK [Verify BGP configuration] **
ok: [r1] => {
 "changed": false,
 "msg": "All assertions passed"
}
ok: [r2] => {
 "changed": false,
 "msg": "All assertions passed"

140

}
ok: [r3] => {
 "changed": false,
 "msg": "All assertions passed"
}

PLAY RECAP ***
r1 : ok=8 changed=5 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
r2 : ok=8 changed=5 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
r3 : ok=9 changed=5 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

Verification

IN THIS SECTION

Verify the BGP Neighbors | 141

Verify the BGP Neighbors

Purpose

Verify that the BGP session is established for each neighbor address.

The JSNAPy test files test that the BGP session is established for each neighbor address and that the
there are no down peers. The Verify BGP configuration task output enables you to quickly verify that the
given device passed all JSNAPy tests. If the JSNAPy passPercentage is equal to 100 percent, the task
includes "msg": "All assertions passed" in the task output.

Action

Review the Verify BGP configuration task output, and verify that each device returns the All assertions
passed message.

TASK [Verify BGP configuration] **
ok: [r1] => {

141

 "changed": false,
 "msg": "All assertions passed"
}
ok: [r2] => {
 "changed": false,
 "msg": "All assertions passed"
}
ok: [r3] => {
 "changed": false,
 "msg": "All assertions passed"
}

Meaning

The All assertions passed message indicates that the BGP sessions are successfully established on the
devices.

Troubleshoot Ansible Playbook Errors

IN THIS SECTION

Troubleshoot Configuration Load Errors | 142

Troubleshoot Failed JSNAPy Tests | 143

Troubleshoot Failed Commit Confirmations | 144

Troubleshoot Configuration Load Errors

Problem

The Ansible playbook generates a ConfigLoadError error indicating that it failed to load the configuration
on the device because of a syntax error.

fatal: [r1]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: error, bad_element: protocol, message: error: syntax error\nerror:
error recovery ignores input until this point)"}

142

Solution

The playbook renders the Junos OS configuration by using the Jinja2 template and the host variables
defined for that device in the host_vars directory. The playbook generates a syntax error when the
Jinja2 template produces an invalid configuration. To correct this error, update the Jinja2 template to
correct the element identified by the bad_element key in the error message.

Troubleshoot Failed JSNAPy Tests

Problem

The Verify BGP configuration task output indicates that the assertion failed, because the JSNAPy
passPercentage was not equal to 100 percent.

TASK [Verify BGP configuration] ***
fatal: [r1]: FAILED! => {
 "assertion": "snapcheck_result.passPercentage == 100",
 "changed": false,
 "evaluated_to": false,
 "msg": "JSNAPy test on r1 failed"
}

The assertion fails when the device has not established the BGP session with its neighbor or the session
goes down. If the assertion fails, and the configuration for that device was updated in the first play, the
playbook does not confirm the commit for the new configuration on the device, and the device rolls the
configuration back to the previously committed configuration.

Solution

The JSNAPy tests might fail if the snapcheck operation is taken before the peers can establish the session
or because the BGP neighbors are not configured correctly. If the playbook output indicates that the
configuration was successfully loaded and committed on the device, try increasing the handler’s pause
interval to a suitable value for your environment and rerun the playbook.

 handlers:
 - name: Waiting for BGP peers to establish connections
 pause: seconds=75

If the tests still fail, verify that the Jinja2 template and the host variables for each device contain the
correct data and that the resulting configuration for each device is correct.

143

Troubleshoot Failed Commit Confirmations

Problem

The configuration was not confirmed on one or more devices.

TASK [Confirm commit] ***
skipping: [r2]
skipping: [r2]
skipping: [r3]

Solution

The playbook only confirms the configuration if it changed and the JSNAPy tests pass. If the Load and
commit config, require confirmation task output indicates that the configuration did not change, the
playbook does not execute the task to confirm the commit. If the configuration changed but was not
confirmed, then the JSNAPy tests failed. The JSNAPy tests might fail if the BGP neighbors are not
configured correctly or if the playbook does not provide enough time between the plays for the devices
to establish the BGP session. For more information, see "Troubleshoot Failed JSNAPy Tests" on page
143.

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_jsnapy module replaces the functionality of the
junos_jsnapy module.

144

6
CHAPTER

Use Ansible to Manage the
Configuration

Use Ansible to Retrieve or Compare Junos OS Configurations | 146

Use Ansible to Configure Junos Devices | 159

Use Ansible to Retrieve or Compare Junos OS
Configurations

SUMMARY

Use the Juniper Networks Ansible modules to
retrieve or compare configurations on Junos devices.

IN THIS SECTION

How to Specify the Source Database for the
Configuration Data | 147

How to Specify the Scope of the
Configuration Data to Return | 148

How to Specify the Format of the
Configuration Data to Return | 150

How to Retrieve Configuration Data for Third-
Party YANG Data Models | 151

How to Specify Options That Do Not Have an
Equivalent Module Argument | 153

How to Save Configuration Data To a
File | 154

How to Compare the Active Configuration to
a Previous Configuration | 156

Juniper Networks provides Ansible modules that enable you to manage the configuration on Junos
devices. Table 21 on page 146 outlines the available modules, which enable you to retrieve or compare
Junos OS configurations.

Table 21: Modules to Retrieve or Compare Configurations

Content Set Module Name

juniper.device collection config

Juniper.junos role juniper_junos_config

146

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/config.html
https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_config.html

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_config module combines and
replaces the functionality of the junos_commit, junos_get_config, junos_install_config, and junos_rollback
modules.

You can use the modules to request the complete configuration or selected portions of the configuration
for both the native Junos OS configuration as well as for configuration data corresponding to third-party
YANG data models that have been added to the device. To retrieve the configuration from a Junos
device, execute the config or juniper_junos_config module with the retrieve parameter. The module’s
response includes the configuration in text format in the config and config_lines keys, unless the
return_output option is set to false. You can also compare the active configuration with a previously
committed configuration.

The following sections discuss how to use the modules to retrieve or compare Junos OS configurations.

How to Specify the Source Database for the Configuration Data

When you use the config or juniper_junos_config module to retrieve the configuration, you must include
the retrieve parameter in the module’s argument list and specify the configuration database from which
to retrieve the data. You can retrieve data from the committed configuration database or from the
candidate configuration database by setting retrieve to 'committed' or 'candidate', respectively.

Committed Configuration Database

The following playbook retrieves the complete committed configuration in text format for each device in
the inventory group:

- name: "Get Junos OS configuration"
 hosts: junos-all
 connection: local
 gather_facts: no

 tasks:
 - name: "Get committed configuration"
 juniper.device.config:
 retrieve: "committed"
 register: response
 - name: "Print result"

147

 debug:
 var: response

Candidate Configuration Database

The following playbook retrieves the complete candidate configuration in text format for each device in
the inventory group. The module returns an error if the database is locked or modified.

- name: "Get Junos OS configuration"
 hosts: junos-all
 connection: local
 gather_facts: no

 tasks:
 - name: "Get candidate configuration"
 juniper.device.config:
 retrieve: "candidate"
 register: response
 - name: "Print result"
 debug:
 var: response

How to Specify the Scope of the Configuration Data to Return

In addition to retrieving the complete Junos OS configuration, you can use the config and
juniper_junos_config modules to retrieve specific portions of the configuration by including the module’s
filter parameter. The filter parameter’s value is a string containing the subtree filter that selects the
configuration statements to return. The subtree filter returns the configuration data that matches the
selection criteria. When multiple hierarchies are requested, the value of filter must represent all levels
of the configuration hierarchy starting at the root (represented by the <configuration> element) down to
each element to display.

The following playbook retrieves and prints the configuration at the [edit interfaces] and [edit protocols]
hierarchy levels in the committed configuration database for each device:

- name: "Get Junos OS configuration hierarchies"
 hosts: dc1

148

 connection: local
 gather_facts: no

 tasks:
 - name: "Get selected configuration hierarchies"
 juniper.device.config:
 retrieve: "committed"
 filter: "<configuration><interfaces/><protocols/></configuration>"
 register: response
 - name: "Print result"
 debug:
 var: response

The following playbook retrieves and prints the configuration for the ge-1/0/1 interface:

- name: "Get Junos OS configuration hierarchies"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Get selected configuration hierarchies"
 juniper.device.config:
 retrieve: "committed"
 filter: "<interfaces><interface>
 <name>ge-1/0/1</name></interface></interfaces>"
 register: response
 - name: "Print result"
 debug:
 var: response

The following playbook retrieves and prints the configuration committed at the [edit system services]
hierarchy level:

- name: "Get Junos OS configuration hierarchies."
 hosts: dc1
 connection: local
 gather_facts: no

149

 tasks:
 - name: "Get selected configuration hierarchies"
 juniper.device.config:
 retrieve: "committed"
 filter: "system/services"
 register: response
 - name: "Print result"
 debug:
 var: response

How to Specify the Format of the Configuration Data to Return

When you use the config or juniper_junos_config module to retrieve the configuration, the module invokes
the Junos XML protocol <get-configuration> operation, which can return Junos OS configuration data as
formatted text, Junos XML elements, Junos OS set commands, or JavaScript Object Notation (JSON). By
default, the module returns configuration data as formatted text, which uses newlines, tabs and other
white space, braces, and square brackets to indicate the hierarchical relationships between the
statements.

To specify the format in which to return the configuration data, set the format parameter equal to the
desired format. To explicitly request text format, or to request Junos XML elements, Junos OS set
commands, or JSON format, set the format value to 'text', 'xml', 'set', or 'json', respectively. The config
and config_lines keys contain the configuration in the requested format. If you request Junos XML or
JSON format, the config_parsed key contains the equivalent configuration in JSON format.

