
D
A

Y
 O

N
E

: JU
N

O
S

® P
yE

Z
 C

O
O

K
B

O
O

K
K

lim
a

i,
M

e
llin

, e
t. a

l.
Ju

n
ip

e
r

N
e

tw
o

rks
B

o
o

ks

Juniper Networks Books are singularly focused on network productivity

and efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: JUNOS® PyEZ COOKBOOK

Automate your network tasks
with Junos PyEZ scripts that
save time, energy, and effort.
You don’t have to be a coder to
take advantage of Junos and PyEZ.

By Peter Klimai, Matt Mellin, Michel Tepper, Jac Backus, Ivan Del Rio

Fernandez, Paul McGinn, Scott Ware, Michelle Zhang, Diogo Montagner,

Stephen Steiner, Ben Dale, Sean Sawtell, and Jessica Garrison

DAY ONE: JUNOS® PyEZ COOKBOOK

Day One: Junos PyEZ Cookbook is a complete network automation cookbook with a set-up
guide, a start-up sandbox, and a complete showcase of automation scripts that are readily
available on GitHub. The cookbook is a joint effort by Juniper’s engineers and all the many
Junos users and customers who want to show you how ‘EZ’ network automation can be. You
don’t have to be a coder when you can leverage Junos as your network OS.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

 n Understand Basic Python Concepts; Get the Downloads and Resources to Set Up Your Lab

 n Automate NETCONF Service Activation

 n Learn Terminal Server Mapping

 n Check File System Directory Usage on Multiple Devices in Parallel

 n Configure Devices using Junos PyEZ and Jinja2 Templates

 n Take a Snapshot on ACXs Access Routers

 n Extract Operational Data from Devices Running on a Bridge Domain Environment

 n Reserve Bandwidth for MPLS Access Rings

 n Add a Graphical Interface to the PyEZ Script

 n Monitor IPSEC Tunnels

 n Work with Junos Enhanced Auto-provision Process (JEAP)

 n Code PyEZ for On-box Scripts

 n Automate Network Testing with Junos PyEZ

 n Create a Menu Script for Address Book Editing

 n Provision L3VPN Services on PE Routers

 n Identify and Disable Unused Interfaces with Ansible

 n Track Down IP Conflicts with PyEZ

 n Code a Configuration Audit Using XML Schema (XSD)

“The decision to read a technical book involves a cost-benefit analysis. ‘Is the information I’m

going to learn worth my time and energy?’ If your currently operating a network of Juniper devic-

es using the Junos OS command line interface, then the unequivocal answer is ‘Yes!’ Written by

an experienced team of Juniper’s customers, ambassadors, partners, and employees, Day One:

Junos PyEZ Cookbook demonstrates its authors’ real-world experience in operating and auto-

mating networks. More importantly, the book breaks what could be daunting tasks into small

and relevant recipes. You will be creating useful network automation tools with the Junos PyEZ

library on day one. Happy Automating!”

Stacy Smith, Sr. Software Developer for Junos Automation, Juniper Networks,

Co-Author of Automating Junos Administration

ISBN 978-1-941441-59-6

9 781941 441596

5 3 5 0 0

Co-written by Juniper Customers,
 Ambassadors, Partners, and Employees

http://www.juniper.net/books

D
A

Y
 O

N
E

: JU
N

O
S

® P
yE

Z
 C

O
O

K
B

O
O

K
K

lim
a

i,
M

e
llin

, e
t. a

l.
Ju

n
ip

e
r

N
e

tw
o

rks
B

o
o

ks

Juniper Networks Books are singularly focused on network productivity

and efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: JUNOS® PyEZ COOKBOOK

Automate your network tasks
with Junos PyEZ scripts that
save time, energy, and effort.
You don’t have to be a coder to
take advantage of Junos and PyEZ.

By Peter Klimai, Matt Mellin, Michel Tepper, Jac Backus, Ivan Del Rio

Fernandez, Paul McGinn, Scott Ware, Michelle Zhang, Diogo Montagner,

Stephen Steiner, Ben Dale, Sean Sawtell, and Jessica Garrison

DAY ONE: JUNOS® PyEZ COOKBOOK

Day One: Junos PyEZ Cookbook is a complete network automation cookbook with a set-up
guide, a start-up sandbox, and a complete showcase of automation scripts that are readily
available on GitHub. The cookbook is a joint effort by Juniper’s engineers and all the many
Junos users and customers who want to show you how ‘EZ’ network automation can be. You
don’t have to be a coder when you can leverage Junos as your network OS.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

 n Understand Basic Python Concepts; Get the Downloads and Resources to Set Up Your Lab

 n Automate NETCONF Service Activation

 n Learn Terminal Server Mapping

 n Check File System Directory Usage on Multiple Devices in Parallel

 n Configure Devices using Junos PyEZ and Jinja2 Templates

 n Take a Snapshot on ACXs Access Routers

 n Extract Operational Data from Devices Running on a Bridge Domain Environment

 n Reserve Bandwidth for MPLS Access Rings

 n Add a Graphical Interface to the PyEZ Script

 n Monitor IPSEC Tunnels

 n Work with Junos Enhanced Auto-provision Process (JEAP)

 n Code PyEZ for On-box Scripts

 n Automate Network Testing with Junos PyEZ

 n Create a Menu Script for Address Book Editing

 n Provision L3VPN Services on PE Routers

 n Identify and Disable Unused Interfaces with Ansible

 n Track Down IP Conflicts with PyEZ

 n Code a Configuration Audit Using XML Schema (XSD)

“The decision to read a technical book involves a cost-benefit analysis. ‘Is the information I’m

going to learn worth my time and energy?’ If you’re currently operating a network of Juniper

devices using the Junos OS command line interface, then the unequivocal answer is ‘Yes!’

Written by an experienced team of Juniper customers, ambassadors, partners, and employees,

Day One: Junos PyEZ Cookbook demonstrates its authors’ real-world experience in operating

and automating networks. More importantly, the book breaks what could be daunting tasks

into small and relevant recipes. You will be creating useful network automation tools with the

Junos PyEZ library on day one. Happy Automating!”

Stacy Smith, Sr. Software Developer for Junos Automation, Juniper Networks,

Co-Author of Automating Junos Administration

ISBN 978-1-941441-59-6

9 781941 441596

5 3 5 0 0

Co-written by Juniper Customers,
 Ambassadors, Partners, and Employees

http://www.juniper.net/books

Day One: Junos® PyEZ Cookbook

by Peter Klimai, Matt Mellin, Michel Tepper, Jac Backus,
Ivan Del Rio Fernandez, Paul McGinn, Scott Ware, Michelle Zhang,
Diogo Montagner, Stephen Steiner, Ben Dale, Sean Sawtell,
and Jessica Garrison

© 2017 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, Junos, Steel-Belted Radius, NetScreen,
and ScreenOS are registered trademarks of Juniper
Networks, Inc. in the United States and other countries.
The Juniper Networks Logo, the Junos logo, and JunosE
are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their respective
owners. Juniper Networks assumes no responsibility for
any inaccuracies in this document. Juniper Networks
reserves the right to change, modify, transfer, or otherwise
revise this publication without notice.

© 2017 by Juniper Networks Pvt Ltd. All rights reserved
for scripts located at https://github.com/Juniper/junosauto-
mation/tree/master/pyez/PyEZ_Cookbook_2017.

Script Software License
© 2017 Juniper Networks, Inc. All rights reserved.
Licensed under the Juniper Networks Script Software
License (the “License”). You may not use this script file
except in compliance with the License, which is located at
http://www.juniper.net/support/legal/scriptlicense/. Unless
required by applicable law or otherwise agreed to in
writing by the parties, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.

Published by Juniper Networks Books
ISBN: 978-1-941441-59-6 (print)
Printed in the USA by Vervante Corporation.
ISBN: 978-1-941441-60-2 (ebook)
Version History: v1, October, 2017
 2 3 4 5 6 7 8 9 10

https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
http://www.juniper.net/support/legal/scriptlicense

	 iv	 Table of Contents	 iv

Table of Contents

Part 1: Set Up Guide

Recipe 1- Installing Python and PyEZ . . 10

Recipe 2 - Enabling NETCONF. . 17

Recipe 3 - Hello World!. . 20

Recipe 4 - PyEZ Connection Options . . 23

Part 2: Basic Scripts

Recipe 5- Getting Started Sample. . 27

Recipe 6 - Automating NETCONF Service Activation. . 30

Recipe 7 - PyEZ with Console: Learning Terminal Server Mapping. . 33

Recipe 8 - PyEZ with Console: Pushing an Initial Configuration . . 35

Recipe 9 - Checking File System Directory Usage on Multiple Devices in Parallel. . 37

Recipe 10 - Configuring Devices using Junos PyEZ and Jinja2 Templates . . 41

Part 3: PyEZ Showcase

Recipe 11 - Benefits of Taking a Snapshot on ACX Series Access Routers. . 45

Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment. 52

Recipe 13 - Bandwidth Reservation for MPLS Access Rings. . 62

Recipe 14 - Adding a Graphical Interface to the PyEZ Script. . 68

Recipe 15 - Monitoring IPSEC Tunnels. . 74

Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP) . . 78

Recipe 17 - PyEZ for On-Box Scripts . . 89

Recipe 18 - Automated Network Testing with Junos PyEZ . . 95

Recipe 19 - Menu Script for Address Book Editing . . 101

Recipe 20 - Provisioning L3VPN Services on PE Routers. . 112

Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible. . 129

Recipe 22 - Track Down IP Conflicts with PyEZ. . 143

Recipe 23 - Configuration Audit Using XML Schema (XSD). . 180

	 v	 Contributors	 v	

 Contributors
Peter Klimai currently works as an instructor and content developer at Poplar Systems,
a Juniper Networks Authorized Education Partner. He is a Juniper Ambassador and
certified JNCIE-SEC #98, JNCIE-ENT #393, JNCIE-SP #2253, JNCIP-DC, and JN-
CIS-SDNA. Peter is enthusiastic about network automation using various tools, as well
as software-defined networking and network function virtualization. Peter’s past in-
cludes several years of experience supporting Juniper equipment for multiple custom-
ers of varying sizes, as well as writing a PhD thesis in cosmology.

Matt Mellin currently works at Juniper Networks as a data analyst and domain expert
within the CTO office’s Data Analytics Group. His group applies machine learning to
various network-related issues. His past includes several years as technical lead for
Juniper’s Proof-of-Concept (POC) lab in Sunnyvale, and (stretching even further back)
as a sales engineer at NetScreen. Matt is enjoying the transition from network engineer
to software developer and is enthusiastic about things like big data, cloud native net-
work design, application security, network automation, and dev ops.

Michel Tepper has been a Juniper consultant and instructor for the last ten years of his
30+ years career. He teaches at Westcon in the Netherlands and holds a number Juni-
per certifications. He started his career as a programmer, and now that networking is
moving towards SDN is enjoying the benefits from those years. Michel has also been a
Juniper Ambassador for several years, calling the Ambassadors “the nicest peer group
in the IT industry.”

Jac Backus is a network engineer at BugWorks, a Juniper partner. He has worked for
over 30 years in the IT industry and has several years of experience installing and sup-
porting Juniper equipment. He is always eager to learn more about networking, virtu-
alization, and automation, and is also interested in computer and network security.

Ivan Del Rio Fernandez currently works as an IP Engineer at DQE Communications
administering ISP-related functions such as routing and switching using Juniper equip-
ment. He is JNCIA and RHCE certified. Before his venture in networking he was a
Linux System Administrator in Europe for four years. Ivan is passionate about net-
working, Linux, scripting languages, and optimizing efficiency through automation. In
his spare time, he enjoys flying drones and working on open-source robotics projects.

Paul McGinn is an IP Engineer with DQE Communications in Pittsburgh Pennsylva-
nia. When Paul isn’t chasing kids around a soccer field, he is working on customer ser-
vice design, network monitoring and automation, while leading the DQE
implementation team. He has seen the benefits that SDN brings to network environ-
ments and is excited for what the future holds.

Scott Ware currently works as a Senior Security Engineer for a large retailer. He is a
Juniper Ambassador and certified GSEC, JNCIS-SEC, and JNCDA. Scott has been a
fan of automation for most of his career, contributing multiple open-source packages
and tools to the community, written in various languages.

	 vi	 Contributors	 vi

Michelle Zhang currently works at Juniper Networks as a Systems Engineer Spe-
cialist with focus on automation. She is a bright new college grad who is passion-
ate about network automation with scripting as well as non-scripting tools, and a
big fan of Cloud and Big Data.

Diogo Montagner is a consulting engineer in the Center of Excellence within Juni-
per Networks APAC, focused on automation and software solutions. He holds
JNCIE-SP #1050 and PMP certifications, as well as a 2nd Dan black belt in Tae-
kwondo. Diogo is a network enthusiast who helps customers to design, build, au-
tomate, and operate their networks.

Steve Steiner currently works as an automation solutions consultant and DevOps
engineer at Juniper Networks and is a certified JNCIE-SP #323. Steve is a veteran
Tech Controller of the US Air Force and has been in networking since before the
Internet was the Internet. When he’s not working, he enjoys music, movies, caf-
feine, and driving in his Jeep with the top off.

Ben Dale is a Network Engineering Manager at Comlinx, a Juniper Elite Partner
based in Brisbane, Australia. He is a Juniper Ambassador, and certified JNCIE-
SEC #63, JNCIP-SP, JNCIP-ENT, JNCP-DC. Ben is passionate about using net-
work automation to solve day-to-day operational issues. When Ben isn’t neck
deep in networking, he enjoys playing the ukulele (badly) and skateboarding with
his daughters.

Sean Sawtell has been with Juniper Networks since 2002, and has been a Network
Engineer with Juniper’s internal network team since 2004. Sean’s focus today is on
network automation. In 2014 Sean earned a Master of Science degree in Computer
Science, and subsequently was an adjunct professor for two years teaching the CS
curriculum. Before joining Juniper, Sean taught Microsoft and Novell courses and
held MCSE, MCI, CNE, and CNI certifications.

Jessica Garrison currently works as a Technical Marketing Engineer at Juniper
Networks. Since completing a master’s degree in electrical engineering, she has ac-
cumulated over a decade of networking experience within tech support, consult-
ing, sales, and technical marketing. Jessica enjoys evangelizing the culture and
methodology of network automation and occasionally gets her hands dirty with
some good-enough coding. She used to enjoy hiking, biking, and cooking before
expanding her family to include a daughter and two large dogs.

This Cookbook’s PyEZ Script Repository
This cookbook’s PyEZ scripts exist on GitHub as open source files. Look for the
original files and updates here: https://github.com/Juniper/junosautomation/tree/
master/pyez/PyEZ_Cookbook_2017.

https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017

	 vii	 List of Resources for Community Help and Support

List of Resources for Community Help and Support

Resource Type Description Location

Website PyEZ Cookbook on GitHub https://github.com/Juniper/junosautomation/tree/master/
pyez/PyEZ_Cookbook_2017

Forums PyEZ Google Group https://groups.google.com/forum/ - !forum/junos-python-ez

Forums Juniper J-NET TechWiki http://forums.juniper.net/t5/Automation/tkb-p/Automation_
Scripting

Forums StackOverflow PyEZ tag https://stackoverflow.com/questions/tagged/pyez

Book Automating Junos Administration
(specifically, Chapter 4)

http://shop.oreilly.com/product/0636920041498.do

Website The TechLibrary’s PyEZ
Documentation

https://www.juniper.net/documentation/en_US/junos-pyez/
information-products/pathway-pages/junos-pyez-developer-
guide.html

Website PyEZ at ReadTheDocs http://junos-pyez.readthedocs.io

10 Things About Coding for Non-Coders
If you are one of those people who think “I will never be a coder,” start here:

1. You don’t have to be a software developer to code.

2. You also don’t have to be “super” smart. It doesn’t take a genius.

3. Mistakes and failure are okay. Trial and error is a great way to learn. This is
why labs and demos exist.

4. The more people who review your code, the stronger it gets. Swap ideas. Open
source your code.

5. Computers and servers will do exactly what you code them to do.

6. Embrace change.

7. Go slowly. Step-by-step. Use version control.

8. Join a community. GitHub is great. They have guides online. The Juniper Forum
is also wonderful (forums.juniper.net). Communities are great ways to share code,
borrow ideas, and submit questions.

9. Copy and paste are your friends. Most of us do not write code from scratch.
You borrow and manipulate, and one hundred iterations later, you have some-
thing that works.

10. Learn from this book.

https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://groups.google.com/forum
http://forums.juniper.net/t5/Automation/tkb-p/Automation_Scripting
http://forums.juniper.net/t5/Automation/tkb-p/Automation_Scripting
https://stackoverflow.com/questions/tagged/pyez
http://shop.oreilly.com/product/0636920041498.do
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
http://junos-pyez.readthedocs.io
http://forums.juniper.net

	 viii	 Preface

Preface
The typical IT priorities of a network operator are to increase productivity of re-
sources, ensure compliances, improve network security, reduce IT costs, and sim-
plify IT management – all of which are aimed at reducing OpEx and improving
bottom line profits. The operators that understand these business priorities look at
how they can leverage technology and become more competitive in the markets
they do play in, and if you drill down into any of these priorities or goals, you’ll
see that network automation is a key ingredient in their operations.

Network automation can be found in broad categories of tools like Operator Sup-
port Systems (OSS), Business Support Systems (BSS), Orchestrators, Controllers,
Element Management Systems (EMS), and more, which operate at various hierar-
chies in the network. But if you get closer to the individual network devices, there
is a category of tools that enable device automation, and here, Juniper’s PyEZ (Py-
thon Easy) excels!

Why easy? Because PyEZ is a Python library that enables administration and auto-
mation of Junos® devices by invoking remote procedure calls on Junos devices. It
provides an abstraction built on top of the NETCONF protocol leveraging the
NETCONF client library underneath, and talks to Junos devices via XML remote
procedure calls (RPCs). The RPC responses can be returned as XML-specific Py-
thon data structures and that makes it easy to consume within the Python script.
PyEZ provides several predefined tables and views for common RPCs and also al-
lows users to define their own scripts to extract information from any Junos RPC.
On the configuration side, PyEZ allows formats such as XML, Junos CLI set com-
mands, and also text. One can also leverage YAML and Jinja to generate device,
feature, or customer specific configurations based on predefined templates and
values.

PyEZ is an open-source project (see https://github.com/Juniper/py-junos-eznc) de-
veloped and supported by Juniper that welcomes feature contributions, bug fixes,
and issue reports from the user community. It can be used from the interactive Py-
thon shell to quickly perform tasks, or can be incorporated into full blown Python
scripts for more complex use cases. You just need to install the PyEZ package on a
server that has connectivity to the Junos devices intended to be automated, and
you are ready to start making your network more agile, compliant, efficient, and
scalable.

The best part about PyEZ is that it has a very gentle learning curve. You don’t need
to be a programmer or a coder to be able to get automation up and running. Be-
sides, it will get you a step closer to learning Python, one of the most popular lan-
guages within the programmer community, thus expanding your skillset.

https://github.com/Juniper/py-junos-eznc

	 ix	 Preface

Moving from manual to automation mode needs an enabler and this cookbook is
aimed at just that! The authors have compiled some of the most useful recipes (use
cases) we’ve seen in the field, and have presented them in the simplest possible
manner. Beginning with Hello World to get you started, and continuing with pro-
duction-ready recipes for configuration management, templating, service provi-
sioning, and more, this cookbook gets you started, gets you going, and then gets
you using PyEZ for device automation.

PyEZ is a popular tool and it is extensively used globally by Junos OS users in pro-
duction networks. Juniper is committed to investing in PyEZ to make it an even
more loved tool by its users, and all of us hope that you as a network operator are
able to get much more out of your network by automating with PyEZ! Enjoy the
book.

Raunak Tibrewal, Juniper Networks Product Manager for Junos OS
Sunnyvale, California, Novembers, 2017

Before you can start automating Junos devices, you need to have the necessary
tools installed and functioning properly. This recipe helps you get the Python lan-
guage and the PyEZ libraries installed on your development machine.

Problem
You want to start your network automation tasks but are confused about languag-
es, dependencies, libraries, and modules. Installing all the required “stuff” seems
complicated, and you want to get started the right way.

Solution
There are several components required in order to run the various PyEZ recipes in
this cookbook, and the steps to take to install them vary somewhat, depending on
your development machine.

Microsoft Windows
(Tested against Windows 10)

Installing Python

Download Python 3.x for Windows from https://www.python.org/downloads/
(the Windows x86-64 executable installer) and double click the installer file.

Recipe 1 - Installing Python and PyEZ
by Steve Steiner

https://www.python.org/downloads/

	 11	 Recipe 1 - Installing Python and PyEZ

Figure 1.1	 Installing Python

Check the box next to the “Add Python 3.6 to PATH” option and then click on
“Install Now”, as shown in Figure 1.1.

Installing PyEZ

To install PyEZ, open up a command window and type pip install junos-eznc. Pip
will automatically download and install all of the required packages.

Once that’s finished, you should test the installation.

Testing

Open up a command window and start Python by typing python then type from
jnpr.junos import Device at the prompt. You’ll see something similar to the
following:

C:\Users\ntwrk>python
Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:57:36) [MSC v.1900 64 bit (AMD64)] on win32
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from jnpr.junos import Device
>>>

If everything is installed properly, it should look like the above example. If PyEZ is
not installed properly, you will see something similar to this output:

>>> from jnpr.junos import Device
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
ModuleNotFoundError: No module named ‘jnpr’
>>>

	 12	 Day One: Junos® PyEZ Cookbook

To quit the Python interpreter, type quit().

If you experience any issues with the installation of PyEZ you can search for help
in past issues, or submit a new issue at the PyEZ GitHib project located at https://
github.com/Juniper/py-junos-eznc.

Apple MacOS

(Tested against MacOS Sierra)

Installing Python

While MacOS (and OS X) ship with a working version of Python, it’s best to in-
stall another instance to avoid any potential issues arising from the vendor-in-
stalled software.

Download Python 3.x for MAC OS X from https://www.python.org/downloads/

Double click on the .pkg and follow the prompts. This will install Python in /usr/
local/bin. The executable is called python3.

Installing PyEZ

Installing PyEZ is as simple as typing:

$ pip3 install junos-eznc

Testing

You can test it by opening the Python interpreter and attempting to load the PyEZ
module:

$ python3
Python 3.6.2 (v3.6.2:5fd33b5926, Jul 16 2017, 20:11:06)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from jnpr.junos import Device
>>>

If there are no errors, then PyEZ is ready to use. If the module is not installed
properly, you will see an error similar to the following:

>>> from jnpr.junos import Device
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
ModuleNotFoundError: No module named ‘jnpr’
>>>

To quit the Python interpreter, type quit().

If you experience any issues with the installation of PyEZ you can search for help
in past issues, or submit a new issue at the PyEZ GitHib project located at https://
github.com/Juniper/py-junos-eznc.

https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
https://www.python.org/downloads/
https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc

	 13	 Recipe 1 - Installing Python and PyEZ

Ubuntu
(Tested against Ubuntu 16.04)

Installing Python

Ubuntu ships with Python 3.5, which is sufficient for our needs, but we do need to
install some dependencies prior to installing PyEZ.

So, let’s update the apt cache and install the dependencies:

$ sudo apt-get update
$ sudo apt-get install -y libxslt1-dev libssl-dev libffi-dev python-dev build-essential --no-install-
recommends

Next, install pip:

$ wget https://bootstrap.pypa.io/get-pip.py -O - | sudo -H python3

And install PyEZ:

$ sudo -H pip install junos-eznc

Testing

You can test it by opening the Python interpreter and attempting to load the PyEZ
module:

$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type “help”, “copyright”, “credits” or “license” for more information
>>> from jnpr.junos import Device
>>>

If there are no errors, then PyEZ is ready to use. If the module is not installed
properly, you would see an error similar to the following:

$ python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from jnpr.junos import Device
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
ImportError: No module named ‘jnpr’
>>>

To quit the Python interpreter, type quit().

If you experience any issues with the installation of PyEZ you can search for help
in past issues, or submit a new issue at the PyEZ GitHib project located at https://
github.com/Juniper/py-junos-eznc.

https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc

	 14	 Day One: Junos® PyEZ Cookbook

Symlinks (optional)

By default, invoking python on Ubuntu will call Python 2.7:

$ python --version
Python 2.7.12

Since you’ll be using Python 3, you can simplify the process by changing python to
call python3 instead of python2:

$ which python
/usr/bin/python
$ ls -al /usr/bin/ | grep python
<snipped>
lrwxrwxrwx 1 root root 9 Dec 9 2015 python -> python2.7
<snipped>

Remove the current symlink and add the new one:

$ sudo rm /usr/bin/python
$ sudo ln -s /usr/bin/python3 /usr/bin/python
$ python --version
Python 3.5.2

CentOS
(Tested against CentOS 7.3)

Installing Python

CentOS 7 ships with Python 2, so you’ll need to install Python 3. Let’s update yum
and add some dependencies that you’ll need later:

$ sudo yum makecache fast
$ sudo yum install gcc gcc-c++ kernel-devel make automake

You’ll need to add the Inline with Upstream Stable (IUS) repository and install Py-
thon 3.6:

$ sudo yum -y install https://centos7.iuscommunity.org/ius-release.rpm
$ sudo yum -y install python36u

CentOS doesn’t create symlinks for Python 3, so you can do that now to make it
easier:

$ ls -al /usr/bin/ | grep python
-rwxr-xr-x. 1 root root 11232 Dec 2 2016 abrt-action-analyze-python
lrwxrwxrwx. 1 root root 7 Jul 27 11:44 python -> python2
lrwxrwxrwx. 1 root root 9 Jul 27 11:44 python2 -> python2.7
-rwxr-xr-x. 1 root root 7136 Nov 5 2016 python2.7
-rwxr-xr-x. 2 root root 11312 Apr 7 10:35 python3.6
-rwxr-xr-x. 2 root root 11312 Apr 7 10:35 python3.6m

First, delete the existing symlink for Python:

	 15	 Recipe 1 - Installing Python and PyEZ

$ sudo rm /usr/bin/python

Next, symlink Python3 to Python 3.6:

$ sudo ln -s /usr/bin/python3.6 /usr/bin/python3

Finally, link Python to Python3:

$ sudo ln -s /usr/bin/python3 /usr/bin/python
$ ls -al /usr/bin/ | grep python
-rwxr-xr-x. 1 root root 11232 Dec 2 2016 abrt-action-analyze-python
lrwxrwxrwx. 1 root root 16 Jul 31 16:01 python -> /usr/bin/python3
lrwxrwxrwx. 1 root root 9 Jul 27 11:44 python2 -> python2.7
-rwxr-xr-x. 1 root root 7136 Nov 5 2016 python2.7
lrwxrwxrwx. 1 root root 18 Jul 31 16:00 python3 -> /usr/bin/python3.6
-rwxr-xr-x. 2 root root 11312 Apr 7 10:35 python3.6
-rwxr-xr-x. 2 root root 11312 Apr 7 10:35 python3.6m

Now, let’s install pip:

$ wget https://bootstrap.pypa.io/get-pip.py -O - | sudo -H python

And to install PyEZ:

$ sudo -H pip install junos-eznc

Testing

Test by starting the Python interactive shell and loading the PyEZ module:

$ python
Python 3.6.1 (default, Apr 7 2017, 09:32:32)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-11)] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from jnpr.junos import Device

If there are no errors, then PyEZ is ready to use. If the module is not installed prop-
erly, you would see an error similar to the following:

$ python
Python 3.6.1 (default, Apr 7 2017, 09:32:32)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-11)] on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>> from jnpr.junos import Device
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
ModuleNotFoundError: No module named ‘jnpr’

To quit Python, type quit() at the Python prompt.

If you experience any issues with the installation of PyEZ you can search for help
in past issues, or submit a new issue at the PyEZ GitHib project located at https://
github.com/Juniper/py-junos-eznc.

https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc

	 16	 Day One: Junos® PyEZ Cookbook

Discussion
There are some examples for getting started located at https://github.com/Juniper/
py-junos-eznc. This is also a great site if you run into issues and need help either
installing PyEZ or running a script.

Additionally, the Automation Forum on the Juniper Tech Wiki is a great place to
seek help and see more script examples. It can be found at http://forums.juniper.
net/t5/Automation/tkb-p/Automation_Scripting.

https://github.com/Juniper/py-junos-eznc
https://github.com/Juniper/py-junos-eznc
http://forums.juniper.net/t5/Automation/tkb-p/Automation_Scripting
http://forums.juniper.net/t5/Automation/tkb-p/Automation_Scripting

Recipe 2 - Enabling NETCONF
by Steve Steiner

You need to do one more thing before you can execute PyEZ scripts against a Juni-
per device – enable NETCONF.

Problem
Juniper devices must have NETCONF enabled prior to accepting incoming con-
nections from PyEZ.

Solution
Enable NETCONF in the Juniper device configuration using the following
guidelines:

Check NETCONF configuration

Check if NETCONF is already enabled. Do this by entering the following com-
mands from the Operational Mode command prompt:

automation@MX11> show configuration system services netconf

If NETCONF is configured, you will see output similar to this:

automation@MX11> show configuration system services netconf
ssh;

automation@MX11>

If NETCONF is not configured, you will see output similar to this:

automation@MX11> show configuration system services netconf

automation@MX11>

	 18	 Day One: Junos® PyEZ Cookbook

Non-SRX devices

Enabling NETCONF on non-SRX devices is straightforward. Enter configuration
mode by typing configure:

automation@MX11> configure
Entering configuration mode

[edit]
automation@MX11#

Then enable NETCONF over SSH:

[edit]
automation@MX11# set system services netconf ssh

[edit]
automation@MX11#

Finally, commit your changes and exit configuration mode:

[edit]
automation@MX11# commit and-quit
commit complete
Exiting configuration mode

automation@MX11>

On SRX Devices

Configuring NETCONF on an SRX device that is in flow-mode requires some ex-
tra steps. In addition to enabling NETCONF over SSH at the system services stan-
za, you’ll also need to allow NETCONF (and SSH) into the management
functional-zone.

To check if NETCONF is already allowed into the management zone, use the show
security zones functional-zone management command:

[edit]
automation@vsrx# show security zones functional-zone management
interfaces {
 ge-0/0/1.0 {
 host-inbound-traffic {
 system-services {
 ssh;
 }
 }
 }

}
You can see that SSH is allowed, however, NETCONF is not. To enable NET-
CONF, add it to the host-inbound-traffic system-services, either under the zone it-
self, or under a specific interface. In this case, it will be added to interface
ge-0/0/1.0:

	 19	 Recipe 2 - Enabling NETCONF

[edit security zones functional-zone management interfaces ge-0/0/1.0]
automation@vsrx# set host-inbound-traffic system-services netconf

Verify the changes:

[edit security zones functional-zone management interfaces ge-0/0/1.0]
automation@vsrx# top
[edit]
automation@vsrx# commit check
configuration check succeeds

Then commit the changes:

[edit]
automation@vsrx# commit
commit complete

Recipe 3 - Hello World!
by Steve Steiner

“Hello World!” is the traditional first attempt when a user is learning a new pro-
gramming language. While PyEZ isn’t a language, per se, you do need a starting
point and this recipe demonstrates how to use PyEZ to connect to a Juniper device
and gather some basic information.

Problem
You want to ensure that your PyEZ installation is complete and can successfully
connect to a Juniper device.

Solution
The basis for any automation project using PyEZ is to first be able to connect to a
Juniper device. The following Python code will allow you to connect to a Juniper
device and collect the basic facts about that device:

from pprint import pprint
from jnpr.junos import Device

dev = Device(host=’192.168.32.2’, user=’automation’, password=’automation1’)

dev.open()

pprint(dev.facts)

dev.close()

	 21	 Recipe 3 - Hello World!

NOTE	 	 By default, NETCONF over SSH listens on port 830. It’s also possible
to connect pass NETCONF to a device over port 22, but the argument port=22
would need to be added to the Device call. For example:

dev = Device(host=’192.168.32.2’, user=’automation’, password=’automation1’,port=’22’)

For this example, a vSRX was used, which yielded the following output:

$ python hello-world.py
{‘2RE’: False,
 ‘HOME’: ‘/var/home/automation’,
 ‘RE0’: {‘last_reboot_reason’: ‘0x4000:VJUNOS reboot’,
 ‘mastership_state’: ‘master’,
 ‘model’: ‘VSRX-S’,
 ‘status’: ‘OK’,
 ‘up_time’: ‘1 day, 11 hours, 5 minutes, 34 seconds’},
 ‘RE1’: None,
 ‘RE_hw_mi’: False,
 ‘current_re’: [‘master’,
 ‘node’,
 ‘fwdd’,
 ‘member’,
 ‘pfem’,
 ‘fpc0’,
 ‘re0’,
 ‘fpc0.pic0’],
 ‘domain’: None,
 ‘fqdn’: ‘vsrx’,
 ‘hostname’: ‘vsrx’,
 ‘hostname_info’: {‘re0’: ‘vsrx’},
 ‘ifd_style’: ‘CLASSIC’,
 ‘junos_info’: {‘re0’: {‘object’: junos.version_info(major=(15, 1), type=X, minor=(49, ‘D’, 90),
build=7),
 ‘text’: ‘15.1X49-D90.7’}},
 ‘master’: ‘RE0’,
 ‘model’: ‘VSRX’,
 ‘model_info’: {‘re0’: ‘VSRX’},
 ‘personality’: None,
 ‘re_info’: {‘default’: {‘0’: {‘last_reboot_reason’: ‘0x4000:VJUNOS reboot’,
 ‘mastership_state’: ‘master’,
 ‘model’: ‘VSRX-S’,
 ‘status’: ‘OK’},
 ‘default’: {‘last_reboot_reason’: ‘0x4000:VJUNOS ‘
 ‘reboot’,
 ‘mastership_state’: ‘master’,
 ‘model’: ‘VSRX-S’,
 ‘status’: ‘OK’}}},
 ‘re_master’: {‘default’: ‘0’},
 ‘serialnumber’: ‘7B188C38E0D0’,
 ‘srx_cluster’: False,
 ‘srx_cluster_id’: None,
 ‘srx_cluster_redundancy_group’: None,
 ‘switch_style’: ‘VLAN_L2NG’,
 ‘vc_capable’: False,
 ‘vc_fabric’: None,
 ‘vc_master’: None,
 ‘vc_mode’: None,
 ‘version’: ‘15.1X49-D90.7’,

	 22	 Day One: Junos® PyEZ Cookbook

 ‘version_RE0’: ‘15.1X49-D90.7’,
 ‘version_RE1’: None,
 ‘version_info’: junos.version_info(major=(15, 1), type=X, minor=(49, ‘D’, 90), build=7),
 ‘virtual’: None}

More Detailed Explanation

The first two lines import the pprint library and the Device class of PyEZ,
respectively:

from pprint import pprint
from jnpr.junos import Device

In the next line, you create a variable, dev, and assign it the Device() class:

dev = Device(host=’192.168.32.2’, user=’automation’, password=’automation1’)

Next, you open the connection to the Juniper device using the open() function. This
will open a connection to the device and, by default, gather some facts about that
device:

dev.open()

While the dev.open() line opened the connection and gathered some basic facts, it
doesn’t display them unless you explicitly tell it to. This is what you do with the
next line, using the pprint() function:

pprint(dev.facts)
Finally, you need to close the connection to the device, by using the close()
function:

dev.close()

If at this point you’re confused about what a function or library is, or how to
assign and reference variables, you might pause this book and read the tutorials at
https://www.learnpython.org/. If you’re already familiar with Python, the PyEZ
library is fully documented at http://junos-pyez.readthedocs.io.

MORE?		 If you experience any issues you can seek help either at the PyEZ
GitHub project, https://github.com/Juniper/py-junos-eznc, or at the Juniper
Automation Tech Wiki: http://forums.juniper.net/t5/Automation/tkb-p/Automa-
tion_Scripting.

https://www.learnpython.org/
http://junos-pyez.readthedocs.io
https://github.com/Juniper/py-junos-eznc
http://forums.juniper.net/t5/Automation/tkb-p/Automation_Scripting
http://forums.juniper.net/t5/Automation/tkb-p/Automation_Scripting

Recipe 4 - PyEZ Connection Options
by Steve Steiner

In order to execute scripts against a device, a NETCONF session needs to be es-
tablished. This recipe provides four methods for doing so.

Problem
I need to connect to my device(s) to run PyEZ scripts against them.

Solution
There are a few different ways to connect to your device(s) with PyEZ. Deciding
which course of action is right really depends on your circumstances. This recipe
demonstrates four connection methods and points out the benefits and limitations
of each.

Direct Reference
The easiest connection method is to directly reference the connection parameters
in the connection function, as discussed in “Recipe 03 – Hello World!”:

dev = Device(host=’192.168.32.2’, user=’automation’, password=’automation1’)

Benefits Simple Description

Drawbacks Credentials are exposed in the code.

Can only be used for one device.

Best use Debugging.

Python interpreter as a Junos power shell.

	 24	 Day One: Junos® PyEZ Cookbook

Interactive Input
Another way to pass the credentials to a device is to prompt for user input using
input() for the hostname/IP and username, and getpass for the password:

import getpass
from jnpr.junos import Device

host = None
uname = None
pw = None

if host == None:
 host = input(“Hostname or IP: “)

if uname == None:
 uname = input(“Username: “)

if pw == None:
 pw = getpass.getpass()

dev = Device(host=host,user=uname,password=pw)

Benefits Credentials are not in the source code, making this both secure and portable.

Drawbacks Can only be used for one device.

Best use Quick scripts that need only to connect to a single device.

SSH Public Keys
By far the easiest and most secure connection method is using SSH keys. First, en-
sure that the user account on the device has a corresponding SSH key configured:

automation@mx80> show configuration system login user automation
uid 2004;
class super-user;
authentication {
 ssh-rsa “ssh-rsa
…key data…”; ## SECRET-DATA
}

When using SSH key-based authentication, the only argument needed for Device()
is host, so the code is greatly simplified:

from jnpr.junos import Device
host = None

if host == None:
 host = input(“Hostname or IP: “)

dev = Device(host=host)

This code assumes that the user invoking the script has an account on the device

	 25	 Recipe 4 - PyEZ Connection Options

and the private key in their default key agent. Alternatively, it’s possible to refer-
ence the private key file from within the script. If the private key is passphrase pro-
tected, the password argument in Device() is used to decrypt the private key:

import getpass
from jnpr.junos import Device
from pprint import pprint

host = None
uname = None
pw = None
key_file = ‘./id_rsa_mx80’

if host == None:
 host = input(“Hostname or IP: “)

if uname == None:
 uname = input(“Username: “)

if pw == None:
 pw = getpass.getpass(“SSH private key passphrase: “)

dev = Device(host=host,user=uname,password=pw,ssh_private_key_file=key_file)

In this example, there is a passphrase-protected private key located in the same di-
rectory as the script, called id_rsa_mx80. The public key was configured under the
user ‘automation’ on the device. When the script is run, it will prompt for the host-
name/IP, user name, and the passphrase to decrypt the private key.

Benefits Credentials are not in the source code, making this both secure and portable.

Drawbacks Can only be used for one device.

Best use Quick scripts that need to only connect to a single device.

Extensibility
All the preceding examples were able connect to a single device. This limits the
usefulness when it’s desirable to run the same script against multiple devices. The
solution is to parse an input file and use those values to feed the variables for
Device():

import getpass
from jnpr.junos import Device
import sys
import argparse
import os

filename = None
host = None
uname = None

	 26	 Day One: Junos® PyEZ Cookbook

pw = None
key_file = ‘./id_rsa_mx80’

if filename == None:
 filename = raw_input(“Enter filename: “)

if uname == None:
 uname = raw_input(“Username: “)

if pw == None:
 pw = getpass.getpass(“SSH private key passphrase: “)

with open(filename) as f:
 for line in f:
 host = line.rstrip(os.linesep)

dev = Device(host=host,user=uname,password=pw,ssh_private_key_file=key_file)

Now the script prompts the user for a CSV list of hostnames or IP addresses. This
list is iterated over, and each line is stored as, the host variable. This type of con-
nection works well when multiple devices can all be connected using common cre-
dentials, which is customary in most networks.

Benefits Credentials are not in the source code, making this both secure and portable.

Able to connect to many devices.

Drawbacks Assumes all devices use the same credentials.

Best use Running the same script against many devices.

Recipe 5- Getting Started
by Jessica Garrison

�� Python Version Used:	 2.7

�� PyEZ Version Used:	 2.1.5

�� Junos OS Used: 	 11.4

�� Juniper Platforms General Applicability: (MX, EX, etc.)

�� Example by PyEZ Developer Nitin Kumar: https://github.com/vnitinv/
pyez-examples/blob/master/7_rollback_config.py

So how does one get started? If you have followed Recipes 1-4 in this cookbook,
you have set up the server/VM/container with all the necessary software require-
ments to be the PyEZ server. Pair this with a Junos device running at least Junos
OS 11.4 (Junos hardware or NFV) and you are good to go. Here is a super simple
script by PyEZ Juniper expert, Nitin Kumar, that shows off the elegance of PyEZ.

Problem
An operator has been making configuration changes without committing the con-
figurations. When a second operator makes a different configuration change and
commits, that second operator will be committing both configurations. Problems
ensue.

https://github.com/vnitinv/pyez-examples/blob/master/7_rollback_config.py
https://github.com/vnitinv/pyez-examples/blob/master/7_rollback_config.py

	 28	 Day One: Junos® PyEZ Cookbook

Solution
Run a job that does a rollback (see Figure 5.1) if there is a candidate configuration,
preventing this issue from occurring.

Figure 5-1	 Recipe 5’sSolution Flowchart

Step-By-Step

Items needed: Hostname or IP, username, and password.

�� Connect to the Junos OS device.

�� Run a show | compare CLI command.

�� If there is a candidate configuration, execute a rollback.

�� Close the connection to the Junos OS device.

