
Automation

What happens when you combine

JSNAP and Python? You get JSNAPy,

a powerful network verification tool

that can automate your data collec-

tion and verification tasks.

By Premesh Shah

DAY ONE: ENABLING AUTOMATED
 NETWORK VERIFICATIONS
 WITH JSNAPY

http://www.juniper.net

Juniper Networks Books are singularly focused on network productivity and efficiency.
Peruse the complete library at www.juniper.net/books.

-

DAY ONE: ENABLING AUTOMATED NETWORK
 VERIFICATIONS WITH JSNAPY

Every time a network engineer changes the configuration of a running network, there

are always two nagging questions: will it work and will it break any existing services?

Although actually changing the configuration might take only 10-20 minutes, a network

engineer can end up spending more than 2-3 hours running verification checks.

What if there was a tool that could simplify pre- and post checks, including data col-

lection and verification, and then inform the engineer of the details only if something is

wrong, or doesn’t match the pre-defined parameters?

JSNAPy is an evolution of the original JSNAP module: the next-gen module for auto-

mating network verification. Not only has JSNAPy simplified data collection, it has also

reduced the amount of effort needed for verification, and that means your late night cut

overs just got a lot shorter, safer, and completely verified. Take this Day One book into the

lab today and explore JSNAPy.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

 � Understand the importance of data collection and verification.

 � Use JSNAPy to automate data collection and verification.

 � Enhance your existing network verification process.

 � Audit customer networks.

 � Integrate JSNAPy with existing network automation tools.

“As our industry moves towards NetDevOps, network verification and audit are key pillars

of the automation lifecycle. This excellent book introduces you to JSNAPy, a flexible and

powerful tool built on the concepts of its predecessor, JSNAP. Premesh Shah nicely guides

you through the journey of using JSNAPy to automate network verifications even if you’re

not an experienced coder.”

 Diogo Montagner

Resident Engineer, Juniper Networks, JNCIE #1050

ISBN 978-1-941441-45-9

9 781941 441459

5 1 6 0 0

http://www.juniper.net/books
http://www.juniper.net

By Premesh Shah

Day One: Enabling Automated
	 Network Verifications
	 with JSNAPy

Chapter 1: Automating Data Collection and Verification of Networks. . . . 9

Chapter 2: JSNAPy Components. . 17

Chapter 3: JSNAPy Operators . . 37

Chapter 4: Working Examples . . 59

Chapter 5: Working Towards Automation With JSNAPy 73

Appendix: OSPF Test Case. . 79

http://www.juniper.net

	 iv	

© 2017 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo and the Junos
logo, are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their
respective owners. Juniper Networks assumes no
responsibility for any inaccuracies in this document.
Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without
notice.

Published by Juniper Networks Books
Authors: Premesh Shah
Technical Editor: Diogo Montagner
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel
Illustrator: Karen Joice

ISBN: 978-1-941441-45-9 (paperback)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-46-6 (ebook)

Version History: v1, January 2017
 2 3 4 5 6 7 8 9 10

http://www.juniper.net/dayone

About the Author
Premesh Shah is a Network Solutions Architect with over
12 years of experience in designing, building, automat-
ing, and operating networks in both Service Provider and
Enterprise networks. He is JNCIE-SP and JNCIE-ENT.

Author’s Acknowledgments
I would like to first dedicate this book to my family: my
wonderful and beautiful wife Vibhuti, and my lovely son,
Jeremie, for their love, patience, sacrifice, and support
while writing this book. They have been very kind and
supporting, as always, during my journey.

I also would like to thank the following amazing people
and teams for helping me write this Day One book: a
special thank you to Patrick Ames, Priyal Jain, Nitin
Kumar, Diogo Montagner, Timothy Hicks, and Kevin
Chao for reviewing and giving me valuable input.

Finally, I would like to thank my mentors and my peers
who have guided me and stood by me all these years.
Thank you to my manager, Cem Yildirim from Juniper,
who has been supportive of what I wanted to do and
helped me achieve it. And lastly, but most importantly,
thank you to all those special people – my relatives and
my friends, who stood by me during the highs and lows
of life.

http://www.juniper.net/dayone

		 v

Welcome to Day One

This book is part of a growing library of Day One books, produced and
published by Juniper Networks Books.

Day One books were conceived to help you get just the information that
you need on day one. The series covers Junos OS and Juniper Networks
networking essentials with straightforward explanations, step-by-step
instructions, and practical examples that are easy to follow.

The Day One library also includes a slightly more comprehensive and
longer suite of This Week books, whose concepts and test bed examples
are more similar to a weeklong seminar.

�� You can obtain publications from either series in multiple formats:

�� Download a free PDF edition at http://www.juniper.net/dayone.

�� Get the ebook edition for iPhones and iPads from the iTunes/
iBooks Store. Search for Juniper Networks Books.

�� Get the ebook edition for any device that runs the Kindle app
(Android, Kindle, iPad, PC, or Mac) by opening your device’s
Kindle app and going to the Kindle Store. Search for Juniper
Networks Books.

�� Purchase the paper edition at either Vervante Corporation (www.
vervante.com) for between $12-$28, depending on page length.

�� Note that most ebook devices can also view PDF files.

http://www.juniper.net/dayone
www.vervante.com
www.vervante.com

	 vi	

What You Need to Know Before Reading This Book

The author has made few assumptions while writing this book:

�� You are a network engineer focused on operation, migration, or
design and need to verify network data after every network
change.

�� You have basic understanding of programming languages.

�� You have basic understanding of XML and XPath.

�� You are familiar with Junos operational commands and have an
understanding on how to read the output of the commands.

�� You are willing to simplify your day-to-day work with automa-
tion.

What You Will Learn by Reading This Book

After reading this book you will be able to:

�� Understand the importance of data collection and verification

�� Automate data collection and verification

�� Use JSNAPy to automate data collection and verification.

�� Enhance your existing network verification process.

�� Audit customer networks.

�� Integrate JSNAPy in the existing automation tools.

Information Experience

This Day One book is singularly focused on one aspect of networking
technology. There are other resources available at Juniper Networks,
from white papers to webinars to online forums. It’s highly recom-
mended that you peruse the technical documentation to become fully
acquainted with the configuration process of Junos devices, and to get
a better understanding of the configuration process flow. The technical
documentation can be located at www.juniper.net/documentation.

http://www.juniper.net/documentation

		 vii

Preface

Every time a network engineer changes the configuration of a running
network, the first and most important question is – will the change
work? The second most important question is – will the change break
any existing service? The second most important question is – will the
change break any existing service? Although configuring the actual
change might take only 10-20 minutes, an engineer may end up
spending more than two to three hours doing pre- and post-checks to
ensure implemented changes will work.

What if there was a tool that could simplify the effort of pre- and
post-checks, including data collection and verification, and let the
engineer know the details only if something breaks?

In addition to such pre- and post-checks, regular audits are crucial to
maintain any network. Networks need to be audited for everything
from simple issues, such as determining whether basic management
protocol is configured properly, to more complex concerns, such as
whether all the advance protocol services that are configured corre-
spond to a predefined template.

As a Network Solutions Architect with more than twelve years of
industry experience automating, designing, operating, and trouble-
shooting various major networks across the globe, I have worked with
different teams such as operation, migration, design, and testing. Each
of these teams has a common concern: how can they best collect data
and verify that all their existing services are working fine? For any
activity, whether it’s migration or the addition of a new service or
feature, an upgrade cannot be completed without ensuring that
existing customer or service has not been disturbed.

JSNAPy has been a great help to me in facilitating data collection and
verification of networks. As a part of the evolution of JSNAP, JSNAPy
is the next-gen module to automate network verification. Not only has
JSNAPy simplified data collection, it has also reduced the amount of
effort needed for verification. Verification, which can normally take
anywhere from 30 minutes to two hours, has been drastically reduced
to a few minutes.

	 viii	

This Day One book introduces JSNAPy to the reader and shares the
experience I gained while working on JSNAPy. It also covers moving
from JSNAP to JSNAPy. This move can be executed smoothly and the
next chapter begins by showing you how JSNAPy can automate
collection and verification of networks. Become a part of this journey
by using JSNAPy and you will reduce the risk, effort, and time needed
for your own network verifications.

Premesh Shah, January 2017

Collecting network output data (state of the network) before and
after every network activity is an important part of network opera-
tions because of the potential to break any existing services. Best
practice is to collect the output of configuration and log files, as well
as to collect the output of all the commands that provide evidence the
services are running, before the activity starts, and then to perform
the same process again, once the activity is finished.

Once you have captured the data showing the test results and outputs
of key commands, verification can be fairly simple for the technical
expert. The normal way to verify is to analyze the data and check any
abnormal log, events, or differences between the output of the before
and after results. If you encounter any issues, you need to follow your
contingency plan, which is typically a rollback plan resulting in either
full or partial rollback, depending on the activity. If you are reading
this book, then you should be familiar with the flow chart shown in
Figure 1.1.

Why Automate Collection and Verification?

When initiating any change in the network, you need to first decide on
what information to collect, and then ask yourself if you are collect-
ing enough. This process can be repetitive and time consuming, but it
is important. It is considered a best practice to collect network
information and its status in order to verify that everything is working
fine and there are no surprises after any change or update order.

Chapter 1

Automating Data Collection and Verification
of Networks

	 10	 Day One: Enabling Automated Network Verifications with JSNAPy

NOTE 	 Collecting data is a way of grabbing a snapshot of the state of the
network just before the change. Remember you need to collect data
before the activity and after the activity.

Automation simplifies the data collection process, as well as assuring
the network engineer that the data collection is error free while
reducing the time it takes to collect it. JSNAPy is a tool that can help
you automate data collection in addition to verifying the snapshots.

Verification provides evidence that the network activity performs its
intended functions and meets all requirements listed in the Method of
Procedure (MOP), functional, and allocated baselines. Verification is a
key risk-reduction activity in the implementation and integration of a
feature, or a service, and enables you to catch any defects proactively.

Figure 1.1	 Change Management Flow Chart

	 Chapter 1: Automating Data Collection and Verification of Networks	 11

data collection. It can be based on single data collection output or the
comparison of two sets of data collection output. Verification of ser-
vices, although time consuming, gives the assurance or guarantee that
the activity and the objective is successful.

For any activity, whether it's testing a new feature or upgrading the OS,
the actual time it takes to execute that activity is typically 10-20% of the
allotted maintenance window time, whereas verification can take more
than 40-50% of that time.

Most of the planned network activity is done after work hours, hence
the verification is done either late at night or early in the morning, so a
network engineer can be exhausted by the time network verification
begins. There are a large number of lines of output to examine at these
late hours, so automating the verification process can prevent incidents
without waking up management.

There are a few tools in the market that can compare two files and print
out the difference between them, but they are often not intelligent
enough to identify a sequence change or a genuine increment of the data
(like uptime, etc.).

So it is a must to automate the verification. What you need is a tool that
is an open standard, that knows the sequences, and that can understand
what information should be used to compare pre-activity and post-
activity data. That tool is JSNAPy.

Pros and Cons of Automation

Automation, a word used so often today, is important, but it is not
simple to automate everything because automation comes with cost and
effort. Let’s quickly review the pros and cons.

The pros of automation include:

�� Reducing the time and effort needed during activity.

�� Reducing the need to have an expert conducting the testing. With
automation an expert need only be involved if the test fails and
extra validation is needed.

�� Increasing the accuracy and reducing missed errors.

�� Increasing efficiency by running more tests in a short time frame.

�� Proactively identifying the issues.

�� Increasing cost savings and product quality.

	 12	 Day One: Enabling Automated Network Verifications with JSNAPy

The cons of automation include:

�� It’s time consuming and requires an up-front investment.

�� It requires a different skill set than traditional network testing.

�� Additional testing is needed to verify if the automation is working
as expected.

�� Developers should have visibility of each and every use case.

�� It’s a continuous process.

Four Target Areas to Automate

While automation has its challenges, the benefits far outweigh the
initial investment, in part because the scale of most verification tasks
requires automation. To enhance the success of your automation
project, target the following to get the most benefits:

�� Automate the highly repetitive tasks first.

�� Automate the things that need accuracy.

�� Automate time-consuming tasks to reduce the activity time.

�� Automate the task that needs human expertise.

BEST PRACTICE	 Take the time to study and detail what you should automate in your
network, and why, before attempting to employ automation.

JSNAP and JSNAPy

Let’s look at a tool that can help you automate the most important and
repetitive complex data collection and verification.

JSNAP, and its next-gen version, JSNAPy, are applications that collect
before and after snapshots, perform analysis, and report failures; they
snapshot the system before and after any changes, compare the results,
and quickly identify impactful service issues.

JSNAP uses SLAX (originally developed by Juniper) to code and
develop the script that collects the data and then verifies that data based
on configured criteria. JSNAP works well with almost all Juniper
devices.

The next-gen version, JSNAPy is based on open standard Python 2.7
and PyEZ to achieve the same goal as JSNAP with many additional
enhancements. This Day One book focuses on JSNAPy.

	 Chapter 1: Automating Data Collection and Verification of Networks	 13

MORE?	 For information on JSNAP, please refer to an excellent book, Day One:
Using JSNAP to Automate Network Verifications, by Diogo Montag-
ner, available here: http://www.juniper.net/us/en/training/jnbooks/
day-one/automation-series/using-jsnap-automate-network-verifica-
tions/.

Why JSNAPy?

JSNAP was written with SLAX, whereas JSNAPy uses Python, which
is more user-friendly than SLAX and provides more flexibility. Impor-
tant reasons that JSNAPy uses Python are its openness and its ability to
customize and integrate with any existing automation. For example, if
you have an existing operations support system (OSS) already imple-
mented, JSNAPy can easily be integrated as a module to your existing
implementations.

By the way, the name JSNAPy means that it’s Junos SNAPshot admin-
istrator with Python. Hence, JSNAP plus Python = JSNAPy.

JSNAPy will help you:

�� Collect data to check and verify it.

�� Automate the verification of data intelligently and quickly.

�� Simplify the whole process of data collection and verification.

�� Customize and integrate network verification into your existing
network systems.

Move From JSNAP to JSNAPy (Tool)

Existing users of JSNAP can stay with JSNAP if they wish, but I
suggest moving to JSNAPy.

To make your life easier during this transition, Juniper has provided an
built-in tool that converts the original JSNAP test file format into the
new JSNAPy test file format, which is from SLAX to YAML.

