
D
AY O

N
E: A

U
TO

M
ATIN

G
 JU

N
O

S W
ITH

 A
N

SIB
LE, ED

ITIO
N

 v2.1
Saw

tell

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: AUTOMATING JUNOS WITH ANSIBLE, EDITION v2.1

By Sean Sawtell

DAY ONE: AUTOMATING JUNOS WITH
 ANSIBLE, EDITION v2.1

Network automation is expanding rapidly. Many network engineers are looking into automa-
tion but they do not have a background in programming. Ansible helps – it minimizes the pro-
gramming aspects of automation – but getting started building real-world solutions can be
confusing. Many other Ansible training resources focus on automating server tasks, not net-
work tasks. It’s time for a Day One guide that helps you set up an Ansible environment
that can manage hundreds of Junos networking devices and accomplish realistic network man-
agement tasks. Day One: Automating Junos with Ansible, Second Edition, is the newest book on
network automation for network engineers. It includes a set-up guide, tutorials, and showcase
scenarios whose Ansible scripts you can download from GitHub, all while discussing real-world re-
quirements like secure authentication.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Install Ansible and PyEZ

n Understand Ansible’s file/folder structure

n Create a device inventory with multiple groups

n Create playbooks to execute commands on Junos devices

n Create playbooks to update Junos device configuration, in either “set” or “config” format

n Create templates of device configuration fragments, assemble the fragments, and apply the
resulting configuration to devices

n Create custom Ansible modules for tasks not supported by existing modules

“This is a no-nonsense tutorial that gets you automating for real – really fast. Reading through the material is
like sitting down with a tutor who’s eager to share easy-to-follow real-world examples, complete with practi-
cal tips handed down from lessons learned through the author’s past experience. Skip the pie-in-the-sky,
30,000-foot, hand-waving you might get from other automation books and get started automating Junos
with Ansible today!”

Jarrod Shields, Senior Network Engineer, Juniper Networks

“This is a true Day One book providing enough background and guidance to bring a beginner into the world
of Network Automation. Even advanced users will be impressed with the thorough screenshots, CLI outputs,
and playbook samples used to educate the audience with the tips and tricks to accomplish another level of
automating with Ansible and Junos OS.”

Jessica Garrison, Network Automation Architect, Juniper Networks

ISBN 978-1-941441-77-0

9 781941 441770

5 3 5 0 0

Create Ansible playbooks to
automate your network tasks.
This new Second Edition is
updated for Juniper’s Galaxy
modules version 2.x and the
latest versions of Ansible and
the Junos® OS.

D
AY O

N
E: A

U
TO

M
ATIN

G
 JU

N
O

S W
ITH

 A
N

SIB
LE, ED

ITIO
N

 v2.1
Saw

tell

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: AUTOMATING JUNOS WITH ANSIBLE, EDITION v2.1

By Sean Sawtell

DAY ONE: AUTOMATING JUNOS WITH
 ANSIBLE, EDITION v2.1

Network automation is expanding rapidly. Many network engineers are looking into automa-
tion but they do not have a background in programming. Ansible helps – it minimizes the pro-
gramming aspects of automation – but getting started building real-world solutions can be
confusing. Many other Ansible training resources focus on automating server tasks, not net-
work tasks. It’s time for a Day One guide that helps you set up an Ansible environment
that can manage hundreds of Junos networking devices and accomplish realistic network man-
agement tasks. Day One: Automating Junos with Ansible, Second Edition, is the newest book on
network automation for network engineers. It includes a set-up guide, tutorials, and showcase
scenarios whose Ansible scripts you can download from GitHub, all while discussing real-world re-
quirements like secure authentication.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Install Ansible and PyEZ

n Understand Ansible’s file/folder structure

n Create a device inventory with multiple groups

n Create playbooks to execute commands on Junos devices

n Create playbooks to update Junos device configuration, in either “set” or “config” format

n Create templates of device configuration fragments, assemble the fragments, and apply the
resulting configuration to devices

n Create custom Ansible modules for tasks not supported by existing modules

“This is a no-nonsense tutorial that gets you automating for real – really fast. Reading through the material is
like sitting down with a tutor who’s eager to share easy-to-follow real-world examples, complete with practi-
cal tips handed down from lessons learned through the author’s past experience. Skip the pie-in-the-sky,
30,000-foot, hand-waving you might get from other automation books and get started automating Junos
with Ansible today!”

Jarrod Shields, Senior Network Engineer, Juniper Networks

“This is a true Day One book providing enough background and guidance to bring a beginner into the world
of Network Automation. Even advanced users will be impressed with the thorough screenshots, CLI outputs,
and playbook samples used to educate the audience with the tips and tricks to accomplish another level of
automating with Ansible and Junos OS.”

Jessica Garrison, Network Automation Architect, Juniper Networks

ISBN 978-1-941441-77-0

9 781941 441770

5 3 5 0 0

Create Ansible playbooks to
automate your network tasks.
This new Second Edition is
updated for Juniper’s Galaxy
modules version 2.x and the
latest versions of Ansible and
the Junos® OS.

Day One: Automating Junos® with Ansible, Edition 2.1

by Sean Sawtell

Updated Edition 2.1, May 2020

Chapter 1: Introduction: Automation and Ansible. . 9

Chapter 2: Installing Ansible. . 16

Chapter 3: Understanding JSON and YAML . . 26

Chapter 4: Running a Command – Your First Playbook. . 35

Chapter 5: Junos, RPC, NETCONF, and XML . . 65

Chapter 6: Using SSH Keys . . 100

Chapter 7: Generating and Installing Junos Configuration Files. . 111

Chapter 8: Data Files and Inventory Groups. . 155

Chapter 9: Backing Up Device Configuration . . 208

Chapter 10: Gathering and Using Device Facts. . .258

Chapter 11: Storing Private Variables – Ansible Vault. . 290

Chapter 12: Roles . . 301

Chapter 13: Repeating Tasks. . 317

Chapter 14: Custom Ansible Modules . . 355

Appendix: Using Source Control. . 378

	 iv

© 2020 by Juniper Networks, Inc.
All rights reserved. Juniper Networks and Junos are
registered trademarks of Juniper Networks, Inc. in the
United States and other countries. The Juniper Networks
Logo and the Junos logo, are trademarks of Juniper
Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners. Juniper Networks
assumes no responsibility for any inaccuracies in this
document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication
without notice.

© 2020 by Juniper Networks Pvt Ltd.
All rights reserved for scripts located at https://github.com/
Juniper/junosautomation/tree/master/ansible/Automat-
ing_Junos_with_Ansible.

Script Software License
© 2020 Juniper Networks, Inc. All rights reserved.
Licensed under the Juniper Networks Script Software
License (the “License”). You may not use this script file
except in compliance with the License, which is located at
http://www.juniper.net/support/legal/scriptlicense/. Unless
required by applicable law or otherwise agreed to in
writing by the parties, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.

Published by Juniper Networks Books
Author: Sean Sawtell
Technical Reviewers: Jarrod Shields, Khelil Sator, Diogo
Montagner, Victor Gonzalez, Jessica Garrison, Sravya
Sukhavasi, Supratik Sharma, Rashmi R , Sandeep
Surendher
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel

ISBN: 978-1-941441-77-0 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-76-3 (ebook)

Version History: v2.1, May 2020
 4 5 6 7 8 9 10

http://www.juniper.net/dayone

About the Author
Sean Sawtell has been with Juniper Networks since 2002,
and has been a Network Engineer with Juniper’s internal
network team since 2004. Sean’s focus today is on network
automation. In 2014 Sean earned a Master of Science
degree in Computer Science, and subsequently was an
adjunct professor for two years teaching the CS curriculum.
Before joining Juniper, Sean taught Microsoft and Novell
courses and held MCSE, MCI, CNE, and CNI certifica-
tions.

Author’s Acknowledgments
This project ended up being bigger than I expected. My
sincere gratitude to Patrick for his guidance, and to
everyone who provided suggestions and corrections from
the first outline through the final edits. This book is better
due to your contributions.

Thanks to my parents and family members for their love
and support, for encouraging my interest in computers
starting in high school (a long time ago in a state far, far
away...), and for teaching me the value of hard work and
ongoing learning. I don’t say it enough, but I love you all.

I am blessed to work with a wonderful group of people at
Juniper Networks–it is hard to imagine a team more willing
to share information, teach and support each other. Thanks
to my managers for supporting my decision to write this
book, and thanks to Juniper for giving me the opportunity
to explore new technologies and play with some really
amazing toys.

Hat tip to Red Hat and Ansible for creating this fantastic
automation platform, and to everyone who has contributed
to Juniper’s Galaxy modules and PyEZ. This book could
not exist without the frameworks you built.

Finally, thanks to you, the reader, for choosing this book. I
hope you enjoy reading it as much as I enjoyed writing it.
Best wishes for your automation journey. Don’t panic, and
remember your towel.

Feedback? Comments? Error reports? Email them to
dayone@juniper.net.

https://github.com/Juniper/junosautomation/tree/master/ansible/Automating_Junos_with_Ansible
https://github.com/Juniper/junosautomation/tree/master/ansible/Automating_Junos_with_Ansible
https://github.com/Juniper/junosautomation/tree/master/ansible/Automating_Junos_with_Ansible
http://www.juniper.net/support/legal/scriptlicense/
http://www.juniper.net/dayone

	 v	

This Book’s GitHub Site
Go to: https://github.com/Juniper/junosautomation/tree/master/ansible/
Automating_Junos_with_Ansible.

Notes for Edition 2.1
This “edition 2.1” of Day One: Automating Junos with Ansible, 2nd Edition is a
modest update to the Second Edition. The author has three goals:

Python 3
When the author was writing the second edition of this book in the summer of
2018, he recommended using Python 2.7 instead of Python 3. At the time, he was
seeing some problems when testing his playbooks with Python 3.

The author is happy to change that recommendation. As the author prepares this
edition in April 2020, current versions of Ansible, PyEZ, and the other necessary
modules are working beautifully with Python 3.7. Moreover, the Python Software
Foundation ended support for Python 2 on January 1, 2020.

The author now recommends Python 3.7 or 3.8 and versions of Ansible and PyEZ
that were current or released in late 2019 or after. Chapter 2 has been updated to
reflect this recommendation.

NOTE	 The author has tested selected playbooks to ensure they work with the
newer software but has not updated all the example output in the book. There
may be minor differences between what appears herein and what is displayed by
newer versions of Ansible and the supporting modules.

Errata
The author has corrected a few errata that were reported by readers of the book.
Thank you!

Limited permission accounts on Junos
A reader suggested including a discussion of using Junos accounts that provide
limited management permissions on the device, rather than super-user access.
(Thank you for the suggestion!)

A section has been added to the end of Chapter 9 to illustrate how we might use a
read-only account on the Junos device to back up its configuration.

http://www.juniper.net/dayone
http://www.vervante.com
https://github.com/Juniper/junosautomation/tree/master/ansible/Automating_Junos_with_Ansible
https://github.com/Juniper/junosautomation/tree/master/ansible/Automating_Junos_with_Ansible

	 vi	

Target Audience
This book is written for network administrators and network engineers who are
starting to build and use network automation to make their jobs easier, and is fo-
cused on how to use the Ansible automation platform to configure and manage
Junos-based devices. However, once you’ve learned how to use Ansible, you can
also leverage that knowledge to automate the administration of servers or network
gear from other vendors.

Many of the examples in this book are drawn from the author’s experience manag-
ing Juniper’s own internal network. It considers real-world concerns such as secu-
rity, complying with corporate policy, and synchronizing the automation
development work between team members.

What You Need to Know Before Reading This Book
	� You should be comfortable managing and configuring Junos devices and using

the Junos command line.

	� You should be comfortable with the terminal or command line of your com-
puter’s operating system. You should have some familiarity with UNIX/Linux
operating systems.

	� You should have, or should obtain, a programmer’s text editor1, such as Atom
(https://atom.io/) or Sublime Text (http://www.sublimetext.com/), or an IDE
(Integrated Development Environment) such as PyCharm (https://www.jet-
brains.com/pycharm/).Whatever your chosen editor, see if it has (built-in or via
an installable module) JSON and YAML syntax highlighting2 .

	� You should have at least one Junos device with which you can work the exam-
ples in this book. Two or more devices of different classes would be better, as
some features are configured differently on different classes of device; for ex-
ample, VLAN configuration is different on MX devices (bridge domains) vs.
EX devices. Your test device(s) should be free from any change control pro-
cesses that your company may require for production equipment.

1 A programmer’s text editor, or programmer’s editor, is a text editor with features geared toward

writing programs and making the life of a programmer a little easier. A text editor is like a word proces-

sor except that it handles only plain text – no boldface, no fonts, no tables, etc. – and saves files con-

taining only ASCII or ANSI text with no formatting information.

2 Syntax highlighting is a feature of programmer’s editors that shows comments, programming lan-

guage keywords, and other aspects of a program, in different colors. This helps a programmer quickly

identify what text is a comment, a string, a reserved word in the programming language, etc. The color

coding is applied by the editor, but is not saved in the file as formatting information (the file is plain

text).

https://atom.io/
http://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

	 vii	

	� You do not need to be a programmer, and you do not need experience with
any particular programming language or with Ansible. Ansible is designed so
that little programming is needed, and this book explains the required con-
cepts as we work through the examples. However, if you have some program-
ming experience you may wish to skip the paragraphs which explain things
like conditionals and loops; it’s okay, the author won’t be offended.

	� The exception to the prior point is Chapter 14, which discusses custom mod-
ules. Writing custom modules requires some programming, typically in the
Python language, and Chapter 14 assumes you have Python experience. If
you do not have Python experience you can skip Chapter 14, but the author
encourages you to follow the examples by rote to get a general understanding
of the topic even if the Python code seems obscure.

What You Will Learn by Reading This Book
	� Some of the categories of automation and why network engineers should em-

brace automation (beyond “it’s fun!”).

	� The author has a sense of humor and will occasionally use it.

	� How to install Ansible on different operating systems.

	� Some occasions when you should check with your company’s Information
Security or other teams about your automation work.

	� How to create, run, and debug Ansible playbooks.

	� How to gather data from Junos devices using Ansible. Examples include gath-
ering device attributes (reboot time, Junos version, hardware model, etc.) and
downloading device configuration.

	� How to configure Junos devices using Ansible. The book includes several ex-
amples, starting small and growing to more complex configurations. Later
examples introduce roles and show why roles are a powerful feature of Ansi-
ble.

	� What YAML and JSON are, and how are they used with Ansible.

	� What RPC, NETCONF, and XML are, and how they relate to Junos automa-
tion.

	� How to use SSH keys for making secure device access easier.

	� How to create custom Ansible modules for things that Ansible does not al-
ready do, or does not do the way you want them done.

	� Why network automation engineers should use source control and a short
introduction to Git and GitHub.

	 viii

Book Structure and Approach to Learning
This book takes a hands-on approach to learning. As you read most of the chap-
ters, you will work with Ansible or Junos, creating solutions to problems that you
may have faced as a network engineer. Chapters 1 and 3 are exceptions; these
chapters present important background information and are more theoretical in
nature.

You will work through a number of examples based on real-world needs, learning
concepts as you go. The objective is to introduce ideas or techniques and immedi-
ately use them, so that theory is quickly reinforced by experience. Later examples
often build on earlier examples, adding new techniques to accomplish more com-
plex tasks or otherwise improve our results. This reflects a natural approach to
learning, building a knowledge foundation then layering new knowledge onto the
foundation.

Because the author is part of a team that manages a production network, and as-
sumes you do as well, the examples reflect real-world concerns that are sometimes
overlooked in training material. For example, security will be discussed in several
contexts, and all over-the-network communication with our devices will be via
SSH rather than insecure protocols like FTP or Telnet. The Appendix discusses the
importance of using some type of source control system for archiving your work
and sharing it with coworkers (a topic of great importance to working program-
mers but often overlooked even in university-level computer science curricula) and
shows examples with Git and GitHub.

Sometimes this book does something “wrong” to show problems and how to re-
solve them. These examples provide an opportunity to show troubleshooting pro-
cesses and illustrate why one approach might work better than another.

References to web sites or other supporting material are included at the end of
each chapter. The discussions in this book are not exhaustive explorations of each
topic, but an effort to familiarize you with the most useful tools and techniques for
automating your network with Ansible. Should you wish to dig further into any of
these topics, the references are good starting points for those explorations.

Finally, keep in mind that this book is not the end of your journey into automa-
tion. This book covers a lot of territory, but it is not a comprehensive discussion of
Ansible and networking; you may find useful some features of Ansible not covered
here. New tools are introduced every year, and new features are added to existing
tools. Best practices may change to take advantage of new features or to address
changing requirements. Self-guided, ongoing learning is every bit as important in
the automation field as in the networking field.

Let’s start with some background about automation. What is automation? What
business needs can be helped with automation? What is Ansible and how does An-
sible support a network engineer’s automation needs?

What is Automation?
According to the online Merriam-Webster dictionary (https://www.merriam-web-
ster.com/dictionary/automation; accessed June 22, 2017), automation is:

1: the technique of making an apparatus, a process, or a system operate
automatically

2: the state of being operated automatically

3: automatically controlled operation of an apparatus, process, or system by me-
chanical or electronic devices that take the place of human labor

Automation is essentially having a computer or machine to do something that a
person would otherwise need to do manually. In the context of network automa-
tion, this means a computer (which may be the control plane of a network device)
is gathering data from—or making changes to—a network device, tasks that a net-
work engineer would otherwise need to accomplish.

The type of automation discussed throughout most of this book involves processes
that are initiated by a person but that then execute with little or no further human
input.

Automation can go beyond manually-initiated processes to include having the net-
work respond automatically to events, for example, taking some action to mitigate
problems without human intervention. While getting to this level, event-driven
automation, is outside the scope of this book, the topics discussed herein create a
foundation upon which you can build an event-driven environment.

Chapter 1

Introduction: Automation and Ansible

https://www.merriam-webster.com/dictionary/automation
https://www.merriam-webster.com/dictionary/automation

	 10	 Chapter 1: Introduction: Automation and Ansible

Why Use Automation?
Automation is faster and more efficient than manual operations. A computer can
establish an SSH session to a router faster than a person can type ssh myrouter or
click the appropriate bookmark in their SSH client. Having established that con-
nection, a computer can issue commands and gather the results more quickly than
a person typing at a keyboard and reading a screen. (This author still gets a little
excited when he launches an automated process and watches it run on dozens of
devices in less time than it would take him to finish the first device.)

People make mistakes – we fat-finger commands while typing, forget steps, or do
things out of order. Automation avoids those problems – once the automation is
implemented, it should perform the process the same way each time.

If a person needs to execute the same command on 100 different network devices,
he will quickly get bored and lose focus, possibly leading to mistakes. Automation
does not get bored or lose focus.

Automation does not require sleep or food; it’s on the job 24 hours a day, monitor-
ing the network and possibly responding to network events while people are doing
other work or sleeping.

The network engineer who understands how to automate her network will im-
prove her job security – her employer will appreciate that, for example, she can
make changes more quickly and with greater accuracy than engineers who do
things manually.

However, be careful while developing your automation—an automated process
that does the wrong thing can quickly do that “wrong thing” on dozens or hun-
dreds of devices and potentially cause major problems.

Despite the benefits, there are times when automation may not be appropriate. For
example, if you need to make a single change on a single router, it will probably
take more time to develop automation than to make the change manually. Auto-
mated solutions usually require an initial investment of time and effort to develop
and debug the automation. The development investment is repaid by the time sav-
ings that result from using the automation on numerous occasions or with large
numbers of devices. A one-time change on a single device may not save enough
time to warrant the development effort for an automated solution.

Business Scenarios for Network Automation
Companies are leveraging automation in a variety of ways. The following are
some general examples; there are likely many variations on these scenarios, and
probably additional scenarios that are not mentioned.

	 11	 Off-box vs. On-box Automation

Gathering data: Automation can quickly query devices to gather data about them,
such as device model or other hardware information, Junos version, interface sta-
tus or error counts, routing tables, etc. This data may be used for planning up-
grades, troubleshooting problems, or other needs.

Configuring devices: Automation can quickly push configuration changes to de-
vices. Changes might be minor, like adding the IP address for a new DNS server, or
might be a significant change across multiple hierarchies of the Junos configura-
tion, like creating a firewall filter and applying it to one or more interfaces.

Auditing configuration compliance: Automation can check the configuration of
the network devices to ensure that they meet standards (for example, no “public”
SNMP community) and can adjust the configuration to bring non-compliant de-
vices into compliance.

NOOB setup: Automation can make it easier to configure NOOB (new-out-of-
box) devices by putting an initial configuration on the device via a console connec-
tion, or by configuring a ZTP (zero-touch-provisioning) server with appropriate
configuration files and Junos images.

Responding to problems: A network device can automatically gather trouble-
shooting information in response to an event, such as uploading a “request sup-
port information” report when the chassis detects a hardware failure, or a device
can automatically disable an interface when the error rate on the interface exceeds
a threshold.

Off-box vs. On-box Automation
There are many ways of building automation, and many places where automation
can run. One important difference within the realm of Junos automation is wheth-
er the automation runs on the Junos device itself or on a separate system.

On-box automation runs on the Junos device itself. Traditionally this automation
is implemented by event-options settings in the Junos configuration, or by scripts
written in the SLAX programming language and installed on the device. Recent
Junos versions are adding support for on-box Python scripts. These on-box scrips
can help with configuration compliance and responding to problems.

Off-box automation runs from a computer or system other than the Junos device
itself. These solutions must communicate with the Junos device, either over the
network or via the device’s serial console. Off-box automation can be implement-
ed in a variety of languages or with a variety of platforms.

Sometimes on-box and off-box automation work together. For example, consider
Juniper’s Service Now management application (part of Junos Space). Service
Now relies on Juniper’s AI-Scripts (Advanced Insight Scripts), a collection of
SLAX scripts installed on Junos devices that can detect problems and report them

	 12	 Chapter 1: Introduction: Automation and Ansible

to Service Now. The AI-Scripts are usually installed on the network devices by the
Service Now application. It’s an off-box management platform installing on-box
scripts that report problems back to the off-box system: (http://www.juniper.net/
us/en/products-services/network-management/junos-space-applications/
service-now/).

What is Ansible?
Ansible is an automation platform, a framework for executing a series of opera-
tions that accomplish defined tasks. It is commonly used “to provision, deploy,
and manage compute infrastructure across cloud, virtual, and physical environ-
ments.” (https://www.ansible.com/webinars-training/introduction-to-ansible; ac-
cessed June 22, 2017). Ansible was written by Michael DeHaan and initially
released in 2012. Ansible was purchased by Red Hat in 2015.

 Building automation with Ansible requires little traditional programming knowl-
edge – the programming required for many common operations is already done
and made available to you in the form of modules. At the risk of over-simplifying,
you create a playbook describing the automation you need by piecing together a
series of modules. This process is the focus of most of this book, so rest assured
that we discuss it in some detail.

Ansible includes a large selection of modules with the platform. While Ansible dif-
ferentiates between three categories of included modules (core, curated, and com-
munity), this book refers to the included modules collectively as core modules.
(http://docs.ansible.com/ansible/list_of_all_modules.html)

There are also modules developed by the Ansible user community and made avail-
able via Ansible Galaxy (https://galaxy.ansible.com/). This book refers to these as
Galaxy modules. As you will see in Chapter 2, when installing Ansible you can
install Galaxy modules using the ansible-galaxy command. Once installed, these
modules are available for use in your automation solutions.

Starting in 2014, Juniper Networks published Galaxy modules that enable Ansible
to manage Junos devices (http://junos-ansible-modules.readthedocs.io/ or https://
galaxy.ansible.com/Juniper/junos/). Supported operations include executing com-
mands, downloading configuration, making configuration changes, rolling back
configuration changes, and upgrading Junos. (One of the maintainers of these
modules is Stacy Smith, co-author of the excellent book, Automating Junos Ad-
ministration, O’Reilly Media, 2016.) Not surprisingly, these modules use Juniper’s
suggested techniques for how off-box automation communicates with Junos de-
vices. This book discusses the recommended approach in Chapter 5, but the short
version is that the modules use the Junos API (application programming interface).
These modules rely on a library called PyEZ, also written by Juniper, for establish-
ing the connection to the Junos device, issuing the appropriate API request, and
receiving the results of the API request.

http://www.juniper.net/us/en/products-services/network-management/junos-space-applications/service-now/
http://www.juniper.net/us/en/products-services/network-management/junos-space-applications/service-now/
http://www.juniper.net/us/en/products-services/network-management/junos-space-applications/service-now/
https://www.ansible.com/webinars-training/introduction-to-ansible
http://docs.ansible.com/ansible/list_of_all_modules.html)
https://galaxy.ansible.com/)
http://junos-ansible-modules.readthedocs.io/
https://galaxy.ansible.com/Juniper/junos/)
https://galaxy.ansible.com/Juniper/junos/)

	 13	 Overview of Ansible Terminology

Starting in 2016 with version 2.1, Ansible added core modules that work with Ju-
nos devices (http://docs.ansible.com/ansible/list_of_network_modules.html#junos).
Supported operations are broadly similar to Juniper’s Galaxy modules, but with
many differences in details such as module names and how to use the modules,
which means playbooks written for one set of modules need to be re-written to use
the other set of modules. In addition, the Ansible 2.3 versions of these modules do
not use Juniper’s PyEZ library, which means Ansible had to write their own code
for accessing the Junos API and receiving the results. This book focuses on Juniper’s
Galaxy modules for working with Junos devices, rather than Ansible’s core Junos
modules, but the reader is encouraged to explore the latter as well.

Overview of Ansible Terminology
Let’s briefly introduce some of the terms that Ansible uses. These terms will all be
discussed in more detail later in this book.

Playbook: The file you create that defines your desired automation process by call-
ing a series of modules. Ansible executes the playbook, calling the modules that im-
plement the tasks needed to perform the desired automation.

Module: A program that accomplishes a specific task, like copying a file, installing
software, or rebooting a device.

Task: Within a playbook, a task is a call to execute a module that does a specific
job, like copy a file or configure a device. Tasks usually include one or more argu-
ments, data that adds detail to what the module should do, such as the name of the
file to copy, or the IP address of the device to configure.

Play: Within a playbook, a play is a collection of tasks. A playbook will have one or
more plays. If a playbook contains multiple plays, it is likely that the plays have dif-
ferent requirements: for example, they may execute on different hosts.

Fact: As a playbook executes, Ansible learns about the hosts involved. The learned
data are called facts and may be referenced by name in the playbook.

Variable: Data about a host or group declared by the user. Like facts, variables can
be referenced by name. The difference is that variables are declared by the user —
the book discusses several approaches for this — not discovered by Ansible.

Role: A way of organizing desired behavior into reusable units. Roles consist of
tasks, variables, and other elements that can be incorporated into multiple
playbooks.

Template: A file containing some static text, such as device configuration com-
mands, but with some places where Ansible will “fill-in-the-blank” with data spe-
cific to each device, such as the hostname or an IP address. Templates can be used to
generate configuration files that contain device-specific settings, or to format and
save facts gathered from devices in a human-friendly format. Templates are written
using the Jinja2 language.

	 14	 Chapter 1: Introduction: Automation and Ansible

Inventory: The list of devices that Ansible knows about, possibly with some pre-
set variables (data) about each device, such as the device’s management IP address.
Inventory is often stored in a single file named inventory, or in a set of files in a di-
rectory called inventory.

Groups: Within the inventory of devices, you can define groups that describe col-
lections of devices you can refer to by name, for example, a group called “routers”
would provide an easy way to refer to all routers and exclude firewalls and
switches.

group_vars and host_vars: Directories in which you can place files containing vari-
ables (data) about groups or hosts. The files in the group_vars and host_vars directo-
ries let you define more variables, or variables containing more complex data, than
would be practical within the inventory file itself.

MORE?	 For more terms, or to see Ansible’s definitions of these terms, please
refer to the Ansible glossary: http://docs.ansible.com/ansible/glossary.html.

Ansible vs. Ansible Tower vs. AWX
Ansible is a no-cost, open-source automation platform. It is a command-line tool;
you work with Ansible in your operating system’s terminal or shell.

Red Hat also offers Ansible Tower (https://www.ansible.com/products/tower), a
paid commercial software product that builds on the underlying Ansible automa-
tion platform. Tower features a WebUI and adds role-based authentication, inte-
gration with Git repositories, paid support, and other features intended to make
Ansible more accessible to an IT team.

In late 2017, Red Hat released as open-source the AWX Project, “the upstream
project from which the Red Hat Ansible Tower offering is ultimately derived.”
[https://www.ansible.com/products/awx-project/faq, retrieved Jan. 8, 2018.] Like
Tower, AWX offers a WebUI, role-based authentication, etc. Unlike Tower, AWX
is available at no cost (https://github.com/ansible/awx) but Red Hat provides no
paid support for it.

This book focuses on the command-line Ansible platform. However, many play-
books developed in Ansible can likely migrate to AWX or Tower with few changes
should your organization choose to adopt one of them.

http://docs.ansible.com/ansible/glossary.html
https://www.ansible.com/products/tower
https://www.ansible.com/products/awx-project/faq
https://github.com/ansible/awx

	 15	 Where Can Ansible Help?

Where Can Ansible Help?
No automation tool will satisfy every automation need. But let’s review the auto-
mation scenarios mentioned in the “Business Scenarios for Network Automation”
section of this chapter and see if, and how, Ansible can help with each scenario.

Gathering data: Ansible can collect a pre-defined set of facts about Junos devices.
It can also run nearly any Junos operation-mode command and collect the results,
which can be saved in files, either in separate files for each device, or all collected in
a single file. There are also modules to send information by email, IRC, and other
communication/notification technologies.

Configuring devices: Ansible’s modules (Galaxy and core) include some specific
configuration tasks. More powerful, however, is its ability to use a template to cre-
ate any Junos configuration you desire. Ansible “fills in” the template with device-
specific values and uploads the resulting configuration to the Junos device.

Auditing configuration compliance: Ansible can download a Junos device’s con-
figuration, or a specific hierarchy of the configuration, and save it to a file. The au-
thor is not aware of a module to parse the saved configuration to check
compliance, but a Python programmer could write such a module, or you could
have Ansible call the shell and run grep to search the saved files. Alternately, An-
sible can gather operational data from a device, such as a list of BGP peers, and
confirm that list matches some pre-defined expectations, possibly by using Juni-
per’s JSNAPY tool. Finally, Ansible can apply standard/expected configurations to
a device as mentioned above, thus ensuring the device is in compliance after the
configuration is applied.

NOOB setup: As noted above, Ansible can generate and apply device configura-
tion; this can include a configuration intended to, for example, put an IP address
on the management interface and set the root password, thus making the device
available on the network. Juniper’s Galaxy module can apply this configuration
via a serial connection. For those who use ZTP, Ansible can generate a dhcpd.conf
file for the DHCP server and initial configurations for the devices, and it can copy
these files, and a Junos image file, into the necessary locations on the DHCP and
file server(s).

Responding to problems: Ansible is not designed as an event-driven platform; ar-
ranging an Ansible playbook to run automatically in response to external events
would require an event framework outside of Ansible itself. However, Ansible can
use scp to upload SLAX scripts to a Junos device that enable it to respond to
events, and it can make the necessary configuration settings in Junos to run those
scripts when the event occurs.

This chapter discusses the system requirements for using Ansible to manage Junos
devices, and how to install Ansible on macOS and Linux systems.

System Requirements
The computer running Ansible and executing playbooks is called the control ma-
chine. The systems being managed by an Ansible control machine are called man-
aged nodes.

An Ansible control machine that manages Junos devices requires:

	� A non-Windows operating system. Linux, macOS, and other UNIX-type oper-
ating systems work well.

	� Python 3.7 (or newer), including pip (package installer for Python).

	� An SSH client, typically OpenSSH. This is usually installed by default on Linux/
UNIX systems and macOS.

	� Juniper’s Galaxy modules, version 2.3 or newer.

	� Juniper’s PyEZ Python library, version 2.4 or newer.

The control machine communicates with the Junos devices using the NETCONF
protocol running over SSH. By default, the NETCONF service on Junos uses TCP
port 830. NETCONF is discussed in Chapter 5.

Chapter 2

Installing Ansible

	 17	 Software Versions Used While Writing This Book

Windows users should consider running a Linux distribution in either a virtual
machine (VM) or a Docker container. If you create a new Linux VM or container
for this purpose, keep in mind that you do not need a GUI for Ansible; you can use
a Linux distribution intended for servers and avoid the significant overhead of a
desktop GUI. If you wish to use a Docker container, you might consider this image
from Docker Hub: https://hub.docker.com/r/juniper/pyez-ansible/.

If you are running a non-Windows system but you wish to separate your automa-
tion environment from your host OS, you may wish to use a VM or Docker con-
tainer similar to the Windows users.

Software Versions Used While Writing This Book
The author used the following versions of Ansible and related modules while de-
veloping and testing the examples in this book (2nd and 2.1 editions):

	� Ansible 2.4.3, 2.6.1, and 2.9.9

	� Juniper.junos (Juniper’s Galaxy modules) 2.0.2, 2.1.0, and 2.3.1

	� Pip 9.0.1 and 20.0.2

	� PyEZ (junos-eznc) 2.1.7, 2.1.8, and 2.4.1

	� Python 2.7.14, 2.7.15, and 3.7.7

This second edition of Day One: Automating Junos with Ansible is written for
version 2.x of the Juniper.junos Galaxy modules, which made significant changes
from the previous 1.4.3 version. If you are using the older modules, please use the
first edition of this book.

The author strongly recommends using Python 3.x, not the older Python 2.7 in-
tepreter. The Python language was modified in version 3 in ways not backwards
compatible with programs written for Python 2, but all the projects used here have
made updates for Python 3.x compatibility. Also note that the maintainers of Py-
thon ended support for Python 2 on January 1, 2020, so please use Python 3 un-
less you have a compelling reason to stay with Python 2.

Generally, you do not need to use the exact versions listed above. All were current
versions during the time the author was writing the second edition of this book,
but most have probably been upgraded by the time you’re reading this. Keep in
mind that the maintainers of these open-source projects do occasionally change
module names or arguments or the like. If a playbook is throwing errors that do
not seem to be a typo or inaccessible device, check to see if the versions of the pro-
grams you have installed might have changed something.

https://hub.docker.com/r/juniper/pyez-ansible/

	 18	 Chapter 2: Installing Ansible

Ansible’s Installation Instructions
Ansible’s website has a page that discusses installing Ansible on a wide variety of
systems: http://docs.ansible.com/ansible/intro_installation.html. Please look over
this page before proceeding. Keep in mind, however, that it only discusses basic
Ansible installations; we also need the PyEZ Python library and the Juniper.junos
Ansible Galaxy modules in order to administer Junos devices with Ansible.

The remainder of this chapter discusses in some detail how to install Ansible on
macOS and Linux systems, including several suggestions, particularly for macOS,
that are not discussed on Ansible’s web page.

Installing Ansible on macOS
This section discusses installing Ansible on macOS (or OS X) using the optional
Homebrew package manager.

Command-line Developer Tools
Before you install Ansible on macOS, you need to install Apple’s command-line
developer tools. Some of the software we will use with Ansible needs to be com-
piled during installation, and Apple’s command-line developer tools include the
necessary compiler and related files.

To install the command-line tools (whether or not you have installed Apple’s com-
plete XCode development environment), open a Terminal window and enter the
command xcode-select --install as shown here:

mbp15:~ sean$ xcode-select --install
xcode-select: note: install requested for command line developer tools
mbp15:~ sean$

MacOS will display a dialog box, similar to the following, to confirm your choice
to install the command-line developer tools. Click Install to continue.

http://docs.ansible.com/ansible/intro_installation.html

	 19	 Installing Ansible on macOS

Click Agree in the Command Line Tools License Agreement dialog box that ap-
pears next. An installation status dialog box should appear as the software is
downloaded and installed. Click Done when the installation is complete.

Homebrew and Python
Recent versions of macOS include a Python interpreter. While it is possible to in-
stall Ansible on macOS using the system-installed Python interpreter (the process
is similar to installing on Linux as shown later in this chapter), the author has
found this leads to challenges when updating PyEZ. macOS includes a Python li-
brary that is also used by PyEZ, but macOS locks the library so it cannot be al-
tered. This may not a problem when you first install PyEZ, but when you later
attempt to upgrade PyEZ and its dependencies with a pip install --upgrade junos-
eznc command, the upgrade will fail because pip will not be able to upgrade the
locked library.

One way to avoid this problem is to install the Homebrew (https://brew.sh/) pack-
age manager1 and use it to install a new Python environment2. The Homebrew-
installed Python environment, including the PyEZ library you install in that
Python environment, will exist in parallel with the macOS-installed environment,
giving the former a level of independence from the latter. The parallel installation
of Python means we will be able to upgrade all libraries without running into
problems with the locked system library.

1 There are other package managers for macOS, such as MacPorts (https://www.macports.org/), which
may accomplish the same goal. The author has not worked with these other package managers, but if
you already have one of them installed you may wish to see if the package manager you already know
has an Ansible package rather than converting to Homebrew.
2 Another option is to create a Python Virtual Environment. There are several tools that can do this,
among them virtualenv (https://pypi.python.org/pypi/virtualenv).

https://brew.sh/)
https://www.macports.org/
https://pypi.python.org/pypi/virtualenv

	 20	 Chapter 2: Installing Ansible

An additional benefit is that the Homebrew-installed Python interpreter will likely
be the most recent version, while the macOS interpreter is probably a little older.
For example, on the author’s macOS Mojave system, the system-installed Python
is version 2.7.16.

Take note of the current version and location of the Python interpreter on your
system:

mbp15:~ sean$ python --version
Python 2.7.16
mbp15:~ sean$ which python
/usr/bin/python

To install Homebrew, you need to be logged into your Mac as an Admin user; if
your account is a Standard account, use System Preferences to add administrative
privileges.

Open Terminal and enter the one-line installation command shown on the Home-
brew web page (https://brew.sh/):

The following was the command when this chapter was written, but please visit
the Homebrew website to ensure you are using the current installer:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
Follow the prompts and enter your password when asked. The full output from
the script is rather long so the following shows a small subset:

mbp15:~ sean$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

https://brew.sh/

	 21	 Installing Ansible on macOS

==> This script will install:
/usr/local/bin/brew
/usr/local/share/doc/homebrew
...

Press RETURN to continue or any other key to abort << press Enter or Return >>
==> /usr/bin/sudo /bin/chmod u+rwx /usr/local/bin
Password: << enter your password >>
==> /usr/bin/sudo /bin/chmod g+rwx /usr/local/bin
...

==> Next steps:
- Run `brew help` to get started
- Further documentation:
    http://docs.brew.sh

Because the Homebrew installer updates your system’s path, it is a good idea to
exit the Terminal and re-launch it.

Search for Python formulas (Homebrew’s equivalent to packages). As this is being
written, the python formula is the current Python 3.x interpreter (emphasis added
to output):

mbp15:~ sean$ brew search python
==> Formulae
app-engine-python gst-python python python@3.8
boost-python ipython python-markdown wxpython
boost-python3 micropython python-yq
==> Casks
homebrew/cask/awips-python homebrew/cask/mysql-connector-python
homebrew/cask/kk7ds-python-runtime
mbp15:~ sean$

Install the formula for the Python 3.7.x (shown) or 3.8 interpreter:

mbp15:~ sean$ brew install python
==> Downloading https://homebrew.bintray.com/bottles/python-3.7.7.catalina.bottle.tar.gz
==> Downloading from https://akamai.bintray.com/ac/
acd595852aecc2bfa46c57d86db716e64d57bb2753c45ff7f745b4
100.0%
==> Pouring python-3.7.7.catalina.bottle.tar.gz
==> /usr/local/Cellar/python/3.7.7/bin/python3 -s setup.py --no-user-cfg install --force --verbose
--inst
==> /usr/local/Cellar/python/3.7.7/bin/python3 -s setup.py --no-user-cfg install --force --verbose
--inst
==> /usr/local/Cellar/python/3.7.7/bin/python3 -s setup.py --no-user-cfg install --force --verbose
--inst
==> Caveats
Python has been installed as
 /usr/local/bin/python3

You can install Python packages with
 pip3 install <package>
They will install into the site-package directory
 /usr/local/lib/python3.7/site-packages

See: https://docs.brew.sh/Homebrew-and-Python
==> Summary
🍺 /usr/local/Cellar/python/3.7.7: 4,006 files, 6 1.2MB

	 22	 Chapter 2: Installing Ansible

Now check to see if the newly installed interpreter is the default. Hopefully, you
will see different results than before, like this:

mbp15:~ sean$ which python
/usr/local/bin/python
mbp15:~ sean$ python --version
Python 3.7.7

If the path and version are unchanged from what you saw prior to installing
Homebrew, then Homebrew probably did not create a symlink (symbolic link,
also called a soft link) named python in your /usr/local/bin/ directory. You can
manually create this link if needed. Start by changing to that directory and check-
ing to see if there is a symlink called python or whose name starts with python3:

mbp15:~ sean$ cd /usr/local/bin/

mbp15:bin sean$ ls -l python
ls: python: No such file or directory

mbp15:bin sean$ ls -l python3*
lrwxr-xr-x 1 ssawtell admin 34 Apr 1 12:20 python3 -> ../Cellar/python/3.7.7/bin/python3
lrwxr-xr-x 1 ssawtell admin 41 Apr 1 12:20 python3-config -> ../Cellar/python/3.7.7/bin/python3-
config
lrwxr-xr-x 1 ssawtell admin 36 Apr 1 12:20 python3.7 -> ../Cellar/python/3.7.7/bin/python3.7
lrwxr-xr-x 1 ssawtell admin 43 Apr 1 12:20 python3.7-config -> ../Cellar/python/3.7.7/bin/
python3.7-config
lrwxr-xr-x 1 ssawtell admin 37 Apr 1 12:20 python3.7m -> ../Cellar/python/3.7.7/bin/python3.7m
lrwxr-xr-x 1 ssawtell admin 44 Apr 1 12:20 python3.7m-config -> ../Cellar/python/3.7.7/bin/
python3.7m-config

Assuming you get results similar to those shown above, then create a new symlink
called python to the same target as your python3 (or python3.7) symlink:

mbp15:bin sean$ ln -s ../Cellar/python/3.7.7/bin/python3 python

Return to your home directory and confirm that the Homebrew-installed Python
interpreter is now the default.

Check also that the default pip, the Python package manager, is the Homebrew-
installed version in /usr/local/bin/:

mbp15:~ sean$ which pip
/usr/local/bin/pip

If which pip returns no results or says something other than /usr/local/bin/pip, you
may need to create a symlink for the Homebrew-installed pip also. Follow the
above instructions, but look for pip3 instead of python3.

PyEZ, Ansible, and Galaxy Modules
Now that you have Python and pip installed and working, you can proceed with
installing Ansible and the other required libraries.