The following playbook retrieves the complete committed configuration for each device in the inventory
group in XML format:

- name: "Get Junos OS configuration."
 hosts: junos-all
 connection: local
 gather_facts: no

 tasks:
 - name: "Get configuration in XML format"
 juniper.device.config:
 retrieve: "committed"
 format: "xml"
 register: response

150

 - name: "Print result"
 debug:
 var: response

How to Retrieve Configuration Data for Third-Party YANG Data Models

You can load standardized or custom YANG modules on Junos devices to add data models that are not
natively supported by Junos OS but can be supported by translation. You configure nonnative data
models in the candidate configuration using the syntax defined for those models. When you commit the
configuration, the data model’s translation scripts translate that data and commit the corresponding
Junos OS configuration as a transient change in the checkout configuration.

The candidate and active configurations contain the configuration data for nonnative YANG data models
in the syntax defined by those models. You can use the config or juniper_junos_config module to retrieve
configuration data for standard (IETF, OpenConfig) and custom YANG data models in addition to
retrieving the native Junos OS configuration by including the appropriate module arguments. By default,
configuration data for third-party YANG data models is not included in the module’s reply.

To retrieve configuration data that is defined by a nonnative YANG data model in addition to retrieving
the Junos OS configuration, execute the module with the model parameter, and include the namespace
parameter when appropriate. The model argument takes one of the following values:

• custom—Retrieve configuration data that is defined by custom YANG data models. You must include
the namespace argument when retrieving data for custom YANG data models.

• ietf—Retrieve configuration data that is defined by IETF YANG data models.

• openconfig—Retrieve configuration data that is defined by OpenConfig YANG data models.

• True—Retrieve all configuration data, including the complete Junos OS configuration and data from
any YANG data models.

If you specify the ietf or openconfig value for the model argument, the module automatically uses the
appropriate namespace. If you retrieve data for a custom YANG data model by using model: "custom", you
must also include the namespace argument with the corresponding namespace.

If you include the model argument with the value custom, ietf, or openconfig and also include the filter
argument to return a specific XML subtree, Junos OS only returns the matching hierarchy from the
nonnative data model. If the Junos OS configuration contains a hierarchy of the same name, for example
"interfaces", it is not included in the reply. The filter option is not supported when using model: "True".

151

When you use the config or juniper_junos_config module to retrieve nonnative configuration data, you can
only specify the format of the returned data if you also include the filter parameter. If you omit the
filter parameter, you must specify format: "xml".

The following playbook retrieves the OpenConfig interfaces configuration hierarchy from the committed
configuration. If you omit the filter argument, the RPC returns the complete Junos OS and OpenConfig
configurations.

- name: "Retrieve OpenConfig configuration"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Retrieve the OpenConfig interfaces configuration"
 juniper.device.config:
 retrieve: "committed"
 model: "openconfig"
 filter: "interfaces"
 format: "xml"
 register: response

 - name: "Print result"
 debug:
 var: response

The following task retrieves the l2vpn configuration hierarchy from the committed configuration for a
custom YANG data model with the given namespace:

 tasks:
 - name: "Retrieve custom configuration"
 juniper.device.config:
 retrieve: "committed"
 model: "custom"
 filter: "l2vpn"
 remove_ns: False
 namespace: "http://yang.juniper.net/customyang/l2vpn"
 format: "xml"
 register: response

152

The following task retrieves the complete Junos OS committed configuration as well as the
configuration data for other YANG data models that have been added to the device:

 tasks:
 - name: "Retrieve Junos OS and all third-party configuration data"
 juniper.device.config:
 retrieve: "committed"
 model: "True"
 format: "xml"
 register: response

How to Specify Options That Do Not Have an Equivalent Module
Argument

When you use the config or juniper_junos_config module to retrieve the configuration, the module invokes
the Junos XML protocol <get-configuration> operation. The modules support explicit arguments for many
of the <get-configuration> attributes, for example, the format attribute. The modules also support the
options argument, which enables you to include any additional <get-configuration> attributes that do not
have an equivalent module argument. The options argument takes a dictionary of key/value pairs of any
attributes supported by the <get-configuration> operation.

For the complete list of attributes supported by the Junos XML protocol <get-configuration> operation,
see https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-
protocol-get-configuration.html.

For example, the modules retrieve data from the pre-inheritance configuration, in which the <groups>,
<apply-groups>, <apply-groups-except>, and <interface-range> tags are separate elements in the configuration
output. To retrieve data from the post-inheritance configuration, which displays statements that are
inherited from user-defined groups and ranges as children of the inheriting statements, you can include
the options argument with inherit: "inherit".

The following playbook retrieves the configuration data at the [edit system services] hierarchy level from
the post-inheritance committed configuration. In this case, if the configuration also contains statements
configured at the [edit groups global system services] hierarchy level, those statements would be inherited
under [edit system services] in the post-inheritance configuration and returned in the retrieved
configuration data.

- name: "Get Junos OS configuration hierarchies"

153

https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-protocol-get-configuration.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-protocol-get-configuration.html

 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Get selected hierarchy from the post-inheritance configuration"
 juniper.device.config:
 retrieve: "committed"
 filter: "system/services"
 options:
 inherit: "inherit"
 register: response
 - name: "Print result"
 debug:
 var: response

How to Save Configuration Data To a File

When you use the config or juniper_junos_config module to retrieve the configuration, you can save the
returned configuration data in a file on the local Ansible control node by including the module’s dest_dir
or dest parameter. The dest_dir option just specifies a directory, and the dest option can specify both a
path and a filename. If an output file already exists with the target name, the module overwrites the file.

To specify the directory on the local Ansible control node where the retrieved configurations are saved,
include the dest_dir argument, and define the path to the target directory. The configuration for each
device is stored in a separate file named hostname.config.

The following playbook retrieves the committed configuration from all devices in the inventory group
and saves each device configuration to a separate file in the configs directory under the playbook
directory on the Ansible control node:

- name: "Get Junos OS configuration"
 hosts: junos-all
 connection: local
 gather_facts: no

 tasks:
 - name: "Save configuration to a file"
 juniper.device.config:

154

 retrieve: "committed"
 dest_dir: "{{ playbook_dir }}/configs"

To specify the path and filename for the output files, include the dest argument, and define the absolute
or relative path of the file. If you include the dest argument, but omit the directory, the files are saved in
the playbook directory. If you retrieve the configuration for multiple devices, the dest argument must
include a variable such as {{ inventory_hostname }} to differentiate the filename for each device. If you do
not differentiate the filenames, the configuration file for each device will overwrite the configuration file
of the other devices.

The following playbook retrieves the [edit system services] hierarchy from the committed configuration
database on all devices in the inventory group and saves each device configuration to a separate file in
the playbook directory on the Ansible control node. Each file is uniquely identified by the device
hostname.

- name: "Get Junos OS configuration"
 hosts: junos-all
 connection: local
 gather_facts: no

 tasks:
 - name: "Get selected configuration hierarchies and save to file"
 juniper.device.config:
 retrieve: "committed"
 filter: "system/services"
 dest: "{{ inventory_hostname }}-system-config"

If you are saving the configuration data to files and do not want to duplicate the configuration data in
the module’s response, you can you can optionally include return_output: false in the module’s argument
list. Setting return_output to false causes the module to omit the config, config_lines, and config_parsed keys
in its response. Doing this might be necessary if the devices return a significant amount of configuration
data.

155

How to Compare the Active Configuration to a Previous Configuration

The config and juniper_junos_config modules enable you to compare the active configuration to a
previously committed configuration, or rollback configuration. To compare the active configuration to a
previous configuration, include the following module arguments:

juniper.device.config:
 diff: true
 rollback: id
 check: false
 commit: false

By default, when you include the rollback: id argument, the module rolls back the configuration,
performs a commit check, and commits the changes. You must include the commit: false argument to only
compare the configurations and prevent the module from loading and committing the rollback
configuration. Including the check: false argument prevents the unnecessary commit check operation.

The modules return the diff and diff_lines keys, which contain the configuration differences between
the active and previous configuration in diff or patch format.

• diff— dictionary that contains a single key named prepared and its value, which is a single multi-line
string containing the differences.

NOTE: Starting inJuniper.junos Release 2.2.0, the diff key returns a dictionary instead of a
string.

• diff_lines—list of single line strings containing the differences..

To save the differences to a file on the local Ansible control node, include the diffs_file argument, and
define the absolute or relative path of the output file. If you include the diffs_file argument but omit the
directory, the files are saved in the playbook directory. If you compare the configurations on multiple
devices, the diffs_file argument must include a variable such as {{ inventory_hostname }} to differentiate
the filename for each device. If you do not differentiate the filenames, the output file for each device will
overwrite the output file of the other devices.

The following playbook prompts for the rollback ID of a previously committed configuration, compares
the committed configuration to the specified rollback configuration, saves the comparison to a uniquely-
named file, and also prints the response to standard output:

- name: "Compare configurations"

156

 hosts: dc1
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "ROLLBACK"
 prompt: "Rollback ID to compare with active configuration"
 private: no

 tasks:
 - name: "Compare active to previous configuration"
 juniper.device.config:
 diff: true
 rollback: "{{ ROLLBACK }}"
 check: false
 commit: false
 diffs_file: "{{ inventory_hostname }}-diff-rollback-{{ ROLLBACK }}"
 register: response
 - name: "Print diff"
 debug:
 var: response

user@ansible-cn:~$ ansible-playbook configuration-compare-to-rollback.yaml
Rollback ID to compare with active configuration: 2

PLAY [Compare configurations] ***

TASK [Compare active to previous configuration] ******************************
changed: [dc1a.example.net]

TASK [Print diff] **
ok: [dc1a.example.net] => {
 "response": {
 "changed": true,
 "diff": {
 "prepared": "\n[edit system services]\n- netconf {\n- ssh;\n- }\n"
 },
 "diff_lines": [
 "",
 "[edit system services]",
 "- netconf {",

157

 "- ssh;",
 "- }"
],
 "failed": false,
 "msg": "Configuration has been: opened, rolled back, checked, diffed, closed."
 }
}

PLAY RECAP **
dc1a.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

user@ansible-cn:~$ cat dc1a.example.net-diff-rollback-2
[edit system services]
- netconf {
- ssh;
- }

Release History Table

Release Description

2.2.0 Starting inJuniper.junos Release 2.2.0, the diff key returns a dictionary instead of a string.

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_config module combines and replaces the
functionality of the junos_commit, junos_get_config, junos_install_config, and junos_rollback modules.