The tool is called jsnap2py, it is shipped with JSNAPy, and jsnap2py
will convert the slax configuration file test_interface.conf into yaml file
test_interface.yml.

Let’s begin:

jsnap2py -i test_interface.conf

NOTE	 If you want to assign a different output file name, then use -o option.

jsnap2py -i test_interface.conf -o test_interface.yml 

http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/using-jsnap-automate-network-verifications/
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/using-jsnap-automate-network-verifications/
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/using-jsnap-automate-network-verifications/

	 14	 Day One: Enabling Automated Network Verifications with JSNAPy

Here’s what to add on the CLI:

premesh:jsnapy premesh$ jsnap2py
usage: jsnap2py [-h] [-i INPUT] [-o OUTPUT]

This converts JSNAP test to JSNAPy YAML file:

optional arguments:
  -h, --help  show this help message and exit
  -i INPUT, --input INPUT
  JSNAP test file
  -o OUTPUT, --output OUTPUT
  jsnapy test file

And here is the configuration file:

premesh:samples premesh$ more trial.conf
do {
 show_chassis_re;
 show_chassis_fpc;
}
show_chassis_re {
 command show chassis routing-engine;
 iterate route-engine {
 id slot;
 no-diff mastership-state {
 info "Checking Routing Engine mastership state.";
 err "The status of Routing Engine %s has changed from %s to %s", $ID.1,$PRE/mastership-
state, $POST/mastership-state;
 }
 }
}
show_chassis_fpc {
 command show chassis fpc;
 iterate fpc {
 id slot;
 no-diff state {
 info "Checking the FPC state.";
 err "The state of FPC %s has changed from %s to %s.", $ID.1, $PRE/state,$POST/state;
 }
 }
}

The command with input and output file:

premesh:samples premesh$ jsnap2py -i trial.conf -o trial.yml
premesh:samples premesh$

Confirming if the file is created or not:

premesh:samples premesh$ ls trial*
trial.conf  trial.yml

	 Chapter 1: Automating Data Collection and Verification of Networks	 15

And the new JSNAPy YAML file:

premesh:samples premesh$ more trial.yml
show_chassis_fpc:
- command: show chassis fpc
- iterate:
  id: slot
  tests:
  - err: The state of FPC {{id_1}} has changed from {{pre["/state"]}} to {{post["/
state"]}}.
  info: Checking the FPC state.
  no-diff: state
  xpath: fpc
show_chassis_re:
- command: show chassis routing-engine
- iterate:
  id: slot
  tests:
  - err: The status of Routing Engine {{id_1}} has changed from {{pre["/mastership-
state"]}}
  to {{post["/mastership-state"]}}
  info: Checking Routing Engine mastership state.
  no-diff: mastership-state
  xpath: route-engine
tests_include:
- show_chassis_re
- show_chassis_fpc

NOTE	 As you can see, the sequence in which the test file is converted is not as
we define it in the JSNAPy YAML file, the tests_include is defined at
the end. But don’t worry, the YAML test file will work as expected as
YAML will take care of sequencing.

MORE	 Want to know more? Refer to: https://github.com/Juniper/JSNAPy/
wiki/7.-jsnap2py.

Let’s dive deeper into JSNAPy and get to know all the components and
how to put them together. Get into your lab and follow along. It’s day
one and you have a job to do, and by Chapter 4 you’ll be able to collect
and verify network events using some simple JSNAPy examples.

https://github.com/Juniper/jsnapy/wiki/7.-jsnap2py
https://github.com/Juniper/jsnapy/wiki/7.-jsnap2py

	 16	 Day One: Enabling Automated Network Verifications with JSNAPy

This chapter discusses the different components used by JSNAPy. It is
divided into four main sections:

�� How JSNAPy communicates to your device

�� File structure

�� JSNAPy core operation

�� What’s new in JSNAPy

How JSNAPy Communicates to Your Device

JSNAPy communicates with devices to take a snapshot of the required
configuration or operational commands by using PyEZ, which uses
SSH to establish the connection. It uses NETCONF to retrieve the
configuration data information as shown in Figure 2.1.

Figure 2.1	 How JSNAPy Communicates

Chapter 2

JSNAPy Components

	 18	 Day One: Enabling Automated Network Verifications with JSNAPy

JSNAPy makes use of NETCONF XML Protocol (RFC6241) and
Secure TCP/IP connections via SSHv2 (RFC6242). See https://tools.
ietf.org/html/rfc6242 for more information.

NETCONF

The NETCONF protocol is defined in IETF RFC 6241 (https://tools.
ietf.org/html/rfc6241) as a mechanism by which a network device can
be managed, configuration data retrieved, and new configuration data
uploaded. The NETCONF protocol allows the device to expose a full,
formal application programming interface (API). Applications can use
this straightforward API to send and receive full and partial configura-
tion data sets.

The NETCONF protocol uses a remote procedure call (RPC) para-
digm. A client encodes an RPC in XML and sends it to a server using a
secure, connection-oriented session. The server responds with a reply
encoded in XML.

Extensible Markup Language (XML)

XML is a markup language that defines a set of rules for encoding
documents in a format that is both human- and machine-readable.

The design goals of XML emphasize simplicity, generality, and usabil-
ity across the Internet. It is a textual data format widely used for the
representation of arbitrary data structures. All major routing vendors
support XML to configure, retrieve, or modify code on the router.

MORE?	 Visit https://www.w3.org/XML for more information about XML.

YAML

YAML is a human-readable data serialization language that takes
concepts from programming languages such as C, Perl, Python, and
Ruby. See RFC0822 (MAIL), RFC1866 (HTML), RFC2045 (MIME),
RFC2396 (URI), XML, SAX, SOAP, and JSON.

YAML is an acronym for YAML Ain’t Markup Language. Early in its
development, YAML was said to mean Yet Another Markup Language
but it was then reinterpreted to distinguish its purpose as data-orient-
ed, rather than document markup.

MORE?	 Visit http://yaml.org/ for more information about YAML.

https://tools.ietf.org/html/rfc6242
https://tools.ietf.org/html/rfc6242
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241
https://en.wikipedia.org/wiki/Data_structure
https://www.w3.org/XML

	 Chapter 2: JSNAPy Components	 19

Where Do You Get JSNAPy?

Installing JSNAPy with pip

Using pip is the recommended way to install JSNAPy. If you already
have pip available, you can simply execute:

pip install jsnapy

Installing JSNAPy from source

This approach works regardless of the operating system (JSNAPy
works well with Windows and UNIX-like systems). You can get the
source code either by downloading a source and extracting it, or by
cloning the GitHub repository at http://github.com/Juniper/jsnapy.

Device Readiness to Support JSNAPy

Your Juniper device should be configured as follows:

�� Support SSH

�� Support NETCONF over SSH

�� Port 22 and 830 should be allowed

NOTE	 You can use port to specify your own port in devices.yml.

Figures 2.2 and 2.3 show a sample configuration from a Juniper router.

Figure 2.2	 Configuring SSH and NETCONF over SSH

http://pip-installer.org/
https://github.com/robotframework/robotframework
http://github.com/Juniper/jsnapy
pames
Typewritten Text

pames
Typewritten Text

	 20	 Day One: Enabling Automated Network Verifications with JSNAPy

Figure 2.3	 Allowing Ports 830 and 22

Application Structure

Let’s quickly look at the different files and folders used for JSNAPy.
The default location for JSNAPy is: /etc/jsnapy/.

NOTE	 In a forthcoming version of JSNAPy, you will have a modifier that can
allow you to override this information in runtime mode – it is the
-folder option.

The location /etc/jsnapy contains the following folders:

�� samples: Folder containing sample examples

�� snapshots: Folder containing all snapshots

�� testfiles: Folder containing all test cases (.yml)

And /etc/jsnapy contains the following files:

�� jsnapy.cfg: It contains default path for snapshot, test file, and
config file.

�� logging.yml: It stores the default logging capability; can be
modified.

The /etc/jsnapy/snapshots contains the following file extensions.

�� *.xml: These are the XML replies returned by the devices upon
collecting snapshots using snap and snapcheck operations.

And the /etc/jsnapy/testfiles contains the following file extensions.

	 Chapter 2: JSNAPy Components	 21

�� *.yml: yml is the language used to define the requirements. There
can be two types of file, a configuration file or a test file. See the
distinctions in the table here:

Configuration file Test file

Define hostname (can be single or
multiple).

Define test to be included.

Pointer to the test files. Pointer to the test module within the file.

Inform if database or mailing service
is required.

Provide commands, iterate, and test
scenario.

Can be directly called inside module. Define the info and error messages.

�� *.py: This is the python script that can call a JSNAPy config file
as a module, so that JSNAPy can be integrated to any existing
automation system. We will learn about this in the upcoming
chapter, “Working With JSNAPy Towards Automation.”

NOTE	 Details about the content of these files will be explained later in this
chapter.

 JSNAPy Core Operation

JSNAPy uses a group of YAML scripts to achieve below command line
operation:

�� snap: As the name suggests, this command takes the snapshot of
a given command or RPC during the time the script is executed.
This is the operator used to collect snapshots before, during, or
after the activity.

�� check: This command compares two snapshots (this book uses
pre- and post-activity throughout) based on given test cases. This
command needs two copies of the snapshot and then compares
the two based on criteria provided (there are a rich group of
operators that can be used to compare).

�� snapcheck: This is the combination of snap and check, taking the
best of both worlds and doing it on runtime. This command is
very useful to check some predefined conditions on runtime or in
offline mode. This command takes snapshots of given commands
or RPCs and then compares them against predefined criteria
mentioned in test cases.

	 22	 Day One: Enabling Automated Network Verifications with JSNAPy

NOTE	 Typically, snapcheck is used for network audits where you want to
check if the state of the device complies with a set of golden rules (built
on top of a golden config). A golden config is a template configuration
version used in compliance management as an ideal configuration
against which similar devices can be compared. Any differences found
are recorded as compliance evaluation failures by default.

�� diff: As the name suggests, this is the Diff tool, it is very similar
to the UNIX command diff. It basically compares two snapshots
word by word without any test operator. The best part is that it
can compare snapshots in both XML or text format.

Deep Dive With JSNAPy Configuration

Let’s take a deep dive inside the JSNAPy configuration to understand
what’s needed for a successful execution of JSNAPy.

A configuration file is a combination of different blocks. Let’s discuss
each block in detail, and later, when you look at the example, you will
see how the different blocks work together.

Hosts Code Block

The hosts code block lists the device credentials for where the test will
be executed. You can either define the device (in case there is only one
device) or include a .yml file, which has multiple devices segregated as
group.

Here is an example of a hosts code block with a single device:

hosts:
 - device: 10.10.1.2
 username : demo
 passwd: demo123

And here is an example of a hosts code block, which includes a .yml file
called devices with multiple device credentials:

hosts:
 - include: devices.yml
 group: MX

Tests Code Block

The tests code block lists the names of each .yml file that has tests that
will be executed in the snapshot:

tests:
 - test_is_equal.yml
 - chassis_hardware.yml
 - pic_status.yml

	 Chapter 2: JSNAPy Components	 23

Database Code Block

Database code blocks have the connectivity details of the database that
is used to store the data and compare the info. By default, a text file is
created and stored to compare the info:

can use sqlite to store data and compare them
sqlite:
 - store_in_sqlite: True
 check_from_sqlite: True
 database_name: jbb.db
 compare: 1,0

Mail Code Block

The mail code blocks list the .yml file that has all the credentials to send
the mail of JSNAPy results:

can send mail by specifying mail
mail: send_mail.yml

Tests_include Code Block

The tests_include code block lists the name of the test that will be
executed in the snapshot:

tests_include:
 - check_core

Check_Core - Test Definition Code Block

The check_core code block is the actual configuration where you are
going to define the tests and their criteria of pass or fail. It is the
combination of many components, so let’s review in order to under-
stand each one:

�� The section name: Unique, user-defined string that should
describe the check being performed.

�� One command statement: Specifies the Junos OS operational
mode command that is executed to collect the data.

�� Section declarations: One or more items or iterate content section
declarations that define the test cases used to evaluate the data.

�� XPath expression: XPath is a syntax for defining parts of an
XML document that then uses path expressions to navigate in
XML documents. The output collected by a JSNAPy snap is an
XML document and XPath defines the scope of the content that
will be queried and searched.

	 24	 Day One: Enabling Automated Network Verifications with JSNAPy

�� Test operator: Each test case is defined by a test operator fol-
lowed by any required parameters. You will learn more about
test operator later on in this chapter.

�� The err statement: Defines one or more error statements, which
are generated when the content fails the specific test case.

�� The info statement: Provides information about the test case and
expected operating conditions within the test-case code block.

Here is an example of an actual configuration with notes in bold face:

check_core:   <<<< Section name
  - command: show system core-dumps routing-engine both <<< command statement
  - iterate:   <<<< section declarations
      xpath: '//multi-routing-engine-results/multi-routing-engine-item/directory-
list'  <<<< XPath expression
      tests:
          - not-exists: ./directory/file-information/file-name  <<<< Test operator
            err: "Test  Failed!!core file exist <{{post['./directory/file-information/
file-name']}}> on {{post['./../re-name']}}"  <<<<  err
            info: "Test Succeeded!!!There is no core file"  <<< info

Logging Code Block

Logging is configured under the logging.yml file. This file is used to
define log file, location, severity (level), and format.

Level can be INFO, ERROR, CRITICAL, or DEBUG. The default
logging level is INFO, which is heavily used in this book, but you may
notice in some places the author has changed the logging level to
DEBUG.

TIP	 If you just want to print the err message, INFO is enough, but if you
need the info message also you’ll want to change the logging level to
DEBUG.

There are a few additional rules for a JSNAPy configuration:

�� Indent is very important in YAML file

�� Use spaces instead of tabs

�� Use hash (#) to insert comments into the configuration file

These are the different code blocks of a JSNAPy configuration. Now
let’s use the code blocks to learn about the different files that are used
to execute JSNAPy.

	 Chapter 2: JSNAPy Components	 25

Writing the Config File

The config file is the combination of the device details and the test file.
The config file supports the following code blocks:

�� hosts: Use a separate .yml file with all the device credentials and
import it in the config file with the keyword included.

�� tests: Specify test files that you want to run where you have
written all the conditions. You can also specify the test conditions
in a config file but it’s not a good practice.

�� sqlite: This is a free database that can be used to store the
snapshots. Use this key if you want to compare and store snap-
shots in a database. You can use any other database like SQL, or
Oracle, just follow the same step as you do in Python for data-
base connectivity.