	 29	 Recipe 5- Getting Started

Now the code (nine lines):

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

dev = Device(host=’xxxx’, user=’demo’, password=’demo123’, gather_facts=False)
dev.open()

cu = Config(dev)
diff = cu.diff()
if diff:
 cu.rollback()
dev.close()

Next the code broken down piece by piece. Let’s begin with pre-flow, and import
the Junos module in order to be able to use PyEZ on Junos OS devices:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

Items needed: Hostname or IP, username, and password:

dev = Device(host=’xxxx’, user=’demo’, password=’demo123’, gather_facts=False)

Connect to the Junos OS device:

dev.open()

Enter configuration mode and you are now able to use the configuration utilities.
diff and rollback are two examples of these utilities:

cu = Config(dev)

Run a show |compare command:

diff = cu.diff()

If there is a candidate configuration, execute a rollback:

if diff:
 cu.rollback()

Close the connection to the Junos OS device:

dev.close()

As you can see, this is “EZ.” If one has network fundamentals, then PyEZ, is likely
a great gateway method to learn Python. Automating networks provides the con-
text that makes learning Python or improving your Python skills a gratifying
experience.

Recipe 6 - Automating NETCONF Service Activation
by Ben Dale

�� Python Version Used: 	 3.6

�� PyEZ Version Used: 	 N/A

�� Junos OS Used: 	 12.1 -> 15.1

�� Juniper Platforms General Applicability: All

Problem
In order for Juniper PyEZ to connect to your devices, you need to configure the
NETCONF daemon in Junos to listen for external connections.

Enabling this functionality is simply a matter of applying the following configura-
tion to your device(s):

set system services netconf ssh
If your network has a significant number of devices, however, logging into every
box to enable NETCONF (and thus Junos PyEZ automation) sounds like a job for
a lucky, enthusiastic, junior network engineer.

Surely we can automate this?!

This recipe explores the use of the netmiko library in Python to execute commands
in Junos directly on the CLI and prepare our network for automation with Junos
PyEZ.

Solution
First, let’s install the netmiko module to get underway:

pip install netmiko
Now a little about netmiko. Where PyEZ interacts with Junos via NETCONF,

	 31	 Recipe 6 - Automating NETCONF Service Activation

netmiko operates by interacting with the Junos CLI (over SSH in this case) sending
commands and waiting for a response.

This makes it an extremely useful tool for interacting with devices from vendors
that don’t provide NETCONF or other API mechanisms for programmatic access:

#!/usr/bin/env python3

import time
from getpass import getpass
from netmiko import ConnectHandler
from netmiko.ssh_exception import NetMikoTimeoutException, NetMikoAuthenticationException

def enable_netconf(net_device):
 print (“{} Connecting to {}”.format(time.asctime(), net_device[‘ip’]))
 junos_device = ConnectHandler(**net_device) #(5)
 configure = junos_device.config_mode() #(6)
 print (“{} Applying configuration to {}”.format(time.asctime(), net_device[‘ip’]))
 setssns = junos_device.send_command(“set system services netconf ssh”) #(7)
 print (“{} Committing configuration to {}”.format(time.asctime(), net_device[‘ip’]))
 junos_device.commit(comment=’Enabled NETCONF service’, and_quit=True) #(8)
 print (“{} Closing connection to {}”.format(time.asctime(), net_device[‘ip’]))
 junos_device.disconnect() #(9)

def main():
 user_login = input(‘Username: ‘) #(1)
 user_pass = getpass(‘Password: ‘)
 with open(‘inventory.txt’) as f: #(2)
 device_list = f.read().splitlines()
 for device in device_list:
 net_device = {
 ‘device_type’: ‘juniper’, #(3)
 ‘ip’: device,
 ‘username’: user_login,
 ‘password’: user_pass,
 }
 enable_netconf(net_device) #(4)

if __name__ == ‘__main__’:
 main()

Let’s walk through this simple script:

1. First, you interactively collect a login and password from the user to be used to
connect to each device. You could hard code these credentials, but that would
mean storing your password in plain-text inside your code, which is not
recommended.

2. Next, the script opens the inventory.txt file. This is simply a list of IP addresses
or hostnames of all the devices you wish to execute this script against – with one
entry per line, for example:

192.168.50.254
192.168.51.254
bne-core-01

	 32	 Day One: Junos® PyEZ Cookbook

3. Next, the script iterates through each IP address or hostname, and creates a Py-
thon dict for each network device, containing the Device Type, IP Address, User-
name, and Password. The netmiko module will use this information when
connecting to each device.

4. Execute the enable_netconf function against each device that is generated from
our inventory.

5. Connect to the device via SSH.

6. Enter configuration mode within Junos.

7. And send the set system services netconf ssh command to the CLI.

8. Commit the configuration to the device.

9. Then close the session.

If no errors were encountered, you will now have a set of devices with NETCONF
enabled, ready to be controlled with your first PyEZ script.

Discussion
Creating an inventory file and then enabling NETCONF across your fleet is the
first step in your automation journey with PyEZ.

Depending on how many devices you have in your network, you will see that per-
forming this task on each node, sequentially, will become very time consuming.

In fact, on lower-end products such as the SRX Branch, it can take up to 15-20
seconds to authenticate to a device over SSH, apply a configuration, commit the
configuration and then close the connection gracefully.

This may not seem like a long time, compared to executing it manually, but imag-
ine you are performing this operation on several hundred or several thousand de-
vices (for example: a large branch network).

Since your Python script is idle most of the time, waiting for updates from your
Junos device, surely it could go faster?

In Recipe 9, you’ll explore the Python multiprocessing module and learn how to
execute simple tasks such as this in parallel.

Once you complete this chapter, come back to this recipe and try re-writing it so
that each call to enable_netconf() is executed in parallel.

Recipe 7 - PyEZ with Console: Learning Terminal
Server Mapping
by Jessica Garrison

�� Python Version Used: 		 2.7

�� PyEZ Version Used: 		 2.1.5

�� NetConify Version Used: 	 1.0.2

�� Junos OS Used: 		 All supported Junos OS releases

�� Juniper Platforms General Applicability: Tested on all hardware platforms
running Junos OS.

This recipe shows an example of how to learn which Junos device is connected to
each terminal server port.

Problem
This recipe could solve multiple issues:

�� You need to map out your terminal server ports.

�� You’re looking for a particular device’s console port because you want to
zeroize the device and put a new configuration on the device.

�� You lost management port connectivity to a device and you need to restore it.

�� You are rebooting a device and you want to watch the console port during a
reboot.

Solution
Using PyEZ over a console connection is not as fast using an RPC over the man-
agement IP address, but the script remains the same:

	 34	 Day One: Junos® PyEZ Cookbook

from jnpr.junos import Device
from lxml import etree

print ‘Terminal Server Inventory Report’
count = 7007
while (count < 7033):
 try:
 with Device(host=’10.164.1.233’, user=’root’, password=’Embe1mpls’, mode=’telnet’, port=count,
gather_facts=True) as dev:
 junosinfo = dev.facts
 print ‘Hostname:’ + junosinfo[‘hostname’] + ‘,’ + ‘Hardware:’ + junosinfo[‘model’] + ‘,’ +
‘Software:’ + junosinfo[‘version’] + ‘,’ + ‘TermServPort:’ + str(count)
 except:
 pass
 count = count + 1

To further explain the Python script. We are using a while loop which increments
“count” from 7001 to 7032. These are the 32 ports on the terminal server. Using
host X.X.X.X and port 70XX (port = count) provide telnet connectivity via the
console port.

count = 7001
while (count < 7033):
 count = count + 1

This particular script was built to be user friendly, beginner level, and run from the
shell. That is shy we print out some basic information for the user to see. In reality,
the script could be expanded to pull from a csv file or insert into a SQL database.

junosinfo = dev.facts
print ‘Hostname:’ + junosinfo[‘hostname’] + ‘,’ + ‘Hardware:’ + junosinfo[‘model’] + ‘,’ + ‘Software:’
+ junosinfo[‘version’] + ‘,’ + ‘TermServPort:’ + str(count)

The “pass” was included to bypass non-Junos OS devices and not see the Excep-
tion handling. This script takes quite some time to run as using Netconify is not as
fast as regular PyEZ.

Discussion
Additional information on the netconify utility can be found at its GitHub loca-
tion: https://github.com/Juniper/py-junos-netconify.

https://github.com/Juniper/py-junos-netconify

Recipe 8 - PyEZ with Console: Pushing an Initial
Configuration
by Jessica Garrison

� Python Version Used: 		 2.7

� PyEZ Version Used: 		 2.1.5

� NetConify Version Used: 1.0.2

� Junos OS Used: 		 All supported Junos OS releases

� Juniper Platforms General Applicability: Tested on all hardware platforms
running Junos OS.

This recipe supplies an example of how to use PyEZ with a console connection to
push a configuration that would provide SSH and NETCONF connectivity.

Problem
How do you push a configuration onto a Junos OS device that has come straight
from the factory or has been zeroized?

Solution
In this script, you simply push a configuration in text format from the PyEZ con-
trol machine onto the MX Series device over Telnet, and return the code True as
verification. This example is shown in its simplest form but could be altered to pull
three variables of host, port, and configuration path and push the initial configura-
tions across an entire network of Junos OS devices:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

	 36	 Day One: Junos® PyEZ Cookbook

with Device(host=’X.X.X.X’, user=’root’, password=’password’, mode=’telnet’, port=’XX’, gather_
facts=True) as dev:
cu = Config(dev)
cu.load(path=’/var/tmp/mx001-svn.conf’, format=’text’, overwrite=True)
print “Configuration Committed:”, cu.commit()

Output from script:

jgarrison@automation:~/pyezcookbook$ python initialconf.py
Configuration Committed: True

Discussion
Within the Junos OS there are numerous ways to push an initial configuration
onto a device with automation:

�� Ansible

�� PyEZ

�� Netconify

�� ZTP

�� Autoinstallation

If one is already a PyEZ user, then adding the netconify utility is a simple way to
expand on the feature set.

NOTE 	 Using PyEZ over a console connection is not as fast using an RPC over
the management IP address.

For more information on the netconify utility, please check its GitHub location:
https://github.com/Juniper/py-junos-netconify.

https://github.com/Juniper/py-junos-netconify

Recipe 9 - Checking File System Directory Usage on
Multiple Devices in Parallel
by Peter Klimai

�� Python Version Used: 	 3.6

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: Multiple, including 17.1R2.7 and 12.1X47-D40.

�� Juniper Platforms General Applicability: All

Performing file system maintenance tasks on many devices can be just plain boring
and time-consuming. This recipe offers an example of how to automate work file
system tasks using Junos PyEZ. It also uses Python’s multiprocessing module to
speed up the task execution.

Problem
You want to perform a directory usage check (similar to the standard UNIX du
utility) on multiple Junos devices for a specific directory. You want to automate the
process and get the data as soon as possible.

NOTE	 You can find additional discussion about, and examples of, multiprocess-
ing with Python and Junos PyEZ in Recipe 6, by Ben Dale, in this cookbook.

Solution
Junos PyEZ has multiple useful utilities for working with the Junos device’s file
system. They are contained in FS class of jnpr.junos.utils.fs module. The FS class
includes such methods as cp() (local file copy), ls() (return directory listing), mk-
dir() (create a directory), and many others. To solve the task of getting directory
usage for a specific directory, use the directory_usage() method.

	 38	 Day One: Junos® PyEZ Cookbook

NOTE	 The directory_usage() method accepts two optional parameters: path
(directory path; the default is current directory) and depth (default is 0, meaning do
not walk the subdirectories). You can find all the details on library methods and
their parameters in the PyEZ documentation.

To solve the task, create the automation script that you name directory_usage_mul-
tiprocess.py. Its source code is presented below, and the script’s parts are num-
bered as # (n) for the explanation that follows:

#!/usr/bin/python3

from jnpr.junos import Device # (1)
from jnpr.junos.utils.fs import FS
from jnpr.junos.exception import *
import multiprocessing
import time

NUM_PROCESSES = 1 # (2)
USER = “lab”
PASSWD = “lab123”
DEVICES = [
 “10.254.0.31”,
 “10.254.0.34”,
 “10.254.0.35”,
 “10.254.0.37”,
 “10.254.0.38”,
 “10.254.0.41”,
 “10.254.0.42”,
]
DIRECTORY = “/var/tmp/”

def check_directory_usage(host): # (3)
 try:
 with Device(host=host, user=USER, password=PASSWD) as dev:
 fs = FS(dev) # (4)
 print(“Checking %s: “ % host, end=””)
 print(fs.directory_usage(DIRECTORY)) # (5)
 except ConnectRefusedError: # (6)
 print(“%s: Error - Device connection refused!” % host)
 except ConnectTimeoutError:
 print(“%s: Error - Device connection timed out!” % host)
 except ConnectAuthError:
 print(“%s: Error - Authentication failure!” % host)

def main(): # (7)
 time_start = time.time()
 with multiprocessing.Pool(processes=NUM_PROCESSES) as process_pool: # (8)
 process_pool.map(check_directory_usage, DEVICES) # (9)
 process_pool.close() # (10)
 process_pool.join()
 print(“Finished in %f sec.” % (time.time() - time_start)) # (11)

if __name__ == “__main__”: # (12)
 main()

	 39	 Recipe 9 - Checking File System Directory Usage on Multiple Devices in Parallel

Here is the explanation of what is happening in the script, using the numeral
markers:

1. Import the PyEZ Device and FS classes, exceptions, and the multiprocessing and
time modules from the standard Python library.

2. Introduce some “constants” including the number of parallel processes (NUM_
PROCESSES), username, password, list of device IP addresses, and the directory
name. Note: Consider replacing some of these hard-coded values with script pa-
rameters to make it more production ready.

3. The check_directory_usage(host) function will get and print the directory usage
for the device with the address given by the host. The function begins with the try
operator, followed by with (context manager) syntax for device connection.

4. Inside the context manager for the Device instance dev, you create an instance of
file system (FS) class and pass dev to it as a parameter.

5. Call directory_usage() method providing DIRECTORY as a parameter. Print the
result.

6. Catch some of the possible exception situations using the except operators.

7. The main function. Here, you first store current time to the time_start variable.
This is just used for displaying information on how long the script ran to the end
of execution.

8. Create a pool process_pool of NUM_PROCESSES processes using context manager
syntax (the with operator).

9. Use Pool.map() method to apply a previously defined function check_directory_
usage() to each of the entries in the DEVICES list. At this point, parallel execution
starts (at least if NUM_PROCESSES is set to a value larger than 1 – see below).

10. Following best practice recommendations, use close() method to notify the
process pool that no other work is going to be submitted to it. Use join() method
to wait for all the worker processes to finish and terminate.

11. Print the time it took to execute the script.

12. Standard Python script “entry point”.

Now, let’s run the script to see how it works. At this point you have a setting of
NUM_PROCESSES = 1 in the script, which basically means devices are queried in se-
quence (no parallelization of tasks). You’ll get the following results in your
terminal:

user@ubuntu:~$./directory_usage_multiprocess.py
Checking 10.254.0.31: {‘/var/tmp/’: {‘size’: ‘84M’, ‘blocks’: 171992, ‘bytes’: 88059904}}
Checking 10.254.0.34: {‘/var/tmp/’: {‘size’: ‘112K’, ‘blocks’: 224, ‘bytes’: 114688}}
Checking 10.254.0.35: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 456100, ‘bytes’: 233523200}}
Checking 10.254.0.37: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 456052, ‘bytes’: 233498624}}

	 40	 Day One: Junos® PyEZ Cookbook

Checking 10.254.0.38: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 455952, ‘bytes’: 233447424}}
Checking 10.254.0.41: {‘/var/tmp/’: {‘size’: ‘20K’, ‘blocks’: 40, ‘bytes’: 20480}}
Checking 10.254.0.42: {‘/var/tmp/’: {‘size’: ‘16K’, ‘blocks’: 32, ‘bytes’: 16384}}
Finished in 12.057031 sec.

You get the data you needed for each device; directory usage for /var/tmp is given in
units of bytes, blocks, and in human-readable form. However, in the lab, the script
took around 12 seconds for seven devices to execute, but can we do it faster? Yes!
Let’s just set NUM_PROCESSES = 2, save, and then re-run the script:

user@ubuntu:~$./directory_usage_multiprocess.py
Checking 10.254.0.34: {‘/var/tmp/’: {‘size’: ‘112K’, ‘blocks’: 224, ‘bytes’: 114688}}
Checking 10.254.0.31: {‘/var/tmp/’: {‘size’: ‘84M’, ‘blocks’: 171992, ‘bytes’: 88059904}}
Checking 10.254.0.35: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 456100, ‘bytes’: 233523200}}
Checking 10.254.0.37: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 456052, ‘bytes’: 233498624}}
Checking 10.254.0.38: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 455952, ‘bytes’: 233447424}}
Checking 10.254.0.41: {‘/var/tmp/’: {‘size’: ‘20K’, ‘blocks’: 40, ‘bytes’: 20480}}
Checking 10.254.0.42: {‘/var/tmp/’: {‘size’: ‘16K’, ‘blocks’: 32, ‘bytes’: 16384}}
Finished in 6.975386 sec.

You get the same data, but almost two times faster! This is because you used two
independent threads of execution (also known as workers).

Now, let’s set NUM_PROCESSES = 8 (so, with the number of hosts in the DEVICES list, no
device has to wait in the queue for the others to finish):

user@ubuntu:~$./directory_usage_multiprocess.py
Checking 10.254.0.35: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 456100, ‘bytes’: 233523200}}
Checking 10.254.0.38: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 455952, ‘bytes’: 233447424}}
Checking 10.254.0.37: {‘/var/tmp/’: {‘size’: ‘223M’, ‘blocks’: 456052, ‘bytes’: 233498624}}
Checking 10.254.0.41: {‘/var/tmp/’: {‘size’: ‘20K’, ‘blocks’: 40, ‘bytes’: 20480}}
Checking 10.254.0.42: {‘/var/tmp/’: {‘size’: ‘16K’, ‘blocks’: 32, ‘bytes’: 16384}}
Checking 10.254.0.34: {‘/var/tmp/’: {‘size’: ‘112K’, ‘blocks’: 224, ‘bytes’: 114688}}
Checking 10.254.0.31: {‘/var/tmp/’: {‘size’: ‘84M’, ‘blocks’: 171992, ‘bytes’: 88059904}}
Finished in 3.511946 sec.

Again, significantly faster! And the speedy effect will become even more obvious if
you have dozens, or even hundreds, of devices to query.

Discussion
You’ve seen a simple example of working with device file system utilities using
Junos PyEZ. The script execution was parallelized using Python multiprocessing
library. Generally, parallelization of automation tasks on multiple devices is a very
natural idea. Many other scripts presented in this book can benefit from them be-
ing modified for multiprocessing in the same way as demonstrated here.

Recipe 10 - Configuring Devices Using Junos PyEZ
and Jinja2 Templates
by Scott Ware

�� Python Version Used: 	 3.6

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: 	 15.1X49-D100.6

�� Juniper Platforms General Applicability: All

This recipe shows an example of how you can configure basic system settings on
multiple devices using Junos PyEZ and Jinja2 templates.

Problem
You are tasked with configuring some basic settings, such as a DNS server, NTP
server, and SNMP information on numerous firewalls throughout your organiza-
tion. Some of these settings will be the same across all devices, and certain devices
will require a different setting. How do you accomplish this in a timely fashion, so
you don’t have to log in to each firewall and manually make the changes?

This recipe aims to solve that exact problem by quickly allowing you to configure
multiple devices, each with similar and device-specific configuration settings, with-
out the need for manual intervention. And, you will be using Jinja2 for your con-
figuration templates. Jinja2 is a powerful template engine that allows you to easily
manipulate data in pre-defined templates, such as your configuration file.

	 42	 Day One: Junos® PyEZ Cookbook

Solution
To solve the problem of configuring devices with a same set of configuration val-
ues, you first want to create three files: config.txt, the configuration template, fire-
walls.txt, a list of devices (IP address or hostname), one per line that you want to
configure, and the Python script named config-devices.py.

The config.txt contains the configuration commands that you want to apply. The
template values will be passed from our config-device.py script and applied wher-
ever the {{ variable_name }} sections are in config.txt. Below is what the config.txt
file looks like:

set system name-server {{ dns_server }}
set system ntp server {{ ntp_server }}
set snmp location “{{ snmp_location }}”
set snmp contact “{{ snmp_contact }}”
set snmp community {{ snmp_community }} authorization read-write
set snmp trap-group snmp-traps targets {{ snmp_trap_recvr }}

NOTE	 For more information on, and examples of, using Jinja2 templates
please refer to the Jinja2 documentation: http://jinja.pocoo.org/docs.

Below is the code for our script, config-devices.py. Each line in the script is num-
bered as #(n) for the explanation that follows:

#1	 from jnpr.junos import Device
#2	 from jnpr.junos.utils.config import Config
#3
#4	 USER = “admin”
#5	 PW = “starwars”
#6	 CONFIG_FILE = ‘config.txt’
#7	 CONFIG_DATA = {
#8		 ‘dns_server’: ‘8.8.8.8’,
#9		 ‘ntp_server’: ‘24.56.178.140’,
#10		 ‘snmp_location’: ‘Data center core rack’,
#11		 ‘snmp_contact’: ‘IT Security’,
#12		 ‘snmp_community’: ‘snmprw’,
#13		 ‘snmp_trap_recvr’: ‘192.168.1.10’
#14	 }
#15
#16	 def config_devices(devices=’firewalls.txt’):
#17		 with open(devices, ‘r’) as f:
#18			 firewalls = f.readlines()
#19			 firewalls = [x.strip() for x in firewalls]
#20
#21			 for firewall in firewalls:
#22				 dev = Device(host=firewall, user=USER, password=PW).open()
#23				 with Config(dev) as cu:
#24					 cu.load(template_path=CONFIG_FILE, template_vars=CONFIG_DATA, format=’set’,
merge=True)
#25					 cu.commit(timeout=30)
#26					 print(“Committing the configuration on device: {}”.format(firewall))
#27				 dev.close()
#28
#29	 if __name__ == “__main__”:
#30		 config_devices

http://jinja.pocoo.org/docs

	 43	 Recipe 10 - Configuring Devices Using Junos PyEZ and Jinja2 Templates

Below is the explanation of what is happening in this script:

1. Line #1, 2: Import PyEZ Device and Config classes.

2. Line #4 – 14: Define a set of “constants” that will be used for logging into the
devices, as well as configuration data: user, pw, config_file, config_data.

3. Line #16: The function config_devices() takes one parameter: devices. This is a
file with the IP address or hostname of each device you wish to configure, one per
line.

4. Line #17 – 19: Open our list of devices. The line immediately following, firewalls
= f.readlines(), reads the file into a variable called firewalls. Line #19, firewalls =
[x.strip() for x in firewalls], strips any new line characters, which could pose a
problem when connecting to each device.

5. Line #21: Iterate over each device that you want to configure.

6. Line #22 – 25: Open the connection to the device for configuration. The line
immediately following: with Config(dev) as cu: passes the device connection to the
Config class, which allows you to then load your Config in line #24, and commit
your changes (line #25).

7. Line #26: Prints a status message to the console that a specific device has been
configured.

8. Line #27: Closes our connection to the device.

9. Line #29 – 30: Standard Python script “entry point.”

Now you can run the script manually to see if it works properly. You get the fol-
lowing results in the terminal, which tells you that your devices have been
configured:

user@laptop:~$ python config-devices.py
Committing the configuration on device: corp-fw.company.com
Committing the configuration on device: branch-fw.company.com

Congratulations! You’ve just configured multiple devices with a few keystrokes.

Discussion
This script showed us how to configure multiple devices that share a common set
of values. What if you need to configure specific values for each device, across mul-
tiple devices?

You can populate a CSV file with a header row that contains your variable names,
and each subsequent row can include a device, and its specific settings. Here is a
sample CSV file:

	 44	 Day One: Junos® PyEZ Cookbook

firewall,dns_server,ntp_server,snmp_location,snmp_contact,snmp_community,snmp_trap_recvr
corp-fw.company.com,8.8.8.8,24.56.178.140,Data center core rack,IT Security,snmprw,1.1.1.1
branch-fw.company.com,4.4.2.2,132.163.4.102,Wiring closet,Network operations,snmpro,2.2.2.2

The next function replaces our config_devices() function from the previous script.
This will take the CSV file as the parameter, and for each row after the top/header,
will configure each device with the values you specified in the file. Since we are us-
ing Python’s CSV library, at the top of your script you need to add the following
line: import csv, above or below the existing import statements:

def config_multi_devices(csv_file=’config-data.csv’):
 with open(csv_file) as f:
 csvfile = csv.DictReader(f)

 for row in csvfile:
 firewall = row[‘firewall’]
 values = {
 ‘dns_server’: row[‘dns_server’],
 ‘ntp_server’: row[‘ntp_server’],
 ‘snmp_location’: row[‘snmp_location’],
 ‘snmp_contact’: row[‘snmp_contact’],
 ‘snmp_community’: row[‘snmp_community’],
 ‘snmp_trap_recvr’: row[‘snmp_trap_recvr’]
 }

 dev = Device(host=firewall, user=USER, password=PW).open()
 with Config(dev) as cu:
 cu.load(template_path=CONFIG_FILE, template_vars=values, format=’set’, merge=True)
 cu.commit(timeout=30)
				 print(“Committing the configuration on device: {}”.format(firewall))
 dev.close()

This alternative method provides more flexibility, as well as one central spot to
keep track of the configuration data you wish to use. As you can see, using tem-
plates is very flexible, and hopefully it will simplify your configuration tasks!

Recipe 11 - Benefits of Taking a Snapshot on ACX
Series Access Routers
by Ivan Del Rio Fernandez

�� Python Version Used: 	 2.7.3

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: 	 15.1R6.7

�� Juniper Platforms General Applicability: ACX Series platform (except the
ACX5048 and ACX5096)

Learn why using PyEZ Junos to take a snapshot on the ACX Series Universal Ac-
cess Routers can be beneficial by disabling or enabling module traces or syslog mes-
sages automatically, which may reduce the disk I/O operations during the
procedure.

Platform

The ACX Series keeps the primary and backup Junos images in two independently
bootable root partitions. Dual-root partitioning allows the ACX Series router to
remain functional even if there is file system corruption, and facilitates easy recov-
ery of the file system. Maintaining data consistency across router partitions means
you won’t encounter any unpleasant surprises if the active partition gets corrupted.

Problem
Before taking a snapshot on an ACX Series router, it is recommended to rotate log
files and delete unused files, as well as keep traceoptions and syslog disabled to
avoid any unnecessary I/O operations while the router copies the data to the alter-
nate partition. Once the process is completed you will need to enable syslog, with
or without traceoptions.

	 46	 Day One: Junos® PyEZ Cookbook

These extra tasks can be very time consuming and may add more difficulty to the
snapshot procedure, particularly if you want to run them on several routers at the
same time:

user@node01> request system snapshot slice alternate
System may go unstable if module traces or syslog mesages are enabled during snapshot. It is
recommended to disable all debug logging.
Do you wish to continue? [yes,no] (no) yes

NOTE	 ACX5048 and ACX5096 routers do not support dual-root partitioning.
All other ACX routers run with dual-root partitioning.

Solution
Use PyEZ to handle all of these assignments automatically, in an orderly manner,
and without an operator to monitor the entire process.

You only need to input the IP of the device that you want to snapshot. Once you
launch the script, it will provide detailed information on every step and will abort
the process if there are any errors or problems while performing the tasks:

user@dev:/home/user# python snapshot.py 10.1.196.77

####################
Auto-snapshot v1.0
####################

-> Connecting to 10.1.196.77
-> Device platform: ACX1100
-> Performing system storage cleanup, please be patient
-> Disabling syslog + traceoptions (when enabled)
-> Snapshoting the device..
-> Re-enabling only syslog!

[Content of /etc/dumpdates]

/dev/da0s2a 0 Thu Aug 31 16:39:33 2017
/dev/da0s2e 0 Thu Aug 31 16:40:43 2017

Two files are used to inject the deactivate/delete/enable statements into the ACX
router(s). This method provides flexibility if you want to add or remove any state-
ments without changing code in the script:

disable_cmds.txt file:

deactivate system syslog
delete protocols rsvp traceoptions
delete protocols ospf traceoptions
delete protocols ldp traceoptions

enable_syslog.txt file:

activate system syslog

	 47	 Recipe 11 - Benefits of Taking a Snapshot on ACX Series Access Routers

#01 from jnpr.junos import Device
#02 from jnpr.junos.utils.config import Config
#03 from jnpr.junos.utils.fs import FS
#04 from jnpr.junos.rpcmeta import _RpcMetaExec
#05 from jnpr.junos.exception import *
#06 from lxml import etree
#07 from pprint import pprint
#08 import re
#09 import os, errno
#10 import os.path
#11 import time
#12 import sys
#13 import socket
#14
#15
#16 if len(sys.argv) > 2:
#17 print(“Please only call me with one parameter”)
#18 sys.exit(1)
#19
#20 device_ip = sys.argv[1]
#21
#22 try:
#23 socket.inet_aton(device_ip)
#24 except Exception as err:
#25 print err
#26 sys.exit(1)
#27
#28 path = “/home/idelrio/scripts/snapshoter/”;
#29
#30 disable_cmds = path + “disable_cmds.txt”
#31 enable_syslog = path + “enable_syslog.txt”
#32
#33 filename_snap = path + “files/” + device_ip + “.snap”
#34 filerun = path + device_ip + “.run”
#35
#36 filelog = path + “/log/” + device_ip + “_” + time.strftime(“%Y-%m-%d_%H:%M:%S”) + “.log”
#37
#38 def close():
#39
#40 	 file_log.close()
#41 os.remove(filename_snap)
#42 os.remove(filerun)
#43	 j_device.close()
#44
#45 def log(text):
#46
#47 	 file_log.write(text)
#48
#49
#50 def my_commit(file_path,device):
#51
#52	 #load snippet configuration
#53	 cfg = Config(device)
#54
#55	 #lock candidate configuration
#56	 cfg.lock()
#57
#58	 #load configuration

	 48	 Day One: Junos® PyEZ Cookbook

#59
#60	 try:
#61	 cfg.load(path=file_path, format=”set”, merge=True, ignore_warning=True)
#62	 except ConfigLoadError as e:
#63 			 if e.rpc_error[‘severity’] == ‘warning’:
#64 				 pass
#65 			 else:
#66 				 raise
#67

#68	 #commit configuration
#69
#70	 if cfg.commit():
#71		 pass	
#72	 else:
#73	 print “Failed to commit configuration.Aborting!”
#74	 log(“Failed to commit configuration.Aborting!”)
#75	 close()
#76	 sys.exit(1)
#77
#78	 #unlock configuration
#79	 cfg.unlock()
#80
#81	 #######################
#82	 ######## BEGIN ########
#83	 #######################
#84
#85	 ### open log file ###
#86
#87	 file_log = open(filelog, “w”)
#88
#89 	 print “”
#90	 print “##########################”
#91	 print “### Auto-snapshot v1.0 ###”
#92	 print “##########################”
#93	 print “”
#94
#95	 ### Is there any process that is targeting the same device already running? ###
#96
#97 	 if os.path.exists(filerun):
#98 print “-> There is another script instance targeting same device:”,device_ip
#99	 log(“-> There is another script instance targeting same device”)
#100	 file_log.close()
#101 sys.exit(1)
#102
#103	 print “-> Connecting to “,device_ip
#
	 # open a connection and establish a NETCONF session with the device
#104	 j_device = Device(host=device_ip, user=’user’, password=’pwd’)
#105	 try:
#106		 j_device.open()
#107	 except Exception as err:
#108 	print “Cannot connect to device:”, err
#109		 close()
#110		 sys.exit(1)
#111	
#112	 #increases device connection timeout
#113	 j_device.timeout= 600

	 49	 Recipe 11 - Benefits of Taking a Snapshot on ACX Series Access Routers

#114
#115	 ### Is the device platform ACX1100 ACX2200 ACX2200 ? ###
#116
#117	 if j_device.facts[‘model’] == “ACX2200” or j_device.facts[‘model’] == “ACX1100” or j_
device.facts[‘model’] == “ACX2100”:
#118 print “-> Device platform: “,j_device.facts[‘model’]
#119	 else: 	
#120		 print “-> (i) Platform device is not ACX1100/ACX2100/ACX2200”
#121		 log(“-> (i) Platform device is neither ACX1100 nor ACX2200 or ACX2100”)
#122		 close()
#123		 sys.exit(1)
#124
#125 	 #Inform other scripts what device is the script targeting into.
#127 	 frun = open(filerun, “w”)
#128

#129 ### Looks for input/output errors from previous snapshot ###
#130
#131	 text_file_snap = open(filename_snap, “w”)
#131	 op = j_device.rpc.file_show(filename=’/var/log/snapshot’)
#132	 text_file_snap.write(etree.tostring(op))
#133	 text_file_snap.close()
#134
#134	 with open(filename_snap) as f:
#135 for line in f:
#136 if re.search(‘Input/output error’, line):
#137 print “-> (e) Device has Input/output errors.Aborting snapshot!”
#138				 log(“-> (e) Device has Input/output error.Aborting snapshot!”)
#139				 close()
#140				 sys.exit(1)
#141
#142	 text_file_snap.close()
#143
#144	 ### request system storage cleanup ###
#145
#146	 print “-> Performing system storage cleanup, please be patient”
#147
#148	 fs = FS(j_device)
#149	 fs.storage_cleanup()
#150
#151	 ### Disables traceoptions + syslog ###
#152
#153	 print “-> Disabling syslog + traceoptions (when enabled)”
#154	 my_commit(disable_cmds,j_device)
#155
#156	 ### Take a snapshot ###
#157
#158	 print “-> Snapshoting the device..”
#159
#160	 try:
#171		 rsp = j_device.rpc.request_snapshot(slice=’alternate’,dev_timeout=600)
#172	 except Exception as err:
#173 print “--> (e) Error when snapshoting the device..”, err
#174 log(“--> (e) Error when snapshoting the device.”)
#175
#176	 print “-> Re-enabling only syslog!”
#177	 my_commit(enable_syslog,j_device)
#178

	 50	 Day One: Junos® PyEZ Cookbook

#179	 ### shows contents of dumpdates file ###
#180
#181	 dumpd_file = j_device.rpc.file_show(filename=’/etc/dumpdates’)
#182	 dumpf = etree.tostring(dumpd_file, encoding=’utf8’, method=’text’)
#183	 print “”
#184	 print “		 [Content of /etc/dumpdates]”
#185	 print dumpf
#186	 log(dumpf)
#187
#188	 ### close ###
#189	 close()

PyEZ Script Source Code Explanation

Libraries
* Line #1 to #6 	 Imports PyEZ classes:
Device
Config
FS (Filesystem)
RpcMetaExec (Execute RPC commands)

* Line #16 to #18	Only expect one parameter (IP) when script launches. An error will occur and will
terminate the script execution if 2+ parameters are provided.

* Line #22 to #26 	If the IPv4 address string passed to this function is invalid, socket.error will be
raised.

* Line #28 to #36	Define several set of variables such as file names and paths, etc..

 ### Functions ###	

* Line #38 to #43	Function close () will terminate the NETCONF session and connection using
the close() method. It also will close all the file handlers used by snapshoter.py script.

* Line #45 to #47	Function log () saves on a text log the progress and return codes for the different
commands/functions used by the script.

* Line #50 to #79	my_commit () function handles several operations that interact with the candidate/
active configuration such as:
 - Lock the configuration
 - Load the configuration changes and handle any errors
 - Commit the configuration
 - Unlock the configuration

 ##### Begin #####

* Line #90 to #101	 This is a code routine that checks if there is another script trying to take a
snapshot and/or performing some of the pre/post maintenance tasks. It uses a beacon file such as
10.1.2.3.run to notify other scripts that there is already a process targeting the same device.	

* Line #117 to #123	Since you might have more than one platform running on the same network, you want to

	 51	 Recipe 11 - Benefits of Taking a Snapshot on ACX Series Access Routers

make sure that the script targets only an ACX Router.

* Line #131 to #142	This is a code routine that reviews the file /var/log/snapshot looking for exit
codes of previous snapshots. Using RegEx, search for input/output errors on the nand drive and abort
the script execution if they are found.

* Line #148 to #149	This code frees up storage space on the ACX router by rotating log files and deleting
unused files.

* Line #171	This command takes a snapshot of the device.	

* Line #181 to #185	These commands show the content of /etc/dumpdates. This file contains useful
information about the system partitions and the last time a snapshot was taken.

[Content of /etc/dumpdates]

/dev/da0s2a 0 Thu Aug 31 16:39:33 2017
/dev/da0s2e 0 Thu Aug 31 16:40:43 2017

 ###### End ######

Discussion
This PyEZ script can be useful, particularly as your network expands and the need
for automation is necessary because you do not always have enough manpower or
time. You can also implement an interface with your network device database that
will allow the script to take snapshots automatically, without the need for an op-
erator, especially if there have been commit changes on the active configuration
since the last snapshot was taken.

Recipe 12 - Extract Operational Data from Devices

 Running on a Bridge Domain Environment
by Ivan Del Rio Fernandez

�� Python Version Used: 2.7.3

�� PyEZ Version Used: 2.1.5

�� Junos OS Used: 13.3R8.7

�� Juniper Platforms General Applicability: MX240 / MX104

In this recipe, the network access layer is deployed across several locations where
you cannot always depend on a reliable power source. In order to maintain con-
tinuous power to the equipment, Uninterruptible Power Supplies (UPS) can be uti-
lized (as shown in Figure 1) to provide reliable power and monitoring via SNMP
values such as power source quality, battery age, temperature, capacity, etc.

A bridge domain called UPS_Auto will allow the Layer 2 traffic flow between the
UPS management card (attached to the edge device) and the DHCP server.

This recipe’s script uses Tables and Views, along with other PyEZ functions, to ex-
tract operational information data from the MX Series routers. Afterwards, this
information is used to create customizable configurations for each UPS that in-
cludes site address, edge device hostname, etc., by allowing a completely unman-
aged provisioning process for every newly deployed or replaced UPS.

	 53	 Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment

Problem
Every UPS that is deployed on a remote site requires a unique configuration that
matches the location details of the edge device.

Collecting all this information becomes a tedious task and can be very time-con-
suming since the process is completely manual and requires the use of the CLI.

Figure 12.1	 Recipe 12’s Topology

Solution
Using PyEZ Tables and Views, you can extract operational data from the UPS_
Auto bridge domain, which is hosted on the MX240, and the Layer 2 circuits
(MX104) that provide Layer 2 connectivity with the edge devices.

A MySQL table will store the operational data and provide an interface that can
later be utilized by other script(s) or monitoring tool(s).

Since the UPS does not have Layer 3 visibility of the edge device IP, by using PyEZ
Tables and Views, you can extrapolate the VLAN ID from which the UPS MAC
address is being learned, and then use this information to discover the Layer 2 cir-
cuit remote PE’s IP address:

idelrio@node1:/home/idelrio# crontab –l
*/5 * * * * /usr/bin/python /home/idelrio/get_edge_device_details.py 2>&1 >/dev/null

	 54	 Day One: Junos® PyEZ Cookbook

Tables and Views
Tables and Views provide a simple and efficient way to extract information from
complex operational command output. A Table is associated with a View, which
is used to access fields in the Table items. PyEZ Junos already provides predefined
templates for different commands. For this recipe use:

�� L2circuit

�� Ifdesc

�� Bridge

Tables and Views are defined using YAML language and can be found in:

ivan@node01:/usr/local/lib/python2.7/dist-packages/jnpr/junos/op#

You can see the Tables in YAML format used for this script:

l2circuit.yml

--
show l2circuit connections
--

L2CircuitConnectionTable:
 rpc: get-l2ckt-connection-information
 item: l2circuit-neighbor/connection
 key:
 - ancestor::l2circuit-neighbor/neighbor-address
 - connection-id
 view: L2CircuitConnectionView

L2CircuitConnectionView:
 fields:
 connection_id: connection-id
 connection_type: connection-type
 connection_status: connection-status
 remote_pe: remote-pe
 control_word: control-word
 inboud_label: inbound-label
 outbound_label: outbound-label
 pw_status_tlv: pw-status-tlv
 local_interface: local-interface/interface-name
 interface_status: local-interface/interface-status
 interface_encapsulation: local-interface/interface-encapsulation
 interface_description: local-interface/interface-description

ifdesc.yml

IfdescTable:
 rpc: get-interface-information
 args:

	 55	 Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment

 brief: True
 interface_name: ‘[afgx]e*’
 args_key: interface_name
 item: physical-interface/logical-interface
 view: IfdescView

IfdescView:
 fields:
 name: name
 vlan: link-address
 description: description

bridge.yml

BridgeTable:
 rpc: get-bridge-mac-table
 item: l2ald-mac-entry
 key: l2-mac-address
 view: BridgeView

BridgeView:
 fields:
 vlan: l2-bridge-vlan
 mac: l2-mac-address
 interface: l2-mac-logical-interface
 domain: l2-mac-bridging-domain

MySQL
This recipe uses a table called p2p_details to store all the operational data extracted
from the Bridge Domain/Sub-Interfaces/L2circuits:

�� MAC_addr: 	 UPS Management card Layer 2 address

�� Edge_device:	 ACX Router IP (Remote PE)

Figure 12.2	 Table p2p_details

	 56	 Day One: Junos® PyEZ Cookbook

PyEZ script source code
#################
Libraries
#################

#01 from jnpr.junos import Device
#02 from jnpr.junos.op.bridge import *
#03 from jnpr.junos.op.ifdesc import *
#04 from jnpr.junos.op.l2circuit import *
#05 from pprint import pprint
#06 import MySQLdb
#07 import MySQLdb.cursors
#08 import os, errno
#09 import re
#10

#######################
MySQL connector
#######################

#11 connx = MySQLdb.Connect(
#12 host=’10.1.254.124’, user=’ups’,
#13 passwd=’ups_pwd’, db=’ups’,compress=1,
#14 cursorclass=MySQLdb.cursors.DictCursor)
#15

###
Saves operational commands from the MX240 on MySQL table. ###
###

#16 def save_csr1_db(mac,interface,vlan,connx):
#17
#18 	 query = “insert into p2p_details (MAC_addr,CSR1_if,CSR1_if_vlan) values (‘%s’,’%s’,’%s’)” %
(mac,interface,vlan)
#19	 cursor_call(query,connx)
#20

###
Saves the preferred output from the MX104 on MySQL table. ###
###

#21 def save_mx104_db(interface,vlan,rpe,connx):
#22
#23	 query = “update p2p_details set edge_device=’%s’,203_010_if_vlan=’%s’,203_010_if=’%s’ where CSR1_if_
vlan=’%s’” % (rpe,vlan,interface,vlan)
#24	 cursor_call(query,connx)
#25

###
SQL command to clear the contents of table p2p_details. ###
###

#26 def drop_table_db(connx):
#27
#28 query = “delete from p2p_details”
#29	 cursor_call(query,connx)
#30

	 57	 Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment

####################
MySQL cursor ###
####################

#31 def cursor_call(query,connx):
#32
#33	 cursorx = connx.cursor()
#34 cursorx.execute(query)
#35 connx.commit()
#36 cursorx.close()
#38

########################
Close connectors
########################

#39 def close():
#40
#41	 dev.close()
#42	 dev1.close()
#43	 connx.close()	
#44

#############
BEGIN
#############

#45 dev = Device(host=’10.1.2.3’, user=’user’, password=’pwd’)
#46 dev1 = Device(host=’10.1.2.4’, user=’user’, password=’pwd’)
#47
#48	 try:
#49		 dev.open()
#50		 dev1.open()
#51
#52	 except ConnectError as err:
#53
#54 		 print err
#55 		 print err._orig

########################
Tables and Views
#######################

#56 bdomain = BridgeTable(dev);
#57 opt = bdomain.get()
#58
#59 Ifdetails_csr1 = IfdescTable(dev);
#60 opt_interface_csr1 = Ifdetails_csr1.get(interface_name=’ge-1/3/3’)
#61
#62 Ifdetails_mx104 = IfdescTable(dev1);
#63 opt_interface_mx104 = Ifdetails_mx104.get(interface_name=’ge-1/1/3’)
#64
#65 l2c = L2CircuitConnectionTable(dev1);
#66 opt_l2c = l2c.get()
#67

###

	 58	 Day One: Junos® PyEZ Cookbook

Cleans the p2p_details table before proceeding to store new data.
###

#68 drop_table_db(connx)
#69

After you retrieve the Table items, you can treat them like a Python dictionary,
which enables you to use methods in the standard Python library to access and ma-
nipulate the items.