RELATED DOCUMENTATION

Use Ansible to Configure Junos Devices | 159

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

158

Use Ansible to Configure Junos Devices

SUMMARY

Use the Juniper Networks Ansible modules to
manage the configuration on Junos devices.

IN THIS SECTION

Module Overview | 160

How to Specify the Configuration
Mode | 161

How to Specify the Load Action | 163

How to Specify the Format of the
Configuration Data to Load | 164

How to Load Configuration Data as
Strings | 165

How to Load Configuration Data from a Local
or Remote File | 167

How to Load Configuration Data Using a
Jinja2 Template | 169

How to Load the Rescue Configuration | 172

How to Roll Back the Configuration | 173

How to Commit the Configuration | 174

How to Ignore Warnings When Configuring
Devices | 177

Example: Use Ansible to Configure Junos
Devices | 178

Juniper Networks provides Ansible modules that enable you to configure Junos devices. Table 22 on
page 159 outlines the available modules. The user account that is used to make configuration changes
must have permissions to change the relevant portions of the configuration on each device.

Table 22: Modules to Manage the Configuration

Content Set Module Name

juniper.device collection config

159

https://galaxy.ansible.com/ui/repo/published/juniper/device/
https://ansible-juniper-collection.readthedocs.io/en/latest/config.html

Table 22: Modules to Manage the Configuration (Continued)

Content Set Module Name

Juniper.junos role juniper_junos_config

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_config module combines and
replaces the functionality of the junos_commit, junos_get_config, junos_install_config, and junos_rollback
modules.

The following sections discuss how to use the modules to modify and commit the configuration on
Junos devices.

Module Overview

The config and juniper_junos_config modules enable you to perform the following operations on Junos
devices:

• Load configuration data

• Commit the configuration

• Roll back the configuration

• Load the rescue configuration

To modify the configuration, the module’s argument list must include either the load parameter to load
new configuration data or the rollback parameter to revert to the rescue configuration or a previously
committed configuration. The basic process for making configuration changes is to lock the
configuration, load the configuration changes, commit the configuration to make it active, and then
unlock the configuration.

By default, the config and juniper_junos_config modules make changes to the candidate configuration
database using configure exclusive mode, which automatically locks and unlocks the candidate global
configuration. You can also make changes to a private copy of the candidate configuration. For more
information about specifying the configuration mode, see "How to Specify the Configuration Mode" on
page 161.

When loading new configuration data, in addition to specifying the configuration mode, you can also
specify the load operation and the source and format of the changes.

160

https://galaxy.ansible.com/ui/standalone/roles/juniper/junos/
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_config.html

• Load operation—The load operation determines how the configuration data is loaded into the
candidate configuration. The functions support many of the same load operations that are available
in the Junos OS CLI. For more information, see "How to Specify the Load Action" on page 163.

• Format—You can configure Junos devices using one of the standard, supported formats. You can
provide configuration data or Jinja2 templates as text, Junos XML elements, Junos OS set commands,
or JSON. For information about specifying the format of the configuration data, see "How to Specify
the Format of the Configuration Data to Load" on page 164.

• Configuration data source—You can load configuration data from a list of strings, a file on the local
Ansible control node, a Jinja2 template, or a URL reachable from the client device by including the
lines, src, template, or url parameter, respectively. For more information about specifying the source of
the configuration data, see the following sections:

• "How to Load Configuration Data as Strings" on page 165

• "How to Load Configuration Data from a Local or Remote File" on page 167

• "How to Load Configuration Data Using a Jinja2 Template" on page 169

The config and juniper_junos_config modules also enable you to load and commit the rescue configuration
or roll the configuration back to a previously committed configuration. To load the rescue configuration
or a previously committed configuration, you must include the rollback module argument. For more
information, see the following sections:

• "How to Load the Rescue Configuration" on page 172

• "How to Roll Back the Configuration" on page 173

After modifying the configuration, you must commit the configuration to make it the active
configuration on the device. By default, the config and juniper_junos_config modules commit the changes
to the configuration. To alter this behavior or supply additional commit options, see "How to Commit the
Configuration" on page 174.

By default, when the config or juniper_junos_config module includes the load or rollback arguments to
change the configuration, the module automatically returns the configuration changes in diff or patch
format in the module’s response. The differences are returned in the diff and diff_lines variables. To
prevent the module from calculating and returning the differences, set the diff module argument to
false.

How to Specify the Configuration Mode

You can specify the configuration mode to use when modifying the candidate configuration database.
By default, the config and juniper_junos_config modules make changes to the candidate configuration

161

database using configure exclusive mode. Configure exclusive mode locks the candidate global
configuration (also known as the shared configuration database) for as long as the module requires to
make the requested changes to the configuration. Locking the database prevents other users from
modifying or committing changes to the database until the lock is released.

To specify the mode, include the config_mode parameter in the module’s argument list. Supported modes
include exclusive and private. Both modes discard any uncommitted changes upon exiting.

The following playbook uses configure private mode to modify the configuration:

- name: "Configure Device"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Configure op script"
 juniper.device.config:
 config_mode: "private"
 load: "set"
 lines:
 - "set system scripts op file bgp.slax"
 register: response
 - name: "Print the config changes"
 debug:
 var: response.diff_lines

user@ansible-cn:~/ansible$ ansible-playbook configure-script.yaml
PLAY [Configure Device] ***

TASK [Configure op script] **
changed: [dc1a.example.net]

TASK [Print the config changes] ***

ok: [dc1a.example.net] => {
 "response.diff_lines": [
 "",
 "[edit system scripts op]",
 "+ file bgp.slax;"

162

]
}

PLAY RECAP **
dc1a.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

How to Specify the Load Action

The config and juniper_junos_config modules support loading configuration changes using many of the
same load operations supported in the Junos OS CLI. You specify the load operation by including the
load parameter in the module’s argument list and setting it to the value of the corresponding load
operation. Table 23 on page 163 summarizes the parameter settings required for each type of load
operation.

Table 23: Parameters for Specifying the Load Operation

Load Operation load Argument Description

load merge load: "merge" Merge the loaded configuration with the existing configuration.

load override load: "override" Replace the entire configuration with the loaded configuration.

load replace load "replace" Merge the loaded configuration with the existing configuration, but replace
statements in the existing configuration with those that specify the replace:
tag in the loaded configuration. If there is no statement in the existing
configuration, the statement in the loaded configuration is added.

load patch load: "patch" Load configuration data from a patch file.

load set load: "set" Load configuration data that is in set format. The configuration data is
loaded line by line and can contain configuration mode commands such as
set, delete, and deactivate.

163

Table 23: Parameters for Specifying the Load Operation (Continued)

Load Operation load Argument Description

load update load: "update" Compare the complete loaded configuration against the existing
configuration. Each configuration element that is different in the loaded
configuration replaces its corresponding element in the existing
configuration. During the commit operation, only system processes that are
affected by changed configuration elements parse the new configuration.

How to Specify the Format of the Configuration Data to Load

The config and juniper_junos_config modules enable you to configure Junos devices using one of the
standard, supported formats. You can provide configuration data as strings or files. Files can contain
either configuration data or Jinja2 templates. When providing configuration data within a string, file, or
Jinja2 template, supported formats for the data include text, Junos XML elements, Junos OS set
commands, and JSON.

NOTE: Starting in Junos OS Release 16.1R1, Junos devices support loading configuration data in
JSON format.

The config and juniper_junos_config modules attempt to auto-detect the format of configuration data
supplied as strings using the lines argument. However, you can explicitly specify the format for strings
by including the format argument. When you provide configuration data in a file or Jinja2 template, you
must specify the format of the data either by adding the appropriate extension to the file or by including
the format argument.

Table 24 on page 164 summarizes the supported formats for the configuration data and the
corresponding value for the file extension and format parameter. If you include the format argument, it
overrides both the auto-detect format for strings and the format indicated by a file extension.

Table 24: Specifying the Format for Configuration Data

Configuration Data Format File Extension format Parameter

CLI configuration statements (text) .conf "text"

164

Table 24: Specifying the Format for Configuration Data (Continued)

Configuration Data Format File Extension format Parameter

JavaScript Object Notation (JSON) .json "json"

Junos OS set commands .set "set"

Junos XML elements .xml "xml"

NOTE: When you set the module’s load argument to 'override' or 'update', you cannot use the
Junos OS set command format.

How to Load Configuration Data as Strings

The config and juniper_junos_config modules enable you to load configuration data from a list of strings. To
load configuration data as strings, include the appropriate load argument and the lines argument. The
lines argument takes a list of strings containing the configuration data to load.

The modules attempt to auto-detect the format of the lines configuration data. However, you can
explicitly specify the format by including the format argument. For information about specifying the
format, see "How to Specify the Format of the Configuration Data to Load" on page 164. If you include
the format parameter in the module’s argument list, it overrides the auto-detect format.

The following playbook configures and commits two op scripts. In this case, the load argument has the
value 'set', because the configuration data in lines uses Junos OS set statement format.

- name: "Load and commit configuration"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Load configuration data using strings and commit"
 juniper.device.config:

165

 load: "set"
 lines:
 - "set system scripts op file bgp.slax"
 - "set system scripts op file bgp-neighbor.slax"
 register: response
 - name: "Print the response"
 debug:
 var: response

The following playbook configures the same statements using lines with configuration data in text
format. In this case, load: "merge" is used.