�� mail: This is an optional and cool feature. This option will send
an email to the predefined user upon the completion of a JSNAPy
script with the details of which tests have been executed and the
results.

Let’s take a look at some real examples.

For connecting with a single device:

hosts:
  - device: 10.10.1.24 
    username : demo 
    passwd: demo
tests: 
  - test_no_diff.yml 
  - test_bgp_neighbor.yml

# (optional) use only when you want to store and compare 
# snapshots from database  
sqlite:  
  - store_in_sqlite: True 
     check_from_sqlite: True     
    database_name: jbb.db    
    compare: 1,0
# (optional) use when you want to send mail about test results 
mail: send_mail.yml

For connecting with multiple devices:

# for multiple devices with database
hosts:  
   - include: devices.yml    
     group: MX
tests:  
   - test_is_equal.yml  

	 26	 Day One: Enabling Automated Network Verifications with JSNAPy

   - test_is_in.yml
# (optional) use only when you want to store and compare snapshots 
# from database
sqlite:  
   - store_in_sqlite: yes    
     check_from_sqlite: yes    
     database_name: jbb.db
# (optional) use when you want to send mail about test results
mail: send_mail.yml

And, devices.yml:

MX:                        
- 10.20.1.20:      
     username: root      
     passwd: root123
- 10.21.13.14:
     username: root      
     passwd: root123  
- 10.20.6.26:      
     username: jsnapy  
     passwd: jsnapy123
EX: 
  - 10.2.15.210: 
     username: root      
     passwd: root123  
QFX:                       
 - 10.29.1.24:      
      username: abc      
      passwd: pqr  
- 10.29.6.1:  
      username: abc      
      passwd: pqr123

Writing the Test File

The purpose of writing a test file is to specify commands or RPCs of
whose snapshot is to be taken, which nodes you want to test, and how
to test them. Test files use the following code blocks:

�� tests_include: this is an optional argument to be used if you
want to include only explicit test cases. If you do not include this
tag, then by default JSNAPy will run all test cases.

�� The check-test definition code block: This block defines the test
criteria and execution plan. (Not shown in examples.)

�� command/rpc: You can give either a command or rpc to perform the
testing, but most of the scripts will be a combination of com-
mand and RPC.

	 Chapter 2: JSNAPy Components	 27

�� format: You can specify output [text,xml] but mostly you’ll format
as XML, which is also the default, but in the case of diff, you can
also use text. Note that for comparing text output, only the diff
option is supported.

�� args: these are optional configuration items that are exclusively
used with RPC only.

�� filter_xml: can provide filtered output

�� Other arguments such as the following examples:

1.   - rpc: get-config            
     - args:                
             filter_xml: configuration/system/login 
2.   - rpc: get-interface-information
         format: text 
     - args: 
           interface-name: em0
           media: True 
           detail: True 

When there is big chunk of data and only a small portion of it is
required to identify the issue, use of args eases the work. For example,
there can be thousands of interfaces configured in the router but we just
need to understand if the management interface is working fine.

NOTE	 Confused on which to use, the Junos OS command or RPC? I person-
ally think it is better to use the Junos command because it will be easily
readable by others, especially those who are not familiar with Junos
RPCs.

�� item/iterate: You can have multiple iterates or items under one
command or rpc and each command can use either the iterate or the
item, the difference being that item will execute the test only once
whereas iterate will keep executing the test until all the condi-
tions have been matched. Note that you use item only if you want
to use the first node in xpath alone, and you use iterate if want to
keep iterating for all nodes in XPath.

�� tests: Now this is the place or section that specifies test cases. A
test file can have multiple test cases inside iterate and item, and a
test file can have multiple iterates or items. As described earlier, in
code blocks there are just three golden blocks to define inside test,
which are:

           test-operator <condition>      ---CONDITION
           info <CUSTOMIZED MESSAGE>      --- output if test pass
           err  < CUSTOMIZED MESSAGE >    -- output if test fails.
Example1:    
           tests:      

	 28	 Day One: Enabling Automated Network Verifications with JSNAPy

                   - is-equal: //minimum-time, 60        
                     info: "Test Succeeded!!, minimum-time now is equal to <{{post['//
minimum-time']}}>"
 err: "Test Failed!!!, minimum-time is not equal to 60, it is
<{{post['//minimum- time']}}>"

�� Variable definition: Use to compare and print; the value from the
output, pre and post, can be used in conjunction with the XPath
value. This is very useful when you want to print both values, the
before and the after. Note that JSNAPy uses pre for first snapshot
and post for second snapshot irrespective of the name given by
the user.

Let’s stop here and review some real examples in order to test your
comprehension so far.

Sample test file1 test_is_equal.yml

The following test checks to confirm that the admin-status of interface
ge-1/2/1 is equal to up. If the admin-status is up then the test has
passed and it will print an info message. If the admin-status is not
equal to up then it will print an err message:

test_interfaces_terse:   
   - command: show interfaces terse ge*    
   - item:       
       id: ./name       
       xpath: //physical-interface[normalize-space(name) = "ge-1/2/1"]
       tests:         
          - is-equal: admin-status, up           
            info: "Test Succeeded !! admin-status is equal to:
                   <{{post['admin-status']}}> with oper-status
                   <{{post['oper-status']}}>"           
            err: "Test Failed !! admin-status is not equal to up, it
                  is <{{post['admin-status']}}> with oper-status 
                  <{{post['oper-status']}}>"

Sample test file2

Here, multiple iterators are used inside one command and multiple
tests inside one iterator. The example checks various fields of output
for the show bgp neighbor command and the RPC get-bgp-neighbor-
information:

tests_include:   
    - test_command_bgp   
    - test_rpc_bgp  

test_command_bgp:   
    - command: show bgp neighbor   

	 Chapter 2: JSNAPy Components	 29

    - iterate:       
          xpath: '//bgp-information/bgp-peer/bgp-option-information'
          tests:         
             - is-gt: holdtime, 10 
               err: "Test Failed!! holdtime is not greater than 10, it
                     is: <{{post['holdtime']}}>"           
               info: "Test succeeded!! holdtime is greater than 10, it
                      is: <{{post['holdtime']}}>"          
             - is-lt: preference, 200 
               err: "Test Failed!! preference is not less than 10,
                     <{{post['preference']}}>"           
               info: "Test succeeded!! preference is less than 10,
                      <{{post['preference']}}>"  
test_rpc_bgp:   
    - rpc: get-bgp-neighbor-information   
    - iterate:       
          xpath: '//bgp-information/bgp-peer'       
          tests:         
             - not-equal: last-state,Idle 
               err: "Test Failed!! last state is <{{post['last-
                     state']}}>"           
               info: "Test succeeded!! last state is not equal to
                      idle, it is: <{{post['last-state']}}>"  
             - all-same: flap-count           
               err: "Test Failed!!! flap count are not all same!!, it
                     is <{{post['flap-count']}}> "           
               info: "Test Succeeded!! flap count are all same, it is
                      now <{{post['flap-count']}}>!!!"          
             - is-equal: flap-count, 0           
               err: "Test Failed!!! flap count is not equal to 0, it
                     is: <{{post['flap-count']}}> "           
               info: "Test Succeeded!! flap count is equal to
                      <{{post['flap-count']}}> !!"

How to Use JSNAPy

So far you have learned a lot about what JSNAPy can do, why you
need to use it, and the resulting benefits. Now it’s time to learn how to
actually use it. The rest of this chapter will take you on a practical
tutorial covering:

�� Taking snapshots with JSNAPy

�� Checking current configuration using JSNAPy

�� Comparing two snapshots

�� Writing config files

�� Writing test files

	 30	 Day One: Enabling Automated Network Verifications with JSNAPy

Taking Snapshots Using JSNAPy:

As explained previously, JSNAPy snapshots are a collection of outputs
from the router that represent its state at a specific point in time. The
following steps show you how to write a JSNAPy test file to collect
snapshots. You will learn how to write a config (#1) file and test(#2)
file:

1. Write the config file containing details about the device’s login
credentials and the test files to be included. (You already learned
about these details of config code blocks in this chapter’s Deep Dive
section :

config_snap.yml

hosts:
  - device: 10.209.1.2
    username : demo
    passwd: demo123
tests:
  - test_is_equal.yml

2. Write the test file containing the details about the commands, RPCs
and test operators to be used. (Again refer to this chapter’s Deep Dive
section):

test_is_equal.yml
test_interfaces_terse:
  - command: show interfaces terse xe* 
  - item:
      id: ./name
      xpath: //physical-interface[normalize-space(name) = "xe-1/2/3"]
      tests:
        - is-equal: admin-status, up
          info:  "Test Succeeded !! admin-status is equal to <{{post['admin-
status']}}> with oper-status
                      <{{pre['oper-status']}}>"
          err:  "Test Failed !! admin-status is not equal to down, it is <{{post['admin-
status']}}> with
                      oper-status <{{pre['oper-status']}}>"

3. Take a snapshot using JSNAPy:

premesh# jsnapy --snap pre -f config_snap.yml 
Connecting to device 10.209.1.2 ................
Taking snapshot for show interfaces terse lo* ................
sh-3.2# 

You have learned about snap in this chapter’s JSNAPy Core Operation
section. Note that pre is the file name that will be used to store the
XML output of the command, whereas -f is used to define the configu-
ration file called config_snap.yml. Here are the different options that
can be used with snap:

	 Chapter 2: JSNAPy Components	 31

premesh:snapshots premesh$ jsnapy --snap
positional arguments:
  pre_snapfile          pre snapshot filename
  post_snapfile         post snapshot filename

optional arguments:
 -h, --help show this help message and exit
 --snap take the snapshot for commands specified in test file
 --check compare pre and post snapshots based on test operators specified in
test file
 --snapcheck           check current snapshot based on test file
  --diff                display the difference between two snapshots
  -V, --version         displays version
  -f FILE, --file FILE  config file to take snapshot
  -t HOSTNAME, --hostname HOSTNAME
                        hostname
  -p PASSWD, --passwd PASSWD
                        password to login
  -l LOGIN, --login LOGIN
                        username to login
  -P PORT, --port PORT  port no to connect to device
  -v, --verbosity       Set verbosity
                        -v: Debug level messages
                        -vv: Info level messages
                        -vvv: Warning level messages
                        -vvvv: Error level messages
                        -vvvvv: Critical level messages
premesh:snapshots premesh$ 

Now the question is, where are these snapshot output files stored?

The answer is that all snapshots are stored in the /etc/jsnapy/snapshots
folder by default. This is configurable in version 1.1 where you can
override /etc/jsnapy/jsnapy.cfg.

Snapshots file names are formed by using following values: file_name =
<device_name>_<snap_tag>_<command/RPC>.<xml/text>:

premesh# cd /etc/jsnapy/snapshots/
premesh# ls 
 choc-mx480-b_post_show_interfaces_terse_lo_.xml

Here is an example of a snapshot, in an XML version of the CLI
output, collected from the router using the JSNAPy test file:

premesh# cat 10.10.1.2_pre_show_interfaces_terse_lo_.xml 
<interface-information style="terse">
<physical-interface>
<name>
lo0
</name>
<admin-status>
up
</admin-status>

	 32	 Day One: Enabling Automated Network Verifications with JSNAPy

<oper-status>
up
</oper-status>
<logical-interface>
<name>
lo0.0
</name>
<admin-status>
up
</admin-status>
<oper-status>
up
</oper-status>
<filter-information>
</filter-information>
<address-family>
<address-family-name>
inet
</address-family-name>
<interface-address>
<ifa-local>
127.0.0.1
</ifa-local>
<ifa-destination emit="emit">
0/0
</ifa-destination>
</interface-address>
</address-family>
</logical-interface>
</physical-interface>
</interface-information> 

Checking the Current Configuration Using JSNAPy

Let’s learn how to use JSNAPy to check the current configuration,
something that can be used for auditing purposes or simply to validate
the baseline. Let’s use snapcheck, the combination of snap plus check.
Snapcheck uses the predefined parameter to verify the collected output.

1. Write the configuration file containing details about the device’s
login credentials and the test files to be included:

config_snapcheck.yml

hosts:
  - device: 10.10.1.2
    username : demo
    passwd: demo123
tests:
  - test_is_equal.yml

2. Write the test file containing the details about the commands, RPCs
and test operators to be used:

	 Chapter 2: JSNAPy Components	 33

test_is_equal.yml
test_interfaces_terse:
  - command: show interfaces terse lo* 
  - item:
      id: ./name
      xpath: //physical-interface[normalize-space(name) = "lo0"]
      tests:
        - is-equal: admin-status, up
          info:  "Test Succeeded !! admin-status is equal to <{{post['admin-
status']}}> with oper-status
                      <{{pre['oper-status']}}>"
          err:  "Test Failed !! admin-status is not equal to down, it is <{{post['admin-
status']}}> with
                      oper-status <{{pre['oper-status']}}>"

NOTE 	 Normalize-space is used to collapse whitespace in a string name.

3. Now, check the current configuration using snapcheck:

premesh# jsnapy --snapcheck pre -f config_snapcheck.yml 
Connecting to device 10.10.16.204 .....................
Taking snapshot for show interfaces terse lo* ..........
******Performing test on Device: 10.10.16.204**********
Tests Included: test_interfaces_terse 
********Command is show interfaces terse lo*************
--------Performing is-equal Test Operation--------------
Test Succeeded !! admin_status is equal to <up> with oper_status <up>
Final result of is-equal: PASSED 
------------------- Final Result!! ---------------------
Total No of tests passed: 1
Total No of tests failed: 0 
Overall Tests passed!!! 

Compare Two Snapshots Using Check (Test Operator is Defined)

Now let’s compare the specific values from the output (snapshot) taken
during two different time periods, using check to compare the pre-
defined criteria with the value of the pre- and post-files.