####################################
Iterating through the Tables
####################################

#70 for item in opt:
#71
#72	 if (item.domain == “UPS_Auto”):
#73
#74	 for mac,interface in zip(item.mac,item.interface):
#75
#76		 if re.match(‘ge-1/3/3’, interface) is not None:
#77
#78			 print mac
#79			 print interface
#80
#81			 for item in opt_interface_csr1:
#82
#83				 if re.match(‘.*’ + interface, item.name) is not None:
#84
#85					 vlan = re.search(‘Out\(swap \.(.*?)\)’, item.vlan).group(1)
#86					 save_csr1_db(mac,interface,vlan,connx)
#87
#88	 for item in opt_interface_mx104:
#89
#90	 logical_if = item.name;
#91	 desc_if = item.description;

..[0x8100.3555] In(pop) Out(push 0x8100.3555) ..

#92	 if re.match(‘.*0x8100.*’, item.vlan) is not None:
#93		 vlan = re.search(‘Out\(push 0x8100\.(.*?)\)’, item.vlan).group(1)
#94		 for item in opt_l2c:
#95 			 print “remote_pe”, item.remote_pe
#96 			 print “local_interface”, item.local_interface
#97			 if (item.local_interface == logical_if):
#98				 print item.remote_pe;
#99 print item.local_interface;
#100				 save_mx104_db(logical_if,vlan,item.remote_pe,connx)
#101				
#102 close()

###########
END
###########

	 59	 Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment

PyEZ Script Source Code Explanation
The MX240 (10.1.2.3) hosts the bridge domain that provides Layer 2 con-
nectivity between all the devices connected to the same broadcast domain
such as the DHCP server and the UPS appliances.

The MX104 (10.1.2.4) manages the l2circuits and provides Layer 2 con-
nectivity from the UPS management cards (connected into the remote PE)
to the MX240.The link between the MXs uses sub-interfaces that are
VLAN tagged for each l2circuit connection.

Line #01 to #04: PyEZ Functions including Tables.

Line #11 to #14: MySQL connector. Provides an interface with the MySQL
database where you have provisioned your table that you will use to store
the results of the Views.

Line #16 to #19: The save_mx240_db(mac,interface,vlan,connx) function
will store the UPS MAC address, and the sub-interface/VLAN Id (MX240)
into the database.

Line #21 to #24: Function save_mx104_db(interface,vlan,rpe,connx) saves
Items Sub-interface Id, VLAN Id and remote PE IP obtained from Iterating
the Tables L2CircuitConnectionTable, IfdescTable and BridgeTable into
the database.

Line #31 to #36: In function cursor_call(query,connx) cursor() method is
used to instantiate a MySQLCursor object.

Line #56 to #57: Method that will extract operational data from the bridge
domain provisioned on the MX240, such as MAC address, Sub-interface
Id, VLAN, etc.

Line #72 to #79: Iterate BridgeTable looking for the UPS_Auto bridge do-
main. Inside this Table you only want to match the information contained
on interface ge-1/3/3, which is the one connecting with the MX104/Layer 2
circuits. This object contains the UPS MAC addresses and Sub-interfaces/
VLAN ID among other data.

idelrio@mx240> show bridge mac-table bridge-domain UPS_Auto | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/13.3R8/junos”>
 <l2ald-rtb-macdb UPS_Auto>
 <l2ald-mac-entry junos:style=”brief-rtb”>
 <l2-mac-routing-instance>default-switch</l2-mac-routing-instance>
 <l2-mac-bridging-domain>UPS_Auto</l2-mac-bridging-domain>
 <l2-bridge-vlan>2999</l2-bridge-vlan>
 <l2-mac-address>00:00:68:1c:34:98</l2-mac-address>
 <l2-mac-flags>D</l2-mac-flags>

Line #81 to #86: This will iterate IfdescTable on the MX240.The VLAN ID
obtained here will be used later to match the VLAN ID on the MX104 side

https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection-cursor.html

	 60	 Day One: Junos® PyEZ Cookbook

of the link. The logical interface ID can change but the VLAN will remain the
same on both sides of the link.

idelrio@mx240> show interfaces ge-1/3/3 | display xml
<logical-interface>
 <name>ge-1/3/3.3589</name>
 <local-index>937</local-index>
 <snmp-index>1255</snmp-index>
 <description>Auto UPS</description>
 <if-config-flags>
 <iff-up/>
 <iff-snmp-traps/>
 <internal-flags>0x20004000</internal-flags>
 </if-config-flags>
 <link-address junos:format=”VLAN-Tag [0x8100.3589] In(swap .2999) Out(swap .3589) “>[
0x8100.3589] In(swap .2999) Out(swap .3589) </link-address>
 <encapsulation>VLAN-Bridge</encapsulation>
 <traffic-statistics junos:style=”brief”>
 <input-packets>6001</input-packets>
 <output-packets>1117349</output-packets>
 </traffic-statistics>
 <filter-information>
 </filter-information>
 <address-family>
 <address-family-name>bridge</address-family-name>
 <mtu>2000</mtu>
 <address-family-flags>
 <internal-flags>0x4000000</internal-flags>
 </address-family-flags>
 </address-family>
 </logical-interface>

Line #88 to #93: Now iterate the IfdescTable on the (MX104 only search for val-
ues contained on interface ge-1/1/3 such as VLAN IDs.

idelrio@mx104> show interfaces ge-1/1/3 | display xml
<logical-interface>
 <name>ge-1/1/3.734</name>
 <local-index>855</local-index>
 <snmp-index>3181</snmp-index>
 <description>7340425.mn_mgmt_ups_p2p_234_135_V3588</description>
 <if-config-flags>
 <iff-up/>
 <internal-flags>0x0</internal-flags>
 </if-config-flags>
 <link-address junos:format=”VLAN-Tag [0x8100.3588] In(pop) Out(push 0x8100.3588) “>[
0x8100.3588] In(pop) Out(push 0x8100.3588) </link-address>
 <encapsulation>VLAN-CCC</encapsulation>
 <traffic-statistics junos:style=”brief”>
 <input-packets>690714</input-packets>
 <output-packets>6233</output-packets>
 </traffic-statistics>
 <filter-information>
 </filter-information>
 <address-family>
 <address-family-name>ccc</address-family-name>
 <mtu>2000</mtu>

	 61	 Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment

 <address-family-flags>
 <internal-flags>0x402</internal-flags>
 </address-family-flags>
 </address-family>
 </logical-interface>

Line #94 to #100: You iterate the L2CircuitConnectionTable Table on the
MX104.

Once the local-interface (L2CircuitConnectionTable) value is the same as the logi-
cal if (IfdescTable), you save these items the database among the Remote_PE IP
using the VLAN variable as a unique ID.

idelrio@mx104 > show l2circuit connections | display xml
..
<l2circuit-neighbor>
 <neighbor-address>10.1.28.69</neighbor-address>
 <connection heading=”Interface Type St Time last up # Up trans”>
 <connection-id>ge-1/1/3.506(vc 15011196)</connection-id>
 <connection-type>rmt</connection-type>
 <connection-status>Up</connection-status>
 <last-change>Sep 7 06:22:04 2017
 </last-change>
 <up-transitions>1</up-transitions>
 <remote-pe>10.1.28.69</remote-pe>
 <control-word>No</control-word>
 <inbound-label>449200</inbound-label>
 <outbound-label>364737</outbound-label>
 <pw-status-tlv>No</pw-status-tlv>
 <local-interface>
 <interface-name>ge-1/1/3.506</interface-name>
 <interface-status>Up</interface-status>
 <interface-encapsulation>ETHERNET</interface-encapsulation>
 <interface-description>15733455</interface-description>
 </local-interface>
 <connection-bandwidth heading=”VC bandwidth: “>
 <bandwidth>128kbps</bandwidth>
 </connection-bandwidth>
 </connection>
 </l2circuit-neighbor>

Discussion
Instead of manually collecting the information required to provision the UPS ap-
pliances, using the PyEZ script will provide benefits such as not having to set the
UPS IP statically, since you will use the remote PE IP address instead, and this value
shouldn’t change over time. So you can leave the UPS IP as DHCP-enabled, avoid-
ing the need of pre-staging the UPS before deploying into the field.

One valid scenario is to use the MySQL table as an inter-process communication.
Using this method as an interface will allow different tools such as monitoring
tools, provisioning tools, and others to access the information.

Recipe 13 - Bandwidth Reservation for MPLS
Access Rings
by Paul McGinn

�� Python Version Used: 	 2.7.3

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: 	 12.3x52

�� Juniper Platforms General Applicability: ACX platform

Capacity planning, and ensuring over utilization does not impede the provisioning
of new services, can be a tedious task. This recipe provides reports of the current
RSVP reservation for each interface across a predetermined segment of the net-
work. Typically, it would be predominately used for Metro Access Rings.

Problem
MPLS protection mechanisms for LSPs create inconsistencies that previous tech-
nologies in this environment did not present. Previously, carriers could reserve
bandwidth for each pseudowire on both the main and protection path. MPLS will
reserve bandwidth for both primary and secondary paths. Adding to this reserva-
tion, depending on your protection method, are bypass and detour tunnels. Get-
ting a clear picture of where RSVP bottlenecks are can help with planning capacity
increases.

Solution
Utilizing a custom YAML Table and View in PyEZ will allow users to pull RSVP
interface information directly from a system, or from multiple systems, with ease.

	 63	 Recipe 13 - Bandwidth Reservation for MPLS Access Rings

Our goal is to automate the collection of data, so this recipe focuses on RSVP in-
terface values, but the example can be used as a template to gather any informa-
tion you may need with a quick easy adjustment to the script. Let’s first show rsvp
interface:

user@acx> show rsvp interface
RSVP interface: 4 active
 Active Subscr- Static Available Reserved Highwater
Interface State resv iption BW BW BW mark
ge-0/1/2.0 Down 0 200% 1000Mbps 2Gbps 0bps 0bps
ge-0/1/3.0 Down 0 200% 1000Mbps 2Gbps 0bps 0bps
xe-0/3/0.0 Up 39 200% 1000Mbps 857.088Mbps 1.14291Gbps 1.64236Gbps
xe-0/3/1.0 Up 49 200% 1000Mbps 680.48Mbps 1.31952Gbps 1.59949Gbps

The next step in gathering information is to run the display xml rpc command, and
look for the XML command to pull the RSVP interface table via NETCONF:

user@acx> show rsvp interface | display xml rpc
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.3X52/junos”>
 <rpc>
 <get-rsvp-interface-information>
 </get-rsvp-interface-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

With the >show rsvp interface command in the CLI we are given the following out-
put. To find the correct XML table to extract the data via NETCONF, utilize a
display xml flag:

user@acx> show rsvp interface | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.3X52/junos”>
 <rsvp-interface-information xmlns=”http://xml.juniper.net/junos/12.3X52/junos-routing”>
 <active-count>4</active-count>
 <rsvp-interface junos:style=”brief”>
 <interface-name>ge-0/1/2.0</interface-name>
 <index>-1610691704</index>
 <rsvp-status>Down</rsvp-status>
 <rsvp-telink>
 <active-reservation>0</active-reservation>
 <subscription>200</subscription>
 <static-bandwidth>1000Mbps</static-bandwidth>
 <available-bandwidth>2Gbps</available-bandwidth>
 <total-reserved-bandwidth>0bps</total-reserved-bandwidth>
 <high-watermark>0bps</high-watermark>
 </rsvp-telink>
 </rsvp-interface>
 <rsvp-interface junos:style=”brief”>
 <interface-name>ge-0/1/3.0</interface-name>
 <index>-1610691704</index>
 <rsvp-status>Down</rsvp-status>
 <rsvp-telink>

	 64	 Day One: Junos® PyEZ Cookbook

 <active-reservation>0</active-reservation>
 <subscription>200</subscription>
 <static-bandwidth>1000Mbps</static-bandwidth>
 <available-bandwidth>2Gbps</available-bandwidth>
 <total-reserved-bandwidth>0bps</total-reserved-bandwidth>
 <high-watermark>0bps</high-watermark>
 </rsvp-telink>
 </rsvp-interface>
 <rsvp-interface junos:style=”brief”>
 <interface-name>xe-0/3/0.0</interface-name>
 <index>-1610691704</index>
 <rsvp-status>Up</rsvp-status>
 <rsvp-telink>
 <active-reservation>39</active-reservation>
 <subscription>200</subscription>
 <static-bandwidth>1000Mbps</static-bandwidth>
 <available-bandwidth>857.088Mbps</available-bandwidth>
 <total-reserved-bandwidth>1.14291Gbps</total-reserved-bandwidth>
 <high-watermark>1.64236Gbps</high-watermark>
 </rsvp-telink>
 </rsvp-interface>
 <rsvp-interface junos:style=”brief”>
 <interface-name>xe-0/3/1.0</interface-name>
 <index>-1610691704</index>
 <rsvp-status>Up</rsvp-status>
 <rsvp-telink>
 <active-reservation>49</active-reservation>
 <subscription>200</subscription>
 <static-bandwidth>1000Mbps</static-bandwidth>
 <available-bandwidth>680.48Mbps</available-bandwidth>
 <total-reserved-bandwidth>1.31952Gbps</total-reserved-bandwidth>
 <high-watermark>1.59949Gbps</high-watermark>
 </rsvp-telink>
 </rsvp-interface>
 </rsvp-interface-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Each value in the XML is available for extraction, but for this recipe you should be
concerned with pulling only a few values: Interface Name, Status, Active Reserva-
tion, Subscription, and Available Bandwidth. This is where you benefit from uti-
lizing PyEZ because you can extract and report the values you are looking for
without the need to parse through all the output data.

Mapping values is a straightforward process. Available bandwidth in XML is a
value under rsvp-interface/ rsvp=telink/ available-bandwidth. Translating this to
YAML is rsvp_telink_available_bandwidth. All hypens, “-” as reported in XML
output are converted to underscores “_”:

	 65	 Recipe 13 - Bandwidth Reservation for MPLS Access Rings

1. Rsvp_int_Table:
2. rpc: get-rsvp-interface-information
3. item: rsvp-interface
4. key: interface-name
5. view: RsvpIntView
6. RsvpIntView:
7. fields:
8. interface_name: interface-name
9. rsvp_status: rsvp-status
10. rsvp_telink_active_reservation: rsvp-telink/active-reservation
11. rsvp_telink_subscription: rsvp-telink/subscription
12. rsvp_telink_available_bandwidth: rsvp-telink/available-bandwidth
13. rsvp_telink_total_reserved_bandwidth: rsvp-telink/total-reserved-bandwidth
14. rsvp_telink_high_watermark: rsvp-telink/high-watermark

Let’s break down the this YAML for further clarification. The most important
variables that you are concerned with are 1, 2, and 6–14:

1. Table name.

2. RPC, earlier the XML rpc flag was used to give us the appropriate command to
pull the RSVP interface table.

6. RsvpIntView: User defined.

8-14. These fields are the data that you would like to extract for use. They can be
added to, or subtracted from, based on your use case.

Once the YAML definition is completed, you set up a file for data collection:

Setup Output File

_rsvpout = “/var/tmp/rsvp.out”

def log(text):

 file_log.write(text)

file_log = open(_rsvpout, “w”)
Now create the function to connect and pull the desired data:

def get_rsvp(_IP1):
	 try:
		 _dev = Device(host=_IP1,user=_uname,password=_upass)
		 _dev.open()
	 except Exception as err:
		 print “Can not Connect” + _IP1, err
		 return
		 sys.exit(1)

	 rsvp_int_T = Rsvp_int_Table(_dev)
	 rsvp_int_T.get()
	 for rsvp in rsvp_int_T:
		 file_log.write(_IP1 + “;” + rsvp.interface_name + “;” + rsvp.rsvp_status + “;” + rsvp.
rsvp_telink_active_reservation + “;” + rsvp.rsvp_telink_subscription + “;” + rsvp.rsvp_telink_
available_bandwidth + ‘\n’)
		 #print _IP1 + “;” + rsvp.interface_name + “;” + rsvp.rsvp_status + “;” + rsvp.rsvp_telink_

	 66	 Day One: Junos® PyEZ Cookbook

active_reservation + “;” + rsvp.rsvp_telink_subscription + “;” + rsvp.rsvp_telink_available_bandwidth
+ “\n”

	 _dev.close()

To collect data across a network segment, use a simple text file of IP addresses:

directory = os.path.normpath(“/path_to_text_file/IP_Addresses_In_Segment”)

And finally, walk the directory for any text file, allowing you to report several seg-
ments at a time:

for subdir, dirs, files in os.walk(_directory):
	 for file in files:
		 if file.endswith(“.txt”):
			 with open(os.path.join(subdir, file),’r’) as _IP1:
				 for line in _IP1:
					 line = line.strip()
					 get_rsvp(line)

#!/usr/bin/python

import os, sys, yaml, glob, errno
from pprint import pprint
from jnpr.junos import Device
from jnpr.junos.factory.factory_loader import FactoryLoader
from jnpr.junos.op.ethport import EthPortTable
from jnpr.junos.rpcmeta import _RpcMetaExec
from lxml import etree

U&P
_uname = “user”
_upass = “pass”

YAML table for RSVP
RSVP_INT_yml = ‘’’

Rsvp_int_Table:
 rpc: get-rsvp-interface-information
 item: rsvp-interface
 key: interface-name
 view: RsvpIntView
RsvpIntView:
 fields:
 interface_name: interface-name
 rsvp_status: rsvp-status
 rsvp_telink_active_reservation: rsvp-telink/active-reservation
 rsvp_telink_subscription: rsvp-telink/subscription
 rsvp_telink_available_bandwidth: rsvp-telink/available-bandwidth
 rsvp_telink_total_reserved_bandwidth: rsvp-telink/total-reserved-bandwidth
 rsvp_telink_high_watermark: rsvp-telink/high-watermark
‘’’

globals().update(FactoryLoader().load(yaml.load(RSVP_INT_yml)))

	 67	 Recipe 13 - Bandwidth Reservation for MPLS Access Rings

Setup Output File

_rsvpout = “/var/tmp/rsvp.out”

def log(text):

 file_log.write(text)

file_log = open(_rsvpout, “w”)

def get_rsvp(_IP1):
	 try:
		 _dev = Device(host=_IP1,user=_uname,password=_upass)
		 _dev.open()
	 except Exception as err:
		 print “Can not Connect” + _IP1, err
		 return
		 sys.exit(1)

	 rsvp_int_T = Rsvp_int_Table(_dev)
	 rsvp_int_T.get()
	 for rsvp in rsvp_int_T:
		 file_log.write(_IP1 + “;” + rsvp.interface_name + “;” + rsvp.rsvp_status + “;” + rsvp.
rsvp_telink_active_reservation + “;” + rsvp.rsvp_telink_subscription + “;” + rsvp.rsvp_telink_
available_bandwidth + ‘\n’)
		 #print _IP1 + “;” + rsvp.interface_name + “;” + rsvp.rsvp_status + “;” + rsvp.rsvp_telink_
active_reservation + “;” + rsvp.rsvp_telink_subscription + “;” + rsvp.rsvp_telink_available_bandwidth
+ “\n”

	 _dev.close()

directory = os.path.normpath(“/path_to_text_file/IP_Addresses_In_Segment”)

for subdir, dirs, files in os.walk(_directory):
	 for file in files:
		 if file.endswith(“.txt”):
			 with open(os.path.join(subdir, file),’r’) as _IP1:
				 for line in _IP1:
					 line = line.strip()
					 get_rsvp(line)

Conclusion
PyEZ allows quick, customizable data collection. The ability to extract specific
information from a system creates a simplified scripting environment, providing
you with live network resource reporting with minimal effort. Cool.

Recipe 14 - Adding a Graphical Interface
to the PyEZ Script
by Peter Klimai

�� Python Version Used: 	 3.5

�� PyEZ Version Used: 	 2.1.4

�� Junos OS Used: 	 12.1X47-D40

�� Juniper Platforms General Applicability: All

Running your Junos PyEZ automation scripts from the command line is a rather
common practice. However, sometimes you want to supply your scripts with a
graphical interface for additional convenience, visibility, and usability. The aim of
this recipe is to illustrate that this is really not that hard to do.

Problem
You want to be able to collect different sorts of information from your Junos de-
vices, such as:

�� Output of PyEZ device “facts”

�� BGP summary information

�� Interfaces’ state information.

And you want to do it easily, with a single click of the mouse button. The graphical
user interface (GUI) of the script should assume some default values for device
management IP, login, and password – but also give you the flexibility to change
that on the fly, too.

	 69	 Recipe 14 - Adding a Graphical Interface to the PyEZ Script

Solution
To solve the problem of this recipe, you use the Python tkinter package. Tkinter is
a part of Python’s standard library and, as Python, it is cross-platform – the same
GUI script will work on Linux, Mac, Windows, etc.

NOTE	 For more information on Tkinter, consult its documentation at: https://
docs.python.org/3/library/tk.html.

The script that solves the task is given below, and the script’s parts are marked
with numerals # (n) for the explanation that follows:

#!/usr/bin/python3

from tkinter import * # (1)
from jnpr.junos import Device
from jnpr.junos.exception import *
from pprint import pformat

USER = “lab” # (2)
PASSWD = “lab123”
DEVICE_IP = “10.254.0.35”

def output(st): # (3)
 text.insert(END, chars=st)
 text.see(END)

def read_and_display(message, function): # (4)
 output(message)
 try:
 with Device(host=entry_dev.get(), user=entry_user.get(),
 password=entry_pw.get()) as dev:
 res = function(dev)
 except ConnectRefusedError:
 print(“\nError: Connection refused!\n”)
 except ConnectTimeoutError:
 output(“\nConnection timeout error!\n”)
 except ConnectUnknownHostError:
 output(“\nError: Connection attempt to unknown host.\n”)
 except ConnectionError:
 output(“\nConnection error!\n”)
 except ConnectAuthError:
 output(“\nConnection authentication error!\n”)
 else:
 output(res)

def print_facts(): # (5)
 read_and_display(“\nDevice facts:\n”, lambda dev: pformat(dev.facts))

def show_bgp(): # (6)
 read_and_display(“\nBGP summary information:”,
 lambda dev: dev.rpc.get_bgp_summary_information({“format”: “text”}).text)

def show_intf(): # (7)
 read_and_display(“\nInterface information:”,
 lambda dev: dev.rpc.get_interface_information(

https://docs.python.org/3/library/tk.html
https://docs.python.org/3/library/tk.html

	 70	 Day One: Junos® PyEZ Cookbook

 {“format”: “text”}, terse=True).text)

def main(): # (8)
 global entry_dev, entry_user, entry_pw, text
 root = Tk() # (9)

 Frame(root, height=10).grid(row=0) # (10)

 Label(root, text=”Device address:”).grid(row=1, column=0) # (11)
 entry_dev = Entry(root) # (12)
 entry_dev.grid(row=1, column=1)
 entry_dev.insert(END, DEVICE_IP)

 Label(root, text=”Login:”).grid(row=2, column=0) # (13)
 entry_user = Entry(root)
 entry_user.grid(row=2, column=1)
 entry_user.insert(END, USER)

 Label(root, text=”Password:”).grid(row=3, column=0) # (14)
 entry_pw = Entry(root, show=”*”)
 entry_pw.grid(row=3, column=1)
 entry_pw.insert(END, PASSWD)

 Frame(root, height=10).grid(row=4) # (15)
 Button(root, text=”Read facts!”, command=print_facts).grid(row=5, column=0)
 Button(root, text=”Show interfaces!”, command=show_intf).grid(row=5, column=1)
 Button(root, text=”Show BGP!”, command=show_bgp).grid(row=5, column=2)
 Frame(root, height=10).grid(row=6)

 frame = Frame(root, width=800, height=700) # (16)
 frame.grid(row=7, column=0, columnspan=4)
 frame.grid_propagate(False)
 frame.grid_rowconfigure(0, weight=1)
 frame.grid_columnconfigure(0, weight=1)
 text = Text(frame, borderwidth=3)
 text.config(font=(“courier”, 11), wrap=’none’)
 text.grid(row=0, column=0, sticky=”nsew”, padx=2, pady=2)

 scrollbarY = Scrollbar(frame, command=text.yview) # (17)
 scrollbarY.grid(row=0, column=1, sticky=’nsew’)
 text[‘yscrollcommand’] = scrollbarY.set
 scrollbarX = Scrollbar(frame, orient=HORIZONTAL, command=text.xview)
 scrollbarX.grid(row=1, column=0, sticky=’nsew’)
 text[‘xscrollcommand’] = scrollbarX.set

 root.mainloop() # (18)

if __name__ == “__main__”: # (19)
 main()

Here is an explanation of what is happening in the script:

1. Import all tkinter objects, such as Tk, Frame, Label, etc. They are used below.
Also, import Junos PyEZ Device class, and all PyEZ exceptions. Additionally, im-
port pformat function.

2. Username, password, and device IP address that will be used as default values
when the script starts (can be changed by user at the script run-time).

	 71	 Recipe 14 - Adding a Graphical Interface to the PyEZ Script

3. The output() function is basically used to output some data in the script’s text
field (the text object). The insert() method adds characters to the end of the output
and the see() method scrolls the output to the end.

4. The read_and_display() function opens the connection to the Junos device using IP
address, username, and password as specified by the corresponding GUI entry
fields. It then performs actions specified by function function, that is passed as a pa-
rameter, and outputs the information received. It tries to catch common errors us-
ing try/except operators.

5. The print_facts() is used to collect and output Junos PyEZ device facts. It will be
called once the corresponding GUI button is clicked. Note how the lambda (anony-
mous function) syntax is used here.

6. The show_bgp() function is similar to the previous one, but is used to collect text
output of show bgp summary command from the device.

7. The show_intf() function is similar and returns text output of the show interfaces
terse command.

8. The main() function starts with the definition of some global variables. Here, en-
try_dev, entry_user, and entry_pw, will represent user entry text fields, and text is the
output text object.

9. The root object is going to be the main window, everything else is placed inside it.

10. Here, inside root, you create an unnamed frame and put it to the grid in the 0-th
row (at this point, start thinking columns and rows of the imaginary grid inside a
main window). The frame at this point is created just to have some spare space be-
tween window edge and other elements that are added later.

11. Create a Label (with output text “Device address:”) and put it into the grid in
row 1, column 0.

12. Create a user entry field named entry_dev to be used for entering the device IP
address. Put it on the grid and use DEVICE_IP as a default value.

13. Create a label and an entry field for the username.

14. Create a label and an entry field for the password. Argument show=”*” ensures
that password is not displayed.

15. Create a couple of empty frames and three buttons, and put all that into the
grid. Each button uses a different command parameter, which will determine what
happens when the button is pressed (one of the corresponding functions, defined
previously, is called).

16. Create another frame with a specified size, this time giving it a name (frame) and
putting a text field text inside it.

	 72	 Day One: Junos® PyEZ Cookbook

17. Attach X and Y scrollbars to the text field.

18. Display the main window by calling the mainloop() method.

19. Standard Python script “entry point”.

When you run the script, you will see a window similar to one shown in Figure
14.1. Clicking the buttons provides you with the information gathered from the
device, as requested by the task.

Figure 14.1	 The GUI Example Result of Running the Script from Recipe 14

	 73	 Recipe 14 - Adding a Graphical Interface to the PyEZ Script

Discussion
As you can see from Figure 15.1, building a simple GUI for your PyEZ script is not
a very complex task. The example presented here can easily be extended to add
more functions, including configuration changes, etc.

This recipe is demonstrated using Tkinter, which is Python’s standard GUI library.
Multiple alternatives to Tkinter exist (see https://wiki.python.org/moin/GuiPro-
gramming for review). Also, a script could be called from a web page, if a web
server is properly configured – but in the approach demonstrated here, no web
server was necessary.

https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming

Recipe 15 - Monitoring IPSEC Tunnels

by Michel Tepper & Jac Backus

�� Python Version Used: 	 3.5

�� PyEZ Version Used:	 2.1.4

�� Junos OS Used:	 12.1X47-D20.7

�� Juniper Platforms General Applicability: SRX, vSRX

Problem
You have a customer with IPsec VPNs to “other vendors.” Sometimes the other
side screws up the tunnel, and on the SRX Series side a “clear security like securi-
ty-association” is necessary. The customer doesn’t want to log in to the SRX, and
to be honest, neither do you.

Solution
The automation goal is to have a list of active tunnels in a GUI and select one to
reset.

This problem was broken into sub-problems and it was decided the first task was
to get a list of active tunnels shown by a Python script. The first part of the script
gives it the most important aspect of scripting: reuse of other scripts already
invented:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config
from lxml import etree

	 75	 Recipe 15 - Monitoring IPSEC Tunnels

import dill
import xmltodict
from io import StringIO
from contextlib import redirect_stdout
from collections import defaultdict
from operator import itemgetter

The second step sets the variables used to connect to the device:

host = ‘172.27.75.5’
user=”root”
passwd=”root123”

In a live solution, you don’t want to use the root account, of course, so the best
thing to do is define a class with just enough permissions to perform your task, as-
sign this class to the user, and then use this user.

CAUTION	 Safety first, especially when you list the password in the script as done
here. A more secure method would be to ask the user to enter the password.

Since this script is going to be expanded in the future, the first step (listing the tun-
nels) is defined in the function main:

def main():
 dev = Device(host=host, user=user, passwd=passwd)
 # open a connection with the device and start a NETCONF session
 try:
 dev.open()
 dev.timeout = 300
 except Exception as err:
 print (“Cannot connect to device:”, err)
 return

If everything is working, and the SRX at IP 172.27.75.5 accepts the netconf-shh
session, an open connection is established. The next step for this script is to recur-
sively load active IPsec V tunnels into memory. For this, let’s make the IKE Phase I
and Phase II information available, done with library calls:

 ikepeers = dev.rpc.get_ike_security_associations_information(detail=True)
 ipsecpeers = dev.rpc.get_security_associations_information(detail=True)
 iketree = etree.ElementTree(ikepeers)
 ipsectree = etree.ElementTree(ipsecpeers)
 ikeroot=iketree.getroot()
 ipsecroot=ipsectree.getroot()
 ikeactions = iketree.findall(‘.//ike-security-associations-block’)
 ikeparsed = [{field.tag: field.text for field in action} for action in ikeactions]
 ipsecactions = ipsectree.findall(‘.//ipsec-security-associations-block’)
 ipsecparsed = [{field.tag: field.text for field in action} for action in ipsecactions]
 d = defaultdict(dict)

Now that it’s available, time to parse and print it:

 for elem in ipsecparsed:
 d[elem[‘sa-tunnel-index’]].update(elem)

	 76	 Day One: Junos® PyEZ Cookbook

 l3 = sorted(d.values(), key=itemgetter(‘sa-vpn-name’))
 for elem in ikeparsed:
 for elem1 in l3:
 if elem1[‘sa-remote-gateway’] == elem[‘ike-sa-remote-address’]:
 elem1.update(elem)
 for idx, tunnel in enumerate (l3):
 try:
 print ((idx + 1),’ - ‘,tunnel[‘sa-vpn-name’],’ - ‘,tunnel[‘sa-
remote-gateway’],’- ‘,tunnel[‘ike-sa-index’],’- ‘,tunnel[‘sa-tunnel-index’],’ - ‘,
“\n\t”,tunnel[‘sa-local-identity’],’ - ‘,tunnel[‘sa-remote-identity’],’\n’)
 except KeyError:
 print ((idx + 1),’ - ‘,tunnel[‘sa-vpn-name’],’ - ‘,tunnel[‘sa-
remote-gateway’],’- ‘,tunnel[‘sa-tunnel-index’],’ - ‘, ‘\n\t’,tunnel[‘sa-local-identity’],’ -
‘,tunnel[‘sa-remote-identity’],’\n’)

The for loop repeats this for the number of tunnels found earlier in the script. The
print lines may look difficult, but they are mostly formatting. Please be aware that
in the script the whole print statement is one line, it just doesn’t fit on a page when
printing it.

So, what’s left to the solution is to close the connection to the device and invoke
the main function, previously defined, the last two lines:

End the NETCONF session and close the connection
 dev.close()

main()

Let’s have a look at the outcome of this script when running. It’s used to connect to
a vSRX on IP address 172.27.75.5, as you saw. This vSRX has IPsec tunnels to
seven other vSRXs (PE2 to PE8, this one is PE1), but not all are up. It’s part of a
full mesh VPN between those eight devices. The goal was only to show the active
tunnels; here we go:

C:\Python36>py ike-tunnels.py
1 - PE2_PE_fullmesh - 10.1.2.6 - 7107967 - 131073 -
 ipv4_subnet(any:0,[0..7]=0.0.0.0/0) - ipv4_subnet(any:0,[0..7]=0.0.0.0/0)

2 - PE4_PE_fullmesh - 10.1.2.22 - 7108049 - 131075 -
 ipv4_subnet(any:0,[0..7]=0.0.0.0/0) - ipv4_subnet(any:0,[0..7]=0.0.0.0/0)

3 - PE5_PE_fullmesh - 10.1.2.34 - 7108053 - 131076 -
 ipv4_subnet(any:0,[0..7]=0.0.0.0/0) - ipv4_subnet(any:0,[0..7]=0.0.0.0/0)

4 - PE7_PE_fullmesh - 10.1.2.50 - 7108052 - 131078 -
 ipv4_subnet(any:0,[0..7]=0.0.0.0/0) - ipv4_subnet(any:0,[0..7]=0.0.0.0/0)

You can see the gateway name, remote IP address, IK security association, and IP-
sec security association. The second line gives the proxy IDs, but hey,—those are
route-based VPNs—so all zeros are expected.

	 77	 Recipe 15 - Monitoring IPSEC Tunnels

We achieved our first goal in the lab. And how you want to build your GUI is up to
you. The GUI in Figure 15.1 used wxWidgets to create a Windows interface
around the first step. It was another 450 more lines of code, beyond the scope of
this recipe, but this is how it can look when you are building your own GUI.

Pretty nice, all Python scripts with libraries.

Figure 15.1	 WxWidgets Used to Create a GUI in Recipe 15

Recipe 16 - Working with Junos Enhanced Auto-
Provision Process (JEAP)
by Michelle Zhang

�� Python Version Used: 	 2.7.12

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used:	 15.1X49-D60.7

�� Juniper Platforms General Applicability: Branch SRX Series and EX Series

Traditionally, the deployment of equipment is a large part of the initial operational
spend (OPEX). With JEAP, you can not only reduce the complexity of deployment,
you can also virtually eliminate the need for installation services for CPE devices at
branch locations.

Problem
When deploying a handful of new devices, manually configuring each device is
both time-consuming and repetitive, most importantly, it can cost a lot of money.
The larger the network, the more of a problem it becomes.

Solution
JEAP allows Juniper SRX firewalls and EX switches to be shipped directly to cus-
tomer sites with a factory defaulted configuration. Upon the arrival of the Juniper
SRX and EX devices, you simply need to unbox the device, power it on, and plug it
in to the existing network. The devices will automatically be configured by a local
server with a specific Junos image and configuration.

NOTE	 JEAP requires a local DHCP server with administrator access and a file
transfer server.

	 79	 Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP)

JEAP is a ZTP (Zero Touch Provisioning) tool designed for branch offices. It’s ini-
tially based on the autoinstallation feature on branch SRXs, and it was expanded
to the EX series with a bit modification. PyEZ scripts come into play after the au-
toinstallation process is done – it will reach out to each SRX and EX, do image
upgrades or downgrades when necessary, and push certain configuration files.

For the autoinstallation function to work, you need to set up a local DHCP server
and a file transfer server, and choices can be a TFTP (Trivial File Transfer Server),
FTP (File Transfer Server), or an HTTP (Hypertext Transfer Protocol) server.
(More details can be found here on the file transfer server: https://www.juniper.
net/documentation/en_US/junos-space-apps/connectivity-services-director1.0/top-
ics/topic-map/autoinstallation-acx-srx-series-using-junos-space.html.) Below is a
snippet of the key configuration file for DHCP server used in this example. (Modi-
fications have been made to cover EX Series switches based on their standard ZTP
configuration). Figure 16.1 shows the JEAP workflow including the DHCP server.

NOTE	 The Junos EX image configurations for ZTP have been commented out in
order to match the auto-installation feature on the SRX.

CAUTION	 Due to the differences in their configuration files, you need to be able
to tell the SRX and EX devices apart. In this case, you can take advantage of the
vendor information contained in the EX’s initial broadcast message (the SRX
doesn’t contain any extra information in its message).

Figure 16.1	 JEAP Workflow

For EX ZTP

	 80	 Day One: Junos® PyEZ Cookbook

option space ZTP_OP;

option ZTP_OP.config-file-name code 1 = text;
option ZTP_OP.transfer-mode code 3 = text;

option ZTP_OP-encapsulation code 43 = encapsulate ZTP_OP;
option option-150 code 150 = ip-address;

subnet 192.168.222.0 netmask 255.255.255.0 {
}

##########################
For Class Division
##########################

class “EX2200”{
 match if substring (option vendor-class-identifier,0,14) = “Juniper-ex2200”;
}

subnet 10.0.1.0 netmask 255.255.255.0 {
	 option broadcast-address 10.0.1.255;
	 option routers 10.0.1.1;
 pool{
	 allow members of “EX2200”;
	 range 10.0.1.10 10.0.1.20;
	 option option-150 10.0.1.1;
	 option ZTP_OP.config-file-name “init_EX2200.conf”;
#	 option ZTP_OP.transfer-mode “ftp”;
#	 option ZTP_OP.image-file-name “pub/jinstall-ex-2200-14.1X53-D26.2-domestic-signed.tgz”
#	 option ZTP_OP.image-file-type “symlink”;
 }
 pool{
	 allow unknown-clients;
	 range 10.0.1.50 10.0.1.60;
	 next-server 10.0.1.1;
	 filename “init_SRX.conf”;
 }
}

By the time the auto installation process is done, Juniper devices will have ob-
tained an IP address and have NETCONF and ssh enabled, under [systems ser-
vices], for later PyEZ accessibility (if NETCONF and SSH do not come with
factory default settings, you need to make sure they are included in the initial con-
figuration file pushed down through the auto-installation function).

CAUTION	 For the SRX you need to enable NETCONF and SSH in the host-
inbound-traffic, too, with the related security zone to which the interface con-
nected to the DHCP server belongs.

Now the JEAP scripts come into play. They read a lease file in the DHCP server,
where all the devices that have dynamically obtained IP addresses (from the DHCP
server) have been recorded, and they reach out to the Juniper devices (other prod-
ucts won’t respond to PyEz scripts) to check their on-box Junos image, verify if

	 81	 Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP)

that is the needed version, do upgrades or downgrades as necessary, and finally
push down a customized configuration file for that specific device.

Now with a decent understanding of JEAP, let’s take a look at the code.

Here we use two scripts for better maintenance purposes, one called jeap.py,
which is the main workflow of this project. The other is called tools.py, which
serves as a tools library for jeap.py to call upon and use. Let’s take a closer look at
the PyEZ and the Juniper technology related codes, rather than just the normal
Python codes here.