- name: "Load and commit configuration"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Load configuration data using strings and commit"
 juniper.device.config:
 load: "merge"
 lines:
 - |
 system {
 scripts {
 op {
 file bgp.slax;
 file bgp-neighbor.slax;
 }
 }
 }
 register: response
 - name: "Print the response"
 debug:
 var: response

166

How to Load Configuration Data from a Local or Remote File

The config and juniper_junos_config modules enable you to load configuration data from a file. The file can
reside in one of the following locations:

• Ansible control node

• Client device

• URL that is reachable from the client device

When you load configuration data from a file, you must indicate the format of the configuration data in
the file and the location of the file. Supported configuration data formats include text, Junos XML
elements, Junos OS set commands, and JSON. For information about loading files containing Jinja2
templates, see "How to Load Configuration Data Using a Jinja2 Template" on page 169.

You can specify the format of the configuration data either by explicitly including the format parameter in
the module’s argument list or by adding the appropriate extension to the configuration data file. If you
specify the format parameter, it overrides the format indicated by the file extension. For information
about specifying the format, see "How to Specify the Format of the Configuration Data to Load" on page
164. When the configuration data uses Junos XML format, you must enclose the data in the top-level
<configuration> tag.

NOTE: You do not need to enclose configuration data that is formatted as ASCII text, Junos OS
set commands, or JSON in <configuration-text>, <configuration-set>, or <configuration-json> tags as
required when configuring the device directly within a NETCONF session.

Table 25 on page 167 outlines the module parameters that you can include to specify the location of the
file.

Table 25: Specifying the Location of the Configuration File

Module Parameter Description

src Absolute or relative path to a file on the Ansible control node. The default directory is the
playbook directory.

167

Table 25: Specifying the Location of the Configuration File (Continued)

Module Parameter Description

url Absolute or relative path to a file on the client device, or an FTP location, or a Hypertext
Transfer Protocol (HTTP) URL.

The default directory on the client device is the current working directory, which defaults to
the user’s home directory.

To load configuration data from a local file on the Ansible control node, set the src argument to the
absolute or relative path of the file containing the configuration data. For example:

- name: "Load and commit configuration"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Load configuration from a local file and commit"
 juniper.device.config:
 load: "merge"
 src: "build_conf/{{ inventory_hostname }}/junos.conf"
 register: response
 - name: "Print the response"
 debug:
 var: response

To load configuration data from a file on the managed Junos device, or from an FTP or HTTP URL, use
the url parameter and specify the path of the file that contains the configuration data to load. For
example:

- name: "Load and commit configuration"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Load configuration from a remote file and commit"

168

 juniper.device.config:
 load: "merge"
 url: "/var/tmp/junos.conf"
 register: response
 - name: "Print the response"
 debug:
 var: response

The value for url can be an absolute or relative local file path, an FTP location, or a Hypertext Transfer
Protocol (HTTP) URL.

• A local filename can have one of the following forms:

• /path/filename—File on a mounted file system, either on the local flash disk or on hard disk.

• a:filename or a:path/filename—File on the local drive. The default path is / (the root-level
directory). The removable media can be in MS-DOS or UNIX (UFS) format.

• A filename for a file on an FTP server has the following form:

ftp://username:password@hostname/path/filename

• A filename for a file on an HTTP server has the following form:

http://username:password@hostname/path/filename

In each case, the default value for the path variable is the home directory for the user. To specify an
absolute path, the application starts the path with the characters %2F; for example, ftp://
username:password@hostname/%2Fpath/filename.

How to Load Configuration Data Using a Jinja2 Template

The config and juniper_junos_config modules enable you to render configuration data from a Jinja2
template file on the Ansible control node and load and commit the configuration on a Junos device. Jinja
is a template engine for Python that enables you to generate documents from predefined templates. The
templates, which are text files in the desired language, provide flexibility through the use of expressions
and variables. You can create Junos OS configuration data using Jinja2 templates in one of the
supported configuration formats, which includes ASCII text, Junos XML elements, Junos OS set
commands, and JSON. The Ansible modules use the Jinja2 template and a supplied dictionary of
variables to render the configuration data.

169

To load and commit configuration data using a Jinja2 template, include the template and vars parameters
in the module’s argument list.

• template—Path of the Jinja2 template file

• vars—Dictionary of keys and values that are required to render the Jinja2 template

You must also include the format parameter when the templates’s file extension does not indicate the
format of the data. For information about specifying the format, see "How to Specify the Format of the
Configuration Data to Load" on page 164.

For example, the interfaces-mpls.j2 file contains the following Jinja2 template:

interfaces {
 {% for item in interfaces %}
 {{ item }} {
 description "{{ description }}";
 unit 0 {
 family {{ family }};
 }
 } {% endfor %}
}
protocols {
 mpls {
 {% for item in interfaces %}
 interface {{ item }};
 {% endfor %}
 }
 rsvp {
 {% for item in interfaces %}
 interface {{ item }};
 {% endfor %}
 }

}

To use the config or juniper_junos_config module to load the Jinja2 template, set the template argument to
the path of the template file and define the variables required by the template in the vars dictionary. The
following playbook uses the Jinja2 template and the variables defined in vars to render the configuration

170

data and load and commit it on the target host. The format parameter indicates the format of the
configuration data in the template file.

- name: "Load and commit configuration"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Load a configuration from a Jinja2 template and commit"
 juniper.device.config:
 load: "merge"
 template: "build_conf/templates/interfaces-mpls.j2"
 format: "text"
 vars:
 interfaces: ["ge-1/0/1", "ge-1/0/2", "ge-1/0/3"]
 description: "MPLS interface"
 family: "mpls"
 register: response
 - name: "Print the response"
 debug:
 var: response

The module generates the following configuration data, which is loaded into the candidate configuration
on the device and committed:

interfaces {
 ge-1/0/1 {
 description "MPLS interface";
 unit 0 {
 family mpls;
 }
 }
 ge-1/0/2 {
 description "MPLS interface";
 unit 0 {
 family mpls;
 }
 }
 ge-1/0/3 {

171

 description "MPLS interface";
 unit 0 {
 family mpls;
 }
 }
}
protocols {
 mpls {
 interface ge-1/0/1;
 interface ge-1/0/2;
 interface ge-1/0/3;
 }
 rsvp {
 interface ge-1/0/1;
 interface ge-1/0/2;
 interface ge-1/0/3;
 }
}

How to Load the Rescue Configuration

A rescue configuration allows you to define a known working configuration or a configuration with a
known state that you can restore at any time. You use the rescue configuration when you need to revert
to a known configuration or as a last resort if the device configuration and the backup configuration files
become damaged beyond repair. When you create a rescue configuration, the device saves the most
recently committed configuration as the rescue configuration.

The config and juniper_junos_config modules enable you to revert to an existing rescue configuration on
Junos devices. To load and commit the rescue configuration on a device, include the module’s
rollback: "rescue" argument. For example:

- name: "Revert to rescue configuration"
 hosts: dc1a
 connection: local
 gather_facts: no

 tasks:
 - name: "Load and commit rescue configuration"
 juniper.device.config:

172

 rollback: "rescue"
 register: response
 - name: "Print response"
 debug:
 var: response

How to Roll Back the Configuration

Junos devices store a copy of the most recently committed configuration and up to 49 previous
configurations, depending on the platform. You can roll back to any of the stored configurations. This is
useful when configuration changes cause undesirable results, and you want to revert back to a known
working configuration. Rolling back the configuration is similar to the process for making configuration
changes on the device, but instead of loading configuration data, you perform a rollback, which replaces
the entire candidate configuration with a previously committed configuration.

The config and juniper_junos_config modules enable you to roll back to a previously committed
configuration on Junos devices. To roll back the configuration and commit it, include the module’s
rollback argument, and specify the ID of the rollback configuration. Valid ID values are 0 (zero, for the
most recently committed configuration) through one less than the number of stored previous
configurations (maximum is 49).

The following playbook prompts for the rollback ID of the configuration to restore, rolls back the
configuration and commits it, and then prints the configuration changes to standard output.

- name: "Roll back the configuration"
 hosts: dc1a
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "ROLLBACK"
 prompt: "Rollback ID of the configuration to restore"
 private: no

 tasks:
 - name: "Roll back the configuration and commit"
 juniper.device.config:
 rollback: "{{ ROLLBACK }}"
 register: response

173

 - name: "Print the configuration changes"
 debug:
 var: response.diff_lines

user@ansible-cn:~/ansible$ ansible-playbook configuration-rollback.yaml
Rollback ID of the configuration to restore: 1

PLAY [Roll back the configuration] **

TASK [Roll back the configuration and commit] *********************************
changed: [dc1a.example.net]

TASK [Print the configuration changes] ***************************************
ok: [dc1a.example.net] => {
 "response.diff_lines": [
 "",
 "[edit interfaces]",
 "- ge-0/0/0 {",
 "- unit 0 {",
 "- family mpls;",
 "- }",
 "- }"
]
}

PLAY RECAP **
dc1a.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=0 rescued=0
ignored=0

How to Commit the Configuration

By default, when you use the config or juniper_junos_config module to modify the configuration using
either the load or the rollback argument, the module automatically performs a commit check and commits
the changes. To prevent the module from performing a commit check or from committing the changes,
set the check or commit argument to false, respectively.

You can also customize the commit operation with many of the same options that are available in the
Junos OS CLI. Table 26 on page 175 outlines the module arguments that you can use to specify different
commit options.

174

Table 26: Commit Options

Module Argument Description Default value for
load and rollback
operations

check: boolean Perform a commit check or confirm a previous confirmed
commit operation.

True

check_commit_wait: seconds Wait the specified number of seconds between the commit
check and the commit operation.

–

comment: "string" Log a comment for that commit operation in the system log
file and in the device’s commit history.

–

commit: boolean Commit the configuration changes or confirm a previous
confirmed commit operation.