1. Write the configuration file containing details about the device’s
login credentials and the test files that are to be included:

config_check.yml

hosts:
  - device: 10.209.1.2
    username : demo
    passwd: demo123
tests:
  - test_no_diff.yml

2. Write the test file containing the details about the commands, RPCs
and test operators to be used:

	 34	 Day One: Enabling Automated Network Verifications with JSNAPy

test_no_diff.yml
test_command_version:
  - command: show interfaces terse
  - iterate:
      xpath: physical-interface
      id: './name'
      tests:
        - no-diff: oper-status       # element in which test is performed
          err: "Test Failed!! oper-status  got changed, before it was <{{pre['oper-
status']}}>, now it is <{{post['oper-
status']}}> with name <{{id_0}}> and admin status <{{post['admin-status']}}>"
          info: "Test succeeded!! oper-
status is same with value, before it is <{{pre['oper-status']}}> now it is <{{post['oper-
status']}}> with admin status <{{post['admin-status']}}> "

3. Take the pre-snapshot using the --snap command:

premesh# jsnapy --snap pre -f config_check.yml 
Connecting to device 10.209.1.2 ................
Taking snapshot for show interfaces terse lo* ................
premesh# 

4. Take the post snapshot using the --snap command:

premesh# jsnapy --snap post -f config_check.yml 
Connecting to device 10.209.1.2 ................
Taking snapshot for show interfaces terse lo* ................
premesh# 

5. Check pre- and post-snapshots using the --check command:

premesh# jsnapy --check pre post -f config_check.yml 
**********Performing test on Device: 10.209.16.206******************
Tests Included: test_command_version 
***********Command is show interfaces terse*************************
----------------------Performing no-diff Test Operation----------------------
Test Failed!! oper_status got changed, before it was <['up']>, now it is <['down']> with
name <['demux0']> and admin status <up>
Final result of no-diff: FAILED
---------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!! 

	 Chapter 2: JSNAPy Components	 35

Compare Two Snapshots Using Diff (Test Operators Not Required)

In this example, JSNAPy uses the UNIX diff operator to compare two
snapshots, so it doesn’t need any test operators.

1. Write the configuration file containing the details about the device’s
logging credentials and the test files to be included:

Config_diff.yml
hosts:
  - device: 10.209.1.2
    username : demo
    passwd: demo123
tests:
  - test_no_diff.yml

2. Write the test file containing the details about the command /RPC
and the test operators to be used:

test_no_diff.yml
test_command_version:
  - command: show interfaces terse

3. Take the pre- snapshot using the --snap command:

premesh# jsnapy --snap pre -f config_single_snapcheck.yml 
Connecting to device 10.209.1.2 ................
Taking snapshot for show interfaces terse lo* ................
premesh# 

4. Take the post-snapshot using the --snap command:

premesh# jsnapy --snap post  -f config_single_snapcheck.yml 
Connecting to device 10.209.1.2 ................
Taking snapshot for show interfaces terse lo* ................
premesh# 

5. Compare the two snapshots word by word as shown in Figure 2.4,
without any test operator.

	 36	 Day One: Enabling Automated Network Verifications with JSNAPy

Figure 2.4	 Comparing Two Snapshots

CAUTION	 When using XML output, only the XML element contents are com-
pared in a string fashion.

Simple, yes? The selection of the words is so user friendly that a
non-developer can pick it up quite easily. Let’s move on and spend a
little time studying the operators.

JSNAPy has a wide variety of operators, including but not limited to
numeric and string. Throughout this chapter you will learn about
operators starting with the basic description of all operators and then
work through examples and use cases for each of them.

Supported Test Operators

So far you have learned about the test file and you have seen some of
the operators used, but now it’s time to learn what operators can be
used inside the test file. Please review the collection of lists detailed in
Tables 3.1 through 3.4.

NOTE	 For comparing current configuration against some predefined criteria
(only one snapshot is required):

Table 3.1	 Execute Tests Over Elements with Numeric or String Values

OPERATOR DESCRIPTION

all-same Checks if all content values for the specified element are the same. It can also
be used to compare all content values against another specified elements.

is-equal Checks if the value (integer or string) of the specified element matches a given
value.

not-equal Checks if the value (integer or string) of the specified element does not match a
given value.

Chapter 3

JSNAPy Operators

	 38	 Day One: Enabling Automated Network Verifications with JSNAPy

exists Verifies the existence of an XML element in the snapshot.

not-exists Verifies XML element should not be present in snapshot.

contains Determines if an XML element string value contains the provided test-string
value.

Table 3.2	 Execute Tests Over Elements with Numeric Values

OPERATOR DESCRIPTION

is-gt Checks if the value of a specified element is greater than a given numeric value.

is-lt Checks if the value of a specified element is less than a given numeric value.

in-range Checks if the value of a specified element is within the given numeric range.

not-range Checks if the value of a specified element is outside of a given numeric range.

Table 3.3	 Execute Tests over Elements with String Values

OPERATOR DESCRIPTION

contains Determines if an XML element string value contains the provided test-string
value.

is-in Checks if the specified element string value is included in a given list of strings.

not-in Checks if the specified element string value is NOT included in a given list of
strings.

	 Chapter 3: JSNAPy Operators	 39

Table 3.4	 Test Operators to Compare Values of Two Snapshots

OPERATOR DESCRIPTION

no-diff Compares data elements present in both snapshots, and verifies if their value is the
same.

list-not-less Checks if the item is present in the first snapshot but not present in the second
snapshot.

list-not-more: Checks if the item is present in the second snapshot but not present in the first
snapshot.

delta Compares the change in value of an element to a delta. The delta can be specified
as:

1. an absolute percentage

2. positive, negative percentage

3. an absolute fixed value

4. a positive negative fixed value

NOTE	 JSNAPy 1.1 will have support for no-diff-in type of operators that
don’t fail the test if the XML Path specified does not exist in both
pre- and post- snapshots. This is explained in the details in the next
section.

Okay, now you have a list of operators that can be used by JSNAPy.
Refer back to them when needed, or print out the tables for reference
as you see them in operation and determine the places where they can
be best used.

NOTE	 This book uses only one protocol for all examples – OSPF – in order to
explain the operator without digging into the complexity of network-
ing. The complete JSNAPy configuration is provided in the Appendix.

	 40	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: all-same

Description: Check if all content values for the specified element are
the same. It can also be used to compare all content values against
another specified element.

Example: test_neighbor_state.yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
    id: interface-name
    xpath: ospf-neighbor
    tests:
    - all-same: ospf-neighbor-state 
      err: 'All OSPF neighbor on {{post["interface-name"]}} to     
            {{post["neighbor-address"]}} are not in same state, state change 
            from  {{pre["ospf-neighbor-state"]}} to 
            {{post["ospf-neighbor-state"]}}'
      info: 'No state change for OSPF neighbors' 

CLI

State during the pre snapshot
premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    37
169.254.61.61    ae1.0                  Full      10.0.31.232      128    31

State during the post snapshot
premesh@lab> show ospf neighbor    
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    31
169.254.61.61    ae1.0                  Exchange 10.0.31.232      128    35

JSNAPy Output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
OSPF neighbor on ae1.0 to 169.254.61.61 state change from  Full to Exchange
FAIL | Value of all "ospf-neighbor-state" at xpath "ospf-
neighbor" is not same [ 1 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: Note that all-same is a very important operator for any
check, and can be used for almost anything when you need to confirm
whether before and after are the same. For example: IGP peering, OS
version, network state, etc.

	 Chapter 3: JSNAPy Operators	 41

Name: is-equal

Description: Check if the value (integer or string) of the specified
element matches a given value.

Example: ospf-neighbor.yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
    id: interface-name
    xpath: ospf-neighbor
    tests:
       - is-equal: ospf-neighbor-state, Full
         err: OSPF neighbor on {{post["interface-name"]}} to 
              {{post["neighbor-address"]}} is not up, rather 
              {{post["ospf-neighbor-state"]}}
         info: All OSPF neighbors are up

CLI

State during the pre snapshot
premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    37
169.254.61.61    ae1.0                  Full      10.0.31.232      128    31

State during the post snapshot
premesh@lab> show ospf neighbor    
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    31
169.254.61.61    ae1.0                  Exchange 10.0.31.232      128    35

JSNAPy output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
OSPF neighbor on ae1.0 to 169.254.61.61 is not up, rather Exchange
FAIL | All "ospf-neighbor-state" is not equal to "Full" [ 1 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!! 

Use case: Note that is-equal is a valuable audit operator, checking the
value against predefined values and the use cases could be protocol
status, interface description, route community, etc.

	 42	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: not-equal

Description: Check if the value (integer or string) of the specified
element does not match a given value.

Example: test_ospf_neighbor.yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
    id: interface-name
    xpath: ospf-neighbor
    tests:
    - not-equal: ospf-neighbor-state, Full 
      err: 'All OSPF neighbors state is Full'
      info: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is not Full, rather {{post["ospf-neighbor-state"]}}'

CLI

State during the pre snapshot
premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    37
169.254.61.61    ae1.0                  Full      10.0.31.232      128    31

State during the post snapshot
premesh@lab> show ospf neighbor    
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    31
169.254.61.61    ae1.0                  Exchange 10.0.31.232       128    35

JSNAPy output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
---------------------Performing not-equal Test Operation---------------------
All OSPF neighbors are up
OSPF neighbor on ae1.0 to 169.254.61.61 is not up, rather Exchange
FAIL | All "ospf-neighbor-state" is equal to "Full" [ 1 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: Note that not-equal is the opposite of is-equal, but like
is-equal, not-equal checks the value against a predefined value. The
use case could be for protocol status, interface description, route
community, etc.

	 Chapter 3: JSNAPy Operators	 43

Name: exists

Description: verifies the existence of an element in the snapshot.

Example: test_ospf_authentication.yml

ospf-md5:
- command: show configuration protocols ospf | display inheritance | 
           display xml
- iterate:
    xpath: protocols/ospf/area/interface
    id: name
    tests:
    - exists: authentication 
      err: ' OSPF interface {{post["name"]}} is configured without 
             authentication.'
      info: All OSPF interface has authentication enabled

CLI

premesh@lab> show configuration protocols ospf         
area 0.0.0.0 {
    interface lo0.0;
    interface ae0.0 {
        authentication {
            md5 1 key "$9$5znCO1hKMXtuMX7-2gTz36tuBIEyev"; ## SECRET-DATA
        }
    }
    interface ae1.0 {
        authentication {
            md5 1 key "9IYWhyKX7V4aUM8aUjH5TRhSrM8xNdsgo"; ## SECRET-DATA
        }
    }
    interface ge-1/2/3.0 {
        authentication {
            md5 1 key "9H.fz9A0hSe36SevW-dk.P536Ctu1Ec"; ## SECRET-DATA
        }
    }
}

JSNAPy Output

Tests Included: ospf-md5 
***************** Command: show configuration protocols ospf *****************
 OSPF interface lo0.0 is configured without authentication.
FAIL | All "authentication" do not exists at xpath "protocols/ospf/area/
interface" [ 3 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: Note that exists best suits the use case where you need to
check and verify whether or not specified information is present, or to
check for configuration audits like authentication, NTP, or SYSLOG.

	 44	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: not-exists

Description: Verifies that a given element should not be present in the
snapshot.

Example: ospf-md5.yml

ospf-md5:
- command: show configuration protocols ospf | display inheritance | 
           display xml
- iterate:
    id: name
    xpath: protocols/ospf/area/interface  
    tests:
    - not-exists: authentication 
      err: 'OSPF interface {{post["name"]}} has authentication 
            enabled'
      info: 'OSPF interface {{post["name"]}} is configured without
            authentication.'

CLI

premesh@lab> show configuration protocols ospf
area 0.0.0.0 {
    interface lo0.0;
    interface ae0.0 {
        authentication {
            md5 1 key "$9$5znCO1hKMXtuMX7-2gTz36tuBIEyev"; ## SECRET-DATA
        }
    }
    interface ae1.0 {
        authentication {
            md5 1 key "9IYWhyKX7V4aUM8aUjH5TRhSrM8xNdsgo"; ## SECRET-DATA
        }
    }
    interface ge-1/2/3.0 {
        authentication {
            md5 1 key "9H.fz9A0hSe36SevW-dk.P536Ctu1Ec"; ## SECRET-DATA
        }
    }
}

JSNAPy Output

Tests Included: ospf-md5 
***************** Command: show configuration protocols ospf *****************
---------------------Performing not-exists Test Operation---------------------
OSPF interface lo0.0 is configured without authentication.
OSPF interface ae0.0 has authentication enabled
OSPF interface ae1.0 has authentication enabled
OSPF interface ge-1/2/3.0 has authentication enabled
FAIL |  "authentication" exists at xpath "protocols/ospf/area/
interface" [ 1 matched / 3 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: Note that not-exists best suits the use cases where you need
to check and verify whether or not information is present, or to check
for configuration audits like authentication, NTP, or SYSLOG.

	 Chapter 3: JSNAPy Operators	 45

Name: contains

Description: Checks if the given value (integer or string) of the speci-
fied element is present in a snapshot.

Example: test_interface_name.yml

ospf-md5:
- command: show configuration protocols ospf | display inheritance | display 
           xml
- iterate:
    id: name
    xpath: protocols/ospf/area/interface  
    tests:
    - contains: name, -
      err: ' OSPF interface {{post["name"]}} seems not a physical interface.'
      info: All OSPF interface is physical interface.

CLI

premesh@lab> show configuration protocols ospf
area 0.0.0.0 {
    interface lo0.0;
    interface ae0.0 {
        authentication {
            md5 1 key "$9$5znCO1hKMXtuMX7-2gTz36tuBIEyev"; ## SECRET-DATA
        }
    }
    interface ae1.0 {
        authentication {
            md5 1 key "9IYWhyKX7V4aUM8aUjH5TRhSrM8xNdsgo"; ## SECRET-DATA
        }
    }
    interface ge-1/2/3.0 {
        authentication {
            md5 1 key "9H.fz9A0hSe36SevW-dk.P536Ctu1Ec"; ## SECRET-DATA
        }
    }
}

JSNAPy Output

Tests Included: ospf-md5 
***************** Command: show configuration protocols ospf *****************
 OSPF interface lo0.0 seems not a physical interface.
 OSPF interface ae0.0 seems not a physical interface.
 OSPF interface ae1.0 seems not a physical interface.
FAIL | All "name" do not contains -" [ 1 matched / 3 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: The best use case for contains is to check whether or not a
specific value is present, for example, if you wanted to check for a
community in a specific route.

	 46	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: is-gt

Description: Check if the value of a specified element is greater than a
given numeric value.

Example: Check_ospf_neighbor.yml

ospf_interface:
- command: show ospf interface
- iterate:
    xpath: ospf-interface[contains(interface-name, "*e*")]
    tests:
    - is-gt: neighbor-count, 0
      err: OSPF interface {{post["interface-name"]}} does not have any
           neighbors
      info: OSPF interfaces must have at least 1 neighbor

CLI

premesh@lab> show ospf interface 
Interface           State   Area            DR ID           BDR ID      Nbrs  
ae0.0               PtToPt  0.0.0.0         0.0.0.0         0.0.0.0     1 
ae1.0               PtToPt  0.0.0.0         0.0.0.0         0.0.0.0     1 
lo0.0               DRother 0.0.0.0         0.0.0.0         0.0.0.0     0 

JSNAPy Output

Tests Included: ospf_interface 
************************ Command: show ospf interface ************************
OSPF interface lo0.0 does not have any neighbors
Pass | All "neighbor-count" is greater than  "0" [ 2 matched / 1 Passed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 1
Total No of tests failed: 0 
Overall Tests failed!!!