In jeap.py, it first imports the necessary libraries and the tools.py script, and initi-
ates variables for later use:

import time
import logging
from lxml import etree
from tools import Tools
from jnpr.junos import exception
from jnpr.junos.utils.config import Config

if __name__ == “__main__”:
 “””
 Aim to do simple logic here
 And call modules to do specific function
 “””
 tools = Tools()

 known_hosts = [] # hosts finished provisioning
 new_hosts = [] # hosts to-be provisioned
tmp_hosts = [] # hosts read from leases file
 # library for customer required to-be provisioned boxes
box_to_configure = tools.customer_requirements

Then, jeap.py reads from the dhcpd.leases file, filters out IP and its associated
MAC address, and then returns them in pairs. If nothing shows up in the leases
file, just wait 15 more seconds, then try it again:

while True:
 try:
 # tmp_hosts: list of dictionaries with ip and mac
 tmp_hosts = tools.lease_read(“/var/lib/dhcp/dhcpd.leases”)
 #return would be tmp_hosts=[{“ip”:”10.0.1.20”,”mac”:”aa:aa:aa:aa:aa:aa”}]
 if not tmp_hosts:
 print(“don’t have any DHCP client now, please wait.”)
 time.sleep(15)
 else:
 break
 except IOError:
 print(“Please restart your dhcp service, dhcpd.leases file have been removed somehow”)
time.sleep(30)

You should have another datasheet at hand before configuring each box, a

	 82	 Day One: Junos® PyEZ Cookbook

datasheet that specifies your preferred ID parameter of the device (like MAC ad-
dress or serial number), the hostname, or any key parameters you want to change,
say (“ntp-server”: “xx.xx.xx.xx”), the Junos version. Take the snippet below, for
example:

{“Products”:[
 {“mac”:”aa:aa:aa:aa:aa:aa”, “model”:”EX2200”, “junos”:”12.8R12”, “hostname”: “EX2200-1”},
 {“mac”:”bb:bb:bb:bb:bb:bb”, “model”:”SRX320”, “junos”:”17.3”, “hostname”: “JEAP1”}
]}

Now, filter out the IP and MAC pairs that haven’t been provisioned yet. Based on
MAC address or your preferred ID parameter, you can merge the datasheet infor-
mation and ip-mac pairs together before saving them to list new_hosts:

for tester in tmp_hosts:
 # first filter by list of seen hosts in the past
 if tester not in known_hosts:
 # then filter by MAC from customer document
 for item in box_to_configure:
 if tools.mac_compare(tester[“mac”], item[“mac”]):
 # merge two info source together
 # thus don’t need to lookup IP every time
 item[“ip”] = tester[“ip”]
 new_hosts.append(item)
 break

New_hosts should be a list like this:

[{u’junos’: u’15.1X49-D60.7’, ‘ip’: ‘10.0.1.21’, u’mac’: bb:bb:bb:bb:bb:bb’, u’hostname’: u’JEAP1’,
u’model’: u’srx320-poe’}]

If new_hosts is not null, pop out each individual node in this list and reach out to
each associated device one by one for further operation:

while new_hosts:
 # call another function to do that
 sample = new_hosts.pop(0)
 print(“\nTarget hosts:\n\t” + str(sample[“model”]) + “ @ “ + str(sample[“ip”]))
 # reach out to srx
 dev = tools.device_conn(sample[“ip”])
 cu = Config(dev)
 print(“Connecting ...”)
 try:
 dev.open()
 print(“Connected”)
 except exception.ConnectAuthError:
 print(“Username and password doesn’t match”)
 print(“Please double check your credentials and try again later.”)
 continue
 except exception.ConnectTimeoutError:
 print(“Connection timeout, will try again later”)
 continue
 except:
 print(“Cannot reach out to the device now, will try again later”)
continue

check on-box Junos
upgrade/downgrade if needed

	 83	 Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP)

push down new config file
…

The device_conn function is a few simple lines of PyEZ code, for reuse purposes:

def device_conn(self, host_ip):
 user = “demo”
password = “demo123”
Device.auto_probe = 10
return Device(host=host_ip, user=user, password=password, port=”22”, auto_probe=True)

Next you need to check the on-box Junos version, and compare to see if that’s the
one you want:

pull info from box current settings
sample_on_box_model = dev.facts[“model”]
sample_on_box_version = dev.facts[“version”]
print(“\nCurrent Config:”)
print(“\t” + sample_on_box_model + “: “ + sample_on_box_version)

version check
feedback = tools.junos_version_compare(sample_on_box_version, sample[“junos”])
print feedback

The junos_version_compare function compares the on-box Junos version to the de-
sired Junos version specified in the customer datasheet, digit by digit, and returns 0
if they are same, “-1” if on-box version is older, and “1” if it’s newer:

def junos_version_compare(self, sample_version, target_version):
 sample_series = self.junos_version_serial_analyze(sample_version)
 target_series = self.junos_version_serial_analyze(target_version)
 count = min(len(sample_series), len(target_series))
 for x in range(count):
 if sample_series[x] != target_series[x]:
 if sample_series[x] > target_series[x]:
 # print(“current one has newer version @” + str(x+1) + “ digit”)
 return 1
 elif sample_series[x] < target_series[x]:
 # print(“current one has older version”)
 return -1
 # if compare every digit and they are the same till the end
 # it indicates that they are the same
 # just of different length
 return 0

def junos_version_serial_analyze(self, sample):
 holder = 0
 result = []
 counter = 0
 for x in sample:
 counter += 1
 if x.isdigit():
 holder = holder * 10 + int(x)
 if counter == len(sample):
 result.append(holder)
 else:
 if holder != 0:

	 84	 Day One: Junos® PyEZ Cookbook

 result.append(holder)
 holder = 0
 if x.isalpha():
 result.append(str(x))
 else:
 continue
 return result

Based on the return value of function junos_version_compare, you can decide if an
Junos image update is needed.

if feedback >= 0:
 print(“On-box Junos version at “ + sample[“ip”] + “(“ + sample_on_box_model + “)” + “is NOT OLDER than
customer required”)
 print(“No need to upgrade\n”)
else:
 print(“On-box Junos version at “ + sample[“ip”] + “(“ + sample_on_box_model + “)” + “is OLDER than
customer required”)
 print(“Need to upgrade\n”)
 # first check if we store that junos file locally
 filename = tools.local_junos_dir_check(sample[“model”], sample[“junos”])
 if filename:
 # after find needed image file locally, call PyEz to install that
dev = tools.junos_auto_install(str(sample[“ip”]), “Junos/” + filename, dev)
 else:
if we don’t have file locally, print out warning
print(“Failed to find customer required image locally, please download in Junos folder before we can
perform system upgrade”)

def junos_auto_install(self,host_ip, path, device):
“””
Call PyEz to secure install new junos version
to remote srx host
“””

sw = SW(device)
path = os.path.join(os.getcwd(),path)
#print path,type(path)
try:
 ok = sw.install(package=path, progress=install_progress)
except Exception as err:
 print(“Install error”)
 return False

print(ok)
try:
 rsp = sw.reboot()
 print(rsp)
except exception.ConnectClosedError:
 print(“About to loose connection ..”)
finally:
 print(“Please wait for the box to wake-up!”)
 time.sleep(20)
 dev = self.device_conn(host_ip)
 print(“Initiating connection to box ...”)
 while True:
 try:
 dev.open()

	 85	 Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP)

 break
 except:
 print “Box is not ready yet, try again in next 20s...”
 time.sleep(20)
 print(“Connected”)
 print(“New version:”)
 print(“\t” + dev.facts[“model”] + “: “ + dev.facts[“version”])
 return dev

def install_progress(dev, msg):
 print(“{}:{}”.format(dev.hostname, msg))

Last but not least, push down a customized configuration file for that specific de-
vice. And append this device to the known_hosts list, so we don’t re-configure it
next time. Don’t forget to read the dhcpd.leases file again at the end to keep the
loop running.

cu = Config(dev)
print(“\n\nPushing down another configuration file now “)
tools.config_composer(sample[“model”], sample[“hostname”], sample_on_box_version)
cu.load(path=”Config_History/” + sample[“hostname”] + “.set”)
try:
 cu.commit(timeout=180)
except exception.RpcTimeoutError:
 print(“Need longer time to commit, please adjust commit timeout value ...”)
 time.sleep(5)
print(“Configuration Updated”)
tmp = {}
tmp[“ip”] = sample[“ip”]
tmp [“mac”]= tools.mac_return(sample[“model”], str(sample[“mac”]))
known_hosts.append(tmp)
dev.close()

print(“\nRead leases file again:”)
tmp_hosts = tools.lease_read(“/var/lib/dhcp/dhcpd.leases”)
time.sleep(10)

The config_composer function is based on Jinja2 templates and yaml files, that you
probably already learned them from other recipes in this book. Specifically, you
need the device’s model information here because there are at least two different
Jinja2 templates dedicated to the SRX and the EX due to the difference in their
configuration. Configuration files are named after the hostname specified in the
customer datasheet and saved locally. Configuration files can be text-based, xml-
based, or set-command-based. In this demo, the set-command-based configuration
file is used:

def config_composer(self, model, hostname, junos_on_box_version):
 “””
 Using Yaml and Jinja2 generate dynamic templates
 “””
 if “SRX” in model:
 template_filename = “SRX_template.j2”
 network_parameter_filename = “SRX_networkParameters.yaml”
 elif “EX” in model:
 template_filename = “EX_template.j2”

	 86	 Day One: Junos® PyEZ Cookbook

 network_parameter_filename = “EX_networkParameters.yaml”
 complete_path = os.path.join(os.getcwd(), ‘Config’)
 ENV = jinja2.Environment(loader=jinja2.FileSystemLoader(complete_path))
 template = ENV.get_template(template_filename)
 with open(complete_path + “/” + network_parameter_filename) as yamlfile:
 dict = yaml.load(yamlfile) # yaml file is loaded as a dictionary with key value pairs
 addition = {“hostname”: hostname, “version”: junos_on_box_version}
 dict.update(addition)
 content = template.render(dict)
 target = open(“path_to_save_config_file/” + hostname + “.set”, ‘w’)
 target.write(content)
 target.close()
 return content

Here is the screen output when you don’t need to update the Junos image:

demo@ubuntu:~/Documents/JEAP$ python jeap.py
Below are new hosts from lease file:
[{u’junos’: u’15.1X49-D60.7’, ‘ip’: ‘10.0.1.21’, u’mac’: u’bb:bb:bb:bb:bb:bb’, u’hostname’: u’JEAP1’,
u’model’: u’srx320-poe’}]

Target hosts:
	 srx320-poe @ 10.0.1.21
Connecting ...
Connected

Current Config:
	 SRX320-POE: 15.1X49-D60.7
[15, 1, ‘X’, 49, ‘D’, 60, 7]
[15, 1, ‘X’, 49, ‘D’, 60, 7]
0
On-box Junos version at 10.0.1.21(SRX320-POE)is NOT OLDER than customer required
No need to upgrade

Pushing down another configuration file now
Configuration Updated
Remaining hosts to configure this round:
[]

On the SRX CLI, it would look like this (hostname change from JEAP to JEAP1):

[edit]
root@JEAP#

[edit]
root@JEAP1#

And the screen output when the Junos image update is needed:

Below are new hosts from lease file:
[{u’junos’: u’17.3’, ‘ip’: ‘10.0.1.21’, u’mac’: u’bb:bb:bb:bb:bb:bb’, u’hostname’: u’JEAP2’, u’model’:
u’SRX320-poe’}]

Target hosts:
	 SRX320-poe @ 10.0.1.21
Connecting ...
Connected

Current Config:

	 87	 Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP)

	 SRX320-POE: 15.1X49-D60.7
[15, 1, ‘X’, 49, ‘D’, 60, 7]
[17, 3]
-1
On-box Junos version at 10.0.1.21(SRX320-POE)is OLDER than customer required
Need to upgrade

Local junos directory check for version 17.3 ...
Found proper image ...
10.0.1.21:computing checksum on local package:
10.0.1.21:cleaning filesystem ...
10.0.1.21:before copy, computing checksum on remote package: /var/tmp/junos-srxsme-17.3R1.10.tgz
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 29589504 / 295871546 (10%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 59179008 / 295871546 (20%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 88768512 / 295871546 (30%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 118358016 / 295871546 (40%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 147947520 / 295871546 (50%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 177537024 / 295871546 (60%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 207110144 / 295871546 (70%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 236699648 / 295871546 (80%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 266289152 / 295871546 (90%)
10.0.1.21:junos-srxsme-17.3R1.10.tgz: 295871546 / 295871546 (100%)
10.0.1.21:after copy, computing checksum on remote package: /var/tmp/junos-srxsme-17.3R1.10.tgz
10.0.1.21:checksum check passed.
10.0.1.21:installing software ... please be patient ...
10.0.1.21:software pkgadd package-result: 0
Output:
Formatting alternate root (/dev/da0s2a)...
/dev/da0s2a: 2518.0MB (5156848 sectors) block size 16384, fragment size 2048
	 using 14 cylinder groups of 183.62MB, 11752 blks, 23552 inodes.
super-block backups (for fsck -b #) at:
 32, 376096, 752160, 1128224, 1504288, 1880352, 2256416, 2632480, 3008544,
 3384608, 3760672, 4136736, 4512800, 4888864
saving package file in /var/sw/pkg ...
Installing package ‘/altroot/cf/packages/install-tmp/junos-17.3R1.10’ ...
Verified junos-boot-srxsme-17.3R1.10.tgz signed by PackageProductionEc_2017 method ECDSA256+SHA256
Verified junos-srxsme-17.3R1.10-domestic signed by PackageProductionEc_2017 method ECDSA256+SHA256
JUNOS 17.3R1.10 will become active at next reboot
WARNING: A reboot is required to load this software correctly
WARNING: Use the ‘request system reboot’ command
WARNING: when software installation is complete
cp: cannot overwrite directory /altroot/cf/etc/ssh with non-directory /cf/etc/ssh
Saving state for rollback ...

Software installation succeeded
Shutdown NOW!
[pid 2634]
Please wait for the box to wake-up!

Connecting to box now ...
Connected
New version:
SRX320-POE: 17.3R1.10

Pushing down another configuration file now
Configuration Updated
Remaining hosts to configure this round:
[]

	 88	 Day One: Junos® PyEZ Cookbook

Read leases file again:
Don’t have any new host come online

The CLI on the SRX would look like this (Junos version upgrading from 15.1 to
17.3, and hostname changing from JEAP1 to JEAP2):

[edit]
root@JEAP1#

*** FINAL System shutdown message from root@JEAP1 ***

System going down IMMEDIATELY

SWaiting (max 60 seconds) for system process ̀ vnlru’ to stop...done
Waiting (max 60 seconds) for system process ̀ vnlru_mem’ to stop...Ignoring watchdog timeout during
boot/reboot
done
Waiting (max 60 seconds) for system process ̀ bufdaemon’ to stop...done
Waiting (max 60 seconds) for system process ̀ syncer’ to stop...
Syncing disks, vnodes remaining...3 3 0 0 0 0 done
			 …..

Fri Sep 1 00:10:29 UTC 2017

JEAP1 (ttyu0)

login: root
Password:

--- JUNOS 17.3R1.10 built 2017-08-23 06:40:27 UTC
root@JEAP1%
root@JEAP1%
root@JEAP1% cli
root@JEAP2>

Discussion
Once you master ZTP on the SRX using PyEZ, try applying this to the EX, or even
expanding it to the MX Series and QFX Series, or try using the serial number as
the ID instead of the MAC address.

Also, you can have a lot of fun with Jinja2 and YAML, and there are way more
interesting things you can do than just changing the hostname!

Recipe 17 - PyEZ for On-Box Scripts
by Peter Klimai

�� Python Version Used: 	 2.7

�� PyEZ Version Used: 	 1.3.1 (on-box PyEZ version for Junos 17.1R2)

�� Junos OS Used: 	 17.1R2

�� Juniper Platforms General Applicability: MX, EX, ACX, QFX, PTX, T

For many years, operators were able to create Junos OS commit, op, and event
automation scripts using SLAX and XSLT programming languages. Starting with
Junos OS Release 16.1, you can use Python for the same task. This recipe presents
an example of an operational (op) script that uses Python and PyEZ and runs on-
box – without the need for an external server. The script solves the classic task of
bouncing the interface specified as its parameter.

Problem
As an old proverb says, “seven problems – one reset button.” For the network en-
gineer, it is no surprise that troubleshooting the network often requires restarting
protocols, processes, different hardware components, bouncing the interfaces, and
more. Although these actions might not be required in a perfect world, the reality
is that we’re required to do such things every so often. With respect to interfaces, a
standard method of bouncing them in Junos is disabling, commiting, enabling
back, and then commiting again. This sounds simple, and it is – if you only have to
do it once or twice. But what if you have to perform this, or a similar task, over
and over again? The answer is clear: let’s create an automation script!

	 90	 Day One: Junos® PyEZ Cookbook

NOTE	 Other recipes in this book assume Python scripts running remotely on a
dedicated management server. In this recipe, you want the operator to be able to
easily bounce the interface when working with the device CLI, hence an on-box
op script is required.

Solution
Python on a Junos OS device has many modules available including jinja2, lxml,
and paramiko, and it also includes Junos PyEZ (jnpr.junos). You can consult Juniper
technical documentation for a complete list of supported modules. The solution
script in this recipe will use a standard Device class from jnpr.junos module for con-
nection and configuration of the local device, in a way that is very similar to how
you would do it with an off-box script (that is, one running remotely on a manage-
ment server).

NOTE	 On-box Python currently requires you to use Python 2.7 and also an
earlier version of PyEZ. Check for recent versions of Python and PyEZ that might
be supported in future Junos releases.

To create this recipe, you first create the automation script interface_bounce.py. Its
source code is presented below (the script’s parts are numbered # (n) for the expla-
nation that follows):

from jnpr.junos import Device # (1)
from jnpr.junos.utils.config import Config
from jnpr.junos.exception import *
import argparse
from time import sleep

arguments = { # (2)
 “interface”: “Name of the interface to disable/enable”,
 “delay”: “Time to wait before enabling the interface (seconds)”,
}

def config_xml(interface_name, disable_attributes): # (3)
 return “””
 <configuration>
 <interfaces>
 <interface>
 <name>{0}</name>
 <disable {1}/>
 </interface>
 </interfaces>
 </configuration>
 “””.format(interface_name, disable_attributes)

def change_config(dev_cfg, delta_config, log_message): # (4)
 print “%s: Locking the configuration” % log_message
 try:
 dev_cfg.lock()

	 91	 Recipe 17 - PyEZ for On-Box Scripts

 except LockError:
 print “Error: Unable to lock configuration”
 return False

 print “%s: Loading configuration changes” % log_message
 try:
 dev_cfg.load(delta_config, format=”xml”, merge=True)
 except ConfigLoadError as err:
 print “Unable to load configuration changes: \n” + err
 print “Unlocking the configuration”
 try:
 dev_cfg.unlock()
 except UnlockError:
 print “Error: Unable to unlock configuration”
 return False

 print “%s: Committing the configuration” % log_message
 try:
 dev_cfg.commit()
 except CommitError:
 print “Error: Unable to commit configuration”
 print “Unlocking the configuration”
 try:
 dev_cfg.unlock()
 except UnlockError:
 print “Error: Unable to unlock configuration”
 return False

 print “%s: Unlocking the configuration” % log_message
 try:
 dev_cfg.unlock()
 except UnlockError:
 print “Error: Unable to unlock configuration”
 return False

 return True

def main(): # (5)
 parser = argparse.ArgumentParser() # (6)
 for key in arguments:
 parser.add_argument((‘-’ + key), required=True, help=arguments[key])
 args = parser.parse_args()

 with Device() as dev: # (7)
 dev.bind(cu=Config) # (8)
 if change_config(dev.cu, config_xml(args.interface, “”), # (9)
 “Disabling interface”):
 print “Waiting %s seconds...” % args.delay
 sleep(float(args.delay)) # (10)
 if change_config(dev.cu, config_xml(args.interface, “delete=’delete’”),
 “Enabling interface”): # (11)
 print “Interface bounce script finished successfully.”
 else:
 print “Error enabling the interface, it will remain disabled.”

if __name__ == “__main__”: # (12)
 main()

	 92	 Day One: Junos® PyEZ Cookbook

Let’s see what is happening in the script:

1. Import standard PyEZ classes Device, Config, and PyEZ exceptions. Also import
argparse module and sleep() function that will be used in the script.

2. Define the arguments dictionary, which is a reserved name that tells the Junos
OS which CLI parameters the script will work with. Using this variable allows
using context sensitive help (question mark) when working with scripts. The
present script uses interface and delay arguments (also known as parameters).

3. The function config_xml() returns part of the Junos configuration that is respon-
sible for disabling (or enabling) the specific interface in XML form. The interface
name must be passed as a parameter interface_name, and the second parameter
disable_attributes defines the possible attributes for the <disable> XML element.

4. The change_config() function locks, commits, and unlocks the specified delta_
config configuration on the particular device (identified by corresponding configu-
ration object dev_cfg). It also prints the status and tries to catch possible
exceptions, including LockError, ConfigLoadError, and some others. The function
returns a Boolean value, with True meaning successful configuration load.

5. The main function.

6. Use an instance of ArgumentParser() class to get arguments provided to the
script, and put them in the args object.

7. Create an instance of Device() class called dev. The context manager syntax
(with operator) is used to make sure open() and close() methods are called auto-
matically as needed (and so you do not need to issue them explicitly).

8. Bind the configuration object to the device instance. This allows the perfor-
mance of configuration tasks.

9. The call change_config() function was defined previously, disabling the interface.
Proceed only if it returns True.

10. Sleep the specified number of seconds.

11. Call the change_config() function again, this time providing “delete=’delete’” as
a disable_attributes parameter to config_xml() function. The intention is to enable
the interface, deleting the disable option from interface configuration. Also, print
the message depending on the function return value.

12. The standard Python script “entry point.”

	 93	 Recipe 17 - PyEZ for On-Box Scripts

NEXT

Now that you developed the script, in order to run it on the Junos box you have
to:

�� Copy the interface_bounce.py script to the /var/db/scripts/op/ directory on the
Junos device. Use any convenient tool and protocol for that, such as SCP.
Make sure that the script owner is a user of a super-user class and that this
user has write permissions for the script file. Make sure other users only have
read permissions for the same file.

�� Enter configuration mode and configure Python as a scripting language for
Junos:

lab@vMX-1> configure
Entering configuration mode
[edit]
lab@vMX-1# set system scripts language python

�� Configure interface_bounce.py script as an op script and commit:

[edit]
lab@vMX-1# set system scripts op file interface_bounce.py
[edit]
lab@vMX-1# commit and-quit
commit complete
Exiting configuration mode

lab@vMX-1>

�� Finally, you can run the script from the Junos CLI using the op command,
providing, in this example, the interface name of ge-0/0/0 and value of 10
seconds as a delay:

lab@vMX-1> op interface_bounce.py interface ge-0/0/0 delay 10
Disabling interface: Locking the configuration
Disabling interface: Loading configuration changes
Disabling interface: Committing the configuration
Disabling interface: Unlocking the configuration
Waiting 10 seconds...
Enabling interface: Locking the configuration
Enabling interface: Loading configuration changes
Enabling interface: Committing the configuration
Enabling interface: Unlocking the configuration
Interface bounce script finished successfully.

	 94	 Day One: Junos® PyEZ Cookbook

Discussion
Among the multiple ways of checking to see that the script actually worked, you
can view the configuration and interface operational state before, during, and after
script execution. Here, you just check the log messages to make sure the interface
ge-0/0/0 was down for nearly 10 seconds:

lab@vMX-1> show log messages | match SNMP_TRAP_LINK_ | last
Jul 22 21:49:20 vMX-1 mib2d[4219]: SNMP_TRAP_LINK_DOWN: ifIndex 518, ifAdminStatus down(2),
ifOperStatus down(2), ifName ge-0/0/0
Jul 22 21:49:31 vMX-1 mib2d[4219]: SNMP_TRAP_LINK_UP: ifIndex 518, ifAdminStatus up(1), ifOperStatus
up(1), ifName ge-0/0/0
[...]

The messages log confirms that the script worked as desired.

As you can see, Junos on-box scripts written in Python are very similar to off-box
PyEZ automation scripts (see other recipes in this book!). Junos OS not only al-
lows for multiple types of automation, it comes with consistency: on-box and off-
box automation can use similar approaches, the same language, and the same
library modules!

Recipe 18 - Automated Network Testing with
Junos PyEZ
by Peter Klimai

�� Python Version Used: 	 3.5

�� PyEZ Version Used: 	 2.1.4

�� Junos OS Used: 	 12.1X47-D40

�� Juniper Platforms General Applicability: All

You can make sure your network is working well by spotting problems before us-
ers notice them. The good news is that automation can help with this task. This
recipe provides an example of how you can automate network tests with Junos
PyEZ.

Problem
Typically, to make sure your network is operating normally, you log in to the de-
vices and check multiple command outputs making sure everything is “Full” and
“Established.” Alternatively, you might look at graphs that represent different
counters and values, as provided by your monitoring system. Today you can use a
different approach: create a script that does the job for you.

NOTE	 This recipe’s approach is similar to a common software engineer’s practice
of writing unit tests – small pieces of code that test different parts of the main
program. Here, we’re testing the network instead!

	 96	 Day One: Junos® PyEZ Cookbook

Figure 18.1	 Network Topology Used in Recipe 18

The exact problem is making sure the OSPF network shown in Figure 18.1 is
working fine. In particular, you need to make sure all adjacencies are in the Full
state. You should also send a short email with test results to the administrator and
schedule the script execution on your Linux server.

Solution
To solve the specific task of OSPF adjacency testing automation, you must first cre-
ate the automation script, here named monitor_ospf.py. Its source code is presented
below, and the script’s parts are numbered with numerals # (n) for the explanation
that follows the script:

from jnpr.junos import Device # (1)
from jnpr.junos.op.ospf import OspfNeighborTable
import smtplib

MAIL_LOGIN = “user@example.com” # (2)
MAIL_PW = “xxx”
TO_ADDR = “admin@example.com”
MAIL_SERVER = “smtp.example.com”
SMTP_SSL_PORT = 587
SUBJ = “OSPF adjacency test results”

USER = “lab” # (3)
PASSWD = “lab123”
R1 = “10.254.0.35”
R2 = “10.254.0.37”
R3 = “10.254.0.38”

def check_ospf_full_adjacencies(dev, neighbor_count): # (4)
 ospf_table = OspfNeighborTable(dev) # Create an instance of the Table
 ospf_table.get() # Populate the Table
 if len(ospf_table) != neighbor_count:
 return False

	 97	 Recipe 18 - Automated Network Testing with Junos PyEZ

 for neighbor in ospf_table:
 if neighbor[“ospf_neighbor_state”] != “Full”:
 return False
 return True

def str_result(test_result): # (5)
 return “Success” if test_result else “Fail”

def main(): # (6)
 with Device(host=R1, user=USER, password=PASSWD) as dev:
 result1 = check_ospf_full_adjacencies(dev, 3)
 print(“Test OSPF adjacencies on R1: “ + str_result(result1))

 with Device(host=R2, user=USER, password=PASSWD) as dev:
 result2 = check_ospf_full_adjacencies(dev, 3)
 print(“Test OSPF adjacencies on R2: “ + str_result(result2))

 with Device(host=R3, user=USER, password=PASSWD) as dev:
 result3 = check_ospf_full_adjacencies(dev, 2)
 print(“Test OSPF adjacencies on R3: “ + str_result(result3))

 print(“Sending email.”) # (7)

 body_msg = “Test results: %s, %s, %s\n” % (str_result(result1),
 str_result(result2),
 str_result(result3))
 msg = “From: %s\nTo: %s\nSubject: %s\n\n%s\n” % (MAIL_LOGIN,
 TO_ADDR, SUBJ, body_msg)
 mailserver = smtplib.SMTP(MAIL_SERVER, SMTP_SSL_PORT)
 mailserver.starttls()
 mailserver.login(MAIL_LOGIN, MAIL_PW)
 mailserver.sendmail(MAIL_LOGIN, TO_ADDR, msg)
 mailserver.quit()

if __name__ == “__main__”: # (8)
 main()

Here is what’s happening in the script:

1. Import PyEZ Device and OspfNeighborTable classes, and the smtplib module from
the standard Python library.

2. Define a set of “constants” that will be used for sending email from the script:
login, password, email-to address, server address, server port, and email subject.

3. Login and password for device connection, and IP addresses of R1, R2, and R3
routers.

4. The function check_ospf_full_adjacencies() takes two parameters: device in-
stance dev and expected OSPF neighbor count neighbor_count. It then uses the built-
in PyEZ functionality of operational tables; the ospf_table variable, using the
OspfNeighborTable class, is populated with the device’s OSPF adjacency data. You
can then check the length of the table (it should be equal to neighbor_count) and the
adjacency state (each should be Full). The function returns True only if all OSPF
adjacencies are fine.

	 98	 Day One: Junos® PyEZ Cookbook

5. The str_result() function performs an auxiliary task of converting the Boolean
result to a string representation.

6. In the main() function, for each device, open a connection and call the check_
ospf_full_adjacencies() function. As you can see from Figure 1, you can expect
three Full OSPF adjacencies for R1 and R2, and two adjacencies for R3, and these
values are provided to the function using parameters. Also, the success or failure
result of the test is printed to the screen.

7. Here you form an email and send it using smtplib. The syntax is mostly self-ex-
planatory. As with other parts of the script, exception checking is left out, after the
fact, to reduce the length of the example script. This means that if exception hap-
pens (such as a mail server being unreachable, etc.), the script will be terminated
and you will get a standard error stack trace in the terminal.

8. Standard Python script entry point.

NEXT

Now run the script manually to see if it works properly. You should get the follow-
ing results in the terminal, which tells you that OSPF is currently working fine:

lab@ubuntu:~$ python monitor_ospf.py
Test OSPF adjacencies on R1: Success
Test OSPF adjacencies on R2: Success
Test OSPF adjacencies on R3: Success
Sending email.

Additionally, after the script runs, you’ll receive an email with the following con-
tent (both here and in the script above, the lab device names and addresses were
changed):

From: user@example.com
To: admin@example.com
Subject: OSPF adjacency test results

Test results: Success, Success, Success

Very good to receive such notices! The final step will be to schedule the periodic
script execution using cron. Here, you do it on your Ubuntu Linux server just by
editing the /etc/crontab file and adding this line to it to get your emails at the start
of every hour:

00 *	 * * *	 root	/usr/bin/python3.5 /home/lab/monitor_ospf.py

	 99	 Recipe 18 - Automated Network Testing with Junos PyEZ

Discussion
In the same way that this script worked, you can write many other tests to make
sure functionality of your network did not degrade. You’ve seen how Junos PyEZ
Tables and Views are used for this purpose, but there are other possible approach-
es to creating tests, and here, briefly, let’s show you two alternative ways to write
the same check_ospf_full_adjacencies() function.

The first alternative is to use the direct processing of XML RPC responses using
methods defined by lxml library, such as find(), findall(), or xpath():

def check_ospf_full_adjacencies(dev, neighbor_count):
 full_count = 0
 rpc_result = dev.rpc.get_ospf_neighbor_information()
 for element in rpc_result.findall(“ospf-neighbor”):
 if element.findtext(“ospf-neighbor-state”) == “Full”:
 full_count += 1
 else:
 return False
 return full_count == neighbor_count

This approach of working with XML is extremely flexible, but might not be so
simple to use. The second possible alternative is to use a Python package called
jxmlease (https://github.com/Juniper/jxmlease). Its methods allow you to to con-
vert XML to native Python data structures (lists, dictionaries, and their combina-
tions) for easier access to XML elements, as demonstrated below:

import jxmlease
def check_ospf_full_adjacencies(dev, neighbor_count):
 full_count = 0
 parser = jxmlease.EtreeParser()
 res = parser(dev.rpc.get_ospf_neighbor_information())
 for neighbor_data in res[“ospf-neighbor-information”][“ospf-neighbor”]:
 if neighbor_data[“ospf-neighbor-state”] == “Full”:
 full_count += 1
 else:
 return False
 return full_count == neighbor_count

These two different definitions of check_ospf_full_adjacencies() work exactly the
same as our first definition in the main script – so for your tests, you can choose the
approach you like best, or have each script do a different thing and email.

MORE?		 For more test examples and some additional discussion on the subject
please refer to Day One: Juniper Ambassadors’ Cookbook 2017, available here:
https://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-
series/cookbook-2017/, and the corresponding GitHub repository: https://github.
com/pklimai/pyez-network-testing.

https://github.com/Juniper/jxmlease
https://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/cookbook-2017/
https://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/cookbook-2017/
https://github.com/pklimai/pyez-network-testing
https://github.com/pklimai/pyez-network-testing

	 100	 Day One: Junos® PyEZ Cookbook

MORE?		 For an example of a more advanced and high-level testing framework
that does not actually require you to write scripts, check out JSNAPy tool avail-
able at GitHub under this URL: https://github.com/Juniper/jsnapy. An excellent
Day One book covers JSNAPy here: http://www.juniper.net/us/en/training/
jnbooks/day-one/automation-series/jsnapy/.

https://github.com/Juniper/jsnapy
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/jsnapy/
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/jsnapy/

Recipe 19 - Menu Script for Address Book Editing
by Peter Klimai

�� Python Version Used: 	 3.5

�� PyEZ Version Used: 	 2.1.4

�� Junos OS Used: 	 15.1X49-D70

�� Juniper Platforms General Applicability: SRX Series

There are many simple tasks that administrators have to perform often, and auto-
mating them can free up a lot of time. Editing address black- or whitelists, for ex-
ample, is a manipulation that can easily be required multiple times a day.

Additionally, sometimes personnel are not keen on working with CLI or Web UI
directly, but must still perform network device configuration changes. In this case,
a simple multiple-choice style menu script can do the job, with minimal education
and stress required.

This recipe gives you an example of how you can create a menu script to edit the
address book for the Juniper SRX Series.

Problem
Let’s assume you have an SRX Series that makes use of a set of security policies,
and some of the policies reference an address-set named ALLOWED-IN. This ad-
dress-set contains IPv4 addresses and the IPv4 subnets must be changed frequently.
Also, to aid automation, let’s use a standard name convention for the address ob-
ject, deriving it from the IP address or subnet (if you want a more unique name you
can modify the solution script accordingly, as an exercise).

	 102	 Day One: Junos® PyEZ Cookbook

The particular commands that you have to manually enter to add a record to the
address-set are similar to these (assuming that you use a global address book):

lab@SRX# set security address-book global address CIDR-10.1.1.0/24 10.1.1.0/24
lab@SRX# set security address-book global address-set ALLOWED-IN address CIDR-10.1.1.0/24

Here, in the first line, you created an address object named CIDR-10.1.1.0/24,
which is actually just a 10.1.1.0/24 subnet, and in the second line you put it in the
address-set. This is not too complex, but what actually changes for every new ad-
dress or subnet that you add? Correct, only the IP and subnet mask. You will have
to type everything else again and again – so let’s automate the process to avoid
that.

Solution
You can solve the task using address_edit.py script presented below. The script’s
parts are numbered as # (n) for the explanation that follows:

from jnpr.junos import Device # (1)
from jnpr.junos.utils.config import Config
from jnpr.junos.exception import *
from lxml import etree
import ipaddress

USER = “lab” # (2)
PASSWD = “lab123”
DEVICE_IP = “10.254.0.35”

ADDR_BOOK_NAME = “global” # (3)
ADDR_SET_NAME = “ALLOWED-IN”
ADDR_NAME_PREFIX = “CIDR-”

 # (4)
STR_INVITE = “””
Address-set editor script for Juniper SRX. Device: {0}
Address book to edit: {1} Address-set to edit: {2}
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> “””

STR_QUITING = “Goodbye!”
STR_READING = “\nReading and displaying address book entries:”
STR_UNKNOWN_INPUT = “Unknown input, please repeat.”
STR_INCONSISTENT_ERROR = “Error: Address book on the device \
requires manual fix before this script can be used.”
STR_ENTER_IP_ADD = “Enter IP or IP/mask to add >>> “
STR_ADDRESS_ADDED = “Address added successfully.”
STR_INVALID_IP = “Invalid entry, please repeat.”
STR_ENTER_IP_DEL = “Enter IP/mask to delete >>> “
STR_ADDRESS_DELETED = “Address deleted successfully.”
STR_PDIFF_BANNER = “\nConfig diff on the device:”
STR_CONFIG_CHANGED = “Configuration change committed.”

	 103	 Recipe 19 - Menu Script for Address Book Editing

 # (5)
STR_GET_CONFIG = “””<configuration>
 <security>
 <address-book>
 <name>{0}</name>
 </address-book>
 </security>
 </configuration>”””

STR_SET_CONFIG = “””set security address-book {0} address {1}{2} {2}
set security address-book global address-set ALLOWED-IN address {1}{2}”””

STR_DELETE_CONFIG = “””delete security address-book {0} address {1}{2} {2}
delete security address-book global address-set ALLOWED-IN address {1}{2}”””

class InconsistentConfigException(Exception): # (6)
 pass

def read_addresses(): # (7)
 addr_book_prefixes = set()
 address_set_prefixes = set() # empty sets so far
 try: # (8)
 with Device(host=DEVICE_IP, user=USER, password=PASSWD) as dev:
 resp = dev.rpc.get_config(
 filter_xml=etree.XML(STR_GET_CONFIG.format(ADDR_BOOK_NAME)),
 options={‘inherit’: ‘inherit’,
 ‘database’: ‘committed’,
 ‘format’: ‘XML’})
 if resp is not None: # (9)
 for address_element in resp.findall(“security/address-book/address”):
 name = address_element.findtext(“name”)
 ip_prefix = address_element.findtext(“ip-prefix”)
 if name is not None and ip_prefix is not None:
 if name == ADDR_NAME_PREFIX + ip_prefix:
 if sanitize_ip(ip_prefix) is not None:
 addr_book_prefixes.add(ip_prefix)
 else:
 pass # this entry was not added by script - ignore

 for address_set_element in resp.findall(# (10)
 “security/address-book/address-set[name=’{0}’]/address”
 .format(ADDR_SET_NAME)):
 ab_name = address_set_element.findtext(“name”)
 if ab_name.startswith(ADDR_NAME_PREFIX):
 test_ip = ab_name[len(ADDR_NAME_PREFIX):]
 if test_ip in addr_book_prefixes:
 address_set_prefixes.add(test_ip)
 else:
 # All addresses in address set that start with prefix
 # ADDR_NAME_PREFIX, must be of ‘standard’
 # form ADDR_NAME_PREFIX + IP/mask
 raise InconsistentConfigException(
 “Inconsistent entry in address book”)

 except ConnectRefusedError: # (11)
 print(“\n\nError: Connection refused!”)
 except ConnectTimeoutError:

	 104	 Day One: Junos® PyEZ Cookbook

 print(“\n\nError: Device connection timed out!”)
 except ConnectAuthError:
 print(“\n\nError: Authentication failure!”)

 return address_set_prefixes

def display_addresses(addrs): # (12)
 for addr in sorted(addrs):
 print(addr)

def sanitize_ip(address_entered): # (13)
 result = address_entered
 if “/” not in result: result += “/32”
 try:
 ip = ipaddress.IPv4Network(result)
 except:
 return None
 return result

def change_config_with_set_commands(set_commands): # (14)
 try:
 with Device(host=DEVICE_IP, user=USER, password=PASSWD) as dev:
 # open and close is done automatically by context manager
 with Config(dev, mode=”exclusive”) as conf:
 # exclusive locks are treated automatically by context manager
 conf.load(set_commands, format=”set”)
 print(STR_PDIFF_BANNER)
 conf.pdiff()
 conf.commit()
 except LockError:
 print(“\n\nError applying config: configuration was locked!”)
 except ConnectRefusedError:
 print(“\n\nError: Device connection refused!”)
 except ConnectTimeoutError:
 print(“\n\nError: Device connection timed out!”)
 except ConnectAuthError:
 print(“\n\nError: Authentication failure!”)
 except ConfigLoadError as ex:
 print(“\n\nError: “ + str(ex))
 else:
 print(STR_CONFIG_CHANGED)

def add_address(address_sanitized): # (15)
 change_config_with_set_commands(STR_SET_CONFIG.format(
 ADDR_BOOK_NAME, ADDR_NAME_PREFIX, address_sanitized))

def del_address(address_sanitized): # (16)
 change_config_with_set_commands(STR_DELETE_CONFIG.format(
 ADDR_BOOK_NAME, ADDR_NAME_PREFIX, address_sanitized))

def main(): # (17)

	 105	 Recipe 19 - Menu Script for Address Book Editing

 while True:
 print(STR_INVITE.format(DEVICE_IP, ADDR_BOOK_NAME, ADDR_SET_NAME), end=””)
 choice = input().lower()
 if choice == “q”: # (18)
 print(STR_QUITING)
 break
 elif choice == “r”: # (19)
 print(STR_READING)
 try:
 addrs = read_addresses()
 except InconsistentConfigException:
 print(STR_INCONSISTENT_ERROR)
 break
 display_addresses(addrs)
 elif choice == “a”: # (20)
 print(STR_ENTER_IP_ADD, end=””)
 address_entered = input()
 address_sanitized = sanitize_ip(address_entered)
 if address_sanitized is None:
 print(STR_INVALID_IP)
 else:
 add_address(address_sanitized)
 elif choice == “d”: # (21)
 print(STR_ENTER_IP_DEL, end=””)
 address_entered = input()
 address_sanitized = sanitize_ip(address_entered)
 if address_sanitized is None:
 print(STR_INVALID_IP)
 else:
 del_address(address_sanitized)
 else:
 print(STR_UNKNOWN_INPUT)

if __name__ == “__main__”: # (22)
 main()

Here is the explanation of what is happening in the script:

1. Import PyEZ Device and Config classes, all PyEZ exception definitions, the etree
module from lxml and the ipaddress module from the standard Python library.

2. Login, password, and IP addresses for device connection – note that best prac-
tice is actually to not hardcode the login credentials in the script.

3. Set of “constants” for address book name, address-set name, and address name
prefix.

4. STR_INVITE is the string that will be used as a main menu prompt. Note that
{0}, {1}, and {2} will be substituted with particular values using the format() meth-
od. Some other string “constants” follow.

5. STR_GET_CONFIG is a small XML document that will be used below in a get
configuration operation. STR_SET_CONFIG and STR_DELETE_CONFIG will
be used for changing the configuration.

	 106	 Day One: Junos® PyEZ Cookbook

6. Here, you create a custom exception type, InconsistentConfigException, for use
below.

7. The function read_addresses() is used to read the address book from a Junos de-
vice. You start by creating two empty sets (in a mathematical sense): addr_book_
prefixes and address_set_prefixes. Then addr_book_prefixes will contain IP
prefixes from the address book, for which the address name starts with ADDR_
NAME_PREFIX. The address_set_prefixes, on the other hand, contain addresses
from the address-set ADDR_SET_NAME, that conforms to this convention. They
must also be present in the address book – otherwise a custom exception is
generated.

8. Use the try syntax to catch possible exceptions in the nested block. Use context
manager (with operator) to create a Device instance and open or close the NET-
CONF connection to it automatically. Load the address book configuration using
the rpc.get_config() method.