True

commit_empty_changes: boolean Commit the configuration changes even if there are no
differences between the candidate configuration and the
committed configuration.

False

confirmed: minutes Require that a commit operation be confirmed within a
specified amount of time after the initial commit.
Otherwise, roll back to the previously committed
configuration.

Either the commit: true option or the check: true option
must be used to confirm the commit.

–

When you commit the configuration, you can include a brief comment to describe the purpose of the
committed changes. To log a comment describing the changes, include the comment: "comment string"
argument with the message string.

By default, the config and juniper_junos_config modules execute both a commit check and a commit
operation. The check_commit_wait argument defines the number of seconds to wait between the commit
check and commit operations. Include this argument when you need to provide sufficient time for the
device to complete the commit check operation and release the configuration lock before initiating the
commit operation. If you omit this argument, there might be certain circumstances in which a device
initiates the commit operation before the commit check operation releases its lock on the configuration,
resulting in a CommitError and failed commit operation.

175

By default, if there are no differences between the candidate configuration and the committed
configuration, the module does not commit the changes. To force a commit operation even when there
are no differences, include the commit_empty_changes: true argument.

To require that a commit operation be confirmed within a specified amount of time after the initial
commit, include the confirmed: minutes argument. If the commit is not confirmed within the given time
limit, the configuration automatically rolls back to the previously committed configuration. The allowed
range is 1 through 65,535 minutes. The confirmed commit operation is useful for verifying that a
configuration change works correctly and does not prevent management access to the device. If the
change prevents access or causes other errors, the automatic rollback to the previous configuration
enables access to the device after the rollback deadline passes. To confirm the commit operation, invoke
the config or juniper_junos_config module with the check: true or commit: true argument.

In the following playbook, the first task modifies the configuration, waits 10 seconds between the
commit check and the commit operation, and requires that the commit operation be confirmed within 5
minutes. It also logs a comment for the commit. The second task issues a commit check operation to
confirm the commit. In a real-world scenario, you might perform validation tasks after the initial commit
and only execute the commit confirmation if the tasks pass certain validation criteria.

- name: "Load configuration and confirm within 5 minutes"
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: "Load configuration. Wait 10 seconds between check and commit. Confirm within 5
min."
 juniper.device.config:
 load: "merge"
 format: "text"
 src: "build_conf/{{ inventory_hostname }}/junos.conf"
 check_commit_wait: 10
 confirmed: 5
 comment: "updated using Ansible"
 register: response
 - name: "Print the response"
 debug:
 var: response

 - name: "Confirm the commit with a commit check"
 juniper.device.config:
 check: true

176

 diff: false
 commit: false
 register: response
 - name: "Print the response"
 debug:
 var: response

How to Ignore Warnings When Configuring Devices

The config and juniper_junos_config modules enable you to modify and commit the configuration on Junos
devices. In some cases, the RPC reply might contain <rpc-error> elements with a severity level of warning
or higher that cause the module to raise an RpcError exception, thus causing the load or commit
operation to fail.

In certain cases, it might be necessary or desirable to suppress the RpcError exceptions that are raised in
response to warnings for load and commit operations. You can instruct the config and juniper_junos_config
modules to suppress RpcError exceptions that are raised for warnings by including the ignore_warning
parameter in the module’s argument list. The ignore_warning argument takes a Boolean, a string, or a list of
strings.

To instruct the module to ignore all warnings for load and commit operations performed by the module,
include the ignore_warning: true argument. The following example ignores all warnings for load and
commit operations.

- name: Configure Device
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Configure op script
 juniper.device.config:
 config_mode: "private"
 load: "set"
 lines:
 - "set system scripts op file bgp.slax"
 ignore_warning: true
 register: response
 - name: Print the response

177

 debug:
 var: response

If you include ignore_warning: true and all of the <rpc-error> elements have a severity level of warning, the
application ignores all warnings and does not raise an RpcError exception. However, any <rpc-error>
elements with higher severity levels will still raise exceptions.

To instruct the module to ignore specific warnings, set the ignore_warning argument to a string or a list of
strings containing the warnings to ignore. The following example ignores two specific warnings:

- name: Configure Device
 hosts: dc1
 connection: local
 gather_facts: no

 tasks:
 - name: Configure Junos device and ignore warnings
 juniper.device.config:
 config_mode: "private"
 load: "merge"
 src: "build_conf/{{ inventory_hostname }}/junos.conf"
 ignore_warning:
 - "Advertisement-interval is less than four times"
 - "Chassis configuration for network services has been changed."
 register: response
 - name: Print the response
 debug:
 var: response

The module suppresses RpcError exceptions if all of the <rpc-error> elements have a severity level of
warning and each warning in the response matches one or more of the specified strings.

Example: Use Ansible to Configure Junos Devices

IN THIS SECTION

Requirements | 179

178

Overview | 179

Configuration | 180

Execute the Playbook | 182

Verification | 183

Troubleshoot Playbook Errors | 184

The config module enables you to manage the configuration on Junos devices. This example uses the
config module to make configuration changes on a Junos device through NETCONF over SSH.

Requirements

This example uses the following hardware and software components:

• Configuration management server running Ansible 2.10 or later with the juniper.device collection
installed

• Junos device with NETCONF enabled and a user account configured with appropriate permissions

• SSH public/private key pair configured for the appropriate user on the Ansible controller and the
Junos device

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the config module to enable a new op script in the
configuration of the target Junos devices. The configuration data file, junos-config.conf, contains the
relevant configuration data formatted as text.

The playbook includes the Checking NETCONF connectivity task, which utilizes the wait_for Ansible module to
try to establish a NETCONF session with the target device using the NETCONF default port (830). If the
control node fails to establish a NETCONF session with a target device during playbook execution, then
it skips the remaining tasks in the play for that device.

The task to configure the device executes the config module provided that the NETCONF check was
successful. The load: "merge" module argument loads the new configuration data into the candidate
configuration using a load merge operation. By default, the config module commits configuration data on a
device for load and rollback operations. The module arguments include the comment argument, which
records a commit comment in the device’s system log file and commit history.

179

Configuration

IN THIS SECTION

Create the Configuration Data File | 180

Create the Ansible Playbook | 180

Results | 181

Create the Configuration Data File

Step-by-Step Procedure

To create the configuration data file that is used by the module:

1. Create a new file with the appropriate extension based on the format of the configuration data,
which in this example is text.

2. Include the desired configuration changes in the file.

user@ansible-cn:~/ansible$ cat build_conf/dc1a.example.net/junos-config.conf
system {
 scripts {
 op {
 file bgp.slax;
 }
 }
}

Create the Ansible Playbook

Step-by-Step Procedure

To create a playbook that uses the config module to make configuration changes on a Junos device:

1. Include the playbook boilerplate, which executes the modules locally.

- name: Load and commit configuration data on a Junos device

180

 hosts: dc1
 connection: local
 gather_facts: no

2. (Optional) Create a task to verify NETCONF connectivity.

 tasks:
 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 830
 timeout: 5

3. Create the task to load the configuration onto the device and commit it.

 - name: Merge configuration data from a file and commit
 juniper.device.config:
 load: "merge"
 src: "build_conf/{{ inventory_hostname }}/junos-config.conf"
 comment: "Configuring op script with Ansible"
 register: response

4. (Optional) Create a task to print the response, which includes the configuration changes in diff
format.

 - name: Print the response
 debug:
 var: response

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the
intended code, repeat the instructions in this example to correct the playbook.

- name: Load and commit configuration data on a Junos device
 hosts: dc1
 connection: local

181

 gather_facts: no

 tasks:
 - name: Checking NETCONF connectivity
 wait_for:
 host: "{{ inventory_hostname }}"
 port: 830
 timeout: 5

 - name: Merge configuration data from a file and commit
 juniper.device.config:
 load: "merge"
 src: "build_conf/{{ inventory_hostname }}/junos-config.conf"
 comment: "Configuring op script with Ansible"
 register: response

 - name: Print the response
 debug:
 var: response

Execute the Playbook

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~/ansible$ ansible-playbook ansible-pb-junos-config.yaml
PLAY [Load and commit configuration data on a Junos device] ****

TASK [Checking NETCONF connectivity] **************************************
ok: [dc1a.example.net]

TASK [Merge configuration data from a file and commit] ********************
changed: [dc1a.example.net]

TASK [Print the response] ***
ok: [dc1a.example.net] => {
 "response": {
 "changed": true,
 "diff": {
 "prepared": "\n[edit system scripts op]\n+ file bgp.slax;\n"

182

 },
 "diff_lines": [
 "",
 "[edit system scripts op]",
 "+ file bgp.slax;"
],
 "failed": false,
 "file": "build_conf/dc1a.example.net/junos-config.conf",
 "msg": "Configuration has been: opened, loaded, checked, diffed, committed, closed."
 }
}

PLAY RECAP **
dc1a.example.net : ok=3 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

Verification

IN THIS SECTION

Verify the Configuration | 183

Verify the Configuration

Purpose

Verify that the configuration was correctly updated on the Junos device.

Action

Review the Ansible playbook output to see whether the configuration task succeeded or failed. You can
also log in to the Junos device and view the configuration, commit history, and log files to verify the
configuration and commit, for example:

user@dc1a> show configuration system scripts
op {

183

 file bgp.slax;
}

user@dc1a> show system commit
0 2020-12-17 15:33:50 PST by user via netconf
 Configuring op script with Ansible

user@dc1a> show log messages
Dec 17 15:33:39 dc1a mgd[33444]: UI_COMMIT: User 'user' requested 'commit' operation (comment:
Configuring op script with Ansible)
Dec 17 15:33:57 dc1a mgd[33444]: UI_COMMIT_COMPLETED: commit complete

Troubleshoot Playbook Errors

IN THIS SECTION

Troubleshoot Timeout Errors | 184

Troubleshoot Configuration Lock Errors | 185

Troubleshoot Configuration Change Errors | 186

Troubleshoot Timeout Errors

Problem

The playbook generates a TimeoutExpiredError error message and fails to update the device configuration.

ncclient.operations.errors.TimeoutExpiredError: ncclient timed out while waiting for an rpc reply

The default time for a NETCONF RPC to time out is 30 seconds. Large configuration changes might
exceed this value causing the operation to time out before the configuration can be uploaded and
committed.