Use case: Note that is-gt best suits a situation where you want to
make sure the value is less than the specific value. A best use case
would be checking to ensure that maximum capacity, such as the
number of MACs or the number of IP routes, is not exceeded.

	 Chapter 3: JSNAPy Operators	 47

Name: is-lt

Description: Check if the value of a specified element is less than a
given numeric value.

Example: check_neighbor_count.yml

ospf_interface: 
- command: show ospf interface
- iterate:
    xpath: ospf-interface
    tests:
    - is-lt: neighbor-count, 1
      err: 'OSPF interfaces must have at least 1 neighbor'
      info: 'OSPF interface {{post["interface-name"]}} does not have any
            neighbors'

CLI

premesh@lab> show ospf interface 
Interface           State   Area            DR ID           BDR ID      Nbrs  
ae0.0               PtToPt  0.0.0.0         0.0.0.0         0.0.0.0     1   
ae1.0               PtToPt  0.0.0.0         0.0.0.0         0.0.0.0     1  
lo0.0               DRother 0.0.0.0         0.0.0.0         0.0.0.0     0 

JSNAPy Output

Tests Included: ospf_interface
************************ Command: show ospf interface ************************
OSPF interface lo0.0 does not have any neighbors
Pass | All "neighbor-count" is greater than “0" [2 matched / 1 Passed]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 1
Total No of tests failed: 0
Overall Tests failed!!!

Use case: Note that is-lt best suits a situation when you want to make
sure the value is less than the specific value. A good use case would be
checking to ensure that the maximum capacity, such as the number of
MACs or number of IP routes, is not reached.

	 48	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: in-range

Description: Check if the value of a specified element is in a given
numeric range.

Example: test_link_count.yml

OSPF-DB:
- command: show ospf database detail
- iterate:
    xpath: '/ospf-database-information/ospf-database/ospf-router-lsa'
    id: ../advertising-router
    tests:
    - in-range: link-count, 5, 10
      err: Router {{post["../advertising-router"]}} has {{post["link-
           count"]}} links
      info: OSPF router links [5..10]

CLI

premesh@lab> show ospf database detail | match "Router|link count"   
Router   10.0.27.254      10.0.27.254      0x800001f5  1396  0x22 0xc619  84
  bits 0x0, link count 18
Router   10.0.31.232      10.0.31.232      0x80000448  1413  0x22 0x7a0   84
  bits 0x0, link count 5
Router   10.0.31.240      10.0.31.240      0x8000044a  1400  0x22 0x3aa1  84
  bits 0x0, link count 5
Router  *10.0.31.241      10.0.31.241      0x80000446  1287  0x22 0x6c81  84
  bits 0x0, link count 5

JSNAPy Output

Tests Included: OSPF-DB 
********************* Command: show ospf database detail *********************
Router 10.0.27.254 has 18 links
FAIL | All "link-count" is not in range:  "5.000000 - 10.000000" [ 3 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!! 

Use case: Note that in-range is best suited for conditions where the
absolute value is not compulsory, but the result is in a range the test
deems passable. Think about active routes or routes learned from
protocol.

	 Chapter 3: JSNAPy Operators	 49

Name: not-range

Description: Check if the value of a specified element is outside of a
given numeric range.

Example: check_link_count.yml

OSPF-DB:
- command: show ospf database detail
- iterate:
    xpath: '/ospf-database-information/ospf-database/ospf-router-lsa'
    id: ../advertising-router
    tests:
    - not-range: link-count, 6, 10
      err: Router {{post["../advertising-router"]}} has 
           {{post["link-count"]}} links.
      info: OSPF router links not[6..10]

CLI

premesh@lab> show ospf database detail | match "Router|link count"   
Router   10.0.27.254      10.0.27.254      0x800001f5  1396  0x22 0xc619  84
  bits 0x0, link count 8
Router   10.0.31.232      10.0.31.232      0x80000448  1413  0x22 0x7a0   84
  bits 0x0, link count 5
Router   10.0.31.240      10.0.31.240      0x8000044a  1400  0x22 0x3aa1  84
  bits 0x0, link count 5
Router  *10.0.31.241      10.0.31.241      0x80000446  1287  0x22 0x6c81  84
  bits 0x0, link count 5

JSNAPy Output

Tests Included: OSPF-DB 
********************* Command: show ospf database detail *********************
Router 10.0.27.254 has 8 links
FAIL | All "link-count" is in range:  "6.000000 - 10.000000" [ 3 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: Note that not-range is best suited for the condition where an
absolute value is not compulsory but the result is in a range the test
deems passable. It is good for active routes or for routes learned from a
protocol.

	 50	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: is-in

Description: Checks to see if the specified element string value is
included in a given list of strings.

Example: check_ospf_neighbor_state.yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
       xpath: ospf-neighbor
       id: interface-name
       tests:
           -  is-in: ospf-neighbor-state, Up, Full 
              err: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is neither up nor Full, rather {{post["ospf-neighbor-state"]}}'
              info: 'All OSPF neighbors are {{post["ospf-neighbor-state"]}}'

NOTE	 One of the values used in the example (Up) is not a valid state for
OSPF, but this book uses OSPF to show off JSNAPy, and here the
concept of the JSNAPy operator is being demonstrated.

CLI

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32
169.254.61.61    ae1.0                  Exchange 10.0.31.232       128    37

JSNAPy Output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
OSPF neighbor on ae1.0 to 169.254.61.61 is not up, rather Exchange
FAIL | All "ospf-neighbor-state" is not in list ['Up', 'Full'] [ 1 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: The best use case for is-in is auditing the configuration for
whether the defined information is included or not included. Examples
would be checking IGP /BGP peering status or checking to see if a
particular interface is configured in MPLS, LDP, or RSVP.

	 Chapter 3: JSNAPy Operators	 51

Name: not-in

Description: Checks if the specified element string value is not included
in a given list of strings.

Example: check_ospf_neighbor_state.yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
     xpath: ospf-neighbor
     id: interface-name
     tests:
    - not-in: ospf-neighbor-state, Up, Full 
      info: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is neither up nor Full, rather {{post["ospf-neighbor-state"]}}'
      err: 'All OSPF neighbors are up'

CLI

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32
169.254.61.61    ae1.0                  Exchange  10.0.31.232      128    37

JSNAPy Output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
-----------------------Performing not-in Test Operation-----------------------
All OSPF neighbors are up
OSPF neighbor on ae1.0 to 169.254.61.61 is not up, rather Exchange
FAIL | "ospf-neighbor-state" is in list ['Up', 'Full'] [ 1 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!! 

NOTE	 The output has logging enabled as a DEBUG, the idea being to print
the informational message as well.

Use case: Note that not-in is the exact opposite of is-in, the best use
case being to audit the configuration with a check to see if the defined
information is included or not included, for example, determining
whether IGP /BGP peering status is or is not full.

	 52	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: no-diff

Description: No-diff compares the data elements present in both pre-
and post-snapshots and verifies whether or not their value is the same.

Example:  check_ospf_neighbor_address.yml
ospf-neighbor:
- command: show ospf neighbor
- iterate:
    xpath: ospf-neighbor
    id: interface-name
    tests:
    - no-diff: neighbor-address
      err: '{{id_0}} was going to {{pre["neighbor-
address"]}}, now going to {{post["neighbor-address"]}}'
      info: 'OSPF neighbor address is same in both pre and post snapshots'

CLI

Before:

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32
169.254.21.62    ae1.0                  Full      10.0.31.232      128    37

After:

10.0.31.213      ae0.0                  Full      10.0.31.240      128    32
169.254.61.61    ae1.0                  Full      10.0.31.232      128    37

JSNAPy Output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
   was going to ['169.254.21.62'], now going to ['169.254.61.61']
FAIL | All "neighbor-address" is not same in pre and post snapshot [ 1 matched / 1 failed ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1 
Overall Tests failed!!!

Use case: Note that no-diff best suits situations when you want to see
what has changed between the pre- and the post-snapshot. A use case
can be comparing what IP the protocol is peering with, or to check the
status of peering, such as if the peering for BPG, IGP is up or not.

	 Chapter 3: JSNAPy Operators	 53

Name: list-not-less

Description: Check if information is present in the first snapshot but
not present in the second snapshot.

Example: check_ospf_interface_name.yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
    xpath: ospf-neighbor
    id: interface-name
    tests:
      - list-not-less: 
        err: 'OSPF interface gone missing: {{pre["interface-
name"]}} going to {{pre["neighbor-address"]}}'
        info: 'All OSPF interface-name are present in both pre and post snapshot'

CLI

Before:

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32
169.254.61.61    ae1.0                  Full      10.0.31.232      128    37

After:

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32

JSNAPy Output

Tests Included: ospf-neighbor 
************************ Command: show ospf neighbor ************************
OSPF interface list check
ID gone missing !! 
ID list ' {'id_0': ['ae1.0']} ' is not present in post snapshots 
OSPF interface gone missing: ae0.0 going to 10.0.31.213
FAIL | All "no node" in pre snapshot is not present in post snapshot [1 matched / 1 failed]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1
Overall Tests failed!!!

Use case: Use list-not-less to find if something is missing after an
activity, such as the removal of an interface from IGP (OSPF/ISIS) or
BGP, or determining if the interfaces have gone missing.

	 54	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: list-not-more

Description: The opposite of list-not-less, it checks to see if an item
is present in the second snapshot but not in the first snapshot.

Example: ospf-neighbor .yml

ospf-neighbor:
- command: show ospf neighbor
- iterate:
    id: interface-name
    xpath: ospf-neighbor
    tests:
    - list-not-more: 
      err: 'New OSPF interface added: {{post["interface-name"]}} going to
            {{post["neighbor-address"]}}'
      info: 'All OSPF interface-name are present in both pre and post 
            snapshot'

CLI

Before:

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32

After:

premesh@lab> show ospf neighbor 
Address          Interface              State     ID               Pri  Dead
10.0.31.213      ae0.0                  Full      10.0.31.240      128    32
169.254.61.61    ae1.0                  Full      10.0.31.232      128    37

JSNAPy Output

Tests Included: ospf-neighbor
************************ Command: show ospf neighbor ************************
ID gone missing!!

ID list ' {'id_0': ['ae1.0']} ' is not present in pre snapshots
New OSPF interface added: ae0.0 going to 10.0.31.213
FAIL | All "no node" in post snapshot is not present in pre snapshot [1 matched / 1 failed]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1
Overall Tests failed!!!

Use case: Note that list-not-more is very useful for finding any new
additions after an activity. Examples of the best use cases are deter-
mining the addition of any core files or any additional chassis alarm
logs, checking to see if cards or interfaces have been added, adjacen-
cies, etc.

	 Chapter 3: JSNAPy Operators	 55

Name: delta

Description: Compare the change in value of an element to a delta.

Requirement: Must be present in both snapshots.

The delta can be specified as an absolute percentage, a positive or
negative percentage, an absolute fixed value, or a positive or negative
fixed value.

Example: OSPF-DB.yml

OSPF-DB:
- command: show ospf database detail
  - iterate:
      id: '../lsa-id'
      xpath: //ospf-database/ospf-router-lsa
      tests:
        - delta: link-count, 20%
          info: "Test Succeeded!! OSPF router LSA link for <{{post['lsa-
id']}}> has changed within delta, before it was <{{pre['link-
count']}}>, now it is <{{post['link-count']}}> "
          err: "Test Failed!!! OSPF router LSA link for <{{post['../lsa-
id']}}> has changed more than delta, before it was {{pre['link-
count']}}, now it is {{post['link-count']}} "

CLI

premesh@lab> show ospf database detail | match "Router|link count"
Router   10.0.27.254      10.0.27.254      0x800001dc   169  0x22 0xf8ff  84
  bits 0x0, link count 55 <25>
Router   10.0.31.232      10.0.31.232      0x8000042f   186  0x22 0x3987  84
  bits 0x0, link count 5
Router   10.0.31.240      10.0.31.240      0x80000431   173  0x22 0x6c88  84
  bits 0x0, link count 5
Router  *10.0.31.241      10.0.31.241      0x8000042d    60  0x22 0x9e68  84
  bits 0x0, link count 2 <5>

JSNAPy Output

********************* Command: show ospf database detail *********************
Test Failed!!! OSPF router LSA link for <10.0.27.254> has changed more than delta, before it
was 55.0, now it is 25.0
Test Failed!!! OSPF router LSA link for <10.0.31.241> has changed more than delta, before it
was 2.0, now it is 5.0
FAIL | All "link-count" is not with in delta difference of 20% [2 matched / 2 failed]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 0
Total No of tests failed: 1
Overall Tests failed!!!

Use case: Note that delta is a great feature when a test does not denote
failure if the change is in an acceptable range. A good use case could be
the IP route, where the test is supposed to pass even if there is a little
difference in the value before and after.

NOTE	 Let’s explain some advance features, introduced in JSNAPy 1.1, such
as chained operators and ignore-null attribute.

	 56	 Day One: Enabling Automated Network Verifications with JSNAPy

Name: chained operators

Description: As the name suggests, it provides the ability to have
complex operations with the help from logical operators like AND,
OR, and NOT.

Example: test_command_version.yml

test_command_version:
  - command: show bgp neighbor
  - iterate:
      xpath: '/bgp-information/bgp-peer'
      id: peer-address
      tests:
        - OR:
           - AND:
                 - not-equal: last-state,Active       # element in which test is performed
                   err: "Test Failed!! last state is <{{post['last-state']}}>"
 info: "Test succeeded!! last state is not equal to idle, it is: <{{post['last-
state']}}>"

 - NOT:
 - all-same: flap-count
 err: "Test Failed!!! flap count are not all same!!, it is <{{post['flap-
count']}}> "
 info: "Test Succeeded!! flap count are all same, it is now <{{post['flap-
count']}}>!!!"

 - is-equal: flap-count, 0
 err: "Test Failed!!! flap count is not equal to 0, it is: <{{post['flap-count']}}>
"
 info: "Test Succeeded!! flap count is equal to <{{post['flap-count']}}> !!" it was
{{pre['link-count']}}, now it is {{post['link-count']}} "

In this example OR, AND, and NOT are used.