9. Start analyzing the address book configuration. For each address element (with
configuration contained in security/address-book/address XML XPath) extract its
name and IP-prefix. Add ip-prefix to addr_book_prefixes set, but only if the ad-
dress element conforms to naming convention (name starts with ADDR_NAME_
PREFIX following actual IP prefix). Ignore other addresses that might have been
added to the address book manually.

10. Proceed analyzing the address book configuration and analyze all addresses in
the address-set named ADDR_SET_NAME. For addresses that start with ADDR_
NAME_PREFIX make sure the actual IP subnet is contained in addr_book_pre-
fixes before adding it to address_set_prefixes.

11. Process any possible exceptions, and return address_set_prefixes (empty set is
returned in the case of device connection or authentication errors).

12. This is an auxiliary function that prints an address set. Note that addresses are
sorted lexicographically before printing.

13. The function sanitize_ip() in the script is used to check if an argument is a cor-
rect IPv4 address or subnet. It returns None if not, otherwise it returns the IPv4 sub-
net string. A built-in Python module ipaddress is used here for simplicity. An
alternative implementation could be based on straightforward regular
expressions.

14. The change_config_with_set_commands() function is used to apply configuration
changes to the device. Note the two nested context managers: the first one is used
to create a Device instance and open/close connection, while the second (inner) one
creates a Config object instance and locks or unlocks the configuration database.
Inside the context managers you only have to load and commit configuration –
and print the delta config output for user’s convenience (pdiff() method).

	 107	 Recipe 19 - Menu Script for Address Book Editing

15. The add_address() function calls the function defined previously, namely change_
config_with_set_commands(), to add an address to the address book. STR_SET_CON-
FIG is used as a template.

16. The del_address() function works very similarly, but for the set command tem-
plate it uses STR_DELETE_CONFIG instead.

17. In the main function you have an infinite “while True” loop (to abandon such
a loop use the break operator). In the loop, you print the prompt and ask for the
user to input instruction.

18. Entering “q” (or “Q”) finishes the script.

19. Entering “r” (or “R”) reads and prints the address list from a device. In case
“inconsistent” configuration is detected, the script finishes.

20. Entering “a” (or “A”) asks the user to enter an IP address or subnet, and then
adds it to the address book using add_address() function. Function sanitize_ip() is
used to make sure user input is valid.

21. Entering “d” (or “D”) also asks the user to enter IP address or subnet, and
then calls del_address() function.

22. Standard Python script “entry point.”

NEXT

Now, let’s test the script! In the example below you start with an empty address
book on the SRX device (that is, no address book ADDR_BOOK_NAME is de-
fined in the configuration). Then you add 10.1.1.0/24 and 10.2.2.2/32 addresses
with a script, and then delete them just to check that everything works fine:

lab@host$ python3 address_edit.py
Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> a
Enter IP or IP/mask to add >>> 10.1.1.0/24

Config diff on the device:

[edit security]
+ address-book {
+ global {
+ address CIDR-10.1.1.0/24 10.1.1.0/24;
+ address-set ALLOWED-IN {
+ address CIDR-10.1.1.0/24;
+ }
+ }
+ }

	 108	 Day One: Junos® PyEZ Cookbook

Configuration change committed.

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> a
Enter IP or IP/mask to add >>> 10.2.2.2

Config diff on the device:

[edit security address-book global]
 address CIDR-10.1.1.0/24 { ... }
+ address CIDR-10.2.2.2/32 10.2.2.2/32;
[edit security address-book global address-set ALLOWED-IN]
 address CIDR-10.1.1.0/24 { ... }
+ address CIDR-10.2.2.2/32;

Configuration change committed.

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> r

Reading and displaying address book entries:
10.1.1.0/24
10.2.2.2/32

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> d
Enter IP/mask to delete >>> 10.1.1.0/24

Config diff on the device:

[edit security address-book global]
- address CIDR-10.1.1.0/24 10.1.1.0/24;
[edit security address-book global address-set ALLOWED-IN]
- address CIDR-10.1.1.0/24;

Configuration change committed.

	 109	 Recipe 19 - Menu Script for Address Book Editing

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> r

Reading and displaying address book entries:
10.2.2.2/32

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> d
Enter IP/mask to delete >>> 10.2.2.2

Config diff on the device:

[edit security]
- address-book {
- global {
- address CIDR-10.2.2.2/32 10.2.2.2/32;
- address-set ALLOWED-IN {
- address CIDR-10.2.2.2/32;
- }
- }
- }

Configuration change committed.

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> q
Goodbye!

Looks good so far. Checking the configuration on the SRX device also confirms
that the configuration has been added and deleted successfully – the checks are
straightforward and this recipe omits those outputs for the sake of brevity. Try it in
your own lab to see.

	 110	 Day One: Junos® PyEZ Cookbook

Discussion
There are a couple more things you need to check before calling it a day. What if
the SRX device connection is down? What if NETCONF is not enabled on the de-
vice? What if someone edited the configuration manually in an improper way?

First, let’s see what happens to the script session after NETCONF was purpose-
fully disabled on the SRX device:

lab@host$ python3 address_edit.py
Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> r

Reading and displaying address book entries:

Error: Connection refused!

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>>

As you can see, the ConnectRefusedError exception was properly processed by the
change_config_with_set_commands() function. The connection timeout error
(ConnectTimeoutError exception) and the user authentication error (ConnectAu-
thError exception) will be processed similarly.

What about configuration lock? Let’s say you have some candidate configuration
changes on your SRX device that have not been applied yet:

[edit]
lab@SRX# show | compare
[edit interfaces ge-0/0/0]
+ description “Test lock”;

Reading the address book will work fine, but adding or deleting entries should fail
as you require an exclusive lock to perform changes from the script. Let’s see:

lab@host$ python3 address_edit.py
Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> a

	 111	 Recipe 19 - Menu Script for Address Book Editing

Enter IP or IP/mask to add >>> 10.3.3.0/24

Error applying config: configuration was locked!

Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>>

As expected, the LockError exception was again processed properly. You should
start realizing the usefulness of the try and except operators if you have not done so
yet!

Finally, let’s see what happens if someone modifies the configuration to make it
“inconsistent” from the point of view of our script. The following is an example of
such configuration:

 [edit]
lab@SRX# show security address-book
global {
 address CIDR-WRONGIP 10.10.10.0/24;
 address-set ALLOWED-IN {
 address CIDR-WRONGIP;
 }
}

And here is the result of running the script:

lab@host$ python3 address_edit.py
Address-set editor script for Juniper SRX. Device: 10.254.0.35
Address book to edit: global Address-set to edit: ALLOWED-IN
 r - READ and show addresses
 a - ADD address (IP or subnet)
 d - DELETE particular address
 q - QUIT script
Choice >>> r

Reading and displaying address book entries:
Error: Address book on the device requires manual fix before this script can be used.

This is again expected – because “WRONGIP” is not actually an IP address or
subnet, and the script asks the operator to sanitize the configuration first.

Recipe 20 - Provisioning L3VPN Services on PE
Routers
by Peter Klimai

�� Python Version Used: 	 3.6

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: 	 17.1R2.7

�� Juniper Platforms General Applicability: MX/PTX/QFX/ACX Series

Manually provisioning network services can be painful. Automating this process
improves speed of service delivery and reduces errors. This recipe shows how
L3VPN services can be configured on MPLS PE routers using Junos PyEZ.

Problem
You have a set of provider edge (PE) routers and each PE generally has multiple
connected L3VPN customers. You want to provision the corresponding configura-
tion automatically using a script.

The example topology used in this recipe is shown in Figure 20.1. The IP/MPLS
backbone is preconfigured and not managed by the script. Edge customer-facing
interfaces and L3VPN VRF instances must be provisioned automatically by a Py-
thon script, according to data specified in a separate file.

Additional points to consider are:

The configuration used for each customer must be standardized using a configura-
tion template. This recipe will use a Jinja2 template engine.

All variable parameters such as customers’ AS numbers and IP addresses, as well
as mappings of customers to PE devices, must be separated from the template and
stored in the YAML file.

	 113	 Recipe 20 - Provisioning L3VPN Services on PE Routers

Figure 20.1	 Network Topology Used in Recipe 20

For simplicity, assume that each customer has no more than one Layer 3 connec-
tion to each of the PEs.

The script must allow for easily adding and removing customers from PE devices,
as well as modifying any service parameters.

Solution
The solution includes three files:

�� a Python provisioning script,

�� a Jinja2 configuration template,

�� and a YAML file with variable parameters.

The first two files are created once and are not supposed to be modified unless you
are implementing some new functionality (for example, adding configuration op-
tions to the template). On the other hand, the YAML file is changed every time you
want to add, remove, or modify services. You will generally want to keep such files
in a version control system repository such as Git.

Provisioning the Script
The code of the L3VPN service provisioning script named provision_l3vpn.py is
presented below. The script’s parts are numbered as # (n) for reference in the ex-
planation that follows:

#!/usr/bin/python3

from jnpr.junos import Device # (1)
from jnpr.junos.utils.config import Config
from jnpr.junos.exception import *
import jinja2

	 114	 Day One: Junos® PyEZ Cookbook

import os
import yaml

USER = “lab” # (2)
PASSWD = “lab123”

def render(full_filename, context): # (3)
 path, filename = os.path.split(full_filename)
 template = jinja2.Environment(
 loader=jinja2.FileSystemLoader(path or ‘./’)).get_template(filename)
 return template.render(context)

def main(): # (4)
 with open(“l3vpn-data.yaml”) as var_file:
 l3vpn_data = yaml.load(var_file)

 for PE in l3vpn_data[“PEs”]: # (5)
 print(“Working on device %s” % PE)
 vars = l3vpn_data[“PEs”][PE].copy() # (6)
 vars.update({“customers”: l3vpn_data[“customers”]})
 result_conf = render(“l3vpn_config.jinja2”, vars) # (7)

 try: # (8)
 with Device(host=l3vpn_data[“PEs”][PE][“management_ip”],
 user=USER, password=PASSWD) as dev:
 # open and close is done automatically by context manager
 with Config(dev, mode=”exclusive”) as conf:
 # exclusive locks are treated automatically by context manager
 conf.load(result_conf, format=”text”)
 diff = conf.diff() # (9)
 if diff is None:
 print(“Configuration is up to date.”)
 else:
 print(“Config diff to be committed on device:”)
 print(diff)
 conf.commit() # (10)
 except LockError:
 print(“\nError applying config: configuration was locked!”)
 except ConnectRefusedError:
 print(“\nError: Device connection refused!”)
 except ConnectTimeoutError:
 print(“\nError: Device connection timed out!”)
 except ConnectAuthError:
 print(“\nError: Authentication failure!”)
 except ConfigLoadError as ex:
 print(“\nError: “ + str(ex))
 else: # (11)
 if diff is not None:
 print(“Config committed successfully!”)

if __name__ == “__main__”: # (12)
 main()

And here is the explanation of what is happening in the script:

1. Import the required Junos PyEZ classes, as well as the jinja2, os and yaml
packages.

	 115	 Recipe 20 - Provisioning L3VPN Services on PE Routers

2. Login and password for PE devices connection. In a production environment,
you should consider using SSH keys instead.

3. The function render() takes two parameters: template filename and context
(variable data that will be substituted into the template). It uses the jinja2 library
and returns the rendered template (part of the device configuration in this case).

4. The main function starts with opening a YAML file named l3vpn-data.yaml and
reading the data from it. The result is placed in the l3vpn_data variable.

5. The l3vpn_data variable has a complex structure, which is demonstrated in a sec-
tion below. At the top level, it is a dictionary with one of the keys named “PEs.”
The value corresponding to this key is another dictionary. Here you iterate over
this inner dictionary’s keys (basically, over a set of PE devices).

6. The vars variable is our context that will be passed to render() function. Here
you put in vars, the data for the current PE, and also add the data contained in the
“customers” key. Looking at the YAML example below should make it clearer.

7. Render the template stored in l3vpn_config.jinja2 file and store the result in re-
sult_conf variable.

8. Try/except block. Inside the block is where you open the PE device connection
and start configuring the device using exclusive mode (note two nested context
managers). Load the configuration from result_conf.

9. Get the configuration difference (basically a show | compare) and store to the diff
variable.

10. Commit, but only if diff is not None – otherwise no commit is needed. Process
possible exceptions.

11. The else block of the try/except operator is only executed if no exceptions
were raised.

12. Standard Python script “entry point.”

Configuration Template
Okay, to create a configuration template easily, the most natural approach is to
start with a configuration piece that you want to get from that template. In this
case, you want to get something like this – but for each of the customers on each
PE:

interfaces {
 ge-0/0/2 {
 unit 100 {
 vlan-id 100;
 family inet {
 address 10.100.0.1/24;
 }

	 116	 Day One: Junos® PyEZ Cookbook

 }
 }
}
routing-instances {
 Cust_A {
 instance-type vrf;
 interface ge-0/0/2.100;
 vrf-target target:65000:1;
 vrf-table-label;
 protocols {
 bgp {
 group EBGP-Cust_A {
 family inet {
 unicast {
 prefix-limit {
 maximum 10;
 teardown;
 }
 }
 }
 peer-as 65100;
 as-override;
 neighbor 10.100.0.2;
 }
 }
 }
 }

All the parameters here, such as interface names, AS numbers, and more, must be
replaced with variables passed to the template from the outside. So the Jinja2 con-
figuration template will include logical interfaces and VRF configurations for your
connected customers, but it will also have some operators (such as if and for) and
references to these variables. Using the above example, you should come up with
something akin to the following template:

groups {
 replace:
 L3VPN-SCRIPT {
 {% if VPN_data %}
 interfaces {
 {% for VPN_entry in VPN_data %}
 {{ VPN_entry.interface_name }} {
 unit {{ VPN_entry.unit }} {
 vlan-id {{ VPN_entry.vlan_id }};
 family inet {
 address {{ VPN_entry.ip_mask }};
 }
 }
 }
 {% endfor %}
 }
 routing-instances {
 {% for VPN_entry in VPN_data %}
 {{ VPN_entry.customer_id }} {
 instance-type vrf;
 vrf-table-label;

	 117	 Recipe 20 - Provisioning L3VPN Services on PE Routers

 interface {{ VPN_entry.interface_name }}.{{ VPN_entry.unit }};
 vrf-target {{ customers[VPN_entry.customer_id].vrf_target }};
 protocols {
 bgp {
 group EBGP-{{ VPN_entry.customer_id }} {
 family inet {
 unicast {
 prefix-limit {
 maximum {{ VPN_entry.prefix_limit }};
 teardown;
 }
 }
 }
 peer-as {{ customers[VPN_entry.customer_id].AS }};
 as-override;
 neighbor {{ VPN_entry.customer_ip }};
 }
 }
 }
 }
 {% endfor %}
 }
 {% endif %}
 }
}
apply-groups L3VPN-SCRIPT;

Several points to mention:

�� All template configuration is put inside the Junos configuration group named
L3VPN-SCRIPT so that it is easy to see which part of the configuration was
actually generated by the script. It also simplifies configuration modification
or removal by the same script later.

�� The replace: tag ensures that previous content of L3VPN-SCRIPT group is over-
written.

�� The if operator is checking if VPN_data is empty or not. If it is empty, just the
empty configuration group is created.

�� The for operators are used to loop over multiple entries, corresponding to
each of the customers connected to a given PE.

�� Note how customer data is put inside the customers dictionary. You do not
iterate over it in the template – but query the dictionary as needed while
iterating over VPN_entry.

NOTE	 For more information on Jinja2 template engine and available operators
visit: http://jinja.pocoo.org.

http://jinja.pocoo.org

	 118	 Day One: Junos® PyEZ Cookbook

The Data (YAML) File
The example for the content of l3vpn-data.yaml file, corresponding to network
topology shown in Figure 20.1, is as follows:

customers:
 Cust_A:
 vrf_target: “target:65000:1”
 AS: 65100
 Cust_B:
 vrf_target: “target:65000:2”
 AS: 65200

PEs:
 PE1:
 management_ip: “10.254.0.41”
 VPN_data:
 - customer_id: Cust_A
 interface_name: ge-0/0/2
 unit: 100
 vlan_id: 100
 ip_mask: 10.100.0.1/24
 customer_ip: 10.100.0.2
 prefix_limit: 10
 - customer_id: Cust_B
 interface_name: ge-0/0/2
 unit: 200
 vlan_id: 200
 ip_mask: 10.200.0.1/24
 customer_ip: 10.200.0.2
 prefix_limit: 15
 PE2:
 management_ip: “10.254.0.42”
 VPN_data:
 - customer_id: Cust_A
 interface_name: ge-0/0/2
 unit: 150
 vlan_id: 150
 ip_mask: 10.150.0.1/24
 customer_ip: 10.150.0.2
 prefix_limit: 10
 - customer_id: Cust_B
 interface_name: ge-0/0/2
 unit: 250
 vlan_id: 250
 ip_mask: 10.250.0.1/24
 customer_ip: 10.250.0.2
 prefix_limit: 15

When the script reads this YAML data, the result is put into the l3vpn_data vari-
able. If you printed out the contents of this variable (using the pprint() function
from the pprint module) it would look like this:

{‘PEs’: {‘PE1’: {‘VPN_data’: [{‘customer_id’: ‘Cust_A’,
 ‘customer_ip’: ‘10.100.0.2’,
 ‘interface_name’: ‘ge-0/0/2’,

	 119	 Recipe 20 - Provisioning L3VPN Services on PE Routers

 ‘ip_mask’: ‘10.100.0.1/24’,
 ‘prefix_limit’: 10,
 ‘unit’: 100,
 ‘vlan_id’: 100},
 {‘customer_id’: ‘Cust_B’,
 ‘customer_ip’: ‘10.200.0.2’,
 ‘interface_name’: ‘ge-0/0/2’,
 ‘ip_mask’: ‘10.200.0.1/24’,
 ‘prefix_limit’: 15,
 ‘unit’: 200,
 ‘vlan_id’: 200}],
 ‘management_ip’: ‘10.254.0.41’},
 ‘PE2’: {‘VPN_data’: [{‘customer_id’: ‘Cust_A’,
 ‘customer_ip’: ‘10.150.0.2’,
 ‘interface_name’: ‘ge-0/0/2’,
 ‘ip_mask’: ‘10.150.0.1/24’,
 ‘prefix_limit’: 10,
 ‘unit’: 150,
 ‘vlan_id’: 150},
 {‘customer_id’: ‘Cust_B’,
 ‘customer_ip’: ‘10.250.0.2’,
 ‘interface_name’: ‘ge-0/0/2’,
 ‘ip_mask’: ‘10.250.0.1/24’,
 ‘prefix_limit’: 15,
 ‘unit’: 250,
 ‘vlan_id’: 250}],
 ‘management_ip’: ‘10.254.0.42’}},
 ‘customers’: {‘Cust_A’: {‘AS’: 65100, ‘vrf_target’: ‘target:65000:1’},
 ‘Cust_B’: {‘AS’: 65200, ‘vrf_target’: ‘target:65000:2’}}}

REMEMBER	 This output should be helpful to analyze how the main script
works. Keep in mind that dictionaries use curly braces while lists use square
brackets.

Note the two dictionary keys at the top level in the output: “PEs” and “custom-
ers”. The meaning should be clear: “PEs” contain data for the PE devices, includ-
ing L3VPN services that must be provisioned, as well as management IP data. The
“customers” refers to a nested dictionary storing important information about
each of the customers – AS number and VRF target. Customer names (“Cust_A”,
“Cust_B”) are used as keys for this nested dictionary. Note also how using a sepa-
rate “customers” dictionary allows you to not duplicate the same customer infor-
mation for each PE.

Running the Script for Provisioning L3VPN Services
The configuration on PE devices at this point includes:

�� Full configuration of core-facing interfaces (family inet and MPLS);

�� Standard OSPF, LDP, and IBGP (with family inet-vpn unicast) configuration
for the IP/MPLS backbone;

	 120	 Day One: Junos® PyEZ Cookbook

�� Only physical parameters for customer-facing interfaces (ge-0/0/2) are
configured – namely, flexible-vlan-tagging and encapsulation flexible-ethernet-
services are configured. No units are configured on these interfaces – the
script must do that;

�� No VRF (L3VPN) instances are configured for the customers – again, the
script must do that;

�� The route-distinguisher-id is configured in routing-options hierarchy on both
PEs, so manual configuration for route-distinguisher in VRFs is not needed.

Let’s begin by running the script with a version of l3vpn-data.yaml YAML file con-
taining only Customer-A data, namely:

customers:
 Cust_A:
 vrf_target: “target:65000:1”
 AS: 65100

PEs:
 PE1:
 management_ip: “10.254.0.41”
 VPN_data:
 - customer_id: Cust_A
 interface_name: ge-0/0/2
 unit: 100
 vlan_id: 100
 ip_mask: 10.100.0.1/24
 customer_ip: 10.100.0.2
 prefix_limit: 10
 PE2:
 management_ip: “10.254.0.42”
 VPN_data:
 - customer_id: Cust_A
 interface_name: ge-0/0/2
 unit: 150
 vlan_id: 150
 ip_mask: 10.150.0.1/24
 customer_ip: 10.150.0.2
 prefix_limit: 10

The resulting output after running the script looks like this:

lab@host:~$ python3 provision_l3vpn.py
Working on device PE1
Config diff to be committed on device:

[edit]
+ groups {
+ L3VPN-SCRIPT {
+ interfaces {
+ ge-0/0/2 {

	 121	 Recipe 20 - Provisioning L3VPN Services on PE Routers

+ unit 100 {
+ vlan-id 100;
+ family inet {
+ address 10.100.0.1/24;
+ }
+ }
+ }
+ }
+ routing-instances {
+ Cust_A {
+ instance-type vrf;
+ interface ge-0/0/2.100;
+ vrf-target target:65000:1;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_A {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 10;
+ teardown;
+ }
+ }
+ }
+ peer-as 65100;
+ as-override;
+ neighbor 10.100.0.2;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ apply-groups L3VPN-SCRIPT;

Config committed successfully!
Working on device PE2
Config diff to be committed on device:

[edit]
+ groups {
+ L3VPN-SCRIPT {
+ interfaces {
+ ge-0/0/2 {
+ unit 150 {
+ vlan-id 150;
+ family inet {
+ address 10.150.0.1/24;
+ }
+ }
+ }
+ }
+ routing-instances {
+ Cust_A {
+ instance-type vrf;
+ interface ge-0/0/2.150;

	 122	 Day One: Junos® PyEZ Cookbook

+ vrf-target target:65000:1;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_A {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 10;
+ teardown;
+ }
+ }
+ }
+ peer-as 65100;
+ as-override;
+ neighbor 10.150.0.2;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ apply-groups L3VPN-SCRIPT;

Config committed successfully!

Looks good so far! Let’s check out the configuration on PE1:

[edit]
lab@PE-1# show
Last changed: 2017-08-17 13:08:16 UTC
version 17.1R2.7;
groups {
 L3VPN-SCRIPT {
 interfaces {
 ge-0/0/2 {
 unit 100 {
 vlan-id 100;
 family inet {
 address 10.100.0.1/24;
 }
 }
 }
 }
 routing-instances {
 Cust_A {
 instance-type vrf;
 interface ge-0/0/2.100;
 vrf-target target:65000:1;
 vrf-table-label;
 protocols {
 bgp {
 group EBGP-Cust_A {
 family inet {
 unicast {
 prefix-limit {
 maximum 10;

	 123	 Recipe 20 - Provisioning L3VPN Services on PE Routers

 teardown;
 }
 }
 }
 peer-as 65100;
 as-override;
 neighbor 10.100.0.2;
 }
 }
 }
 }
 }
 }
}
apply-groups L3VPN-SCRIPT;
system {
 host-name PE-1;

[...]

[edit]
lab@PE-1# show routing-instances | display inheritance
##
‘Cust_A’ was inherited from group ‘L3VPN-SCRIPT’
##
Cust_A {
 ##
 ## ‘vrf’ was inherited from group ‘L3VPN-SCRIPT’
 ##
 instance-type vrf;
 ##
 ## ‘ge-0/0/2.100’ was inherited from group ‘L3VPN-SCRIPT’
 ##
 interface ge-0/0/2.100;

[...]

Also, let’s verify the routes in the Cust_A VRF instance on PE-1:

lab@PE-1> show route table Cust_A.inet.0

Cust_A.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.100.0.0/24 *[Direct/0] 00:15:39
 > via ge-0/0/2.100
10.100.0.1/32 *[Local/0] 00:15:39
 Local via ge-0/0/2.100
10.150.0.0/24 *[BGP/170] 00:15:30, localpref 100, from 192.168.0.2
 AS path: I, validation-state: unverified
 to 10.0.0.222 via ge-0/0/0.0, Push 16
 > to 10.0.1.222 via ge-0/0/1.0, Push 16

The route to the remote network is there. You can also check that a ping between
remote Customer-A instances also works as it should (the vr-A here is a virtual
router-instance created manually on PE-1 just for testing purposes – it emulates

	 124	 Day One: Junos® PyEZ Cookbook

Customer-A’s CE device):

lab@PE-1> ping 10.150.0.2 routing-instance vr-A source 10.100.0.2 rapid
PING 10.150.0.2 (10.150.0.2): 56 data bytes
!!!!!
--- 10.150.0.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 2.669/2.895/3.303/0.220 ms

Now let’s add Customer-B to the l3vpn-data.yaml YAML file, making it look exactly
as shown in the previous section, and then re-run the script:

lab@host:~$ python3 provision_l3vpn.py
Working on device PE1
Config diff to be committed on device:

[edit groups L3VPN-SCRIPT interfaces ge-0/0/2]
+ unit 200 {
+ vlan-id 200;
+ family inet {
+ address 10.200.0.1/24;
+ }
+ }
[edit groups L3VPN-SCRIPT routing-instances]
+ Cust_B {
+ instance-type vrf;
+ interface ge-0/0/2.200;
+ vrf-target target:65000:2;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_B {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 15;
+ teardown;
+ }
+ }
+ }
+ peer-as 65200;
+ as-override;
+ neighbor 10.200.0.2;
+ }
+ }
+ }
+ }

Config committed successfully!
Working on device PE2
Config diff to be committed on device:

[edit groups L3VPN-SCRIPT interfaces ge-0/0/2]
+ unit 250 {
+ vlan-id 250;
+ family inet {

	 125	 Recipe 20 - Provisioning L3VPN Services on PE Routers

+ address 10.250.0.1/24;
+ }
+ }
[edit groups L3VPN-SCRIPT routing-instances]
+ Cust_B {
+ instance-type vrf;
+ interface ge-0/0/2.250;
+ vrf-target target:65000:2;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_B {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 15;
+ teardown;
+ }
+ }
+ }
+ peer-as 65200;
+ as-override;
+ neighbor 10.250.0.2;
+ }
+ }
+ }
+ }

Config committed successfully!

Thus provisioning of additional customers is successful (to save book space, the
outputs that further demonstrate this are omitted).

Modifying Service on the Router
It is extremely simple to modify the service parameters using this recipe’s approach
– just modify the YAML file and re-run the script!

For example, let’s say you want to change Customer-B’s AS number from 65200 to
65300. You can change this in the “customers” section of l3vpn-data.yaml file and
run the script again:

lab@host:~$ python3 provision_l3vpn.py
Working on device PE1
Config diff to be committed on device:

[edit groups L3VPN-SCRIPT routing-instances Cust_B protocols bgp group EBGP-Cust_B]
- peer-as 65200;
+ peer-as 65300;

Config committed successfully!
Working on device PE2
Config diff to be committed on device:

	 126	 Day One: Junos® PyEZ Cookbook

[edit groups L3VPN-SCRIPT routing-instances Cust_B protocols bgp group EBGP-Cust_B]
- peer-as 65200;
+ peer-as 65300;

Config committed successfully!

Just what was required!

Removing Service from the Router
Now let’s say you want to delete all the VPN services from PE-2. In this case, just
edit the l3vpn-data.yaml file so that the corresponding section looks like this:

 [...]

 PE2:
 management_ip: “10.254.0.42”
 VPN_data:

There’s nothing in VPN_data, making it an empty dictionary, so run the script:

lab@host:~$ python3 provision_l3vpn.py
Working on device PE1
Configuration is up to date.
Working on device PE2
Config diff to be committed on device:

[edit groups L3VPN-SCRIPT]
- interfaces {
- ge-0/0/2 {
- unit 150 {
- vlan-id 150;
- family inet {
- address 10.150.0.1/24;
- }
- }
- unit 250 {
- vlan-id 250;
- family inet {
- address 10.250.0.1/24;
- }
- }
- }
- }
- routing-instances {
- Cust_A {
- instance-type vrf;
- interface ge-0/0/2.150;
- vrf-target target:65000:1;
- vrf-table-label;
- protocols {
- bgp {
- group EBGP-Cust_A {
- family inet {

	 127	 Recipe 20 - Provisioning L3VPN Services on PE Routers

- unicast {
- prefix-limit {
- maximum 10;
- teardown;
- }
- }
- }
- peer-as 65100;
- as-override;
- neighbor 10.150.0.2;
- }
- }
- }
- }
- Cust_B {
- instance-type vrf;
- interface ge-0/0/2.250;
- vrf-target target:65000:2;
- vrf-table-label;
- protocols {
- bgp {
- group EBGP-Cust_B {
- family inet {
- unicast {
- prefix-limit {
- maximum 15;
- teardown;
- }
- }
- }
- peer-as 65300;
- as-override;
- neighbor 10.250.0.2;
- }
- }
- }
- }
- }

Config committed successfully!

The services are removed from PE-2.

Note that because configuration for PE1 did not change in the above script run, no
commit was even required (and this was properly detected by the script). Thus, it
does not hurt to perform additional runs – such property of our provisioning
script is called idempotence – check out Wikipedia if you are interested.

	 128	 Day One: Junos® PyEZ Cookbook

Discussion
In Recipe 20, the L3VPN configuration is regenerated from the template and
YAML file data every time the script runs. Then it is uploaded to the PE device and
committed, reporting the configuration difference. Thus, the YAML file turns out
to be our “system of record” – an authoritative source of L3VPN customer data.
At large scale, you might want to consider using a database (such as SQL data-
base) instead of the single YAML file.

All configuration provisioned by a script was put in a separate configuration
group. Such a method has several advantages, including consistency and visibility
into what the automation system is doing. Also, changing and removing of services
with such an approach is really easy.

One can object, noting that regenerating the whole service configuration every
time might be resource consuming. That is a valid concern and it is possible to in-
clude optimizations to the deployment script that will only upload the delta-con-
figuration to the device. However, as with any optimization, you first want to
make sure you actually have the bottleneck (and locate it). In the recipe’s lab envi-
ronment, we have confirmed experimentally that even for 1000 VRFs per PE, the
script presented here still provisions the configuration in less than 30 seconds. So,
unless you have a really large-scale deployment, optimization may just not be
needed.

This recipe focused on the deployment of L3VPN services – but of course, multiple
other services and configurations can be provisioned similarly, as long as you can
come up with a standardized template for them.

Recipe 21 - Identifying and Disabling Unused
Interfaces with Ansible
by Sean Sawtell

�� Python Version Used: 	 2.7

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: 	 mixed

�� Juniper Platforms General Applicability: MX, EX, SRX

If you are using Ansible and PyEZ to automate network operations, then this reci-
pe will show you how to create an Ansible playbook and a custom Ansible module
that can disable unused Ethernet interfaces on Junos devices by using PyEZ opera-
tional Tables and Views.

Problem
You wish to disable unused Ethernet interfaces on your network devices. Some
network monitoring systems report status on all enabled or “admin-up” interfac-
es, and an enabled but unused interface will cause the monitoring system to gener-
ate “interface down” messages for those interfaces – but disabling the unused
interfaces can avoid such false alarms. Disabling unused interfaces, particularly on
switches, may also help prevent unauthorized devices from connecting to the net-
work, inadvertent or malicious connections between different subnets, and other
similar problems.

How do we know if an interface is unused? For purposes of this recipe, an “un-
used” interface will be one with no link and no subinterfaces (units). We will check
for subinterfaces because it is easier than checking the device’s configuration to see
if the interface is configured. There are a number of places in the configuration

	 130	 Day One: Junos® PyEZ Cookbook

where an interface may be configured, each having a slightly different syntax.
However, each of the various interface configuration methods results in one or
more subinterfaces being associated with the interface.

Automation with PyEZ can determine which interfaces are unused. We will write a
custom Ansible module using PyEZ that will determine which interfaces are un-
used and return that data to the calling Ansible playbook.

We will also write an Ansible playbook and supporting files to change a device’s
configuration based on the results returned by the module.

NOTE	 While this recipe assumes you are using Ansible, the code in the custom
module could be easily modified to run as a stand-alone program and extended to
make the configuration change using PyEZ.

NOTE	 This recipe assumes you have a working Ansible configuration, including
your device inventory and the Juniper.junos galaxy modules. The discussion about
the solution focuses on the custom module and its use of PyEZ. The author
assumes you are familiar enough with Ansible to understand the playbook and
related files with minimal explanation.

Solution
The Ansible playbook for this recipe needs to accomplish three major tasks for
each device:

�� Call the custom module that will determine which interfaces are unused, and
capture that list of interfaces in a variable.

�� Use a Jinja2 template to create a Junos configuration file that disables the
unused interfaces.

�� Push the configuration change to the device.

However, there are a few additional tasks that will make the playbook easier and
safer to use, and easier to troubleshoot, so the final playbook will do the following:

�� Test NETCONF connectivity to the device with a five second timeout. This
quickly stops processing for a device that is unreachable, rather than waiting
30 seconds for the next step to time out. (See lines 19-23.)

�� Call the custom module that will determine which interfaces are unused, and
capture that list of interfaces in variable j_ints. (See lines 25-29.)

�� Display the unused interface list if the playbook is run with –v (verbose mode).
(See lines 31-34.)

	 131	 Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible

�� Create the directory that will hold the configuration files, if it does not already
exist. (See lines 36-39.)

�� Generate the filename for the configuration file. Because the filename will be
used in two of the following tasks, we should create it once and store it in a
variable. (See lines 41-43.)

�� Use a Jinja2 template to create a Junos configuration file that disables the
unused interfaces. (See lines 45-48.)

�� Push the configuration change to the device using commit confirmed so that the
device can roll back the change should connectivity be lost. (See lines 50-61.)

�� Confirm the commit. When the playbook connects to the device to complete this
task, it provides a quick check to ensure that disabling the interfaces did not
break the device. (See lines 69-74.)

�� Delete the configuration file (clean up). (See lines 63-66.)

This is the complete playbook disable-unused-interfaces.yaml, with line numbers
added for easy reference:

 1|---
 2|# Query a device to find out which Ethernet interfaces are unused
 3|# (have no link or logical interface) and disable those interfaces.
 4|
 5|- name: Disable unused Ethernet interfaces
 6| hosts:
 7| - all
 8| roles:
 9| - Juniper.junos
10| connection: local
11| gather_facts: no
12|
13| vars:
14| config_dir: ‘configs’
15| netconf_port: 830
16| template_dir: ‘templates’
17|
18| tasks:
19| - name: check netconf connectivity
20| wait_for:
21| host: “{{ ansible_host }}”
22| port: “{{ netconf_port }}”
23| timeout: 5
24|
25| - name: get unused interfaces
26| junos_unused_interfaces:
27| host: “{{ ansible_host }}”
28| port: “{{ netconf_port }}”
29| register: j_ints
30|
31| - name: display unused interfaces in verbose mode
32| debug:
33| var: j_ints

	 132	 Day One: Junos® PyEZ Cookbook

34| verbosity: 1
35|
36| - name: confirm/create configs directory
37| file:
38| path: “{{ config_dir }}”
39| state: directory
40|
41| - name: generate filename for config file
42| set_fact:
43| config_file: “{{ config_dir }}/unused-ints-{{ inventory_hostname }}.conf”
44|
45| - name: generate configuration file
46| template:
47| src: “{{ template_dir }}/unused-interfaces.j2”
48| dest: “{{ config_file }}”
49|
50| - name: push configuration change to device
51| junos_install_config:
52| host: “{{ ansible_host }}”
53| file: “{{ config_file }}”
54| port: “{{ netconf_port }}”
55| timeout: 120
56| comment: “playbook disable-unused-interfaces, commit confirmed 10”
57| confirm: 10
58| replace: true
59| overwrite: false
60| notify:
61| - confirm config commit
62|
63| - name: delete configuration file
64| file:
65| path: “{{ config_file }}”
66| state: absent
67|
68| handlers:
69| - name: confirm config commit
70| junos_commit:
71| host: “{{ ansible_host }}”
72| port: “{{ netconf_port }}”
73| timeout: 120
74| comment: “playbook disable-unused-interfaces, confirm previous commit”

The playbook assumes that Jinja2 templates are in the subdirectory templates
within the playbook directory, and that the device configuration files generated by
the playbook will be stored in subdirectory configs within the playbook directory.
If your Ansible environment has different requirements, adjust the appropriate
variables near the top of the playbook (lines 14 or 16).

Let’s use an interface-range to disable the unused interfaces. In the Junos interfaces
configuration hierarchy, the result will look similar to this:

/* administratively disable unused interfaces */
interface-range unused {
 member ge-0/0/2;
 member ge-0/0/3;
 member ge-0/0/4;

	 133	 Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible

 member ge-0/0/5;
 member ge-0/0/6;
 member ge-0/0/7;
 description unused;
 disable;
}

The Jinja2 template that will create the configuration is:

#jinja2: lstrip_blocks: True
interfaces {
 {% if j_ints.interfaces.unused %}
 /* administratively disable unused interfaces */
 replace:
 interface-range unused {
 description “unused”;
 disable;
 {% for interface in j_ints.interfaces.unused %}
 member {{ interface }};
 {% endfor %}
 }
 {% else %}
 {# j_ints.interfaces.unused was empty or undefined, #}
 {# so delete any existing interface-range unused #}
 interface-range unused {
 member {{ j_ints.interfaces.configured[0] }};
 }
 delete: interface-range unused;
 {% endif %}
}

Save this in your templates directory as unused-interfaces.j2.

Ansible can load custom modules from a few places, but the easiest is the library
subdirectory within your playbook directory. Create a subdirectory library if it
does not already exist, then create the file junos_unused_interfaces within that di-
rectory. This module is a Python program, but do not add the extension .py to the
filename – the module’s filename must match the module call on line 26 of the
playbook.

Module junos_unused_interfaces contains the following Python program (line
numbers added for easy reference):

 1|#!/usr/bin/env python
 2|
 3|# required Ansible helper module
 4|from ansible.module_utils.basic import AnsibleModule
 5|
 6|# required Python modules
 7|module_import_error = False
 8|try:
 9| import os
 10| from jnpr.junos import Device
 11| from jnpr.junos.factory import FactoryLoader
 12|except ImportError as err:
 13| module_import_error = True
 14| module_msg = ‘Error importing required modules: %s’ % str(err)

	 134	 Day One: Junos® PyEZ Cookbook

 15|
 16|##
 17|
 18|
 19|def main():
 20|
 21| # define arguments from Ansible
 22| module = AnsibleModule(
 23| argument_spec=dict(
 24| host=dict(required=True),
 25| user=dict(required=False, default=os.getenv(‘USER’)),
 26| passwd=dict(required=False, default=None, no_log=True),
 27| port=dict(required=False, type=’int’, default=830)
 28|),
 29| supports_check_mode=False
 30|)
 31|
 32| # early exit if required modules failed to import
 33| if module_import_error:
 34| module.fail_json(msg=module_msg)
 35|
 36| host = module.params[‘host’]
 37| username = module.params[‘user’]
 38| password = module.params[‘passwd’]
 39| ncport = module.params[‘port’]
 40|
 41| # define an operational table and view
 42| table_view = {
 43| ‘EthPortTerseView’: {
 44| ‘fields’: {
 45| ‘oper’: ‘oper-status’,
 46| ‘admin’: ‘admin-status’,
 47| ‘units’: ‘.//logical-interface/name’,
 48| ‘name’: ‘name’
 49| }
 50| },
 51| ‘EthPortTerseTable’: {
 52| ‘item’: ‘physical-interface’,
 53| ‘rpc’: ‘get-interface-information’,
 54| ‘args’: {
 55| ‘terse’: True,
 56| ‘interface_name’: ‘[fgxe][et]-*’
 57| },
 58| ‘args_key’: ‘interface_name’,
 59| ‘view’: ‘EthPortTerseView’
 60| }
 61| }
 62|
 63| try:
 64| dev = Device(host=host, gather_facts=False, user=username,
 65| passwd=password, port=ncport)
 66| dev.open()
 67| except Exception as err:
 68| msg = ‘Error opening device connection: %s’ % str(err)
 69| module.fail_json(msg=msg)
 70|
 71| try:
 72| fl = FactoryLoader()

	 135	 Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible

 73| eth_terse = fl.load(table_view)
 74| eth_table = eth_terse[‘EthPortTerseTable’](dev)
 75| except Exception as err:
 76| msg = ‘Error loading operational table: %s’ % str(err)
 77| module.fail_json(msg=msg)
 78|
 79| try:
 80| eth_table.get()
 81| except Exception as err:
 82| msg = ‘Error getting interface data: %s’ % str(err)
 83| module.fail_json(msg=msg)
 84|
 85| try:
 86| dev.close()
 87| except Exception as err:
 88| msg = ‘Error closing device connection: %s’ % str(err)
 89| module.fail_json(msg=msg)
 90|
 91| used_interfaces = []
 92| unused_interfaces = []
 93| link_interfaces = []
 94| no_link_interfaces = []
 95|
 96| for eth_int in eth_table:
 97| if eth_int[‘oper’] == ‘up’:
 98| link_interfaces.append(eth_int[‘name’])
 99| else:
100| no_link_interfaces.append(eth_int[‘name’])
101|
102| if (eth_int[‘units’] is not None) or (eth_int[‘oper’] == ‘up’):
103| used_interfaces.append(eth_int[‘name’])
104| else:
105| unused_interfaces.append(eth_int[‘name’])
106|
107| result = {‘unused’: unused_interfaces,
108| ‘used’: used_interfaces,
109| ‘link’: link_interfaces,
110| ‘no_link’: no_link_interfaces}
111| module.exit_json(changed=False, msg=’Interfaces’, interfaces=result)
112|
113|##
114|
115|
116|if __name__ == ‘__main__’:
117| main()

Those three files – the playbook itself, the Jinja2 template, and the custom module
for finding unused interfaces – complete the solution.