184

Solution

To accommodate configuration changes that might require a commit time that is longer than the default
RPC timeout interval, set the module’s timeout argument to an appropriate value and re-run the
playbook.

Troubleshoot Configuration Lock Errors

Problem

The playbook generates a LockError error message indicating that the configuration cannot be locked. For
example:

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive mode:
LockError(severity: error, bad_element: None, message: configuration database modified)"}

or

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive mode:
LockError(severity: error, bad_element: lock-configuration, message: permission denied)"}

A configuration lock error can occur for the following reasons:

• Another user has an exclusive lock on the configuration.

• Another user made changes to the configuration database but has not yet committed the changes.

• The user executing the Ansible module does not have permissions to configure the device.

Solution

The LockError message string usually indicates the root cause of the issue. If another user has an
exclusive lock on the configuration or has modified the configuration, wait until the lock is released or
the changes are committed, and execute the playbook again. If the cause of the issue is that the user
does not have permissions to configure the device, either execute the playbook with a user who has the
necessary permissions, or if appropriate, configure the Junos device to give the current user the
necessary permissions to make the changes.

185

Troubleshoot Configuration Change Errors

Problem

The playbook generates a ConfigLoadError error message indicating that the configuration cannot be
modified, because permission is denied.

FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: error, bad_element: scripts, message: error: permission denied)"}

This error message is generated when the user executing the Ansible module has permission to alter the
configuration but does not have permission to alter the requested section of the configuration.

Solution

Either execute the playbook with a user who has the necessary permissions, or if appropriate, configure
the Junos device to give the current user the necessary permissions to make the changes.

Release History Table

Release Description

2.0.0 Starting in Juniper.junos Release 2.0.0, the juniper_junos_config module combines and replaces the
functionality of the junos_commit, junos_get_config, junos_install_config, and junos_rollback modules.

RELATED DOCUMENTATION

Use Ansible to Retrieve or Compare Junos OS Configurations | 146

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

186

7
CHAPTER

Troubleshoot Ansible for Junos OS

Ansible for Junos OS Troubleshooting Summary | 188

Troubleshoot Junos PyEZ (junos-eznc) Install Errors for Ansible Modules | 191

Troubleshoot Ansible Collection, Role, and Module Errors When Managing Junos
Devices | 193

Troubleshoot Ansible Connection Errors When Managing Junos Devices | 196

Troubleshoot Ansible Authentication Errors When Managing Junos Devices | 200

Troubleshoot Ansible Errors When Configuring Junos Devices | 204

Ansible for Junos OS Troubleshooting Summary

Table 27 on page 188 lists some common errors that you might encounter when you use Ansible to
manage Juniper Networks devices. For each issue, the table provides a reference that has additional
information about the error and potential solutions to resolve the issue. However, every environment is
unique, and a proposed solution might not work in all cases.

Table 27: Ansible for Junos OS Errors

General Issue Sample Errors Reference

Junos PyEZ
(junos-eznc) library errors

"msg": "junos-eznc (aka PyEZ) >=
2.6.0 is required for this module.
However, junos-eznc does not appear
to be currently installed."

"Troubleshoot Junos PyEZ (junos-
eznc) Install Errors for Ansible
Modules" on page 191

Ansible collection, role, and module
resolution errors

ERROR! the role 'Juniper.junos' was
not found in /usr/share/ansible/
roles:/etc/ansible/roles ...

ERROR! no action detected in task.
This often indicates a misspelled
module name, or incorrect module
path.

ERROR! couldn't resolve module/
action 'facts'. This often
indicates a misspelling, missing
collection, or incorrect module
path.

"Troubleshoot Ansible Collection,
Role, and Module Errors When
Managing Junos Devices" on page
193

External connection plugins error
(AttributeError: 'Connection')

(Occurs for Ansible ansible-core
version >= 2.12.9.)

AttributeError: 'Connection' object
has no attribute 'nonetype'

External connection plugins that do
not set _sub_plugin trigger errors

188

https://github.com/ansible/ansible/issues/79371
https://github.com/ansible/ansible/issues/79371

Table 27: Ansible for Junos OS Errors (Continued)

General Issue Sample Errors Reference

Unreachable host UNREACHABLE! => {"changed": false,
"msg": "Failed to connect to the
host via ssh: ", "unreachable":
true}

unknown command: /bin/sh\r\n

"Troubleshoot Failed or Invalid
Connection Errors" on page 196

Unknown host
(ConnectUnknownHostError)

"msg": "Unable to make a PyEZ
connection:
ConnectUnknownHostError(dc1a.exampl
e.net)"

"Troubleshoot Unknown Host
Errors" on page 198

Connection refused
(ConnectRefusedError)

"msg": "Unable to make a PyEZ
connection:
ConnectRefusedError(dc1a.example.ne
t)"

"Troubleshoot Refused Connection
Errors" on page 199

Authentication error
(ConnectAuthError)

"msg": "Unable to make a PyEZ
connection:
ConnectAuthError(dc1a.example.net)"

"Troubleshoot ConnectAuthError
Issues" on page 201

conn_type error AttributeError:
'JuniperJunosModule' object has no
attribute 'conn_type'

"Troubleshoot Attribute conn_type
Errors" on page 202

Configuration timeout error
(TimeoutExpiredError)

ncclient.operations.errors.TimeoutE
xpiredError: ncclient timed out
while waiting for an rpc reply

"Troubleshoot Configuration
Timeout Errors" on page 204

189

Table 27: Ansible for Junos OS Errors (Continued)

General Issue Sample Errors Reference

Configuration lock error
(LockError)

"msg": "Unable to open the
configuration in exclusive mode:
LockError(severity: error,
bad_element: None, message:
configuration database modified)"

"msg": "Unable to open the
configuration in exclusive mode:
LockError(severity: error,
bad_element: lock-configuration,
message: permission denied)"

"Troubleshoot Configuration Lock
Errors" on page 205

Configuration load error
(ConfigLoadError)

FAILED! => {"changed": false,
"msg": "Failure loading the
configuraton:
ConfigLoadError(severity: error,
bad_element: scripts, message:
error: permission denied)"}

"Troubleshoot Configuration Load
Errors" on page 207

Configuration commit error
(CommitError)

FAILED! => {"changed": false,
"msg": "Unable to commit
configuration:
CommitError(edit_path: None,
bad_element: None, message: error:
remote lock-configuration failed on
re0\n\nnote: consider using 'commit
synchronize force' to\nterminate
remote edit sessions and force the
commit)"}

"Troubleshoot Commit Errors" on
page 208

190

Troubleshoot Junos PyEZ (junos-eznc) Install Errors
for Ansible Modules

IN THIS SECTION

Problem | 191

Cause | 191

Solution | 192

Problem

Description

During execution of a juniper.device module or a Juniper.junos module, the Ansible control node generates
an error that junos-eznc is not installed. For example:

"msg": "junos-eznc (aka PyEZ) >= 2.6.0 is required for this module. However, junos-eznc does not
appear to be currently installed. See https://github.com/Juniper/py-junos-eznc#installation for
details on installing junos-eznc."

or

"msg": "junos-eznc is required but does not appear to be installed. It can be installed using
`pip install junos-eznc`"

Cause

The Juniper Networks Ansible modules in the juniper.device collection and Juniper.junos role use the
Junos PyEZ Python library to perform operations on Junos devices. Ansible generates this error if the
library is not installed or if Ansible can’t locate the library. Ansible might fail to locate the library, for
example, if you install Ansible in a virtual environment or under a Python installation in a non-standard

191

system location and Ansible is searching for the library in a different location like the default system
location.

Solution

Install Junos PyEZ on the Ansible control node and update any necessary environment variables. See
https://github.com/Juniper/py-junos-eznc#installation for more information.

If you run Ansible using a Python installation in a virtual environment or a non-standard system location,
you must:

• Install Junos PyEZ under the desired Python installation (in the virtual environment or non-standard
system location, as appropriate).

• Specify the path to the Python interpreter—for example, by setting the interpreter_python variable in
the Ansible configuration file or by defining the ansible_python_interpreter variable for the appropriate
devices in the Ansible inventory file.

file ansible.cfg
[defaults]
interpreter_python = /home/user/MyProjects/Ansible/venv/bin/python
...

For more information, see Interpreter Discovery in the official Ansible documentation.

To verify that Junos PyEZ is successfully installed on the control node, launch the Python interactive
shell using the same Python installation that you use for Ansible operations. Then import the jnpr.junos
package.

(venv) user@ansible-cn:~/MyProjects/Ansible$ python3
Python 3.6.9 (default, Oct 8 2020, 12:12:24)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import jnpr.junos
>>> jnpr.junos.__version__
'2.6.0'

If you successfully import the jnpr.junos package and there is no error message, then Junos PyEZ is
installed on the Ansible control node. If you still see the same error message when you execute the

192

https://github.com/Juniper/py-junos-eznc#installation
https://docs.ansible.com/ansible/latest/reference_appendices/interpreter_discovery.html

Ansible module, make sure you have specified the correct location for the Python interpreter in your
Ansible environment.

NOTE: You can verify the Python installation that Ansible uses by executing your Ansible
playbook with the -vvv option and reviewing the log messages.