�� For OR: IF one condition is Pass, Then Pass, Else, Fail

�� For AND: All conditions should be Pass, Then Pass, Else, Fail

�� For NOT: If condition Pass, Then Fail, Else, Pass

In the above example OR (AND (not-equal && NOT(all-same))
is-equal).

JSNAPy Output

Connecting to device 10.13.10.10
Taking snapshot of COMMAND: show task replication
*************************** Device: 10.13.10.10 ***************************
Tests Included: task-replication
*********************** Command: show task replication ***********************
SKIPPING!! Node <task-protocol-replication-state> not found at xpath <.> for IDs: {'name':
None}
------------------------------- Final Result!! -------------------------------
task-replication : Skipped
Total No of tests passed: 0
Total No of tests failed: 0
None of the test cases executed !!!

	 Chapter 3: JSNAPy Operators	 57

Use case: Chained operators are important and necessary to build
complex test cases with the use of logical operators. There are many
conditions where execution of one test is dependent on the result of
another test, such as testing the number of times a link flaps if BGP is
established and LogUpDown is enabled, or, checking the number of
routes received if BGP is up.

Name: ignore-null (Optional Attribute)

Description: The ignore-null attribute can be used with any operator
for passing the test in the absence of nodes for which the XPath is
provided. One thing to note is that instead of classifying this as error,
in the absence of nodes the program would just skip the test, not pass
it, just skip it. This is similar to the old behavior in JSNAP.

Example: task-replication.yml

tests_include:
  - task-replication
 
task-replication:
- command: show task replication
- iterate:
    id: name
    xpath: .
    tests:
      - is-equal: task-protocol-replication-state, Complete
        ignore-null: True
        err: 'Task replication is pending, please look at show task replication output'
        info: 'Task replication successful.'

JSNAPy Output

Connecting to device 10.10.10.104 ................
Taking snapshot of COMMAND: show task replication 
*************************** Device: 10.10.10.104 ***************************
Tests Included: task-replication 
*********************** Command: show task replication ***********************
SKIPPING!! Node <task-protocol-replication-
state> not found at xpath <.> for IDs: {'name': None}
------------------------------- Final Result!! -------------------------------
task-replication : Skipped
Total No of tests passed: 0
Total No of tests failed: 0 
None of the test cases executed !!! 

NOTE	 Tested on a router that did not have task replication enabled.

Use case: This optional attribute changes the behavior of failing the
test if the node is absent in XPath (under the following conditions):

�� One must have expected some nodes to be there, and if not
found, the program notifies the user about the condition.

	 58	 Day One: Enabling Automated Network Verifications with JSNAPy

�� No operations can be performed on a missing node, so skip the
test altogether.

Summary

There’s a lot of information in this chapter so digest it in the best way
you can, and let’s move on to examine a working example I have tested
and implemented in many large production networks.

Okay, now it’s time to see JSNAPy perform its magic. This chapter lets
you see what JSNAPy can do using two commonly used scenarios in
the networking world. The first shows a string comparison and the
second uses a Method of Procedure (MoP) that the author has imple-
mented in many major networks.

JSNAPy String Comparison

You should now know that JSNAPy has a feature that can compare
two snapshots, node by node, using the --diff command, without
specifying any test case. Let’s identify the key differences for the show
configuration command between pre- and post-snapshots.

Chapter 4

Working Examples

	 60	 Day One: Enabling Automated Network Verifications with JSNAPy

By now, you should be familiar with the procedure: save the show
configuration with the display set in two different files (pre and post)
and use JSNAPy --diff with the file name to identify the differences
between configurations. The differences are highlighted in bold in the
following output.

NOTE	 The difference in the config is deactivate routing-instances vrf.

premesh@automation$ jsnapy --diff snapshots/config_100.100.100.1_set_pre snapshots/
config_100.100.100.1_set_post
snapshots/config_100.100.100.1_set_pre
snapshots/config_100.100.100.1_set_post

661 set routing-instances vrf instance-type vrf
660 set routing-instances vrf instance-type vrf
 662 set routing-instances vrf interface irb.0 661 set routing-
instances vrf interface irb.0
 663 set routing-instances vrf route-distinguisher 100:12 662 set routing-
instances vrf route-distinguisher 100:12
 664 set routing-instances vrf vrf-target target:100:4 663 set routing-
instances vrf vrf-target target:100:4
 665 set routing-instances vrf vrf-table-label 664 set routing-
instances vrf vrf-table-label
		 665 deactivate routing-instances vrf
automation@automation: $

The difference here is just a string comparison.

JSNAPy MoP

This is a MoP developed to help the author with verifications while
performing Junos OS upgrades for customers. Table 4.1 lists the
procedure and is followed by the JSNAPy configuration.

The MoP is divided into three parts:

1. Collect the data during pre- and post-activity and then compare later
to detect any differences.

2. Collect the data during pre-activity and check for any discrepancies
such as chassis alarm, core file, etc.

3 Collect the data during post-activity and check for any discrepancies
such as chassis alarm, core file, etc. In addition, compare the pre- and
post-activity.

	 Chapter 4: Working Examples	 61

Table 4.1	 Method of Procedure (MoP)

Category CLI Check Output

Hardware
status

show chassis hardware
models

Check serial numbers of all
hardware.

Notify previous and new serial
numbers for inventory purpose.

show chassis fpc
pic-status

Check status of all
hardware (FPC and PIC).

Notify of FPCs or PICs that are not
online.

show chassis
environment

Check status of all
hardware environments.

Notify if any hardware status has
changed.

show chassis routing-
engine

Check mastership status of
both REs.

Notify if any RE slot mastership
status has changed.

show version invoke-on
all-routing-engines

Check the Junos version on
both REs.

Notify if any of the REs has
different Junos version pre- and
post-activity.

System
Status

show chassis alarms Check if any new alarms
are active.

Notify if any new alarms are active.

show system core-dumps
routing-engine both

Check if there are any core
files on any of the REs.

Notify if there are any new core
files.

Interfaces
Status

show arp no-resolve Check if any change in the
ARP, newly added or
previously MAC deleted.
Also check if there is any
interface or IP change for
any MAC-address.

Notify if any new MAC was added
or earlier MAC deleted. Also when
any interface or IP change for any
MAC-address occurred.

show interface terse Check if any oper-status
has changed.

Notify if nterface, oper-status, or
admin-status has changed.

show interfaces
extensive

NO check. Display admin-status, oper-status ,
input-bytes, and output-bytes for
logical and physical interfaces.

Route
Summary

show route summary Check if any route table
has discrepancy in number
of routes.

Notify if number of routes has
changed by 20%.

show route forwarding-
table summary

Check if any forwarding
table has discrepancy in
number of routes.

Notify if number of route in
forwarding table has changed by
20%.

BFD show bfd session
detail

Check if any BFD session is
down.

Notify if BFD session is down.

	 62	 Day One: Enabling Automated Network Verifications with JSNAPy

Category CLI Check Output

OSPF show ospf interface Check if any OSPF
interface has 0 neighbor
(interface which contains
“-”).

Notify if any OSPF interface has 0
neighbor.

show ospf neighbor Check if any OSPF
neighbor is missing.

Notify if any OSPF neighbor is
missing.

show ospf database
detail

Database detail.

Check if any OSPF router
link count is in predefined
range.

Notify if any OSPF router link
count is out of range.

BGP show bgp summary Check if any BGP neighbor
is missing. Plus if all
established plus active
prefix delta is more than
20% .

Notify if any BGP neighbor is
missing. Or it is not established or
delta is more than 20%.

LDP show ldp interface Check if any LDP interface
has 0 neighbor .

Notify if any LDP interface has 0
neighbor.

show ldp neighbor Check if any LDP neighbor
is missing.

Notify if any LDP neighbor is
missing.

RSVP show rsvp interface Check if any RSVP
interface is missing. Plus if
any interface is not in UP
state.

Notify if any RSVP interface is
missing.

show rsvp session Check if any RSVP session
is missing.

Notify if any RSVP session is
missing.

MPLS show mpls lsp detail Check if any MPLS LSP is
not in UP state, also that no
LSP is missing.

Notify if any MPLS LSP session is
not up.

Layer 2
Circuits

show l2circuit
connections

Check if any l2circuit is not
in UP state, also that no
l2circuit is missing.

Notify if any l2circuit session is not
up.

	 Chapter 4: Working Examples	 63

config_mop.yml
for one device, can be given like this:
hosts:
 - device: 100.100.100.1
 username : lab
 passwd: lab123
tests:
 - chassis_hardware.yml
 - pic_status.yml
 - interface_statistic.yml
 - chassis_environment.yml
 - junos_routing-engine.yml
 - junos_version.yml
 - test_alarm_check.yml
 - check_core.yml
 - test_arp.yml
 - test_interface_operstate.yml
 - test_route_summary.yml
 - test_forwarding_summary.yml
 - test_bfd_session.yml
 - ospf-neighbor.yml
 - test_ospf_interface.yml
 - test_bgp-summary.yml
 - test_ospf_db.yml
 - test_rsvp.yml
 - test_rsvp_interface.yml
 - test_ldp_interface.yml
 - ldp-neighbor.yml
 - test_mpls_lsp.yml
 - l2circuit.yml

can use sqlite to store data and compare them
#sqlite:
- store_in_sqlite: True
check_from_sqlite: True
database_name: jbb.db
compare: 1,0

can send mail by specifying mail
 mail: send_mail.yml

chassis_hardware.yml
tests_include:
 - chassis_hardware

chassis_hardware:
 - command: show chassis hardware
 - iterate:
 xpath: '//chassis/chassis-module'
 id: './name'
 tests:
 - no-diff: serial-number
 err: "Test Failed!! serial-number got changed, before it was <{{pre['serial-
number']}}>, now it is <{{post['serial-number']}}> with name <{{id_0}}>"
 info: "Test Succeeded!! serial-number are all same for name <{{id_0}}>!!!"

	 64	 Day One: Enabling Automated Network Verifications with JSNAPy

 - iterate:
 xpath: '//chassis/chassis-module/chassis-sub-module'
 id: './name'
 tests:
 - no-diff: serial-number
 err: "Test Failed!! serial-number got changed, before it was <{{pre['serial-
number']}}>, now it is <{{post['serial-number']}}> with name <{{id_0}}>"
 info: "Test Succeeded!! serial-number are all same for name <{{pre['../name']}}>
<{{id_0}}>!!!"

pic_status.yml
tests_include:
 - check_chassis_fpc

check_chassis_fpc:
 - command: show chassis fpc pic-status
 - iterate:
 xpath: //fpc
 id: ./slot
 tests:
 - all-same: state
 err: "Test Failed!!! state of \"{{post['description']}}\" at fpc {{post['slot']}}
are not all same!!, it is <{{post['state']}}> "
 info: "Test Succeeded!! state of \"{{post['description']}}\" at fpc {{post['slot']}}
are all same, it is now <{{post['state']}}>!!!"
 - iterate:
 xpath: //fpc/pic
 id: ./pic-slot
 tests:
 - all-same: pic-state
 err: "Test Failed!!! state of \"{{post['pic-type']}}\" at fpc {{post['../slot']}}
pic {{post['pic-slot']}} are not all same!!, it is <{{post['pic-state']}}> "
 info: "Test Succeeded!! state of \"{{post['pic-type']}}\" at fpc {{post['../slot']}}
pic {{post['pic-slot']}} are all same, it is now <{{post['pic-state']}}>!!!"

interface_statistic.yml
tests_include:
 - check_show_interfaces

check_show_interfaces:
 - command: show interfaces extensive
 - iterate:
 xpath: //physical-interface[contains(name, "-")]
 tests:
 - is-in: oper-status, up
 err: "{{post['name']}} \t {{post['oper-status']}} \t {{post['admin-status']}} \t
{{post['traffic-statistics/input-bps']}} \t {{post['traffic-statistics/output-bps']}}"
 info: "Test Failed!!! Physical operational status is not up, inetrface
<{{post['logical-interface/name']}}> is: <{{post['oper-status']}}> with admin status
<{{post['admin-status']}}> "
 - iterate:
 xpath: //physical-interface/logical-interface[contains(name, "-")]
 tests:
 - is-in: snmp-index, up
 err: "{{post['name']}} \t {{post['../oper-status']}} \t {{post['../admin-status']}}

	 Chapter 4: Working Examples	 65

\t {{post['transit-traffic-statistics/input-bps']}} \t {{post['transit-traffic-statistics/
output-bps']}}"
 info: "Test Failed!!! logical operational status is not up, inetrface
<{{post['name']}}> is: <{{post['oper-status']}}> with admin status <{{post['admin-
status']}}> "

chassis_environment.yml

tests_include:
 - check_environment

check_environment:
 - command: show chassis environment
 - iterate:
 xpath: /environment-information/environment-item
 id: ./name
 tests:
 - no-diff: status
 err: "Test Failed!!! states of \"{{pre['name']}}\" are not all same!!, earlier it was
<{{pre['status']}}> and now its <{{post['status']}}>"
 info: "Test Succeeded!! states of \"{{post['name']}}\" are all same, it is now
<{{post['status']}}>!!!"

junos_routing-engine.yml
tests_include:
 - test_routing-engine

test_routing-engine:
 - command: show chassis routing-engine
 - iterate:
 xpath: //route-engine-information/route-engine
 id: 'slot'
 tests:
 - no-diff: mastership-state
 info: "Test Succeeded!! RE SLOT {{post['slot']}} has mastership-state
\"{{post['mastership-state']}}\" "
 err: "Test Failed!!! Junos version does not match earlier on RE SLOT {{post['slot']}}
it was \"{{pre['mastership-state']}}\" and now it is \"{{post['mastership-state']}}\""

junos_version.yml
tests_include:
 - test_version_check

test_version_check:
 - command: show version invoke-on all-routing-engines
 - iterate:
 xpath: //software-information
 id: 'junos-version'
 tests:
 - no-diff: junos-version
 info: "Test Succeeded!! {{post['host-name']}} has Junos version \"{{post['junos-
version']}}\" "
 err: "Test Failed!!! Junos version does not match earlier it was \"{{pre['junos-
version']}}\" and now it is \"{{post['junos-version']}}\""