Start by using pip to install PyEZ, which will also install a number of PyEZ’s de-

	 23	 Installing Ansible on Linux

pendencies (most output is omitted for brevity):

mbp15:~ sean$ pip install junos-eznc jxmlease
Collecting junos-eznc
 Downloading junos_eznc-2.4.0-py2.py3-none-any.whl (193 kB)
 |████████████████████████████████| 193 kB 1.3 MB/s
...
Installing collected packages: junos-eznc
Successfully installed junos-eznc-2.4.0
mbp15:~ sean$

Now use pip to install Ansible (most output is omitted for brevity):

mbp15:~ sean$ pip install ansible
Collecting ansible
 Downloading ansible-2.9.6.tar.gz (14.2 MB)
 |████████████████████████████████| 14.2 MB 9.1 MB/s
...
Successfully installed ansible-2.9.6
mbp15:~ sean$

TIP	 By default, pip installs the currently released version of a module. To ask
pip to install a specific version of a module, include the version number like this:
module==version
For example: pip install junos-eznc==2.1.5

Finally, use the ansible-galaxy command to install Juniper’s Galaxy modules. Be-
cause ansible-galaxy needs to modify some Ansible-related files in the system direc-
tory /etc/, you may need to sudo this command:

mbp15:~ sean$ ansible-galaxy install Juniper.junos
- downloading role ‘junos’, owned by Juniper
- downloading role from https://github.com/Juniper/ansible-junos-stdlib/archive/2.3.1.tar.gz
- extracting Juniper.junos to /Users/ssawtell/.ansible/roles/Juniper.junos
- Juniper.junos (2.3.1) was installed successfully
mbp15:~ sean$

TIP	 By default, ansible-galaxy installs the currently released version of a
module. To ask ansible-galaxy to install a specific version of a module, include the
version number like this: module,version.
For example: ansible-galaxy install Juniper.junos,2.2.0

Installing Ansible on Linux
Due to the variety of Linux distributions and their package managers, it is impos-
sible to write a single set of step-by-step instructions for installing Ansible on
Linux. The general process on most distributions should be similar to that de-
scribed below, but exact commands will change depending on the Linux distribu-
tion and possibly even the version of that distribution.

	 24	 Chapter 2: Installing Ansible

The commands that follow were tested with Ubuntu Linux Server versions 18.04
(Bionic Beaver) and 20.04 (Focal Fossa) and should work with minimal modifica-
tion on other Debian-based distributions. Users of Red Hat or other non-Debian
Linux flavors should alter these instructions to use the appropriate package man-
ager and package names for their distribution or version.

Start by updating the package manager’s data files:

sudo apt-get update
Install SSH (OpenSSH client), software build tools, and related packages:

sudo apt-get install openssh-client build-essential
sudo apt-get install libffi-dev libxslt-dev libssl-dev

Install the Python language and the Python package manager (pip):

sudo apt-get install python3 python3-pip
Install Git (this is optional, but the appendix uses Git):

sudo apt-get install git
Now use pip to install Ansible and PyEZ (junos-eznc):

sudo pip3 install ansible junos-eznc jxmlease
Finally, add Juniper’s Galaxy modules to Ansible:

ansible-galaxy install Juniper.junos

Quick Ansible Test
Now that you have Ansible installed on your system, let’s run a quick test. This
test will display facts (information) about your system by running an Ansible mod-
ule called setup.

For this test, it is normal to get one or more [WARNING] lines at the beginning of the
output because we have not yet set up an inventory file. The exact warnings differ
between Ansible versions.

From your command prompt, run the following command (the output is truncated
for space reasons):

mbp15:~ sean$ ansible localhost -m setup
[WARNING]: No inventory was parsed, only implicit localhost is available

localhost | SUCCESS => {
 “ansible_facts”: {
 “ansible_XHC20”: {
 “device”: “XHC20”,
 “flags”: [],
 “ipv4”: [],
 “ipv6”: [],
 “macaddress”: “unknown”,
 “mtu”: “0”,
 “type”: “unknown”
 },
 “ansible_all_ipv4_addresses”: [
 “192.168.0.10”
],
...

	 25	 References

 “ansible_date_time”: {
 “date”: “2020-04-03”,
 “day”: “03”,
 “epoch”: “1585937010”,
 “hour”: “14”,
 “iso8601”: “2020-04-03T18:03:30Z”,
 “iso8601_basic”: “20200403T140330795614”,
 “iso8601_basic_short”: “20200403T140330”,
 “iso8601_micro”: “2020-04-03T18:03:30.795763Z”,
 “minute”: “03”,
 “month”: “04”,
 “second”: “30”,
 “time”: “14:03:30”,
 “tz”: “EDT”,
 “tz_offset”: “-0400”,
 “weekday”: “Friday”,
 “weekday_number”: “5”,
 “weeknumber”: “13”,
 “year”: “2020”
 },
...
 “module_setup”: true
 },
 “changed”: false
}

The ansible command is one of several provided with Ansible; it lets you run an
Ansible module (command) against one or more hosts without creating a play-
book. The -m argument instructs ansible to run the specified module, so -m setup
says run the setup module, and the argument localhost says to run the module on
the local system.

The output is in JSON format; see Chapter 3 for a discussion of JSON.

References
Ansible’s installation instructions:
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Ansible’s setup module:
http://docs.ansible.com/ansible/latest/setup_module.html

Juniper’s Galaxy modules documentation, current stable version:
http://junos-ansible-modules.readthedocs.io/en/stable/

Juniper’s resources page for Ansible:
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/
information-products/pathway-pages/index.html

Juniper’s Galaxy modules on GitHub:
https://github.com/Juniper/ansible-junos-stdlib

Juniper’s PyEZ on GitHub:
https://github.com/Juniper/py-junos-eznc

http://docs.ansible.com/ansible/latest/setup_module.html
http://junos-ansible-modules.readthedocs.io/en/stable/
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/information-products/pathway-pages/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/information-products/pathway-pages/index.html
https://github.com/Juniper/ansible-junos-stdlib
https://github.com/Juniper/py-junos-eznc

This chapter introduces you to the JSON and YAML formats for representing data
and data structures. Ansible uses both of these formats – playbooks are YAML
data files, and output is often shown in JSON format.

This is a theory chapter. Don’t worry, it’s short.

What are JSON and YAML?
JSON and YAML are both standards for storing, transmitting, or displaying com-
puter data or data structures using a text-based human-readable format.

Data structures are techniques for organizing data, usually within a computer’s
memory. There are many different data structures available to computer scientists,
but most of them (or at least the most widely used) can be represented as:

	� List – a collection of data elements (items)

	� Dictionary – a set of key:value data pairs

	� a combination of lists and dictionaries

Both lists and dictionaries are discussed in more detail below.

This book uses the names list and dictionary for these data structures because they
are the names used by Python, the programming language in which Ansible is writ-
ten. Other programming languages have different names for equivalent or similar
data structures.

JSON and YAML are often called data serialization languages because the process
of translating a data structure into a format that can be stored or transmitted is
called serialization.

Chapter 3

Understanding JSON and YAML

	 27	 Data

Data
Before we discuss collections of data (lists and dictionaries), we need to under-
stand the types of data that might appear in the collections. There are four basic
data types used by JSON and YAML:

Numbers: A number is a numeric value: 3.14, 21, -5.

Strings: A string is a sequence of characters enclosed in quotation marks: "Hello"
or "My puppy’s name is Puddles" or "I think, therefore I am." These examples use
double-quotes ("string") but some environments may use single-quotes ('string').

Boolean: A boolean is a true-or-false value, typically represented by the words true
or false. Note that true or false are not quoted – "true" is a string while true is a
Boolean value.

Null: A null or nil value is used to represent the absence of any assigned value, and
is represented by the word null (not quoted).

Lists
A list, sometimes called an array, is an ordered collection of zero or more elements
(an entry in the list, datum). Ordered in this context means the sequence of the ele-
ments within the list is preserved; the order of elements in the list will not change
unless you, the user, make it change. (Ordered does not mean the list elements are
automatically placed in alphabetical order or numerical order.)

Lists are denoted by square brackets ([]) – in other words, all the elements of a
single list must be contained within a pair of square brackets. Elements within the
list are separated by commas. For example:

	 [9, 2, 7, 32, 5]

	 ["Sean", "Jackie", "Bridget", "James"]

Accessing a single element of a list is often done by index, or position; for example,
the third name in the list of names above is "Bridget". However, computer scientists
like to number things from 0. As a result, the element at index 0 of the name list
above is "Sean", and element 3 of that list is "James".

When a list is assigned to a variable, accessing a single element is done by placing
the index in square brackets after the variable name, variable[index]. Assuming the
list of names above was assigned to a variable called names, then names[2] would
access element 2 in the list, "Bridget".

Lists can contain a mix of data types, including other lists or dictionaries. A list
within a list is sometimes called a nested list.

	 ["Hello", 5, true, ["nested", "list"], null]

	 28	 Chapter 3: Understanding JSON and YAML

Dictionaries
A dictionary, also called an associative array, is a collection, like a list, but the ele-
ments are key:value data pairs. The value is the data we need to store, and the key
is a label, a way to identify and locate the associated value.

Dictionaries are denoted by curly braces ({ }), with each key and associated value
joined by a colon (:), and key:value pairs separated by commas. For example:

	 {"name": "France", "capital": "Paris", "population": 67000000}

The elements of a dictionary are accessed by key, not by index; in the dictionary
above, the "name" value is "France". When a dictionary is assigned to a variable, ac-
cessing a single value is done by placing the key in square brackets after the vari-
able name, variable[key]. Assuming the dictionary above was assigned to a
variable called country, then country["name"] would access "France".

Keys are normally strings.

Keys should be unique within the dictionary. If you have the dictionary {"things":
5, "widgets": 10, "things": 15} and you asked for the value associated with the key
"things", would you get 5 or 15? Many programming languages enforce unique
keys in their implementation of dictionaries.

Dictionaries are unordered -- the key:value pairs are not guaranteed to be in any
particular sequence. This is not a concern when accessing values by key. However,
when you print or display a complete dictionary, the key:value pairs are likely to
be displayed in an order other than the order in which they were added to the
dictionary.

Values can be any of the data types, including lists or dictionaries. For example, a
set of daily low- and high-temperature data could be represented using a diction-
ary, where the keys are the names of the weekdays and the values are two-element
arrays with the low and high temperatures:

	 {"Monday": [67, 90], "Tuesday": [70, 91], "Wednesday": [65, 83]}

However, that data might be easier to understand if we replace each list of tem-
peratures with a dictionary; the keys in the nested dictionary can help describe the
numbers:

{"Monday": {"low": 67, "high": 90}, "Tuesday": {"low": 70, "high": 91}, "Wednesday":
{"low": 65, "high": 83}}

Notice that the above data has several occurrences of the keys low and high. At first
glance, one might think we have duplicate keys, but this is not the case. Each day
(key) has its own dictionary (value) containing temperature data, and the low and
high keys are unique within each day’s dictionary.

	 29	 JSON

JSON
JSON (JavaScript Object Notation) is based on a subset of the JavaScript pro-
gramming language commonly used in web browsers, and was originally designed
to provide a way of exchanging data between browser and web server. Today,
JSON is supported by many programming languages and is used for a wide range
of data serialization tasks.

A file containing JSON-formatted data will typically have “.json” as the file’s
extension.

Everything discussed above applies to JSON-formatted data, with a few caveats:

	� Strings must be denoted with double-quotes (" ").

	� Lists are called arrays.

	� Dictionaries are called objects. A dictionary’s keys must be strings.

	� Keys are not required to be unique under the JSON specification. However, the
dictionary or equivalent data structure in many programming languages en-
forces unique keys, so reading JSON data that contains duplicate keys may re-
sult in missing data or errors.

JSON was created to make it easy for computers to serialize and transfer data. It is
plain text and thus human-readable, but how human-readable can vary by how
the data is formatted.

The following is valid JSON but, unless you are a computer, good luck figuring out
the nested lists and dictionaries:

{"test1":{"sum":215,"avg":71,"values":[62,74,79]},"test3":{"sum":142,"avg":47,"values":[2,46,94]},"t
est2":{"sum":259,"avg":86,"values":[94,73,92]}}

The good news is that JSON ignores whitespace characters (space, tab, newline or
linefeed, carriage return), which means you can add whitespace as needed to im-
prove the human-readability of the JSON data without damaging the computer-
readability of that data. This is the same data as shown above, but formatted for
human consumption:

{
    "test1": {
        "sum": 215,
        "avg": 71,
        "values": [
            62,
            74,
            79
        ]
    },
    "test3": {
        "sum": 142,
        "avg": 47,
        "values": [
            2,

	 30	 Chapter 3: Understanding JSON and YAML

            46,
            94
        ]
    },
    "test2": {
        "sum": 259,
        "avg": 86,
        "values": [
            94,
            73,
            92
        ]
    }
}

Should you encounter some poorly formatted JSON and wish to reformat it, check
to see if your programmer’s editor has an option to do so. You can also use your
Python interpreter and the json.tool module. For example, assuming that file info.
json contains the JSON data you want to “prettify,” use this command:

python -m json.tool < info.json

YAML
YAML (today, short for “YAML Ain’t Markup Language” but originally was “Yet
Another Markup Language”) is a data serialization language intended to be easy
for humans to read and modify. It is a bit harder to learn YAML than JSON (and
much harder to explain), but once learned it is easier to work with YAML-format-
ted data.

A file containing YAML-formatted data will typically have either “.yaml” or
“.yml” as the file’s extension.

YAML data files should have three hyphens (“---”) on the first line of the file. (The
reason for this is outside the scope of this book, but is related to subdividing the
data into multiple “documents” within the file). The examples in this section will
not show the “---”, but you will see “---” at the start of Ansible playbooks and
other YAML files through much of the rest of the book.

YAML is a superset of JSON, meaning that valid JSON is valid YAML. Within
YAML data you may see brackets (“[]”) denoting lists and braces (“{ }”) denoting
dictionaries. However, one of the human-readability benefits of YAML over JSON
comes from using an alternative representation for lists and dictionaries, a repre-
sentation based in part on the layout of the text, which we will discuss below.

YAML dictionaries require unique keys; converting key:value data with duplicate
keys to YAML may result in errors or missing data. Keys may be strings or other
data types, but this book will use only strings for keys.

YAML does not require quotes around most strings, though both single- and dou-
ble-quotes are supported. However, a string that starts with a character that might

	 31	 YAML

be mistaken for JSON formatting, such as a left-bracket (“[”) or left-brace (“{”),
must be quoted, because brackets and braces normally represent the start of a list
or dictionary, respectively.

Because the layout of text of YAML data is important, an example may help set
the stage. This example is just to provide an overview (we will discuss the details in
a few paragraphs). The last example of JSON data from the previous section can
be represented in YAML as follows:

test1:
  avg: 71
  sum: 215
  values:
  - 62
  - 74
  - 79
test2:
  avg: 86
  sum: 259
  values:
  - 94
  - 73
  - 92
test3:
  avg: 47
  sum: 142
  values:
  - 2
  - 46
  - 94

Notice how the YAML data has less punctuation (no quotes, no braces, no brack-
ets, and no commas) than the JSON equivalent. The addition of leading hyphens
(“-”) to indicate list entries is intuitive as it looks a bit like a bulleted list.

Indentation in a YAML document is important. Unlike JSON, where indentation
is optional and used primarily for human readability, indentation in YAML data
helps to show what elements belong together in a single collection (list or diction-
ary). A change of indentation level indicates a change of collection. Take a look at
the test1 key above and how its value, another dictionary is indented. When we get
to the key test2 the indentation level moves back out, indicating we are returning
to the original dictionary of which test1 is an element.

YAML indentation should be done with spaces, never with tab characters. The
number of spaces for each indentation level is not defined, but the author prefers
two spaces for each level of indentation – two spaces provide enough visual dis-
tinction between levels but avoids excessive indentation with deeply nested data
structures.

Each element in a list starts with a hyphen and a space (“- ”), like this:

- element

	 32	 Chapter 3: Understanding JSON and YAML

The list ['hello', 'world', 10] in YAML is:

- hello
- world
- 10

A change of indentation means a different list. For example, to represent the nest-
ed lists [0, [1, 2], [3, 4, [5, 6]], 7] in YAML:

- 0
- - 1
  - 2
- - 3
  - 4
  - - 5
    - 6
- 7

Notice how elements of nested lists are indented more than the elements of the
parent list. The double hyphen on some lines shows that we are starting a new list
that is an element of the parent list.

Dictionary entries have no special notation other than the colon and space be-
tween the key and the value:

title: Automating Junos with Ansible
author: Sean Sawtell

A series of key:value pairs at the same indentation level will be part of the same
dictionary, but a change of indentation means a different dictionary. For example,
{'k1': 'v1', 'k2': {'k2a': 'v2a', 'k2b': 'v2b'}, 'k3': 'v3'} becomes:

k1: v1
k2:
  k2a: v2a
  k2b: v2b
k3: v3

To create a list with an element that is a dictionary, include the leading hyphen
only on the first key:value pair that will be part of the nested dictionary. For ex-
ample, this list with nested dictionaries…

['e0', {'k1a': 'v1a', 'k1b': 'v1b'}, {'k2b': 'v2b', 'k2a': 'v2a'}, 'e3', {'k4a': 'v4a'}, 'e5']
…is represented by the following YAML:

- e0
- k1a: v1a
  k1b: v1b
- k2a: v2a
  k2b: v2b
- e3
- k4a: v4a
- e5

Notice how k1a has a leading hyphen indicating it is a new array element, but k1b
does not have a hyphen making it part of the same dictionary as k1a, and thus part
of the same element of the parent list.

	 33	 Text Editor Tips

A common mistake when defining a dictionary within a list is to put a hyphen in
front of each key:value pair in the dictionary. This YAML…

- k1: v1
- k2: v2

…creates a list with two elements, each consisting of a single-entry dictionary:
[{'k1': 'v1'}, {'k2': 'v2'}]

To create a dictionary that contains a list as one of the values, put elements of the
nested list on separate lines, each starting with a hyphen, after the line containing
the key. For example, the YAML for the dictionary {'k1': 'v1', 'k2':
['v2a','v2b','v2c'], 'k3': 'v3'} is:

k1: v1
k2:
- v2a
- v2b
- v2c
k3: v3

The author’s personal preference is to indent the list entries one extra level (two
extra spaces) because, to his eyes, having the hyphen of the list entries at the same
visual indentation level as the associated key does not provide quite enough visual
separation from the surrounding key:value pairs. The extra indentation does not
affect the meaning of the YAML provided the indentation is consistent across all
elements of the list:

k1: v1
k2:
  - v2a
  - v2b
  - v2c
k3: v3

Text Editor Tips
As you can see, correct indentation is critical for YAML data. Your text editor can
help with this! (If your text editor refuses to help, fire it and hire a new one.)

Most programmer’s editors provide the following settings, though the names of
the settings vary between editors:

	� Use spaces instead of tab characters when you hit the tab key. This means you
can still use the tab key for quickly indenting lines, but the file will contain
YAML-friendly spaces not tab characters.

	� The “tab size” or number of spaces represented by a tab; in other words, each
press of the tab key indents this many spaces.

	� Display non-printing characters, including spaces. When the editor displays a •
or similar symbol for each space, it is easy to see how many spaces a line is in-
dented.

	 34	 Chapter 3: Understanding JSON and YAML

	� Display vertical lines at each indentation level. This helps ensure not only that
different lines are indented the same amount, but that the indentation amount
is a multiple of the defined tab size, e.g. that a line is not indented five spaces
when it should be indented either four or six spaces. (This feature is not as com-
mon as the others and may not be in your chosen editor.)

The screen capture below shows the Atom editor, configured for a two-space tab
size and with the above display settings enabled, showing some YAML data from
this chapter:

References
JSON home page and specification: http://json.org/

YAML home page and specification: http://yaml.org/

http://json.org/
http://yaml.org/

This chapter begins to explore Ansible, playbooks, and related files. In it, you
write a short playbook that executes a command on Junos devices and displays the
command’s results. You learn about the structure and contents of a playbook, how
to prompt for input, how to display output, one way to send a command to a Ju-
nos device, and a little about debugging playbooks.

The author is using a Virtual SRX named aragorn and an EX-2200-C named bilbo
for most examples in this book. You can use any Junos devices you have available,
preferably lab or test devices. The book uses only two Ansible-managed devices in
order to keep the example output short, but if you have more devices you can run
the playbook against all of them if you wish. The author routinely runs his produc-
tion playbooks against hundreds of devices.

The (manual) Command
Assume you need to find out the date that each network device was booted or last
configured, so you can confirm that devices have not been configured or rebooted
since the last scheduled maintenance window.

The Junos CLI command for this is “show system uptime” and, when run manu-
ally, it will look something like this (the exact output differs based on device hard-
ware, configuration, and uptime):

sean@aragorn> show system uptime
Current time: 2017-07-26 20:54:18 UTC
Time Source:  LOCAL CLOCK 
System booted: 2017-07-26 19:19:26 UTC (01:34:52 ago)
Protocols started: 2017-07-26 19:19:27 UTC (01:34:51 ago)
Last configured: 2017-07-26 19:29:26 UTC (01:24:52 ago) by sean
 8:54PM  up 1:35, 2 users, load averages: 0.16, 0.12, 0.04

Chapter 4

Running a Command – Your First Playbook

	 36	 Chapter 4: Running a Command – Your First Playbook

The remainder of this chapter shows you how to create an Ansible playbook to
run this command across several devices and report the results. We’re going to dis-
cuss a lot of Ansible fundamentals along the way, so it will be a few pages before
we actually start gathering uptime information. Don’t worry, we’ll get there.

Playbook Directory and Files
You should create a subdirectory to hold your Ansible playbooks and related files,
and you should change to that directory before running a playbook contained
there. This book assumes you are using subdirectory aja2 in your home directory:

$ pwd
/Users/sean
$ mkdir aja2
$ cd aja2
$ pwd
/Users/sean/aja2

In order to run a basic Ansible playbook you need three files:

	� The Ansible configuration file, ansible.cfg.

	� The inventory file, which we name inventory, that contains the list of devices
that Ansible might access or manage.

	� The playbook file containing the Ansible playbook in YAML format. For this
example we name the playbook uptime.yaml.

In future chapters, we will build on this set of files, but these three will suffice for
the example in this chapter.

File: ansible.cfg
Let’s start with the Ansible configuration file. There are many configuration set-
tings that can be placed in this file, but two settings will suffice for now. Create file
ansible.cfg in your ~/aja2 directory and enter following lines in the file:

[defaults]
inventory = inventory
host_key_checking = False

The line inventory = inventory tells Ansible to look in the file inventory (in the cur-
rent directory) for the list of devices that Ansible will manage.

The line host_key_checking = False tells Ansible that it should not use SSH host key
checking1. Host key checking is desirable from a security perspective but can be a
problem with automated connections. Disabling Ansible’s host key checking

1	 When connecting manually with SSH, the OpenSSH client confirms that the server’s ID
matches the ID cached in the user’s ~/.ssh/known_hosts file. If there is no entry in known_hosts then
SSH will ask the user to confirm that the server’s ID is valid and that the connection should proceed. If
the cached ID is different from the ID provided by the server, the client displays an error and aborts the
connection.

	 37	 Playbook Directory and Files

allows Ansible to connect even if the server’s ID is not in the known_hosts file (for
example, if you have not previously manually connected to that device and cached
its ID) or does not match the cached value in known_hosts (as can happen, for ex-
ample, after a routing engine failover). Ansible 2.4 enables host key checking by
default, but it was disabled by default in earlier versions; if you are using an earlier
version of Ansible, you may be able to omit this setting.

File: inventory
Ansible needs to have an inventory, a list of devices it should work with. There are
a few ways of arranging an inventory, but the easiest is to create a single text file.

Inventory data must include a name for each managed device, which will be avail-
able to the playbook in a variable called inventory_hostname. (The author likes to
use the device’s hostname for the inventory name, but that is not a requirement.)
Inventory can define groups of devices, a topic we will explore in Chapter 8.

Ansible’s default is to use the file /etc/ansible/hosts for inventory data. The author
prefers to have the inventory in the directory with the playbook(s) that use it. This
keeps all related files together, makes it easier to have different inventory for differ-
ent playbooks (discussed in Chapter 8), and makes it easier to keep the inventory
in source control with the playbooks (see the Appendix).

Create a file called inventory in your ~/aja2 directory and add a single line for each
test device (your names may be different from what is shown here, and you may
use fully qualified names if needed, such as bilbo.mycompany.com):

aragorn
bilbo

Inventory can also include variables, which define additional data about the de-
vice. For example, if your playbook needs to know the role of a device in the net-
work (is an EX or QFX acting only as a Layer 2 switch, or does it have Layer 3
interfaces and routing features enabled?) you can define a variable to hold that in-
formation, such as device_role=router. Though defining variables in the inventory
file is supported, and we will do so for some of our early playbooks, it is not rec-
ommended – it can be difficult to manage as the number of devices and variables
increases. We will explore a more scalable approach in Chapter 8.

Two variables that are often useful, and which have special meaning to Ansible,
are ansible_host and inventory_hostname.

The inventory_hostname variable contains the name of the host as specified in the
inventory file. This is often useful within playbooks; for example, if a playbook
saves a file related to a host, you may use inventory_hostname in the filename so it is
clear to which host the file relates.

The inventory_hostname variable is also often used to specify the device to be man-
aged by the playbook, but this only works correctly if name resolution works on

	 38	 Chapter 4: Running a Command – Your First Playbook

that name. In other words, Ansible needs to be able to resolve the author’s device
names bilbo and aragorn (from the inventory above) into their respective IP ad-
dresses in order to establish the SSH sessions to those devices. If you cannot rely
on name resolution, as might be the case with new devices not yet added to DNS,
or when setting up a new office that does not yet have connectivity back to corpo-
rate, you need an alternative. That alternative is the ansible_host variable.

If we do not provide a value for ansible_host, Ansible automatically populates an-
sible_host with the inventory name, but instead of relying on that fact we populate
ansible_host with the IP address of the target host. As we create our playbook, we
use the ansible_host variable to specify the managed device (we will see this
shortly).

NOTE	 Ansible versions prior to 2.0 used the name ansible_ssh_host for the same
variable. If you are using an older Ansible version, you should use the longer
name.

An inventory file with variables looks something like this:

aragorn    ansible_host=192.0.2.10
bilbo      ansible_host=198.51.100.5    device_role=l2_switch

Please update your inventory file to include an ansible_host variable and appropri-
ate IP address for at least one of your test devices.

File: uptime.yaml
Our first playbook is called uptime.yaml and will, when completed, gather and dis-
play the device uptime from our network devices. We will build the playbook in
several steps, explaining as we go.

Playbooks are Ansible’s “scripts,” describing a series of tasks that will be per-
formed on or by various hosts or devices. Playbooks contain plays; plays contain
tasks; tasks call Ansible modules to carry out operations.

Play: Playbooks consist of one or more plays. Each play defines a set of hosts or
devices on which the play will run, and one or more tasks to be performed on each
of those hosts. Plays may also declare variables or include other features needed
for the tasks in the play. If a playbook contains multiple plays then the tasks within
the different plays probably have different requirements, such as a different set of
hosts or devices.

Tasks: A task is a specific command to be executed. Tasks specify the Ansible mod-
ule (the command) to execute. Tasks usually include arguments that provide ad-
ditional details about how the module should run, such as the network device to
control, or the username and password for connecting to the device.

Before we create and run the playbook, we need to discuss one other topic.

	 39	 Path to the Python Interpreter

Path to the Python Interpreter
In Chapter 2, the author suggested that macOS users install Homebrew and install
Python and Ansible with the Homebrew environment. There is a downside to this
approach; it changes the path to the Python interpreter and any user-installed Py-
thon libraries, including Ansible and PyEZ.

Check to see where the active Python interpreter is located. From your system
shell, enter the command which python:

mbp15:aja2 sean$ which python
/usr/local/bin/python

On most UNIX-type systems, the default Python interpreter is /usr/bin/python. An-
sible assumes this will be the case and relies on that interpreter being present. If the
active Python interpreter is different, Ansible may be unable to find user-installed
Python libraries.

The author is using Homebrew, and you can see above that his Python interpreter
is /usr/local/bin/python, not /usr/bin/python. The playbook in the next section will
fail on the author’s system unless Ansible is told where to find the active Python
interpreter.

If your Ansible environment contains a variable called ansible_python_interpreter,
Ansible will read from that variable the path to the Python interpreter instead of
using the default. There are a number of places where this variable could be set;
one option is to put the variable setting in the inventory file.

If your which python command returned a path other than /usr/bin/python, append
the following boldfaced lines to your inventory file (use the correct path for your
system, as it may be different than the author’s system):

aragorn    ansible_host=192.0.2.10
bilbo

[all:vars]
ansible_python_interpreter=/usr/local/bin/python

The [all:vars] line introduces a new section in the inventory file containing vari-
ables that apply to all hosts. The next line sets the ansible_python_interpreter vari-
able to the correct path for your system (copy whatever which python returned).

TIP	 On most UNIX-type systems, including MacOS, you can use a trick to
avoid worrying about a system-specific path to the Python interpreter. Instead of
setting the ansible_python_interpreter variable to the actual path to the interpreter,
set it to /usr/bin/env python (note the space before “python”). This essentially tells
the operating system to use the env command to find the python interpreter based
on the system’s path.

	 40	 Chapter 4: Running a Command – Your First Playbook

Uptime Version 1.0
Create file uptime.yaml in your ~/aja2 directory and enter the following:

- name: Get device uptime
  hosts:
    - all
  connection: local
  gather_facts: no

  tasks:
    - debug: var=inventory_hostname

    - debug:
        var: ansible_host

Remember this is a YAML file and thus indentation is important. The following
screen capture of the author’s text editor shows the same playbook with a dot (.)
representing each space, so you can easily see the amount of indentation for each
line. The screen capture also shows line numbers to make it a bit easier to discuss
the playbook’s contents (do not enter the line numbers in your file), and “¬” for
line endings (newline characters).

Let’s talk about this playbook and what each line does. Reference the line numbers
shown in the screen capture.

Line 1: YAML documents start with ---.

Line 2: The name: line identifies the first play in the playbook. The name is not nor-
mally significant to Ansible, but it helps document what is happening both to the
engineer editing the playbook itself, and during playbook execution (we will see
the text “Get device uptime” in the output when we run the playbook).

The leading hyphen (“–”) means this line (and all subsequent lines until another
leading hyphen with the same indentation) is an element in a list, in this case the

	 41	 Uptime Version 1.0

list of plays within the playbook. This simple playbook has only one play; there is
no subsequent line with a leading hyphen with the same indentation, which in this
case is no indentation (the hypen is on the left margin).

Lines 3-4: Declare the hosts or devices against which the playbook will run. The
keyword all here is a default Ansible group that automatically includes all devices
in inventory. This is an array, so you can specify multiple devices from inventory;
for example, your playbook could say:

  hosts:
    - aragorn
    - bilbo

Because hosts: is indented at the same level as name: on the previous line, it is part
of the same dictionary, which is defining the first play.

Line 5: Ansible was originally built to work with servers and assumes that each
managed server can execute Python scripts; the host running Ansible (the control
machine) would convert a play into a Python script, upload the script to the man-
aged server, tell the server to run the script, and accept the results from the server.
This approach will not work with network devices.

To manage network devices, we need Ansible to run everything locally (on the
control machine). The line connection: local tells Ansible that it cannot upload a
Python script to the managed device; instead, it needs to run the playbook locally
on the Ansible control machine (even though modules called by the playbook may
connect to a network device in order to control it in some fashion).

Line 6: When managing servers, Ansible normally gathers facts—such as operat-
ing system, version, IP addresses, and more—from each server. This does not work
the same way with network devices because the tasks are running locally (per line
5), which means any facts gathered would be for the host running Ansible, not for
the network device. The line gather_facts: no overrides the default behavior; it tells
Ansible to not spend time gathering facts we do not need. (Later in the book we
provide examples where fact gathering is useful.)

Lines 7, 10: Blank lines are ignored by Ansible, but help humans see “sections”
within the playbook.

Line 8: The tasks: line introduces a list of one or more tasks to be executed. De-
spite the blank line above, this is part of the same play (the same dictionary) as
lines 2, 3, 5, and 6, because the indentation is the same and there has been no
(non-blank) line between with less indentation.

Line 9: The first task (note the leading hyphen – indicating this is a list element).
This task calls Ansible module debug, which prints information to screen during
playbook execution. The argument var=inventory_hostname tells debug it should print
the contents of the variable (var) called inventory_hostname.

	 42	 Chapter 4: Running a Command – Your First Playbook

Lines 11-12: Another task calling the debug module to print a variable’s contents,
but showing another way to provide arguments to a module. This task asks debug
to print the contents of variable ansible_host. Note that the argument var: ansible_
host is indented.

Let’s run the playbook and see what happens. The author’s inventory file contains
the following lines. Your hostnames and IP addresses may be different, and re-
member that the ansible_python_interpreter variable is needed only if your system’s
Python interpreter is in a non-standard location:

aragorn    ansible_host=192.0.2.10
bilbo

[all:vars]
ansible_python_interpreter=/usr/local/bin/python

The command ansible-playbook tells Ansible to execute the playbook whose name
is provided on the command line. Be sure you are in your ~/aja2 directory (where
your playbook and inventory files are located) then run the playbook:

mbp15:aja2 sean$ pwd
/Users/sean/aja2

mbp15:aja2 sean$ ansible-playbook uptime.yaml

PLAY [Get device uptime] ***

TASK [debug] ***
ok: [aragorn] => {
    "inventory_hostname": "aragorn"
}
ok: [bilbo] => {
    "inventory_hostname": "bilbo"
}

TASK [debug] ***
ok: [aragorn] => {
    "ansible_host": "192.0.2.10"
}
ok: [bilbo] => {
    "ansible_host": "bilbo"
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Let’s discuss the output from the playbook:

PLAY [Get device uptime] indicates the playbook is starting the play called “Get de-
vice uptime.” Note that “Get device uptime” is the value of the name: entry in the
play in the playbook; names are usually optional to Ansible but are helpful to
humans!

	 43	 Uptime Version 1.0

TASK [debug] indicates the playbook is starting a task. Our playbook did not pro-
vide names for the tasks, so Ansible displays the module name debug instead.

ok: [aragorn] and ok: [bilbo] indicate that the task completed successfully for each
device. Because the task is debug, which prints information to screen, the output
also includes JSON-formatted data showing the value of the requested variable.

The PLAY RECAP section shows a summary of the playbook: for each device, how
many tasks completed “ok” (successfully without changing anything), completed
“changed” (changed something), or did not complete at all because the target was
unreachable or there was another failure.

If your terminal shows color, some of the output should have been in green, similar
to the following screenshot. Green is good. Tasks that return an ok status will dis-
play in green, and in the Play Recap section, devices for which all tasks returned ok
will be in green:

As you look at the output, you can see that Ansible runs each task on each device
specified in the play. Typically, one task must finish for all devices before Ansible
will start the next task, and one play must finish before Ansible will start the next
play.

The first TASK [debug] displayed the contents of the inventory_hostname variable for
each device, which is simply the name for the device given in the inventory file.
Each device has a separate set of variables, and different devices will have variables
of the same name but containing different data.

The second TASK [debug] displayed the ansible_host variable for each device. This
output is interesting because aragorn has an IP address, while bilbo has a hostname.
This difference is because of the author’s inventory file, which contains:

	 44	 Chapter 4: Running a Command – Your First Playbook

aragorn    ansible_host=192.0.2.10
bilbo

The inventory line for device aragorn assigns a value, an IP address, to the ansible_
host variable for the device, and we get that IP address in the playbook’s output.
Device bilbo does not provide a value for ansible_host, so Ansible sets it to the
same value as inventory_hostname automatically.

If your debug output includes “VARIABLE IS NOT DEFINED!” instead of a value, check
the spelling of the appropriate variable name. The following output illustrates the
result of misspelling the ansible_host variable in the playbook (second task):

mbp15:aja2 sean$ ansible-playbook uptime.yaml

PLAY [Get device uptime] ***

TASK [debug] ***
ok: [aragorn] => {
    "inventory_hostname": "aragorn"
}
ok: [bilbo] => {
    "inventory_hostname": "bilbo"
}

TASK [debug] ***
ok: [aragorn] => {
    "ansible_hst": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "ansible_hst": "VARIABLE IS NOT DEFINED!"
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Uptime Version 1.1
Our uptime.yaml playbook runs and displays output, but does not yet communicate
with our device to gather any data. Let’s fix that!

We use the Galaxy module juniper_junos_command to communicate with our devices
and execute the “show system uptime” command. This module needs several ar-
guments: the command to execute, the device to communicate with, and creden-
tials for authenticating with the device.

Because we need to authenticate with the devices, our playbook must have a user-
name and password. It is poor practice to code those into the playbook; instead,
our playbook will prompt for input (ask the user to provide that data).

Modify uptime.yaml so it looks like the following:

	 45	 Uptime Version 1.1

- name: Get device uptime
  hosts:
    - all
  roles:
    - Juniper.junos
  connection: local
  gather_facts: no

  vars_prompt:
    - name: username
      prompt: Junos Username
      private: no

    - name: password
      prompt: Junos Password
      private: yes

  tasks:
    - name: get uptime using galaxy module
      juniper_junos_command:
        commands:
          - show system uptime
        provider:
          host: "{{ ansible_host }}"
          port: 22
          user: "{{ username }}"
          passwd: "{{ password }}"

A screen capture showing the same playbook with line numbers, etc:

	 46	 Chapter 4: Running a Command – Your First Playbook

Again, let’s discuss the playbook’s contents by line number, focusing on the new or
changed lines.

Lines 5-6: Include the Juniper.junos Galaxy modules, which enable Ansible to com-
municate with Junos devices. Before we can use Galaxy modules, we need to im-
port their parent role into the play. A roles: list tells Ansible to include the
functions in the specified roles. We discuss roles in detail in Chapter 12.

Line 10: The vars_prompt: line introduces a list, each element of which is a diction-
ary, that tells Ansible to prompt the user for input and assign that input to specific
variables. These variables are associated with the play, not a device, and are avail-
able to all devices in the play.

Variable names should start with a letter and can contain letters, numerals, and the
underscore (“_”) character. Valid variable names include my_data and Results1; in-
valid variable names include 2day (starts with a numeral) and task-results (contains
a hyphen). Variable names are case sensitive: test1 and Test1 are different
variables.

Lines 11-13: The first dictionary in the vars_prompt list. Line 11 tells Ansible to put
the user’s input in a variable named username. Line 12 tells Ansible to display “Ju-
nos Username” as the prompt for input. Line 13 says the input is not private (the
user will be able to see what they type).

Lines 15-17: The second dictionary in vars_prompt list. This time the input is stored
in a variable called password and is private, meaning Ansible will not display what
the user is typing.

Lines 20-28: Define a task named “get uptime using galaxy module” that calls the
Ansible module juniper_junos_command. This task passes two arguments to juniper_
junos_command. The first argument is commands, which is a list of Junos commands to
execute (our playbook has only one element in the list); the second argument is
provider, which is a dictionary that describes how to access the target device.

The provider dictionary (lines 24-28) has four entries (key:value pairs):

host (line 25) specifies the device on which Ansible should execute the commands;
this is assigned the value of the device’s ansible_host variable.

port (line 26) specifies the TCP port that Ansible should use for the connection; we
specify the standard SSH port 22. We discuss the connection further in Chapter 5.

user and passwd (lines 27 and 28) are the credentials for accessing the device; these
are assigned the values provided by the user in the vars_prompt portion of the play-
book via the username and password variables.

As you can see in lines 25, 27, and 28, Ansible uses {{ variable_name }} to say “put
the value of variable variable_name here.” However, YAML considers { } to be a

	 47	 Uptime Version 1.2

dictionary, which would result in an error because {{ variable_name }} is not a valid
dictionary. To make YAML happy, we need to include the variable reference in
quotes – "{{ }}" – so YAML sees it as a string, leaving interpretation of the variable
to Ansible.

Let’s run the playbook!

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=1    changed=0    unreachable=0    failed=0

Ansible says it worked...but where are the uptimes?

NOTE	 Despite the fact that the juniper_junos_command module accepts a Junos
CLI command, it does not connect to a Junos device’s CLI and run the command
the way you would. It actually calls the Junos API (application programming inter-
face), specifically an RPC (remote procedure call) called <command> that executes
the CLI command. Chapter 5 introduces RPCs in more detail.

Uptime Version 1.2
Previously we saw that we can use the debug module to display the contents of a
variable, but what variable contains the devices’ uptimes?

As the playbook is currently constructed, the uptime values are lost. We need to
assign the results of the juniper_junos_command module to a variable, which we can
do by adding register: uptime to that task, where uptime is the name of the variable
in which the task’s output will be stored:

- name: get uptime using galaxy module
  juniper_junos_command:
    commands:
      - show system uptime
    provider:
      host: "{{ ansible_host }}"
      port: 22
      user: "{{ username }}"
      passwd: "{{ password }}"
  register: uptime

	 48	 Chapter 4: Running a Command – Your First Playbook

Note that the register argument is indented to the same level as the task’s name and
module (juniper_junos_command). Register is an argument for the task itself and needs
to be at the same indentation level as other task entries. By contrast, commands and
provider are arguments to the module juniper_junos_command, which is why they are
indented further than the module’s name.

We also need to add a task that calls the debug module to display the contents of the
new uptime variable. This time let’s give the debug task a name:

- name: display uptimes
  debug:
    var: uptime

The complete modified playbook (lines 29–33 were added):

Let’s run the playbook:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>

	 49	 Uptime Version 1.2

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]
ok: [bilbo]

TASK [display uptimes] *** 
ok: [aragorn] => {
    "uptime": {
        "changed": false,
        "command": "show system uptime",
        "failed": false,
        "format": "text",
        "msg": "The command executed successfully.",
 "stdout": "\nCurrent time: 2018-02-26 18:34:07 UTC\nTime Source: NTP CLOCK \nSystem booted:
2018-02-26 07:10:44 UTC (11:23:23 ago)\nProtocols started: 2018-02-26 07:10:45 UTC (11:23:22 ago)\
nLast configured: 2018-02-26 03:04:10 UTC (15:29:57 ago) by sean\n 6:34PM up 11:23, 1 user, load
averages: 0.00, 0.00, 0.00\n",
        "stdout_lines": [
            "",
            "Current time: 2018-02-26 18:34:07 UTC",
            "Time Source:  NTP CLOCK ",
            "System booted: 2018-02-26 07:10:44 UTC (11:23:23 ago)",
            "Protocols started: 2018-02-26 07:10:45 UTC (11:23:22 ago)",
            "Last configured: 2018-02-26 03:04:10 UTC (15:29:57 ago) by sean",
            " 6:34PM  up 11:23, 1 user, load averages: 0.00, 0.00, 0.00"
        ]
    }
}
ok: [bilbo] => {
    "uptime": {
        "changed": false,
        "command": "show system uptime",
        "failed": false,
        "format": "text",
        "msg": "The command executed successfully.",
        "stdout": "\
nfpc0:\n--\nCurrent time:
2018-02-26 18:34:12 UTC\nSystem booted: 2018-02-25 18:57:45 UTC (23:36:27 ago)\nProtocols started:
2018-02-25 19:00:54 UTC (23:33:18 ago)\nLast configured: 2018-02-26 16:17:54 UTC (02:16:18 ago) by
sean\n 6:34PM up 23:36, 1 user, load averages: 0.08, 0.03, 0.01\n",
  "stdout_lines": [
            "",
            "fpc0:",
            "--",
            "Current time: 2018-02-26 18:34:12 UTC",
            "System booted: 2018-02-25 18:57:45 UTC (23:36:27 ago)",
            "Protocols started: 2018-02-25 19:00:54 UTC (23:33:18 ago)",
            "Last configured: 2018-02-26 16:17:54 UTC (02:16:18 ago) by sean",
            " 6:34PM  up 23:36, 1 user, load averages: 0.08, 0.03, 0.01"
        ]
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

	 50	 Chapter 4: Running a Command – Your First Playbook

Notice that the debug task now has a name: TASK [display uptimes].