RELATED DOCUMENTATION

Ansible for Junos OS Server Requirements | 24

Troubleshoot Ansible Authentication Errors When Managing Junos Devices | 200

Troubleshoot Ansible Collection, Role, and Module Errors When Managing Junos Devices | 193

Troubleshoot Ansible Collection, Role, and Module
Errors When Managing Junos Devices

IN THIS SECTION

Problem | 194

Cause | 194

Solution | 194

193

Problem

Description

During execution of an Ansible playbook, the control node generates an error that the juniper.device
collection or Juniper.junos role was not found, that no action was detected in the task, or that the module
could not be resolved. For example:

ERROR! the role 'Juniper.junos' was not found in /usr/share/ansible/roles:/etc/ansible/roles ...

or

ERROR! no action detected in task. This often indicates a misspelled module name, or incorrect
module path.

or

ERROR! couldn't resolve module/action 'facts'. This often indicates a misspelling, missing
collection, or incorrect module path.

Cause

The Ansible control node cannot locate the juniper.device collection or the Juniper.junos role and
associated modules.

Solution

The juniper.device collection and Juniper.junos role are hosted on the Ansible Galaxy website. In order to
use the modules in the collection or role, you must install the collection or role on the Ansible control
node and also reference it in your playbook.

194

To install the juniper.device collection on the Ansible control node, execute the ansible-galaxy collection
install command, and specify juniper.device.

user@ansible-cn:~$ sudo ansible-galaxy collection install juniper.device

To install the Juniper.junos role on the Ansible control node, execute the ansible-galaxy install command,
and specify Juniper.junos.

user@ansible-cn:~$ sudo ansible-galaxy install Juniper.junos

NOTE: If you do not install the collection or role in the default location, you might need to define
the path to it in your Ansible setup. For more information about installing collections and roles
and specifying the path, see the official Ansible documentation.

To use the juniper.device collection modules, reference the fully qualified collection name when you
execute a module. For example:

- name: Get Device Facts
 hosts: junos-all
 connection: local
 gather_facts: no

 tasks:
 - name: Get device facts
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

To use the Juniper.junos role modules, you must include the role in the playbook play. For example:

- name: Get Device Facts
 hosts: junos-all
 connection: local
 gather_facts: no
 roles:
 - Juniper.junos

195

https://docs.ansible.com/

 tasks:
 - name: Get device facts
 juniper_junos_facts:
 savedir: "{{ playbook_dir }}"

RELATED DOCUMENTATION

Ansible for Junos OS Server Requirements | 24

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 7

Troubleshoot Ansible Connection Errors When
Managing Junos Devices

IN THIS SECTION

Troubleshoot Failed or Invalid Connection Errors | 196

Troubleshoot Unknown Host Errors | 198

Troubleshoot Refused Connection Errors | 199

The following sections outline connection errors that you might encounter when using Ansible to
manage Junos devices. These sections also present potential causes and solutions for each error.

Troubleshoot Failed or Invalid Connection Errors

IN THIS SECTION

Problem | 197

196

Cause | 197

Solution | 197

Problem

Description

During execution of a juniper.device or Juniper.junos module on a Junos device, the Ansible control node
generates an error about a failed SSH connection or an unknown command. For example:

UNREACHABLE! => {"changed": false, "msg": "Failed to connect to the host via ssh: ",
"unreachable": true}

or

unknown command: /bin/sh\r\n

Cause

These errors can arise when the module is not run locally on the Ansible control node.

Normally Ansible requires Python on the managed node, and the Ansible control node sends the module
to the node, where it is executed and then removed. The Juniper Networks modules do not require
Python on Junos devices, because they use Junos PyEZ and the Junos XML API over NETCONF to
interface with the device. Therefore, to perform operations on Junos devices, you must run the modules
locally on the Ansible control node where Python is installed. If Ansible tries to execute a module
directly on the Junos device, it generates an error.

Solution

To direct the Ansible control node to run the juniper.device or Juniper.junos modules locally, include
connection: local in the Ansible playbook, or include the --connection local command-line argument when
executing individual modules. For example:

- name: Get Device Facts

197

 hosts: junos
 connection: local
 gather_facts: no

Troubleshoot Unknown Host Errors

IN THIS SECTION

Problem | 198

Cause | 198

Solution | 199

Problem

Description

During execution of a juniper.device or Juniper.junos module, the Ansible control node generates a
ConnectUnknownHostError error.

"msg": "Unable to make a PyEZ connection: ConnectUnknownHostError(dc1a.example.net)"

Cause

The host is not defined in the Ansible inventory file or the Ansible control node is unable to resolve the
hostname.

When executing an Ansible module either directly or from a playbook, any host referenced in the
module arguments or the playbook must be defined in the Ansible inventory file. The default location for
the inventory file is /etc/ansible/hosts. If the inventory file references a hostname, the Ansible control
node must be able to resolve the hostname.

198

Solution

Update the Ansible inventory file to include the missing host, and ensure that DNS resolution is working
correctly.

For information about the Ansible inventory file, see "Understanding the Ansible Inventory File When
Managing Junos Devices" on page 15 as well as the official Ansible documentation at https://
www.ansible.com/.

Troubleshoot Refused Connection Errors

IN THIS SECTION

Problem | 199

Cause | 199

Solution | 200

Problem

Description

During execution of a juniper.device or Juniper.junos module, the Ansible control node generates a
ConnectRefusedError error. For example:

"msg": "Unable to make a PyEZ connection: ConnectRefusedError(dc1a.example.net)"

Cause

The most likely cause for a refused connection error is that NETCONF over SSH is not enabled on the
Junos device.

199

https://www.ansible.com/
https://www.ansible.com/

To quickly test whether NETCONF is enabled, verify that the user account executing the Ansible module
can successfully start a NETCONF session with the device.

[user@ansible-cn]$ ssh user@dc1a.example.net -p 830 -s netconf

If the user can successfully establish a NETCONF session with the device on either the default
NETCONF port (830) or a port that is specifically configured for NETCONF on your device, then
NETCONF is enabled. Otherwise, you must enable NETCONF over SSH on the device.

Solution

Enable the NETCONF-over-SSH service on the Junos device.

[edit]
user@host# set system services netconf ssh
user@host# commit

RELATED DOCUMENTATION

Set up Ansible for Junos OS Managed Nodes | 27

Understanding the Ansible Inventory File When Managing Junos Devices | 15

Troubleshoot Ansible Authentication Errors When Managing Junos Devices | 200

Troubleshoot Ansible Authentication Errors When
Managing Junos Devices

IN THIS SECTION

Troubleshoot ConnectAuthError Issues | 201

Troubleshoot Attribute conn_type Errors | 202

200

The following sections outline authentication errors that you might encounter when using Ansible to
manage Junos devices. These sections also present potential causes and solutions for each error.

Troubleshoot ConnectAuthError Issues

IN THIS SECTION

Problem | 201

Cause | 201

Solution | 202

Problem

Description

During execution of a juniper.device or Juniper.junos module, the Ansible control node generates a
ConnectAuthError error for failed authentication. For example:

"msg": "Unable to make a PyEZ connection: ConnectAuthError(dc1a.example.net)"

Cause

The Junos device might fail to authenticate the user for the following reasons:

• The user does not an have an account on the Junos device.

• The user has an account with a text-based password configured on the Junos device, but the wrong
password or no password is supplied for the user when executing the module.

• The user has an account on the Junos device with SSH keys configured, but the SSH keys are
inaccessible on either the device or the control node.

201

Solution

Ensure that the user executing the modules has a Junos OS login account on all target Junos devices and
that an SSH public/private key pair or text-based password is configured for the account. If SSH keys are
configured, verify that the user can access them. For more information, see "Authenticate Users
Executing Ansible Modules on Junos Devices" on page 41.

Troubleshoot Attribute conn_type Errors

IN THIS SECTION

Problem | 202

Cause | 202

Solution | 202

Problem

Description

During execution of a juniper.device module on a Junos device, the Ansible control node generates the
following error:

AttributeError: 'JuniperJunosModule' object has no attribute 'conn_type'

Cause

Whereas the the Juniper Networks Juniper.junos modules support using a provider dictionary to define
connection and authentication parameters, the juniper.device modules do not support using a provider
dictionary and generate the aforementioned error if one is referenced.

Solution

If you supply connection and authentication parameters in the playbook’s play for the juniper.device
modules, the parameters must be defined in the location appropriate for the Ansible connection. For

202

persistent connections (connection: juniper.device.pyez), define the parameters under the vars: section. For
local connections (connection: local), define the parameters either under the vars: section or as top-level
module arguments. For example:

- name: Get device facts
 hosts: dc1
 connection: juniper.device.pyez
 gather_facts: no

 vars_prompt:
 - name: "DEVICE_PASSWORD"
 prompt: "Device password"
 private: yes

 vars:
 passwd: "{{ DEVICE_PASSWORD }}"

 tasks:
 - name: Get device facts
 juniper.device.facts:
 savedir: "{{ playbook_dir }}"

- name: Get device facts
 hosts: dc1
 connection: local
 gather_facts: no

 vars_prompt:
 - name: "DEVICE_PASSWORD"
 prompt: "Device password"
 private: yes

 tasks:
 - name: Get device facts
 juniper.device.facts:
 passwd: "{{ DEVICE_PASSWORD }}"
 savedir: "{{ playbook_dir }}"

203

RELATED DOCUMENTATION

Set up Ansible for Junos OS Managed Nodes | 27

Authenticate Users Executing Ansible Modules on Junos Devices | 41

Troubleshoot Ansible Connection Errors When Managing Junos Devices | 196

Troubleshoot Ansible Errors When Configuring
Junos Devices

IN THIS SECTION

Troubleshoot Configuration Timeout Errors | 204

Troubleshoot Configuration Lock Errors | 205

Troubleshoot Configuration Load Errors | 207

Troubleshoot Commit Errors | 208

The following sections outline errors that you might encounter when using the config module in the
juniper.device collection or the juniper_junos_config module in the Juniper.junos role to configure Junos
devices. These sections also present potential causes and solutions for each error.