At this point you should be able to run the playbook against a Junos device. The
following output is from a run using verbose mode:

mbp15:pyez-cookbook sean$ ansible-playbook disable-unused-interfaces.yaml -v --limit=bilbo
Using /Users/sean/pyez-cookbook/ansible.cfg as config file

PLAY [Disable unused Ethernet interfaces] ***

	 136	 Day One: Junos® PyEZ Cookbook

TASK [check netconf connectivity] ***

ok: [bilbo] => {“changed”: false, “elapsed”: 0, “path”: null, “port”: 830, “search_regex”: null,
“state”: “started”}

TASK [get unused interfaces] **

ok: [bilbo] => {“changed”: false, “interfaces”: {“link”: [“ge-0/0/11”], “no_link”: [“ge-0/0/0”,
“ge-0/0/1”, “ge-0/0/2”, “ge-0/0/3”, “ge-0/0/4”, “ge-0/0/5”, “ge-0/0/6”, “ge-0/0/7”, “ge-0/0/8”,
“ge-0/0/9”, “ge-0/0/10”, “ge-0/1/0”, “ge-0/1/1”], “unused”: [“ge-0/0/0”, “ge-0/0/1”, “ge-0/0/2”,
“ge-0/0/3”, “ge-0/0/4”, “ge-0/0/5”, “ge-0/0/6”, “ge-0/0/7”, “ge-0/1/0”, “ge-0/1/1”], “used”: [“ge-
0/0/8”, “ge-0/0/9”, “ge-0/0/10”, “ge-0/0/11”]}, “msg”: “Interface lists”}

TASK [display unused interfaces in verbose mode] **

ok: [bilbo] => {
 “j_ints”: {
 “changed”: false,
 “interfaces”: {
 “link”: [
 “ge-0/0/11”
],
 “no_link”: [
 “ge-0/0/0”,
 “ge-0/0/1”,
 “ge-0/0/2”,
 “ge-0/0/3”,
 “ge-0/0/4”,
 “ge-0/0/5”,
 “ge-0/0/6”,
 “ge-0/0/7”,
 “ge-0/0/8”,
 “ge-0/0/9”,
 “ge-0/0/10”,
 “ge-0/1/0”,
 “ge-0/1/1”
],
 “unused”: [
 “ge-0/0/0”,
 “ge-0/0/1”,
 “ge-0/0/2”,
 “ge-0/0/3”,
 “ge-0/0/4”,
 “ge-0/0/5”,
 “ge-0/0/6”,
 “ge-0/0/7”,
 “ge-0/1/0”,
 “ge-0/1/1”
],
 “used”: [
 “ge-0/0/8”,
 “ge-0/0/9”,
 “ge-0/0/10”,
 “ge-0/0/11”
]
 },
 “msg”: “Interface lists”
 }
}

	 137	 Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible

TASK [confirm/create configs directory] ***
**
ok: [bilbo] => {“changed”: false, “gid”: 20, “group”: “staff”, “mode”: “0755”, “owner”: “sean”, “path”:
“configs”, “size”: 68, “state”: “directory”, “uid”: 502}

TASK [generate filename for config file] ***
*
ok: [bilbo] => {“ansible_facts”: {“config_file”: “configs/unused-ints-bilbo.conf”}, “changed”: false}

TASK [generate configuration file] **
**
changed: [bilbo] => {“changed”: true, “checksum”: “c7ec0f8e91de7853117d6557d50dea34336ef24a”, “dest”:
“configs/unused-ints-bilbo.conf”, “gid”: 20, “group”: “staff”, “md5sum”:
“d1272d7cde3f6f0d5ff3787a19971407”, “mode”: “0644”, “owner”: “sean”, “size”: 413, “src”: “/Users/
sean/.ansible/tmp/ansible-tmp-1504216899.17-16860701128770/source”, “state”: “file”, “uid”: 502}

TASK [push configuration change to device] ***

ok: [bilbo] => {“changed”: false, “file”: “/Users/sean/pyez-cookbook/configs/unused-ints-bilbo.conf”}

PLAY RECAP ***

bilbo : ok=7 changed=1 unreachable=0 failed=0

Discussion
There are two aspects of the junos_unused_interfaces module that warrant discus-
sion. The first is the operational table and view that is at the heart of how the mod-
ule gathers data from the devices, and the second is how Ansible communicates
with the module using the AnsibleModule class.

Operational Tables and Views
The junos_unused_interfaces module uses an operational table and view to query
a Junos device for interface information and then present that information in a Py-
thon-friendly way.

Operational Tables and Views are a PyEZ feature. Operational Tables describe an
RPC (remote procedure call) that will be issued to the device and the XML ele-
ments we wish to capture from the response. Views provide a way to map the
XML data from the table into a Python data structure for easy use in a Python
program.

PyEZ includes a number of operational Tables and Views, each described in a
YAML data file. None were quite what was needed for this program, though the
EthPortTable and EthPortView described in ethport.yml was close. The module
defines a new table and view based on ethport.yml but passing a different argu-
ment to the RPC and requesting a different set of fields in the view.

	 138	 Day One: Junos® PyEZ Cookbook

Rather than putting this module’s table and view definitions in a separate YAML
file, the definitions are in a Python dictionary in the module’s code (lines 41-61).
Embedding the definitions means you do not need to worry about maintaining
and importing separate a YAML file (though it also makes it difficult to share the
table and view between several programs, should that become a consideration).

Let’s take a look at the operational table, called EthPortTerseTable:

 43| ‘EthPortTerseTable’: {
 44| ‘rpc’: ‘get-interface-information’,
 45| ‘args’: {
 46| ‘terse’: True,
 47| ‘interface_name’: ‘[fgxe][et]-*’
 48| },
 49| ‘item’: ‘physical-interface’,
 50| ‘args_key’: ‘interface_name’,
 51| ‘view’: ‘EthPortTerseView’
 52| },

Here, ‘rpc’ identifies the RPC that will be issued to the Junos device. The get-in-
terface-information RPC is equivalent to the Junos CLI command show
interfaces.

The ‘args’ dictionary declares two arguments to the RPC that modify its behav-
ior: ‘terse’ asking for a terse interface listing, and ‘interface_name’ providing a
regular expression to match the names of the interfaces in which we are inter-
ested. The CLI equivalent command with these arguments is show interfaces terse
“[fgxe][et]-*”. The regular expression matches any interface name where the first
letter is in the group [fgxe], the second letter in [et], followed by a hyphen (-) and
then any other characters. Essentially, this will match Junos’ Ethernet interface
names: fe-, ge-, xe-, and et-.

The ‘item’ identifies the XML tag for the elements that should be included in the
table, in this case the elements contained by <physical-interface> tags. Remember
that an RPC request and response are in XML, and you can view the XML re-
sponse at the Junos CLI using the | display xml modifier. For example:

sean@bilbo> show interfaces terse ge-0/0/0 | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/15.1R6/junos”>
 <interface-information xmlns=”http://xml.juniper.net/junos/15.1R6/junos-interface”
junos:style=”terse”>
 <physical-interface>
 <name>ge-0/0/0</name>
 <admin-status>down</admin-status>
 <oper-status>down</oper-status>
 </physical-interface>
 </interface-information>
 <cli>
 <banner>{master:0}</banner>
 </cli>
</rpc-reply>

	 139	 Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible

Notice the <physical-interface> and </physical-interface> opening and closing tags,
and the data contained within those tags. The XML results will include one of
those for each matching interface. (This example requested only ge-0/0/0 to keep
the output short.)

The ‘args_key’ allows the user to specify an argument; in this case, the user of the
table could specify an interface_name other than the regular expression provided in
the ‘args’ dictionary. This is not needed in the final module, but it was helpful dur-
ing testing and development to be able to request a single interface instead of all
Ethernet interfaces on the device.

And the ‘view’ specifies the operational view that should be used to map the XML
data in the table to a Python data structure.

Now, let’s take a quick look at the operational view, called EthPortTerseView:

 53| ‘EthPortTerseView’: {
 54| ‘fields’: {
 55| ‘admin’: ‘admin-status’,
 56| ‘oper’: ‘oper-status’,
 57| ‘units’: ‘.//logical-interface/name’,
 58| ‘name’: ‘name’
 59| }
 60| }

The ‘fields’ dictionary identifies the data that should be in the Python data struc-
ture. For each key:value pair in the ‘fields’ dictionary, the key (for example, ‘ad-
min’) will become a key in a Python <dict> data structure, while the value (for
example, ‘admin-status’) references the XML returned by the RPC.

The ‘admin’, ‘oper’, and ‘name’ fields reference the XML tags ‘admin-
status’,’oper-status’, and ‘name’, respectively, all elements within the XML con-
tents of the <physical-interface> tag. In each case, the contents of the referenced
element will be copied into the Python dictionary.

The ‘units’ field is a bit more interesting. The value here, ‘.//logical-interface/
name’, is an XPath expression that finds the <name> element in each <logical-inter-
face> element within the current <physical-interface> element. This will return
None (null) if there are no logical-interfaces on this physical-interface, a single
name (as a string) if there is only one logical-interface, or a list (array) of names if
there are multiple logical-interfaces. Our program requires only that we determine
if the physical interface has logical interfaces, so any value other than None is an
affirmative for our purposes.

Making the view and table accessible to our Python code requires a few steps.
First, the program imports PyEZ’s FactoryLoader class:

 11| from jnpr.junos.factory import FactoryLoader

	 140	 Day One: Junos® PyEZ Cookbook

Then the program creates an instance of FactoryLoader, uses it to load the table
and view definitions, and assigns this object to the variable eth_terse:

 72| fl = FactoryLoader()
 73| eth_terse = fl.load(table_view)

Next, the program associates the table EthPortTerseTable from the loaded defini-
tion with the PyEZ Device instance, dev, and assigns this to the variable that will
hold the table’s data, eth_table:

 74| eth_table = eth_terse[‘EthPortTerseTable’](dev)

Finally, the program calls the table object’s get() method to cause the table to re-
trieve the requested data from the device and store it:

 80| eth_table.get()’

This table variable eth_table stores the data from the device in Python data struc-
tures that can be read by the program:

 96| for eth_int in eth_table:
 97| if eth_int[‘oper’] == ‘up’:
 98| link_interfaces.append(eth_int[‘name’])
 99| else:
100| no_link_interfaces.append(eth_int[‘name’])
101|
102| if (eth_int[‘units’] is not None) or (eth_int[‘oper’] == ‘up’):
103| used_interfaces.append(eth_int[‘name’])
104| else:
105| unused_interfaces.append(eth_int[‘name’])

The unused_interfaces variable contains the list of interfaces that have subinter-
faces and are link-down. The reader may wonder why we need the other three vari-
ables, link_interfaces, no_link_interfaces, and used_interfaces. For this recipe, we
do not need them. However, the author calls this module from another Ansible
playbook that disables interfaces based strictly on link state – the elements of the
nolink_interfaces variable – and he found it helpful to have used_interfaces and
link_interfaces during testing to ensure all Ethernet interfaces had been accounted
for.

Using AnsibleModule
When an Ansible playbook calls a module, Ansible needs a way to pass arguments
to the module, and the module needs a way to pass results back to Ansible. The
AnsibleModule class provides an interface for this communication.

Start by importing the class from the Ansible library:

 4|from ansible.module_utils.basic import AnsibleModule

	 141	 Recipe 21 - Identifying and Disabling Unused Interfaces with Ansible

Declare an instance of the class, initializing it with a dictionary of arguments to
be passed from Ansible to the module and any other needed arguments:

 22| module = AnsibleModule(
 23| argument_spec=dict(
 24| host=dict(required=True),
 25| user=dict(required=False, default=os.getenv(‘USER’)),
 26| passwd=dict(required=False, default=None, no_log=True),
 27| port=dict(required=False, type=’int’, default=830)
 28|),
 29| supports_check_mode=False
 30|)

Ansible’s “check mode” allows a playbook to call a module in a “test mode”
where the module returns results without doing the normal work expected of the
module. The author chose not to support check mode for this module. The argu-
ment, supports_check_mode=False, lets AnsibleModule know to return an error
should the Ansible playbook try to call the module in check mode.

The argument, argument_spec=dict(…), contains the dictionary describing the mod-
ule’s arguments. Ansible will pass a dictionary to the module containing the argu-
ments provided by the playbook, and the keys in that dictionary should be a
subset of the keys defined here. AnsibleModule does error checking – unknown
arguments, or required but missing arguments, will cause AnsibleModule to re-
turn an error.

We can define whether an argument is required, such as host, or optional, such as
passwd. For optional arguments, you can define a default value that will be used
by the module when no value is provided by the playbook. AnsibleModule as-
sumes arguments are strings; use the type= value to require a different data type,
as with the port argument, which requires an integer. Finally, if you do not want
an argument’s data, such as a password, included in Ansible’s logs, such as a
password, include no_log=True.

Each argument, or default value, is placed in the params dictionary of the An-
sibleModule instance variable module. To read the value of an argument, read
the appropriate dictionary entry by key; for example, module.params[‘host’].

While not strictly necessary, it’s convenient to copy the arguments into local
variables:

 36| host = module.params[‘host’]
 37| username = module.params[‘user’]
 38| password = module.params[‘passwd’]
 39| ncport = module.params[‘port’]

That takes care of the Ansible playbook passing arguments to the module. Now
how does the module return results to the calling playbook?

	 142	 Day One: Junos® PyEZ Cookbook

The module instance variable has two instance methods for exiting the module
and returning data to the calling playbook. The fail_json() method allows the
module to indicate it encountered an error (the playbook output will show the
module results with a ‘fatal’ status) and return an error message back to Ansible.
There are several examples of this in the module, such as the except portion of the
following code, which will be called should the module be unable to open a con-
nection to the Junos device:

 63| try:
 64| dev = Device(host=host, gather_facts=False, user=username,
 65| passwd=password, port=ncport)
 66| dev.open()
 67| except Exception as err:
 68| msg = ‘Error opening device connection: %s’ % str(err)
 69| module.fail_json(msg=msg)

The other instance method is exit_json(), which returns an ‘ok’ or ‘changed’ status
back to Ansible based on the value of the changed= argument, along with a mes-
sage and any other data the module wishes. There is one example in our module:
after the module has successfully processed the interface data and created the in-
terface lists that will be returned to the playbook, the program puts those interface
lists into a dictionary called result and returns that dictionary to the playbook:

107| result = {‘unused’: unused_interfaces,
108| ‘used’: used_interfaces,
109| ‘link’: link_interfaces,
110| ‘no_link’: no_link_interfaces}
111| module.exit_json(changed=False, msg=’Interface lists’, interfaces=result)

Because our module cannot change the Junos device it sets changed=False (the
playbook output will show the module results as ‘ok’). The msg= argument returns
a status message. Other arguments, such as our interfaces=result argument, are
returned to the Ansible playbook as part of the dictionary of results returned by
the module to the playbook; this allows the module to return arbitrary data.

As the names of these methods suggest, they return JSON-formatted data. You can
see this if you review the output of the playbook when run in verbose mode. While
not nicely formatted for human consumption, this is recognizably JSON:

TASK [get unused interfaces] ***
ok: [bilbo] => {“changed”: false, “interfaces”: {“link”: [“ge-0/0/11”], “no_link”: [“ge-0/0/0”,
“ge-0/0/1”, “ge-0/0/2”, “ge-0/0/3”, “ge-0/0/4”, “ge-0/0/5”, “ge-0/0/6”, “ge-0/0/7”, “ge-0/0/8”,
“ge-0/0/9”, “ge-0/0/10”, “ge-0/1/0”, “ge-0/1/1”], “unused”: [“ge-0/0/0”, “ge-0/0/1”, “ge-0/0/2”,
“ge-0/0/3”, “ge-0/0/4”, “ge-0/0/5”, “ge-0/0/6”, “ge-0/0/7”, “ge-0/1/0”, “ge-0/1/1”], “used”: [“ge-
0/0/8”, “ge-0/0/9”, “ge-0/0/10”, “ge-0/0/11”]}, “msg”: “Interface lists”}

Recipe 22 - Track Down IP Conflicts with PyEZ
by Matt Mellin

�� Python Version Used: 	 3.6.2

�� PyEZ Version Used: 	 2.1.5

�� Junos OS Used: (MX) 	 13.3R8.7, (EX) 12.3R11.2, (QFX) 14.1X53-
	 D30.3

�� Juniper Platforms General Applicability: MX, EX, QFX

This recipe utilizes some advanced Python features such as multi-core processing
for concurrent compute and recursive functions, along with extensive use of
PyEZ Tables and Views. It also uses LLDP for device auto-discovery. And, by
the way, it assumes the network is only using IPv4.

Problem
In a large, dynamic lab network, especially one without DNS/IPAM/DHCP, IP
conflicts can be a real pain. Which devices are misconfigured? Where are they
located? Duplicate IP addressing can mean loss of productivity, unauthorized
accidental configuration changes, and loss of connectivity. These types of issues
can often occur when you are moving around routing engines (REs) and re-con-
figuring systems.

It’s a problem in Juniper’s Proof-of-Concept (POC). With over 125 racks and
2000+ interfaces, the POC at Juniper’s headquarters is fairly sizeable. The lab
houses many varieties of Junos devices, unfortunately, not all of which have
DHCP capability. DNS and IPAM were not a perfect fit either, so for many rea-

	 144	 Day One: Junos® PyEZ Cookbook

sons, static IP addressing was historically applied.

In order to create custom network topologies for customers, gear is moved around
and IP addressing can sometimes be duplicated from device to device, causing ma-
jor troubleshooting issues, project delays, and general confusion. An RE in an
MX960 today could be used in an MX240 tomorrow, and when configurations
get copied, or pushed via management tools, IP duplications can occur. When they
do, however, where do you look? With over 2000+ top of rack (TOR) ports, man-
ually checking MAC Tables was slow and cumbersome.

These issues only become worse because of the time sensitive nature of these proj-
ects. While problems didn’t happen too frequently, they occurred often enough to
warrant an automated solution.

So the exact problem this recipe, as illustrated in Figure 22.1, aims to solve is help-
ing to identify which physical interfaces, within the lab’s switching infrastructure,
are connected to potential misconfigured devices that are using the same IP
address.

Figure 22.1	 Duplicate IP Addressing Illustrated

The networking topology shown in the next illustration, Figure 22.2, roughly re-
lates to that of the POC lab in question. There are multiple layers of virtual chassis
switches connecting various racks full of servers, and physical Junos gear for use in
customer-facing pre-sales proof of concepts. Note it uses Layer 2 bridging on the
MX gateway layer to provide fault tolerance and redundancy on the network.

	 145	 Recipe 22 - Track Down IP Conflicts with PyEZ

Figure 22.2	 Sample Hierarchical Lab Network Topology

NOTE	 Layer 3 interfaces within Layer-2 bridges (VLANs) are called IRB inter-
faces, meaning the recipe solution needs to look not only through the Ethernet
MAC Tables of the EX Series and QFX Series switches, but also through the MX
Series devices.

Solution
Create ‘duplicate_ips’ log file

In order to search for duplicate IP addresses, you must first know about them! To
find a list of potential offending IP addresses to search for, we looked through the
MX gateway’s log file. When the MAC addressing associated with an IP address
changes, the following message is logged via syslog:

	 146	 Day One: Junos® PyEZ Cookbook

Aug 4 07:34:44 POC-CORE-MX1 /kernel: KERN_ARP_ADDR_CHANGE: arp info overwritten for 192.168.1.10 from
00:18:8d:2c:0b:4e to 0c:c4:8a:60:d1:ba

The first step is to create a log file on the gateway that matches just these logs. This
is done in order for the program to have raw data from which to find potential du-
plicate IP addresses and their associated MACs. Later, Python will parse through
the file and create a data structure in order to start the search.

root@POC-CORE-MX1> show configuration groups duplicate_ip
system {
 syslog {
 file duplicate_ips {
 kernel any;
 match KERN_ARP_ADDR_CHANGE;
 archive size 655536 files 10;
 }
 }
}

NOTE	 By default, log files live under the /var/log directory on the Junos OS
router.

Python Code
All of the following steps are taken care of via Python.

1. Using PyEZ log into the gateway MX router and download the “duplicate_ips”
log file.

2. Parse this log file to get a list of IP addresses and associated MAC addresses.

3. Then use PyEZ to look through the gateway router’s route table and discover
the interfaces and VLANs on which the MAC addresses were learned.

4. With this information, you can begin to scan the LLDP table for neighboring
Layer 2 switching devices.

5. Once found, using PyEZ, you can recursively log into these devices and initiate a
search for MAC addressing and associated learned interfaces within the scope of
these VLANs based on the data from prior searches.

6. Using this technique, you will both discover and search through the tree of lab
infrastructure devices, attempting to find physical interfaces directly connected to
misconfigured devices.

7. In order to increase the speed of the search, you can employ multiprocessing
techniques to run scans of devices concurrently. While Python is not a truly paral-
lel programming language by any means, it does have some capability to take ad-
vantage of a system with multiple cores and run processes and threads

	 147	 Recipe 22 - Track Down IP Conflicts with PyEZ

concurrently.

The following sections discuss the various components of the application. To un-
derstand how to install, set up, and use it, see this recipe’s Discussion section, or
read through the README at https://github.com/mmellin/findDuplicateIp.

‘’’
Identify physical switch interfaces associated within an IP conflict.

This program finds IP conflicts within a JUNOS based L3/L3 tiered network, and tracks down which access
interfaces the MAC addresses are coming from.
Copyright (c) 2017 Matthew Mellin

This library is free software. It is licensed under the Apache License version 2.0.

The manuf.py library is copyright (c) 2017 Michael Huang and licensed under the terms of the GNU Lesser
General Public
License version 3.0 (or any later version) and the Apache License version 2.0. <https://github.com/
coolbho3k/manuf>

For more information, see:

<http://www.gnu.org/licenses/>
<http://www.apache.org/licenses/>

‘’’
import argparse
import getpass
import json
import os
import socket
import sys
from pathlib import Path
from collections import defaultdict
from pkgs.utils.log import get_logger
from pkgs.utils import ipconflictslib as ipc

The first thing to do coding-wise is to import Python modules for use within our
program. These are either importing the functionality from the standard library
or from our own or third-party modules located in the pkgs/ package. Functions
called from our pkgs.utils.ipconflictslib will be namespaced to
ipc.<function_name>.

if __name__ == ‘__main__’:
 main()

The main() function will be executed when the file main.py is run from the terminal:

def main():
 # Script Arguments
 args = create_help()
 seed_router = args.seed_router
 username = args.user
 password = None
 auth_mode = args.mode
 dup_filename = args.file
 router_log_path = args.router_log_path

https://github.com/mmellin/findDuplicateIp

	 148	 Day One: Junos® PyEZ Cookbook

 local_log_dir = “logs/”
 connect_timeout = args.connect_timeout
 resolve_vendor = args.vendor
 update_vendor = args.update_vendor
 processes = args.processes

 if auth_mode == ‘password’:
 password = getpass.getpass()

Let’s begin by calling the create_help() function to create our help menu, take care
of our program arguments, and initialize our argument variables. Use the getpass
package to hide our password as we enter it, so that it is not stored in our system’s
history. By default, the program supports connecting into the Junos OS device via
username and password, but additional code could be created to support SSH
keys. This is why we have the auth_mode variable, but let’s leave this as a future
enhancement:

def create_help():
 “”” Build help documentation and creates program arguments.”””
 parser = argparse.ArgumentParser()

 parser.add_argument(“seed_router”, type=str,
 help=”Gateway router for hosts to begin search. Hostname or IP.”)
 parser.add_argument(“-u”, “--user”, type=str, help=”Seed_router username for login.”)
 # parser.add_argument(“-p”, “--password”, type=str, help=”Seed_router login password.”)
 parser.add_argument(“-m”, “--mode”, type=str, default=”password”,
 help=”Method of login: ‘ssh-key’ or ‘password’. Defaults to password.”)
 parser.add_argument(“-f”, “--file”, type=str, default=”duplicate_ips”,
 help=”Name of duplicate IP log file on router.”)
 parser.add_argument(“--connect_timeout”, type=int, help=”PyEz device connect timeout”)
 parser.add_argument(“--processes”, type=int, help=”Max number of threads to run concurrent.”)
 parser.add_argument(“--vendor”, action=’store_true’, help=”Try to resolve the HW vendor for each
MAC.”)
 parser.add_argument(“--update_vendor”, action=’store_true’,
 help=”Update local copy of Wireshark’s OUI DB from the web.”)
 parser.add_argument(“--router_log_path”, type=str, default=’/var/log/’,
 help=”Folder path on router where the ‘duplicate_ips’ log is stored. Defaults to
‘var/log/”)
 args = parser.parse_args()

 return args

You can see the create_help() function that main() calls to build the help menu and
ingest arguments. It returns a simple namespace object that acts like a dictionary
so main() can assign variables in the username = args.user fashion. This functional-
ity is built using the standard argparse.py library:

Initialize variables
credentials = {‘username’: username, ‘password’: password, ‘auth_mode’: auth_mode}
base_dir = os.path.dirname(os.path.realpath(__file__))
local_log_abspath = os.path.join(base_dir, local_log_dir)
data_dir_abspath = os.path.join(base_dir, ‘data’)
vlan_id_name_dict = {}
vlans = defaultdict(list)
remote_systems = defaultdict(dict)

	 149	 Recipe 22 - Track Down IP Conflicts with PyEZ

seed_ip = socket.gethostbyname(seed_router)
manuf_file_path = Path(os.path.join(data_dir_abspath, “manuf”))
updated = False

Now let’s initialize variables used within main.py. First, let the program
know about your base directory (the absolute path from where you are running
main.py), and some directories relevant to your program such as logs/ and data/.
The VLANs variable is a dictionary-like data structure to house the names and tags
of VLANs you find when initially searching the gateway router. The remote_systems
variable is a dictionary-like data structure to house all the information you find
about the systems scanned.

In addition to these, there is an updated variable that lets you know whether or not
the Wireshark OUI text file has been updated or not, used for MAC-to-hardware
vendor resolution.

Finally, there are the credentials, which are used for device connectivity, and seed_
ip, which is the IP address of the gateway host. Here, we use a socket library to
resolve any potential DNS hostname entry from the command-line-arguments into
an IP:

Attempt to update the Wireshark OUI directory if vendor resolution is required.
if resolve_vendor:
 # Verify that a Wireshark OUI file exists
 if not manuf_file_path.is_file():
 logger.info(“OUI resolution file does not exist.”)
 logger.info(“Downloading and updating ‘{}’ Wireshark OUI
							 file.”.format(manuf_file_path.as_posix()))
 try:
 ipc.update_vendor_file(path=manuf_file_path)
 logger.info(“Download successful.”)
 updated = True
 except Exception as e:
 logger.error(e)
 logger.error(“Download failed. MAC resolution disabled.”)
 resolve_vendor = False

Since the program supports MAC OUI vendor resolution via a nice library called
Manuf (https://github.com/coolbho3k/manuf), add in the following code to check
the vendor resolution-related arguments. The data this library works with is a text
file, called Manuf, downloaded from the Wireshark online site. Put this data file un-
der your data/ folder.

Since this file comes from the Web, it may be updated periodically. You can easily
run the program without updating each time, which is faster, but sometimes you’ll
want to update this file. In fact, this file is not included in the initial clone of the
repository, so the first time you run this program with the –vendor flag, it will auto-
matically call for an update to download this file to your localhost.

In our code above, we checked for the existence of the Manuf file. If it is not found,

https://github.com/coolbho3k/manuf)

	 150	 Day One: Junos® PyEZ Cookbook

it uses update_vendor_file() to download it from the Web, then set the updated vari-
able to True:

Attempt to update the OUI file if it hasn’t been already.
if update_vendor:
 # If we’ve already updated, skip updating again.
 if updated:
 pass
 else:
 logger.info(“Downloading and updating ‘{}’ Wireshark OUI
							 file.”.format(manuf_file_path.as_posix()))
 try:
 ipc.update_vendor_file(path=manuf_file_path)
 logger.info(“Download successful.”)
 updated = True
 except URLError as e:
 logger.error(“Download failed.”)

If the –update flag is used as an argument, it first checks to see if the Manuf file has
already been updated. If it has, it skip the update, otherwise it uses update_vendor_
file() to download the file to the localhost:

Begin print log output header
logger.info(“#” * 60)
logger.info(“Locating Duplicate IPs in your Network”)
logger.info(“#” * 60)
logger.info(‘\n’)
logger.info(“Opening a connection to the Gateway Router.\n”)

Begin connecting to network and finding baseline information
with ipc.connect_dut(seed_router, credentials, connect_timeout=connect_timeout) as dev:
 personality = dev.facts.get(‘personality’)
 model = dev.facts.get(‘model’)
 name = dev.facts.get(‘hostname’)
 description = model + “ “ + dev.facts.get(‘serialnumber’)
 remote_systems[seed_ip] = {‘facts’: {‘personality’: personality, ‘model’: model}, ‘name’:
													 name, ‘description’: description, ‘searched’: False}

 “”” Step 1 - Parse the log file and identify Potential Duplicate IPs “””
 logfile = ipc.LogFile(dup_filename, local_log_abspath, router_log_path)
 logger.info(‘Copying log file {} to local disk...’.format(logfile.filename))

 seed_dict = logfile.create_seed_dict(dev)

 logger.debug(“{} -> {}”.format(logfile.remote_file_path, logfile.local_file_path))
 logger.debug(“Creating the ‘seed_dict’ data structure for parsing.”)
 logger.info(“Log file copied, starting to parse...”)
 logger.debug(json.dumps(seed_dict, indent=2))
 logger.info(“Log file parsed. Starting to find mappings for IP, Vlan and MAC.”)

 # Validate that you have any potential duplicate IP logs, else exit.
 for item in seed_dict.values():
 if len(item) == 0:
 logger.info(“No duplicate IP entries found in the provided Duplicate IP log.
									 Exiting.”)
 sys.exit(1)

	 151	 Recipe 22 - Track Down IP Conflicts with PyEZ

Let’s start to output information to the terminal window and into the local log file,
then connect to the gateway router.

The next step to understanding where duplicate IP addressing is located in the net-
work is to determine which IP addresses and MAC addresses to scan for, and on
which VLANs. We begin this process by using a custom function called connect_
dut from our ipconflictslib module to connect and log in to the gateway MX Series
device.

Once we set up some variables with the device facts, instantiate a LogFile object,
which is a class from the ipconflictslib module. Then call the object’s create_seed_
dict method to open the file and return a list of lines from our router’s duplicate_ips
log file to parse.

NOTE	 Throughout the program, a logger is used to output both to the stdout and
to a log file. You’ll want to use this method for your scripts as well. See Logging
under the Discussion section of this recipe for further details.

“”” Step 2 - Determine which VLANs and interfaces the IPs were learned over “””
 iter1 = ipc.determine_VLAN(dev, seed_dict)
 for data_tuple in iter1:
 VLAN_name = data_tuple[0]
 VLAN_id = data_tuple[1]
 ip = data_tuple[2]
 macs = data_tuple[3]
 logger.info(“Potential duplicate IP {} found on VLAN {}({})”.format(ip, VLAN_name,
																																				 VLAN_id))
 VLAN_id_name_dict[VLAN_id] = VLAN_name
 VLANs[VLAN_id].extend([mac for mac in macs if mac not in VLANs[VLAN_id]])

 remote_systems[seed_ip][‘VLANs’] = VLANs
 logger.debug(VLAN_id_name_dict)

Begin the second processing step while still connected to the MX Series gateway, to
determine over which VLANs and physical interfaces the MAC addresses were
learned. We will use this information to scan for neighboring devices, and when
we find one and can connect to it, we’ll use the VLAN as a filter when scanning the
Ethernet table.

The seemingly simple function determine_VLAN in our ipconflictslib package accepts
the current devices connection, as well as the data gleamed from the log file, and
returns a list of tuples. These tuples include the VLAN’s name and tag, along with
an IP address and the MAC addressing associated with this MAC address. This
return data is considered “flat” because there are many repetitive lines, and each
line has the same set of information. Flat structures take up more memory but can
be faster to parse, group, or run joins on than a dictionary.

With that step completed, we have matched our potential duplicate IP addresses
up to MACs, and organized this data by VLANs. Print out what has been found,

	 152	 Day One: Junos® PyEZ Cookbook

and add the VLAN name and tag information into its own dictionary, for use later,
as well as to the remote_systems dictionary, where it is matched to the IP address of
the currently scanned device:

logger.info(“Begin to scan the systems found attached to the Seed Router.\n”)
scanned_systems, all_macs_found = ipc.system_scan(remote_systems, credentials, processes,
 connect_timeout=connect_timeout)
logger.debug(json.dumps(scanned_systems, indent=2))
logger.info(“Search complete.”)

output = ipc.create_output_structures(scanned_systems, seed_dict, resolve_vendor=resolve_vendor)
logger.debug(json.dumps(output, indent=2))

The first system is now added into the remote_systems dictionary and it’s time to be-
gin the search. Another seemingly small bit of Python, a call to our recursive func-
tion system_scan, hides a lot of code. It’s covered in more detail shortly, in a section
covering ipconflictslib.py. It’s in charge of expanding the size of the remote_ sys-
tems dictionary by scanning and searching all systems attached to this first device,
then repeating the search for all systems connected to those, and so on.

What it outputs is a new version of remote_systems with all the information you
need to determine where potential duplicate IP addresses live, along with informa-
tion about all the systems it has come in contact with and how they are connected
to each other.

This new data structure has a bunch of information, but isn’t in the best format to
easily output on the screen, so let’s parse it and filter out the information you need
about the leaf nodes, the devices at the end of the search connected to misconfig-
ured systems, and the IP and interface information. This is done via a call to cre-
ate_output_structures from ipconflictslib. This is also the function that calls the
Manuf.py library for the MAC OUI vendor resolution:

print(“\n\n”)
logger.info(“FINAL OUTPUT: \n”)
for vlan_id, ip_values in output.items():
 vlan_name = vlan_id_name_dict[vlan_id]
 logger.info(“Vlan {}: {}”.format(vlan_name, vlan_id))
 for ip, tuples in ip_values.items():
 logger.info(“\tIP {} found on:”.format(ip))
 for data in tuples:
 mac = data[0]
 vendor = data[1]
 name = data[2]
 mgt_ip = data[3]
 if not mgt_ip:
 if not vendor:
 logger.info(“\t\t{} -> {} (MAC not found in search) “.format(mac, ‘System
														 name not found’))
 else:
 logger.info(“\t\t{}({}) -> {} (MAC not found in search) “.format(mac, vendor,
													 ‘System name not found’))
 else:
 interface = data[4]

	 153	 Recipe 22 - Track Down IP Conflicts with PyEZ

 if not vendor:
 logger.info(“\t\t{} -> {}: {} (mgt IP: {})”.format(mac, name, interface,
																																		 mgt_ip))
 else:
 logger.info(“\t\t{}({}) -> {}: {} (mgt IP: {})”.format(mac, vendor, name,
																																				 interface,
mgt_ip))

Finally, print out the findings. The data structure output returned from our last
function has everything in place to make it easy for you to do just that. You orga-
nize the output by VLAN, then by IP address, printing out the MACs associated
with the IP and any remote systems and interface naming attached. Also included
is the MAC’s hardware vendor if that option was selected.

If a MAC found in the log file is no longer active on the network, then we pad that
output and let the user know that we couldn’t find it – it could be because the mis-
configured device with that IP address is offline, like a routing engine or VM, or
that the problem was fixed.

Sample Output
(env3)$ python main.py 192.168.1.254 -u user1 --vendor
Password:
2017/08/24 21:36:09 __main__ 95 - INFO: ##
2017/08/24 21:36:09 __main__ 96 - INFO: Locating Duplicate IPs in your Network
2017/08/24 21:36:09 __main__ 97 - INFO: ##
2017/08/24 21:36:09 __main__ 98 - INFO:

2017/08/24 21:36:09 __main__ 99 - INFO: Opening a connection to the Gateway Router.

2017/08/24 21:36:12 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-GW-MX1 -
192.168.1.254).
2017/08/24 21:36:13 __main__ 112 - INFO: Copying log file duplicate_ips.0.gz to local disk...
2017/08/24 21:36:14 __main__ 118 - INFO: Log file copied, starting to parse...
2017/08/24 21:36:14 __main__ 120 - INFO: Log file parsed. Starting to find mappings for IP, VLAN and MAC.
2017/08/24 21:36:15 __main__ 135 - INFO: Potential duplicate IP 192.168.1.7 found on VLAN V100(100)
2017/08/24 21:36:16 __main__ 135 - INFO: Potential duplicate IP 172.12.10.55 found on VLAN COMMON-
SERVICES(16)
2017/08/24 21:36:17 __main__ 135 - INFO: Potential duplicate IP 172.12.10.56 found on VLAN COMMON-
SERVICES(16)
2017/08/24 21:36:18 __main__ 135 - INFO: Potential duplicate IP 172.12.33.44 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:19 __main__ 135 - INFO: Potential duplicate IP 172.12.33.173 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:20 __main__ 135 - INFO: Potential duplicate IP 172.12.32.196 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:21 __main__ 135 - INFO: Potential duplicate IP 172.12.34.133 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:22 __main__ 135 - INFO: Potential duplicate IP 172.12.34.134 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:23 __main__ 135 - INFO: Potential duplicate IP 172.12.32.154 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:24 __main__ 135 - INFO: Potential duplicate IP 172.12.32.86 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:25 __main__ 135 - INFO: Potential duplicate IP 172.12.33.13 found on VLAN DEVICE-
FXP0(18)

	 154	 Day One: Junos® PyEZ Cookbook

2017/08/24 21:36:26 __main__ 135 - INFO: Potential duplicate IP 172.12.33.7 found on VLAN DEVICE-
FXP0(18)
2017/08/24 21:36:26 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.254
2017/08/24 21:36:26 __main__ 142 - INFO: Begin to scan the systems found attached to the Seed Router.

2017/08/24 21:36:26 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.254
2017/08/24 21:36:29 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-GW-MX1 -
192.168.1.254).
2017/08/24 21:36:29 pkgs.utils.ipconflictslib 428 - WARNING: No MACs found while searching VLAN 100 on
device 192.168.1.254
2017/08/24 21:36:34 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.254
2017/08/24 21:36:34 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.5
2017/08/24 21:36:38 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-CORE-EXVC -
192.168.1.5).
2017/08/24 21:36:41 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.5
2017/08/24 21:36:41 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.15
2017/08/24 21:36:41 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.22
2017/08/24 21:36:41 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.14
2017/08/24 21:36:41 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.16
2017/08/24 21:36:49 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-EX-VC-A -
192.168.1.16).
2017/08/24 21:36:50 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-EX-VC-B -
192.168.1.14).
2017/08/24 21:36:50 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.16
2017/08/24 21:36:50 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 192.168.1.13
2017/08/24 21:36:51 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.14
2017/08/24 21:36:51 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (CS-DATA-VC1-0 -
192.168.1.22).
2017/08/24 21:36:51 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-EX-VC-D -
192.168.1.15).
2017/08/24 21:36:51 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.22
2017/08/24 21:36:52 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.15
2017/08/24 21:36:57 pkgs.utils.ipconflictslib 48 - INFO: Connection Successful (POC-EX-VC-C -
192.168.1.13).
2017/08/24 21:36:58 pkgs.utils.ipconflictslib 60 - INFO: Closed connection to 192.168.1.13
2017/08/24 21:36:58 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 172.12.34.107
2017/08/24 21:36:58 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 172.12.39.18
2017/08/24 21:36:58 pkgs.utils.ipconflictslib 360 - INFO: #### Searching System 172.12.32.86
2017/08/24 21:36:58 pkgs.utils.ipconflictslib 55 - ERROR: Failed to connect to 172.12.39.18.
 ConnectRefusedError(172.12.39.18)
2017/08/24 21:36:59 pkgs.utils.ipconflictslib 52 - ERROR: Authentication failed to 172.12.32.86.
 ConnectAuthError(172.12.32.86)
2017/08/24 21:36:59 pkgs.utils.ipconflictslib 52 - ERROR: Authentication failed to 172.12.34.107.
 ConnectAuthError(172.12.34.107)
2017/08/24 21:36:59 __main__ 145 - INFO: Search complete.