	 66	 Day One: Enabling Automated Network Verifications with JSNAPy

test_alarm_check.yml
tests_include:
 - alarm-checks
alarm-checks:
 - command: show chassis alarms
 - iterate:
 xpath: '/alarm-information'
 tests:
 - list-not-more: './alarm-detail/alarm-description'
 info: "Test Succeeded!! chassis alarms <{{pre['alarm-description']}}> already
exist"
 err: "Test Failed!!!There is new chassis alarms <{{post['alarm-detail/alarm-
description']}}> "

check_core.yml
tests_include:
 - check_core
check_core:
 - command: show system core-dumps routing-engine both
 - iterate:
 xpath: '//multi-routing-engine-results/multi-routing-engine-item/directory-list'
 tests:
 - not-exists: ./directory/file-information/file-name
 err: "Test Failed!!core file exist <{{post['./directory/file-information/file-
name']}}> on {{post['./../re-name']}}"
 info: "Test Succeeded!!!There is no core file"

test_arp.yml
tests_include:
 - test_arp_mac
 - test_arp_mac2

test_arp_mac:
 - command: show arp no-resolve
 - iterate:
 xpath: '//arp-table-information/arp-table-entry'
 id: './mac-address'
 tests:
 - no-diff: ip-address # element in which test is performed
 err: "Test Failed!! ip-address got changed for mac-address <{{id_0}}>, before it was
<{{pre['ip-address']}}>, now it is <{{post['ip-address']}}>"
 info: "ip-address is same for mac <{{id_0}}>"

 - no-diff: interface-name # element in which test is performed
 err: "Test Failed!! interface-name got changed for mac-address <{{id_0}}>, before it
was <{{pre['interface-name']}}>, now it is <{{post['interface-name']}}>"
 info: "interface-name is same for mac <{{id_0}}>"

test_arp_mac2:
 - command: show arp no-resolve
 - iterate:
 xpath: '//arp-table-information/arp-table-entry'
 id: './interface-name'
 tests:

	 Chapter 4: Working Examples	 67

 - list-not-less: mac-address
 err: "name list changed, mac-address: <{{pre['mac-address']}}> with interface-name
<{{id_0}}> is not present in post-snap"
 info: "name list is same, mac-address is same for <{{id_0}}>"

 - list-not-more: mac-address
 err: "<{{post['mac-address']}}> mac-address with interface-name <{{id_0}}> is not
present in pre snapshot"
 info: "mac-address is same for <{{id_0}}>"

test_interface_operstate.yml
tests_include:
 - test_interface_operstate

use '/' in your test cases apart from xpath if u want to search all elements irrespective of
hierarchy, ex: in id if u use /name instead of name
then it will search in all the names in given xpath irrespective of their position
for simple, one test using command

test_interface_operstate:
 - command: show interfaces terse
 - iterate:
 xpath: physical-interface[contains(name, "-")]
 id: './name'
 tests:
 - no-diff: oper-status # element in which test is performed
 err: "Test Failed!! oper-status got changed for <{{post['name']}}>, before it was
<{{pre['oper-status']}}>, now it is <{{post['oper-status']}}> with name <{{id_0}}> and admin
status <{{post['admin-status']}}>"
 info: "Test succeeded!! oper-status is same for <{{post['name']}}> with value, before
it is <{{pre['oper-status']}}> now it is <{{post['oper-status']}}> with admin status
<{{post['admin-status']}}> "

test_route_summary.yml
tests_include:
 - check_route_summary

check_route_summary:
 - command: show route summary
 - iterate:
 xpath: //route-summary-information/route-table
 id: ./table-name
 tests:
 - delta: active-route-count, 20%
 info: "Test Succeeded!! Active route for routing table <{{post['table-name']}}> has
changed within delta 20%, before it was <{{pre['active-route-count']}}>, now it is
<{{post['active-route-count']}}> "
 err: "Test Failed!!! Active route for routing table <{{post['table-name']}}> has
changed more than delta 20%, before it was <{{pre['active-route-count']}}>, now it is
<{{post['active-route-count']}}> "

	 68	 Day One: Enabling Automated Network Verifications with JSNAPy

test_forwarding_summary.yml
tests_include:
 - check_forwarding_summary

check_forwarding_summary:
 - command: show route forwarding-table summary
 - iterate:
 xpath: //forwarding-table-information/route-table/route-table-summary
 id: ./../table-name
 tests:
 - delta: route-count, 20%
 info: "Test Succeeded!! Active route for forwarding table <{{post['../table-name']}}>
and type <{{post['route-table-type']}}> has changed within delta 20%, before it was
<{{pre['route-count']}}>, now it is <{{post['route-count']}}> "
 err: "Test Failed!!! Active route for forwarding table <{{post['../table-name']}}>
and type <{{post['route-table-type']}}> has changed more than delta 20%, before it was
<{{pre['route-count']}}>, now it is <{{post['route-count']}}> "

test_bfd_session.yml
tests_include:
 - test_bfd_session

test_bfd_session:
 - command: show bfd session extensive
 - iterate:
 xpath: '/bfd-session-information/bfd-session'
 tests:
 - no-diff: session-state # element in which test is performed
 err: "Test Failed!! state is <{{post['session-state']}}> now but earlier was
<{{pre['session-state']}}> for neighbor <{{post['session-neighbor']}}> and client
<{{post['bfd-client/client-name']}}>"
 info: "Test succeeded!! state has not changed for neighbor <{{post['session-
neighbor']}}> and client <{{post['bfd-client/client-name']}}>"

ospf-neighbor.yml
tests_include:
 - ospf-neighbor

ospf-neighbor:
- command: show ospf neighbor
- iterate:
 id: interface-name
 tests:
 - err: 'OSPF interface gone missing: {{pre["interface-name"]}} going to {{pre["neighbor-
address"]}}'
 info: OSPF interface list check
 list-not-less:
 - err: 'New OSPF interface added: {{post["interface-name"]}} going to {{post["neighbor-
address"]}}'
 info: OSPF interface list check
 list-not-more:
 - err: ' was going to {{pre["neighbor-address"]}}, now going to {{post["neighbor-
address"]}}'
 info: OSPF neighbor change check

	 Chapter 4: Working Examples	 69

 no-diff: neighbor-address
 - err: OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-address"]}} is not
up, rather {{post["ospf-neighbor-state"]}}
 info: All OSPF neighbors are up
 is-equal: ospf-neighbor-state, Full
 - err: 'All OSPF neighbors are up'
 info: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-address"]}} is
not up, rather {{post["ospf-neighbor-state"]}}'
 not-equal: ospf-neighbor-state, Full
 - err: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-address"]}} state
change from {{pre["ospf-neighbor-state"]}} to {{post["ospf-neighbor-state"]}}'
 info: 'No state change for OSPF neighbors'
 all-same: ospf-neighbor-state
 - err: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-address"]}} is
not up, rather {{post["ospf-neighbor-state"]}}'
 info: 'All OSPF neighbors are up'
 is-in: ospf-neighbor-state, Up, Full
 - info: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-address"]}} is
not up, rather {{post["ospf-neighbor-state"]}}'
 err: 'All OSPF neighbors are up'
 not-in: ospf-neighbor-state, Up, Full
 xpath: ospf-neighbor

test_ospf_interface.yml
tests_include:
 - ospf_interface
ospf_interface:
- command: show ospf interface
- iterate:
 tests:
 - err: OSPF interface {{post["interface-name"]}} does not have any neighbors
 info: OSPF interfaces must have at least 1 neighbor
 is-gt: neighbor-count, 0
 - err: 'OSPF interfaces must have at least 1 neighbor, {{post["interface-name"]}} has
atleast 1 neighbor'
 info: 'OSPF interface {{post["interface-name"]}} does not have any neighbors'
 is-lt: neighbor-count, 1
 xpath: ospf-interface[interface-name != "lo0.0"]

test_bgp-summary.yml
tests_include:
 - bgp-summary
bgp-summary:
- command: show bgp summary
- iterate:
 id: peer-address
 tests:
 - err: 'BGP peer AS: {{post["peer-as"]}}, NEI: {{post["peer-address"]}} is not Estab,
rather {{post["peer-state"]}}'
 info: All BGP Peers are 'Established'
 is-equal: peer-state, Established
 - err: 'BGP RIB: ''{{post["peer-address"]}}'' went away, oh no!'
 info: BGP list did not loose peers
 list-not-less: null

	 70	 Day One: Enabling Automated Network Verifications with JSNAPy

 - err: 'BGP RIB: ''{{post["peer-address"]}}'' is added !'
 info: BGP list add new peers
 list-not-more: null
 xpath: bgp-peer
- iterate:
 id: './bgp-rib/name'
 tests:
 - delta: .//bgp-rib/active-prefix-count, 20%
 err: ' ERROR: The number of active prefix of the BGP Table {{post["bgp-rib/name"]}}have
changed more than 20%. [Before = {{pre["bgp-rib/active-prefix-count"]}} / After =
{{post["bgp-rib/active-prefix-count"]}}]'
 info: 'Checking BGP peer active prefix count (tolerance 20%) {{post["bgp-rib/active-
prefix-count"]}}'
xpath: '/bgp-information'

test_ospf_db.yml
tests_include:
	 - OSPF-DB
OSPF-DB:
- command: show ospf database detail
- iterate:
 id: ../advertising-router
 tests:
 - err: Router {{post["../advertising-router"]}} has {{post["link-count"]}} links
 in-range: link-count, 5, 10
 info: OSPF router links [5..10]
 - err: Router {{post["../advertising-router"]}} has {{post["link-count"]}} links
 info: OSPF router links not[5..10]
 not-range: link-count, 5, 10
 - err: 'Router {{post["../advertising-router"]}} has changed to {{post["link-count"]}}
links earlier it was {{pre["link-count"]}} '
 info: 'OSPF router links not changed significantly for {{post["../advertising-
router"]}}'
 delta: link-count, 20%
 xpath: '/ospf-database-information/ospf-database/ospf-router-lsa'

test_rsvp.yml
tests_include:
- rsvp
rsvp:
- command: show rsvp session
- iterate:
 tests:
 - err: ' RSVP session with name {{post["name"]}} to {{post["destination-address"]}}
 has LSP state {{post["lsp-state"]}}.'
 info: RSVP LSP state is [Up | NotInService]
 is-in: lsp-state, Up, NotInService
 xpath: rsvp-session-data/rsvp-session

test_rsvp_interface.yml
tests_include:
 - rsvp-interface

rsvp-interface:
- command: show rsvp interface

	 Chapter 4: Working Examples	 71

- iterate:
 id: interface-name
 tests:
 - err: 'RSVP interface gone missing: {{pre["interface-name"]}}'
 info: RSVP interface list check
 list-not-less:
 - err: RSVP neighbor on {{post["interface-name"]}} is not up, rather {{post["rsvp-
status"]}}
 info: All RSVP neighbors are up
 is-equal: rsvp-status, Up
 xpath: rsvp-interface

test_ldp_interface.yml
tests_include:
 - ldp_interface

ldp_interface:
- command: show ldp interface
- iterate:
 tests:
 - err: ldp interface {{post["interface-name"]}} does not have any neighbors
 info: ldp interfaces must have at least 1 neighbor
 is-gt: ldp-neighbor-count, 0
 xpath: ldp-interface

ldp-neighbor.yml
tests_include:
 - ldp-neighbor

ldp-neighbor:
- command: show ldp neighbor
- iterate:
 id: interface-name
 tests:
 - err: 'ldp interface gone missing: {{pre["interface-name"]}} going to {{pre["ldp-
neighbor-address"]}}'
 info: ldp interface list check
 list-not-less:
 - err: ' was going to {{pre["neighbor-address"]}}, now going to {{post["ldp-neighbor-
address"]}}'
 info: ldp neighbor change check
 no-diff: neighbor-address
 xpath: ldp-neighbor

test_mpls_lsp.yml
tests_include:
- mpls_lsp
mpls_lsp:
- command: show mpls lsp detail
- iterate:
 tests:
 - err: ' MPLS LSP with name {{post["name"]}} to {{post["destination-address"]}}
 has LSP state {{post["lsp-state"]}}.'

	 72	 Day One: Enabling Automated Network Verifications with JSNAPy

 info: MPLS LSP state is Up
 is-in: lsp-state, Up
 - err: 'MPLS LSP gone missing: with name {{post["name"]}} to {{post["destination-
address"]}}'
 info: MPLS LSP list check
 list-not-less:
 xpath: rsvp-session-data/rsvp-session/mpls-lsp

l2circuit.yml
tests_include:
 - l2circuit

l2circuit:
- command: show l2circuit connections
- iterate:
 id: connection-id
 tests:
 - err: 'l2circuit interface gone missing: {{pre["connection-id"]}}'
 info: l2circuit interface list check
 list-not-less:
 - err: l2circuit neighbor on {{post["connection-id"]}} is not up, rather
{{post["connection-status"]}}
 info: All l2circuit neighbors are up
 is-equal: connection-status, Up
 xpath: l2circuit-neighbor/connection

Hopefully this book has shown you the benefits of JSNAPy and
you now know that JSNAPy is a great tool for data collection and
verification.

But can data collection and verification work as a standalone
tool? Yes, it can, depending on the size of your network, but how
can JSNAPy become part of your existing automation system?

This final chapter showcases how JSNAPy can be integrated with
existing automation or even become the first step towards a large
network automation plan.

Embedding JSNAPy as a Python Module

A Python module is created and installed as soon as you install
JSNAPy in your server. This module works exactly the same way
standalone JSNAPy works, but with additional features such as
calling the JSNAPy as a runtime or directly supplying the JSNAPy
output to Python.

In this example, snapcheck is used through the Python module
and stores the results as values that can be used as variables for
other checks, or you can just print the output in a user-defined
format:

premesh:testfiles premesh$ more module_snapcheck.py 
### performing function similar to --snapcheck option in command line ######
from jnpr.jsnapy import SnapAdmin
from pprint import pprint
from jnpr.junos import Device

Chapter 5

Working Towards Automation With JSNAPy

	 74	 Day One: Enabling Automated Network Verifications with JSNAPy

js = SnapAdmin()

config_file = "/etc/jsnapy/testfiles/config_single_snapcheck.yml"
snapvalue = js.snapcheck(config_file, "snap")

for snapcheck in snapvalue:
    print "\n -----------snapcheck----------"
    print "Tested on", snapcheck.device
    print "Final result: ", snapcheck.result
    print "Total passed: ", snapcheck.no_passed
    print "Total failed:", snapcheck.no_failed
    pprint(dict(snapcheck.test_details))

Where is the module stored by default? Note that the answer to this
question maybe different if a specific path is given during installation,
but the default is: ~/JSNAPy/JSNAPy/lib/jnpr.

premesh:testfiles premesh$ python module_snapcheck.py 
Connecting to device 10.10.10.35 ................
Taking snapshot of COMMAND: show version 
Taking snapshot of COMMAND: show chassis fpc 
**************************** Device: 10.10.10.35 ****************************
Tests Included: test_version_check 
*************************** Command: show version ***************************
PASS | All "//package-information/name" exists at xpath "//software-
information" [ 39 matched ]
**************************** Device: 10.10.10.35 ****************************
Tests Included: check_chassis_fpc 
************************* Command: show chassis fpc *************************
PASS | All "cpu-total" is greater than 2" [ 1 matched ]
------------------------------- Final Result!! -------------------------------
Total No of tests passed: 2
Total No of tests failed: 0 
Overall Tests passed!!! 