Notice that the output of the display uptimes task is in JSON format, and that each
device has its own uptime variable, registered (created) by the “get uptime using
galaxy module” task. The uptime variables each contain a dictionary with a num-
ber of values, including the following:

stdout – the complete Junos command output as a single string.

stdout_lines – a list (array) where each element is one line of Junos command
output.

changed – Boolean true if the module changed something (for example, the device’s
configuration), false otherwise.

failed – Boolean true if the module reported a failure, false otherwise.

format – the type of output, where “text” indicates human-readable text as seen at
the Junos CLI. May also be “xml” or “json” – we discuss those options in Chapter
5.

MORE?	 Notice that the commands argument on line 22 seems to introduce a list of
commands (note the leading hyphen on the command “- show system uptime”),
though our example has only a single command in the list. The juniper_junos_com-
mand module supports executing multiple commands in one task (one call to the
module). After you understand the use of this module with a single command, you
may wish to read the online documentation to understand how the module
handles a list of commands and their results.

Uptime Version 1.3
We do not need the Junos command’s output twice. Can we have debug display
just the stdout_lines part of the uptime dictionary? Yes, we can, by referencing just
that element of the uptime dictionary.

The standard approach to reference a specific dictionary entry, very like what a
Python programmer would do, is to put the key for the desired dictionary entry in
square brackets after the variable name. Because the key is a string it needs to be
quoted:

- name: display uptimes (Python style)
  debug:
    var: uptime['stdout_lines']

NOTE	 You can use single-quotes (' ') or double-quotes (" ") around the key
string.

	 51	 Uptime Version 1.3

Ansible supports a shortcut, however: use a period to join the variable name and
the key for the desired dictionary entry:

- name: display uptimes (Ansible shortcut)
  debug:
    var: uptime.stdout_lines

The modified playbook is shown below. Both approaches discussed above are
shown (see lines 33 and 37) but the first approach is commented out: any line
whose first non-space character is a hash or pound symbol – ‘#’ – is a comment
and is ignored by Ansible. Comments are normally used to include notes about the
playbook within the playbook itself, as documentation for anyone editing the
playbook, but can also be used as shown here to disable (usually temporarily) spe-
cific lines of the playbook:

	 52	 Chapter 4: Running a Command – Your First Playbook

Run the playbook again. This time the output for the “display uptimes” task
should look something like the following; notice how much shorter this is, while
still providing the information we wanted:

TASK [display uptimes (Ansible shortcut)] **************************************
ok: [aragorn] => {
    "uptime.stdout_lines": [
        "",
        "Current time: 2018-02-26 19:22:08 UTC",
        "Time Source:  NTP CLOCK ",
        "System booted: 2018-02-26 07:10:44 UTC (12:11:24 ago)",
        "Protocols started: 2018-02-26 07:10:45 UTC (12:11:23 ago)",
        "Last configured: 2018-02-26 03:04:10 UTC (16:17:58 ago) by sean",
        " 7:22PM  up 12:11, 1 user, load averages: 0.08, 0.02, 0.01"
    ]
}
ok: [bilbo] => {
    "uptime.stdout_lines": [
        "",
        "fpc0:",
        "--",
        "Current time: 2018-02-26 19:22:13 UTC",
        "System booted: 2018-02-25 18:57:45 UTC (1d 00:24 ago)",
        "Protocols started: 2018-02-25 19:00:54 UTC (1d 00:21 ago)",
        "Last configured: 2018-02-26 16:17:54 UTC (03:04:19 ago) by sean",
        " 7:22PM  up 1 day, 24 mins, 1 user, load averages: 0.24, 0.06, 0.02"
    ]
}

Uncomment lines 31–33 (delete the leading ‘#’ and the space after it) and comment
out lines 35–37 (add a leading ‘#’). Run the playbook again. The output should be
essentially the same, demonstrating that the two approaches for referencing entries
in a dictionary are equivalent.

You can take this a step further, displaying a specific element from the uptime.std-
out_lines list, by appending the index of the element in square brackets. The first
list element has an index of 0, the next an index of 1, etc. So, for example, uptime.
stdout_lines[2] would reference element at index 2 (the third element) of the list.
With some commands, which have very consistent output across different device
types, this may give us exactly what we want.

Unfortunately, the output of this command on different devices puts similar infor-
mation in different indexes of the list. For example, if we specify we want only ele-
ment 5 by modifying the playbook as follows:

    - name: display uptimes (Ansible shortcut)
      debug:
        var: uptime.stdout_lines[5]

We get output similar to the following:

...
TASK [display uptimes (Ansible shortcut)] **************************************
ok: [aragorn] => {
    "uptime.stdout_lines[5]": "Last configured: 2018-02-27 19:38:47 UTC (2d 08:55 ago) by sean"
}

	 53	 Errors During Playbook Execution

ok: [bilbo] => {
    "uptime.stdout_lines[5]": "Protocols started: 2018-02-25 19:00:54 UTC (4d 23:49 ago)"
}
...

Observe that we get the “Last configured” information for aragorn, but the “Pro-
tocols started” information for bilbo. We discuss two different approaches in
Chapter 5 that will let us get the data we want despite output differences.

Errors During Playbook Execution
What happens when problems occur during playbook execution? For purposes of
this section we are focusing on problems external to the playbook, such as un-
reachable devices or authentication errors, not syntax or other errors within the
playbook.

Ansible tracks errors separately for each device. When an error related to a par-
ticular device occurs, Ansible stops processing that device; subsequent tasks will
not execute for it. However, if other devices have not had errors, tasks for those
devices may be executed.

TIP	 It is possible, and occasionally useful, to have Ansible ignore errors in a
particular task and continue processing a device despite errors, by adding the
argument ignore_errors: yes to the task where errors are expected.

Unreachable Device
Unplug the network cable from one of your test devices – for this example, the
switch bilbo was disconnected – then run the playbook again. The output should
look something like the following image:

	 54	 Chapter 4: Running a Command – Your First Playbook

The results for TASK [get uptime using galaxy module] show that aragorn succeeded
– ok: [aragorn] – but bilbo failed – fatal: [bilbo] followed by an error message. In
addition, color terminals display fatal task results in red, and also show red for
that device in the PLAY RECAP section of output.

The juniper_junos_command module returned the error message “Unable to make a
PyEZ connection: ConnectTimeoutError(bilbo)” seen above for bilbo. The “Con-
nectTimeoutError” part makes sense – because bilbo was unreachable (discon-
nected) any attempt to connect to bilbo would have timed out. The reference to “a
PyEZ connection” illustrates that Juniper’s Galaxy modules rely on Juniper’s PyEZ
connection framework.

The results for TASK [display uptimes] contains results for only aragorn. Because
bilbo had an error in the previous task, Ansible stopped processing that device and
thus had no results for bilbo for subsequent tasks. You can see this in the PLAY RECAP
section – bilbo has only one (failed) task, while aragorn has two (ok) tasks.

Authentication Error
Re-connect your network device and give it a moment to restore communication;
then run the playbook again. This time, enter invalid credentials at the username
and password prompts:

	 55	 Limiting Devices

Note that the results for TASK [get uptime using galaxy module] show both devices
failed: fatal: [aragorn] and fatal: [bilbo], each followed by the error message
“Unable to make a PyEZ connection: ConnectAuthError.” The “ConnectAuthEr-
ror” part of the message shows we had an authentication failure.

Notice that TASK [display uptimes] never executed (it does not appear in the out-
put). Because there were no devices without errors after the first task, there were
no devices against which to execute the second task.

Limiting Devices
It is often desirable to run a playbook against a subset of the devices in inventory.
For example, your inventory for your production network may contain hundreds
of devices across dozens of physical locations, but you want to run the playbook
against only the Boston devices.

One approach to doing this is to edit the hosts: list in the playbook itself, replacing
the default group all with one or more devices:

- name: Get device uptime
 hosts:
 - aragorn
 - newdevice
...

The problem with this approach is that it requires updating the playbook to
change the devices being managed, and doing so in a way that may not be obvious
to someone else who uses the playbook and expects it to work on all, or a different
subset of, your devices. Also, if a playbook contains multiple plays affecting the
devices, you would need to make a similar update in each play.

A better approach is to leave the playbook alone, with hosts: set to – all, and use
the --limit command line argument to tell Ansible to run against limited set of
devices:

	 56	 Chapter 4: Running a Command – Your First Playbook

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]

TASK [display uptimes (Ansible shortcut)] **************************************
ok: [aragorn] => {
    "uptime.stdout_lines": [
        "",
        "Current time: 2018-02-26 21:12:37 UTC",
        "Time Source:  NTP CLOCK ",
        "System booted: 2018-02-26 07:10:44 UTC (14:01:53 ago)",
        "Protocols started: 2018-02-26 07:10:45 UTC (14:01:52 ago)",
        "Last configured: 2018-02-26 03:04:10 UTC (18:08:27 ago) by sean",
        " 9:12PM  up 14:02, 1 user, load averages: 0.00, 0.00, 0.00"
    ]
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

Notice how Ansible ran against only aragorn, not against bilbo, even though both
devices are in inventory.

The --limit argument can accept multiple inventory names separated with com-
mas, and can accept the wildcards ‘*’ (match zero or more characters) and ‘?’
(match any single character). In Chapter 8, we discuss inventory groups; --limit
can accept group names also. Two command-line examples:

ansible-playbook uptime.yaml --limit=aragorn,newdevice

ansible-playbook uptime.yaml --limit='b*'

Note that when using a wildcard, you should enclose the limit value in quotes to
prevent the shell from attempting to interpret the wildcard.

When using --limit, it is sometimes helpful to verify which devices Ansible will
manage before running the playbook (and possibly missing devices or managing
some you did not expect). You can do this by adding the --list-hosts argument;
this argument causes Ansible to display which devices it will manage, but not actu-
ally run the playbook. For example:

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit='b*' --list-hosts

playbook: uptime.yaml

  play #1 (all): Get device uptime	TAGS: []
    pattern: [u'all']
    hosts (1):
      bilbo

	 57	 Repeating a Playbook for Devices with Errors

Repeating a Playbook for Devices with Errors
When a playbook encounters an error for a device during a task, it records that
device in a “retry” file, a file whose name matches the playbook but with the ex-
tension .retry instead of .yaml. By default, “retry” files are stored in the playbook
directory.

TIP	 You can change the directory where Ansible saves “retry” files by adding
the option retry_files_save_path to the [defaults] section of the ansible.cfg file.

Earlier in this chapter we forced some errors using the uptime.yaml playbook, so
you should have an uptime.retry file:

mbp15:aja2 sean$ ls *.retry
uptime.retry

mbp15:aja2 sean$ cat uptime.retry
aragorn
bilbo

Disconnect one or more of your devices – the author disconnected bilbo – and re-
run the uptime.yaml playbook. Display the contents of uptime.retry:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]
fatal: [bilbo]: FAILED! => {"changed": false, "msg": "Unable to make a PyEZ connection:
ConnectTimeoutError(bilbo)"}

TASK [display uptimes (Ansible shortcut)] **************************************
ok: [aragorn] => {
    "uptime.stdout_lines": [
        "",
        "Current time: 2018-02-26 21:30:05 UTC",
        "Time Source:  NTP CLOCK ",
        "System booted: 2018-02-26 07:10:44 UTC (14:19:21 ago)",
        "Protocols started: 2018-02-26 07:10:45 UTC (14:19:20 ago)",
        "Last configured: 2018-02-26 03:04:10 UTC (18:25:55 ago) by sean",
        " 9:30PM  up 14:19, 1 user, load averages: 0.05, 0.02, 0.00"
    ]
}
	 to retry, use: --limit @/Users/sean/aja2/uptime.retry

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=0    changed=0    unreachable=0    failed=1

mbp15:aja2 sean$ cat uptime.retry
bilbo

	 58	 Chapter 4: Running a Command – Your First Playbook

Observe that the uptime.retry file lists the inventory_hostname for the device, bilbo,
which recorded a fatal result for any task.

Re-connect your test device(s).

How can we use the “retry” file? We can re-run the playbook for only the failed
devices. To do this we use the --limit option and reference the “retry” file, prefix-
ing the filename with an “at sign” (“@”), like this:

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=@uptime.retry
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [bilbo]

TASK [display uptimes (Ansible shortcut)] **************************************
ok: [bilbo] => {
    "uptime.stdout_lines": [
        "",
        "fpc0:",
        "--",
        "Current time: 2018-02-26 21:32:57 UTC",
        "System booted: 2018-02-25 18:57:45 UTC (1d 02:35 ago)",
        "Protocols started: 2018-02-25 19:00:54 UTC (1d 02:32 ago)",
        "Last configured: 2018-02-26 21:01:01 UTC (00:31:56 ago) by sean",
        " 9:32PM  up 1 day,  2:35, 0 users, load averages: 0.08, 0.02, 0.01"
    ]
}

PLAY RECAP ***
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Observe that only the device(s) listed in the “retry” file is (are) processed.

Ansible provides a reminder about this capability in the playbook output – look
back at the output with the failure on bilbo and note the line, just before the Play
Recap section, that says “to retry, use: --limit @/Users/sean/aja2/uptime.retry.”

With only one failed device out of only two test devices, it would be easy to just
specify --limit=bilbo for the repeat run. Consider, however, what it would be like
when running a playbook against 100 devices, a dozen of which fail and need to
be re-tried. Referencing a single .retry file is much faster and less error-prone than
manually finding and “--limiting” the failed devices in a long list of results.

Debugging Playbooks
Debugging a playbook is part skill and part art. This section provides a few tips
that can help, but practice and experience are the best teachers. Google or Bing are
often a big help also.

	 59	 Debugging Playbooks

Syntax and Semantic Errors
A syntax error is when the “grammar” of the playbook is incorrect; for example, a
colon (:) is missing or the indentation of a line is incorrect. A semantic error is
when the syntax is valid, but something still does not make sense; for example, the
playbook tries to read the value of a variable that has not yet been assigned a
value.

Usually, syntax errors will be detected and reported, and the playbook will abrupt-
ly terminate. Semantic errors may or may not be detected and reported; sometimes
the playbook will complete but the results will not be what you expected.

Let’s introduce a couple of errors into the playbook. Introduce each of the follow-
ing errors one at a time, and reverse each before proceeding to the next one. The
line numbers refer to the screen capture of uptime.yaml 1.3 from earlier in this
chapter.

Missing Hosts
Delete the hosts: dictionary, lines 3 and 4, from the playbook. When you run the
playbook, you should get something like this:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>
ERROR! the field 'hosts' is required but was not set

The error message “the field 'hosts' is required but was not set” exactly describes
the problem we introduced.

Incorrect Indentation
Remove two spaces from the beginning of lines 15-17, the password prompt. The
vars_prompt section of the playbook should look like this:

    vars_prompt:
      - name: username
        prompt: Junos Username
        private: no

    - name: password
      prompt: Junos Password
      private: yes

When you run the playbook, you should get something like this:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/Users/sean/aja2/uptime.yaml': line 15, column 5, but may
be elsewhere in the file depending on the exact syntax problem.

	 60	 Chapter 4: Running a Command – Your First Playbook

The offending line appears to be:

    - name: password
    ^ here

Recall that playbooks are YAML files, and YAML is sensitive to correct indenta-
tion. Because the password prompt lines were not correctly indented, Ansible de-
tected a problem trying to load the playbook.

Unmatched (missing) Quotation Mark
Delete the quotation mark from the end of line 25; the revised line should be:

host: "{{ ansible_host }}

When you run the playbook, you should get something like this:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
ERROR! Syntax Error while loading YAML.

The error appears to have been in '/Users/sean/aja2/uptime.yaml': line 27, column 20, but may
be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

            port: 22
            user: "{{ username }}"
                   ^ here
We could be wrong, but this one looks like it might be an issue with
missing quotes.  Always quote template expression brackets when they
start a value. For instance:

    with_items:
      - {{ foo }}

Should be written as:

    with_items:
      - "{{ foo }}"

This error message is almost right: the problem is missing quotes, but the error
message identifies line 27 as the likely problem, not line 25. Ansible cannot always
identify the exact location of a syntax error, even if it correctly identifies the nature
of the error.

In the author’s experience, Ansible’s error messages are usually pretty good. Please
keep in mind that the exact wording of error messages may change in different ver-
sions of Ansible, so what you see when you perform these examples might be a bit
different from what is shown above.

	 61	 Debugging Playbooks

Verbose Mode
Ansible offers a “verbose mode” when running a playbook that provides more in-
formation about what is happening. To enable verbose mode, add the command-
line argument –v to the ansible-playbook command, like this:

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=bilbo -v
Using /Users/sean/aja2/ansible.cfg as config file
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [bilbo] => {"changed": false, "command": "show system uptime", "format": "text", "msg": "The
command executed successfully.", "stdout": "\
nfpc0:\n--\nCurrent time:
2018-02-27 17:00:18 UTC\nSystem booted: 2018-02-25 18:57:45 UTC (1d 22:02 ago)\nProtocols started:
2018-02-25 19:00:54 UTC (1d 21:59 ago)\nLast configured: 2018-02-26 21:01:01 UTC (19:59:17 ago) by
sean\n 5:00PM up 1 day, 22:03, 0 users, load averages: 0.08, 0.02, 0.01\n", "stdout_lines": ["",
"fpc0:", "--", "Current time:
2018-02-27 17:00:18 UTC", "System booted: 2018-02-25 18:57:45 UTC (1d 22:02 ago)", "Protocols started:
2018-02-25 19:00:54 UTC (1d 21:59 ago)", "Last configured: 2018-02-26 21:01:01 UTC (19:59:17 ago) by
sean", " 5:00PM up 1 day, 22:03, 0 users, load averages: 0.08, 0.02, 0.01"]}

TASK [display uptimes (Ansible shortcut)] **************************************
ok: [bilbo] => {
    "uptime.stdout_lines": [
        "",
        "fpc0:",
        "--",
        "Current time: 2018-02-27 17:00:18 UTC",
        "System booted: 2018-02-25 18:57:45 UTC (1d 22:02 ago)",
        "Protocols started: 2018-02-25 19:00:54 UTC (1d 21:59 ago)",
        "Last configured: 2018-02-26 21:01:01 UTC (19:59:17 ago) by sean",
        " 5:00PM  up 1 day, 22:03, 0 users, load averages: 0.08, 0.02, 0.01"
    ]
}

PLAY RECAP ***
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Observe the additional details provided by verbose mode (–v), including the name
of the config file and the data returned by the juniper_junos_command module.

You can get still more detail by using –vv or –vvv; each “v” adds a little more “ver-
bosity” to the playbook output.

Verbosity Argument to Debug Module
Recall that our original version of the uptime.yaml playbook used the debug module
to display the values of the ansible_host and inventory_hostname variables. We re-
moved those calls to debug because we really did not need them, but it might be nice
to have the value ansible_host displayed during any future troubleshooting because

	 62	 Chapter 4: Running a Command – Your First Playbook

we pass that value to the juniper_junos_command module. However, if we add the de-
bug calls back in the way we had them originally, the playbook would always dis-
play the variable’s contents, even when we were not troubleshooting, which means
most of the time we would be getting information we do not need.

We can ask debug to display the variable’s data only when we have enabled verbose
mode as described above. Add lines 20-24 shown in the screen capture below into
your uptime.yaml playbook:

The number given with the verbosity argument specifies the minimum number of
“v” that needs to be specified when enabling verbose mode before the debug mod-
ule will print the variable’s value: verbosity: 1 displays the value with -v, -vv or
-vvv, while verbosity: 3 displays the value only with –vvv.

When you run the playbook with (–v) Ansible will run the task and display the an-
sible_host variables:

mbp15:aja2 sean$ ansible-playbook uptime.yaml -v
...
TASK [show ansible_host in verbose mode] ***************************************
ok: [aragorn] => {
    "ansible_host": "192.0.2.10"
}
ok: [bilbo] => {
    "ansible_host": "bilbo"
}
...

However, when you run the playbook without enabling verbose mode (no –v argu-
ment), Ansible will skip that task for each host:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
...
TASK [show ansible_host in verbose mode] ***************************************
skipping: [aragorn]
skipping: [bilbo]
...

Logging
Ansible can log the results of playbooks to a log file, including some information
that is not displayed on screen. You can enable this feature by adding the log_path

	 63	 Debugging Playbooks

parameter to the ansible.cfg file, like this (adjust the path and filename as needed):

[defaults]
inventory = inventory
host_key_checking = False
log_path = ~/aja2/ansible.log

Now when you run the playbook (not shown), Ansible will log the playbook’s out-
put and some additional details:

mbp15:aja2 sean$ cat ansible.log
2018-02-27 12:19:39,833 p=54882 u=sean | PLAY [Get device uptime] ***********************************

2018-02-27 12:19:39,849 p=54882 u=sean | TASK [show ansible_host in verbose mode] *******************

2018-02-27 12:19:39,881 p=54882 u=sean | skipping: [aragorn]
2018-02-27 12:19:39,889 p=54882 u=sean | skipping: [bilbo]
2018-02-27 12:19:39,999 p=54882 u=sean | TASK [get uptime using galaxy module] **********************

2018-02-27 12:19:42,047 p=54882 u=sean | ok: [aragorn]
2018-02-27 12:19:47,706 p=54882 u=sean | ok: [bilbo]
2018-02-27 12:19:47,712 p=54882 u=sean | TASK [display uptimes (Ansible shortcut)] ******************

2018-02-27 12:19:47,751 p=54882 u=sean |  ok: [aragorn] => {
    "uptime.stdout_lines": [
        "",
        "Current time: 2018-02-27 17:19:41 UTC",
        "Time Source:  NTP CLOCK ",
        "System booted: 2018-02-26 10:22:47 UTC (1d 06:56 ago)",
        "Protocols started: 2018-02-26 10:22:48 UTC (1d 06:56 ago)",
        "Last configured: 2018-02-26 03:04:10 UTC (1d 14:15 ago) by sean",
        " 5:19PM  up 1 day,  6:57, 1 user, load averages: 0.00, 0.00, 0.00"
    ]
}
2018-02-27 12:19:47,757 p=54882 u=sean |  ok: [bilbo] => {
    "uptime.stdout_lines": [
        "",
        "fpc0:",
        "--",
        "Current time: 2018-02-27 17:19:46 UTC",
        "System booted: 2018-02-25 18:57:45 UTC (1d 22:22 ago)",
        "Protocols started: 2018-02-25 19:00:54 UTC (1d 22:18 ago)",
        "Last configured: 2018-02-26 21:01:01 UTC (20:18:45 ago) by sean",
        " 5:19PM  up 1 day, 22:22, 0 users, load averages: 0.08, 0.04, 0.01"
    ]
}
2018-02-27 12:19:47,760 p=54882 u=sean | PLAY RECAP **

2018-02-27 12:19:47,761 p=54882 u=sean | aragorn : ok=2 changed=0 unreachable=0
failed=0
2018-02-27 12:19:47,761 p=54882 u=sean | bilbo : ok=2 changed=0 unreachable=0
failed=0

CAUTION	 Ansible does not automatically clear or delete the log file, which
means that over time it can grow quite large. Consider enabling logging only when
needed to troubleshoot a problem or remember to delete the file occasionally.

	 64	 Chapter 4: Running a Command – Your First Playbook

References
Example Ansible playbooks by another “Juniperite,” Khelil Sator:
https://github.com/ksator/junos-automation-with-ansible

Juniper’s documentation for their Galaxy modules:
http://junos-ansible-modules.readthedocs.io/en/stable/index.html

https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/
information-products/pathway-pages/index.html

Ansible glossary:
http://docs.ansible.com/ansible/glossary.html.

More about Ansible’s inventory file:
http://docs.ansible.com/ansible/latest/intro_inventory.html

More about Ansible’s configuration file:
http://docs.ansible.com/ansible/latest/intro_configuration.html

More about prompting for input:
http://docs.ansible.com/ansible/latest/playbooks_prompts.html

More about variables:
http://docs.ansible.com/ansible/latest/playbooks_variables.html

https://github.com/ksator/junos-automation-with-ansible
http://junos-ansible-modules.readthedocs.io/en/stable/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/information-products/pathway-pages/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/information-products/pathway-pages/index.html
http://docs.ansible.com/ansible/glossary.html
http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/intro_configuration.html
http://docs.ansible.com/ansible/latest/playbooks_prompts.html
http://docs.ansible.com/ansible/latest/playbooks_variables.html

In Chapter 4, you executed a Junos CLI command using an Ansible playbook.
That playbook provided an easy introduction to Ansible, including some options
available when running playbooks and some troubleshooting tips.

This chapter starts with a little theory about the Junos management architecture,
briefly introducing RPC, NETCONF, and XML. We then revise the playbook from
Chapter 4 to explore more options for running commands on Junos devices using
Ansible.

Junos Management Architecture
Junos includes a management daemon (process), MGD, that is responsible for ex-
ecuting commands. Those commands may come from various sources, including
the Junos CLI.

Communication with MGD uses remote procedure calls (RPC), a mechanism for
letting one process (e.g. the CLI) request services from another process (e.g.
MGD). The RPCs for communicating with MGD use XML (eXtensible Markup
Language) to organize the request and the response.

XML
XML is a text-based language for encoding data that is both human- and comput-
er-readable. In some respects, XML serves a similar purpose to JSON and YAML,
though XML looks quite different. This section briefly discusses the structure of
XML data, and the References section at the end of the chapter contains links for
those who wish to investigate it further.

Chapter 5

Junos, RPC, NETCONF, and XML

	 66	 Chapter 5: Junos, RPC, NETCONF, and XML

When you execute a command at the Junos CLI, the CLI normally takes the XML
data from MGD and reformats it in a human-friendly format. For example:

sean@aragorn> show system alarms
1 alarms currently active
Alarm time               Class  Description
2018-02-25 15:35:46 UTC  Minor  Rescue configuration is not set

However, you can ask the CLI to display the XML data by appending “ | display
xml” to the command. For example:

sean@aragorn> show system alarms | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1X49/junos">
    <alarm-information xmlns="http://xml.juniper.net/junos/15.1X49/junos-alarm">
        <alarm-summary>
            <active-alarm-count>1</active-alarm-count>
        </alarm-summary>
        <alarm-detail>
            <alarm-time junos:seconds="1519572946">
                2018-02-25 15:35:46
            </alarm-time>
            <alarm-class>Minor</alarm-class>
            <alarm-description>Rescue configuration is not set</alarm-description>
            <alarm-short-description>no-rescue</alarm-short-description>
            <alarm-type>Configuration</alarm-type>
        </alarm-detail>
    </alarm-information>
    <cli>
        <banner></banner>
    </cli>
</rpc-reply>

Note that the XML data has a definite structure. (If you are familiar with HTML,
you probably noticed that XML is similar.) XML data consists of one or more ele-
ments, and each element is delimited by tags, the names within the angle brackets
< >.

There are three types of tags:

Opening tags identify the start of an element. For example, the tag <alarm-summary>
indicates the start of an element named alarm-summary. The opening tag must
contain the name of the element, but can also contain additional information
called attributes, such as junos:seconds="1500657456" in the alarm-time tag above.

Closing tags identify the end of an element. Closing tags have a slash (/) before the
element’s name, such as </alarm-summary>. A closing tag is paired with an opening
tag and must have the same element name.

Empty tags are a shortcut way of representing an empty element (an element with
no contents) and have a slash after the element name, such as <test/>. (The XML
above does not contain an empty tag.) Empty tags are a shortcut for an opening
and closing tag pair with nothing between them, such as <test></test>.

	 67	 Junos Management Architecture

The XML above contains an element rpc-reply, which contains elements alarm-
information and cli. Element alarm-information contains elements alarm-summary and
alarm-details. Element alarm-detail contains several additional elements, each of
which contains additional information called CDATA, XML’s term for character
data, such as the word Minor in the alarm-class element.

Note again the name of the outermost, or root, element: rpc-reply. The name rpc-
reply is a reminder that this XML data is a response to a remote procedure call
(RPC) from the CLI to the MGD process. We will revisit this idea in a few
paragraphs.

NETCONF
The Network Configuration Protocol (NETCONF) is a standard protocol for re-
mote administration of network devices. In fact, NETCONF is derived, in part,
from Juniper’s RPC- and XML-based management architecture.

NETCONF uses XML data encoding for communication between the manage-
ment system and the network device being managed and supports the use of RPCs.

Enable NETCONF on a Junos device with the configuration-mode command:

set system services netconf ssh

By default, Junos will listen on TCP port 830 for NETCONF connections once the
service is enabled. The NETCONF port can be changed if your environment re-
quires using a different port:

set system services netconf ssh port 2222

Junos will also accept NETCONF connections over the standard SSH port 22.
This means that if your device already has SSH enabled, it is able to accept NET-
CONF connections even without the settings above configured. We will see this
work later in this chapter and take advantage of this fact in a future chapter.

Junos can also limit the number of simultaneous NETCONF connections and the
number of new connections accepted per minute:

set system services netconf ssh connection-limit 5
set system services netconf ssh rate-limit 5

On Junos SRX devices, depending on the interface used for management and the
current security zone settings, you may also need to permit the netconf system ser-
vice on one or more security zones. For example:

set security zones security-zone trust host-inbound-traffic system-services netconf

These were the changes on one of the author’s test systems; please make the ap-
propriate changes on your test systems:

	 68	 Chapter 5: Junos, RPC, NETCONF, and XML

[edit]
sean@aragorn# show | compare
[edit system services]
+    netconf {
+        ssh {
+            connection-limit 5;
+            rate-limit 5;
+        }
+    }
[edit security zones security-zone trust]
+     host-inbound-traffic {
+         system-services {
+             netconf;
+         }
+     }

Finding RPCs
Juniper recommends using RPCs over NETCONF for off-box automation. Doing
so requires knowing the RPCs (or using an automation platform that knows the
RPCs). Fortunately, Junos makes it easy to find the RPC equivalent for most CLI
commands: append “ | display xml rpc” to the command at the Junos CLI. For
example:

sean@aragorn> show system alarms | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1X49/junos">
    <rpc>
        <get-system-alarm-information>
        </get-system-alarm-information>
    </rpc>
    <cli>
        <banner></banner>
    </cli>
</rpc-reply>

Look at the rpc element: its contents show the RPC equivalent for the show system
alarms command, get-system-alarm-information, expressed in XML as opening and
closing tags. In this example, the get-system-alarm-information element is empty.
However, a command that includes arguments will contain additional elements
containing the arguments. For example:

sean@aragorn> show interfaces terse lo0 | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1X49/junos">
    <rpc>
        <get-interface-information>
                <terse/>
                <interface-name>lo0</interface-name>
        </get-interface-information>
    </rpc>
    <cli>
        <banner></banner>
    </cli>
</rpc-reply>

	 69	 Revising the Uptime Playbook – Uptime Version 2.0

Here you can see that the CLI command show interfaces translates to the RPC get-
interface-information and that the command-line arguments become additional
elements within the get-interface-information element. The argument terse is ex-
pressed as the empty tag <terse/>, while the interface name lo0 is represented as
CDATA between the opening tag <interface-name> and its closing tag.

Revising the Uptime Playbook – Uptime Version 2.0
Let’s revise the uptime.yaml playbook from Chapter 4 to use an RPC.

First, we need to know the RPC we plan to call. Log in to one of your Junos de-
vices and determine the RPC for the show system uptime command as discussed
above:

sean@aragorn> show system uptime | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1X49/junos">
    <rpc>
        <get-system-uptime-information>
        </get-system-uptime-information>
    </rpc>
    <cli>
        <banner></banner>
    </cli>
</rpc-reply>

The RPC we need to call is get-system-uptime-information.

Juniper’s Galaxy module for calling Junos RPCs is juniper_junos_rpc. The argu-
ments are similar to the juniper_junos_command module we used in Chapter 4, but
instead of a commands argument with a list of CLI commands, it uses a rpcs argu-
ment with a list of RPC names. Also, the juniper_junos_rpc module will (by default)
return results as XML data, not text.

Modify the uptime.yaml playbook so it looks like the following (line numbers have
been added for discussion, but do not include the line numbers or ‘|’ separators in
your playbook; lines added or changed are boldfaced):

 1|---
 2|- name: Get device uptime
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars_prompt:
11|    - name: username
12|      prompt: Junos Username
13|      private: no
14|
15|    - name: password
16|      prompt: Junos Password
17|      private: yes

	 70	 Chapter 5: Junos, RPC, NETCONF, and XML

18|
19|  tasks:
20|    - name: get uptime using galaxy module
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-system-uptime-information
24|        provider:
25|          host: "{{ ansible_host }}"
26|          port: 22
27|          user: "{{ username }}"
28|          passwd: "{{ password }}"
29|      register: uptime
30|
31|    - name: display uptimes
32|      debug:
33|        var: uptime

The changes made were, by line number:

After line 19: Remove the debug task with the verbosity option.

Line 21: Change juniper_junos_command module to juniper_junos_rpc module.

Lines 22 and 23: Change commands list to rpcs list.

After line 29: Remove the commented-out debug task.

Line 33: Adjust the debug task to display the full uptime variable, not just the uptime.
stdout_lines element.

Also note that line 26, port: 22, was left in place so this playbook will use the stan-
dard SSH port for NETCONF, not the preferred port 830. This was done to illus-
trate that it works.

Run the playbook; your output should look something like the following:

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]

TASK [display uptimes] ***
ok: [aragorn] => {
    "uptime": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "xml",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "parsed_output": {
            "system-uptime-information": {
                "current-time": {

	 71	 Revising the Uptime Playbook – Uptime Version 2.0

                    "date-time": "2018-02-27 23:17:20 UTC"
                },
                "last-configured-time": {
                    "date-time": "2018-02-27 19:38:47 UTC",
                    "time-length": "03:38:33",
                    "user": "sean"
                },
                "protocols-started-time": {
                    "date-time": "2018-02-26 11:31:15 UTC",
                    "time-length": "1d 11:46"
                },
                "system-booted-time": {
                    "date-time": "2018-02-26 11:31:15 UTC",
                    "time-length": "1d 11:46"
                },
                "time-source": "LOCAL CLOCK",
                "uptime-information": {
                    "active-user-count": "2",
                    "date-time": "11:17PM",
                    "load-average-1": "0.05",
                    "load-average-15": "0.00",
                    "load-average-5": "0.01",
                    "up-time": "1 day, 11:46"
                }
            }
        },
        "rpc": "get-system-uptime-information",
        "stdout": "<system-uptime-information>\n  <current-time>\n    <date-
time seconds=\"1519773440\">2018-02-27 23:17:20 UTC</date-time>\n  </
current-time>\n  <time-source>LOCAL CLOCK</
time-source>\n  <system-booted-time>\n    <date-
time seconds=\"1519644675\">2018-02-26 11:31:15 UTC</
date-time>\n    <time-length seconds=\"128765\">1d 11:46</time-length>\n  </
system-booted-time>\n  <protocols-started-time>\n    <date-
time seconds=\"1519644675\">2018-02-26 11:31:15 UTC</
date-time>\n    <time-length seconds=\"128765\">1d 11:46</time-length>\n  </protocols-started-
time>\n  <last-configured-time>\n    <date-time seconds=\"1519760327\">2018-02-27 19:38:47 UTC</
date-time>\n    <time-length seconds=\"13113\">03:38:33</time-length>\n    <user>sean</user>\n  </
last-configured-time>\n  <uptime-information>\n    <date-time seconds=\"1519773440\">11:17PM</
date-time>\n    <up-time seconds=\"128795\">1 day, 11:46</
up-time>\n    <active-user-count format=\"2 users\">2</
active-user-count>\n    <load-average-1>0.05</load-average-1>\n    <load-average-5>0.01</load-
average-5>\n    <load-average-15>0.00</load-average-15>\n  </uptime-information>\n</system-uptime-
information>\n",
        "stdout_lines": [
            "<system-uptime-information>",
            "  <current-time>",
            "    <date-time seconds=\"1519773440\">2018-02-27 23:17:20 UTC</date-time>",
            "  </current-time>",
            "  <time-source>LOCAL CLOCK</time-source>",
            "  <system-booted-time>",
            "    <date-time seconds=\"1519644675\">2018-02-26 11:31:15 UTC</date-time>",
            "    <time-length seconds=\"128765\">1d 11:46</time-length>",
            "  </system-booted-time>",
            "  <protocols-started-time>",
            "    <date-time seconds=\"1519644675\">2018-02-26 11:31:15 UTC</date-time>",
            "    <time-length seconds=\"128765\">1d 11:46</time-length>",
            "  </protocols-started-time>",

	 72	 Chapter 5: Junos, RPC, NETCONF, and XML

            "  <last-configured-time>",
            "    <date-time seconds=\"1519760327\">2018-02-27 19:38:47 UTC</date-time>",
            "    <time-length seconds=\"13113\">03:38:33</time-length>",
            "    <user>sean</user>",
            "  </last-configured-time>",
            "  <uptime-information>",
            "    <date-time seconds=\"1519773440\">11:17PM</date-time>",
            "    <up-time seconds=\"128795\">1 day, 11:46</up-time>",
            "    <active-user-count format=\"2 users\">2</active-user-count>",
            "    <load-average-1>0.05</load-average-1>",
            "    <load-average-5>0.01</load-average-5>",
            "    <load-average-15>0.00</load-average-15>",
            "  </uptime-information>",
            "</system-uptime-information>"
        ]
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

At first glance, the output looks similar to what we saw from version 1.2 of our
uptime.yaml playbook. However, notice that much of the output is now in XML,
not easily readable text. Also notice that there are some new or different keys in
the uptime dictionary, including one called parsed_output that we will discuss in the
next section of this chapter, and the format key now has the value xml confirming
the observation that we have XML data.

TIP	 If you got an error message similar to “ImportError: No module named
lxml” or “jxmlease is required but does not appear to be installed,” please review
the section Path to the Python Interpreter in Chapter 4.

Parsed Output – Uptime Version 2.1
Processing XML data can be tricky (though later in this chapter we discuss XPath,
a tool that helps). The parsed_output data returned by juniper_junos_rpc is a JSON
representation of the raw XML data, intended to make it easier to access the data
in an Ansible playbook.

Let’s modify the playbook to show just the parsed_output element of the uptime reg-
istered variable:

...
31|    - name: display uptimes
32|      debug:
33|        var: uptime.parsed_output

Run the playbook again and take look at the results:

...
TASK [display uptimes] ***
ok: [aragorn] => {

	 73	 Parsed Output – Uptime Version 2.1

    "uptime.parsed_output": {
        "system-uptime-information": {
            "current-time": {
                "date-time": "2018-03-02 20:28:29 UTC"
            },
            "last-configured-time": {
                "date-time": "2018-02-27 19:38:47 UTC",
                "time-length": "3d 00:49",
                "user": "sean"
            },
            "protocols-started-time": {
                "date-time": "2018-02-27 16:33:29 UTC",
                "time-length": "3d 03:55"
            },
            "system-booted-time": {
                "date-time": "2018-02-27 16:33:28 UTC",
                "time-length": "3d 03:55"
            },
            "time-source": "NTP CLOCK",
            "uptime-information": {
                "active-user-count": "1",
                "date-time": "8:28PM",
                "load-average-1": "0.00",
                "load-average-15": "0.00",
                "load-average-5": "0.00",
                "up-time": "3 days, 3:55"
            }
        }
    }
}
ok: [bilbo] => {
    "uptime.parsed_output": {
        "multi-routing-engine-results": {
            "multi-routing-engine-item": {
                "re-name": "fpc0",
                "system-uptime-information": {
                    "current-time": {
                        "date-time": "2018-03-02 20:28:33 UTC"
                    },
                    "last-configured-time": {
                        "date-time": "2018-02-28 15:58:56 UTC",
                        "time-length": "2d 04:29",
                        "user": "sean"
                    },
                    "protocols-started-time": {
                        "date-time": "2018-02-25 19:00:54 UTC",
                        "time-length": "5d 01:27"
                    },
                    "system-booted-time": {
                        "date-time": "2018-02-25 18:57:45 UTC",
                        "time-length": "5d 01:30"
                    },
                    "uptime-information": {
                        "active-user-count": "0",
                        "date-time": "8:28PM",
                        "load-average-1": "0.12",
                        "load-average-15": "0.01",
                        "load-average-5": "0.03",

	 74	 Chapter 5: Junos, RPC, NETCONF, and XML

                        "up-time": "5 days, 1:31"
                    }
                }
            }
        }
    }
}
...

Notice that the output of both devices is a set of nested JSON dictionaries, and
among the inner dictionaries we see keys "system-booted-time" and "last-configured-
time" with the respective date and time data. This should let us get exactly what we
want.

However, the outer dictionary levels are different – because bilbo is an EX it could
(theoretically) be part of a virtual chassis, so the original XML data and the parsed
JSON data contains keys related to multiple routing engine systems; we would see
the same keys if we ran “show system uptime invoke-on all-routing-engines” on
an MX-class device. On the other hand, aragorn, a virtual SRX, does not have
keys related to multiple routing engines; it has just a "system-uptime-information"
key.

How are we going to handle the different outer dictionary keys? Let’s start with
just the data from aragorn, then work our way to handling the different data for
bilbo.

Modify the last line of the playbook as follows:

...
31|    - name: display uptimes
32|      debug:
33|        var: uptime.parsed_output.system-uptime-information

Run the playbook. You should get the following error (boldface added):

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]

TASK [display uptimes] ***
ok: [aragorn] => {
    "uptime.parsed_output.system-uptime-information": "VARIABLE IS NOT DEFINED!"
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

There is a limitation to the “Ansible shortcut” for referencing dictionary entries
– the key needs to be a valid Ansible variable name. Recall from Chapter 4 that
variable names cannot include hyphens (-). Because Junos uses hyphens in many of
its hierarchy names and other identifiers, we need to use the Python style of dic-

	 75	 Parsed Output – Uptime Version 2.1

tionary reference for processing the Junos results.