2017/08/24 21:37:01 __main__ 151 - INFO: FINAL OUTPUT:

2017/08/24 21:37:01 __main__ 154 - INFO: VLAN COMMON-SERVICES: 16
2017/08/24 21:37:01 __main__ 156 - INFO: IP 172.12.10.55 found on:
2017/08/24 21:37:01 __main__ 166 - INFO: 0c:c4:7a:68:42:56(SuperMic) -> CS-DATA-VC1-0:
xe-2/0/40.0 (mgt IP: 192.168.1.22)
2017/08/24 21:37:01 __main__ 163 - INFO: 0c:c4:7a:68:42:57(SuperMic) -> System name not
found (MAC not found in search)

	 155	 Recipe 22 - Track Down IP Conflicts with PyEZ

2017/08/24 21:37:01 __main__ 154 - INFO: VLAN DEVICE-FXP0: 18
2017/08/24 21:37:01 __main__ 156 - INFO: IP 172.12.33.13 found on:
2017/08/24 21:37:01 __main__ 166 - INFO: 00:a0:a5:90:1d:31(TeknorMi) -> POC-EX-VC-E:
ge-0/0/44.0 (mgt IP: 192.168.1.14)
2017/08/24 21:37:01 __main__ 166 - INFO: 50:c5:8d:ab:80:92(JuniperN) -> POC-EX-VC-C:
ge-0/0/0.0 (mgt IP: 192.168.1.13)
2017/08/24 21:37:01 __main__ 156 - INFO: IP 172.12.32.154 found on:
2017/08/24 21:37:01 __main__ 166 - INFO: 40:b4:f0:79:57:ff(JuniperN) -> POC-EX-VC-A:
ge-4/0/29.0 (mgt IP: 192.168.1.16)
2017/08/24 21:37:01 __main__ 163 - INFO: 40:b4:f0:79:57:c1(JuniperN) -> System name not
found (MAC not found in search)
2017/08/24 21:37:01 __main__ 156 - INFO: IP 172.12.34.133 found on:
2017/08/24 21:37:01 __main__ 166 - INFO: e8:b6:c2:84:34:68(JuniperN) -> POC-EX-VC-A:
ge-4/0/24.0 (mgt IP: 192.168.1.16)
2017/08/24 21:37:01 __main__ 166 - INFO: e8:b6:c2:84:35:68(JuniperN) -> POC-EX-VC-A:
ge-4/0/25.0 (mgt IP: 192.168.1.16)
2017/08/24 21:37:01 __main__ 156 - INFO: IP 172.12.34.134 found on:
2017/08/24 21:37:01 __main__ 166 - INFO: e8:b6:c2:84:34:68(JuniperN) -> POC-EX-VC-A:
ge-4/0/24.0 (mgt IP: 192.168.1.16)
2017/08/24 21:37:01 __main__ 166 - INFO: e8:b6:c2:84:35:68(JuniperN) -> POC-EX-VC-A:
ge-4/0/25.0 (mgt IP: 192.168.1.16)
2017/08/24 21:37:01 __main__ 156 - INFO: IP 172.12.32.86 found on:
2017/08/24 21:37:01 __main__ 166 - INFO: 00:a0:a5:84:ae:5f(TeknorMi) -> POC-EX-VC-D:
ge-5/0/4.0 (mgt IP: 192.168.1.15)
2017/08/24 21:37:01 __main__ 166 - INFO: 00:a0:a5:84:ae:5f(TeknorMi) -> POC-EX-VC-D:
ge-5/0/4.0 (mgt IP: 192.168.1.15)

Supporting Package Code
This section walks you through the Python code that parses the log file, handles
device discovery, and creates data about the network for main.py to output.

ipconflictslib.py

The module begins with import statements as usual:

“”” Module that contains code for finding IP conflicts “””
import gzip
import magic
import os
from collections import defaultdict
from contextlib import contextmanager
from multiprocessing import Pool
from functools import partial
from pathlib import Path
from pkgs.utils.log import get_logger
from pkgs.utils import manuf
from jnpr.junos import Device
from jnpr.junos.utils.scp import SCP
from jnpr.junos.exception import (ConnectAuthError, ConnectError, ConnectTimeoutError)
from jnpr.junos.factory import loadyaml

From PyEZ, make sure to import the components you know you’ll be using, such
as Device and the SCP utility, along with some exceptions that these raise in the
event of failure. In addition, you need the loadyaml() function to turn the Table/

	 156	 Day One: Junos® PyEZ Cookbook

View YAML file into functions within the modules namespace. Make sure to im-
port the get_logger() function to get logging functionality.

Setup logger
logger = get_logger(__name__)

base_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
data_dir = os.path.join(base_dir, ‘data’)
log_dir = os.path.join(base_dir, ‘logs’)

Create classes per table/view and add them to the global namespace
globals().update(loadyaml(os.path.join(data_dir, ‘op_table_views.yml’)))

Next set up the logger by calling the get_logger()function. The argument __name__
tells logger to use whatever the current namespace is, which here happens to be the
name of the module, ipconflictslib. Then set up some global variables within the
namespace for the location of the directories used within the program. Lastly, load
the Tables and Views into the global namespace in order to use them by name
within the code.

The first function that main.py calls from ipconflictslib.py (line 77 and 88) is
update_vendor_file():

def update_vendor_file(path=None):
 “””Updates the Wireshark OUI text file for use with Manuf.py module.

 Args:
 path (str): Absolute path of the Wireshark MAC OUI Manuf text file.

 Returns:
 None

 “””
 if not path:
 path = Path(os.path.join(data_dir, “manuf”))
 try:
 manuf.MacParser(manuf_name=path.as_posix(), update=True)
 logger.info(“Update done successfully.”)
 except Exception:
 raise

This function creates an object from the MacParser class within manuf.py and up-
dates the Wireshark OUI text file:

@contextmanager
def connect_dut(dut, credentials, connect_timeout=None, facts=True):
 “””Custom function to connect to device. Wraps PyEZ Device.open() function.

 SSH key support currently not tested.

 Args:
 dut (str): IP or hostname of a JUNOS device with which to establish an SSH session.
 credentials (dict): Contains credential information along with the mode of requested
authentication.

	 157	 Recipe 22 - Track Down IP Conflicts with PyEZ

 connect_timeout (int): PyEZ connection timeout in seconds..
 facts (bool): Allows establishing a PyEZ connection with or without ‘facts’ gathering.

 Returns:
 dev (obj): PyEZ object with open SSH connection to JUNOS device (dut).

 Raises:
 ConnectAuthError: If the authentication fails.
 ConnectError: If there are connectivity problems during connection establishment.

 “””
 user = credentials[‘username’]
 password = credentials[‘password’]
 auth_mode = credentials[‘auth_mode’]
 dev = None
 try:
 if auth_mode == ‘password’ and password:
 if connect_timeout:
 Device.timeout = connect_timeout
 dev = Device(host=dut, user=user, password=password, gather_facts=facts).open()
 elif auth_mode == ‘ssh-key’:
 dev = Device(host=dut, gather_facts=True).open()
 else:
 logger.error(“Proper credentials for device login not provided.”)
 logger.info(‘Connection Successful ({} - {}).’.format(dev.facts.get(‘hostname’), dut))
 yield dev

 except ConnectAuthError as e:
 logger.error(“Authentication failed to {}.\n {}”.format(dut, e))
 raise
 except ConnectTimeoutError as e:
 logger.error(“Connection timeout to {}.\n {}”.format(dut, e))
 raise
 except ConnectError as e:
 logger.error(“Failed to connect to {}.\n {}”.format(dut, e))
 raise
 finally:
 if dev:
 dev.close()
 logger.info(“Closed connection to {}”.format(dut))

The next function to be called by main.py is connect_dut(), which allows you to con-
nect to a Junos device using PyEZ. Wrap the normal method of opening an SSH
channel to a Junos device in PyEZ so that you can feed the credentials dictionary
as an argument. This way you can choose either user or password authentication,
or SSH key-based authentication, in one function.

NOTE	 The @contextmanager is a decorator for this function. Using this decorator
from Python’s contextlib allows you to use this function in a “with” statement,
such as in main.py on line 101. In addition to this decorator, you’ll need the
function to yield a result and have a finally statement that is executed when the
“when” statement completes:

	 158	 Day One: Junos® PyEZ Cookbook

class LogFile:
 “””Object the represents a ‘duplicate_ips’ log file.

 Contains functions to open and parse the log file that was created on the MX gateway router
 to document IP conflicts.

 Attributes:
 filename (str): Name of the IP conflict log file.
 remote_log_dir (str): Absolute path of the remote directory housing the IP conflict log
												 file.
 local_log_dir (str): Absolute path of the local log directory.
 remote_file_path (str): Absolute path of the remote IP conflict log file.
 local_file_path (str): Absolute path of the local IP conflict log file.
 filetype (str): The type of file that is the IP conflict log file.

 “””
 def __init__(self, filename, local_log_dir, remote_log_dir):
 “””

 Args:
 filename (str): Name of the IP conflict log file. Used for both remote and local
	 									 files.
 local_log_dir (str): Absolute path of the local log directory.
 remote_log_dir (str): Absolute path of the remote directory housing the IP conflict
														 log file.

 Returns:

 “””
 self.filename = filename
 self.remote_log_dir = remote_log_dir
 self.local_log_dir = local_log_dir
 self.remote_file_path = self.create_file_path(self.remote_log_dir, self.filename)
 self.local_file_path = self.create_file_path(self.local_log_dir, self.filename)
 self.filetype = self.determine_type(self.local_file_path)

 @staticmethod
 def create_file_path(directory, filename):
 “””Joins the directory and filename”””
 return os.path.join(directory, filename)

 @staticmethod
 def determine_type(file):
 “””Helps determine the type of input file”””
 mime = magic.Magic(mime=True)
 return mime.from_file(file)

 def copy_log_to_local(self, device):
 “””Copies a remote file to the local device via SCP”””
 try:
 with SCP(device) as scp:
 scp.get(self.remote_file_path, self.local_file_path)
 except Exception as e:
 logger.exception(e)
 raise

 def create_lines(self, file):
 “””Creates a Python list data structure for lines in an input file.

	 159	 Recipe 22 - Track Down IP Conflicts with PyEZ

 Args:
 file (str): Absolute path of a file to open.

 Returns:
 (list): Output from f.readlines()

 “””
 if self.filetype == ‘text/plain’:
 with open(file, ‘r’) as f:
 return f.readlines()
 elif self.filetype == ‘application/x-gzip’:
 with gzip.open(file, ‘rt’) as f:
 return f.readlines()
 else:
 raise UnsupportedError(“Unsupported file type: {}”.format(self.filetype))

 # Main function
 def create_seed_dict(self, dev):
 “””Function that initiates the creation of IP/MAC mappings from the IP conflict log file.

 Args:
 dev (obj): PyEZ JUNOS device with open SSH connection.

 Returns:
 (dict): Output of a call to the generate_seed_dict method with in LogParsers class.
 A LogParsers object is created and the list of lines from the file is fed to a method
	 which returns a dictionary with IP/MAC mappings.

 “””
 self.copy_log_to_local(dev)
 lines = self.create_lines(self.local_file_path)
 return LogParsers.generate_seed_dict(lines)

After opening a connection to the network’s gateway device, the LogFile class is
used to create an object that handles the copying over of the log file to the local
computer and creates a seed dictionary to begin network search. The class has a
few attributes, like filename, which come in handy. The main function within this
class is create_seed_dict, which itself uses a separate class and returns a dictionary
structure that will ultimately be our seed dictionary. These two roles are broken
into separate functions so the code is easier to test, and grouped by function:

class LogParsers:
 “”” Parses the log file and finds all IP addresses and the associated MACs.
 This code works for unstructure syslog only.

 Sample log output:
 Jun 12 23:26:53 My-MX1 /kernel: KERN_ARP_ADDR_CHANGE: arp info overwritten for 192.168.1.10
 from 00:11:7d:1f:0b:3e to 0c:c5:7a:52:d1:aa
 “””

 @staticmethod
 def generate_seed_dict(lines):
 “””Create a dictionary that maps IP addresses to MAC and vice versa.

 Args:
 lines (list): List of lines form IP conflict file.

	 160	 Day One: Junos® PyEZ Cookbook

 Returns:
 seed_dict (dict): A mapping between IP and MAC addressing.

 “””
 ip_to_macs = defaultdict(list)
 mac_to_ips = defaultdict(list)
 seed_dict = defaultdict(dict)
 for line in lines:
 if ‘kernel’ in line:
 junk, data = line.split(“for”)
 ip, mac_strings = data.split(“from”)
 ip = ip.strip()
 mac_raw_list = mac_strings.split(“to”)
 mac_raw_list = [mac.strip() for mac in mac_raw_list]
 for mac in mac_raw_list:
 if mac not in ip_to_macs[ip]:
 ip_to_macs[ip].append(mac)
 if ip not in mac_to_ips[mac]:
 mac_to_ips[mac].append(ip)
 seed_dict[‘ip_to_mac_mapping’] = ip_to_macs
 seed_dict[‘mac_to_ip_mapping’] = mac_to_ips
 return seed_dict

While you didn’t have to create a class for this function, it’s best as an object when
called from other objects. You can also add further log parsing functions to this
class later if you choose. Here, in generate_seed_dict(), you go through the lines in
the file, parsing out the IP address and the MACs associated with them, and put-
ting them into a dictionary-like data structure.

TIP	 This recipe makes heavy use of an object called defaultdict, which acts like
a dictionary. It’s used mainly for code brevity. When a key is encountered for the
first time, if it is not already in the mapping, an entry is automatically created. You
can also control what structure the keys value will take. Check it out!

def determine_vlan(dev, seed_dict):
 “””Generator function that finds and returns VLAN information for a set of MACs given an IP.

 Args:
 dev (obj): PyEZ JUNOS device with open SSH connection.
 seed_dict (dict): IP/MAC mappings.

 Yields:
 (tuple):
 	 vlan_name (str): The name of the VLAN as determined by the MX configuration associated
 									 with the IP/MAC info.
 	 vlan_id (str): VLAN tag of the VLAN discovered.
 	 ip (str): IP Address used for the search and associated with the yielded MACs.
 	 macs (list): List of strings. The MAC addresses associated with the IP.

 “””
 for ip, macs in seed_dict[‘ip_to_mac_mapping’].items():
 rt_tbl = RouteTable(dev)
 ifl_tbl = LogicalInterfaceTable(dev)
 rt_tbl.get(ip)

	 161	 Recipe 22 - Track Down IP Conflicts with PyEZ

 # Assumes only a single active element
 find = rt_tbl[0]
 nh_int = find.via
 ifl_tbl.get(nh_int)
 ifl_info = ifl_tbl[0].bridge
 # Capture vlan name and TAG (JUNOS Format = VLAN_NAME+TAGID)
 vlan_name, vlan_id = ifl_info.split(‘+’)
 yield (vlan_name, vlan_id, ip, macs)

After obtaining the IP to MAC address mappings in main.py, you call determine_
vlan() from ipconflictslib.py. This function is the first to utilize PyEZ’s Tables and
Views to get information from the device. Here, we are looking through the gate-
way’s routing table, trying to find routes to the IP addresses found in the IP con-
flicts log. This route lookup will ultimately net the VLAN information and
interface we are looking for.

This is a generator function, yielding back the VLANs name, tag, associated IP for
the route lookup, and the MACs associated with the IP – all as a tuple. The gen-
erator was created because you need to take a set of actions in main.py for each tu-
ple found. You can see this loop for yourself starting on line 140 of main.py, and
the loop provides a chance to print an output for each IP/VLAN searched, as well
as keep track of all the MAC address to VLAN mappings:

def system_scan(systems_dict, credentials, processes, connect_timeout=None):
 “””Recursive function to scan the network, building a data structure of the things it finds.

 Args:
 systems_dict (obj): Defaultdict dictionary like data structure with current view of network.
 credentials (dict): Contains credential information along with the mode of requested
authentication.
 processes (int): Number of concurrent threads for multiprocessing.Pool()
 connect_timeout (int): PyEZ connection timeout in seconds.

 Returns:
 systems_dict (obj): Defaultdict dictionary like data structure housing all data relevant
											 to the network search for IP conflicts.
 all_macs_found (list): All the MAC addresses that where found during the search.
 Sometimes MAC addressing in the log file do not show up in the
													 search because the address had timed out already. We keep track
													 of what we do find for later.

 “””
 depth = len(systems_dict)
 # Keeps track of all MACs that were returned from the search where an interface was found.
 all_macs_found = []
 logger.debug(“Depth = {}”.format(depth))
 # Find all systems which haven’t yet been searched
 tosearch = [system for system in systems_dict if not systems_dict[system][‘searched’]]
 systems_pool = [[(system, systems_dict[system])] for system in tosearch]
 worker = partial(search_remote_system, credentials, connect_timeout)

 with Pool(processes) as p:
 results = p.map(worker, systems_pool)
 for item in results:
 systems_dict.update(item[0])

	 162	 Day One: Junos® PyEZ Cookbook

 all_macs_found.extend(item[1])

 new_depth = len(systems_dict.keys())
 logger.debug(“New depth = {}”.format(new_depth))
 if depth < new_depth:
 return system_scan(systems_dict, credentials, processes)
 else:
 return systems_dict, all_macs_found

Here is where you employ the power of recursion and multiprocessing to scan the
network and search each system that you find along the way. The function sys-
tem_scan() is called from main.py to run this search. A couple of key items here are:

�� depth: This variable keeps track of how many systems there are in the diction-
ary.

�� new_depth: This variable keeps track of how many systems are in the dictionary
after each round of scans. If this variable is larger than the original depth, it
lets the function know to recurse and keep scanning. Otherwise, there have
been no changes (no new neighbors found to scan) and the entire dictionary of
data is returned to the calling function in main.py.

�� Pool(processes): This function accepts an integer as an argument that tunes the
maximum number of Python processes that will spin up if needed concur-
rently. Because None is used, the default is to spin up as many as there are
CPUs on the local device.

�� Pool.map(): This class method is one way to achieve concurrency in Python by
using the multiprocessing library. It accepts a single worker function and a
single argument to that function as arguments of itself. The worker function is
what will run concurrently.

�� partial(): Due to the fact that Pool.map() accepts worker functions with only a
single argument, you need partial() in order to create a “half-baked” function
that includes all the other arguments needed. Our worker function, search_re-
mote_system(), takes more than one argument. Here, we use partial() to create
a variable worker to house our “half-baked” function with two of the three
required arguments. The other argument is filled in when calling Pool.map() as
shown above. Partials is from Python’s functools library.

Initially the logic goes that you look for all systems in the systems_dict that do not
have their “searched” key value set to True. This will give us a list of everything
that we need to search. We want to give each worker function a key/value pair so
that it can easily re-form a singular dictionary structure for the system it is scan-
ning, carved out from the main systems_dict. Due to some multi-processing, and
behind the scenes logic, each worker can only accept a single argument value, so
put what you need into a single tuple and feed it to the worker.

	 163	 Recipe 22 - Track Down IP Conflicts with PyEZ

After the worker does its processing, its dictionary will have grown if it has found
local neighbors. Each of these neighbors’ searched key will be set to False, while
its own will be set to True. The original dictionary is extended with this new up-
dated data, the depth of the original dictionary increases, and the process repeats
itself until no more neighbors are found.

Making use of the multiprocessing library allows you to scan several systems con-
currently for a decrease in the time to data. Newly discovered neighbors are fed
into a list, which can be distributed to various workers for scanning:

def search_remote_system(credentials, connect_timeout, system_data):
 “””Searches a JUNOS system for MAC/IP/VLAN information, discovers neighbors, builds the tree.

 This function is the main worker function, used with multiprocessing, to scan through a JUNOS
 system, call other library functions and build a remote systems dictionary. This data
 structure maps IP and addressing to VLANs, interfaces and neighbors, along with which devices
 are end leaf devices and which have leaves connected to them.

 Args:
 credentials (dict): Contains credential information along with the mode of requested
											 authentication.
 connect_timeout (int): PyEZ connection timeout in seconds.
 system_data (list): Contains a single tuple with system_ip and a system’s value
											 dictionary housing complete information about what has been found so
											 far for a single device.

 Returns:
 mytuple (tuple): Tuple of _systems_dict (dict) and macs_found (list).
 _systems_dict gets larger each time this function discovers new devices.
									 Each device marked with a bool ‘searched: True’ if it has been processed,
									 or ‘searched: False’ if it has just been discovered.

 Macs_found is a total list of all MAC addressing found
 while searching.

 “””
 assert len(system_data) == 1, “Invalid length of input to ‘search_remote_system’.”
 # Convert tuple argument into dictionary for processing
 system_ip = system_data[0][0]
 _system_dict = dict(system_data)
 # Keep track of macs that we find interfaces for.
 macs_found = []
 logger.info(“#### Searching System {}”.format(system_ip))

The worker function search_remote_system() is responsible for the scanning and
discovery of an individual system. It begins with an assert statement to make sure
that the input list system_data contains only a single tuple, and not any more or less.
This is a basic validity check. Next, recreate the dictionary from this list of tuple
elements by converting it into a dictionary with dict(system_data). We also capture
the system IP address into a variable for later use. Finally, create a list that will
hold all the MAC addresses found during the scan:

try:
 with connect_dut(system_ip, credentials, connect_timeout=connect_timeout) as dev:

	 164	 Day One: Junos® PyEZ Cookbook

 interfaces_to_macs = defaultdict(list)
 leaves = defaultdict(dict)
 parent_info = defaultdict(dict)

 # Add basic facts for this system if they don’t exist
 keys = _system_dict.keys()
 if ‘facts’ not in keys:
 personality = dev.facts.get(‘personality’)
 model = dev.facts.get(‘model’)
 _system_dict[system_ip][‘facts’] = {‘personality’: personality, ‘model’: model}

We reuse the connect_dut() function to make a connection to the device that sys-
tem_ip represents, and create a few data structures to hold information found along
our scan. If device-specific information like “personality” and “model” are not
already in your systems dictionary, you can add them now:

old_interface = None
for vlan, my_vlans_macs in _system_dict[system_ip][‘vlans’].items():
 try:
 learned_interfaces = find_learned_interface(dev, personality, model, vlan, my_vlans_macs)
 except UnsupportedError as e:
 raise e

We begin to loop through the system dictionary per VLAN. The goal here is to
find all the interfaces that the MAC addresses for that VLAN were learned over,
and then map them together. The function find_learned_interface() takes care of
this. The return value of a dictionary-like object is assigned to the variable
learned_interfaces:

if len(learned_interfaces) > 0:
 for interface, my_ifaces_macs in learned_interfaces.items():
 this_interfaces_macs = [] # Placeholder for MACs in the parent info
 if interface:
 macs_found.extend([mac for mac in my_ifaces_macs if mac not in macs_found])
 local_int = find_local_interface(dev, interface=interface)
 if local_int:
 if old_interface:
 new_interface = local_int
 else:
 old_interface = local_int

The returned value from attempting to find interfaces for a specific VLAN could be
empty, so if it’s not, we will continue. We then loop through the interfaces and as-
sociated MAC addresses and attempt to resolve any potential aggregated/bundled
type interfaces into a specific physical interface for use with a later LLDP lookup.
Sometimes the returned value for the interface within the dictionary is actually
None, because an interface was not found, so we skip these by using the if inter-
face statement. We keep track of whether or not this interface was resolved so that
we have this information if we need to print out an error message later on:

If you found a local interface via LLDP, attempt to see if there is a remote IP associated.
r_ip, name, description = find_remote_system(dev, model=dev.facts.get(‘model’),

	 165	 Recipe 22 - Track Down IP Conflicts with PyEZ

 local_int=local_int)
If you didn’t find a remote IP in the LLDP table, this interface is a leaf
if not r_ip:
 interfaces_to_macs[interface].extend([mac for mac in my_ifaces_macs if mac not in
 interfaces_to_macs[interface]])

For every interface found, you attempt to determine if there is a neighboring infra-
structure device directly connected. So we use find_remote_system() to do this,
which returns either the remote IP address and device information, or None. If
neighboring IP addresses were found, then that interface is a leaf interface, con-
nected to something we cannot scan, so we record the MAC addresses along with
the interface to put into our “leaves” data structure:

else:
 # Creates an association between the parent and remote systems for these MACs
 parent_info[system_ip][vlan] = {local_int: this_interfaces_macs}
 this_interfaces_macs.extend(my_ifaces_macs)
 # Add a new remote system to the data structure
 if r_ip not in _system_dict:
 _system_dict[r_ip] = {‘personality’: personality, ‘model’: model, ‘name’: name,
 ‘description’: description, ‘searched’: False,
 ‘vlans’: {vlan: []}, ‘parent_info’: parent_info}
 # If we have not yet seen this MAC yet, add it to our existing data structure
 try:
 vlan_mac_list = _system_dict[r_ip][‘vlans’][vlan]
 vlan_mac_list.extend([mac for mac in my_ifaces_macs if mac not in vlan_mac_list])
 except KeyError:
 if old_interface == new_interface:
 _system_dict[r_ip][‘vlans’][vlan] = []
 vlan_mac_list = _system_dict[r_ip][‘vlans’][vlan]
 vlan_mac_list.extend([mac for mac in my_ifaces_macs if mac not in vlan_mac_list])
 else:
 logger.error(“Two distinct interfaces are connected from {} to {}. Potential mis-
												 match access vlan and/or mis-cabling issue.”.format(system_ip,
																																						 r_ip))
 logger.error(“Check the following connections: {}:{}, {} <--> {}”
 .format(system_ip, old_interface, new_interface, r_ip))
 continue
else:
 # If you didn’t find a local interface in the LLDP table, this interface is a leaf
 interfaces_to_macs[interface].extend([mac for mac in my_ifaces_macs if mac not in
 interfaces_to_macs[interface]])

If an interface with a remote IP address is found, then you must do a few things.
First, you need to create mapping between this interface, its neighboring system,
and the MAC addresses associated with it. This is called a parent relationship,
and it helps to determine where the MACs were learned. We need this because
you still aren’t aware if remote IP is accessible yet. The worker eventually picks up
this IP and its data in the future, but the first thing the function does is attempt to
log in. If you cannot log in, then the system itself is a leaf system and you want to
report the directly upstream parent interface in the output. The parent_info dic-
tionary is what allows you to do this.

	 166	 Day One: Junos® PyEZ Cookbook

If the newly discovered remote system IP is not yet in the dictionary, add it and
some well-known data, like “personality”, “model”, etc. Here is where you ini-
tialize the “searched” key to False.

There is a rudimentary check to see that the parent interface and its directly-con-
nected neighbor are within the same VLAN. Sometimes there might be two access
interfaces, representing two distinct VLANs, connected together accidently. An
error message will be logged in that case:

else:
 logger.warning(“No MACs found while searching Vlan {} on device {}”.format(vlan, system_
ip))
 leaves[vlan].update(interfaces_to_macs)
 _system_dict[system_ip][‘leaves’] = leaves
 _system_dict[system_ip][‘searched’] = True
except:
 # If you cannot login to the system, it is a leaf node.
 _system_dict[system_ip][‘searched’] = True
mytuple = (_system_dict, macs_found)
return mytuple

For various reasons, no MAC addresses may be found during a search for any giv-
en VLAN, and it outputs a warning message if that happens to be the case.

We update what are considered “leaves” that this searched system contains – the
interface along with its associated MAC addressing. It is used to output the end-
point interfaces in later searches. We also update this system’s “searched” key to
True because of the finished search.

The last except statement handles the situation if you cannot log in to the device,
thus being unable able to search it. As mentioned previously, this device would
immediately be considered a leaf endpoint device and its parent would have inter-
faces of interest for the output.

A tuple, containing the expanded dictionary structure and a list of MACs that
were found during the search, is returned:

def find_learned_interface(dev, personality, model, vlan_id, macs):
 “””Determine from which interfaces a set of MAC addresses was learned.

 Args:
 dev (obj): PyEZ JUNOS device with open SSH connection.
 personality (str): General type of JUNOS device. ‘MX’ or ‘SWITCH’ supported.
 model (str): JUNOS model name. ‘MX’, ‘EX’ or ‘QFX’ supported.
 vlan_id (str): VLAN tag of the VLAN where the MACs are located.
 macs (list): MAC addresses for which to search for interfaces.

 Returns:
 parents (obj): DefaultDict dictionary like object keyed by the interface. Maps interfaces
								 to MACs.

 Raises:
 UnsupportedError: If personality or model is not supported, this error is raised.

 “””

	 167	 Recipe 22 - Track Down IP Conflicts with PyEZ

 parents = defaultdict(list)
 if personality.lower() == ‘mx’:
 logger.debug(“MACs associated with this IP:”)
 # Compare MACs from duplicate list to MACs in this device’s MAC table
 for mac in macs:
 # Because of invalid XML in 13.3R8.7, cannot search just bridge-domain.
 mac_table = BridgeTable(dev).get(address=mac)
 if len(mac_table.values()) > 0:
 for item in mac_table:
 if item.vlan_id == vlan_id:
 parents[item.interface].append(mac)
 logger.debug(“{} found on {}”.format(mac, item.interface))
 else:
 logger.debug(“No interface found for {}.”.format(mac))

 elif personality == ‘SWITCH’:
 if ‘QFX’ in model:
 mac_table = QFXEtherSwTable(dev).get(vlan_id=vlan_id)
 logger.debug(“MACs associated with this IP:”)
 for item in mac_table:
 # Compare MACs from duplicate list to MACs in this device’s MAC table
 for mac in macs:
 if mac == item.mac:
 logger.debug(“{} found on {}”.format(mac, item.interface))
 parents[item.interface].append(mac)

 elif ‘EX’ in model:
 mac_table = EtherSwTable(dev).get(vlan_name=vlan_id)
 logger.debug(“MACs associated with this IP:”)
 for item in mac_table:
 # Compare MACs from duplicate list to MACs in this device’s MAC table
 for mac in macs:
 if mac == item.mac:
 logger.debug(“{} found on {}”.format(mac, item.interface))
 parents[item.interface].append(mac)
 logger.debug(“Parents: {}”.format(parents))

 else:
 raise UnsupportedError(“No matching Table/View for hostname personality: {}, hostname model:
{}”
 .format(personality, model))
 return parents

The find_learned_interface() function uses PyEZ’s Tables and Views to get interface
information about specific MAC addresses from the device being searched. Due to
the variety of XML across Junos platforms, we’ve created three separate table/
view combinations to support each of the supported device types (MX, QFX, EX).
Some of these devices support directly searching for a MAC address as a CLI argu-
ment (MX). The others support only filtering, based on the VLAN ID, and then
looping through the resultant items. If you have very large L2 Tables, then this
may be inefficient. In this lab, it was not a problem.

We are basically looking into the MAC table to see on which interface a specific
MAC was learned, then mapping that result, and the MAC, into a dictionary
which is returned:

	 168	 Day One: Junos® PyEZ Cookbook

def find_local_interface(dev, interface):
 “””Using LLDP, resolve the input interface to the first local physical interface.

 An interface could be an aggregate/bundle (AE) and this function finds, via LLDP, the first
 matching physical interface associated. This local physical interface will be used to
 determine whether there are any attached or not.

 Args:
 dev (obj): PyEZ JUNOS device with open SSH connection.
 interface (str): The interface we are looking to resolve into a physical interface.

 Returns:
 local_int (str): If the input interface argument is an aggregate/bundle, it will return
									 item.local_parent.
 If the item was a singular interface to begin with, it will return that IFD.
 None: local_int will be ‘None’ if interface not found in LLDP table.

 “””
 def _find_local_int(table):
 “””Internal function to iterate through LLDP table.

 Uses PyEZ Table/Views to determine LLDP information.

 Args:
 table (obj): PyEZ LLDPTable object that acts like a list. Each item in the table is
									 an LLDPTableView object with attributes created via YAML.

 Returns:
 (str): Interface name if a match was found.
 None: If no match is found.

 “””
 logger.debug(“Interface: {}”.format(interface))
 for item in table:
 if item.local_int in interface:
 logger.debug(“No parent match. Interface: {}, item.local_int:
												 {}”.format(interface, item.local_int))
 return item.local_int
 elif item.local_parent == “-”:
 pass
 elif item.local_parent in interface:
 logger.debug(“Local_parent {} match: local_int: {}”.format(item.local_parent,
																																				 item.local_
int))
 # Returns the first local-interface that matches, not all interfaces.
 # This should be OK because an AE locals would be connected to same remote
					 system.
 return item.local_int

 lldp_main_tbl = LLDPTable(dev).get()
 local_int = _find_local_int(lldp_main_tbl)
 return local_int

The find_local_interface() function is meant to resolve a discovered interface down
to its physical name. The input is either an aggregated or bundled interface, such
as an AE, or a singular interface. Either way the output is a single physical inter-
face that the program uses to do an LLDP lookup in order to determine if there are

	 169	 Recipe 22 - Track Down IP Conflicts with PyEZ

any neighboring systems connected to it. It uses an LLDP table and view you can
look through. If a matching interface is not found, then None is returned:

def find_remote_system(dev, model, local_int):
 “””Finds, via LLDP, whether or not a device has a directly connected neighbor.

 Uses PyEZ Table/Views to determine LLDP information.

 Args:
 dev (obj): PyEZ JUNOS device with open SSH connection.
 model (str): JUNOS model name. ‘MX’, ‘EX’ or ‘QFX’ supported. Function assumes EX if not
							 MX or QFX.
 local_int (str): Interface within the LLDP table on which to search for a neighbor.

 Returns:
 ip (str): IP address of the neighbor.
 name (str): Hostname of the neighbor.
 description (str): Description string of the neighbor from the LLDP table.

 “””
 logger.debug(“Model: {}”.format(model.lower()))
 if ‘mx’ in model.lower():
 lldp_int_tbl = LLDPInterfaceNeighborMX(dev).get(interface_device=local_int)
 elif ‘qfx’ in model.lower():
 lldp_int_tbl = LLDPInterfaceNeighborMX(dev).get(interface_device=local_int)
 else:
 lldp_int_tbl = LLDPInterfaceNeighborEX(dev).get(interface_name=local_int)
 ip = lldp_int_tbl[0].remote_system_ip
 name = lldp_int_tbl[0].remote_system_name
 description = lldp_int_tbl[0].remote_system_description

 return ip, name, description

While the RPC returned for the LLDP main table has similar values across these
three Junos systems, the RPC call for a specific interface did not, so we created a
couple of Tables and Views. Here, in find_remote_system(), you look through the
LLDP table for a specific interface and attempt to find if there is a remote system
connected. You can grab information such as the IP address, the name, and the
description values of the remote system:

def create_output_structures(_scanned_systems, _seed_dict, resolve_vendor=False):
 “””Creates an easily consumed data structure for use when printing program findings.

 Args:
 _scanned_systems (dict): Final output of network scan. Contains all relevant system data.
 _seed_dict (dict): Initial Mac/IP mappings.
 resolve_vendor (bool): Allows toggling of MAC OUI vendor resolution.

 Returns:
 output (obj): DefaultDict dictionary like object with all relevant findings.

 “””
 output = defaultdict(lambda: defaultdict(list))
 leaves = None
 mgt_ip = None
 vendor = None

	 170	 Day One: Junos® PyEZ Cookbook

 # Build initial output dictionary
 for system_ip, system_values in _scanned_systems.items():
 try:
 leaves = system_values[‘leaves’]
 mgt_ip = system_ip

 except KeyError:
 for parent, parent_info in system_values[‘parent_info’].items():
 leaves = parent_info
 mgt_ip = parent

Lastly, once all the searching is done and you have everything you need for print-
ing the output, you need to slightly change the formatting to make it more friendly
to printing out to the log file. This is what create_output_structures()accomplishes.
This function is called in main.py after all the scanning is done, but before the out-
put printing.

The program starts off initializing some data structures and variables and then be-
gins to assemble the output dictionary. It loops through the larger _scanned_systems
dictionary (which was a result of the network search) looking for everything it
considered leaves, or endpoints, to report in the output. If the system in question
has a “leaves” key, then information is taken from there. If it does not have a
leaves key, then it was one of the systems to which it couldn’t be connected, thus it
takes the parent information:

assert leaves is not None, “The leaves dictionary does not exist. Cannot parse.”
for vlan_id, values in leaves.items():
 for interface, macs in values.items():
 for mac in macs:
 dup_ip = _seed_dict[‘mac_to_ip_mapping’][mac]
 if resolve_vendor:
 vendor = determine_vendor(mac)
 for ip in dup_ip:
 output[vlan_id][ip].append((mac, vendor, _scanned_systems[mgt_ip][‘name’],
				 															 mgt_ip, interface))

An assert statement validates that the leaves variable is not empty, which shouldn’t
happen. After this, it loops through the information contained within leaves based
on the VLAN. For each VLAN it looks for interfaces, and for each interface it
looks for MACs. Based on the MAC address, you can check your original seed
dictionary to find the IP address associated with it and then run a vendor resolu-
tion if specified. Once this is done you add this all to the output dictionary.

NOTE	 The key/value structure of this output dictionary matches the order in
which you want to print your output. Organized by VLAN, you’d like each IP
address to be printed, followed by the MAC addressing and associated informa-
tion.

Pad each IP in the output dictionary where a MAC was not found.
for vlan, vlan_values in output.items():
 for ip, values in vlan_values.items():

	 171	 Recipe 22 - Track Down IP Conflicts with PyEZ

 ‘’’Some MACs for a given IP may not have been found, thus the number of MACs for this IP
		 in the current output dictionary might not match the original number of MACs found for
		 this IP.
		 We need to match up the lengths here and fill in blank values for the missing
		 information.
 ‘’’
 original_macs = _seed_dict[‘ip_to_mac_mapping’][ip]
 original_count = len(original_macs)
 new_count = len(values)
 # original_count should not be less than new_count
 if original_count > new_count:
 current_macs = []
 for value_tuple in values:
 mac_address = value_tuple[0]
 current_macs.append(mac_address)
 org_s = set(original_macs)
 new_s = set(current_macs)
 missing_macs = org_s - new_s
 for mac in missing_macs:
 if resolve_vendor:
 vendor = determine_vendor(mac)
 blank_tuple = (mac, vendor, None, None)
 output[vlan][ip].append(blank_tuple)
return output

The code continues by adding padding for the MAC addressing information not
found during the search. An IP address may have been expected to have three
MACs associated within the network, but only two of which were found. Here
you are adding some padding in the form of None for those variables. During the
printing of the output, if there is not a MAC found, then you can still print out at
least the MAC address as expected, and whose vendor it was, leaving the system
from which it was originally learned blank:

def determine_vendor(mac):
 “””Resolve MAc OUI to hardware vendor

 Args:
 mac (str): MAC address to resolve.

 Returns:
 vendor (str): MAC addressing hardware vendor name.

 “””
 v = manuf.MacParser(manuf_name=os.path.join(data_dir, ‘manuf’))
 vendor = v.get_manuf(mac)
 return vendor

Lastly, ipconflictslib.py contains the determine_vendor() function, which makes use
of the Manuf.py library. You instantiate an instance of the MacParser class and do a
MAC address search through the manuf Wireshark text file for a vendor name to
return.

	 172	 Day One: Junos® PyEZ Cookbook

PyEZ Tables and Views
This program makes extensive use of PyEZ’s Tables and Views concept – it helps
get data returned from an RPC call into a Python data object that you can parse.
The Tables and Views are loaded into the ipconflictslib.py namespace so that the
functions within this package can use their names natively. For example:

from jnpr.junos.factory import loadyaml

Create classes per table/view and add them to the global namespace
globals().update(loadyaml(os.path.join(data_dir, ‘op_table_views.yml’)))

Our Tables and Views are operational in nature, meaning that they support re-
turned XML from operational mode commands that are sent to the device. The
file itself is located in the data/ folder. These Tables and Views were created espe-
cially for this program and were not (or at least, presumed) part of the default
PyEZ install. Let’s print them out here for your reference:

RouteTable:
 rpc: get-route-information
 args:
 table: <change-me.inet.0>
 args_key: destination
 item: route-table/rt
 key: rt-destination
 view: RouteTableView

RouteTableView:
 groups:
 nh: ‘rt-entry[current-active]/nh[selected-next-hop]’
 fields_nh:
 via: via

LogicalInterfaceTable:
 rpc: get-interface-information
 args:
 detail: True
 interface_name: ‘*’
 args_key: interface_name
 item: logical-interface
 key: name
 view: LogicalInterfaceView

LogicalInterfaceView:
 groups:
 irb_domain: ‘irb-domain’
 lag: ‘lag-traffic-statistics/lag-link’
 fields_irb_domain:
 bridge: irb-bridge
 routing_instance: irb-routing-instance
 fields_lag:
 name: name

	 173	 Recipe 22 - Track Down IP Conflicts with PyEZ

BridgeTable:
 rpc: get-bridge-mac-table
 args:
 address: ‘*’
 args_key: address
 item: l2ald-mac-entry
 view: BridgeTableView

BridgeTableView:
 fields:
 mac: l2-mac-address
 interface: l2-mac-logical-interface
 vlan_name: l2-mac-bridging-domain
 vlan_id: l2-bridge-vlan

QFX
QFXEtherSwTable:
 rpc: get-ethernet-switching-table-information
 args:
 vlan_id: ‘[\d+]’
 item: l2ng-l2ald-mac-entry-vlan/l2ng-mac-entry
 key: l2ng-l2-mac-address
 view: QFXEtherSwView

QFXEtherSwView:
 fields:
 mac: l2ng-l2-mac-address
 vlan_name: l2ng-l2-mac-vlan-name
 interface: l2ng-l2-mac-logical-interface

EtherSwTable:
 rpc: get-vlan-ethernet-switching-table
 args:
 vlan_name: “*”
 item: ethernet-switching-table/mac-table-entry
 key: mac-address
 view: EtherSwView

EtherSwView:
 fields:
 mac: mac-address
 vlan_name: mac-vlan
 interface: mac-interfaces-list/mac-interfaces

LLDPTable:
 rpc: get-lldp-neighbors-information
 item: lldp-neighbor-information
 key: lldp-local-interface | lldp-local-port-id
 view: LLDPView

LLDPView:
 fields:
 local_int: lldp-local-interface | lldp-local-port-id
 local_parent: lldp-local-parent-interface-name

	 174	 Day One: Junos® PyEZ Cookbook

 remote_type: lldp-remote-chassis-id-subtype
 remote_chassis_id: lldp-remote-chassis-id
 remote_port_desc: lldp-remote-port-description

For EX
LLDPInterfaceNeighborEX:
 rpc: get-lldp-interface-neighbors-information
 args:
 interface_name: ‘[afgxe]e*’
 item: lldp-neighbor-information
 key: lldp-local-interface
 view: LLDPInterfaceNeighborView

For MX, QFX
LLDPInterfaceNeighborMX:
 rpc: get-lldp-interface-neighbors
 args:
 interface_device: ‘[afgx]e*’
 item: lldp-neighbor-information
 key: lldp-local-interface
 view: LLDPInterfaceNeighborView

LLDPInterfaceNeighborView:
 fields:
 local_int: lldp-local-interface
 local_parent: lldp-local-parent-interface-name
 remote_system_name: lldp-remote-system-name
 remote_system_ip: lldp-remote-management-address
 remote_system_description: lldp-system-description/lldp-remote-system-description

Discussion
You can choose to run this program via Docker or natively on your localhost with-
in a virtual environment. The assumptions about this recipe are:

�� Your network is made up of MX Series, EX Series, or QFX Series devices.

�� You are using IRBs and bridge domains on your gateway MX.

�� You are using IPv4 within your network. IPv6 is not supported.

�� You have Python 3.6.2 installed.

To Install via Docker

1. Install Docker (https://www.docker.com/products/overview)

2. Install Git (https://git-scm.com/downloads)

3. Using Git, clone this project’s repository:

$ git clone –branch <tag> https://github.com/mmellin/findDuplicateIp.git

https://www.docker.com/products/overview
https://git-scm.com/downloads
https://github.com/mmellin/findDuplicateIp.git

	 175	 Recipe 22 - Track Down IP Conflicts with PyEZ

4. Build the container:

$ cd findDuplicateIp
$ docker build –f Dockerfile –t fdip .