Troubleshoot Configuration Timeout Errors

IN THIS SECTION

Problem | 205

Cause | 205

Solution | 205

204

Problem

Description

The module generates a TimeoutExpiredError error message and fails to update the device configuration.

ncclient.operations.errors.TimeoutExpiredError: ncclient timed out while waiting for an rpc reply

Cause

The default time for a NETCONF RPC to time out is 30 seconds. Large configuration changes might
exceed this value causing the operation to time out before the configuration can be uploaded and
committed.

Solution

To accommodate configuration changes that might require a commit time that is longer than the default
RPC timeout interval, set the module’s timeout argument to an appropriate value and re-run the
playbook.

Troubleshoot Configuration Lock Errors

IN THIS SECTION

Problem | 206

Cause | 206

Solution | 206

205

Problem

Description

The module generates an error message indicating that the configuration database cannot be locked. For
example:

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive mode:
LockError(severity: error, bad_element: None, message: configuration database modified)"}

or

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive mode:
LockError(severity: error, bad_element: lock-configuration, message: permission denied)"}

Cause

A configuration lock error can occur for the following reasons:

• Another user has an exclusive lock on the configuration.

• Another user made changes to the configuration database but has not yet committed the changes.

• The user executing the Ansible module does not have permissions to configure the device.

Solution

The LockError message string usually indicates the root cause of the issue. If another user has an
exclusive lock on the configuration or has modified the configuration, wait until the lock is released or
the changes are committed, and execute the playbook again. If the cause of the issue is that the user
does not have permissions to configure the device, either execute the playbook with a user who has the
necessary permissions, or if appropriate, configure the Junos device to give the current user the
necessary permissions to make the changes.

206

Troubleshoot Configuration Load Errors

IN THIS SECTION

Problem | 207

Cause | 207

Solution | 207

Problem

Description

The module generates a ConfigLoadError error message indicating that the configuration cannot be
modified, because permission is denied.

FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: error, bad_element: scripts, message: error: permission denied)"}

Cause

This error message is generated when the user executing the Ansible module has permission to modify
the configuration but does not have permission to alter the requested section of the configuration.

Solution

To solve this issue, either execute the playbook with a user who has the necessary permissions, or if
appropriate, configure the Junos device to give the current user the necessary permissions to make the
changes.

207

Troubleshoot Commit Errors

IN THIS SECTION

Problem | 208

Cause | 208

Solution | 208

Problem

Description

The module generates a CommitError error message indicating that the commit operation failed due to a
configuration lock error.

FAILED! => {"changed": false, "msg": "Unable to commit configuration: CommitError(edit_path:
None, bad_element: None, message: error: remote lock-configuration failed on re0\n\nnote:
consider using 'commit synchronize force' to\nterminate remote edit sessions and force the
commit)"}

Cause

A configuration lock error can occur for the reasons described in "Troubleshoot Configuration Lock
Errors" on page 205. However, a configuration lock failed message might be generated as part of a
CommitError instead of a LockError in the event that the task requests a commit check and a commit
operation, and the device initiates the commit operation before the commit check operation releases
the configuration lock.

Solution

To enable sufficient time for the device to complete the commit check operation and release the
configuration lock before initiating the commit operation, set the module’s check_commit_wait parameter to
an appropriate value and re-run the playbook. The check_commit_wait value is the number of seconds to
wait between the commit check and commit operations.

208

The following sample task waits five seconds between the commit check and commit operations:

 - name: "Load configuration. Wait 5 seconds between check and commit"
 juniper.device.config:
 load: "merge"
 format: "text"
 src: "build_conf/{{ inventory_hostname }}/junos.conf"
 check_commit_wait: 5
 comment: "updated using Ansible"

RELATED DOCUMENTATION

Use Ansible to Configure Junos Devices | 159

209

	Table of Contents
	About This Guide
	Disclaimer
	Ansible for Junos OS Disclaimer

	Ansible Overview
	Understanding Ansible for Junos OS
	Understanding the Ansible for Junos OS Collections, Roles, and Modules
	Understanding the Ansible Inventory File When Managing Junos Devices
	Create and Execute Ansible Playbooks to Manage Junos Devices
	Create a Playbook
	Execute the Playbook

	Install Ansible for Junos OS
	Ansible for Junos OS Server Requirements
	Prerequisite Software
	Install the juniper.device Collection and the Juniper.junos Role
	Use the Ansible for Junos OS Docker Image

	Set up Ansible for Junos OS Managed Nodes
	Enabling NETCONF on Junos Devices
	Satisfy Requirements for SSHv2 Connections
	Configure Telnet Service on Junos Devices

	Use Ansible to Connect to Junos Devices
	Connect to Junos Devices Using Ansible
	Connection Methods Overview
	Understanding Local and Persistent Ansible Connections
	Connect to a Device Using SSH
	Connect to a Device Using Telnet
	Connect to a Device Using a Serial Console Connection

	Authenticate Users Executing Ansible Modules on Junos Devices
	Authentication Overview
	Understanding the Default Values for Juniper Networks Modules
	How to Define Authentication Parameters in the vars: Section for Local and Persistent Connections
	How to Define the provider Parameter in Juniper.junos Modules
	How to Authenticate the User Using SSH Keys
	Generate and Configure the SSH Keys
	Use SSH Keys in Ansible Playbooks

	How to Authenticate the User Using a Playbook or Command-Line Password Prompt
	How to Authenticate the User Using an Ansible Vault-Encrypted File
	How to Authenticate Through a Console Server

	Use Ansible to Manage Device Operations
	Use Ansible to Retrieve Facts from Junos Devices
	Use Ansible to Execute Commands and RPCs on Junos Devices
	How to Execute Commands with the Juniper Networks Modules
	How to Execute RPCs with the Juniper Networks Modules
	Understanding the Module Response
	How to Specify the Format for the Command or RPC Output
	How to Save the Command or RPC Output to a File

	Use Ansible with Junos PyEZ Tables to Retrieve Operational Information from Junos Devices
	Module Overview
	Understanding Junos PyEZ Tables
	How to Use the Juniper Networks Ansible Modules with Junos PyEZ Tables
	Specify RPC Arguments

	Use Ansible to Halt, Reboot, or Shut Down Junos Devices
	Use Ansible to Halt, Reboot, or Shut Down Devices
	How to Perform a Halt, Reboot, or Shut Down with a Delay or at a Specified Time
	How to Specify the Target Routing Engine
	How to Reboot a VM Host
	Example: Use Ansible to Reboot Junos Devices
	Requirements
	Overview
	Configuration
	Execute the Playbook
	Verification

	Use Ansible to Install Software on Junos Devices
	Use Ansible to Install Software
	How to Specify the Software Image Location
	Installation Process Overview
	How to Specify Timeout Values
	How to Specify Installation Options That Do Not Have an Equivalent Module Argument
	How to Perform a VM Host Upgrade
	How to Perform a Unified ISSU or NSSU
	Example: Use Ansible to Install Software
	Requirements
	Overview
	Configuration
	Execute the Playbook
	Verification

	Use Ansible to Restore a Junos Device to the Factory-Default Configuration Settings
	How to Use Ansible to Restore the Factory-Default Configuration Settings
	Example: Use Ansible to Restore the Factory-Default Configuration Settings
	Requirements
	Overview
	Configuration
	Execute the Playbook
	Verification

	Use Junos Snapshot Administrator in Python (JSNAPy) in Ansible Playbooks
	Module Overview
	Take and Compare Snapshots
	Perform Snapcheck Operations
	Understanding the jsnapy and juniper_junos_jsnapy Module Output
	Enable the jsnapy Callback Plugin
	Example: Use Ansible to Perform a JSNAPy Snapcheck Operation
	Requirements
	Overview
	Configuration
	Execute the Playbook
	Verification
	Troubleshoot Ansible Playbook Errors

	Use Ansible to Manage the Configuration
	Use Ansible to Retrieve or Compare Junos OS Configurations
	How to Specify the Source Database for the Configuration Data
	How to Specify the Scope of the Configuration Data to Return
	How to Specify the Format of the Configuration Data to Return
	How to Retrieve Configuration Data for Third-Party YANG Data Models
	How to Specify Options That Do Not Have an Equivalent Module Argument
	How to Save Configuration Data To a File
	How to Compare the Active Configuration to a Previous Configuration

	Use Ansible to Configure Junos Devices
	Module Overview
	How to Specify the Configuration Mode
	How to Specify the Load Action
	How to Specify the Format of the Configuration Data to Load
	How to Load Configuration Data as Strings
	How to Load Configuration Data from a Local or Remote File
	How to Load Configuration Data Using a Jinja2 Template
	How to Load the Rescue Configuration
	How to Roll Back the Configuration
	How to Commit the Configuration
	How to Ignore Warnings When Configuring Devices
	Example: Use Ansible to Configure Junos Devices
	Requirements
	Overview
	Configuration
	Execute the Playbook
	Verification
	Troubleshoot Playbook Errors

	Troubleshoot Ansible for Junos OS
	Ansible for Junos OS Troubleshooting Summary
	Troubleshoot Junos PyEZ (junos-eznc) Install Errors for Ansible Modules
	Troubleshoot Ansible Collection, Role, and Module Errors When Managing Junos Devices
	Troubleshoot Ansible Connection Errors When Managing Junos Devices
	Troubleshoot Failed or Invalid Connection Errors
	Troubleshoot Unknown Host Errors
	Troubleshoot Refused Connection Errors

	Troubleshoot Ansible Authentication Errors When Managing Junos Devices
	Troubleshoot ConnectAuthError Issues
	Troubleshoot Attribute conn_type Errors

	Troubleshoot Ansible Errors When Configuring Junos Devices
	Troubleshoot Configuration Timeout Errors
	Troubleshoot Configuration Lock Errors
	Troubleshoot Configuration Load Errors
	Troubleshoot Commit Errors