Change the last line of the playbook as shown:

...
31|    - name: display uptimes
32|      debug:
33|        uptime.parsed_output['system-uptime-information']['system-booted-time']

Run the playbook again.

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]

TASK [display uptimes] ***
ok: [aragorn] => {
    "uptime.parsed_output['system-uptime-information']['system-booted-time']": {
        "date-time": "2018-02-28 19:14:42 UTC",
        "time-length": "3d 20:21"
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

Much better! To display the "last-configured-time" key, we could simply add an-
other debug task (this will be left as an exercise for the reader).

But what happens if we run this for bilbo?

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=bilbo
...
TASK [display uptimes] ***
ok: [bilbo] => {
    "uptime.parsed_output['system-uptime-information']['system-booted-
time']": "VARIABLE IS NOT DEFINED!"
}
...

We need to update the playbook to reference the correct outer keys in bilbo’s
parsed_output dictionary. Modify the playbook as follows (line 37 may wrap be-
low but should be a single line in your playbook):

...
31|    - name: display uptimes (single-RE)
32|      debug:
33|        var: uptime.parsed_output['system-uptime-information']['system-booted-time']
34|
35|    - name: display uptimes (multi-RE)
36|      debug:

	 76	 Chapter 5: Junos, RPC, NETCONF, and XML

37|        var: uptime.parsed_output['multi-routing-engine-results']['multi-routing-engine-item']
['system-uptime-information']['system-booted-time']

Now run the playbook on both devices:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]
ok: [bilbo]

TASK [display uptimes (single-RE)] ***
ok: [aragorn] => {
    "uptime.parsed_output['system-uptime-information']['system-booted-time']": {
        "date-time": "2018-02-28 19:14:42 UTC",
        "time-length": "3d 20:38"
    }
}
ok: [bilbo] => {
    "uptime.parsed_output['system-uptime-information']['system-booted-
time']": "VARIABLE IS NOT DEFINED!"
}

TASK [display uptimes (multi-RE)] ***
ok: [aragorn] => {
    "uptime.parsed_output['multi-routing-engine-results']['multi-routing-engine-item']['system-
uptime-information']['system-booted-time']": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "uptime.parsed_output['multi-routing-engine-results']['multi-routing-engine-item']['system-
uptime-information']['system-booted-time']": {
        "date-time": "2018-02-25 18:57:45 UTC",
        "time-length": "6d 20:55"
    }
}

PLAY RECAP ***
aragorn                    : ok=3    changed=0    unreachable=0    failed=0
bilbo                      : ok=3    changed=0    unreachable=0    failed=0

Each debug task succeeds for one device but fails (VARIABLE IS NOT DEFINED!) for the
other. We get the data we want, but the variable errors are a bit ugly. Can we clean
this up, perhaps by executing each debug task only for the device where it should
should display output?

NOTE	 If you execute this playbook against an EX virtual chassis (VC), rather
than a single EX, the JSON data gets more complicated because uptime.parsed_
output['multi-routing-engine-results']['multi-routing-engine-item'] becomes a list
of dictionaries, not a single dictionary. As a result, the playbook above still

	 77	 Introducing “When” – Uptime Version 2.2

generates a “variable is not defined” message for an EX VC. You can display the
uptime for the first VC member by inserting [0] to reference the first element of the
list, like this:

    - name: display uptimes (multi-RE)
      debug:
        var: uptime.parsed_output['multi-routing-engine-results']['multi-routing-engine-item'][0]
['system-uptime-information']['system-booted-time']

Introducing “When” – Uptime Version 2.2
Ansible offers several conditionals, statements that allow the playbook to make a
yes-or-no decision, and alter what the playbook does, based on a condition such as
the value of a variable. The when conditional is the most fundamental conditional;
it allows Ansible to determine whether or not it should run the task with which the
when conditional is associated.

We will add when conditionals to the debug tasks, so the debug tasks execute only
when the variable we wish to display is defined. This will allow the playbook to
avoid the VARIABLE IS NOT DEFINED errors. The basic format for our test is:
	 when: variable_name is defined

In our playbook, it looks like this (note that when is indented at the level of the
task):

    - name: display uptimes (single-RE)
      debug:
        var: uptime.parsed_output['system-uptime-information']['system-booted-time']
      when: uptime.parsed_output['system-uptime-information'] is defined

More generally, the condition for when (or any other conditional) is an expression
that must evaluate to the Boolean values true or false. We will see more examples
of when later in the book.

For readers with a programming background, think of when as Ansible’s equivalent
to the if or if-then statement in most programming languages. If this were a Py-
thon program, an equivalent expression might look something like this:

if uptime['parsed_output']['system-uptime-information'] is defined:
    print uptime['parsed_output']['system-uptime-information'] ['system-booted-time']

Modify the playbook as follows (add the boldfaced lines):

...
31|    - name: display uptimes (single-RE)
32|      debug:
33|        var: uptime.parsed_output['system-uptime-information']['system-booted-time']
34|      when: uptime.parsed_output['system-uptime-information'] is defined
35|
36|    - name: display uptimes (multi-RE)
37|      debug:
38|        var: uptime.parsed_output['multi-routing-engine-results']['multi-routing-engine-item']

	 78	 Chapter 5: Junos, RPC, NETCONF, and XML

['system-uptime-information']['system-booted-time']
39|      when: uptime.parsed_output['multi-routing-engine-results'] is defined

Run the playbook:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]
ok: [bilbo]

TASK [display uptimes (single-RE)] ***
skipping: [bilbo]
ok: [aragorn] => {
    "uptime.parsed_output['system-uptime-information']['system-booted-time']": {
        "date-time": "2018-02-28 19:14:42 UTC",
        "time-length": "3d 21:34"
    }
}

TASK [display uptimes (multi-RE)] ***
skipping: [aragorn]
ok: [bilbo] => {
    "uptime.parsed_output['multi-routing-engine-results']['multi-routing-engine-item']['system-
uptime-information']['system-booted-time']": {
        "date-time": "2018-02-25 18:57:45 UTC",
        "time-length": "6d 21:51"
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Observe that the task “display uptimes (single-RE)” skips bilbo, while the task
“display uptimes (multi-RE)” skips aragorn. Excellent!

juniper_junos_rpc Options – Show Interfaces
Let’s explore some of the arguments available for the juniper_junos_rpc module. In
the next few pages we look at three features: providing arguments to the RPC be-
ing called by juniper_junos_rpc, changing the format of the data returned by juni-
per_junos_rpc, and saving the results to a file.

Let’s start by creating a new playbook that displays interface information for a
Junos device. The RPC for this, as discussed earlier in this chapter, is get-interface-
information. Create playbook interfaces.yaml as shown (line numbers added for
discussion, do not include them in your playbook). You can copy and modify the
uptime.yaml playbook if you like, as most of the new playbook is similar.

	 79	 juniper_junos_rpc Options – Show Interfaces

 1|---
 2|- name: Get device interfaces
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars_prompt:
11|    - name: username
12|      prompt: Junos Username
13|      private: no
14|
15|    - name: password
16|      prompt: Junos Password
17|      private: yes
18|
19|  tasks:
20|    - name: get interface information
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-interface-information
24|        provider:
25|          host: "{{ ansible_host }}"
26|          user: "{{ username }}"
27|          passwd: "{{ password }}"
28|      register: interfaces
29|
30|    - name: display interfaces
31|      debug:
32|        var: interfaces

Lines 1–19 are identical to the uptime.yaml playbook.

Lines 20–28 call the RPC and register the results in variable interfaces. Note the
RPC get-interface-information on line 23 and the register argument on line 28.
Note that we removed the port argument from the provider dictionary, which
means the connection will default to NETCONF port 830. Be sure you have en-
abled NETCONF on (some of) your test devices as discussed earlier in this
chapter.

Lines 30-32 display the contents of variable interfaces, the interface data.

As currently written, this playbook will display data for all interfaces, as if you
used the command “show interfaces” at the Junos CLI. Because the output is so
long, we will show only a portion of the output here. Run the playbook:

mbp15:aja2 sean$ ansible-playbook interfaces.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device interfaces] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]

	 80	 Chapter 5: Junos, RPC, NETCONF, and XML

TASK [display interfaces] **
ok: [aragorn] => {
    "interfaces": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "xml",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "parsed_output": {
...
        },
        "rpc": "get-interface-information",
        "stdout_lines": [
            "<interface-information style=\"normal\">",
            "  <physical-interface>",
            "    <name>ge-0/0/0</name>",
            "    <admin-status format=\"Enabled\">up</admin-status>",
            "    <oper-status>down</oper-status>",
            "    <local-index>135</local-index>",
            "    <snmp-index>510</snmp-index>",
            "    <link-level-type>Ethernet</link-level-type>",
            "    <mtu>1514</mtu>",
            "    <sonet-mode>LAN-PHY</sonet-mode>",
            "    <source-filtering>disabled</source-filtering>",
            "    <link-mode>Half-duplex</link-mode>",
            "    <speed>1000mbps</speed>",
...
            "    <logical-interface>",
            "      <name>ge-0/0/0.0</name>",
            "      <local-index>72</local-index>",
            "      <snmp-index>520</snmp-index>",
...
            "      <address-family>",
            "        <address-family-name>inet</address-family-name>",
            "        <mtu>1500</mtu>",
            "        <address-family-flags>",
            "          <ifff-sendbcast-pkt-to-re/>",
            "        </address-family-flags>",
            "        <interface-address>",
            "          <ifa-flags>",
            "            <ifaf-down/>",
            "            <ifaf-current-preferred/>",
            "            <ifaf-current-primary/>",
            "          </ifa-flags>",
            "          <ifa-destination>198.51.100.0/26</ifa-destination>",
            "          <ifa-local>198.51.100.1</ifa-local>",
            "          <ifa-broadcast>198.51.100.63</ifa-broadcast>",
            "        </interface-address>",
            "      </address-family>",
            "    </logical-interface>",
            "  </physical-interface>",
            "  <physical-interface>",
            "    <name>gr-0/0/0</name>",
...
            "  </physical-interface>",
            "</interface-information>"
        ]

	 81	 juniper_junos_rpc Options – Show Interfaces

    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

RPC Arguments – Interfaces Version 1.1
What if we want to display only specific interfaces, or obtain terse (or detailed)
information about the interfaces? To do to this at the Junos CLI we add arguments
to the “show interfaces” command. We can do the same thing with the RPC call in
our playbook using the kwargs argument to the juniper_junos_rpc module. Kwargs
(short for “key word arguments”) accepts a dictionary of one or more key:value
pairs, where the key corresponds with an RPC argument.

Recall from earlier in this chapter:

sean@aragorn> show interfaces terse lo0 | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1X49/junos">
    <rpc>
        <get-interface-information>
                <terse/>
                <interface-name>lo0</interface-name>
        </get-interface-information>
    </rpc>
...
</rpc-reply>

Translating this to arguments to the juniper_junos_rpc module would look like this:

juniper_junos_rpc:
  rpcs:
    - get-interface-information
  kwargs:
    terse: True
    interface_name: lo0

The XML RPC element <interface-name>lo0</interface-name> becomes kwargs argu-
ment interface_name: lo0. Notice that the hyphens (-) in the RPC tag are replaced
by underscores (_) in the kwargs key.

The XML RPC element <terse/> is an empty tag, meaning there is no explicit “val-
ue” for the kwargs key:value pair. The tag name becomes the key with the Boolean
value true added to complete the key:value pair terse: True.

Let’s update our interfaces.yaml playbook to give us detailed information for only
interface ge-0/0/0:

...
19|  tasks:
20|    - name: get interface information
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-interface-information
24|        kwargs:
25|          detail: True
26|          interface_name: ge-0/0/0
27|        provider:

	 82	 Chapter 5: Junos, RPC, NETCONF, and XML

28|          host: "{{ ansible_host }}"
29|          user: "{{ username }}"
30|          passwd: "{{ password }}"
31|      register: interfaces
...

TIP	 You can use wildcards in the interface name; for example, you can specify
interface_name: ge-0/* to get all Gigabit Ethernet interfaces on FPC0.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook interfaces.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device interfaces] ***

TASK [get interface information] ***
ok: [aragorn]

TASK [display interfaces] **
ok: [aragorn] => {
    "interfaces": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "xml",
        "kwargs": {
            "detail": true,
            "interface_name": "ge-0/0/0"
        },
        "msg": "The RPC executed successfully.",
...
        "stdout_lines": [
            "<interface-information style=\"normal\">",
            "  <physical-interface>",
            "    <name>ge-0/0/0</name>",
            "    <admin-status format=\"Enabled\">up</admin-status>",
...
            "    <traffic-statistics style=\"verbose\">",
            "      <input-bytes>6480104</input-bytes>",
            "      <input-bps>0</input-bps>",
            "      <output-bytes>1329149</output-bytes>",
            "      <output-bps>0</output-bps>",
            "      <input-packets>79611</input-packets>",
            "      <input-pps>0</input-pps>",
            "      <output-packets>5370</output-packets>",
            "      <output-pps>0</output-pps>",
            "    </traffic-statistics>",
            "    <queue-counters style=\"brief\">",
            "      <interface-cos-short-summary>",
            "        <intf-cos-queue-type>Egress queues</intf-cos-queue-type>",
            "        <intf-cos-num-queues-supported>8</intf-cos-num-queues-supported>",
            "        <intf-cos-num-queues-in-use>4</intf-cos-num-queues-in-use>",
            "      </interface-cos-short-summary>",
            "      <queue>",
            "        <queue-number>0</queue-number>",

	 83	 juniper_junos_rpc Options – Show Interfaces

            "        <forwarding-class-name>best-effort</forwarding-class-name>",
            "        <queue-counters-queued-packets>732</queue-counters-queued-packets>",
            "        <queue-counters-trans-packets>732</queue-counters-trans-packets>",
            "        <queue-counters-total-drop-packets>0</queue-counters-total-drop-packets>",
            "      </queue>",
...
            "    </queue-counters>",
            "    <queue-num-forwarding-class-name-map>",
            "      <queue-number>0</queue-number>",
            "      <forwarding-class-name>best-effort</forwarding-class-name>",
            "    </queue-num-forwarding-class-name-map>",
...
            "  </physical-interface>",
            "</interface-information>"
        ]
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

Notice that the results include traffic statistics, class-of-service counters, and other
“detail” level information for the interface.

Output Format – Interfaces Version 1.2
As we have seen, the juniper_junos_rpc module returns results as XML data by de-
fault. However, we can request that juniper_junos_rpc return results as CLI-style
text, as the juniper_junos_command module does by default, or as JSON data. This is
accomplished with the formats argument, which accepts the values json, text, or
xml.

TIP	 The formats argument also works with the juniper_junos_command module.

Modify the interfaces.yaml playbook as follows (new or changed lines shown in
bold):

 1|---
 2|- name: Get device interfaces
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars_prompt:
11|    - name: username
12|      prompt: Junos Username
13|      private: no
14|
15|    - name: password
16|      prompt: Junos Password
17|      private: yes

	 84	 Chapter 5: Junos, RPC, NETCONF, and XML

18|
19|  tasks:
20|    - name: get interface information
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-interface-information
24|        formats: text
25|        kwargs:
26|          terse: True
27|          interface_name: ge-0/0/0
28|        provider:
29|          host: "{{ ansible_host }}"
30|          user: "{{ username }}"
31|          passwd: "{{ password }}"
32|      register: interfaces
33|
34|    - name: display interfaces
35|      debug:
36|        var: interfaces

Line 24 is the formats argument, in this case requesting that the results be in text
format.

Line 26 changed to request terse interface information instead of detail informa-
tion, just to keep the output short.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook interfaces.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device interfaces] ***

TASK [get interface information] ***
ok: [aragorn]

TASK [display interfaces] **
ok: [aragorn] => {
    "interfaces": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "text",
        "kwargs": {
            "interface_name": "ge-0/0/0",
            "terse": true
        },
        "msg": "The RPC executed successfully.",
        "rpc": "get-interface-information",
        "stdout": "\nInterface               Admin Link Proto    Local                 Remote\
nge-0/0/0                up    down\nge-0/0/0.0              up    down inet     198.51.100.1/26 \n",
        "stdout_lines": [
            "",
            "Interface               Admin Link Proto    Local                 Remote",
            "ge-0/0/0                up    down",
            "ge-0/0/0.0              up    down inet     198.51.100.1/26 "

	 85	 juniper_junos_rpc Options – Show Interfaces

        ]
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0

Observe that the results are text format, similar to what we saw from the juniper_
junos_command module in Chapter 4.

JSON output requires Junos support. If one or more of your devices is running Ju-
nos 14.2 or newer, change line 24 to request JSON results and run the playbook
again:

24|        formats: json

Trying this with older versions of Junos will result in an error. The author’s vSRX
aragorn is running Junos 15.1X49, but his switch bilbo is running Junos
12.3R12.4. Observe that bilbo fails the “get interface information” task (the sig-
nificant part of the error message is boldfaced below), while aragorn returns JSON
data:

mbp15:aja2 sean$ ansible-playbook interfaces.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device interfaces] ***

TASK [get interface information] ***
ok: [aragorn]
fatal: [bilbo]: FAILED! => {"changed": false, "module_stderr": "/usr/local/Cellar/python/2.7.14_2/
Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/jnpr/junos/device.
py:818: RuntimeWarning: Native JSON support is only from 14.2 onwards\n  RuntimeWarning)\
nTraceback (most recent call last):\n  File \"/var/folders/y1/nqmc7hf13kz5rckn40p5jfbh0000gp/T/
ansible_15vMtO/ansible_module_juniper_junos_rpc.py\", line 662, in <module>\n    main()\n  File \"/
var/folders/y1/nqmc7hf13kz5rckn40p5jfbh0000gp/T/ansible_15vMtO/ansible_module_juniper_junos_rpc.
py\", line 648, in main\n    junos_module.exit_json(**results[0])\n  File \"/private/etc/ansible/
roles/Juniper.junos/module_utils/juniper_junos_common.py\", line 758, in exit_
json\n    super(JuniperJunosModule, self).exit_json(**kwargs)\n  File \"/var/folders/y1/nqmc7hf13kz5
rckn40p5jfbh0000gp/T/ansible_15vMtO/ansible_modlib.zip/ansible/module_utils/basic.
py\", line 2304, in exit_json\n  File \"/var/folders/y1/nqmc7hf13kz5rckn40p5jfbh0000gp/T/
ansible_15vMtO/ansible_modlib.zip/ansible/module_utils/basic.py\", line 2297, in _return_
formatted\n  File \"/var/folders/y1/nqmc7hf13kz5rckn40p5jfbh0000gp/T/ansible_15vMtO/ansible_modlib.
zip/ansible/module_utils/basic.py\", line 514, in remove_values\n  File \"/var/folders/y1/nqmc7hf13k
z5rckn40p5jfbh0000gp/T/ansible_15vMtO/ansible_modlib.zip/ansible/module_utils/basic.
py\", line 497, in _remove_values_conditions\nTypeError: Value of unknown type: <type 'lxml.
etree._Element'>, <Element interface-information at 0x10307d488>\n", "module_
stdout": "", "msg": "MODULE FAILURE", "rc": 0}

TASK [display interfaces] **
ok: [aragorn] => {
    "interfaces": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "json",

	 86	 Chapter 5: Junos, RPC, NETCONF, and XML

        "kwargs": {
            "interface_name": "ge-0/0/0",
            "terse": true
        },
        "msg": "The RPC executed successfully.",
        "parsed_output": {
            "interface-information": [
                {
                    "attributes": {
                        "junos:style": "terse",
                        "xmlns": "http://xml.juniper.net/junos/15.1X49/junos-interface"
                    },
                    "physical-interface": [
                        {
                            "admin-status": [
                                {
                                    "data": "up"
                                }
                            ],
                            "logical-interface": [
                                {
                                    "address-family": [
  {
  "address-family-name": [
  {
  "data": "inet"
  }
  ],
  "interface-address": [
  {
  "ifa-local": [
  {
  "attributes": {
  "junos:emit": "emit"
  },
  "data": "198.51.100.1/26"
  }
  ]
  }
  ]
  }
                                    ],
                                    "admin-status": [
  {
  "data": "up"
  }
                                    ],
                                    "filter-information": [
  {}
                                    ],
                                    "name": [
  {
  "data": "ge-0/0/0.0"
  }
                                    ],
                                    "oper-status": [
  {
  "data": "up"

	 87	 juniper_junos_rpc Options – Show Interfaces

  }
                                    ]
                                }
                            ],
                            "name": [
                                {
                                    "data": "ge-0/0/0"
                                }
                            ],
                            "oper-status": [
                                {
                                    "data": "up"
                                }
                            ]
                        }
                    ]
                }
            ]
        },
        "rpc": "get-interface-information",
        "stdout": "{u'interface-
information': [{u'attributes': {u'junos:style': u'terse', u'xmlns': u'http://xml.juniper.net/
junos/15.1X49/junos-interface'}, u'physical-interface': [{u'oper-
status': [{u'data': u'up'}], u'logical-interface': [{u'oper-status': [{u'data': u'up'}], u'address-
family': [{u'address-family-name': [{u'data': u'inet'}], u'interface-address': [{u'ifa-
local': [{u'attributes': {u'junos:emit': u'emit'}, u'data': u'198.51.100.1/26'}]}]}], u'admin-
status': [{u'data': u'up'}], u'name': [{u'data': u'ge-0/0/0.0'}], u'filter-
information': [{}]}], u'admin-status': [{u'data': u'up'}], u'name': [{u'data': u'ge-0/0/0'}]}]}]}",
        "stdout_lines": [
            "{u'interface-
information': [{u'attributes': {u'junos:style': u'terse', u'xmlns': u'http://xml.juniper.net/
junos/15.1X49/junos-interface'}, u'physical-interface': [{u'oper-
status': [{u'data': u'up'}], u'logical-interface': [{u'oper-status': [{u'data': u'up'}], u'address-
family': [{u'address-family-name': [{u'data': u'inet'}], u'interface-address': [{u'ifa-
local': [{u'attributes': {u'junos:emit': u'emit'}, u'data': u'198.51.100.1/26'}]}]}], u'admin-
status': [{u'data': u'up'}], u'name': [{u'data': u'ge-0/0/0.0'}], u'filter-
information': [{}]}], u'admin-status': [{u'data': u'up'}], u'name': [{u'data': u'ge-0/0/0'}]}]}]}"
        ]
    }
}
	 to retry, use: --limit @/Users/sean/aja2/interfaces.retry

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=0    changed=0    unreachable=0    failed=1

Saving Results to a File – Interfaces Version 1.3
The juniper_junos_command and juniper_junos_rpc tasks we have seen so far have all
returned their results to the playbook. These results could be used in various ways
by subsequent tasks, and we will shortly see examples doing more than printing
those results with debug.

What if you want to save the results to a file? Perhaps you want to send the results
to someone (email, FTP, etc.) or perhaps the results are large enough that keeping

	 88	 Chapter 5: Junos, RPC, NETCONF, and XML

them in memory across numerous devices seems ill advised (for example, “show
interfaces extensive” on dozens of 10-member EX virtual chassis).

The juniper_junos_command and juniper_junos_rpc modules have arguments for sav-
ing results to a file, instead of or in addition to returning the results to the
playbook.

Update the interfaces.yaml playbook as follows (new/changed lines in boldface):

 1|---
 2|- name: Get device interfaces
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars_prompt:
11|    - name: username
12|      prompt: Junos Username
13|      private: no
14|
15|    - name: password
16|      prompt: Junos Password
17|      private: yes
18|
19|  tasks:
20|    - name: get interface information
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-interface-information
24|        dest_dir: '.'
25|        return_output: no
26|        formats: xml
27|        provider:
28|          host: "{{ ansible_host }}"
29|          user: "{{ username }}"
30|          passwd: "{{ password }}"
31|      register: interfaces
32|
33|    - name: display interfaces
34|      debug:
35|        var: interfaces

Line 24, the dest_dir argument, provides the name of the directory where the juni-
per_junos_rpc module should save the files containing the RPC results. When this
argument is absent or set to null the module does not save results to a file; includ-
ing this argument with a valid directory path tells the module to save results to a
file. The module will automatically generate a filename using the value provided
with the host argument (or inventory_hostname if host is not provided) and the RPC
to be executed, with an extension from the formats argument. In this example, set-
ting dest_dir to '.' tells the juniper_junos_rpc module to save the results file in the
current directory, the directory where the playbook is located.

	 89	 juniper_junos_rpc Options – Show Interfaces

Line 25, the return_output argument, accepts a Boolean value (True/False or yes/
no). This argument tells the module whether or not it should return results to the
playbook. When this argument is absent, the module defaults to True (return
results).

NOTE	 The dest_dir and return_output arguments may be used independently from
each other. This example uses both to save results to a file and not return them to
the playbook, but you can use one or the other to achieve different outcomes.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook interfaces.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device interfaces] ***

TASK [get interface information] ***
ok: [aragorn]
ok: [bilbo]

TASK [display interfaces] **
ok: [aragorn] => {
    "interfaces": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "xml",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "rpc": "get-interface-information"
    }
}
ok: [bilbo] => {
    "interfaces": {
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "xml",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "rpc": "get-interface-information"
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Observe that the registered variable interfaces does not include RPC results.

Check that *.xml files (because formats was set to xml) were created with the results
of the RPC:

mbp15:aja2 sean$ ls -1 *.xml

	 90	 Chapter 5: Junos, RPC, NETCONF, and XML

192.0.2.10_get-interface-information.xml
bilbo_get-interface-information.xml

mbp15:aja2 sean$ more 192.0.2.10_get-interface-information.xml
<interface-information style="normal">
  <physical-interface>
    <name>ge-0/0/0</name>
    <admin-status format="Enabled">up</admin-status>
    <oper-status>up</oper-status>
    <local-index>135</local-index>
    <snmp-index>510</snmp-index>
    <link-level-type>Ethernet</link-level-type>
    <mtu>1514</mtu>
    <sonet-mode>LAN-PHY</sonet-mode>
    <source-filtering>disabled</source-filtering>
    <link-mode>Full-duplex</link-mode>
    <speed>1000mbps</speed>
...
    <current-physical-address>00:0c:29:49:0c:e8</current-physical-address>
    <hardware-physical-address>00:0c:29:49:0c:e8</hardware-physical-address>
    <interface-flapped seconds="68469">2018-03-05 04:17:49 UTC (19:01:09 ago)</interface-flapped>
...
    <logical-interface>
      <name>ge-0/0/0.0</name>
...
      <address-family>
        <address-family-name>inet</address-family-name>
        <mtu>1500</mtu>
        <address-family-flags>
          <ifff-sendbcast-pkt-to-re/>
        </address-family-flags>
        <interface-address>
          <ifa-flags>
            <ifaf-current-preferred/>
            <ifaf-current-primary/>
          </ifa-flags>
          <ifa-destination>198.51.100.0/26</ifa-destination>
          <ifa-local>198.51.100.1</ifa-local>
          <ifa-broadcast>198.51.100.63</ifa-broadcast>
        </interface-address>
      </address-family>
    </logical-interface>
  </physical-interface>
...

Thought exercise for the reader: why was aragorn’s output file named by IP ad-
dress while bilbo’s output file was named by hostname? Hint: check the inventory
file.

XML and XPath
Our interfaces.yaml playbook is gathering interface data as XML for each inter-
face. How can we extract certain fields that we want from that XML data?

Ansible, starting in version 2.4, includes a module called xml that can perform

	 91	 XML and XPath

various tasks on XML data. With the xml module we can extract specific elements
of interest by using XPath, a method of quickly navigating an XML hierarchy for
specific data. The xml module can read the XML data from a file or can accept a
string in a playbook argument.

Use the following playbook, test-xml.yaml, to experiment with XPath expressions:

 1|---
 2|- name: Experiment with Ansible's xml module
 3|  hosts:
 4|    - localhost
 5|  connection: local
 6|  gather_facts: no
 7|
 8|  tasks:
 9|    - name: xpath
10|      xml:
11|        path: bilbo_get-interface-information.xml
12|        xpath: /interface-information/physical-interface/name
13|        content: text
14|      register: interface_info
15|
16|    - name: show xpath results
17|      debug:
18|        var: interface_info

Line 11 is the path argument, which identifies an XML data file to read. You can
use one of the .xml files created in the last section of this chapter, just substitute the
correct filename in the path argument.

Line 12 is the xpath argument, the XPath path expression to search. Substitute the
different XPath path expressions discussed below, or any other you would like to
try, and run the playbook to observe the results. The path shown here will list the
names of all the physical interfaces in the XML data. XPath path expressions are
explained momentarily.

Line 13, the content argument, tells the xml module what data from the matching
element to return; text means the text contents of the element (the CDATA). The
other supported setting is attribute.

Running the playbook looks something like this (edited for length):

mbp15:aja2 sean$ ansible-playbook test-xml.yaml

PLAY [Experiment with Ansible's xml module] ************************************

TASK [xpath] ***
ok: [localhost]

TASK [show xpath results] **
ok: [localhost] => {
    "interface_info": {
        "actions": {
            "namespaces": {},

	 92	 Chapter 5: Junos, RPC, NETCONF, and XML

            "state": "present",
            "xpath": "/interface-information/physical-interface/name"
        },
        "changed": false,
        "count": 27,
        "failed": false,
        "matches": [
            {
                "name": "ge-0/0/0"
            },
            {
                "name": "ge-0/0/1"
            },
...
            {
                "name": "ge-0/1/1"
            },
            {
                "name": "bme0"
            },
            {
                "name": "dsc"
            },
...
            {
                "name": "vlan"
            },
            {
                "name": "vme"
            }
        ],
        "msg": 27
    }
}

PLAY RECAP ***
localhost                  : ok=2    changed=0    unreachable=0    failed=0

Notice that the interface_info variable contains a matches list which includes a dic-
tionary for each match. There is also an interface_info.count entry that indicates
the number of matches found.

With XPath, you can specify the path to an element by listing all the different
opening tags, starting from the root, connecting them with slash (‘/’) characters.
For example, in our interface data, the path to an interface’s MAC address is:

/interface-information/physical-interface/hardware-physical-address

The leading slash indicates we are specifying the path from the root of the XML
hierarchy in question.

As you saw above, XPath can return multiple matches. Take a look at the XML
output file for one of your test devices and you will observe that each physical in-
terface is described inside of a <physical-interface> element, meaning that element

	 93	 XML and XPath

name exists one for each interface on the device. Many of the elements within the
<physical-interface> element repeat for all interfaces, and some, like <logical-in-
terface>, may even repeat within a given physical interface (a single physical inter-
face may have multiple logical sub-interfaces).

XPath offers a shortcut to specifying a full path: a leading double-slash (‘//’)
searches down the XML hierarchy for matches, regardless of how many levels
deep they may be. For example, we could use the XPath path //hardware-physical-
address instead of the full path above.

In addition, XPath will ignore data that does not match. For example, the path
expression //logical-interface/name will ignore physical interfaces that do not have
logical sub-interfaces, returning only the names of logical interfaces.

You can limit the matches to specific instances by using predicates, which specify a
condition to match an element. Predicates are enclosed in square brackets – [] –
and contain a match condition, an expression which must be true for a given ele-
ment for that element to be included in the results.

For example, if we wanted to find information for the physical-interface whose
name is ge-0/1/0, we could use this XPath path with predicate:

//physical-interface[name='ge-0/1/0']

To return all child elements of the matching physical-interface element, add the
asterisk wildcard (*) to the end of the path:

//physical-interface[name='ge-0/1/0']/*

To return a single child element of the matching physical-interface element, add
the child element’s name to the end of the path:

//physical-interface[name='ge-0/1/0']/hardware-physical-address

There are a number of functions that can be used in predicates when you might not
know or have an exact match. For example, if we want the oper-status (link-up or
link-down) for all gigabit Ethernet interfaces on FPC 0, PIC 1, we can look for
physical interface names that start with the known portion of the interface name
‘ge-0/1’ by using the starts-with() function:

//physical-interface[starts-with(name,'ge-0/1')]/oper-status

XPath predicates can include multiple tests joined by the Boolean operators and
and or. For example, to find the name of each GE interface that is link-up:

//physical-interface[oper-status='up' and starts-with(name, 'ge-')]/name

You can combine two XPath paths and receive results that match either of the
paths by joining the paths with the pipe character (‘|’). This acts as a Boolean or
between the two paths. For example, to return both the name and operational sta-
tus of all physical interfaces:

	 94	 Chapter 5: Junos, RPC, NETCONF, and XML

//physical-interface/name | //physical-interface/oper-status

MORE?	 XML and XPath are big topics and we discuss them only superficially. The
References section at the end of the chapter includes links for further exploration.

Querying Interface Data with XPath– Interfaces Version 1.4
Now let’s use XPath to query our interface information. Assume we want to know
the IPv4 address(es) for the device’s interfaces.

Modify the interfaces.yaml playbook as follows:

 1|---
 2|- name: Get device interfaces
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars_prompt:
11|    - name: username
12|      prompt: Junos Username
13|      private: no
14|
15|    - name: password
16|      prompt: Junos Password
17|      private: yes
18|
19|  tasks:
20|    - name: get interface information
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-interface-information
24|        formats: xml
25|        provider:
26|          host: "{{ ansible_host }}"
27|          user: "{{ username }}"
28|          passwd: "{{ password }}"
29|      register: interfaces
30|
31|    - name: query interface information
32|      xml:
33|        xmlstring: "{{ interfaces.stdout }}"
34|        xpath: //logical-interface/address-family[address-family-name='inet']/interface-address/
ifa-local
35|        content: text
36|      register: ip_addr
37|
38|    - name: show query results
39|      debug:
40|        var: ip_addr.matches

Lines 20-29 gather the interface data and store it in registered variable interfaces.
(Note that we remove the dest_dir and return_output arguments so the data is re-
turnd to the playbook not stored in a file.)

	 95	 XML and XPath

Lines 31-36 use the xml module to search the interface data using our XPath path
expression.

Line 33, the xmlstring argument, tells the xml module to search a string, in this case
the stdout string in the interfaces variable. (This is a little different from the test-
xml.yaml playbook, which searched a file.)

Line 34 is our XPath path expression. This finds all logical-interface elements that
have an ifa-local value (an address), filtering them with a predicate to match only
inet family addresses (IPv4).

Line 36 stores the results in registered variable ip_addr.

Lines 38-40 display the matches list within the ip_addr variable, which are the values
that matched the XPath path expression.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook interfaces.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device interfaces] ***

TASK [get interface information] ***
ok: [aragorn]
ok: [bilbo]

TASK [query interface information] ***
ok: [aragorn]
ok: [bilbo]

TASK [show query results] **
ok: [aragorn] => {
    "ip_addr.matches": [
        {
            "ifa-local": "198.51.100.1"
        },
        {
            "ifa-local": "128.0.0.1"
        },
        {
            "ifa-local": "192.0.2.10"
        },
        {
            "ifa-local": "127.0.0.1"
        },
        {
            "ifa-local": "128.0.0.1"
        },
        {
            "ifa-local": "128.0.0.4"
        },
        {
            "ifa-local": "128.0.1.16"
        }

	 96	 Chapter 5: Junos, RPC, NETCONF, and XML

    ]
}
ok: [bilbo] => {
    "ip_addr.matches": [
        {
            "ifa-local": "128.0.0.1"
        },
        {
            "ifa-local": "128.0.0.16"
        },
        {
            "ifa-local": "128.0.0.32"
        },
        {
            "ifa-local": "127.0.0.1"
        },
        {
            "ifa-local": "198.51.100.5"
        },
        {
            "ifa-local": "198.51.100.66"
        }
    ]
}

PLAY RECAP ***
aragorn                    : ok=3    changed=0    unreachable=0    failed=0
bilbo                      : ok=3    changed=0    unreachable=0    failed=0

Very nice!

Exercise for the reader: modify the XPath expression to include a second path, so
the results include the logical interface name.

Querying Uptime Data with XPath – Uptime Version 2.3
This XPath stuff is pretty cool. Can we use XPath expressions to improve the out-
put of our uptime.yaml playbook? Recall that the playbook had two debug tasks to
display results, but each task would be skipped for some of our devices due to the
different data structures from different devices. Can we reduce this to a single de-
bug task? Even better, can we display both “last booted” and “last configured”
times?

Modify uptime.yaml as follows:

 1|---
 2|- name: Get device uptime
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars_prompt:

	 97	 XML and XPath

11|    - name: username
12|      prompt: Junos Username
13|      private: no
14|
15|    - name: password
16|      prompt: Junos Password
17|      private: yes
18|
19|  tasks:
20|    - name: get uptime using galaxy module
21|      juniper_junos_rpc:
22|        rpcs:
23|          - get-system-uptime-information
24|        provider:
25|          host: "{{ ansible_host }}"
26|          port: 22
27|          user: "{{ username }}"
28|          passwd: "{{ password }}"
29|      register: uptime
30|
31|    - name: query uptime information
32|      xml:
33|        xmlstring: "{{ uptime.stdout }}"
34|        xpath: //system-booted-time/date-time | //last-configured-time/date-time
35|        content: text
36|      register: last_boot
37|
38|    - name: show query results
39|      debug:
40|        var: last_boot.matches

The first 30 lines of the playbook are unchanged. However, instead of using debug
tasks with when conditions based on the parsed_output from the juniper_junos_rpc
module, we use an XPath expression.

Lines 31-36 use the xml module to query the uptime data.

Line 34 is the XPath path expression that matches both //system-booted-time/date-
time and //last-configured-time/date-time so we get both values of interest.

Let’s run the playbook:

mbp15:aja2 sean$ ansible-playbook uptime.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]
ok: [bilbo]

TASK [query uptime information] **
ok: [aragorn]
ok: [bilbo]

TASK [show query results] **

	 98	 Chapter 5: Junos, RPC, NETCONF, and XML

ok: [aragorn] => {
    "last_boot.matches": [
        {
            "date-time": "2018-03-02 00:59:16 UTC"
        },
        {
            "date-time": "2018-02-27 19:38:47 UTC"
        }
    ]
}
ok: [bilbo] => {
    "last_boot.matches": [
        {
            "date-time": "2018-02-25 18:57:45 UTC"
        },
        {
            "date-time": "2018-02-28 15:58:56 UTC"
        }
    ]
}

PLAY RECAP ***
aragorn                    : ok=3    changed=0    unreachable=0    failed=0
bilbo                      : ok=3    changed=0    unreachable=0    failed=0

Not bad, but which date-time value is which? Can we identify them somehow?

In the author’s experience, matches to a multiple-path XPath expression are in the
order of the XPath paths, so the first date-time should be the system-booted-time and
the second should be the last-configured-time. If we change the debug task to dis-
play a message, not just a variable, we can identify the two dates.

Change line 40 of the playbook as follows (line may wrap in this book but it
should be a single line in your playbook):

38|    - name: show query results
39|      debug:
40|        msg: "Last booted {{ last_boot.matches[0]['date-time'] }}; last configured {{ last_boot.
matches[1]['date-time'] }}"

Using the debug module’s msg argument instead of the var argument lets us specify a
complete message to display. Be sure the quotes around the entire message are dif-
ferent from the quotes around the dictionary keys (the ['date-time']) – here the
author used double-quotes around the message and single-quotes for the keys.

Run the playbook again and observe the output:

...
TASK [show query results] **
ok: [aragorn] => {
    "msg": "Last booted 2018-03-02 00:59:16 UTC; last configured 2018-02-27 19:38:47 UTC"
}
ok: [bilbo] => {

	 99	 References

    "msg": "Last booted 2018-02-25 18:57:45 UTC; last configured 2018-02-28 15:58:56 UTC"
}
...

Very nice!

Exercise for the reader: The author’s experience regarding the order of the XPath
results may not be guaranteed. Modify the playbook to use two xml tasks, each us-
ing a single XPath path and saving their results into different variables. This will
ensure the playbook does not mix up the system-booted-time and the last-config-
ured-time. Update the debug message to read both of the variables.

References
Juniper’s documentation for their Galaxy modules:
http://junos-ansible-modules.readthedocs.io/en/stable/index.html

https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/
information-products/pathway-pages/index.html

NETCONF background:
https://en.wikipedia.org/wiki/NETCONF

Ansible Conditionals:
http://docs.ansible.com/ansible/latest/playbooks_conditionals.html

Ansible XML module:
http://docs.ansible.com/ansible/latest/xml_module.html

XML tutorial:
https://www.w3schools.com/xml/default.asp

XPath tutorial:
https://www.w3schools.com/xml/xpath_intro.asp

XPath functions:
https://www.w3schools.com/xml/xsl_functions.asp

http://junos-ansible-modules.readthedocs.io/en/stable/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/information-products/pathway-pages/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos-ansible/information-products/pathway-pages/index.html
https://en.wikipedia.org/wiki/NETCONF
http://docs.ansible.com/ansible/latest/playbooks_conditionals.html
http://docs.ansible.com/ansible/latest/xml_module.html
https://www.w3schools.com/xml/default.asp
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/xml/xsl_functions.asp

The playbooks developed in Chapters 4 and 5 prompt the user for the username
and password needed to access the managed network device. This chapter explores
an alternative, the use of SSH keys for device authentication.

What is an SSH Key Pair?
SSH, and NETCONF over SSH, require that the client authenticate to the Junos
device. Basic authentication uses a username and password; the relevant configu-
ration on a Junos device would look something like this:

sean@aragorn> show configuration system login
...
user sean {
    uid 2000;
    class super-user;
    authentication {
        encrypted-password "5kqsva9Mc$T...j3939giNv/"; ## SECRET-DATA
    }
}
...

SSH offers an alternative authentication method based on asymmetric cryptogra-
phy, also known as public-key cryptography. The user generates a key pair, a
matched set of encryption keys. The public key needs to be installed on the Junos
devices (or other servers); the private key is on the user’s client computer(s). As the
name implies, the private key must be kept private; like a password, the private
key should never be shared with anyone because sharing the private key would
allow another person to authenticate as you. By contrast, the public key can be
shared, such as being placed on multiple Junos devices or servers.

Chapter 6

Using SSH Keys

	 101	 Generating a Key Pair

When the user establishes their SSH session with the server, they use their respec-
tive keys to authenticate the connection. No device password is necessary. This can
be very convenient for scheduled automation tasks as there might not be a person
around at the scheduled time to enter a password, but the SSH private key on the
client computer is still available.

When the user generates their SSH key pair, they can choose to associate a pass-
phrase with the private key. This adds an extra layer of security – the user needs to
enter the correct passphrase before the client will initiate the connection to the
server, which means an unauthorized person sitting at an authorized user’s com-
puter cannot establish the connection. However, a private key with a passphrase is
less useful for scheduled automation tasks because a person may not be available
to enter the passphrase at the scheduled time.