To Install Via the Virtual Environment

1. Install virtualenv (https://virtualenv.pypa.io/en/stable/installation/)

2. Install Git (https://git-scm.com/downloads)

3. Using Git, clone this project’s repository:

$ git clone –branch <tag> https://github.com/mmellin/findDuplicateIp.git

4. Create a virtual environment:

Python 3:

$ cd findDuplicateIp
$ virtualenv env3 –p python3
$ source env3/bin/activate
$ pip install –r requirements.txt

Setup

Customize the RouteTable: args: table value within data/op_table_views.yml for
your environment:

RouteTable:
 rpc: get-route-information
 args:
 table: <my-main-table.inet.0>

The argument here supports a topology with a custom VR as its main table. Enter
your VR’s custom table name, or just the default table name inet.0 for IPv4.

Run

Run using either Docker or natively on your localhost.

To run using Docker

Simply run the container with:

$ cd findDuplicateIp
$ docker run –it –v $PWD/logs:/fdip/logs fdip <gateway_device> -u <username> --vendor

https://virtualenv.pypa.io/en/stable/installation/
https://git-scm.com/downloads
https://github.com/mmellin/findDuplicateIp.git

	 176	 Day One: Junos® PyEZ Cookbook

To run natively on your localhost

1. Make sure your virtual environment is running:

$ cd findDuplicateIp
$ source env3/bin/activate

2. Run main.py with arguments:

$ python main.py <gateway_device> -u <username> -p <password> --vendor

Logging

This program logs INFO level output to the screen, and DEBUG level input to a log file
by default. The log file includes the most verbose logging. Both methods output
WARNING and ERROR. If you want to change this behavior, you will need to modify
conf/logging.yml.

To turn on DEBUG to screen:

Modify this portion of logging.yml as follows:

handlers:
 default:
 class: logging.StreamHandler
 level: DEBUG # Changed from INFO

To enable only INFO level to log file:

Modify this portion of logging.yml as follows:

handlers:
 file:
 class : logging.FileHandler
 level: INFO # Changed from DEBUG

The log file during the program run gives several great pieces of information to
debug issues. Here is an example of a line from the log:

2017/08/28 18:08:33 __main__ 111 - INFO: Copying log file duplicate_ips.0.gz to local disk...
2017/08/28 18:09:20 pkgs.utils.ipconflictslib 72 - ERROR: Failed to connect to 10.161.39.18.

You can see it gives us several key items:

�� Date and timestamp: 2017/08/28 18:08:33

�� Namespace: __main__ or pkgs.util.ipconflictslib

	 177	 Recipe 22 - Track Down IP Conflicts with PyEZ

�� This shows us the name of the module from which the code is running so
we can easily identify where any problems or actions are located.

�� Code line number: 111

�� Easily identify which line numbers an issue or an action occurs.

�� Log message level: INFO:

Repository Structure
To better understand this code base and give you an example of how you can
structure your own code, let’s look through how the code repository is structured
and the components therein.

Figure 22.3	 Local Copy of Development Repository for the findDuplicateIP Program

findDuplicateIp/

This folder is a Git repo and includes hidden folder related to the configuration of
Git that has been automatically created after first initialization.

	 178	 Day One: Junos® PyEZ Cookbook

.gitignore

This file names local contents within my repo that I don’t want to track and in-
clude in my remote repository. These files and folders end up getting greyed out as
you can see above. An example of folders shown here are env, env3, and logs. It is
best practice not to track your virtual environments folders in version control.

conf/

This folder houses the YAML file for logging configuration. It could also house
other configuration and setup-related files.

data/

This is where I organize files related to my PyEZ table/views and the data related
to Wireshark’s OUI text file “database.” Normally, this folder is where I put files
related to data that my Python program needs.

env3/

This is the folder that contains my virtual environment, which house Python pack-
ages outside of the standard libraries that my script needs to call, along with my
Python interpreter of choice. This is ignored via the .gitignore file.

logs/

This folder is automatically created by our Python program and is where we dump
the log output from our program. It is ignored via the .gitignore.

pkgs/

Here is where I typically organize the Python packages and modules that my pro-
gram uses. It is a package itself, as you can see from the empty __init__.py file lo-
cated directly in it. This is needed in order for the main program to call code from
these packages/modules.

pkgs/utils

This package (note the __init.__.py) contains all my module code for doing all the
cool things my program does. I organized it this way so it wouldn’t clutter than
main.py program, and I can use it in a more object-oriented fashion.

tmp/

This folder is automatically created and used as a dumping point for the log file
that we pull off of the router. While we are parsing it and putting it into memory,
we use this folder to store the local copy of the file. We then delete the file once
parsing is complete. This folder is ignored via the .gitignore file.

	 179	 Recipe 22 - Track Down IP Conflicts with PyEZ

.dockerignore

This is the equivalent of .gitignore for Docker. We have this so that when we build
our docker container, we can send as little data into the Docker context as possible
so the build time is fast and efficient.

Dockerfile

This is the file Docker uses to know what to build within its container. It’s like a
script telling Docker what steps to take and what to build. It is only used if we are
building and running our program from a Docker container. Why would you do
this? Docker enables portability, so if a system supports Docker, it can run our
application without having Python and our libraries installed.

LICENSE

Open source License file for using this software.

main.py

This is the main program file. It is the python file we run when we want to run
findDuplicateIp against our network.

README.md

Every repo should have a well-structured README in its repo, and this is ours. It
will inform the user of how to install, set up, and run the findDuplicateIp program.
README files can be created using a variety of methods and here I’m using Mark-
down as the syntax of choice.

requirements.txt

The requirements file is where we document the specific, non-standard libraries
needed for our program to run. We install these libraries, prior to running our
program, either within a virtual environment or Docker. Either method uses pip
install –r requirements to install the libraries.

NOTE	 It is best practice to specify exact versions of the libraries you are using
within this file, so that you have no unexpected behavior if a newer version of the
library is used, for example: junos-eznc==2.1.5 .

Recipe 23 - Configuration Audit Using
XML Schema (XSD)

by Diogo Montagner

�� Python Version Used: 	 2.7

�� PyEZ Version Used: 	 2.15

�� Junos OS Used: 	 17.2

�� Juniper Platforms General Applicability: vMX

This recipe will demonstrate how to leverage XML schemas (XSD) to perform net-
work audits against Junos OS MX Series routers.

Problem
As networks grow in size and complexity, the amount of people and systems per-
forming changes in the network follow the same path. To deal with this scenario,
many companies enforce a strict change management control in order to limit who
is performing changes, when they are doing it, and how. Although this sounds rea-
sonable from a process and risk management perspective, over time, this type of
approach eventually slows down the organization, because it is proven that ex-
tremely strict processes are not enough to prevent mistakes and deviations. Why?
Because the majority of mistakes and deviations seen on networks are caused by
human factors. So, what can you do about it?

Let’s assume for now that you have higher levels of automation on your network
and that all changes are executed only through systems. In a scenario like this, the
chances of deviations are minimized because there is very minimal human interac-
tion. But even in scenarios like those mentioned above, deviations can occur. For
instance, if you allow network engineers to fix problems via CLI, that opens a door
for deviations.

	 181	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

The truth is: you can’t avoid deviations. In fact, the best thing you can do is to as-
sume that deviations will occur. In doing so, you acknowledge the fact that this
problem, from time to time, will occur in your environment. Even better, you will
have an action plan to mitigate it.

So, let’s assume the following scenario:

�� You have a L3VPN customer who had a problem with their CPE router.

�� The customer had to replace the CPE with another device that no longer
supports BGP.

�� Your network operation team changed the PE-CE routing protocol from BGP
to Static in order to recover the service.

�� The PE-CE routing protocol will be reverted once the customer replaces the
backup CPE with a new one that supports BGP.

In the scenario above, two things can happen:

The customer replaces the CPE and forgets to organize a change with you to revert
back to BGP.

Your network supports Static as routing protocol in the PE-CE connection, but the
operation team forgot to update the customer documentation.

Arguably, forgetting to revert back to BGP is a small problem compared to forget-
ting to update the customer documentation. In the first case, the customer’s service
is working fine, though with a few drawbacks, when compared to the BGP routing
option. The biggest problem here is the second case. Let’s assume another engineer
from the customer rings your operation team complaining that the service is no
longer working. The change to Static routing is not registered anywhere on your
systems and the engineer from your operations team is not familiar with the
change that was made in the past from BGP to Static routing. Your operation engi-
neer then looks up this customer on your customer database and finds out they
should be using BGP, instead of Static. The engineer then reverts the configuration
to BGP, but the service is still not recovered.

The time taken to figure out the routing protocol misconfiguration was just a dis-
traction from the real problem. This can be costly for the customer’s business, be-
cause the time it took to recover the service was much longer than expected.

If the network operations team had at least had a tool to alert it about deviations,
surely someone would have recorded that the deviation was caused by a CPE re-
placement and that the reversion to BGP was waiting for the customer to request.
If the network operations engineer had such a tool, he would have not wasted time
trying to fix the configuration. And he certainly would have asked the customer to
confirm the routing protocol currently configured on their side before attempting
anything.

	 182	 Day One: Junos® PyEZ Cookbook

The problem described here is one of the many issues that can arise due to miscon-
figuration, deviations, or out-of-compliance devices. I haven’t even described the
security implications if the deviations are related to security.

Solution
Implementing a solution that performs configuration audits regularly on your net-
work devices can prevent and mitigate issues like the ones described in this recipe.
It would be even better if you could perform the audit as soon as a configuration
change is made, which is called event-driven automation, but that is beyond the
scope of this recipe.

There are multiple ways to perform configuration audits in a network device.
Most of the configuration audits we have seen in the field often rely on complex
regular expressions or innumerable lines of code containing nested if-then-else
instructions. While this works, and may be better than not having an audit pro-
cess, it does pose many challenges as the networks and services delivered by these
networks grow in size and complexity. The issue here lies in the fact that many of
us are still developing automation for humans instead of developing automation
for machines. And here is where this PyEZ recipe comes in to help you with net-
work configuration audit.

This recipe provides you with an example of small framework for network con-
figuration audit. It will be up to you to develop it further to cover all aspects of the
configuration audits that you need.

Let’s start looking to the architecture of this framework. Figure 23.1 presents an
overview of the components.

The provisioning system shown in Figure 23.1 just demonstrates that the audit
tool is independent from the provisioning system. Also, you may be wondering
why there is an inventory in this picture if the recipe is about configuration audit.
The truth is that you need a source of truth to compare against, otherwise your
network audit has no value. In the case of this recipe, the source of truth is the in-
ventory. Both provisioning and audit systems interact with the inventory while ex-
ecuting their tasks. For the sake of simplicity, our inventory system will be a simple
YAML file describing each router.

NOTE		 There are many design decisions that come into play while designing
your inventory and source of truth systems. Here, we decided to track on a per
device basis and not a per service or function basis. While this model offers
simplicity in storing the data and easily enforcing templates, it is not the best
model for service modeling because the information is kept at the device level. So,
if you need to find out where an ABC service is configured, you need to walk all

	 183	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

devices in the network, verifying if they have the ABC service configured. Convert-
ing this approach to another approach where you can easily track the services is
not a difficult task, and it can be built on top of the model used here. Get into the
lab and try it.

Figure 23.1	 Overview of Configuration Audit Recipe Components

The following code represents the inventory file for our vmx1 router:

infrastructure:
 router_hostname: vmx1
 router_lo0: ‘1.1.1.1/32’
 router_mgmt_fxp0: ‘192.168.122.35’
 uplinks:
 - {interface: ‘ge-0/0/0.0’, address: ‘10.1.1.1/30’, mpls: ‘yes’, ospf: ‘yes’, ldp: ‘yes’, rsvp:
‘no’}
 - {interface: ‘ge-0/0/1.0’, address: ‘10.1.1.5/30’, mpls: ‘yes’, ospf: ‘yes’, ldp: ‘yes’, rsvp:
‘no’}

services:
 l3vpn:
 - service_name: ‘VPNA’
 service_type: ‘vrf’
 rt: ‘65000:100’
 rd: ‘65000:100’
 sites:
 - {site_id: ‘site1’, description: ‘VPNA Site 1’, interface: ‘ge-0/0/2.100’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.1/30’, bgp_neighbor: ‘10.100.100.2’}
 - {site_id: ‘site2’, description: ‘VPNA Site 2’, interface: ‘ge-0/0/2.101’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.5/30’, bgp_neighbor: ‘10.100.100.6’}
 - {site_id: ‘site3’, description: ‘VPNA Site 3’, interface: ‘ge-0/0/2.102’, protocol: ‘bgp’,

	 184	 Day One: Junos® PyEZ Cookbook

peer_as: ‘65001’, address: ‘10.100.100.9/30’, bgp_neighbor: ‘10.100.100.10’}
 - service_name: ‘VPNB’
 service_type: ‘vrf’
 rt: ‘65000:200’
 rd: ‘65000:200’
 sites:
 - {site_id: ‘site1’, description: ‘VPNB Site 1’, interface: ‘ge-0/0/2.200’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.1/30’, bgp_neighbor: ‘10.100.100.2’}
 - {site_id: ‘site2’, description: ‘VPNB Site 2’, interface: ‘ge-0/0/2.201’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.5/30’, bgp_neighbor: ‘10.100.100.6’}
 - {site_id: ‘site3’, description: ‘VPNB Site 3’, interface: ‘ge-0/0/2.202’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.9/30’, bgp_neighbor: ‘10.100.100.10’}

As you can see, there is a section of the YAML file that describes the infrastructure
part of the router (lo0, hostname, uplinks, and protocols) as well as a section for
the services.

MORE?		 We are assuming you are familiar with the configuration of MPLS
L3VPNs in Junos – in case you are not, refer to the Junos VPN Guide: https://
www.juniper.net/documentation/en_US/junos/information-products/pathway-
pages/config-guide-vpns/index.html.

The focus of this recipe is in the audit of the L3VPN services, and Figure 23.2
illustrates the architecture of the solution.

Figure 23.2 presents the workflow of this recipe. As mentioned before, the build-
ing blocks presented here can be used to build a much larger and complete configu-
ration audit system.

You may not be familiar with some of the components presented in the architec-
ture of this recipe. Moreover, a recipe collection is not the best place to describe
each of the frameworks and data formats in detail. But if you are comfortable with
the components presented in the architecture, you can skip this part, otherwise, we
will provide a brief introduction on each component with a few pointers as to
where to find additional information about them.

Figure 23.2	 Auditing L3VPN Services

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-vpns/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-vpns/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-vpns/index.html

	 185	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

YAML

YAML stands for Yet Another Markup Language. From its Wikipedia definition,
YAML is a human-readable data serialization language. In a more informal defini-
tion, YAML is a simple way to present structured data. It can be easily loaded into
a JSON object.

An example of YAML file is the inventory file used earlier in this recipe.

CAUTION	 YAML is very sensitive to indentation. Make sure you have your
favorite text editor configured to replace tabs with spaces.

XML

XML stands for Extensible Markup Language. Similar to YAML, it is a way to
present structured data. Contrary to YAML, XML is more complex and powerful
but sometimes can repel people because it is not as readable by humans as YAML.
The example below shows a Juniper router interface configuration presented in
XML:

<configuration junos:commit-seconds=”1505525716” junos:commit-localtime=”2017-09-16 01:35:16 UTC”
junos:commit-user=”dmontagner”>
 <interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <description>connection with vmx2</description>
 <flexible-vlan-tagging/>
 <encapsulation>flexible-ethernet-services</encapsulation>
 <unit>
 <name>100</name>
 <vlan-id>100</vlan-id>
 <family>
 <inet>
 <address>
 <name>10.254.254.2/30</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 </interfaces>
</configuration>

Another key difference between XML and YAML is that you can use XSL Trans-
formation to transform one XML document into another. This is where things
start to get complicated, because XSLT is not user friendly (it is machine friendly).

XML also provides a way to validate documents via one of the two schema lan-
guages: Document Type Definition (DTD) and XML Schema Definition (XSD).
DTD is the elder schema language and while it does the job, it falls short in many
aspects. XSD is a newer schema language and is far more powerful than DTD. Its
rich data type, associated with its new features in the XSD 1.1, enables reliable

	 186	 Day One: Junos® PyEZ Cookbook

XML documents validation.

The XML XSD is the key component of this recipe.

MORE?		 The best XML tutorial we have seen for beginners is the one from
https://www.w3schools.com .

XML Schema (XSD)

As mentioned in the previous section, the XML Schema Definition (XSD) is a way
to validate the structure and the content of a XML document. This recipe explores
the XSD 1.0 features only to keep it simple.

MORE?		 To explore the XSD 1.1 features, try this blog article outlining the
new cool features of XSD 1.1 at: https://blogs.infosupport.com/exploring-cool-
new-features-of-xsd-1-1/.

The creation of the schema document can be a tedious process. It is a bit more
complicated than dealing with a simple and plain XML document. Let’s present a
few tips in order to ease the pain and help you to shortcut on this problem. Con-
sider this simple XML document:

<a>
 vmx

The schema to validate this document would be:

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified” xmlns:xs=”http://www.w3.
org/2001/XMLSchema”>
 <xs:element name=”a”>
 <xs:complexType>
 <xs:sequence>
 <xs:element type=”xs:string” name=”b”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This schema does not validate the content of the element b in the XML document.
If you use this schema to validate the XML document presented earlier, whatever
value you assign to element b, it will be accepted. This is not acceptable while per-
forming network configuration audits. The good thing is that this problem can be
solved using XSD 1.0 (don’t need 1.1 yet). Below is the XSD to validate the con-
tent of element b:

https://www.w3schools.com
https://blogs.infosupport.com/exploring-cool-new-features-of-xsd-1-1/
https://blogs.infosupport.com/exploring-cool-new-features-of-xsd-1-1/

	 187	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
 <xsd:element name=”a” type=”Aelem”/>
 <xsd:complexType name=”Aelem”>
 <xsd:sequence>
 <xsd:element minOccurs=”1” maxOccurs=”2” name=”b” type=”TElemBVal” />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name=”TElemBVal”>
 <xsd:restriction base=”xsd:string”>
 <xsd:enumeration value=”mx”></xsd:enumeration>
 <xsd:enumeration value=”ptx”></xsd:enumeration>
 <xsd:enumeration value=”qfx”></xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Now this schema only accepts mx, ptx, or qfx as the value of element b. If the value
of element b is abc, the validation of the XML document will fail. What XSD 1.0
does not solve in this case is the test if one of the values of b is not present or if a
combination of them is present or missing. However, XSD 1.1 will not be covered
in this recipe, but we highly encourage you to use XSD 1.1 once you are familiar
with XSD 1.0.

NOTE	 The schema document can be generated in a few different ways. In this
particular case, I am using the Russian Doll XSD design.

MORE?	 If you think that generating these schemas is too hard, even for a simple
XML document, you are not alone. There are a few online XSD generators that
will help you simplify this process, such as those at freeformater.com. It does not
provide everything (for example, it does not generate the enumeration options)
but it saves more than 80% of your time while creating the schema documents.
See: https://www.freeformatter.com/xsd-generator.html.

Jinja2 Templates

Jinja2 is a template language for Python. It is widely used for configuration and
document generation. It is modelled after the DJango’s templates.

Basically, you insert variables in the middle of your text and then you render the
template passing values to these variables. During the rendering, the variables will
be replaced by the values you have passed on. Below is a simple example of Jinja2
template:

interfaces {
 ge-0/0/0 {
 description “connection with vmx2”;
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit {{ vlan_id }} {
 vlan-id {{ vlan_id }};
 family inet {

https://www.freeformatter.com/xsd-generator.html

	 188	 Day One: Junos® PyEZ Cookbook

 address {{ interface_ptp_ip }};
 }
 }
 }
}

This configuration shows a Junos router interface configuration. Note that the unit
number, the vlan-id, and the interface IP address have been replaced by Jinja2 vari-
ables. If you were going to render this template, you need to pass two values: one
for the vlan_id variable and another for the interface_ptp_ip variable. The render-
ing engine will replace them with the values you have passed on.

Jinja2 can be much more powerful than this example, of course. It allows you to
include loops and if-then conditions in order to have multiple iterations and condi-
tional rendering.

Putting Everything Together
Now it’s time to understand how this recipe works. The workflow description fol-
lows the architecture illustrated in Figure 23.2. Here are the steps, and a detailed
description of each one.

Step 1

The first step is to generate the schema document (XSD) that will validate the vmx1
router. The schema document at this stage is a XSD 1.0 Jinja2 template file because
you want to reuse the template across multiple routers. For each router, you will
have a different inventory file (YAML file).

What is happening at this stage is the Jinja2-template rendering using the inven-
tory data as input for the Jinja2 variables. To execute you need the Jinja2 XSD
template and the inventory file for vmx1, so let’s start by looking into the inventory
file for vmx1 (filename = router_vmx1.yaml):

infrastructure:
 router_hostname: vmx1
 router_lo0: ‘1.1.1.1/32’
 router_mgmt_fxp0: ‘192.168.122.35’
 uplinks:
 - {interface: ‘ge-0/0/0.0’, address: ‘10.1.1.1/30’, mpls: ‘yes’, ospf: ‘yes’, ldp: ‘yes’, rsvp:
‘no’}
 - {interface: ‘ge-0/0/1.0’, address: ‘10.1.1.5/30’, mpls: ‘yes’, ospf: ‘yes’, ldp: ‘yes’, rsvp:
‘no’}

services:
 l3vpn:
 - service_name: ‘VPNA’
 service_type: ‘vrf’
 rt: ‘65000:100’
 rd: ‘65000:100’

	 189	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

 sites:
 - {site_id: ‘site1’, description: ‘VPNA Site 1’, interface: ‘ge-0/0/2.100’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.1/30’, bgp_neighbor: ‘10.100.100.2’}
 - {site_id: ‘site2’, description: ‘VPNA Site 2’, interface: ‘ge-0/0/2.101’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.5/30’, bgp_neighbor: ‘10.100.100.6’}
 - {site_id: ‘site3’, description: ‘VPNA Site 3’, interface: ‘ge-0/0/2.102’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.9/30’, bgp_neighbor: ‘10.100.100.10’}
 - service_name: ‘VPNB’
 service_type: ‘vrf’
 rt: ‘65000:200’
 rd: ‘65000:200’
 sites:
 - {site_id: ‘site1’, description: ‘VPNB Site 1’, interface: ‘ge-0/0/2.200’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.1/30’, bgp_neighbor: ‘10.100.100.2’}
 - {site_id: ‘site2’, description: ‘VPNB Site 2’, interface: ‘ge-0/0/2.201’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.5/30’, bgp_neighbor: ‘10.100.100.6’}
 - {site_id: ‘site3’, description: ‘VPNB Site 3’, interface: ‘ge-0/0/2.202’, protocol: ‘bgp’,
peer_as: ‘65001’, address: ‘10.100.100.9/30’, bgp_neighbor: ‘10.100.100.10’}

The next thing you need is the Jinja2 template for the XSD file. Note that in this
recipe, only the L3VPN services part will be validated. Consequently, the Jinja2
XSD template will only cover the L3VPN services. The code below presents the
Jinja2 XSD template (filename = l3vpns.xsd.j2):

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified” xmlns:xs=”http://www.w3.
org/2001/XMLSchema”>
 <xs:element name=”instance”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”name”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”{{ template[‘service_name’] }}”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name=”instance-type”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”{{ template[‘service_type’] }}”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name=”interface” maxOccurs=”unbounded” minOccurs=”0”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”name”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 {% for site in template[‘sites’] -%}
 <xs:enumeration value=”{{ site[‘interface’] }}”/>
 {% endfor %}
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

	 190	 Day One: Junos® PyEZ Cookbook

 </xs:element>
 <xs:element name=”route-distinguisher”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”rd-type”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”{{ template[‘rd’] }}”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=”vrf-target”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”community”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <xs:enumeration value=”target:{{ template[‘rt’] }}”/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name=”protocols”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”bgp”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”group”>
 <xs:complexType>
 <xs:sequence>
 <xs:element type=”xs:string” name=”name”/>
 <xs:element type=”xs:string” name=”type”/>
 <xs:element type=”xs:int” name=”peer-as”/>
 <xs:element type=”xs:string” name=”as-override”/>
 <xs:element name=”neighbor” maxOccurs=”unbounded” minOccurs=”0”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”name”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 {% for site in template[‘sites’] -%}
 <xs:enumeration value=”{{ site[‘bgp_neighbor’] }}”/>
 {% endfor %}
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

	 191	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The schema document looks complex, but it isn’t really. In fact, the task was just
to add the Jinja2 variables and the enumeration rules, but as you can see every-
thing else was generated by the online XSD generator. So, don’t abandon it yet!

Step 2

Alright, now that we’ve got the schema document (XSD) and the inventory file
(YAML), let’s render it to get the final schema document. This is the schema that
will be used to validate the L3VPN services configuration of vmx1.

As mentioned earlier in this recipe, Jinja2 is a template language for Python, so our
render will be coded in Python. But instead of creating a separate render, you in-
clude the render in the main script that performs the audit in the L3VPN services.
This may not always be the best option, but it does serve the purpose of this recipe.
In a scaled production environment, you would need to have a micro-service just
for the render. The code presented here is an excerpt from the audit script, high-
lighting only the relevant part to the render:

<... omitted for brevity ...>

 router_inventory_file = “router_vmx1.yaml”

<... omitted for brevity ...>

 try:
 inventory_file = open(router_inventory_file, “r”)

 except Exception as e:
 print “error: error opening the file “ + router_inventory_file
 print e
 sys.exit(-1)

 yaml_file = yaml.load(inventory_file)

<... omitted for brevity ...>

 for vpn in yaml_file[‘services’][‘l3vpn’]:

<... omitted for brevity ...>

 rendered_schema_file = str(render_l3vpn_schema(yaml_file, l3vpn_schema_template, vpn[‘service_
name’]))

<... omitted for brevity ...>

	 192	 Day One: Junos® PyEZ Cookbook

You can read that the code is responsible for generating the final schema document
that contains specific information about the VPN obtained from the inventory file
(the YAML file). Now let’s use this schema to validate vmx1’s L3VPN services con-
figuration in Step 3.

Step 3

Step 3 involves collecting the vmx1 configuration. Since only L3VPN services are
going to be validated, you only need to collect the configuration under the routing-
instances tree (the CLI equivalent of show configuration routing-instances).

That code responsible to connect to the router and extract the routing-instance
tree for each VPN is shown here:

<... omitted for brevity>

 try:
 vmx1_mgmt = ‘127.0.0.1’
 rtUser = “lab”
 rtPassword = “lab123”
 dev = Device(host=vmx1_mgmt, user=rtUser, password=rtPassword, gather_facts=False)
 dev.open()
 print “\nConnection to %s established with success!” % vmx1_hostname

 except Exception as e:
 print “error: could not connect to %s” % vmx1_hostname
 print e
 sys.exit(-1)

 try:
 xmlConfig = dev.rpc.get_config()
 print “\nConfiguration collected from %s” % vmx1_hostname

 except Exception as e:
 print “error: could not collect the configuration from router %s” % vmx1_hostname
 print e
 sys.exit(-1)

<... omitted for brevity>

In case you didn’t notice, the code actually collected the entire router configura-
tion. That wasn’t a mistake. You need the entire configuration to audit every single
L3VPN configured in the router – but how do you extract just the routing-instance
configuration for a particular VPN? The code responsible for extracting that rout	
	 ing-instance configuration from the complete configuration is here:

<... omitted for brevity>

 if (len(xmlConfig.xpath(“//configuration/routing-instances/instance[name=\”” + vpn[‘service_
name’] + “\”]”)) > 0):

	 193	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

 # The VPN configuration exist in the router. Proceed with the audit.
 for rtInstance in xmlConfig.xpath(“//configuration/routing-instances/instance[name=\”” +
vpn[‘service_name’] + “\”]”):

 if (rtInstance.xpath(“./name”)[0].text == vpn[‘service_name’]):
 my_routing_instance_str = etree.tostring(rtInstance)

<... omitted for brevity>

The routing-instance configuration will be stored in rtInstance (as an XML object)
and in my_routing_instance_str as a string.

Step 4 (final step)

Now let’s execute the validation of the routing-instance configuration extracted
from the complete configuration of the vmx1 router against the XML schema gener-
ated for this particular VPN. At this stage in the code, all the elements needed are
generated and stored in memory. You only need to parse the XML document for
the VPN using the schema previously generated. The excerpt of code responsible
for Step 4 is:

<... omitted for brevity>

 try:
 etree.fromstring(my_routing_instance_str, myXMLparser)
 print “ - audit results: PASS”
 log.warn(“Routing instance configuration for vpn %s validated against %s” %
(vpn[‘service_name’], l3vpn_schema_template))
 except etree.XMLSchemaError as e1:
 log.warn(“error: error validating routing instance %s” % vpn[‘service_name’])
 print “ - audit results: FAIL”
 print e1.message

 except Exception as e:
 log.warn(“error validating routing instance %s” % vpn[‘service_name’])
 print e

<... omitted for brevity>

If the audit fails, the exception message will indicate where and why it failed.

		 Performing Configuration Audit for L3VPNs

In order to demonstrate how to use the audit script we first need to recap the auto-
mation workflow. Figure 23.3 illustrates a more detailed workflow than Figure
23.2 presented earlier.

	 194	 Day One: Junos® PyEZ Cookbook

Figure 23.3	 Using the Audit Script Workflow

Instead of presenting the complete configuration for VMX1, only the configura-
tion we will be auditing is listed here. The full configuration of the VMX1 is avail-
able with the all the code of this recipe at this book’s GitHub repository. The
VMX1’s routing-instances configuration follows:

dmontagner@vmx1> show configuration routing-instances
VPNA {
 instance-type vrf;
 interface ge-0/0/2.100;
 interface ge-0/0/2.101;
 interface ge-0/0/2.102;
 route-distinguisher 65000:100;
 vrf-target target:65000:100;
 protocols {
 bgp {
 group CEs {
 type external;
 peer-as 65001;
 as-override;
 neighbor 10.100.100.2;
 neighbor 10.100.100.6;
 neighbor 10.100.100.10;
 }
 }
 }
}
VPNB {
 instance-type vrf;
 interface ge-0/0/2.200;
 interface ge-0/0/2.201;
 interface ge-0/0/2.202;
 route-distinguisher 65000:200;
 vrf-target target:65000:200;
 protocols {

	 195	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

 bgp {
 group CEs {
 type external;
 peer-as 65001;
 as-override;
 neighbor 10.100.100.2;
 neighbor 10.100.100.6;
 neighbor 10.100.100.10;
 }
 }
 }
}

Now that all elements have been presented, let’s perform the L3VPN configuration
audit against vmx1.

dmontagner@querencia> ./validate_vmx1_config.py

Connection to vmx1 established with success!

Configuration collected from vmx1

Auditing VPN VPNA ...
 - audit results: PASS

Auditing VPN VPNB ...
 - audit results: PASS

As you can observe, the audit was successful to both VPNs. Now, let’s introduce
two errors in the VPNA configuration:

dmontagner@vmx1> configure private
warning: uncommitted changes will be discarded on exit
Entering configuration mode

[edit]
dmontagner@vmx1# delete routing-instances VPNA protocols bgp group CEs as-override

[edit]
dmontagner@vmx1# set routing-instances VPNA route-distinguisher 1234:1234

[edit]
dmontagner@vmx1# commit and-quit
commit complete
Exiting configuration mode

dmontagner@vmx1>

dmontagner@vmx1> show configuration routing-instances VPNA
instance-type vrf;
interface ge-0/0/2.100;
interface ge-0/0/2.101;
interface ge-0/0/2.102;
route-distinguisher 1234:1234;
vrf-target target:65000:100;
protocols {
 bgp {

	 196	 Day One: Junos® PyEZ Cookbook

 group CEs {
 type external;
 peer-as 65001;
 neighbor 10.100.100.2;
 neighbor 10.100.100.6;
 neighbor 10.100.100.10;
 }
 }
}

With a configuration for VPNA that is different from its template, let’s now see if
our audit tool can detect these issues:

dmontagner@querencia> ./validate_vmx1_config.py

Connection to vmx1 established with success!

Configuration collected from vmx1

Auditing VPN VPNA ...
Element ‘rd-type’: [facet ‘enumeration’] The value ‘1234:1234’ is not an element of the set
{‘65000:100’}. (line 0)

Auditing VPN VPNB ...
 - audit results: PASS

The audit tool only found one issue, not two. The good thing is that it found that
the configuration is out of compliance. The problem here is that the XML parser
terminated on the first validation error it encountered. So, how can you proceed
the validation through the broken (not compliant with the schema) XML ?

By default, the lxml parser does not try to recover from errors, so setting the re-
cover parameter to True will modify this behavior. However, the parser will not
always be able to recover, so the suggestion is to always stop on the first out-of-
compliance issue. This will ensure nothing goes missing:

dmontagner@querencia> ./validate_vmx1_config.py

Connection to vmx1 established with success!

Configuration collected from vmx1

Auditing VPN VPNA ...
Element ‘neighbor’: This element is not expected. Expected is (as-override). (line 0)

Auditing VPN VPNB ...
 - audit results: PASS

If you fix the first issue pointed out by our tool, then you will find that the tool
shows the next issue when you run it again, as demonstrated. In the next sequence,
we are fixing the second problem and putting the configuration back in
compliance:

dmontagner@vmx1> configure private
warning: uncommitted changes will be discarded on exit
Entering configuration mode

	 197	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

[edit]
dmontagner@vmx1# set routing-instances VPNA protocols bgp group CEs as-override

[edit]
dmontagner@vmx1# commit and-quit
commit complete
Exiting configuration mode

dmontagner@vmx1>
	

And when you run the configuration audit again, you will see the audit report as
PASS for both VPNs:

dmontagner@querencia> ./validate_vmx1_config.py

Connection to vmx1 established with success!

Configuration collected from vmx1

Auditing VPN VPNA ...
 - audit results: PASS

Auditing VPN VPNB ...
 - audit results: PASS

As explained earlier, we’re using XSD 1.0 for this recipe. The fact that we were
using XSD 1.0 instead of XSD 1.1 might create a gap in some audit scenarios. Be
aware the gap can be addressed using XSD 1.1, but it was not shown here for the
sake of brevity.

Complete Code of Recipe 23

Here is the complete code of Recipe 23, also available at https://github.com/Juni-
per/junosautomation/tree/master/pyez. Note that in order to run this recipe, you
will need the YAML and Jinja2 files presented in steps 1 to 4. These two files are
also available in the cookbook’s repository.

#!/opt/local/bin/python

import lxml
from lxml import etree
import sys
import StringIO
import yaml
from jnpr.junos import Device
from jinja2 import Environment, FileSystemLoader, Template
import pprint
import logging

setting logging capabilities
log = logging.getLogger() # ‘root’ Logger
console = logging.StreamHandler()
format_str = ‘%(asctime)s\t%(levelname)s -- %(funcName)s %(filename)s:%(lineno)s -- %(message)s’
console.setFormatter(logging.Formatter(format_str))

https://virtualenv.pypa.io/en/stable/installation/)
https://virtualenv.pypa.io/en/stable/installation/)

	 198	 Day One: Junos® PyEZ Cookbook

log.addHandler(console) # prints to console.

set the log level here
#log.setLevel(logging.INFO)
log.setLevel(logging.ERROR)

def render_l3vpn_schema(router_inventory_file, schema_template_file, vpn_name):

 ENV = Environment(loader=FileSystemLoader(‘./’))

 try:
 template = ENV.get_template(schema_template_file)
 log.info(“template %s rendered !!!” % schema_template_file)

 except Exception as e:
 print “error: error rendering the template “ + schema_template_file
 print e
 return None

 log.info(“”)
 log.info(“printing the rendered template ...”)
 log.info(“”)

 for vpn in router_inventory_file[‘services’][‘l3vpn’]:
 if vpn[‘service_name’] == vpn_name:
 rendered_template = template.render(template=vpn)
 log.debug(rendered_template)
 return rendered_template

 # if got here, it means no VPN with service_name equals to vpn_name has been found
 print “error: could not find VPN %s” % vpn_name
 return None

def main():

 router_inventory_file = “router_vmx1.yaml”
 l3vpn_schema_template = “l3vpns.xsd.j2”
 l3vpn_schema_file = “l3vpns.xsd”

 #
 # loading the router inventory data into a dictionary
 #
 try:
 inventory_file = open(router_inventory_file, “r”)

 except Exception as e:
 print “error: error opening the file “ + router_inventory_file
 print e
 sys.exit(-1)

 yaml_file = yaml.load(inventory_file)

 vmx1_hostname = yaml_file[‘infrastructure’][‘router_hostname’]
 vmx1_mgmt = yaml_file[‘infrastructure’][‘router_mgmt_fxp0’]

 #
 # collecting the router XML configuration
 #

	 199	 Recipe 23 - Configuration Audit Using XML Schema (XSD)

 # temporary override
 rtUser = “lab”
 rtPassword = “lab123”

 try:
 dev = Device(host=vmx1_mgmt, user=rtUser, password=rtPassword, port=2222, gather_facts=False)
 dev.open()
 print “\nConnection to %s established with success!” % vmx1_hostname

 except Exception as e:
 print “error: could not connect to %s” % vmx1_hostname
 print e
 sys.exit(-1)

 try:
 xmlConfig = dev.rpc.get_config()
 print “\nConfiguration collected from %s” % vmx1_hostname

 except Exception as e:
 print “error: could not collect the configuration from router %s” % vmx1_hostname
 print e
 sys.exit(-1)

 #
 # looping through each VPN in the inventory file
 #
 for vpn in yaml_file[‘services’][‘l3vpn’]:

 print “”
 print “Auditing VPN %s ...” % vpn[‘service_name’]

 #
 # rendering the schema file for this VPN
 #
 rendered_schema_file = str(render_l3vpn_schema(yaml_file, l3vpn_schema_template, vpn[‘service_
name’]))

 if rendered_schema_file is None:
 print “”
 print “error: could not render the schema file !!!”
 print “”
 sys.exit(-1)

 #
 # creating the XML document for the rendered schema file
 #
 try:
 schemaXML = etree.fromstring(rendered_schema_file)
 log.warn(“XML doc for %s created!” % l3vpn_schema_template)

 except Exception as e:
 print “could not create XML doc from XML schema file %s” % l3vpn_schema_template
 print e
 sys.exit(-1)

 #
 # creating the schema document for the rendered XML document of the schema file
 #
 try:
 schemaDoc = etree.XMLSchema(schemaXML)
 log.warn(“XML schema created for vpn %s with schema file %s” % (vpn[‘service_name’], l3vpn_
schema_template))

	 200	 Day One: Junos® PyEZ Cookbook

 except Exception as e:
 print “could not create XML schema for vpn %s based on schema file %s” % (vpn[‘service_name’],
l3vpn_schema_template)
 print e
 sys.exit(-1)

 #
 # creating the XML parser based on the XML schema created previously
 #
 try:
 myXMLparser = etree.XMLParser(schema=schemaDoc)
 log.warn(“XML parser based on rendered %s schema created!” % l3vpn_schema_template)
 except Exception as e:
 print “could not create XML parser based on routing_instance.xsd schema”
 print e
 sys.exit(-1)

 #
 # validating the L3VPNs configuration based on l3vpn service schema
 #
 log.warn(“walking on xml tree for vpn %s” % vpn[‘service_name’])

 if (len(xmlConfig.xpath(“//configuration/routing-instances/instance[name=\”” + vpn[‘service_
name’] + “\”]”)) > 0):

 # The VPN configuration exist in the router. Proceed with the audit.
 for rtInstance in xmlConfig.xpath(“//configuration/routing-instances/instance[name=\”” +
vpn[‘service_name’] + “\”]”):

 if (rtInstance.xpath(“./name”)[0].text == vpn[‘service_name’]):
 my_routing_instance_str = etree.tostring(rtInstance)
 log.debug(my_routing_instance_str)

 log.warn(“Validating routing instance configuration for vpn %s against schema %s ...” %
(vpn[‘service_name’], l3vpn_schema_template))

 try:
 etree.fromstring(my_routing_instance_str, myXMLparser)
 print “ - audit results: PASS”
 log.warn(“Routing instance configuration for vpn %s validated against %s” %
(vpn[‘service_name’], l3vpn_schema_template))
 except etree.XMLSchemaError as e1:
 log.warn(“error: error validating routing instance %s” % vpn[‘service_name’])
 print “ - audit results: FAIL”
 print e1.message

 except Exception as e:
 log.warn(“error validating routing instance %s” % vpn[‘service_name’])
 print e

 else:
 print “\nerror: could not find vpn %s in the router %s” % (vpn[‘service_name’], vmx1_hostname)

if __name__ == “__main__”:
 main()

	Front Cover
	Back Cover
	Title Page; Copyright
	Table of Contents
	About the Authors
	This Cookbook’s PyEZ Script Repository
	List of Resources for Community Help and Support
	10 Things About Coding for Non-Coders
	Preface
	Recipe 1- Installing Python and PyEZ
	Recipe 2 - Enabling NETCONF
	Recipe 3 - Hello World!
	Recipe 4 - PyEZ Connection Options
	Recipe 5- Getting Started Sample
	Recipe 6 - Automating NETCONF Service Activation
	Recipe 7 - PyEZ with Console: Learning Terminal Server Mapping
	Recipe 8 - PyEZ with Console: Pushing an Initial Configuration
	Recipe 9 - Checking File System Directory Usage on Multiple Devices in Parallel
	Recipe 10 - Configuring Devices using Junos PyEZ and Jinja2 Templates
	Recipe 11 - Benefits of Taking a Snapshot on ACX Series Access Routers
	Recipe 12 - Extract Operational Data from Devices Running on a Bridge Domain Environment
	Recipe 13 - Bandwidth Reservation for MPLS Access Rings
	Recipe 14 - Adding a Graphical Interface to the PyEZ Script
	Recipe 15 - Monitoring IPSEC Tunnels
	Recipe 16 - Working with Junos Enhanced Auto-Provision Process (JEAP)
	Recipe 17 - PyEZ for On-Box Scripts
	Recipe 18 - Automated Network Testing with
Junos PyEZ
	Recipe 19 - Menu Script for Address Book Editing
	Recipe 20 - Provisioning L3VPN Services on PE Routers
	Recipe 21 - Identifying and Disabling UnusedInterfaces with Ansible
	Recipe 22 - Track Down IP Conflicts with PyEZ
	Recipe 23 - Configuration Audit UsingXML Schema (XSD)