 -----------snapcheck----------
Tested on 10.10.10.35
Final result:  Passed
Total passed:  2
Total failed: 0
{'show chassis fpc': [{'count': {'fail': 0, 'pass': 1},
                       'expected_node_value': 2.0,
                       'failed': [],
                       'node_name': 'cpu-total',
                       'passed': [{'actual_node_value': '11',
                                   'id': {'./memory-dram-size': '2048'},
                                   'post': {'cpu-total': '11',
  'memory-heap-utilization': '43'},
                                   'pre': {'cpu-total': '11'}}],
                       'result': True,
                       'testoperation': 'is-gt',
                       'xpath': '//fpc[normalize-space(slot) = "0"]'}],
 'show version': [{'count': {'fail': 0, 'pass': 39},
                   'failed': [],
                   'node_name': '//package-information/name',
                   'passed': [{'actual_node_value': 'os-kernel',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'os-kernel'},
                               'pre': {'//package-information/name': 'os-kernel'}},

	 Chapter 5: Working Towards Automation With JSNAPy	 75

                              {'actual_node_value': 'os-libs',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'os-libs'},
                               'pre': {'//package-information/name': 'os-libs'}},
                              {'actual_node_value': 'os-runtime',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'os-runtime'},
                               'pre': {'//package-information/name': 'os-runtime'}},
                              {'actual_node_value': 'zoneinfo',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'zoneinfo'},
                               'pre': {'//package-information/name': 'zoneinfo'}},
                              {'actual_node_value': 'os-libs-compat32',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'os-libs-compat32'},
                               'pre': {'//package-information/name': 'os-libs-compat32'}},
                              {'actual_node_value': 'os-compat32',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'os-compat32'},
                               'pre': {'//package-information/name': 'os-compat32'}},
                              {'actual_node_value': 'py-base',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'py-base'},
                               'pre': {'//package-information/name': 'py-base'}},
                              {'actual_node_value': 'os-crypto',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'os-crypto'},
                               'pre': {'//package-information/name': 'os-crypto'}},
                              {'actual_node_value': 'netstack',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'netstack'},
                               'pre': {'//package-information/name': 'netstack'}},
                              {'actual_node_value': 'junos-libs-compat32',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-libs-
compat32'},
                               'pre': {'//package-information/name': 'junos-libs-
compat32'}},
                              {'actual_node_value': 'junos-runtime',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-runtime'},
                               'pre': {'//package-information/name': 'junos-runtime'}},
                              {'actual_node_value': 'junos-platform',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-platform'},
                               'pre': {'//package-information/name': 'junos-platform'}},
                              {'actual_node_value': 'junos-modules',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-modules'},
                               'pre': {'//package-information/name': 'junos-modules'}},
                              {'actual_node_value': 'junos-libs',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-libs'},
                               'pre': {'//package-information/name': 'junos-libs'}},
                              {'actual_node_value': 'junos-dp-crypto-support-platform',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-dp-crypto-
support-platform'},
                               'pre': {'//package-information/name': 'junos-dp-crypto-
support-platform'}},

	 76	 Day One: Enabling Automated Network Verifications with JSNAPy

                              {'actual_node_value': 'junos-daemons',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'junos-daemons'},
                               'pre': {'//package-information/name': 'junos-daemons'}},
                              {'actual_node_value': 'jservices-voice',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-voice'},
                               'pre': {'//package-information/name': 'jservices-voice'}},
                              {'actual_node_value': 'jservices-ssl',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-ssl'},
                               'pre': {'//package-information/name': 'jservices-ssl'}},
                              {'actual_node_value': 'jservices-sfw',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-sfw'},
                               'pre': {'//package-information/name': 'jservices-sfw'}},
                              {'actual_node_value': 'jservices-rpm',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-rpm'},
                               'pre': {'//package-information/name': 'jservices-rpm'}},
                              {'actual_node_value': 'jservices-ptsp',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-ptsp'},
                               'pre': {'//package-information/name': 'jservices-ptsp'}},
                              {'actual_node_value': 'jservices-nat',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-nat'},
                               'pre': {'//package-information/name': 'jservices-nat'}},
                              {'actual_node_value': 'jservices-mss',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-mss'},
                               'pre': {'//package-information/name': 'jservices-mss'}},
                              {'actual_node_value': 'jservices-mobile',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-mobile'},
                               'pre': {'//package-information/name': 'jservices-mobile'}},
                              {'actual_node_value': 'jservices-llpdf',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-llpdf'},
                               'pre': {'//package-information/name': 'jservices-llpdf'}},
                              {'actual_node_value': 'jservices-jflow',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-jflow'},
                               'pre': {'//package-information/name': 'jservices-jflow'}},
                              {'actual_node_value': 'jservices-ipsec',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-ipsec'},
                               'pre': {'//package-information/name': 'jservices-ipsec'}},
                              {'actual_node_value': 'jservices-idp',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-idp'},
                               'pre': {'//package-information/name': 'jservices-idp'}},
                              {'actual_node_value': 'jservices-hcm',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-hcm'},
                               'pre': {'//package-information/name': 'jservices-hcm'}},
                              {'actual_node_value': 'jservices-crypto-base',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-crypto-
base'},

	 Chapter 5: Working Towards Automation With JSNAPy	 77

                               'pre': {'//package-information/name': 'jservices-crypto-
base'}},
                              {'actual_node_value': 'jservices-cpcd',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-cpcd'},
                               'pre': {'//package-information/name': 'jservices-cpcd'}},
                              {'actual_node_value': 'jservices-bgf',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-bgf'},
                               'pre': {'//package-information/name': 'jservices-bgf'}},
                              {'actual_node_value': 'jservices-appid',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-appid'},
                               'pre': {'//package-information/name': 'jservices-appid'}},
                              {'actual_node_value': 'jservices-alg',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-alg'},
                               'pre': {'//package-information/name': 'jservices-alg'}},
                              {'actual_node_value': 'jservices-aacl',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jservices-aacl'},
                               'pre': {'//package-information/name': 'jservices-aacl'}},
                              {'actual_node_value': 'jpfe-platform',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jpfe-platform'},
                               'pre': {'//package-information/name': 'jpfe-platform'}},
                              {'actual_node_value': 'jpfe-common',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jpfe-common'},
                               'pre': {'//package-information/name': 'jpfe-common'}},
                              {'actual_node_value': 'jdocs',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'jdocs'},
                               'pre': {'//package-information/name': 'jdocs'}},
                              {'actual_node_value': 'fips-mode',
                               'id': {'host-name': 'WF-CSIM-MX960-1-re0'},
                               'post': {'//package-information/name': 'fips-mode'},
                               'pre': {'//package-information/name': 'fips-mode'}}],
                   'result': True,
                   'testoperation': 'exists',
                   'xpath': '//software-information'}]}
premesh:testfiles premesh$ 

Here’s a small trick. What if you want to check the XPath but also want
to ignore some particular value? You can do this with code "!=".

Suppose you want to check the number for peering for the OSPF
interface, but you know lo0 will always fail, as it does not have peering.
You want to check all interfaces except lo0.0, like this:

xpath: ospf-interface[interface-name != "lo0.0"]

Summary

That’s it. That’s JSNAPy. Join us on GitHub and learn a lot more:
https://github.com/Juniper/jsnapy.

https://github.com/Juniper/jsnapy

	 78	 Day One: Enabling Automated Network Verifications with JSNAPy

	 Appendix: OSPF Test Case	 79

Appendix

OSPF Test Case

Here is the book’s OSPF test case, including all the operators:

test_ospf_all_operator.yml
tests_include:
  - ospf-neighbor 
  - ospf_interface
  - OSPF-DB
  - ospf-md5

  
ospf-md5:
- command: show configuration protocols ospf | display inheritance | display xml
- iterate:
    id: name
    tests:
    - err: ' OSPF interface {{post["name"]}} is configured without authentication.'
      exists: authentication
      info: All OSPF interface has authentication enabled
    - err: 'OSPF interface {{post["name"]}} has authentication enabled'
      not-exists: authentication
      info: 'OSPF interface {{post["name"]}} is configured without authentication.'
    - err: ' OSPF interface {{post["name"]}} seems not a physical interface.'
      contains: name, -
      info: All OSPF interface is physical interface.
    xpath: protocols/ospf/area/interface  
  
  
ospf-neighbor:
- command: show ospf neighbor
- iterate:
    id: interface-name
    tests:
     - err: 'OSPF interface gone missing: {{pre["interface-
name"]}} going to {{pre["neighbor-address"]}}'
       info: OSPF interface list check
       list-not-less: 
     - err: 'New OSPF interface added: {{post["interface-
name"]}} going to {{post["neighbor-address"]}}'
       info: OSPF interface list check
       list-not-more: 
     - err: '   was going to {{pre["neighbor-address"]}}, now going to {{post["neighbor-
address"]}}'
       info: OSPF neighbor change check
       no-diff: neighbor-address
     - err: OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is not up, rather {{post["ospf-neighbor-state"]}}
       info: All OSPF neighbors are up

	 80	 Appendix: OSPF Test Case

       is-equal: ospf-neighbor-state, Full
     - err: 'All OSPF neighbors are up'
       info: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is not up, rather {{post["ospf-neighbor-state"]}}'
       not-equal: ospf-neighbor-state, Full
     - err: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} state change from  {{pre["ospf-neighbor-state"]}} to {{post["ospf-neighbor-
state"]}}'
       info: 'No state change for OSPF neighbors' 
       all-same: ospf-neighbor-state
     - err: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is not up, rather {{post["ospf-neighbor-state"]}}'
       info: 'All OSPF neighbors are up'
       is-in: ospf-neighbor-state, Up, Full
     - info: 'OSPF neighbor on {{post["interface-name"]}} to {{post["neighbor-
address"]}} is not up, rather {{post["ospf-neighbor-state"]}}'
       err: 'All OSPF neighbors are up'
       not-in: ospf-neighbor-state, Up, Full
    xpath: ospf-neighbor

ospf_interface:
- command: show ospf interface
- iterate:
    tests:
    - err: OSPF interface {{post["interface-name"]}} does not have any neighbors
      info: OSPF interfaces must have at least 1 neighbor
      is-gt: neighbor-count, 0
    - err: 'OSPF interfaces must have at least 1 neighbor, {{post["interface-
name"]}} has atleast 1 neighbor'
      info: 'OSPF interface {{post["interface-name"]}} does not have any neighbors'
      is-lt: neighbor-count, 1
    xpath: ospf-interface[interface-name != "lo0.0"]

OSPF-DB:
- command: show ospf database detail
- iterate:
    id: ../advertising-router
    tests:
    - err: Router {{post["../advertising-router"]}} has {{post["link-count"]}} links
      in-range: link-count, 5, 10
      info: OSPF router links [5..10]
    - err: Router {{post["../advertising-router"]}} has {{post["link-count"]}} links
      info: OSPF router links not[5..10]
      not-range: link-count, 5, 10
    - err: 'Router {{post["../advertising-router"]}} has changed to {{post["link-
count"]}} links earlier it was {{pre["link-count"]}} '
      info: 'OSPF router links not changed significantly for {{post["../advertising-
router"]}}'
      delta: link-count, 20%
    xpath: '/ospf-database-information/ospf-database/ospf-router-lsa'

	Front Cover
	Back Cover
	Table of Contents
	Copyright & About the Author
	Welcome to Day One
	What You Need to Know Before Reading This Book
	What You Will Learn by Reading This Book
	Information Experience

	Preface
	Chapter 1: Automating Data Collection and Verificationof Networks
	Why Automate Collection and Verification?
	Four Target Areas to Automate
	JSNAP and JSNAPy
	Why JSNAPy?
	Move From JSNAP to JSNAPy (Tool)

	Chapter 2: JSNAPy Components
	How JSNAPy Communicates to Your Device
	Where Do You Get JSNAPy??
	Device Readiness to Support JSNAPy
	Application Structure
	JSNAPy Core Operation
	Deep Dive With JSNAPy Configuration
	Writing the Config File
	Writing the Test File
	How to Use JSNAPy
	Checking the Current Configuration Using JSNAPy
	Compare Two Snapshots Using Check (Test Operator is Defined)
	Compare Two Snapshots Using Diff (Test Operators Not Required)

	Chapter 3: JSNAPy Operators
	Supported Test Operators
	Name: all-same
	Name: is-equal
	Name: not-equal
	Name: exists
	Name: not-exists
	Name: contains
	Name: is-gt
	Name: is-lt
	Name: in-range
	Name: not-range
	Name: is-in
	Name: not-in
	Name: no-diff
	Name: list-not-less
	Name: list-not-more
	Name: delta
	Name: chained operators
	Name: ignore-null (Optional Attribute)
	Summary

	Chapter 4: Working Examples
	JSNAPy String Comparison
	JSNAPy MoP
	config_mop.yml
	chassis_hardware.yml
	pic_status.yml
	interface_statistic.yml
	chassis_environment.yml
	junos_routing-engine.yml
	junos_version.yml
	test_alarm_check.yml
	check_core.yml
	test_arp.yml
	test_interface_operstate.yml
	test_route_summary.yml
	test_forwarding_summary.yml
	test_bfd_session.yml
	ospf-neighbor.yml
	test_ospf_interface.yml
	test_bgp-summary.yml
	test_ospf_db.yml
	test_rsvp.yml
	test_rsvp_interface.yml
	test_ldp_interface.yml
	ldp-neighbor.yml
	test_mpls_lsp.yml
	l2circuit.yml

	Chapter 5: Working Towards Automation With JSNAPy
	Embedding JSNAPy as a Python Module
	Summary

	Appendix: OSPF Test Case