Generating a Key Pair
On most UNIX-type systems, you generate an SSH key pair using a program from
the OpenSSH collection of programs. macOS includes the OpenSSH programs.
UNIX and Linux systems normally include OpenSSH or make the OpenSSH client
programs available through their package manager (please take a moment to in-
stall it now if needed on your system). This means that generating and using SSH
key pairs is consistent across most UNIX-type systems. The discussions in this
chapter about generating SSH key pairs, and the discussion about client configura-
tion for multiple key pairs, focus on OpenSSH systems.

Microsoft Windows does not include an SSH client and thus does not include the
program needed to generate key pairs. Many third-party SSH clients for Windows
provide the ability to generate SSH key pairs, and most can be set up to use mul-
tiple key pairs. Check the documentation for your SSH client. Unfortunately, there
is too much variation between the various Windows SSH clients to document
them here. If your Windows SSH client cannot generate SSH key pairs, but you
have access to a UNIX-type system, see if your Windows SSH client can import
key pairs generated by OpenSSH. If you do not have access to a UNIX or Linux
system, consider installing the Cygwin environment (http://www.cygwin.com/) on
your Windows system and use Cygwin’s OpenSSH tools.

CAUTION	 This chapter assumes your system does not already have any SSH key
pairs installed, and the instructions make no effort to preserve existing key pairs or
configuration settings. If you are already using SSH key pairs, please take the
necessary precautions to protect the relevant files or settings.

OpenSSH includes the command-line program ssh-keygen for generating SSH key
pairs. You can run simply ssh-keygen and it will prompt for answers to a few ques-
tions, or you can provide command-line arguments for a variety of options.

http://www.cygwin.com/)

	 102	 Chapter 6: Using SSH Keys

Open your shell or terminal and run ssh-keygen. Hit Enter or Return at the “Enter
file…” prompt to accept the default filename. Enter your passphrase at the two
“Enter passphrase” prompts. The result should look something like this:

mbp15:~ sean$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/sean/.ssh/id_rsa): <enter>
Enter passphrase (empty for no passphrase): <enter passphrase>
Enter same passphrase again: <re-enter passphrase>
Your identification has been saved in /Users/sean/.ssh/id_rsa.
Your public key has been saved in /Users/sean/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:HI0QSmeVsa2fsDjw8w/Y1BhsDaWI9azBRHQB2iYiCrU sean@mbp15.local
The key's randomart image is:
+---[RSA 2048]----+
|  . .o@+*=.      |
| . o @ B.O       |
|o E = * @ +      |
|o. . o = *       |
|.   . . S .      |
|     o = + .     |
|      * + o      |
|       + .       |
|        ...      |
+----[SHA256]-----+

The single filename prompt is a little misleading because ssh-keygen actually gener-
ates two files, the public and private key files. The filename entered at the prompt
(or the default ~/.ssh/id_rsa) becomes the private key’s filename, and the public
key’s filename will have the extension .pub added. Note the lines in the output
starting “Your identification has been saved...” and “Your public key has been
saved....” You should be able to see the files in your file system:

mbp15:~ sean$ ls -1 ~/.ssh/id*
/Users/sean/.ssh/id_rsa
/Users/sean/.ssh/id_rsa.pub

Installing the Public Key on a Junos Device
Let’s install the public key on a Junos device. Display the public key file to the ter-
minal or open it in your text editor, whichever you prefer:

mbp15:~ sean$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCxgT8ga1uYbS3bxXPPv7aEiTvSwXnK/7xu3NB0+t1njMBuUcgwn7zwtnayQyLS
+ef3rNP7WZXwFYxUeFbVwdkLUn9/xvDM5Qi2m/6WRP/yrTRtEvNP4lUsZRH+IXQc59JOKfYqGkvbgfshnmtHJHYVOn/1E/
w0cNDYg4oH6KbcqYb+isbKhdiqpDBvLsF9h0GwhaiLk2BpVutw2BZoeKN9vrF+OmcaB0WVzGvwblSHDpXdLfMJuHAyEhZImNSv4b
XNAYFGht9zpdTwudP5qfwJo5304Sn62UaOzVN2zGogXKzxgxgAjeJ87io0Graiwo5q9kZYksjXvPzOaX3gt8Uv sean@mbp15.
local

Copy the key from the “ssh-rsa” through the end.

On the Junos device, enter config mode and navigate to your user account’s
configuration:

	 103	 Caching Your Private Key Passphrase

sean@aragorn> configure
Entering configuration mode

sean@aragorn# edit system login user sean

[edit system login user sean]
sean@aragorn#

Now add the public key using the set authentication ssh-rsa command, placing the
public key in quotes and using the paste option of your SSH client or terminal (the
key is shown abbreviated below):

[edit system login user sean]
sean@aragorn# set authentication ssh-rsa "ssh-rsa AAAAB3NzaC1y ... vPzOaX3gt8Uv sean@mbp15.local"

[edit system login user sean]
sean@aragorn#

Commit that change. Now, from your computer’s command line or your SSH cli-
ent, SSH to the device:

mbp15:~ sean$ ssh aragorn
Enter passphrase for key '/Users/sean/.ssh/id_rsa': <enter passphrase>
--- JUNOS 15.1X49-D90.7 built 2017-04-29 06:51:16 UTC
sean@aragorn>

Note that you were prompted for the private key’s passphrase but were not
prompted for the device password; the SSH key pair took care of the authentica-
tion with the device. Nice!

Caching Your Private Key Passphrase
Having a passphrase on your private key is a good security precaution. However,
it does create a problem when running Ansible playbooks: Ansible will not pause
to prompt for the passphrase to unlock the private key, which results in authenti-
cation errors connecting to the managed devices. Even if Ansible would stop, you
would likely need to enter the passphrase for each device, which would be a head-
ache if you were running a playbook on dozens of devices.

macOS, UNIX, and Linux systems offer a way to cache your passphrase prior to
running an Ansible playbook. The passphrase will be retained for a limited time,
but during that time it will be provided to subsequent SSH sessions that use that
private key, including any NETCONF-over-SSH connections established by an
Ansible playbook.

Linux Passphrase Caching
Linux and UNIX systems using OpenSSH provide the ssh-agent and ssh-add com-
mands, which work together to cache SSH key passphrases. The ssh-agent com-
mand launches an authentication agent that can cache SSH passphrases, while the
ssh-add command adds passphrases for specific public keys to the agent’s cache.

	 104	 Chapter 6: Using SSH Keys

Start by using ssh-agent to launch a new instance of the command shell as an au-
thentication agent client (if you use a shell other than bash, adjust the command
accordingly):

sean@ubuntu:~$ ssh-agent bash
sean@ubuntu:~$

While the screen has not visibly updated, you are now running within a second in-
stance of the command shell, which is a client of ssh-agent.

Now use ssh-add to cache your passphrase for your private key. When run without
arguments ssh-add assumes you wish to cache the passphrase for ~/.ssh/id_rsa:

sean@ubuntu:~$ ssh-add
Enter passphrase for /home/sean/.ssh/id_rsa: <enter passphrase>
Identity added: /home/sean/.ssh/id_rsa (/home/sean/.ssh/id_rsa)

Now you can SSH to hosts that use the matching public key, or use scripts to access
those hosts, without needing to enter your passphrase every time. Keep in mind that
the cached passphrase is available only to tasks run within the shell that is a client to
ssh-agent, and when you exit that shell the cached passphrase is forgotten.

The following screen capture shows the entire process. Contrast the output of the
two ps commands (#1 and #4) to confirm that ssh-agent (#3) launches a second in-
stance of bash. The example also shows that an SSH session (#2) before using ssh-
add (#5) prompts for a passphrase while a similar session (#6) after ssh-add does not.

	 105	 Caching Your Private Key Passphrase

macOS Passphrase Caching
On some versions of macOS, including El Capitan (10.11), private key passphrase
caching is automatic. When you initiate a manual SSH session (for example,
ssh aragorn) to a device that uses key-based authentication, macOS will display a
dialog box similar to the following to prompt for the passphrase for the private
key. The passphrase you enter in the dialog box will be cached until you log out.

With macOS Sierra (10.12) and High Sierra (10.13), passphrase caching is not en-
abled by default. You can use the ssh-add command discussed above for Linux sys-
tems to cache passphrases. Curiously, macOS does not seem to require that you
first run ssh-agent:

mbp15:~ sean$ ssh aragorn
Enter passphrase for key '/Users/sean/.ssh/id_rsa': <enter passphrase>
--- JUNOS 15.1X49-D90.7 built 2017-04-29 06:51:16 UTC
sean@aragorn> exit

Connection to aragorn closed.

mbp15:~ sean$ ssh-add
Enter passphrase for /Users/sean/.ssh/id_rsa: <enter passphrase>
Identity added: /Users/sean/.ssh/id_rsa (/Users/sean/.ssh/id_rsa)

mbp15:~ sean$ ssh aragorn
--- JUNOS 15.1X49-D90.7 built 2017-04-29 06:51:16 UTC
sean@aragorn> exit

Connection to aragorn closed.

	 106	 Chapter 6: Using SSH Keys

Multiple Key Pairs	
When establishing a connection to a server that indicates it accepts key-based au-
thentication, the ssh client program will look in file ~/.ssh/id_rsa by default for a pri-
vate key. However, ssh can use private keys in other files, which means you can use
different key pairs with different servers. For example, assume you need to access a
server named gandalf, but you want to have a unique key pair for that connection
because gandalf is outside your organization (perhaps it is owned by a customer).
Let’s generate another key pair using a different filename, and let’s use command-line
arguments this time to illustrate that approach:

mbp15:~ sean$ ssh-keygen -m PEM -t rsa -f ~/.ssh/gandalf -N 'my!passphrase' -C "Seans key for gandalf"
Generating public/private rsa key pair.
Your identification has been saved in /Users/sean/.ssh/gandalf.
Your public key has been saved in /Users/sean/.ssh/gandalf.pub.
The key fingerprint is:
SHA256:qUPb3n1K1aqynoS7BEWGopFQOk7Ped8RypnAp9nwTMM Seans key for gandalf
The key's randomart image is:
+---[RSA 2048]----+
|.o..   .o        |
| .o o oo         |
|o. o = E..       |
|o.+ . %.=..    . |
| . + +oOS.    . .|
|    ...=...  . . |
|      +.+.. . .  |
|       + +.+ ..  |
|        +o=o+o   |
+----[SHA256]-----+

The –f argument provides the private key filename (remember to include the path, or
the files will be put in the current directory). The –N argument provides a passphrase
for the private key. The –C argument includes a comment at the end of the public key
file, which can be helpful when you have a number of key pairs for different servers
or devices. (There are a number of other arguments, including selecting a key type
other than the default RSA or a key bit length other than the default 2048. See the
manpage or online documentation for more information.)

Confirm that the key files were created:

mbp15:~ sean$ ls -1 ~/.ssh/g*
/Users/sean/.ssh/gandalf
/Users/sean/.ssh/gandalf.pub

And note the comment at the end of the public key file:

mbp15:~ sean$ cat ~/.ssh/gandalf.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDHd05KBPYi/Q/gPflEIYXum6v6lksE49s4VBV6b+fduysYdCDQkpz8r6/3/KkJd-
0JyLkNvaui4GjiY61Mgtp7nCSCO6g7jfaPMABdtNsGmYBYyJj4TUlxKLaLi9jY/BmXjDSPL7gTLpNS0b2adTDy9DdpLMcAEPGS/+7w
lJLHD8j7RscYyBvb1Gt2bEqNjB839JZYV9uj2OubGZoKfgPBeAHCbfIBqA67V+b0tfQtEU7aHmOIpcKeKZoJnk/HSKTW1YYm4k-
m7uLFJhmIY9HQzRl0E3T6IKHu3Bkia5YOrEWuBGyHjT0HtZyNEspEt8HEMJLCdzuiMDo7v0fk/TEddV Seans key for gandalf

	 107	 Multiple Key Pairs	

Give the public key file (gandalf.pub) to the administrator of gandalf and ask them
to install the public key in your user account on the server.

Next, you need to let your SSH client know to use the new private key for sessions
with gandalf. OpenSSH does this using a text configuration file ~/.ssh/config. Cre-
ate the file ~/.ssh/config with the following lines, or add these lines to the existing
file:

Host gandalf
  User sean
  IdentityFile ~/.ssh/gandalf

The Host line specifies the hostname for the server. The User line is the username to
use when connecting to that server; this is particularly useful when the username
for the server does not match your local username. The IdentityFile line specifies
the private key to use when connecting to that server.

Once your public key is installed on the server, you should be able to SSH to gan-
dalf using the alternate key pair:

mbp15:~ sean$ ssh gandalf
Enter passphrase for key '/Users/sean/.ssh/gandalf': <enter passphrase>
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-83-generic x86_64)

Last login: Tue Mar  6 13:52:11 2018 from 192.0.2.1

sean@gandalf:~$ exit
logout
Connection to gandalf closed.

If you want to cache the passphrase for the private key for gandalf, specify the
path and filename for the private key when using the ssh-add command, like this:

mbp15:~ sean$ ssh-add ~/.ssh/gandalf
Enter passphrase for /Users/sean/.ssh/gandalf: <enter passphrase>
Identity added: /Users/sean/.ssh/gandalf (/Users/sean/.ssh/gandalf)

The ~/.ssh/config file can contain similar entries for multiple servers. There are
also many other options that can be specified in the file; see the manpage for ssh_
config for more information.

NOTE	 The author has had mixed experience using alternate SSH key pairs with
Ansible playbooks. Try to use the default id_rsa key pair for any devices that you
wish to manage with Ansible.

	 108	 Chapter 6: Using SSH Keys

Security Considerations
Check with your company’s Information Security team before using SSH key-
based authentication. They may have restrictions or requirements that you will
need to follow; for example, they may require that private keys have passphrases
and define a minimum passphrase complexity, or they may require specific proto-
cols or key bit lengths, or that the key pair be replaced at regular intervals.

Protect the private key file. It should be stored only on devices you control and
should always have file permissions that prevent anyone but you from reading the
file. If you ever suspect the private key has been compromised, generate a new key
pair and replace the old pair.

If the private key has a passphrase, keep the passphrase secret just as you would
with your logon password.

If you have a private key without a passphrase in order to support scheduled auto-
mation tasks, consider making the corresponding account on the Junos devices a
read-only account. This mitigates the damage that could be caused should the pri-
vate key be compromised. Remember, a private key with no passphrase can be
used by anyone who gets the key file, so a “leaked” private key that authenticates
to an account with administrative privileges is a major security concern.

Playbook Using Key-based Authentication – Uptime Version 3
Let’s modify the uptime.yaml playbook from Chapter 5 to use SSH key-based au-
thentication. This mostly means deleting lines that are no longer needed. Juniper’s
Galaxy modules default to using your local (computer) username and SSH key for
device communication.

Be sure your SSH public key is installed on at least one of your test devices, as de-
scribed earlier in this chapter. In Chapter 7, we will show how to create a playbook
to install your SSH public key on your devices, so if you want to manually install
the public key on only a subset of your test environment, that is fine.

Remove the entire vars_prompt section of the file, and also remove the user, passwd
and port arguments from the juniper_junos_rpc task. The resulting playbook should
look like this (line numbers added):

 1|---
 2|- name: Get device uptime
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  tasks:
11|    - name: get uptime using galaxy module

	 109	 Playbook Using Key-based Authentication – Uptime Version 3

12|      juniper_junos_rpc:
13|        rpcs:
14|          - get-system-uptime-information
15|        provider:
16|          host: "{{ ansible_host }}"
17|      register: uptime
18|
19|    - name: query uptime information
20|      xml:
21|        xmlstring: "{{ uptime.stdout }}"
22|        xpath: //system-booted-time/date-time | //last-configured-time/date-time
23|        content: text
24|      register: last_boot
25|
26|    - name: show query results
27|      debug:
28|        msg: "Last booted {{ last_boot.matches[0]['date-time'] }}; last configured {{ last_boot.
matches[1]['date-time'] }}"

NOTE	 This playbook example assumes that your username on your computer is
the same as your username on the network devices. If your computer username is
different from your device username, retain the user argument but set it to your
device username, for example:

...
10|  tasks:
11|    - name: get uptime using galaxy module
12|      juniper_junos_rpc:
13|        rpcs:
14|          - get-system-uptime-information
15|        provider:
16|          host: "{{ ansible_host }}"
17|          user: sean
18|      register: uptime
...

If you have not already done so, use ssh-add (and ssh-agent if needed) to cache your
private key passphrase:

mbp15:aja2 sean$ ssh-add
Enter passphrase for /Users/sean/.ssh/id_rsa: <enter passphrase>
Identity added: /Users/sean/.ssh/id_rsa (/Users/sean/.ssh/id_rsa)

Run the playbook (remember to --limit the hosts if you have not installed your
SSH key on all your test systems):

mbp15:aja2 sean$ ansible-playbook uptime.yaml --limit=aragorn

PLAY [Get device uptime] ***

TASK [get uptime using galaxy module] **
ok: [aragorn]

TASK [query uptime information] **
ok: [aragorn]

TASK [show query results] **

	 110	 Chapter 6: Using SSH Keys

ok: [aragorn] => {
    "msg": "Last booted 2018-03-02 00:59:16 UTC; last configured 2018-03-06 21:17:26 UTC"
}

PLAY RECAP ***
aragorn                    : ok=3    changed=0    unreachable=0    failed=0

Observe that you did not need to enter the username and password for the play-
book, but the playbook was still able to connect to the network device. Nice!

References
Asymmetric cryptography:
https://en.wikipedia.org/wiki/Public-key_cryptography

More about SSH:
https://en.wikipedia.org/wiki/Secure_Shell

More about ssh-keygen:
https://en.wikipedia.org/wiki/Ssh-keygen

Cygwin:
http://www.cygwin.com/

OpenSSH:
http://www.openssh.com/

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Ssh-keygen
http://www.cygwin.com/
http://www.openssh.com/

A common use for automation is configuring network devices, whether installing a
new configuration on a new device or changing the configuration of an existing
device. This chapter explores how Ansible can generate Junos configurations and
apply those configurations to devices.

Configuration Files
You can modify a Junos device’s configurations by loading a configuration file on
the device. The configuration file can be a partial configuration containing only the
settings to be changed, or it can be a complete device configuration that replaces
the entire existing configuration.

Configuration files are text files, typically using one of two formats. The “set” for-
mat contains a set of Junos configuration statements similar to what you would
enter at the configuration-mode command line. For example:

set system services ssh connection-limit 5
set system services ssh rate-limit 5
delete system services telnet

In other words, a set file’s contents are similar to what you would get if you
showed (a portion of) a device’s configuration with the “| display set” modifier:

sean@aragorn> show configuration system services ssh | display set
set system services ssh connection-limit 5
set system services ssh rate-limit 5

The “text” or “config” format looks like the normal Junos configuration, or a por-
tion thereof, complete with braces, semicolons, and indented lines:

Chapter 7

Generating and Installing Junos Configuration Files

	 112	 Chapter 7: Generating and Installing Junos Configuration Files

system {
    services {
        ssh {
            connection-limit 5;
            rate-limit 5;
        }
    }
}

NOTE	 Junos also supports configuration files in XML and JSON formats.
Because these formats are less familiar to many Junos users than the “set” and
“text” formats, we will not do any examples using configuration files in these
formats.

Configuration files, in either “set” or “text” format, can be loaded either manually
or with Ansible. We will first explore manually loading configuration files as this
will help explain some of the available options.

Manually Loading Configuration Files
One of the author’s test devices has the following DNS servers and host name:

sean@aragorn> show configuration system name-server
8.8.8.8;
8.8.4.4;
198.51.100.10;
198.51.100.11;

sean@aragorn> show configuration system host-name
host-name aragorn;

Create two configuration files in a convenient directory on your computer, such as
in your ~/aja2 directory. File dns1.set should contain the following:

set system name-server 198.51.100.29
set system name-server 198.51.100.28
delete system name-server 198.51.100.10
set system host-name vsrx-dns1

File dns2.conf should contain the following. Indent using spaces not tabs; Junos
uses four spaces for each level of indentation, though it is not imperative that your
indentation matches:

system {
    host-name vsrx-dns2;
    name-server {
        198.51.100.25;
        198.51.100.26;
    }
}

Note that both files contain the top-level system hierarchy. Your configuration files
should always contain the complete structure. This is not strictly needed for manu-
al configuration but is necessary for automated configuration.

	 113	 Manually Loading Configuration Files

NOTE	 Many of the DNS server IP addresses used in this section and the next are
fictitious; they are used simply to illustrate the concepts of loading configuration
files. Do not worry, we will clean up these fictitious name servers later.

Copy these files into your home directory on your test Junos device:

mbp15:~ sean$ scp dns* aragorn:.
dns1.set                                      100%  127   133.5KB/s   00:00
dns2.conf                                     100%   94   120.8KB/s   00:00

Let’s load the set file first. This is accomplished in configuration mode using the
load set command:

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# load set dns1.set
load complete

[edit]
sean@aragorn# show | compare
[edit system]
-  host-name aragorn;
+  host-name vsrx-dns1;
[edit system name-server]
    198.51.100.11 { ... }
+   198.51.100.28;
+   198.51.100.29;
-   198.51.100.10;

[edit]
sean@aragorn# show system host-name
host-name vsrx-dns1;

[edit]
sean@aragorn# show system name-server
8.8.8.8;
8.8.4.4;
198.51.100.11;
198.51.100.28;
198.51.100.29;

Notice that the two new servers on the “set” lines of the file were added while the
server on the “delete” line was removed, and that the host name has been changed.

Now let’s load the text file. This is accomplished in configuration mode using the
load merge command:

[edit]
sean@aragorn# load merge dns2.conf
load complete

[edit]
sean@aragorn# show | compare
[edit system]
-  host-name aragorn;

	 114	 Chapter 7: Generating and Installing Junos Configuration Files

+  host-name vsrx-dns2;
[edit system name-server]
    198.51.100.11 { ... }
+   198.51.100.28;
+   198.51.100.29;
+   198.51.100.25;
+   198.51.100.26;
-   198.51.100.10;

[edit]
sean@aragorn# show system host-name
host-name vsrx-dns2;

[edit]
sean@aragorn# show system name-server
8.8.8.8;
8.8.4.4;
198.51.100.11;
198.51.100.28;
198.51.100.29;
198.51.100.25;
198.51.100.26;

Note how the new servers were added without affecting the existing servers, and
that the host name has been updated.

Loading a set configuration file causes the same configuration changes as you
would expect if the same commands were issued manually. If a set command up-
dates a setting with a single value, like the host-name, the prior value is replaced. If a
set command updates a setting that takes a list of values, like the name-server list,
the new entries are added to the list. Delete commands remove settings.

Loading a text configuration file with load merge incorporates the new settings into
the existing configuration. Settings with a single value are updated to the new val-
ue, while settings that take a list add the new values to the list.

A text configuration file can also delete or replace settings. This requires two ad-
justments to the process above. First, in the text configuration file, you need to add
delete: or replace: before the setting to be deleted or replaced. Second, you need to
use the load replace command instead of load merge; load replace tells Junos to hon-
or any delete: or replace: tags in the text file.

Before we do examples with the delete: and replace: tags, roll back the uncommit-
ted changes we made above:

[edit]
sean@aragorn# rollback
load complete

[edit]
sean@aragorn# show system host-name
host-name aragorn;

[edit]
sean@aragorn# show system name-server
8.8.8.8;

	 115	 Manually Loading Configuration Files

8.8.4.4;
198.51.100.10;
198.51.100.11;

Now let’s try the delete: tag. Create configuration file dns3.conf as follows:

system {
    host-name vsrx-dns3;
    name-server {
        198.51.100.10;
        delete: 198.51.100.11;
    }
}

Copy the configuration file dns3.conf to your test device and “load replace” it:

[edit]
sean@aragorn# load replace dns3.conf
load complete

[edit]
sean@aragorn# show | compare
[edit system]
-  host-name aragorn;
+  host-name vsrx-dns3;
[edit system name-server]
-   198.51.100.11;

[edit]
sean@aragorn# show system host-name
host-name vsrx-dns3;

[edit]
sean@aragorn# show system name-server
8.8.8.8;
8.8.4.4;
198.51.100.10;

Observe that the host-name changed and that server 198.51.100.11 has been re-
moved from the name-server list. Also note that re-applying name server
198.51.100.10 had no effect; Junos is very good about ignoring “changes” that do
not change anything. Finally, note that the other name servers in the configuration
were unaffected.

Roll back that uncommitted change.

Now let’s do an example with the replace: tag. Assume you wish to replace the en-
tire name-server list, regardless of what addresses are currently in the list, with new
servers. Create a new file dns4.conf and enter the following text:

system {
    replace:
    name-server {
        198.51.100.30;
        8.8.8.8;
    }
}

	 116	 Chapter 7: Generating and Installing Junos Configuration Files

Copy the file to your test device and “load replace” it into the configuration:

[edit]
sean@aragorn# load replace dns4.conf
load complete

[edit]
sean@aragorn# show | compare
[edit system name-server]
+   198.51.100.30;
    8.8.8.8 { ... }
[edit system name-server]
-   8.8.4.4;
-   198.51.100.10;
-   198.51.100.11;

[edit]
sean@aragorn# show system name-server
198.51.100.30;
8.8.8.8;

Observe that the entire name-server list was replaced with the new list specified in
the file (not withstanding the entry 8.8.8.8 that was in the original and
replacement).

Roll back the uncommitted change and exit configuration mode.

In a text configuration file, the delete: and replace: tags can be on the same line as
the setting being altered, or on the line above. Both approaches were shown in the
examples above. The author typically puts the tag on the same line as a single line
setting, or on the line above the start of a multiple-line setting, but this is personal
preference. Another example:

system {
    replace: authentication-order [ password radius ];
    host-name aragorn;
    replace:
    ntp {
        boot-server 9.8.7.6;
        server 9.8.7.6;
    }
}

Keep in mind that the replace: tag is not needed when replacing a setting that has
only one value, like host-name, as the new value replaces the existing value anyway.

The load command also has an override variation (load override filename.conf) that
replaces the entire configuration of the device with the configuration file. This can
be useful when you have a complete configuration file for the new device, perhaps
for NOOB (new-out-of-box) setup. We will not perform an example here.

Everything above applies to loading configuration files through Ansible. There are
two load command options available for loading configurations manually that do
not apply to Ansible, which are addressed only briefly here. Both options work
with both set and text configuration formats, and these options can be combined.

	 117	 Installing Text Configuration Files with Ansible

The first option is terminal, which allows you to copy-and-paste configuration
from another source, such as another device, without needing to create and upload
a text file to the device you are changing. Use Ctrl+D to complete the load:

[edit]
sean@aragorn# load set terminal
[Type ^D at a new line to end input]
set system name-server 198.51.100.29
set system name-server 198.51.100.28
load complete

The second option is relative. In all of the examples above, the configuration files
were loaded at the top level of the Junos hierarchy, and the files showed the con-
figuration hierarchy being changed. The relative option allows you to load chang-
es into the current level of the hierarchy, and the configuration being loaded
should be written relative to the current hierarchy level instead of the top level:

[edit]
sean@aragorn# edit system name-server

[edit system name-server]
sean@aragorn# load set terminal relative
[Type ^D at a new line to end input]
delete 198.51.100.29
delete 198.51.100.28
load complete

Now, how do we load configuration files using Ansible?

Installing Text Configuration Files with Ansible
Juniper’s Galaxy module juniper_junos_config lets us configure a Junos device.
There are several ways to use this module: it can accept a configuration file, a list
of configuration statements, or a template and a dictionary of values (we discuss
templates later in this chapter, though we use them in a somewhat different way).
Let’s start with a configuration file, basically automating the process we discussed
in the previous section of this chapter.

Given a configuration file, in either set or text format, juniper_junos_config can
load the configuration onto the device and commit the change. By default, the ju-
niper_junos_config module checks the file’s extension to determine the format: set
files should use the extension .set and text files should use .conf.

The author prefers text format configuration files for automation, so most exam-
ples in this book use the text format. The text format makes it easier to include
annotations (comments) in the configuration files (/* this is an annotation */) that
will become part of the Junos configuration, and the author believes the hierarchi-
cal layout makes it easier to understand the configuration than a series of set
commands.

The author suggests putting simple configuration files in a config subdirectory
within the Ansible playbook directory. Create your ~/aja2/config directory, then
create in the config directory a file nameserver.conf with the following contents:

	 118	 Chapter 7: Generating and Installing Junos Configuration Files

system {
    name-server {
        8.8.4.4;
        8.8.8.8;
        198.51.100.100;
    }
}

In your ~/aja2 playbook directory, create the playbook install-config.yaml as
shown below (line numbers added for discussion, do not enter them into your
playbook):

 1|---
 2|- name: Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  tasks:
11|    - name: install configuration file onto device
12|      juniper_junos_config:
13|        provider:
14|          host: "{{ ansible_host }}"
15|          timeout: 120
16|        load: merge
17|        src: "config/nameserver.conf"

This playbook assumes that we are using SSH key authentication and the standard
NETCONF port. If needed for your environment, add arguments user, passwd, or
port to the provider dictionary.

Lines 1-8 are the now-familiar introduction to an Ansible playbook using Juniper’s
Galaxy modules.

Lines 11-17 are the task that uploads configuration file to the Junos devices.

Line 12 calls the juniper_junos_config module with the arguments on the following
lines.

Line 13-15, the provider dictionary, contains the connection information. We have
not previously used the timeout value on line 15. By default, juniper_junos_config
uses a 30 second timeout for its RPC connections. Some devices take longer than
that to commit a configuration change, particularly if the configuration is complex
or if the device includes on-box validation scripts. Setting a longer timeout, 120
seconds in this example, instructs juniper_junos_config to wait a little longer before
it declares an RPC timeout error.

Line 16, the load argument, tells juniper_junos_config that we want to load a con-
figuration, and which type of load operation we wish to perform. There are several
possible values for this setting; merge requests a “load merge.” We will see some of
the other possible values later in this chapter.

	 119	 Installing Text Configuration Files with Ansible

Line 17, the src argument, specifies the configuration file to load.

Run the playbook (with --limit if you do not wish to update all your devices):

mbp15:aja2 sean$ ansible-playbook install-config.yaml --limit=aragorn

PLAY [Install Configuration File] **

TASK [install configuration file onto device] **********************************
changed: [aragorn]

PLAY RECAP ***
aragorn                    : ok=1    changed=1    unreachable=0    failed=0

Notice that the “install configuration...” task recorded a changed status for arago-
rn, indicating the device’s configuration was changed.

Now check the device’s configuration:

sean@aragorn> show configuration | compare rollback 1
[edit system name-server]
    198.51.100.11 { ... }
+   198.51.100.100;

sean@aragorn> show configuration system name-server
8.8.8.8;
8.8.4.4;
198.51.100.10;
198.51.100.11;
198.51.100.100;

Observe that the new DNS server in nameserver.conf was added to the existing
name servers on the device without changing existing servers, exactly as we would
expect from a “load merge” operation.

To do a “load replace” instead, and replace the name-server hierarchy with what is
in our configuration file, we need to make two changes. First, add the replace: tag
to the nameserver.conf configuration file:

system {
    replace:
    name-server {
        8.8.4.4;
        8.8.8.8;
        198.51.100.100;
    }
}

Second, change the load argument in our playbook to request a replace operation.
While we are editing the playbook, let’s also add a commit comment so that any-
one reviewing the commit history on the device will be able to see that the change
was made with automation (new line 18):

...
10|  tasks:
11|    - name: install configuration file onto device
12|      juniper_junos_config:
13|        provider:
14|          host: "{{ ansible_host }}"

	 120	 Chapter 7: Generating and Installing Junos Configuration Files

15|          timeout: 120
16|        load: replace
17|        src: "config/nameserver.conf"
18|        comment: install-config.yaml playbook with nameserver.conf file

Now run the playbook again (not shown) and check the results on the device:

sean@aragorn> show configuration | compare rollback 1
[edit system name-server]
!   8.8.4.4 { ... }
[edit system name-server]
-   198.51.100.10;
-   198.51.100.11;

sean@aragorn> show configuration system name-server
8.8.4.4;
8.8.8.8;
198.51.100.100;

sean@aragorn> show system commit
0   2018-03-09 05:04:58 UTC by sean via netconf
    install-config.yaml playbook with nameserver.conf file
1   2018-03-09 04:52:50 UTC by sean via netconf
2   2018-03-09 04:52:26 UTC by sean via cli
...

Observe that the device’s previous name-server list has been replaced with the new
list from nameserver.conf (at first glance the 8.8.8.x addresses do not appear to have
changed because they were in both the device configuration and in the config file,
but they have actually been replaced – look closely and notice that their order re-
versed!) Also notice the comment in the commit history.

Run the playbook again. This time notice that the “install configuration...” task
returns an OK status for aragorn because no change was made to the device (the
device’s configuration matched what was in the config file):

...
TASK [install configuration file onto device] **********************************
ok: [aragorn]
...

Check the commit history again and notice that the configuration was not commit-
ted this time, because there was effectively no change to commit.

TIP	 Should you have a playbook that needs to do a “load override” operation,
use the argument load: override or load: overwrite.

Installing Set Commands with Ansible
Let’s take a quick look at how you can install “set” style configurations using the
juniper_junos_config module. We look at two approaches:

	 121	 Installing Set Commands with Ansible

	� Using a “set” configuration file, which is similar to what we did in the last sec-
tion with a “text” configuration file.

	� Including the set commands in the playbook, which is sometimes convenient
for quick changes to one or two settings.

For the “set” configuration file, let’s assume we want to configure the NTP server
settings for our devices. Create file config/ntp.set as follows:

set system ntp boot-server 17.253.20.253
set system ntp server 17.253.20.253
set system ntp server 129.6.15.30

For the in-playbook commands, let’s assume the DNS server 198.51.100.100 set
in the previous section was supposed to be 198.51.100.101 and we need to fix it;
this requires a set statement and a delete statement.

Create playbook install-set.yaml as follows (line numbers added for discussion):

 1|---
 2|- name: Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    connection_settings:
12|      host: "{{ ansible_host }}"
13|      timeout: 120
14|
15|  tasks:
16|    - name: install set file onto device
17|      juniper_junos_config:
18|        provider: "{{ connection_settings }}"
19|        load: set
20|        src: "config/ntp.set"
21|        comment: install-set.yaml playbook -- load ntp.set file
22|
23|    - name: install set commands onto device
24|      juniper_junos_config:
25|        provider: "{{ connection_settings }}"
26|        load: set
27|        lines:
28|          - delete system name-server 198.51.100.100
29|          - set system name-server 198.51.100.101
30|        comment: install-set.yaml playbook -- fix name server address

Line 10 starts a vars section of the play. We have not used a vars section previously;
it allows us to define one or more variables that may be used in tasks in the play. A
separate instance of each variable is created for each host, so these variables may
contain host-specific information by referencing another (host-specific) variable.

Lines 11–13 define the variable connection_settings containing a dictionary. Line
12, the host key, is set to the value of each host’s ansible_host variable, meaning the
host key’s value is specific to each host for which the playbook runs.

	 122	 Chapter 7: Generating and Installing Junos Configuration Files

Why define the connection_settings variable? We have two juniper_junos_config
tasks in this play, each of which needs a provider dictionary with connection infor-
mation. Rather than repeating the exact same settings in two tasks, we put those
settings in the connection_settings variable and reference that variable in each task
(lines 18 and 25). Should we need to change the connection settings in the future,
perhaps adjusting the timeout value or adding a port number, we can do so in one
place, the connection_settings variable in the vars section, instead of in multiple
tasks.

Lines 16–21 are the task that loads the ntp.set file onto the device. Note that line
19 sets the load argument to correspond with the file type.

Lines 23–30 are the task that loads the in-playbook commands onto the device.
Note there is no src argument; instead, the lines argument starting on line 27 con-
tains the list of commands (lines 28 and 29) to execute.

Let’s run the playbook:

mbp15:aja2 sean$ ansible-playbook install-set.yaml --limit=aragorn

PLAY [Install Configuration File] **

TASK [install set file onto device] **
changed: [aragorn]

TASK [install set commands onto device] **
changed: [aragorn]

PLAY RECAP ***
aragorn                    : ok=2    changed=2    unreachable=0    failed=0

Observe that both tasks returned a changed status.

Check on the device that the changes are what we expected and that the commit
history reflects our changes:

sean@aragorn> show configuration | compare rollback 2
[edit system name-server]
    8.8.8.8 { ... }
+   198.51.100.101;
-   198.51.100.100;
[edit system ntp]
+   boot-server 17.253.20.253;
[edit system ntp]
     server 17.253.20.253 { ... }
+    server 129.6.15.30;

sean@aragorn> show system commit
0   2018-03-10 18:58:35 UTC by sean via netconf
    install-set.yaml playbook -- fix name server address
1   2018-03-10 18:58:32 UTC by sean via netconf
    install-set.yaml playbook -- load ntp.set file
...

Run the playbook again. Does it work a second time?

	 123	 Generating Configuration Files – Base Settings 1.0

mbp15:aja2 sean$ ansible-playbook install-set.yaml --limit=aragorn

PLAY [Install Configuration File] **

TASK [install set file onto device] **
ok: [aragorn]

TASK [install set commands onto device] **
fatal: [aragorn]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: warning, bad_element: None, message: warning: statement not found)"}
	 to retry, use: --limit @/Users/sean/aja2/install-set.retry

PLAY RECAP ***
aragorn : ok=1 changed=0 unreachable=0 failed=1

The “install set file...” task worked and returned an OK status because the device’s
configuration did not change. However, the “install set command...” task failed.
Note the error message says, in part, “warning: statement not found.” Because this
task tries to delete a setting that does not exist – we already deleted name-server
198.51.100.100 during the previous playbook run – Junos issues a warning. The ju-
niper_junos_config module interprets that warning as a failure. Later in this chapter
we discuss how to handle this situation by ignoring the warning.

Generating Configuration Files – Base Settings 1.0
Installing simple configuration files like we did in the last section is useful for
changes that are the same for all devices. However, when we want to make a
change that contains different settings for different devices, we need to use a tem-
plate that will let Ansible generate a customized configuration file for each device,
filling in host-specific settings using data stored in variables.

Ansible uses a templating language called Jinja2. We explore features of Jinja2 in
several chapters through the remainder of the book, but in this chapter, we start
with a basic template example.

Assume we are creating a playbook to add some standard configuration settings to
new devices. An initial deployment team connects the devices to the network, con-
figures a management IP and initial management user account, and enables SSH.
Our playbook should set the device’s hostname and DNS servers, enable NET-
CONF, and add our account with its SSH public key. The hostname will obviously
differ for each device. DNS servers may also be different for devices in different
locations. And if we are enabling NETCONF with this playbook then presumably
it is not yet enabled, so our playbook will connect over SSH port 22.

Start by adding variables for each device’s DNS servers to your inventory file. These
values will fill in the template, customizing the configuration for each device:

aragorn    ansible_host=192.0.2.10     dns1=8.8.8.8    dns2=198.51.100.100
bilbo      ansible_host=198.51.100.5   dns1=8.8.4.4    dns2=198.51.100.101

	 124	 Chapter 7: Generating and Installing Junos Configuration Files

NOTE	 In Chapter 8 we discuss a better way to set host-specific variables, includ-
ing lists of data, and see how to process list data using Jinja2 templates.

Next create a template directory within your Ansible playbook directory (~/aja2/
template) to hold Jinja2 templates, then create file base-settings.j2 within the tem-
plate directory. Enter the following Jinja2 template, substituting your user account
name and public SSH key for the author’s (lines 4-10). (The template contents are
shown with lines numbered for easy discussion, but you should NOT enter the line
numbers or the | separator character in your file):

 1|system {
 2|    host-name {{ inventory_hostname }};
 3|    login {
 4|        user sean {
 5|            uid 2000;
 6|            class super-user;
 7|            authentication {
 8|                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
 9|            }
10|        }
11|    }
12|    replace:
13|    name-server {
14|        {{ dns1 }};
15|        {{ dns2 }};
16|    }
17|    services {
18|        netconf {
19|            ssh;
20|        }
21|    }
22|}

NOTE	 This template creates a user account using Junos’ default super-user class.
This keeps our example template simple and allows us to use this account to
modify various parts of the Junos configuration during examples in this book.
However, if a user account does not need super-user permissions, the principle of
least privilege suggests we should create a class with limited permissions and
assign the user to that class. In Chapter 9, we do an example with a limited-per-
mission account.

Most of the file is straightforward Junos configuration, as this template will create
a Junos configuration file. However, we see one feature of the Jinja2 templating
language on lines 2, 14, and 15: double curly braces ({{ }}) enclose a variable
name. Line 2 of the template references Ansible’s inventory_hostname variable to get
the name of the device, and lines 14 and 15 reference the dns1 and dns2 variables we
put in the inventory file above.

When the template is processed, each {{ variable }} reference is replaced with the
contents of the appropriate variable before the configuration file is created. For
example, line 2 of the template, “host-name {{ inventory-hostname }};” becomes
“host-name aragorn;” in the generated configuration file for the aragorn device.

	 125	 Generating Configuration Files – Base Settings 1.0

Now let’s create the playbook. We will start with the tasks necessary to generate
the configuration file from our template, then add the task to install the configura-
tion file on the device a little later in this section. Create playbook base-settings.
yaml as shown (line numbers added for discussion):

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|
14|  tasks:
15|    - debug: var=tmp_dir
16|
17|    - debug: var=conf_file
18|
19|    - name: confirm or create configs directory
20|      file:
21|        path: "{{ tmp_dir }}"
22|        state: directory
23|
24|    - name: save device information using template
25|      template:
26|        src: template/base-settings.j2
27|        dest: "{{ conf_file }}"

Lines 1 – 8 are basically the same as we have seen previously, identifying the play-
book and the hosts to be processed and loading the Galaxy modules.

Lines 10 – 12 define two variables that are used later in the playbook. Instances of
these variables are created for each device that is processed, so these variables can
be used for device-specific information. Line 11 creates variable tmp_dir to hold the
name of the directory, tmp, where the playbook will store the generated configura-
tion files. Line 12 creates variable conf_file to hold the path and filename for the
configuration file generated for each device, using the directory name from line 11
and Ansible’s inventory_hostname for the device. For example, the path+filename for
the aragorn device will be tmp/aragorn.conf.

The debug tasks on lines 15 and 17 display the contents of variables defined above;
this is just a way to check that things are working as we expect.

Lines 19 – 22 use the Ansible core module file to check that our configuration di-
rectory exists or create it if it does not exist. The path argument (line 21) references
our tmp_dir variable to provide the name of the configuration directory, while the
state argument (line 22) says the “file” in question should be a directory.

	 126	 Chapter 7: Generating and Installing Junos Configuration Files

Lines 24 – 27 use the Ansible core module template to process our Jinja2 template.
The src argument (line 26) tells the template module where to find our template file,
while the dst argument (line 27) references our conf_file variable to tell the tem-
plate module where to store the result of processing our template.

The template module is an Ansible core module, not a Juniper module; it processes
templates written in the Jinja2 template language, not Junos configuration files.
Neither Ansible nor Jinja2 know, or need to know, anything about Junos in order
to process the template we wrote and generate a Junos configuration file. We, the
authors of the template, provide the Junos knowledge—processing the template
just “fills in the blanks” where the template references device-specific variables.

Let’s run the playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [debug] ***
ok: [aragorn] => {
    "tmp_dir": "tmp"
}
ok: [bilbo] => {
    "tmp_dir": "tmp"
}

TASK [debug] ***
ok: [aragorn] => {
    "conf_file": "tmp/aragorn.conf"
}
ok: [bilbo] => {
    "conf_file": "tmp/bilbo.conf"
}

TASK [confirm or create configs directory] *************************************
changed: [aragorn]
ok: [bilbo]

TASK [save device information using template] **********************************
changed: [aragorn]
changed: [bilbo]

PLAY RECAP ***
aragorn                    : ok=4    changed=2    unreachable=0    failed=0
bilbo                      : ok=4    changed=1    unreachable=0    failed=0

Notice in the output of the second debug task that each device’s conf_file variable
contains a unique name, which is appropriate as we are using the template to gen-
erate unique configuration files for each device.

Notice the task “confirm or create configs directory” returned a changed state for
the first device to be processed because it had to create the tmp directory, while the
task returned ok (no change, the directory already existed) when it processed the
second device. We really only need to execute this task once each time the

	 127	 Generating Configuration Files – Base Settings 1.0

playbook is run, not once per device. We will make an alteration momentarily to
address this.

Now display the configuration files generated by the playbook, and note how the
host-name and name-server information is specific for each device:

mbp15:aja2 sean$ cat tmp/aragorn.conf
system {
    host-name aragorn;
    login {
        user sean {
            uid 2000;
            class super-user;
            authentication {
                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
            }
        }
    }
    replace:
    name-server {
        8.8.8.8;
        198.51.100.100;
    }
    services {
        netconf {
            ssh;
        }
    }
}

mbp15:aja2 sean$ cat tmp/bilbo.conf
system {
    host-name bilbo;
    login {
        user sean {
            uid 2000;
            class super-user;
            authentication {
                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
            }
        }
    }
    replace:
    name-server {
        8.8.4.4;
        198.51.100.101;
    }
    services {
        netconf {
            ssh;
        }
    }
}

This is a good opportunity to check the configuration files for problems like miss-
ing braces or semicolons, or misspelled words, that might cause Junos to reject the
configurations. If you find any issues, adjust the base-settings.j2 template.

	 128	 Chapter 7: Generating and Installing Junos Configuration Files

Installing the Generated Configuration – Base Settings 1.1
Let’s update the playbook to push the configuration files to the devices (new lines
are in boldface, line numbers added for discussion):

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|
14|  vars_prompt:
15|    - name: username
16|      prompt: Junos Username
17|      private: no
18|
19|    - name: password
20|      prompt: Junos Password
21|      private: yes
22|
23|  tasks:
24|    - name: confirm or create configs directory
25|      file:
26|        path: "{{ tmp_dir }}"
27|        state: directory
28|      run_once: yes
29|
30|    - name: save device information using template
31|      template:
32|        src: template/base-settings.j2
33|        dest: "{{ conf_file }}"
34|
35|    - name: install generated configuration file onto device
36|      juniper_junos_config:
37|        provider:
38|          host: "{{ ansible_host }}"
39|          user: "{{ username }}"
40|          passwd: "{{ password }}"
41|          port: 22
42|          timeout: 120
43|        src: "{{ conf_file }}"
44|        load: replace
45|        comment: "playbook base-settings.yaml"

Lines 14–21 add prompts for device username and password, as we saw in Chap-
ters 4 and 5. Because this example assumes the devices do not yet have SSH public
keys in their configurations, the playbook needs the username and password that
it will use to authenticate to the devices.

	 129	 Installing the Generated Configuration – Base Settings 1.1

The two debug tasks have been removed, having verified above that our variables
were working, those tasks were no longer needed.

Line 28, the run_once: yes option added to the task “confirm or create configs di-
rectory” ensures that task runs only once each time the playbook is executed, not
once per device. The run_once option accepts a Boolean true or false value. How-
ever, Ansible accepts yes and no as synonyms for True and False, because yes and no
are often easier to understand when reading a playbook.

Lines 35–45 are the task to push the configuration files to the devices. Building on
the examples we saw earlier in this chapter, this task adds user and passwd argu-
ments to pass the username and password to the juniper_junos_config module, and
the port argument so the modules will use the standard SSH port.

Now run the updated playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml
Junos Username: sean
Junos Password:

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [aragorn]
ok: [bilbo]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]
changed: [bilbo]

PLAY RECAP ***
aragorn                    : ok=3    changed=1    unreachable=0    failed=0
bilbo                      : ok=2    changed=1    unreachable=0    failed=0

Notice that the task “confirm or create configs directory” ran only once, for only
one device. That is thanks to the run_once setting we added to this task. Ansible se-
lected the device under whose name the task would run, aragorn in this example.
Which device Ansible selects is not important, only that the task runs once.

Notice that the task “save device information using template” returned a status of
ok, even though it returned changed the last time we ran the playbook. Before the
previous playbook run, the configuration files did not exist, so creating the file was
a change. This time the configuration files already existed and, as we did not
change the template, or any variables used by the template, there was no change in
the file generated during this playbook run relative to the last playbook run.

	 130	 Chapter 7: Generating and Installing Junos Configuration Files

Displaying Changes – Base Settings 1.2
Many Ansible core modules that make changes, such as the template module, can
show what they are changing, you simply need to run the playbook with the --diff
command-line argument.

The juniper_junos_config module can show what changed in a device’s configura-
tion. In fact, it records the change by default, but we need to capture and display
the information, or ask the module to save the information to a file.

Modify the playbook as follows:

...
35|    - name: install generated configuration file onto device
36|      juniper_junos_config:
37|        provider:
38|          host: "{{ ansible_host }}"
39|          user: "{{ username }}"
40|          passwd: "{{ password }}"
41|          port: 22
42|          timeout: 120
43|        src: "{{ conf_file }}"
44|        load: replace
45|        comment: "playbook base-settings.yaml"
46|        diff: yes
47|        dest_dir: "{{ tmp_dir }}"
48|      register: config_results
49|
50|    - debug:
51|        var: config_results

Line 46 instructs the juniper_junos_config module to record the configuration
change that was made (the difference in the configuration before and after loading
the config file). This Boolean value defaults to true when loading configuration
files; this line simply makes the default explicit for illustration. If you set diff to no
or False, the module will not record any configuration change that was made.

Line 47 instructs the juniper_junos_config module to save configuration results to a
file in the specified directory, here set to our temporary directory. The module will
use a filename of {{ ansible_host }}.diff.

Line 48 records the module’s results in variable config_results.

Lines 50-51 display the config_results variable, the results from the juniper_junos_
config module.

In order to see changes when we run the playbook, roll back the last commit (from
the previous run of the playbook) on one of your test devices:

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# rollback 1

	 131	 Displaying Changes – Base Settings 1.2

load complete

[edit]
sean@aragorn# commit and-quit
commit complete
Exiting configuration mode

Also delete the generated configuration file for that same device:

mbp15:aja2 sean$ rm tmp/aragorn.conf

Now run the playbook again, adding the --diff command-line agument:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml --diff
Junos Username: sean
Junos Password: <enter password>

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [bilbo]
--- before
+++ after: /var/folders/y1/nqmc7hf13kz5rckn40p5jfbh0000gp/T/tmpEJzouu/base-settings.j2
@@ -0,0 +1,22 @@
+system {
+    host-name aragorn;
+    login {
+        user sean {
+            uid 2000;
+            class super-user;
+            authentication {
+                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
+            }
+        }
+    }
+    replace:
+    name-server {
+        8.8.8.8;
+        198.51.100.100;
+    }
+    services {
+        netconf {
+            ssh;
+        }
+    }
+}

changed: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]
ok: [bilbo]

TASK [debug] ***
ok: [aragorn] => {

	 132	 Chapter 7: Generating and Installing Junos Configuration Files

    "config_results": {
        "changed": true,
        "diff": "\n[edit system name-server]\n    8.8.8.8 { ... }\
n+   198.51.100.100;\n-   8.8.4.4;\n-   198.51.100.101;\n",
        "diff_lines": [
            "",
            "[edit system name-server]",
            "    8.8.8.8 { ... }",
            "+   198.51.100.100;",
            "-   8.8.4.4;",
            "-   198.51.100.101;"
        ],
        "failed": false,
        "file": "tmp/aragorn.conf",
        "msg": "Configuration has been: opened, loaded, checked, diffed, committed, closed."
    }
}
ok: [bilbo] => {
    "config_results": {
        "changed": false,
        "failed": false,
        "file": "tmp/bilbo.conf",
        "msg": "Configuration has been: opened, loaded, checked, diffed, closed."
    }
}

PLAY RECAP ***
aragorn                    : ok=4    changed=2    unreachable=0    failed=0
bilbo                      : ok=3    changed=0    unreachable=0    failed=0

Observe the output of task “save device information using template.” Bilbo’s con-
figuration file did not change but aragorn’s file, which we deleted, needed to be rec-
reated. The --diff argument caused Ansible’s template module to display changes,
so it showed a series of lines prefixed with a ‘+’ character to indicate a line added
to the file. Had we left the configuration file, but changed one of the DNS server IP
addresses in the inventory file, we would have seen something like this, where the
leading ‘-’ indicates a line removed from the prior configuration file:

...
--- before: tmp/bilbo.conf
+++ after: /var/folders/y1/nqmc7hf13kz5rckn40p5jfbh0000gp/T/tmpHN85WZ/base-settings.j2
@@ -12,7 +12,7 @@
     replace:
     name-server {
         8.8.4.4;
-        198.51.100.101;
+        198.51.100.123;
     }
     services {
         netconf {

changed: [bilbo]
...

Observe the output of the debug task. Aragorn’s configuration changed, and its con-
fig_results variable contains keys diff and diff_lines showing the changes made.

	 133	 Cleaning Up Temporary Files – Base Settings 1.3

Bilbo’s configuration did not change, and its config_results variable does not con-
tain those keys.

Did the juniper_junos_config module save the changes in files?

mbp15:aja2 sean$ ls tmp/*.diff
tmp/192.0.2.10.diff

mbp15:aja2 sean$ cat tmp/192.0.2.10.diff

[edit system name-server]
    8.8.8.8 { ... }
+   198.51.100.100;
-   8.8.4.4;
-   198.51.100.101;

Aragorn’s configuration change was saved. Because bilbo’s configuration did not
change, no .diff file was created.

Take a close look at the changes in the configuration files shown with the --diff
argument, and contrast that with the differences returned by the juniper_junos_con-
fig module. Ansible’s template module does a simple file compare, similar to what
you would get from the UNIX/Linux diff command. It can tell which lines
changed in the configuration file, but not whether those lines will alter the devices’s
configuration. With a change affecting only a line or two it may not be clear from
the difference output which Junos hierarchy was modified, though template in-
cludes some unmodified lines before and after the changed lines to try to provide
that context. This is not surprising; template knows nothing about the files it is
generating.

By contrast, juniper_junos_config does the equivalent of a Junos show | compare after
installing the configuration file but before committing the change. Because Junos
understands its configuration hierarchy and what changed, it can provide more
context about the change.

Cleaning Up Temporary Files – Base Settings 1.3
Let’s add a task to our playbook to have it delete the generated configuration files
– in other words, we’ll have the playbook clean up its temporary files. Let’s also
stop saving the .diff files that we added in the last section.

Modify the playbook as follows:

...
35|    - name: install generated configuration file onto device
36|      juniper_junos_config:
37|        provider:
38|          host: "{{ ansible_host }}"
39|          user: "{{ username }}"
40|          passwd: "{{ password }}"
41|          port: 22

	 134	 Chapter 7: Generating and Installing Junos Configuration Files

42|          timeout: 120
43|        src: "{{ conf_file }}"
44|        load: replace
45|        comment: "playbook base-settings.yaml"
46|        diff: yes
47|      register: config_results
48|
49|    - name: show configuration change
50|      debug:
51|        var: config_results.diff_lines
52|      when: config_results.diff_lines is defined
53|
54|    - name: delete generated configuration file
55|      file:
56|        path: "{{ conf_file }}"
57|        state: absent

The argument dest_dir: "{{ tmp_dir }}", formerly line 47, has been removed.

Lines 49–52 now print just the diff_lines element of the config_results variable
(line 51), and only when diff_lines is defined (line 52). This avoids getting a “vari-
able is not defined” error from a device that did not have a configuration change
and thus whose config_results variable has no diff_lines element.

Lines 54–57 are a new task that deletes the generated configuration files. The task
is similar to the task that creates our temporary directory, except that state: absent
tells the file module to delete the file if it exists.

So that we can see a change in one device’s configuration, manually change a name
server setting on a test device. The author altered one DNS server IP on bilbo.

Run the playbook again and confirm that the configuration files created by the
playbook are missing from the tmp directory after the playbook completes:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [aragorn]
ok: [bilbo]

TASK [install generated configuration file onto device] ************************
ok: [aragorn]
changed: [bilbo]

TASK [show configuration change] ***
skipping: [aragorn]
ok: [bilbo] => {
    "config_results.diff_lines": [
        "",

	 135	 Deleting Settings That Might Not Be Present

        "[edit system name-server]",
        "    8.8.4.4 { ... }",
        "+   198.51.100.101;",
        "-   198.51.100.123;"
    ]
}

TASK [delete generated configuration file] *************************************
changed: [aragorn]
changed: [bilbo]

PLAY RECAP ***
aragorn                    : ok=4    changed=1    unreachable=0    failed=0
bilbo                      : ok=4    changed=2    unreachable=0    failed=0

mbp15:aja2 sean$ ls tmp/*.conf
ls: tmp/*.conf: No such file or directory

Notice that the task “show configuration change” shows ok: [bilbo] followed by
some change details, because bilbo’s configuration was changed by the “install
generated configuration file onto device” task.

However, the task “show configuration change” shows skipping: [aragorn] because
aragorn’s configuration did not change. This means the config_results.diff_lines
element was not defined, so the when conditional caused the debug task to be
skipped.

Deleting Settings That Might Not Be Present
Let’s update the template/base-settings.j2 template to delete the FTP and Telnet
system services. These protocols are not encrypted and thus insecure, and their use
should be avoided, but they might be enabled by default or may have been turned
on during initial device setup; we want to ensure they are turned off.

Modify the services section of the template as follows (only the services section is
shown, new lines are boldfaced):

...
17|    services {
18|        delete: ftp;
19|        netconf {
20|            ssh;
21|        }
22|        delete: telnet;
23|    }
...

Run the playbook. You should get an error during the install generated configura-
tion task as shown below. (If you did not get an error, run the playbook again, you
will get the error the second time):

mbp15:aja2 sean$ ansible-playbook base-settings.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

	 136	 Chapter 7: Generating and Installing Junos Configuration Files

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
changed: [aragorn]

TASK [install generated configuration file onto device] ************************
fatal: [aragorn]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: warning, bad_element: None, message: warning: statement not found)"}
	 to retry, use: --limit @/Users/sean/aja2/base-settings.retry

PLAY RECAP ***
aragorn : ok=2 changed=1 unreachable=0 failed=1

“Failure loading the configuraton…warning: statement not found.” When you try
to delete a configuration statement that does not exist, Junos issues a warning. The
juniper_junos_config module sees that warning and issues an error, causing the
playbook to stop processing the device in question.

The author’s aragorn device has the following system services:

sean@aragorn> show configuration system services
ftp;
ssh {
    connection-limit 5;
    rate-limit 5;
}
netconf {
    ssh {
        connection-limit 5;
        rate-limit 5;
    }
}
web-management {
    http {
        interface fxp0.0;
    }
}

Notice that Telnet is not enabled. Our modified template tries to delete the telnet
service; this is the “statement [that was] not found” and caused our error.

We can instruct the juniper_junos_config module to ignore warnings by using the
ignore_warning argument. Add the ignore_warning: yes option to the “install gener-
ated configuration file onto device” task as shown:

...
35| - name: install generated configuration file onto device
36| juniper_junos_config:
37| provider:
38| host: “{{ ansible_host }}”
39| user: “{{ username }}”
40| passwd: “{{ password }}”
41| port: 22
42| timeout: 120
43| src: “{{ conf_file }}”

	 137	 Deleting Settings That Might Not Be Present

44| load: replace
45| comment: “playbook base-settings.yaml”
46| diff: yes
47| ignore_warning: yes
48| register: config_results
...

Run the playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]

TASK [show configuration change] ***
ok: [aragorn] => {
    "config_results.diff_lines": [
        "",
        "[edit system services]",
        "-    ftp;"
    ]
}

TASK [delete generated configuration file] *************************************
changed: [aragorn]

PLAY RECAP ***
aragorn                    : ok=5    changed=2    unreachable=0    failed=0

Much better!

This works for settings hierarchies as well as single-line settings. Update the bas-
esettings.j2 template to delete the web-management service:

...
17|    services {
18|        delete: ftp;
19|        netconf {
20|            ssh;
21|        }
22|        delete: telnet;
23|        delete: web-management;
24|    }
25|}

Run the playbook again:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml --limit=aragorn
Junos Username: sean
Junos Password: <enter password>

	 138	 Chapter 7: Generating and Installing Junos Configuration Files

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]

TASK [show configuration change] ***
ok: [aragorn] => {
    "config_results.diff_lines": [
        "",
        "[edit system services]",
        "-    web-management {",
        "-        http {",
        "-            interface fxp0.0;",
        "-        }",
        "-    }"
    ]
}

TASK [delete generated configuration file] *************************************
changed: [aragorn]

PLAY RECAP ***
aragorn                    : ok=5    changed=2    unreachable=0    failed=0

Check your test device(s) and confirm that the FTP, Telnet, and web management
services have all been deleted:

sean@aragorn> show configuration system services
ssh {
    connection-limit 5;
    rate-limit 5;
}
netconf {
    ssh {
        connection-limit 5;
        rate-limit 5;
    }
}

sean@aragorn> show configuration | compare rollback 2
[edit system services]
-    ftp;
-    web-management {
-        http {
-            interface fxp0.0;
-        }
-    }

	 139	 Commit Confirmed – Base Settings 1.4

NOTE	 Using the argument ignore_warning: yes, as shown above, causes juniper_ju-
nos_config to ignore all warnings from the device. To avoid ignoring warnings other
than “statement not found” you can specify the exact text of the warning you wish
to ignore: ignore_warning: "statement not found".

Commit Confirmed – Base Settings 1.4
One of the great features of Junos is “commit confirmed” – the ability to tentatively
commit a configuration change, asking Junos to automatically roll back the change
if the network engineer does not issue a second commit to confirm the change.
Should the engineer lose contact with the device after the first commit – if, for ex-
ample, the change being committed disabled a needed routing protocol or changed
the IP address of the interface being used to manage the device – the device will au-
tomatically revert to its prior state and (hopefully) restore service.

Automation should reduce the need for “commit confirmed” because automation
should reduce human error. However, if the source data for the configuration tem-
plates is created by humans, there is still a potential for human error.

Let’s add “commit confirmed” to our playbook. This requires that the playbook
calls the juniper_junos_config module twice:

	� Load the configuration change and perform a “commit confirmed.”

	� Perform a simple “commit” and thereby confirm the previous commit.

We use a handler for the second call to the juniper_junos_config module. A handler is
a special task, one triggered (notified in Ansible’s lingo) only when another task
causes a change. This approach works well for our “commit confirmed” operation.
If the first call to juniper_junos_config changes the device’s configuration, the task
will notify the handler to confirm the commit. However, if the first call to juniper_
junos_config does not change the device’s configuration, we have no change to com-
mit and thus no need of making the second call to juniper_junos_config.

Modify the base-settings.yaml playbook as follows:

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|      user: "{{ username }}"

	 140	 Chapter 7: Generating and Installing Junos Configuration Files

16|      passwd: "{{ password }}"
17|      port: 22
18|      timeout: 120
19|
20|  vars_prompt:
21|    - name: username
22|      prompt: Junos Username
23|      private: no
24|
25|    - name: password
26|      prompt: Junos Password
27|      private: yes
28|
29|  tasks:
30|    - name: confirm or create configs directory
31|      file:
32|        path: "{{ tmp_dir }}"
33|        state: directory
34|      run_once: yes
35|
36|    - name: save device information using template
37|      template:
38|        src: template/base-settings.j2
39|        dest: "{{ conf_file }}"
40|
41|    - name: install generated configuration file onto device
42|      juniper_junos_config:
43|        provider: "{{ connection_settings }}"
44|        src: "{{ conf_file }}"
45|        load: replace
46|        comment: "playbook base-settings.yaml, commit confirmed"
47|        confirmed: 5
48|        diff: yes
49|        ignore_warning: yes
50|      register: config_results
51|      notify: confirm previous commit
52|
53|    - name: show configuration change
54|      debug:
55|        var: config_results.diff_lines
56|      when: config_results.diff_lines is defined
57|
58|    - name: delete generated configuration file
59|      file:
60|        path: "{{ conf_file }}"
61|        state: absent
62|
63|  handlers:
64|    - name: confirm previous commit
65|      juniper_junos_config:
66|        provider: "{{ connection_settings }}"
67|        comment: "playbook base-settings.yaml, confirming previous commit"
68|        commit: yes
69|        diff: no

Lines 13–18 and line 43 move the juniper_junos_config module’s provider settings
into their own variable so we do not need to repeat the settings in both calls to the

	 141	 Commit Confirmed – Base Settings 1.4

juniper_junos_config module. This is similar to the approach we used in the play-
book install-set.yaml earlier in this chapter.

Line 47 instructs the juniper_junos_config module to do a “commit confirmed 5”
instead of a simple “commit” operation. The confirm time – 5 minutes in this ex-
ample – can be adjusted as needed.

Line 51 causes the “install generated configuration file onto device” task to notify
the handler when there is a configuration change.

Line 63 introduces a new handlers section to our playbook. Like the tasks section,
the handlers section contains a list of one or more tasks, but these special tasks,
called handlers, are executed only when they are notified (called) by another task.

Lines 64–69 are the new handler that confirms our earler commit. Line 68 tells the
juniper_junos_config module to perform a “commit” operation. Notice there are
no src or lines or load arguments; we are not loading any configuration settings.

In order to see the handler work, we need our device’s configuration to be different
from what our template will create. Delete the name-server hierarchy from one of
your test devices:

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# delete system name-server

[edit]
sean@aragorn# commit and-quit
commit complete
Exiting configuration mode

Now run the playbook, preferably on several devices:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml
Junos Username: sean
Junos Password: <enter password>

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
changed: [bilbo]
changed: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]
ok: [bilbo]

TASK [show configuration change] ***
skipping: [bilbo]
ok: [aragorn] => {

	 142	 Chapter 7: Generating and Installing Junos Configuration Files

    "config_results.diff_lines": [
        "",
        "[edit system]",
        "+  name-server {",
        "+      8.8.8.8;",
        "+      198.51.100.100;",
        "+  }"
    ]
}

TASK [delete generated configuration file] *************************************
changed: [aragorn]
changed: [bilbo]

RUNNING HANDLER [confirm previous commit] **************************************
ok: [aragorn]

PLAY RECAP ***
aragorn                    : ok=6    changed=3    unreachable=0    failed=0
bilbo                      : ok=3    changed=2    unreachable=0    failed=0

Observe that the task “install generated configuration file onto device” reported
that aragorn changed but bilbo did not. As a result, the task notified the handler
“confirm previous commit” only for aragorn; the handler did not run for bilbo.

Check the commit history on the device which changed. Look closely at the last
two commits:

sean@aragorn> show system commit
0   2018-03-15 17:21:04 UTC by sean via netconf
    playbook base-settings.yaml, confirming previous commit
1   2018-03-15 17:20:53 UTC by sean via netconf commit confirmed, rollback in 5mins
    playbook base-settings.yaml, commit confirmed
...

You can see that commit #1 was “commit confirmed, rollback in 5 mins” – that
was the install task – and commit #0 is the second, confirming commit.

When running a playbook that uses this “commit confirmed” approach, you may
need to set a longer confirm time in your playbook than you would use manually
on a single device. Ansible completes one task for all devices before moving on to
the next task, which means all devices must complete the task that loads the con-
figuration before Ansible will start the handlers that confirm the commits. The
confirm time must be long enough for the configuration load task to complete. If
you are running the playbook against only a few devices this may require only a
few minutes, but if you run the playbook against 100 devices it will need more
time.

Of course, the problem with long confirm times is that, in the event there is a prob-
lem, it takes longer for the devices to roll back their configurations. Consider using
--limit arguments that will cause the playbook to run against a modest number of
devices at a time, allowing a shorter commit time in the playbook, even though
you may need to re-run the playbook repeatedly with different --limit arguments

	 143	 Loading Configuration Via Console

to process all your devices.

TIP	 Readers considering the “commit confirmed” approach shown in this
section for their playbooks should look at the serial option for Ansible plays.
Serial allows you to specify a “batch size” so that Ansible limits the number of
hosts being processed during one execution of the play, repeating the play as many
times as needed with the next “batch” of hosts until all hosts have been completed.
Using serial can let you specify a reasonably short confirm time without needing
to manually --limit the hosts being processed into small sets.

Loading Configuration Via Console
The initial configuration of new-out-of-box (NOOB) Junos devices is normally
done via the device’s serial console port. The scenario described near the beginning
of the “Generating configuration files” section of this chapter, which informed our
last example, assumed that someone already did enough initial setup via console
that we could reach the device over the network. What if that assumption is not
valid? What if we want our automation to handle the NOOB setup via console?

Juniper’s Galaxy modules provide a mode argument that can instruct the module to
operate over a transport other than SSH, which typically means a console connec-
tion. The mode option currently supports direct serial connections and Telnet,
which typically means Telnet to a terminal server.

Assume we want to complete an initial configuration on an EX switch via a serial
console connection. The initial configuration needs to include the hostname, the
root password, another admin account and password, and enable SSH and NET-
CONF-over-SSH. The initial configuration should also configure a VLAN called
aja2, add a few ports to the VLAN using an interface-range called aja2, and con-
figure a layer-3 interface on the VLAN. The following Jinja2 template, template/
initial-ex-vlan.j2, (line numbers added) fulfills these requirements:

 1|system {
 2|    host-name {{ inventory_hostname }};
 3|    root-authentication {
 4|        encrypted-password "$1$7as5CZnA$Xc1QTe5dW2ph8Y59l8.0j1";
 5|    }
 6|    login {
 7|        user sean {
 8|            uid 2000;
 9|            class super-user;
10|            authentication {
11|                encrypted-password "1U25qzyIz$AxMzsxhD/lj1wlDpd1f96.";
12|            }
13|        }
14|    }
15|    services {
16|        ssh;
17|        netconf {

	 144	 Chapter 7: Generating and Installing Junos Configuration Files

18|            ssh;
19|        }
20|    }
21|}
22|interfaces {
23|    interface-range aja2 {
24|        member ge-0/1/0;
25|        member ge-0/1/1;
26|        unit 0 {
27|            family ethernet-switching {
28|                port-mode access;
29|                vlan {
30|                    members aja2;
31|                }
32|            }
33|        }
34|    }
35|    vlan {
36|        unit 0 {
37|            family inet {
38|                address {{ ansible_host }}/{{ netmask }};
39|            }
40|        }
41|    }
42|}
43|vlans {
44|    aja2 {
45|        l3-interface vlan.0;
46|    }
47|}

Insert your username in line 7 in place of the author’s. Use the correct encrypted
password for your root and user accounts on lines 4 and 11; you can copy the en-
crypted strings from the existing configuration on your test switch. (In Chapter 11
we discuss securely storing credentials and other sensitive information, but for
now just include the encrypted passwords directly in the template.)

The author’s switch is an EX-2200-C that uses the legacy VLAN command set; if
your test switch is a newer device with the ELS command set, replace the keyword
vlan with keyword irb on line 35, and replace vlan.0 with irb.0 on line 45. Substi-
tute different interfaces on lines 24 and 25 if needed for your switch or
environment.

There are three variable references in the template. Line 2 sets the switch’s host-
name using Ansible’s inventory_hostname variable. Line 38 sets the switch’s IP ad-
dress using Ansible’s ansible_host variable. (If you have avoided assigning an IP
address to this variable because name resolution on the inventory_hostname works
for your environment, please take a moment and add this variable to your inven-
tory file.)

Assigning an IP address to an interface or VLAN requires the subnet mask, so line
38 also references a variable netmask. This variable is defined in the playbook for
this example. (After we discuss host and group data files in Chapter 8, you may

	 145	 Loading Configuration Via Console

wish to relocate this variable’s declaration to a data file.)

NOTE	 This is a fairly minimal configuration, intended for our discussion. You
could easily extend this template to include all the settings from the “base settings”
playbooks and templates and any other settings you need for a NOOB device.

We will discuss two variations of the playbook, one for direct serial connection
from your computer to the switch, and one for console access through a terminal
server using Telnet.

Let’s start with the serial playbook, initial-setup-serial.yaml:

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|    netmask: "26"
14|    username: root
15|
16|  # vars_prompt:
17|  #   - name: username
18|  #     prompt: Junos Username
19|  #     private: no
20|  #
21|  #   - name: password
22|  #     prompt: Junos Password
23|  #     private: yes
24|
25|  tasks:
26|    - name: confirm or create configs directory
27|      file:
28|        path: "{{ tmp_dir }}"
29|        state: directory
30|      run_once: yes
31|
32|    - name: save device information using template
33|      template:
34|        src: template/initial-ex-vlan.j2
35|        dest: "{{ conf_file }}"
36|
37|    - name: install generated configuration file onto device
38|      juniper_junos_config:
39|        provider:
40|          host: "{{ inventory_hostname }}"
41|          mode: serial
42|          port: "/dev/cu.usbserial-AH02PIG9"

	 146	 Chapter 7: Generating and Installing Junos Configuration Files

43|          user: "{{ username }}"
44|          # passwd: "{{ password }}"
45|          timeout: 120
46|        src: "{{ conf_file }}"
47|        load: override
48|        comment: "playbook initial-setup-serial.yaml"
49|
50|    # - name: delete generated configuration file
51|    #   file:
52|    #     path: "{{ conf_file }}"
53|    #     state: absent

Lines 1–8 are familiar from earlier playbooks.

Lines 10–14 declare some variables. We saw variables tmp_dir and conf_file in our
last example. Variable netmask we mentioned above in the discussion about setting
the switch’s IP address.

Variable username (line 14) is set to root, under the assumption that we are configur-
ing a new-out-of-box device for which the first logon is done as root with no pass-
word. The author will use his bilbo switch after running the “request system
zeroize” command to reset the device to factory default settings. If you do not wish
to reset one of your test devices, and thus require a different username and pass-
word, comment out line 14 (username) and uncomment lines 16–23 (vars_prompt)
and 44 (passwd); this will cause the playbook to prompt for username and pass-
word and provide both when accessing the device.

Lines 26–35 are the same as the corresponding lines from the base-settings.yaml
playbook, ensuring the tmp directory exists and generating the configuration file
from the template; the only change is the template name on line 34.

Lines 37–48 install the generated configuration on the devices, similar to what we
saw in the base-settings.yaml playbook, but there are several changes related to
console access. Let’s discuss those changes.

Line 40, the host argument, is required for the juniper_junos_config module but is
not really relevant for direct serial console access (recall that host normally speci-
fies the target for the NETCONF-over-SSH connection). The playbook sets it to
inventory_hostname just so it has a value. We could also omit the setting because the
juniper_junos_config module will use inventory_hostname as a default value.

Line 41, the argument mode: serial, informs the juniper_junos_config module that
it should connect to the device using a local serial port, not a normal NETCONF-
over-SSH session.

Line 42, the port argument, takes on a new meaning in the context of mode: serial.
Normally port specifies the TCP port for the NETCONF-over-SSH connection,
but that is not useful for serial connections. Instead, port in the context of serial
connections specified the serial port over which the juniper_junos_config module
should talk to the device. You must set the value of port to correspond with your
computer’s serial port or USB serial adapter, not the author’s USB adapter.

	 147	 Loading Configuration Via Console

As most computers no longer include traditional serial ports, you probably have a
USB-to-serial adapter. On macOS, try the command ls /dev/cu* and see if your se-
rial adapter is listed:

mbp15:~ sean$ ls -1 /dev/cu*
/dev/cu.Bluetooth-Incoming-Port
/dev/cu.usbserial-AH02PIG9

On Linux systems, try the command ls /dev/ttyUSB*:

sean@gandalf:~$ ls /dev/ttyUSB*
/dev/ttyUSB0

If your USB-to-serial adapter is not listed on macOS or Linux, disconnect the
adapter, run ls /dev/tty*, then reconnect the adapter and re-run ls /dev/tty*; see if
any new listings appear after re-connecting the adapter. If no new TTY devices ap-
pear, your adapter may not be supported by macOS or Linux, or you may need to
install drivers to add support.

Line 47, the argument load: override, informs the juniper_junos_config module
that it should use the equivalent of the Junos load override command when loading
the configuration file. In other words, completely replace the device’s existing con-
figuration with what is being loaded. This is normally a good choice for an initial
setup playbook and template as there are often default settings, including VLAN
and interface settings, that might interfere with the new settings we want to make.

Lines 50-53 delete the generated configuration file. They are shown commented
out to give you the opportunity to inspect the file if you wish to do so.

The author just ran “request system zeroize” on bilbo so it looks like a NOOB de-
vice. Let’s run the playbook:

mbp15:aja2 sean$ ansible-playbook initial-setup-serial.yaml --limit=bilbo

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [bilbo]

TASK [save device information using template] **********************************
changed: [bilbo]

TASK [install generated configuration file onto device] ************************
changed: [bilbo]

PLAY RECAP ***
bilbo                      : ok=3    changed=2    unreachable=0    failed=0

Keep in mind that 9600bps serial connections are a lot slower than typical net-
work connections; expect the “install generated configuration file onto device”
task to take a lot longer than you saw with the base-settings.yaml playbook.

After the playbook ends, check the config on your switch. Also look at the commit

	 148	 Chapter 7: Generating and Installing Junos Configuration Files

history, which should be only a few entries long if you reset your device:

sean@bilbo> show system commit
0   2016-01-20 07:29:54 UTC by root via netconf
    playbook initial-setup-serial.yaml
1   2016-01-20 07:26:44 UTC by root via button
2   2016-01-20 07:24:52 UTC by root via other

Now let’s discuss initial-setup-ts.yaml, a variation of the above playbook that will
work with Telnet-based terminal server (console server) connections:

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|    netmask: "26"
14|    username: root
15|    terminal_server: 198.51.100.50
16|    term_srv_port: 7001
17|
18|  # vars_prompt:
19|  #   - name: username
20|  #     prompt: Junos Username
21|  #     private: no
22|  #
23|  #   - name: password
24|  #     prompt: Junos Password
25|  #     private: yes
26|
27|  tasks:
28|    - name: confirm or create configs directory
29|      file:
30|        path: "{{ tmp_dir }}"
31|        state: directory
32|      run_once: yes
33|
34|    - name: save device information using template
35|      template:
36|        src: template/initial-ex-vlan.j2
37|        dest: "{{ conf_file }}"
38|
39|    - name: install generated configuration file onto device
40|      juniper_junos_config:
41|        provider:
42|          host: "{{ terminal_server }}"
43|          mode: telnet
44|          port: "{{ term_srv_port }}"
45|          user: "{{ username }}"
46|          # passwd: "{{ password }}"
47|          timeout: 120
48|        src: "{{ conf_file }}"

	 149	 Loading Configuration Via Console

49|        load: override
50|        comment: "playbook initial-setup-ts.yaml"
51|
52|    # - name: delete generated configuration file
53|    #   file:
54|    #     path: "{{ conf_file }}"
55|    #     state: absent

Most of the initial-setup-ts.yaml playbook is the same as the initial-setup-con.
yaml playbook, so we will discuss only the changes.

Lines 15 and 16 define two new variables. The terminal_server variable is set to the
hostname or IP address for the terminal server. The term_serv_port variable is set to
the TCP port for the Telnet session. Adjust these values as needed for your termi-
nal server. Typically, terminal servers either assign a unique IP to each of their se-
rial ports and use the standard Telnet port TCP:23, or they use a single IP but
assign a unique TCP port number to each serial port.

TIP	 The terminal server IP address or port number, or both, are likely to be
specific to each Junos device, based on which serial port on the terminal server is
connected to the device’s console port. After reading Chapter 8 you may wish to
move these variables to host or group data files.

Line 42, the host argument, provides the terminal server’s address to the juniper_
junos_config module, so the playbook sets host to the value of the new terminal_
server variable.

Line 43, the mode: telnet argument, tells juniper_junos_config to use Telnet to con-
nect to the device, not the default SSH. However, juniper_junos_config accepts a
single username and password and expects a single authentication step. As Junos
requires authentication, even if only the NOOB authentication of root with no
password, the terminal server should be configured to require no authentication.

Line 44, the port argument, provides the correct Telnet port number to the juni-
per_junos_config module, so the playbook sets port to the value of the new term_
serv_port variable.

Running this playbook looks very similar to the console version:

mbp15:aja2 sean$ ansible-playbook initial-setup-ts.yaml --limit=bilbo

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [bilbo]

TASK [save device information using template] **********************************
ok: [bilbo]

TASK [install generated configuration file onto device] ************************
changed: [bilbo]

	 150	 Chapter 7: Generating and Installing Junos Configuration Files

PLAY RECAP ***
bilbo                      : ok=3    changed=1    unreachable=0    failed=0

If you reset your test switch, run base-settings.yaml against it to reinstall your SSH
public key and other settings.

Debugging Templates
As you develop more complex templates, debugging them can become challenging.
This section presents a few tips for finding and fixing template problems.

In this chapter, we initially had our playbook process the template and stop so that
we could manually view the results; only after the results looked right did we add
the tasks that installed the generated configuration file. This is a process the author
has used many times when developing new playbooks and templates.

But what if you are updating a template used by an existing playbook that already
includes the tasks to install the configuration, and perhaps even cleans up the gen-
erated configuration file as our base-settings.yaml playbook does? It becomes hard
to debug a template if the playbook deletes the file generated from the template
before you can look at it!

In this situation, the author uses a combination of two approaches: comment out
anything not needed for the playbook to process the template that precedes the
template task, and terminate the playbook after the template task.

Assume we are updating our template/base-settings.j2 template and want to in-
spect the generated configuration file without trying to install it. We could modify
the base-settings.yaml playbook as follows (only the first 45 lines shown):

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|      user: "{{ username }}"
16|      passwd: "{{ password }}"
17|      port: 22
18|      timeout: 120
19|
20|  # vars_prompt:
21|  #   - name: username
22|  #     prompt: Junos Username
23|  #     private: no
24|  #

	 151	 Debugging Templates

25|  #   - name: password
26|  #     prompt: Junos Password
27|  #     private: yes
28|
29|  tasks:
30|    - name: confirm or create configs directory
31|      file:
32|        path: "{{ tmp_dir }}"
33|        state: directory
34|      run_once: yes
35|
36|    - name: save device information using template
37|      template:
38|        src: template/base-settings.j2
39|        dest: "{{ conf_file }}"
40|
41|    - fail:
42|        msg: "early exit for template troubleshooting"
43|
44|    - name: install generated configuration file onto device
45|      juniper_junos_config:
...

Lines 20-27 are commented out because we do not need to provide device creden-
tials if we are not going to install the generated configuration on a device.

Lines 41-42 call Ansible’s fail method to end the playbook at that point. Nothing
past here will execute. This causes the playbook to end immediately after process-
ing the template (lines 36-39), which will let us inspect the generated file.

NOTE	 The fail method is normally used with a when condition to let us end
processing for a specific device when we detect a problem, but it works well for
our purpose also.

Running the playbook would look like this:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml --limit=aragorn

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [aragorn]

TASK [fail] **
fatal: [aragorn]: FAILED! => {"changed": false, "msg": "early exit for template troubleshooting"}
	 to retry, use: --limit @/Users/sean/aja2/base-settings.retry

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=1

mbp15:aja2 sean$ ls tmp/*.conf
tmp/aragorn.conf

As its name implies, the fail module records a failure. This is not a problem for
our purposes. Just remember to delete that task after the template is debugged!

	 152	 Chapter 7: Generating and Installing Junos Configuration Files

One example of an error that you might identify during such a manual check is a
variable reference that was not replaced correctly. Assume the generated configu-
ration file contains the following:

...
    replace:
    name-server {
        { dns1 }};
        5.6.7.9;
    }
...

Clearly { dns1 }} is not the expected output. An inspection of the template shows
that the problem was caused by a missing left brace (“{”):

    replace:
    name-server {
        { dns1 }};
        {{ dns2 }};
    }

If the playbook returns an error from the template processing task, there is likely a
syntax error in the template. Read the error message carefully; they usually tell
you what you should be looking for. For example:

...
TASK [save device information using template] **********************************
fatal: [aragorn]: FAILED! => {"changed": false, "failed": true, "msg": "AnsibleUndefinedVariable:
'inventoryhostname' is undefined"}
...

The error “AnsibleUndefinedVariable: 'inventoryhostname' is undefined” tells you
that somewhere in the template (unfortunately, the error does not provide a line
number) there appears a variable reference {{ inventoryhostname }} – an attempt to
read variable inventoryhostname – but that variable inventoryhostname was not previ-
ously defined. This might be a typographical error in the variable name, or it might
be that you need to define the variable in the inventory file or other host data file
(discussed in a later chapter). In this case the problem is a typo: the variable name
should be inventory_hostname, with an underscore character in the name.

Another syntax message example:

...
TASK [save device information using template] **********************************
fatal: [aragorn]: FAILED! => {"changed": false, "failed": true, "msg": "AnsibleError: template error
while templating string: unexpected '}'. String: system {\n host-name {{ inventory_hostname }};\n
login {\n user sean {\n uid 2000;\n class super-user;\n authentication
{\n ssh-rsa \"ssh-rsa AAAA...JzS8b sean@mbp15.local\";\n }\n }\n }\n
replace:\n name-server {\n {{ dns1 };\n {{ dns2 }};\n }\n services {\n ftp;\n
delete: ftp;\n netconf {\n ssh;\n }\n telnet;\n delete: telnet;\n
web-management {\n http;\n }\n delete: web-management;\n }\n}\n"}
...

The significant part of the error message is “AnsibleError: template error while
templating string: unexpected '}'.” The rest is the text of the template shown as a
single string, which looks rather ugly but can be ignored. Unfortunately, while An-
sible’s template module realized there was an “unexpected ‘}’” character, it does
not know exactly where in the file the problem lies.

	 153	 Debugging Templates

Most programmer’s text editors have a feature for identifying matching parenthe-
ses, brackets, and braces – check your editor’s documentation to find out how to
enable or access this feature. Some highlight matches any time your cursor is at a
parenthesis/bracket/brace, some require you to press Ctrl+M or other shortcut to
find the match, and some use both approaches. By looking for incorrect “matches”
you can quickly zoom in on the extra or missing character.

The following screen capture from the author’s text editor shows a mismatch; ob-
serve that the highlighted braces (left brace “{” on line 14 and right brace “}” on
line 16) are clearly not a proper matched set, so the problem is between those two
locations in the file:

In this example, the problem is a missing “}” at the end of line 14 of the template.

Mistakes in the template can also cause Junos to reject the configuration file. For
example:

...
TASK [install generated configuration file onto device] ************************
fatal: [aragorn]: FAILED! => {"changed": false, "failed": true, "msg": "Unable to load config:
ConfigLoadError(severity: error, bad_element: name-servers, message: error: syntax error\nerror: error
recovery ignores input until this point)"}
...

Here the error message tells us we have a “bad_element” -- “Unable to load config:
ConfigLoadError(severity: error, bad_element: name-servers, message: error: syn-
tax error...” Searching the template file for the incorrect element name-servers
finds the following:

12| replace:
13| name-servers {
14| {{ dns1 }};

The correct name for Junos’ DNS server list is name-server, not name-servers.

Sometimes a “bad element” problem is easier to find in the configuration file than
in the template. For example:

...
TASK [install generated configuration file onto device] ************************
fatal: [aragorn]: FAILED! => {"changed": false, "failed": true, "msg": "Unable to load config:
ConfigLoadError(severity: error, bad_element: 5.6.7.9, message: error: syntax error\nerror: could not
resolve name: services\nerror: error recovery ignores input until this point\nerror: syntax error)"}
...

Here the error says “bad_element: 5.6.7.9” but the text “5.6.7.9” is nowhere in
the template file. However, if we look at the generated configuration file we find:

	 154	 Chapter 7: Generating and Installing Junos Configuration Files

 name-server {
 5.6.7.8
 5.6.7.9;
 }

Notice that the semicolon is missing from the first DNS server IP. Although we
found the problem more easily in the configuration file, remember you must fix
this in the template by adding the missing semicolon.

For our last example, let’s quickly revisit the error message associated with a prob-
lem that we discussed earlier in this chapter, trying to delete a non-existent con-
figuration element:

...
TASK [install generated configuration file onto device] ************************
fatal: [aragorn]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: warning, bad_element: None, message: warning: statement not found)"}
...

Notice that the error message says there is no bad element (“bad_element: None”)
but that there was a “warning: statement not found.” Check the template for de-
lete: tags and ensure that the corresponding configuration element will always be
present before attempting to delete it, or add the ignore_warning: yes option to the
task.

If the above troubleshooting steps for a Junos error fail to identify the problem,
take the generated configuration file and manually load it on the Junos device. Use
the correct load variation (load merge, load replace or load set) so it mimics the play-
book’s action. Junos usually does a good job of identifying the problem, but some
of the detail is lost when Junos’ warnings or errors are passed back through the
automation tools.

References
Jinja2 information:
http://jinja.pocoo.org
http://docs.ansible.com/ansible/latest/playbooks_templating.html

Juniper_junos_config module:
http://junos-ansible-modules.readthedocs.io/en/stable/juniper_junos_config.html

Ansible handlers:
http://docs.ansible.com/ansible/latest/playbooks_intro.
html#handlers-running-operations-on-change

Ansible serial option:
http://docs.ansible.com/ansible/latest/playbooks_delegation.
html#rolling-update-batch-size

Ansible fail module:
http://docs.ansible.com/ansible/latest/fail_module.html

http://jinja.pocoo.org/
http://docs.ansible.com/ansible/latest/playbooks_templating.html
http://junos-ansible-modules.readthedocs.io/en/stable/juniper_junos_config.html
http://docs.ansible.com/ansible/latest/fail_module.html

In previous chapters, we created a simple inventory file and added a few variables
to that file. While functional for simple environments, this approach does not scale
well to large numbers of devices or variables, or to complex variables such as lists.
This chapter explores Ansible’s architecture for storing device inventory, including
groups, and for storing information about the managed devices and groups.

In addition, Ansible can use a dynamic inventory, meaning Ansible queries an ex-
ternal system, such as a configuration management database, for information
about the managed devices. Setting up a dynamic inventory for Ansible is outside
the scope of this book, but there is a link in the references section at the end of this
chapter for readers who wish to explore this idea further.

Variables
While executing a playbook, Ansible maintains a number of variables that can be
referenced in the playbook or in Jinja templates. We have already seen and used a
few variables, including Ansible’s pre-defined inventory_hostname and ansible_host,
and the dns1 and dns2 variables we defined in our inventory file.

When defining a variable, keep in mind that a variable name should start with a
letter and can contain letters, numerals, and the underscore (“_”) character. Valid
variable names include my_data and Results1; invalid variable names include 2days
(starts with a numeral) and task-results (contains a hyphen). Variable names are
case sensitive: test1 and Test1 are different variables.

There are several sources for variables, including (but not limited to) the
following:

Chapter 8

Data Files and Inventory Groups

	 156	 Chapter 8: Data Files and Inventory Groups

	� Ansible’s pre-defined or “magic” variables, such as the inventory_hostname and
ansible_host variables we have already seen. Others include hostvars and group_
names, which we discuss later in this chapter.

	� Facts discovered from the hosts being managed by the playbook.

	� Variables set in the inventory file, as we have shown in prior chapters, or set in
the host and group variable files that we discuss later in this chapter.

	� Registered variables set using the register option to capture the results of a
task, as we have seen in several playbooks including uptime.yaml and interfaces.
yaml.

	� Variables defined in a playbook, using either the vars: or vars_prompt: sections
of a play; we used both in the base-settings.yaml playbook. Playbooks can also
use the set_fact module to set variables, which we see in this chapter.

	� “Extra” variables provided at the command line when launching a playbook
using the –e or --extra-vars arguments; we will see a brief example shortly and
use them more in later chapters.

The scope of a variable is the region of the playbook during which a variable is
valid, and the hosts for which the variable is valid. Variables defined by different
sources have different scopes. This can be difficult to explain in the abstract, so
let’s create a few small playbooks to illustrate variable scope.

Call this playbook show-vars-1.yaml:

 1|---
 2|- name: Show variables 1, first play
 3|  hosts:
 4|    - all
 5|  connection: local
 6|  gather_facts: no
 7|
 8|  vars:
 9|    test1: "test all lower-case"
10|    Test1: "Test first capital"
11|    name_plus_host: "{{ inventory_hostname}} :: {{ ansible_host }}"
12|
13|  tasks:
14|    - debug:
15|        var: test1
16|
17|    - debug:
18|        var: Test1
19|
20|    - debug:
21|        var: name_plus_host
22|
23|- name: Show variables 1, second play
24|  hosts:
25|    - all
26|  connection: local
27|  gather_facts: no

	 157	 Variables

28|
29|  tasks:
30|    - debug:
31|        var: test1
32|
33|    - debug:
34|        var: Test1
35|
36|    - debug:
37|        var: name_plus_host

Run the playbook:

mbp15:aja2 sean$ ansible-playbook show-vars-1.yaml

PLAY [Show variables 1, first play] **

TASK [debug] ***
ok: [aragorn] => {
    "test1": "test all lower-case"
}
ok: [bilbo] => {
    "test1": "test all lower-case"
}

TASK [debug] ***
ok: [aragorn] => {
    "Test1": "Test first capital"
}
ok: [bilbo] => {
    "Test1": "Test first capital"
}

TASK [debug] ***
ok: [aragorn] => {
    "name_plus_host": "aragorn :: 192.0.2.10"
}
ok: [bilbo] => {
    "name_plus_host": "bilbo :: 198.51.100.5"
}

PLAY [Show variables 1, second play] ***

TASK [debug] ***
ok: [aragorn] => {
    "test1": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "test1": "VARIABLE IS NOT DEFINED!"
}

TASK [debug] ***
ok: [aragorn] => {
    "Test1": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "Test1": "VARIABLE IS NOT DEFINED!"
}

	 158	 Chapter 8: Data Files and Inventory Groups

TASK [debug] ***
ok: [aragorn] => {
    "name_plus_host": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "name_plus_host": "VARIABLE IS NOT DEFINED!"
}

PLAY RECAP ***
aragorn                    : ok=6    changed=0    unreachable=0    failed=0
bilbo                      : ok=6    changed=0    unreachable=0    failed=0

Observe that the variables test1 and Test1 are different and contain different data;
variables names are case-sensitive. Also observe how the variables defined in the
vars section of the first play are undefined in the second play. The scope of vari-
ables defined in vars or vars_prompt sections is the play in which they are defined.
However, variables defined in the vars section are also specific to each host; notice
how the value of name_plus_host contains host-specific data.

Run the playbook again, but provide an “extra” variable called test1 using the
command-line option --extra-vars. The “extra” test1 variable’s name clashes with
the name of one variable in the vars section of the first play:

mbp15:aja2 sean$ ansible-playbook show-vars-1.yaml --extra-vars 'test1="test one extra"'

PLAY [Show variables 1, first play] **

TASK [debug] ***
ok: [aragorn] => {
    "test1": "test one extra"
}
ok: [bilbo] => {
    "test1": "test one extra"
}

TASK [debug] ***
ok: [aragorn] => {
    "Test1": "Test first capital"
}
ok: [bilbo] => {
    "Test1": "Test first capital"
}

TASK [debug] ***
ok: [aragorn] => {
    "name_plus_host": "aragorn :: 192.0.2.10"
}
ok: [bilbo] => {
    "name_plus_host": "bilbo :: 198.51.100.5"
}

PLAY [Show variables 1, second play] ***

TASK [debug] ***
ok: [aragorn] => {
    "test1": "test one extra"

	 159	 Variables

}
ok: [bilbo] => {
    "test1": "test one extra"
}

TASK [debug] ***
ok: [aragorn] => {
    "Test1": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "Test1": "VARIABLE IS NOT DEFINED!"
}

TASK [debug] ***
ok: [aragorn] => {
    "name_plus_host": "VARIABLE IS NOT DEFINED!"
}
ok: [bilbo] => {
    "name_plus_host": "VARIABLE IS NOT DEFINED!"
}

PLAY RECAP ***
aragorn                    : ok=6    changed=0    unreachable=0    failed=0
bilbo                      : ok=6    changed=0    unreachable=0    failed=0

Observe that the extra variable takes precedence over the variable of the same
name defined in the playbook. Also observe that the extra variable is defined in
both plays within the playbook (it has global scope), and for both devices, in con-
trast to the other variables whose scope is the play and device for which they were
defined.

Now create playbook show-vars-2.yaml:

 1|---
 2|- name: Show variables 2, first play
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|  tasks:
10|    - debug:
11|        var: inventory_hostname
12|
13|    - debug:
14|        var: dns1
15|
16|    - name: get device uptime
17|      juniper_junos_command:
18|        commands:
19|          - show system uptime
20|        provider:
21|          host: "{{ ansible_host }}"
22|        formats: xml
23|      register: uptime
24|

	 160	 Chapter 8: Data Files and Inventory Groups

25|    - name: query uptime information
26|      xml:
27|        xmlstring: "{{ uptime.stdout }}"
28|        xpath: //current-time/date-time
29|        content: text
30|      register: current_time
31|
32|    - debug:
33|        var: current_time.matches
34|
35|    - set_fact:
36|        device_time: "{{ current_time.matches[0] }}"
37|
38|    - debug:
39|        var: device_time
40|
41|
42|- name: Show variables 2, second play
43|  hosts:
44|    - all
45|  connection: local
46|  gather_facts: no
47|  tasks:
48|    - debug:
49|        var: inventory_hostname
50|
51|    - debug:
52|        var: dns1
53|
54|    - debug:
55|        var: current_time.matches
56|
57|    - debug:
58|        var: device_time

Most of this playbook should be familiar, but let’s quickly discuss it. The first play
of this playbook displays the “magic” variable inventory_hostname and the variable
dns1 set in the inventory file (lines 10-14). The play then queries each device for its
uptime information in XML format, from which it extracts the device’s current
time using XPath (lines 16-30) and displays the XPath matches (lines 32-33).

The set_fact module (lines 35-36) is new. Set_fact defines one or more facts, a type
of variable that is device-specific and whose scope is the rest of the playbook. Here
the playbook assigns the device’s current time to a new fact device_time.

The second play of the playbook just displays four variables to show whether the
variable’s scope extend outside of the first play.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook show-vars-2.yaml

PLAY [Show variables 2, first play] **

TASK [debug] ***
ok: [aragorn] => {

	 161	 Variables

    "inventory_hostname": "aragorn"
}
ok: [bilbo] => {
    "inventory_hostname": "bilbo"
}

TASK [debug] ***
ok: [aragorn] => {
    "dns1": "8.8.8.8"
}
ok: [bilbo] => {
    "dns1": "8.8.4.4"
}

TASK [get device uptime] ***
ok: [aragorn]
ok: [bilbo]

TASK [query uptime information] **
ok: [aragorn]
ok: [bilbo]

TASK [debug] ***
ok: [aragorn] => {
    "current_time.matches": [
        {
            "date-time": "2018-03-17 16:42:16 UTC"
        }
    ]
}
ok: [bilbo] => {
    "current_time.matches": [
        {
            "date-time": "2016-01-21 02:30:13 UTC"
        }
    ]
}

TASK [set_fact] **
ok: [aragorn]
ok: [bilbo]

TASK [debug] ***
ok: [aragorn] => {
    "device_time": {
        "date-time": "2018-03-17 16:42:16 UTC"
    }
}
ok: [bilbo] => {
    "device_time": {
        "date-time": "2016-01-21 02:30:13 UTC"
    }
}

PLAY [Show variables 2, second play] ***

TASK [debug] ***
ok: [aragorn] => {

	 162	 Chapter 8: Data Files and Inventory Groups

    "inventory_hostname": "aragorn"
}
ok: [bilbo] => {
    "inventory_hostname": "bilbo"
}

TASK [debug] ***
ok: [aragorn] => {
    "dns1": "8.8.8.8"
}
ok: [bilbo] => {
    "dns1": "8.8.4.4"
}

TASK [debug] ***
ok: [aragorn] => {
    "current_time.matches": [
        {
            "date-time": "2018-03-17 16:42:16 UTC"
        }
    ]
}
ok: [bilbo] => {
    "current_time.matches": [
        {
            "date-time": "2016-01-21 02:30:13 UTC"
        }
    ]
}

TASK [debug] ***
ok: [aragorn] => {
    "device_time": {
        "date-time": "2018-03-17 16:42:16 UTC"
    }
}
ok: [bilbo] => {
    "device_time": {
        "date-time": "2016-01-21 02:30:13 UTC"
    }
}

PLAY RECAP ***
aragorn                    : ok=11   changed=0    unreachable=0    failed=0
bilbo                      : ok=11   changed=0    unreachable=0    failed=0

Hmmm...it looks like the author needs to configure NTP on bilbo! We’ll take care
of that with a playbook a little later.

Observe that all the variables are valid in both plays. Ansible’s “magic” variables
(like inventory_hostname) and variables defined in inventory files (like dns1) have
global scope and thus are valid for the entire playbook. This is also true for vari-
ables defined in host and group variables files, discussed later in this chapter. Reg-
istered variable uptime and the “set_fact” variable device_time, both defined in the
first play, are valid after they are defined, including in subsequent plays.

	 163	 Variables

Inventory, registered, host, group, and many “magic” variables are associated
with a particular host; observe that each device displays different output for these
variables.

To get a different look at Ansible’s “magic” variables, and some of the other vari-
ables Ansible maintains, create playbook show-vars-3.yaml:

 1|---
 2|- name: Show variables 3
 3|  hosts:
 4|    - all
 5|  connection: local
 6|  gather_facts: yes
 7|
 8|  tasks:
 9|    - name: ansible variables
10|      debug:
11|        var: vars

Notice that line 6 sets gather_facts to yes; this instructs Ansible to gather additional
data and set additional facts that we did not care about in earlier playbooks. Be-
cause of the connection: local setting the gathered facts will be for the control ma-
chine, the local host on which you are running Ansible, not the managed devices,
but it is still interesting to see all the data gathered. For less data (to avoid gather-
ing data from the local host) just change gather_facts to no.

The following output, edited for length, shows the playbook limited to a single
device. There is a lot of repetition in the output, and there is even more repetition
when the playbook is run for multiple devices, but you should try it with two or
three devices to get a feel for which variables are host-specific:

mbp15:aja2 sean$ ansible-playbook show-vars-3.yaml --limit=aragorn

PLAY [Show variables 3] **

TASK [Gathering Facts] ***
ok: [aragorn]

TASK [ansible variables] ***
ok: [aragorn] => {
    "vars": {
...
        "ansible_check_mode": false, 
        "ansible_date_time": {
            "date": "2018-03-17", 
            "day": "17", 
            "epoch": "1521302344", 
            "hour": "11", 
            "iso8601": "2018-03-17T15:59:04Z", 
            "iso8601_basic": "20180317T115904532376", 
            "iso8601_basic_short": "20180317T115904", 
            "iso8601_micro": "2018-03-17T15:59:04.532476Z", 
            "minute": "59", 
            "month": "03", 

	 164	 Chapter 8: Data Files and Inventory Groups

            "second": "04", 
            "time": "11:59:04", 
            "tz": "EDT", 
            "tz_offset": "-0400", 
            "weekday": "Saturday", 
            "weekday_number": "6", 
            "weeknumber": "11", 
            "year": "2018"
        }, 
...
        "ansible_host": "192.0.2.10", 
        "ansible_hostname": "mbp15", 
...
        "ansible_machine": "x86_64", 
        "ansible_memfree_mb": 80, 
        "ansible_memtotal_mb": 16384, 
        "ansible_model": "MacBookPro11,3", 
        "ansible_nodename": "mbp15.local", 
        "ansible_os_family": "Darwin", 
        "ansible_osrevision": "199506", 
        "ansible_osversion": "17D102", 
...
        "ansible_play_batch": [
            "aragorn"
        ],
        "ansible_play_hosts": [
            "aragorn"
        ],
        "ansible_play_hosts_all": [
            "aragorn"
        ],
        "ansible_playbook_python": "/usr/local/opt/python/bin/python2.7",
        "ansible_processor": "Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz", 
        "ansible_processor_cores": "4", 
...
        "ansible_python_interpreter": "/usr/local/bin/python",
        "ansible_python_version": "2.7.14", 
...
        "ansible_version": {
            "full": "2.4.3.0",
            "major": 2,
            "minor": 4,
            "revision": 3,
            "string": "2.4.3.0"
        },
...
        "dns1": "8.8.8.8", 
        "dns2": "198.51.100.100", 
        "environment": [], 
        "gather_subset": [
            "all"
        ], 
        "group_names": [
            "ungrouped"
        ], 
        "groups": {
            "all": [
                "aragorn", 

	 165	 Variables

                "bilbo"
            ], 
            "ungrouped": [
                "aragorn", 
                "bilbo"
            ]
        }, 
        "hostvars": {
            "aragorn": {
...
                "ansible_check_mode": false, 
                "ansible_date_time": {
                    "date": "2018-03-17", 
                    "day": "17", 
                    "epoch": "1521302344", 
                    "hour": "11", 
                    "iso8601": "2018-03-17T15:59:04Z", 
                    "iso8601_basic": "20180317T115904532376", 
                    "iso8601_basic_short": "20180317T115904", 
                    "iso8601_micro": "2018-03-17T15:59:04.532476Z", 
                    "minute": "59", 
                    "month": "03", 
                    "second": "04", 
                    "time": "11:59:04", 
                    "tz": "EDT", 
                    "tz_offset": "-0400", 
                    "weekday": "Saturday", 
                    "weekday_number": "6", 
                    "weeknumber": "11", 
                    "year": "2018"
                },
...
                "ansible_host": "192.0.2.10", 
                "ansible_hostname": "mbp15",
...
                "ansible_python_interpreter": "/usr/local/bin/python",
                "ansible_python_version": "2.7.14", 
...
                "ansible_version": {
                    "full": "2.4.3.0",
                    "major": 2,
                    "minor": 4,
                    "revision": 3,
                    "string": "2.4.3.0"
                },
...
                "dns1": "8.8.8.8", 
                "dns2": "198.51.100.100", 
                "gather_subset": [
                    "all"
                ], 
                "group_names": [
                    "ungrouped"
                ], 
                "groups": {
                    "all": [
                        "aragorn", 
                        "bilbo"

	 166	 Chapter 8: Data Files and Inventory Groups

                    ], 
                    "ungrouped": [
                        "aragorn", 
                        "bilbo"
                    ]
                }, 
                "inventory_dir": "/Users/sean/aja2", 
                "inventory_file": "/Users/sean/aja2/inventory", 
                "inventory_hostname": "aragorn", 
                "inventory_hostname_short": "aragorn",
...
                "playbook_dir": "/Users/sean/aja2"
            },
            "bilbo": {
                "ansible_check_mode": false, 
                "ansible_host": "198.51.100.5", 
                "ansible_playbook_python": "/usr/local/opt/python/bin/python2.7", 
                "ansible_python_interpreter": "/usr/local/bin/python", 
                "ansible_version": {
                    "full": "2.4.3.0", 
                    "major": 2, 
                    "minor": 4, 
                    "revision": 3, 
                    "string": "2.4.3.0"
                }, 
                "dns1": "8.8.4.4", 
                "dns2": "198.51.100.101", 
                "group_names": [
                    "ungrouped"
                ], 
                "groups": {
                    "all": [
                        "aragorn", 
                        "bilbo"
                    ], 
                    "ungrouped": [
                        "aragorn", 
                        "bilbo"
                    ]
                }, 
                "inventory_dir": "/Users/sean/aja2", 
                "inventory_file": "/Users/sean/aja2/inventory", 
                "inventory_hostname": "bilbo", 
                "inventory_hostname_short": "bilbo", 
...
                "playbook_dir": "/Users/sean/aja2"
            }
        }, 
        "inventory_dir": "/Users/sean/aja2", 
        "inventory_file": "/Users/sean/aja2/inventory", 
        "inventory_hostname": "aragorn", 
        "inventory_hostname_short": "aragorn",
...
        "play_hosts": [
            "aragorn"
        ], 
        "playbook_dir": "/Users/sean/aja2", 
        "role_names": []
    }

	 167	 Variables

}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0   

Spend a little time looking at all the variables. We have discussed some of them
already, and some of the others are self-explanatory. Many of the more obscure
variables deal with the environment in which the playbook is executing and are of
little interest to most users. We’ll discuss group_names and groups later in this chapter
when we discuss inventory groups.

The hostvars variable deserves a little discussion here. The hostvars dictionary,
keyed by inventory hostname, provides a way to gain access to variables for de-
vices other than the current device. For example, a task in your playbook could
reference hostvars['aragorn']['ansible_host'] to access the ansible_host setting for
the aragorn device, even if the device being processed was bilbo or another inven-
tory host.

The author has found hostvars particularly useful in reading data known for local-
host (the system executing the Ansible playbook) and using that data in a task re-
lated to a network device. For example, notice in the output above the
ansible_date_time dictionary containing various current date and time data for the
local host. This could be used to put a “date stamp” as part of a filename, so files
saved by different runs of the same playbook could all be retained.

Another way of viewing the facts gathered from the local host is with the following
command, which you may recall from the end of Chapter 2 when we used it as a
quick test to confirm Ansible was working:

mbp15:aja2 sean$ ansible -m setup localhost
localhost | SUCCESS => {
    "ansible_facts": {
...
        "ansible_date_time": {
            "date": "2018-03-17", 
            "day": "17", 
            "epoch": "1521304127", 
            "hour": "12", 
            "iso8601": "2018-03-17T16:28:47Z", 
            "iso8601_basic": "20180317T122847204752", 
            "iso8601_basic_short": "20180317T122847", 
            "iso8601_micro": "2018-03-17T16:28:47.204869Z", 
            "minute": "28", 
            "month": "03", 
            "second": "47", 
            "time": "12:28:47", 
            "tz": "EDT", 
            "tz_offset": "-0400", 
            "weekday": "Saturday", 
            "weekday_number": "6", 
            "weeknumber": "11", 
            "year": "2018"
        },
...

	 168	 Chapter 8: Data Files and Inventory Groups

        "ansible_hostname": "mbp15",
...
        "ansible_pkg_mgr": "homebrew", 
        "ansible_processor": "Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz", 
        "ansible_processor_cores": "4", 
        "ansible_python": {
            "executable": "/usr/local/Cellar/python/2.7.14_2/Frameworks/Python.framework/
Versions/2.7/Resources/Python.app/Contents/MacOS/Python", 
            "has_sslcontext": true, 
            "type": "CPython", 
            "version": {
                "major": 2, 
                "micro": 14, 
                "minor": 7, 
                "releaselevel": "final", 
                "serial": 0
            }, 
            "version_info": [
                2, 
                7, 
                14, 
                "final", 
                0
            ]
        }, 
        "ansible_python_version": "2.7.14",
...
        "gather_subset": [
            "all"
        ], 
        "module_setup": true
    }, 
    "changed": false
}

The following playbook, show-vars-4.yaml, illustrates one approach to gathering
localhost date and time information and using it later in the playbook:

 1|---
 2|- name: Show variables 4, localhost play
 3|  hosts:
 4|    - localhost
 5|  connection: local
 6|  gather_facts: yes
 7|  tasks:
 8|    - name: construct timestamp
 9|      set_fact:
10|        timestamp: "{{ansible_date_time.weekday}} {{ ansible_date_time.date }} at {{ ansible_
date_time.time }}"
11|
12|- name: Show variables 4, devices play
13|  hosts:
14|    - all
15|  connection: local
16|  gather_facts: no
17|  tasks:
18|    - name: display localhost timestamp
19|      debug:
20|        var: hostvars.localhost.timestamp

	 169	 Variables

The first play, lines 2–10, executes on localhost and saves the local date and time
into a variable called timestamp. Take note of line 6, which causes this play to gath-
er facts from the localhost. It is by gathering facts that Ansible learns the date and
time; without gathering facts, the ansible_date_time variable would be undefined.

The second play, lines 12–20, executes for each device in inventory. Note on line
20 how this play references localhost’s timestamp variable. The first play defines
timestamp only for localhost, not for all devices, so other devices need to access the
variable through the hostvars dictionary.

A sample playbook run:

mbp15:aja2 sean$ ansible-playbook show-vars-4.yaml

PLAY [Show variables 4, localhost play] **

TASK [Gathering Facts] ***
ok: [localhost]

TASK [construct timestamp] ***
ok: [localhost]

PLAY [Show variables 4, devices play] **

TASK [display localhost timestamp] ***
ok: [aragorn] => {
    "hostvars.localhost.timestamp": "Saturday 2018-03-17 at 12:36:15"
}
ok: [bilbo] => {
    "hostvars.localhost.timestamp": "Saturday 2018-03-17 at 12:36:15"
}

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=1    changed=0    unreachable=0    failed=0
localhost                  : ok=2    changed=0    unreachable=0    failed=0

CAUTION	 When using --limit with playbooks that include tasks for localhost
you must include localhost with the --limit option. Observe how the following
playbook run skips the localhost play and as a result never defines the timestamp
variable:

mbp15:aja2 sean$ ansible-playbook show-vars-4.yaml --limit=bilbo

PLAY [Show variables 4, localhost play] **
skipping: no hosts matched

PLAY [Show variables 4, devices play] **

TASK [display localhost timestamp] ***
ok: [bilbo] => {
    "hostvars.localhost.timestamp": "VARIABLE IS NOT DEFINED!"
}

PLAY RECAP ***
bilbo                      : ok=1    changed=0    unreachable=0    failed=0

	 170	 Chapter 8: Data Files and Inventory Groups

The following playbook run, with localhost in the --limit list, works correctly:

mbp15:aja2 sean$ ansible-playbook show-vars-4.yaml --limit=bilbo,localhost

PLAY [Show variables 4, localhost play] **

TASK [Gathering Facts] ***
ok: [localhost]

TASK [construct timestamp] ***
ok: [localhost]

PLAY [Show variables 4, devices play] **

TASK [display localhost timestamp] ***
ok: [bilbo] => {
    "hostvars.localhost.timestamp": "Saturday 2018-03-17 at 12:39:21"
}

PLAY RECAP ***
bilbo                      : ok=1    changed=0    unreachable=0    failed=0
localhost                  : ok=2    changed=0    unreachable=0    failed=0

Using variables in an Ansible playbook is a large topic. See the References section
at the end of this chapter for links to additional information.

Host Data Files
Our inventory file currently looks something like this:

mbp15:aja2 sean$ cat inventory
aragorn    ansible_host=192.0.2.10     dns1=8.8.8.8    dns2=198.51.100.100
bilbo      ansible_host=198.51.100.5   dns1=8.8.4.4    dns2=198.51.100.101

[all:vars]
ansible_python_interpreter=/usr/local/bin/python

We included in the inventory file some host-specific variables – ansible_host, dns1,
and dns2. We also included the ansible_python_intepreter variable for the all group,
a default group that includes all devices in inventory. Putting these variables in the
inventory file was convenient as we started exploring Ansible.

However, as earlier chapters have mentioned, the inventory file is not the preferred
place for variables. Here, we discuss a better approach for storing host-specific
data; later in this chapter we discuss group-specific data.

Ansible allows you to have a separate YAML data file for each host, in a directory
called host_vars within the playbook directory. Create directory ~/aja2/host_vars
on your system to contain your host data files.

Now create data files in the host_vars directory for your test hosts, starting with the
variables we already have in inventory. The names of the data files should match
the inventory hostnames for the devices, with a .yaml or .yml extension.

	 171	 Host Data Files

For device aragorn, the file host_vars/aragorn.yaml contains the following:

ansible_host: 192.0.2.10
dns1: 8.8.8.8
dns2: 198.51.100.100

For device bilbo, the file host_vars/bilbo.yaml contains the following:

ansible_host: 198.51.100.5
dns1: 8.8.4.4
dns2: 198.51.100.101

Remove the host variables from the file inventory, leaving the following:

aragorn
bilbo

[all:vars]
ansible_python_interpreter=/usr/local/bin/python

Run the show-vars-3.yaml playbook and confirm that the hosts have the variables
from the new files. You can also run the base-settings.yaml playbook from Chapter
7 and ensure the configuration files are created correctly from the new data files.

Among the benefits of using host_vars files instead of putting variables in inven-
tory is the ability to easily create dictionaries or lists in the host data, and thereby
manage larger data sets. DNS servers are naturally a list – a host can have an arbi-
trary number of DNS servers, not exactly two servers as allowed by our current
variables. Let’s change our files to use a list called dns_servers to store for DNS
server IP addresses, instead of the dns1 and dns2 variables. We can also add a third
DNS server address. The author’s files become:

mbp15:aja2 sean$ cat host_vars/aragorn.yaml

ansible_host: 192.0.2.10
dns_servers:
  - 8.8.4.4
  - 8.8.8.8
  - 198.51.100.100

mbp15:aja2 sean$ cat host_vars/bilbo.yaml

ansible_host: 198.51.100.5
dns_servers:
  - 8.8.4.4
  - 8.8.8.8
  - 198.51.100.10

You can use the show-vars-3.yaml playbook to confirm the changes are seen by An-
sible playbooks (abbreviated output shown below). However, this change in our
host data will require changes in the base-settings.j2 template before we can use
the base-settings.yaml playbook; we will discuss the template changes shortly:

	 172	 Chapter 8: Data Files and Inventory Groups

mbp15:aja2 sean$ ansible-playbook show-vars-3.yaml

PLAY [Show variables 3] **

TASK [ansible variables] ***
ok: [aragorn] => {
    "vars": {
...
        "ansible_version": {
            "full": "2.4.3.0",
            "major": 2,
            "minor": 4,
            "revision": 3,
            "string": "2.4.3.0"
        },
        "dns_servers": [
            "8.8.4.4",
            "8.8.8.8",
            "198.51.100.100"
        ],
...
    }
}
ok: [bilbo] => {
    "vars": {
...
        "dns_servers": [
            "8.8.4.4",
            "8.8.8.8",
            "198.51.100.101"
        ],
...
    }
}

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=1    changed=0    unreachable=0    failed=0

TIP	 In the show-vars-3.yaml playbook, set gather_facts: no. This will dramati-
cally reduce the amount of output relative to what we saw earlier in the chapter.

Note that the dns1 and dns2 variables are gone, replaced by the dns_servers list.

Take a look at the ansible_version dictionary in the above output and observe how
that dictionary collects a number of version-related variables. A number of An-
sible’s variables are in dictionaries like this. We saw another example with play-
book show-vars-4.yaml; the date and time data for localhost was in a dictionary
called ansible_date_time.

The author likes to organize host data in his host_vars files into dictionaries, ex-
cept for ansible_host which, as one of Ansible’s “magic” variables, won’t work
correctly if placed within a user-defined dictionary. Placing host data in dictionar-
ies helps document the purpose of the data. Different dictionaries can group re-
lated data together, separate from other types of host-related data. For example, a

	 173	 Host Data Files

host_info dictionary can contain general device settings like DNS servers, while a
host_interface dictionary can contain interface-related settings.

Later in this chapter we talk about creating groups and defining variables for
groups. Consider what to do if we have a group for each office, and we want to
have a dns_servers list for the group (office) that will apply to all devices in the of-
fice. If the group’s data file contains this:

dns_servers:
  - 1.2.3.1
  - 1.2.3.2

...the group’s dns_servers variable will clash with the dns_servers variable already
defined for the hosts. Using meaningfully-named dictionaries in each data file can
avoid this type of name clash, while clarifying which name servers we are referenc-
ing. Consider if the host data file contained this:

aja2_host:
  dns_servers:
    - 5.7.9.11
    - 5.7.9.12
    - 5.7.9.13

...and the group data file contained this:

aja2_office:
  dns_servers:
    - 1.2.3.1
    - 1.2.3.2

Referencing the respective name server lists in a playbook or template would re-
quire {{ aja2_host.dns_servers }} and {{ aja2_office.dns_servers }}. The different
dictionary names document whether we are referencing host-specific or office-wide
DNS server information, and the fact that both lists are called dns_servers does not
create a name clash because the lists are in different dictionaries.

There are other ways of addressing this situation – for example, we could name the
lists dns_servers_host and dns_servers_office without putting them in dictionaries
– but consider that you may also have NTP servers, RADIUS servers, prefix lists
for routing or firewall policies, and various other settings, for which you might
have office-wide defaults with host-specific additions. Using host and group dic-
tionaries is the approach the author preferred after trying a couple options.

Let’s update our host_vars files to use a “host settings” dictionary called aja2_host.
The author’s files now contain:

mbp15:aja2 sean$ cat host_vars/aragorn.yaml

ansible_host: 192.0.2.10
aja2_host:
  dns_servers:
    - 8.8.4.4
    - 8.8.8.8

	 174	 Chapter 8: Data Files and Inventory Groups

    - 198.51.100.100

mbp15:aja2 sean$ cat host_vars/bilbo.yaml

ansible_host: 198.51.100.5
aja2_host:
  dns_servers:
    - 8.8.4.4
    - 8.8.8.8
    - 198.51.100.101

Later we will add more settings to the aja2_host dictionary.

Run playbook show-vars-3.yaml and confirm the results of our changes:

...
TASK [ansible variables] ***
ok: [aragorn] => {
    "vars": {
        "aja2_host": {
            "dns_servers": [
                "8.8.4.4",
                "8.8.8.8",
                "198.51.100.100"
            ]
        },
...
    }
}
ok: [bilbo] => {
    "vars": {
        "aja2_host": {
            "dns_servers": [
                "8.8.4.4",
                "8.8.8.8",
                "198.51.100.101"
            ]
        },
...
    }
}
...

Using List Data – Base Settings 2
Now let’s take a quick look at how to process the list of DNS servers in a template.
Edit template/base-settings.j2 as shown (added or changed lines are in boldface,
line numbers added for discussion):

 1|{# Jinja2 comment #}
 2|system {
 3|    host-name {{ inventory_hostname }};
 4|    login {
 5|        user sean {
 6|            uid 2000;
 7|            class super-user;
 8|            authentication {

	 175	 Using List Data – Base Settings 2

 9|                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
10|            }
11|        }
12|    }
13|    replace:
14|    name-server {
15|      {% for server in aja2_host.dns_servers %}
16|        {{ server }};
17|      {% endfor %}
18|    }
19|    services {
20|        delete: ftp;
21|        netconf {
22|            ssh;
23|        }
24|        delete: telnet;
25|        delete: web-management;
26|    }
27|}

Line 1 shows a Jinja2 comment – the {# and #} are delimiters that identify the start
and end of the comment text. Jinja2 ignores the {# comment #} when processing the
template; the comment will not appear in the generated output. Comments can be
used to describe or document the template, or to temporarily remove a portion of
the template from processing during troubleshooting.

Lines 15–17 replaced the two lines that said {{ dns1 }} and {{ dns2 }} in the prior
version of the template. The new version creates a for loop that iterates over the
list of DNS servers and adds a line of configuration for each server.

For readers who are not programmers that last sentence was probably gibberish,
so let’s explain a bit. A for loop is a programming construct that visits each ele-
ment of a list1 and performs some action. Line 15 starts the for loop. The {% %}
braces-and-percent-signs delimeters identify a command that Jinja2 needs to inter-
pret, much the same way that {{ }} tells Jinja2 that the contents are the name of a
variable to be referenced. The for keyword introduces the command, telling Jinja2
this is a for loop. The next word, server, defines a variable that will allow us to ref-
erence each member of the list in turn. The keyword in introduces the name of the
list whose elements we want to reference, in this case the aja2_host.dns_servers list
we created above in the host_vars files.

Line 17 denotes the end of the for loop; note the use of the {% and %} delimeters
around the endfor command.

Anything between the beginning and end of the for loop, line 16 in our example,
will be performed for each element in the list. In this case, line 16 simply references
the temporary variable server, putting each DNS server IP into the configuration
file.

1 Programmers whose background is C or C++ or Java may be thinking “No, for loops are counter-
controlled loops!” For loops in Python and Jinja2 are more like C++11’s or Java’s for-each or enhanced
for loops.

	 176	 Chapter 8: Data Files and Inventory Groups

Let’s walk through the operation of the loop. Assume we are running basesettings.
yaml for bilbo. Jinja2 is processing the template, reaches line 15, and recognizes it
as the start of a for loop. Jinja2 reads the contents of the variable aja2_host.dns_
servers, a list containing three elements. Jinja2 puts the first element, 8.8.4.4, into
variable server, then moves to line 16, the first (and only, in our template) line
within the for loop. Line 16 takes the value from variable server and puts it into
the configuration file. Jinja2 then moves to line 17, which is the end of the loop,
causing Jinja2 to return to line 15 and put the next value from the list, 8.8.8.8, into
server, then move to line 16, update the configuration file, and reach the end of the
loop at line 17. The process repeats again with the third element from the list,
198.51.100.101. When Jinja2 returns to line 15 again, it finds it has read all the ele-
ments of the list. This causes Jinja2 to complete the for loop and move to the line
after the end of the loop, line 18, and continue processing the template from there.

Let’s use the base-settings.yaml playbook to generate the configuration files, there-
by testing our updated template. The author modified his playbook as described in
the Debugging Templates section of Chapter 7 so the playbook generates the con-
figuration files and stops. The results for aragorn are:

mbp15:aja2 sean$ cat tmp/aragorn.conf
system {
    host-name aragorn;
    login {
        user sean {
            uid 2000;
            class super-user;
            authentication {
                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
            }
        }
    }
    replace:
    name-server {
              8.8.4.4;
              8.8.8.8;
              198.51.100.100;
          }
    services {
        delete: ftp;
        netconf {
            ssh;
        }
        delete: telnet;
        delete: web-management;
    }
}

Looks good overall. The comment from line 1 of the template is not in the gener-
ated file, and we have our three DNS server IPs in the name-server hierarchy.
However, the indentation of the name-server list is a bit off – specifically, the three
IP addresses and the closing brace are all indented too far.

	 177	 Using List Data – Base Settings 2

The extra indentation in the output is from the indentation of lines 15 and 17, the
beginning and end of the for loop. Each cycle through the for loop includes the six
spaces in front of one of these lines with commands on them. Jinja2 automatically
suppresses the newline at the end of the commands, so we do not see “blank” lines
in our output; instead, we see extra spaces in front of the output from line 16 and
18.

Junos won’t care about the unusual indentation; we could upload the configura-
tion files as they are and Junos would happily accept them. However, consistent
indentation helps we humans understand the configuration files.

We can instruct Jinja2 to suppress the leading whitespace (space and tab charac-
ters) before a command by placing this directive at the top of the template file:
#jinja2: lstrip_blocks: True

Technically, this directive sets Jinja2’s lstrip_blocks option to True, with the result
that “leading spaces and tabs are stripped from the start of a line to a block,” ac-
cording to the Jinja2 documentation [http://jinja.pocoo.org/docs/2.10/api/]. (The
commands in {% %} delimiters are also called blocks in Jinja2.) We did not need this
directive in the original version of the template because it contained only plain text
and variable references, but the new version includes the {% for ... %} loop.

Let’s replace the comment on line 1 with that directive:

 1|#jinja2: lstrip_blocks: True
 2|system {
 3|    host-name {{ inventory_hostname }};
...

Run the base-settings.yaml playbook again and check the generated configuration.
This time the indentation should look more like Junos:

...
    }
    replace:
    name-server {
        8.8.4.4;
        8.8.8.8;
        198.51.100.100;
    }
    services {
...

Speaking of running the playbook, let’s update our base-settings.yaml playbook to
use SSH key authentication (in other words, remove the username and password
references) and undo any changes made for template debugging. Delete the vars_
prompt section and delete the user, passwd and port arguments from the connection_
settings dictionary. Undo any other changes related to template debugging, such as
deleting the fail task if you added one.

The result should look like this:

 1|---
 2|- name: Generate and Install Configuration File

http://jinja.pocoo.org/docs/2.10/api/

	 178	 Chapter 8: Data Files and Inventory Groups

 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|      timeout: 120
16|
17|  tasks:
18|    - name: confirm or create configs directory
19|      file:
20|        path: "{{ tmp_dir }}"
21|        state: directory
22|      run_once: yes
23|
24|    - name: save device information using template
25|      template:
26|        src: template/base-settings.j2
27|        dest: "{{ conf_file }}"
28|
29|    - name: install generated configuration file onto device
30|      juniper_junos_config:
31|        provider: "{{ connection_settings }}"
32|        src: "{{ conf_file }}"
33|        load: replace
34|        comment: "playbook base-settings.yaml, commit confirmed"
35|        confirmed: 5
36|        diff: yes
37|        ignore_warning: yes
38|      register: config_results
39|      notify: confirm previous commit
40|
41|    - name: show configuration change
42|      debug:
43|        var: config_results.diff_lines
44|      when: config_results.diff_lines is defined
45|
46|    - name: delete generated configuration file
47|      file:
48|        path: "{{ conf_file }}"
49|        state: absent
50|
51|  handlers:
52|    - name: confirm previous commit
53|      juniper_junos_config:
54|        provider: "{{ connection_settings }}"
55|        comment: "playbook base-settings.yaml, confirming previous commit"
56|        commit: yes
57|        diff: no

	 179	 Using List Data – Base Settings 2

Run the base-settings.yaml playbook; it should update the name servers on your
test devices. We did not change anything else in the template, so no other changes
should be needed on the devices:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
ok: [bilbo]
ok: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]
changed: [bilbo]

TASK [show configuration change] ***
ok: [aragorn] => {
    "config_results.diff_lines": [
        "",
        "[edit system name-server]",
        "+   8.8.4.4;",
        "    8.8.8.8 { ... }"
    ]
}
ok: [bilbo] => {
    "config_results.diff_lines": [
        "",
        "[edit system name-server]",
        "    8.8.4.4 { ... }",
        "+   8.8.8.8;",
        "    198.51.100.101 { ... }"
    ]
}

TASK [delete generated configuration file] *************************************
changed: [aragorn]
changed: [bilbo]

RUNNING HANDLER [confirm previous commit] **************************************
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=6    changed=2    unreachable=0    failed=0
bilbo                      : ok=5    changed=2    unreachable=0    failed=0

Notice that our device configuration changes were implemented through a tem-
plate change, not a playbook change. While we modified the playbook for our
convenience, or for template debugging, the modifications did not include changes
to the tasks “save device information using template” or “install generated con-
figuration file onto device” or to the “confirm previous commit” handler.

	 180	 Chapter 8: Data Files and Inventory Groups

More Device-Specific Data and Escape Characters
Let’s add SNMP location and description information to our host variables. These
settings are specific to each device.

The author’s file host_vars/aragorn.yaml now includes:

ansible_host: 192.0.2.10
aja2_host:
  dns_servers:
    - 8.8.4.4
    - 8.8.8.8
    - 198.51.100.100
  snmp:
    description: virtual SRX for testing
    location: Sean's Macbook Pro

The author’s file host_vars/bilbo.yaml now includes:

ansible_host: 198.51.100.5
aja2_host:
  dns_servers:
    - 8.8.4.4
    - 8.8.8.8
    - 198.51.100.101
  snmp:
    description: EX2200-C for testing
    location: Sean's home office

Notice how the update to each file creates a new dictionary snmp within the aja2_
host dictionary, containing description and location keys with appropriate values.
We can easily add additional SNMP-related data to the snmp dictionary, such as a
contact or a client-list, and the fact that the new data is part of the snmp dictionary
provides context to that data.

TIP	 Using dictionaries like this can help to make your data self-documenting.
This will benefit you and your team when trying to understand each other’s work,
or when revisiting your own work months or years later.

We need to update template/base-settings.j2 to include the new SNMP settings in
the generated configuration file. Append the following lines to the end of the tem-
plate (only new lines shown, with line numbers added):

...
28|snmp {
29|    description "{{ aja2_host.snmp.description}}"
30|    location "{{ aja2_host.snmp.location}}"
31|}

Observe how the template additions reference the snmp.description and snmp.loca-
tion variables in the aja2_host dictionary. Also observe the quotes around the new
variable references in the template (lines 29 and 30). These quotes are important

	 181	 More Device-Specific Data and Escape Characters

because the description and location may contain spaces or other characters that
Junos would regard as invalid if not quoted. Putting the quotes in the template
means they will be put in the generated configuration file. You can confirm this ne-
cessity at the Junos command line:

{master:0}
sean@bilbo> configure
Entering configuration mode

{master:0}[edit]
sean@bilbo# set snmp location Sean's office
                                     ^
syntax error.

{master:0}[edit]
sean@bilbo# set snmp location "Sean's office"

{master:0}[edit]
sean@bilbo# show snmp
location "Sean's office";

Run the base-settings.yaml playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [aragorn]

TASK [save device information using template] **********************************
changed: [aragorn]
changed: [bilbo]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]
changed: [bilbo]

TASK [show configuration change] ***
ok: [aragorn] => {
    "config_results.diff_lines": [
        "",
        "[edit]",
        "+  snmp {",
        "+      description \"virtual SRX for testing\";",
        "+      location \"Sean's Macbook Pro\";",
        "+  }"
    ]
}
ok: [bilbo] => {
    "config_results.diff_lines": [
        "",
        "[edit]",
        "+  snmp {",
        "+      description \"EX2200-C for testing\";",
        "+      location \"Sean's home office\";",
        "+  }"

	 182	 Chapter 8: Data Files and Inventory Groups

    ]
}

TASK [delete generated configuration file] *************************************
changed: [aragorn]
changed: [bilbo]

RUNNING HANDLER [confirm previous commit] **************************************
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=6    changed=3    unreachable=0    failed=0
bilbo                      : ok=5    changed=3    unreachable=0    failed=0

Look closely at the output of the “show configuration change” task. Notice that sev-
eral of the changed lines seem to contain backslashes (\) that we did not put in our
template, for example:

	 "+ location \"Sean's home office\";"

Log onto one of your test devices and check the change that was made:

sean@aragorn> show system commit
0   2018-03-19 19:16:35 UTC by sean via netconf
    playbook base-settings.yaml, confirming previous commit
1   2018-03-19 19:16:02 UTC by sean via netconf commit confirmed, rollback in 5mins
    playbook base-settings.yaml, commit confirmed
...

sean@aragorn> show configuration | compare rollback 2
[edit]
+  snmp {
+      description "virtual SRX for testing";
+      location "Sean's Macbook Pro";
+  }

No extraneous backslashes here. So why are they in the playbook results?

The change made by our playbook includes double-quotes (""). Ansible, when display-
ing the list of changed lines, puts each line in double-quotes. Because the change itself
already has double-quotes, Ansible sees a problem – it needs to somehow differentiate
between the opening and closing quotes that surround the entire line, and the similar
quotes that are in the middle of the changed line. If Ansible cannot distinguish the two
sets of quotes, it may misinterpret the results, as might another another program that
gets its data from Ansible.

For example, the first double-quote starts a string, the next double-quote ends the
string, there is some other text that is not quoted and thus should have meaning but
does not, followed by another string between double-quotes. In other words, the fol-
lowing interpretation, where ̂ marks the strings delimited by the double-quotes and !
marks the “unknown stuff” between the two double-quoted strings:

"+      location "Sean's home office";"
 ^^^^^^^^^^^^^^^^ !!!!!!!!!!!!!!!!!! ^

	 183	 Inventory Options

To avoid this problem, Ansible escapes the double-quotes in the middle of the
string by inserting a backslash before those double-quotes. Escaping is a program-
ming concept that essentially means adding to a string a special character, called
an escape character, that modifies the meaning of the next character in the string.
Ansible (and Python and many other programming languages) use the backslash
character as an escape character.

With the escape character (backslash) altering the meaning of the double-quotes in
the middle of the string – removing their meaning as string delimiters and treating
them as regular characters – Ansible can correctly interpret the string:

"+      location \"Sean's home office\";"
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Unless you are a programmer you do not need to fully understand the concept of
escaping in strings. Just keep the general idea in mind when you see strange backs-
lashes appearing in Ansible’s output.

Inventory Options
The inventory of devices to be managed is a critical part of Ansible’s operation. As
such, Ansible provides a number of options for handling inventory.

Multiple Inventory files
So far, in this book we have used a single inventory file (which we ingeniously
called inventory) and notified Ansible of this fact using the ansible.cfg file:

mbp15:aja2 sean$ cat ansible.cfg
[defaults]
inventory = inventory
...

However, it is possible to have multiple, distinct inventory files, and let Ansible
know which to use each time you run a playbook by using the ansible-playbook
command-line options -i or --inventory-file. For example, you may create sepa-
rate inventory files for test and production environments, and then run playbooks
using commands similar to the following:

ansible-playbook uptime.yaml --inventory-file=test_devices

…or…

ansible-playbook uptime.yaml -i production_devices

The --inventory-file or -i command-line options overrides the inventory setting in
ansible.cfg, so you can use ansible.cfg to set as a default the inventory file you
need most often, then tell Ansible to use an alternate inventory when needed.

	 184	 Chapter 8: Data Files and Inventory Groups

Inventory Directory
Another option is to place one or more inventory files in a directory, and tell An-
sible to use the directory, whether via the -i/--inventory-file command-line op-
tions or via ansible.cfg’s inventory setting. Ansible will combine the contents of all
files in the inventory directory when running your playbooks. This can be useful,
for example, when you want to maintain different inventory files for different
physical locations (or another categorization that makes sense, such as lab vs. pro-
duction), but run playbooks against all the devices as a single inventory.

NOTE	 With only a handful of test devices it may not seem practical to maintain
multiple files, but when you are maintaining an inventory of dozens or hundreds of
devices it can be very helpful to have them categorized in some fashion. This will
become even more clear when we add groups to these files later in this chapter.

Assume that our devices are in two different corporate offices, San Francisco and
Boston, and we want to maintain separate inventory files for each office.

Create a new directory inventory2 in your ~/aja2 directory. Within ~/aja2/inventory2
create files all_vars, boston and san_francisco.

The all_vars file will hold variables applicable to all hosts, namely the ansible_py-
thon_interpreter setting (if your system did not require you to set this variable, you
can skip this file):

[all:vars]
ansible_python_interpreter=/usr/local/bin/python

The file inventory2/boston should contain the following (you can substitute one or
more of your test devices for the author’s bilbo, but please ensure you have at least
three names even if you do not have matching devices):

bilbo
frodo
sam

The file inventory2/san_francisco should contain the following (again, substitute
one of your devices for aragorn and ensure you have at least three names even if
you do not have matching devices):

aragorn
eowyn
faramir

NOTE	 Do not worry that these new devices, and a few more we will add in the
next section of this chapter, do not exist. We will use these inventory entries only
to illustrate some inventory concepts. You need not create host data files in the
host_vars directory for the nonexistent devices.

Update your ansible.cfg file to use the new inventory2 directory:

	 185	 Inventory Options

[defaults]
inventory = inventory2
host_key_checking = False

Let’s confirm that Ansible sees our updated inventory. We can ask Ansible to tell us
what hosts it would act upon, without having it do anything, using --list-hosts
option to the ansible or ansible-playbook commands:

mbp15:aja2 sean$ ansible all --list-hosts
  hosts (6):
    bilbo
    frodo
    sam
    aragorn
    eowyn
    faramir

We can also use our show-vars-3.yaml playbook to check the membership of An-
sible’s all group, which includes all devices in inventory, and to confirm that our
ansible_python_interpreter variable is still set correctly:

mbp15:aja2 sean$ ansible-playbook show-vars-3.yaml --limit=aragorn

PLAY [Show variables 3] **

TASK [ansible variables] ***
ok: [aragorn] => {
    "vars": {
        "aja2_host": {
            "dns_servers": [
                "8.8.4.4",
                "8.8.8.8",
                "198.51.100.100"
            ],
            "snmp": {
                "description": "virtual SRX for testing",
                "location": "Sean's Macbook Pro"
            }
        },
...
        "ansible_python_interpreter": "/usr/local/bin/python",
...
        "groups": {
            "all": [
                "bilbo",
                "frodo",
                "sam",
                "aragorn",
                "eowyn",
                "faramir"
            ],
            "ungrouped": [
                "bilbo",
                "frodo",
                "sam",
                "aragorn",
                "eowyn",
                "faramir"

	 186	 Chapter 8: Data Files and Inventory Groups

            ]
        },
...
    }
}

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0

You can see the groups dictionary, including the automatically-created groups all
and ungrouped and their members. Notice that separating the inventory into mul-
tiple files does not automatically create a group for each file; we will create inven-
tory groups in the next section of this chapter.

Inventory Groups
Within your inventory file, or within the files in your inventory directory, you can
define groups of devices. Group membership can be based on nearly any organiza-
tional scheme that makes sense to you – location, device type, role in the network,
test vs. production, etc. Groups can be nested (you can have groups whose mem-
bers are other groups), and devices can be members of multiple groups. Groups
can even be defined across multiple files in an inventory directory.

Once you have defined groups within your inventory, you can use set variables
that will apply to all members of the group, and you can use --limit=groupname to
restrict playbooks to operating on members of a group.

Each group in an inventory file begins with a heading, the group name in square
brackets:

[groupname]
After the group heading, list the inventory hostnames for the devices which are
members of the group, one per line:

[groupname]
device1
device2

If a group’s members are other groups, the group’s heading must include the modi-
fier :children after the group name:

[groupname:children]
group1
group2

Let’s add location groups to our inventory files so we can easily run playbooks
against devices in Boston or San Francisco. Inventory file boston becomes:

[boston]
bilbo
frodo
sam

And inventory file san_francisco becomes (abbreviating the city name to “sf” for
the group name):

	 187	 Inventory Options

[sf]
gimli
gloin
aragorn

We can use show-vars-3.yaml to confirm the groups were created, but let’s create a varia-
tion of that playbook that shows just the groups, not all the other variables. Create
playbook show-groups.yaml:

 1|---
 2|- name: Show groups
 3|  hosts:
 4|    - localhost
 5|  connection: local
 6|  gather_facts: no
 7|
 8|  tasks:
 9|    - name: ansible variables
10|      debug:
11|        var: vars.groups

Run the show-groups.yaml playbook to confirm our new groups exist:

mbp15:aja2 sean$ ansible-playbook show-groups.yaml

PLAY [Show groups] ***

TASK [ansible variables] ***
ok: [localhost] => {
    "vars.groups": {
        "all": [
            "bilbo",
            "frodo",
            "sam",
            "gimli",
            "gloin",
            "aragorn"
        ],
        "boston": [
            "bilbo",
            "frodo",
            "sam"
        ],
        "sf": [
            "gimli",
            "gloin",
            "aragorn"
        ],
        "ungrouped": []
    }
}

PLAY RECAP ***
localhost                  : ok=1    changed=0    unreachable=0    failed=0

You can also confirm group membership with --list-hosts; for example:

mbp15:aja2 sean$ ansible boston --list-hosts
  hosts (3):

	 188	 Chapter 8: Data Files and Inventory Groups

    bilbo
    frodo
    sam

mbp15:aja2 sean$ ansible sf --list-hosts
  hosts (3):
    aragorn
    eowyn
    faramir

Assume our Boston and San Francisco offices each have EX switches and SRX fire-
walls. We want to create groups so that we can easily run playbooks against the
switches or firewalls in each location, or the entire location. To do this, the boston
and sf groups will become groups-of-groups and we will add new groups (and
some more non-existent devices) for the switches and firewalls in each office.

The boston inventory file now contains:

[boston:children]
bos_ex
bos_srx

[bos_ex]
bilbo
frodo
sam

[bos_srx]
arwen

The san_francisco inventory file now contains:

[sf:children]
sf_ex
sf_srx

[sf_ex]
gimli
gloin

[sf_srx]
galadriel
aragorn

Confirm the new groups using either or both of the approaches shown above:

mbp15:aja2 sean$ ansible-playbook show-groups.yaml

PLAY [Show groups] ***

TASK [ansible variables] ***
ok: [localhost] => {
    "vars.groups": {
        "all": [
            "bilbo",
            "frodo",
            "peregrin",
            "sam",
            "eowyn",
            "faramir",

	 189	 Inventory Options

            "aragorn",
            "arwen"
        ],
        "bos_ex": [
            "bilbo",
            "frodo"
        ],
        "bos_srx": [
            "peregrin",
            "sam"
        ],
        "boston": [
            "bilbo",
            "frodo",
            "peregrin",
            "sam"
        ],
        "sf": [
            "eowyn",
            "faramir",
            "aragorn",
            "arwen"
        ],
        "sf_ex": [
            "eowyn",
            "faramir"
        ],
        "sf_srx": [
            "aragorn",
            "arwen"
        ],
        "ungrouped": []
    }
}

PLAY RECAP ***
localhost                  : ok=1    changed=0    unreachable=0    failed=0

mbp15:aja2 sean$ ansible sf_srx --list-hosts
  hosts (2):
    aragorn
    arwen

Now assume we need to run a playbook against all our EX devices. We can run the
playbook with --limit=bos_ex,sf_ex, but as the number of sites increases, ensuring
we list all the correct groups could be challenging. Let’s create groups ex and srx to
include all our switches and firewalls. These definitions of these new groups span
both our inventory files, but as we will see momentarily, Ansible assembles the
group definitions across both files for us.

The boston inventory file now contains:

[boston:children]
bos_ex
bos_srx

[ex:children]

	 190	 Chapter 8: Data Files and Inventory Groups

bos_ex

[srx:children]
bos_srx

[bos_ex]
bilbo
frodo

[bos_srx]
peregrin
sam

The san_francisco inventory file now contains:

[sf:children]
sf_ex
sf_srx

[ex:children]
sf_ex

[srx:children]
sf_srx

[sf_ex]
eowyn
faramir

[sf_srx]
aragorn
arwen

Again, confirm the inventory updates using the approaches we have discussed.
Notice that the ex and srx groups contain devices from both the boston and san_
francisco inventory files.

mbp15:aja2 sean$ ansible srx --list-hosts
  hosts (4):
    peregrin
    sam
    aragorn
    Arwen

mbp15:aja2 sean$ ansible ex --list-hosts
  hosts (4):
    bilbo
    frodo
    eowyn
    faramir

mbp15:aja2 sean$ ansible-playbook show-groups.yaml

PLAY [Show groups] ***

TASK [ansible variables] ***
ok: [localhost] => {
    "vars.groups": {
        "all": [
            "bilbo",

	 191	 Inventory Options

            "frodo",
            "peregrin",
            "sam",
            "eowyn",
            "faramir",
            "aragorn",
            "arwen"
        ],
        "bos_ex": [
            "bilbo",
            "frodo"
        ],
        "bos_srx": [
            "peregrin",
            "sam"
        ],
        "boston": [
            "bilbo",
            "frodo",
            "peregrin",
            "sam"
        ],
        "ex": [
            "bilbo",
            "frodo",
            "eowyn",
            "faramir"
        ],
        "sf": [
            "eowyn",
            "faramir",
            "aragorn",
            "arwen"
        ],
        "sf_ex": [
            "eowyn",
            "faramir"
        ],
        "sf_srx": [
            "aragorn",
            "arwen"
        ],
        "srx": [
            "peregrin",
            "sam",
            "aragorn",
            "arwen"
        ],
        "ungrouped": []
    }
}

PLAY RECAP ***
localhost                  : ok=1    changed=0    unreachable=0    failed=0

Sometimes you want to create groups for special purposes, such as a list of devices
to be updated during a scheduled maintenance. Assume our company is

	 192	 Chapter 8: Data Files and Inventory Groups

conducting some maintenance that will affect a subset of the company’s devices, but
not a subset identified by a current group. Assume further that the maintenance will be
conducted in two phases, each phase affecting different devices, and there are play-
books written to carry out each stage. Create a new inventory file maintenance in our ~/
aja2/inventory2 directory with the following:

[phase1]
arwen
bilbo
sam

[phase2]
bilbo
eowyn
faramir

Confirm Ansible’s understanding of the group memberships:

mbp15:aja2 sean$ ansible phase1 --list-hosts
  hosts (3):
    arwen
    bilbo
    sam

mbp15:aja2 sean$ ansible phase2 --list-hosts
  hosts (3):
    bilbo
    eowyn
    faramir

If playbooks phase1.yaml and phase2.yaml existed, we could then run those playbooks
against the appropriate devices like this:
	 ansible-playbook phase1.yaml --limit=phase1
	 ansible-playbook phase2.yaml --limit=phase2

NOTE	 Ansible does not care that the devices listed in the phase1 and phase2 groups are
also listed in other groups in other files in the inventory directory, or that bilbo appears
in both phase1 and phase2. This flexibility can be very useful, as the above example
illustrates. However, the author suggests that you use such duplication carefully:
having a device appear in numerous groups in numerous inventory files means you
must be careful to find and remove all device instances when you need to remove the
device from inventory, such as when you retire it.

Ansible’s group_names Variable
We have seen that Ansible’s groups variable contains a dictionary showing all inventory
groups and their members. Ansible also maintains a group_names variable for each host
containing a list of groups of which the host is a member. In later chapters, we will see
how this variable can be used to execute a task only when the current host is a member
of a particular group; for example, we could execute a firewall-specific task only when
a device is a member of the srx group.

	 193	 Inventory Options

Enter the following playbook, show-group-names.yaml:

 1|---
 2|- name: Show group names
 3|  hosts:
 4|    - all
 5|  connection: local
 6|  gather_facts: no
 7|
 8|  tasks:
 9|    - name: group names
10|      debug:
11|        var: group_names

Run the playbook and observe that each device’s group_names variable lists the user-
defined groups of which the device is a member:

mbp15:aja2 sean$ ansible-playbook show-group-names.yaml

PLAY [Show group names] **

TASK [group names] ***
ok: [arwen] => {
    "group_names": [
        "phase1",
        "sf",
        "sf_srx",
        "srx"
    ]
}
ok: [bilbo] => {
    "group_names": [
        "bos_ex",
        "boston",
        "ex",
        "phase1",
        "phase2"
    ]
}
ok: [sam] => {
    "group_names": [
        "bos_srx",
        "boston",
        "phase1",
        "srx"
    ]
}
ok: [eowyn] => {
    "group_names": [
        "ex",
        "phase2",
        "sf",
        "sf_ex"
    ]
}
ok: [faramir] => {
    "group_names": [
        "ex",

	 194	 Chapter 8: Data Files and Inventory Groups

        "phase2",
        "sf",
        "sf_ex"
    ]
}
ok: [frodo] => {
    "group_names": [
        "bos_ex",
        "boston",
        "ex"
    ]
}
ok: [peregrin] => {
    "group_names": [
        "bos_srx",
        "boston",
        "srx"
    ]
}
ok: [aragorn] => {
    "group_names": [
        "sf",
        "sf_srx",
        "srx"
    ]
}

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
arwen                      : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=1    changed=0    unreachable=0    failed=0
eowyn                      : ok=1    changed=0    unreachable=0    failed=0
faramir                    : ok=1    changed=0    unreachable=0    failed=0
frodo                      : ok=1    changed=0    unreachable=0    failed=0
peregrin                   : ok=1    changed=0    unreachable=0    failed=0
sam                        : ok=1    changed=0    unreachable=0    failed=0

Single Inventory File with Groups
You can define groups even when using a single inventory file. Indeed, for small
environments, a single inventory file is likely to be easiest to maintain. If your test
environment is like the author’s, it probably consists of just a few devices, so let’s
return to using a single inventory file.

However, let’s assume that the test environment is meant to be a microcosm of the
production network, so we want to replicate groups that would be helpful in a
much larger environment, even if the groups contain only one device. With this in
mind, we will continue the assumption that our devices represent two offices, Bos-
ton and San Francisco. We will also continue the assumption that we want groups
for different device types; the author has EX and SRX test devices, but if you have
other device types, feel free to create appropriately named groups.

Create a new inventory file, ~/aja2/inventory3, with the following contents (adjust
as needed for your device types and hostnames, but ensure you have at least one

	 195	 Inventory Options

device in each city):

[boston:children]
bos_ex
bos_srx

[sf:children]
sf_ex
sf_srx

[ex:children]
bos_ex
sf_ex

[srx:children]
bos_srx
sf_srx

[bos_ex]
bilbo

[bos_srx]

[sf_ex]

[sf_srx]
aragorn

Notice that it is possible to define empty groups, like the bos_srx group above. The
author has found this to be useful; his team has written scripts to help create and
maintain the inventory files for the various corporate offices, and the inventory file
for every site (office) contains a similar set of “site_type” groups (like bos_ex)
whether or not each site actually has devices of each type. This consistency be-
tween different inventory files makes manual maintenance easier, when needed,
and makes the inventory scripts easier to write and maintain as we do not need to
test if a given site has, for example, an SRX device before creating the site_srx
group.

Also notice we did not include the [all:vars] section and its ansible_python_inter-
preter variable; we will handle this variable a little differently in the next section of
this chapter.

Update your ansible.cfg file to use the new inventory inventory3 file:

[defaults]
inventory = inventory3
host_key_checking = False
log_path = ~/aja2/ansible.log

Run the show-groups.yaml and show-group-names.yaml playbooks to confirm the inven-
tory and groups are what you expect:

mbp15:aja2 sean$ ansible-playbook show-groups.yaml

PLAY [Show groups] ***

	 196	 Chapter 8: Data Files and Inventory Groups

TASK [ansible va\riables] ***
ok: [localhost] => {
    "vars.groups": {
        "all": [
            "bilbo",
            "aragorn"
        ],
        "bos_ex": [
            "bilbo"
        ],
        "bos_srx": [],
        "boston": [
            "bilbo"
        ],
        "ex": [
            "bilbo"
        ],
        "sf": [
            "aragorn"
        ],
        "sf_ex": [],
        "sf_srx": [
            "aragorn"
        ],
        "srx": [
            "aragorn"
        ],
        "ungrouped": []
    }
}

PLAY RECAP ***
localhost                  : ok=1    changed=0    unreachable=0    failed=0

mbp15:aja2 sean$ ansible-playbook show-group-names.yaml

PLAY [Show group names] **

TASK [group names] ***
ok: [bilbo] => {
    "group_names": [
        "bos_ex",
        "boston",
        "ex"
    ]
}
ok: [aragorn] => {
    "group_names": [
        "sf",
        "sf_srx",
        "srx"
    ]
}

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=1    changed=0    unreachable=0    failed=0

	 197	 Group Data Files

Group Data Files
One benefit of defining inventory groups is that we can associate variables with
groups. This can be useful if, for example, all devices in a given office use particu-
lar NTP servers, but devices in another office use different NTP servers.

Ansible looks in a directory called group_vars for a YAML file with the same name
as a group, but with a .yaml or .yml extension. Variables in that file are made avail-
able to any hosts that are members of the group.

(Notice the similarity with the host_vars directory and host data files within.)

Create directory ~/aja2/group_vars. Within that directory, create files boston.yaml,
sf.yaml, and all.yaml.

The all.yaml file contains variables that are available to all devices, because all de-
vices are members of the all group. This is a good place to put the ansible_python_
interpreter variable, if it is needed for your system, keeping in mind this is a
YAML file and so we use key:value variable definitions:

ansible_python_interpreter: /usr/local/bin/python

For Boston and San Francisco, we define a list of NTP servers to be used at each
site. As discussed earlier for host variables, the author likes to create a dictionary
to help make variable names self-documenting and help avoid name collisions.

The file group_vars/boston.yaml contains NTP server addresses from time.nist.gov
(feel free to substitute different servers if appropriate in your environment):

aja2_site:
  ntp_servers:
    - 132.163.97.4
    - 129.6.15.27

The file group_vars/sf.yaml contains NTP server addresses from time.apple.com
(feel free to substitute different servers if appropriate in your environment):

aja2_site:
  ntp_servers:
    - 17.253.6.125
    - 17.253.20.125

You can confirm that the correct NTP server settings are seen by the correct hosts
using the show-vars-3.yaml playbook:

...
TASK [ansible variables] ***
ok: [bilbo] => {
    "vars": {
        "aja2_host": {
            "dns_servers": [
                "8.8.4.4",
                "8.8.8.8",

	 198	 Chapter 8: Data Files and Inventory Groups

                "198.51.100.101"
            ],
            "snmp": {
                "description": "EX2200-C for testing",
                "location": "Sean's home office"
            }
        },
        "aja2_site": {
            "ntp_servers": [
                "132.163.97.4",
                "129.6.15.27"
            ]
        },
...
    }
}
ok: [aragorn] => {
    "vars": {
        "aja2_host": {
            "dns_servers": [
                "8.8.4.4",
                "8.8.8.8",
                "198.51.100.100"
            ],
            "snmp": {
                "description": "virtual SRX for testing",
                "location": "Sean's Macbook Pro"
            }
        },
        "aja2_site": {
            "ntp_servers": [
                "17.253.6.125",
                "17.253.20.125"
            ]
        },
...

Observe that each host has the aja2_site.ntp_servers list appropriate for its
location.

Update the base-settings.j2 template to include the NTP servers as shown below.
Lines 27–32 are very similar to the DNS server update we made earlier in this
chapter, but reference the site-specific NTP server information:

 1|#jinja2: lstrip_blocks: True
 2|system {
 3|    host-name {{ inventory_hostname }};
 4|    login {
 5|        user sean {
 6|            uid 2000;
 7|            class super-user;
 8|            authentication {
 9|                ssh-rsa "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCxgT8ga1uYbS3bxXPPv7aEiTvSwXnK/7xu3NB0+t1njMBuUcgwn7zwtnayQyLS+ef3rNP7
WZXwFYxUeFbVwdkLUn9/xvDM5Qi2m/6WRP/yrTRtEvNP4lUsZRH+IXQc59JOKfYqGkvbgfshnmtHJHYVOn/1E/w0cNDYg4oH6K-
bcqYb+isbKhdiqpDBvLsF9h0GwhaiLk2BpVutw2BZoeKN9vrF+OmcaB0WVzGvwblSHDpXdLfMJuHAyEhZImNSv4bXNAYFGht9zpd
TwudP5qfwJo5304Sn62UaOzVN2zGogXKzxgxgAjeJ87io0Graiwo5q9kZYksjXvPzOaX3gt8Uv sean@mbp15.local”;

	 199	 Group Data Files

10|            }
11|        }
12|    }
13|    replace:
14|    name-server {
15|      {% for server in aja2_host.dns_servers %}
16|        {{ server }};
17|      {% endfor %}
18|    }
19|    services {
20|        delete: ftp;
21|        netconf {
22|            ssh;
23|        }
24|        delete: telnet;
25|        delete: web-management;
26|    }
27|    replace:
28|    ntp {
29|      {% for ntp in aja2_site.ntp_servers %}
30|        server {{ ntp }};
31|      {% endfor %}
32|    }
33|}
34|snmp {
35|    description "{{ aja2_host.snmp.description}}"
36|    location "{{ aja2_host.snmp.location}}"
37|}

Run the base-settings.yaml playbook to update your devices’ configurations:

mbp15:aja2 sean$ ansible-playbook base-settings-2.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
ok: [bilbo]

TASK [save device information using template] **********************************
changed: [bilbo]
changed: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]
changed: [bilbo]

TASK [show configuration change] ***
ok: [bilbo] => {
    "config_results.diff_lines": [
        "",
        "[edit system]",
        "+   ntp {",
        "+       server 132.163.97.4;",
        "+       server 129.6.15.27;",
        "+   }"
    ]
}
ok: [aragorn] => {

	 200	 Chapter 8: Data Files and Inventory Groups

    "config_results.diff_lines": [
        "",
        "[edit system ntp]",
        "-   boot-server 17.253.20.253;",
        "[edit system ntp]",
        "+    server 17.253.6.125;",
        "+    server 17.253.20.125;",
        "-    server 17.253.20.253;",
        "-    server 129.6.15.30;"
    ]
}

TASK [delete generated configuration file] *************************************
changed: [bilbo]
changed: [aragorn]

RUNNING HANDLER [confirm previous commit] **************************************
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=5    changed=3    unreachable=0    failed=0
bilbo                      : ok=6    changed=3    unreachable=0    failed=0

Observe that each device gets the appropriate site-specific NTP servers.

Alternate Inventory Directory Layout
The layout of files and directories described so far in this chapter is but one way of
organizing your inventory, host data, and group data files. This layout is the first
one presented on Ansible’s best practices page (link in References section) and is
perhaps the easiest layout to use when learning Ansible. To summarize the inven-
tory and data file and directory layout we have discussed so far:

playbook_directory
├── group_vars
│    ├── group1.yaml
│    └── group2.yaml
├── host_vars
│    ├── host1.yaml
│    └── host2.yaml
├── inventory1_directory
│    ├── inventory1a
│    └── inventory1b
└── inventory2_file

This section of this chapter presents an alternative layout, also shown on Ansible’s
best practices page. After we illustrate the alternate layout, we suggest when each
option might be the most appropriate.

The major change in the alternative layout is that you create a directory for each
inventory, and the host_vars and group_vars directories for each inventory are
placed within the inventory directory. The inventory itself can be a single file or

	 201	 Alternate Inventory Directory Layout

several files in another subdirectory of the inventory directory. Ansible’s best prac-
tices page suggests calling the inventory file or directory hosts, but in the author’s
tests this name does not seem to be necessary for Ansible to find the inventory.

Ansible also suggests creating a directory called inventories within the playbook
directory and placing your inventory directories within the inventories directory.
This is not a requirement, but it provides a single, meaningfully named location for
all inventory data, regardless of how many inventories you may need.

Please create your inventories directory now:

mbp15:aja2 sean$ mkdir inventories

Assume we need to manage some servers in addition to our Junos devices. The
servers should have their own servers inventory. Create the following directory
hierarchy and files within the new inventories directory:

~/aja2/inventories
└── servers
     ├── group_vars
     │    ├── all.yaml
     │    ├── database.yaml
     │    └── web.yaml
     ├── host_vars
     │    ├── gandalf.yaml
     │    └── saruman.yaml
     └── hosts

Populate the files as follows:

inventories/servers/hosts:
[database]
gandalf

[web]
Saruman

inventories/servers/host_vars/gandalf.yaml:

aja2_host:
  oob_ip: 192.0.2.20

inventories/servers/host_vars/saruman.yaml:

aja2_host:
  oob_ip: 192.0.2.21

inventories/servers/group_vars/all.yaml:

aja2_servers:
  dns_servers:

	 202	 Chapter 8: Data Files and Inventory Groups

    - 8.8.4.4
    - 8.8.8.8

inventories/servers/group_vars/database.yaml:

db_servers:
  db_port: 3306

inventories/servers/group_vars/web.yaml:

web_servers:
  http_dir: /srv/http/

Now use the show-groups.yaml and show-vars-3.yaml playbooks to confirm the new
inventory is doing what we expect. Remember to specify the inventory on the com-
mand line as we have not changed the default inventory in ansible.cfg.

mbp15:aja2 sean$ ansible-playbook show-groups.yaml -i inventories/servers/

PLAY [Show groups] **

TASK [ansible variables] **

ok: [localhost] => {
 "vars.groups": {
 "all": [
 "saruman",
 "gandalf"
],
 "database": [
 "gandalf"
],
 "ungrouped": [],
 "web": [
 "saruman"
]
 }
}

PLAY RECAP ***

localhost : ok=1 changed=0 unreachable=0 failed=0

mbp15:aja2 sean$ ansible-playbook show-vars-3.yaml -i inventories/servers/ --limit=gandalf

PLAY [Show variables 3] ***

TASK [ansible variables] **

ok: [gandalf] => {
 "vars": {
 "aja2_host": {

	 203	 Alternate Inventory Directory Layout

 "oob_ip": "192.0.2.20"
 },
 "aja2_servers": {
 "dns_servers": [
 "8.8.4.4",
 "8.8.8.8"
]
 },
...
 "db_servers": {
 "db_port": 3306
 },
...
 "hostvars": {
...
 "saruman": {
 "aja2_host": {
 "oob_ip": "192.0.2.21"
 },
 "aja2_servers": {
 "dns_servers": [
 "8.8.4.4",
 "8.8.8.8"
]
 },
...
 "web_servers": {
 "http_dir": "/srv/http/"
 }
 }
 },
...
 }
}

PLAY RECAP ***

gandalf : ok=1 changed=0 unreachable=0 failed=0

Let’s add an inventory of Junos devices to our inventories directory, using this al-
ternative directory layout. Let’s populate the new junos inventory by copying the
inventory files from the inventory2 directory we created earlier in this chapter, and
copying our host_vars and group_vars files from earlier in this chapter:

mbp15:aja2 sean$ mkdir inventories/junos
mbp15:aja2 sean$ mkdir inventories/junos/hosts
mbp15:aja2 sean$ mkdir inventories/junos/host_vars
mbp15:aja2 sean$ mkdir inventories/junos/group_vars

mbp15:aja2 sean$ cp inventory2/* inventories/junos/hosts/
mbp15:aja2 sean$ cp group_vars/* inventories/junos/group_vars/
mbp15:aja2 sean$ cp host_vars/* inventories/junos/host_vars/

That should yield the following hierarchy:

mbp15:aja2 sean$ tree inventories/
inventories/

	 204	 Chapter 8: Data Files and Inventory Groups

├── junos
│    ├── group_vars
│    │    ├── all.yaml
│    │    ├── boston.yaml
│    │    └── sf.yaml
│    ├── host_vars
│    │    ├── aragorn.yaml
│    │    └── bilbo.yaml
│    └── hosts
│         ├── all_vars
│         ├── boston
│         ├── maintenance
│         └── san_francisco
└── servers
     ├── group_vars
     │    ├── all.yaml
     │    ├── database.yaml
     │    └── web.yaml
     ├── host_vars
     │    ├── gandalf.yaml
     │    └── saruman.yaml
     └── hosts

Run the show-vars-3.yaml playbooks, specifying the new junos inventory on the
command line, to confirm the new inventory is doing what we expect:

mbp15:aja2 sean$ ansible-playbook show-groups.yaml -i inventories/junos/

PLAY [Show groups] **

TASK [ansible variables] **

ok: [localhost] => {
    "vars.groups": {
        "all": [
            "arwen",
            "bilbo",
            "sam",
            "eowyn",
            "faramir",
            "frodo",
            "peregrin",
            "aragorn"
        ],
        "bos_ex": [
            "bilbo",
            "frodo"
        ],
        "bos_srx": [
            "peregrin",
            "sam"
        ],
        "boston": [
            "bilbo",
            "frodo",
            "peregrin",
            "sam"

	 205	 Alternate Inventory Directory Layout

        ],
        "ex": [
            "bilbo",
            "frodo",
            "eowyn",
            "faramir"
        ],
        "phase1": [
            "arwen",
            "bilbo",
            "sam"
        ],
        "phase2": [
            "bilbo",
            "eowyn",
            "faramir"
        ],
        "sf": [
            "eowyn",
            "faramir",
            "aragorn",
            "arwen"
        ],
        "sf_ex": [
            "eowyn",
            "faramir"
        ],
        "sf_srx": [
            "aragorn",
            "arwen"
        ],
        "srx": [
            "peregrin",
            "sam",
            "aragorn",
            "arwen"
        ],
        "ungrouped": []
    }
}

PLAY RECAP ***

localhost : ok=1 changed=0 unreachable=0 failed=0

mbp15:aja2 sean$ ansible-playbook show-vars-3.yaml -i inventories/junos/ --limit=aragorn

PLAY [Show variables 3] ***

TASK [ansible variables] ***

ok: [aragorn] => {
    "vars": {
        "aja2_host": {
            "dns_servers": [
                "8.8.4.4",
                "8.8.8.8",

	 206	 Chapter 8: Data Files and Inventory Groups

                "198.51.100.100"
            ],
            "snmp": {
                "description": "virtual SRX for testing",
                "location": "Sean's Macbook Pro"
            }
        },
        "aja2_site": {
            "ntp_servers": [
                "17.253.6.125",
                "17.253.20.125"
            ]
        },
...
    }
}

PLAY RECAP ***

aragorn                    : ok=1    changed=0    unreachable=0    failed=0

When should you use this alternative directory layout? One benefit of this alterna-
tive arrangement is that it can be used with AWX or Ansible Tower. If you are us-
ing, or expect to use, AWX or Tower, and would like to share inventory data
between the command-line Ansible environment and the AWX/Tower environ-
ment, seriously consider the alternative directory arrangement described in this
section.

Also consider how much overlap exists between your different inventories. The
original layout collects all host data files into a single host_vars directory and all
group data files into a single group_vars directory. If there is no overlap between
different inventories (for example, between the junos and servers inventories cre-
ated in this section of this chapter) then a clean separation of host_vars and group_
vars files may help with organization and will not result in duplicate files.

If, on the other hand, there is significant overlap between inventories, the original
layout can avoid duplicate files that would be required by the alternative layout.
Assume you have the inventories firewalls, switches, and routers. Further assume
that a single device may appear in two of those inventories; for example, an EX
switch used primarily as a Layer 3 device would appear in both the switches and
routers inventories. The original layout would require a single host_vars file for
that EX switch, while the alternative layout would require two host_vars files for
that one device, one file in each of the relevant inventories. Depending on how
many devices appear in multiple inventories, the duplication could become a
problem.

	 207	 References

References
Ansible Inventory:
http://docs.ansible.com/ansible/latest/intro_inventory.html

Ansible Best Practices Directory Layouts:
http://docs.ansible.com/ansible/latest/playbooks_best_practices.html#directory-
layout
http://docs.ansible.com/ansible/latest/playbooks_best_practices.
html#alternative-directory-layout

Ansible Variables:
http://docs.ansible.com/ansible/latest/playbooks_variables.html

Ansible set_fact module:
http://docs.ansible.com/ansible/latest/set_fact_module.html

Ansible Dynamic Inventory:
http://docs.ansible.com/ansible/latest/intro_dynamic_inventory.html

http://docs.ansible.com/ansible/latest/intro_inventory.html
http://docs.ansible.com/ansible/latest/playbooks_variables.html
http://docs.ansible.com/ansible/latest/set_fact_module.html
http://docs.ansible.com/ansible/latest/intro_dynamic_inventory.html

It is a good idea to keep backups of your devices’ configurations. This is particu-
larly true when developing automation that changes device configurations, as a
mistake in automation has the ability to break dozens of devices very quickly.

This chapter introduces playbooks for archiving complete device configurations,
and a playbook for getting a subset of a device’s configuration.

Revisiting the juniper_junos_config Module
Chapters 7 and 8 used the juniper_junos_config module to configure Junos devices,
either executing configuration commands or uploading configuration files. This
same module can retrieve the configuration from a Junos devices when called with
the retrieve argument.

The retrieve argument accepts one of three options: none (the default) indicating
the module should not save the device’s configuration, or candidate or committed in-
dicating which device configuration database should be saved.

You may wish to provide the format option to specify the format of the saved con-
figuration file. The juniper_junos_config module defaults to text format (braces and
semicolons) but you can also specify json, set, or xml.

Keep in mind that json and set formats require Junos support which was added in
recent years; for example, if the author tries to get json output from his EX2200-C
running Junos 12.3, he gets a lengthy error message containing the following text:
“RuntimeWarning: Native JSON support is only from 14.2 onwards.”

When using retrieve with juniper_junos_config, you must also specify either the
dest or dest_dir options to indicate the file or directory to store the device’s

Chapter 9

Backing Up Device Configuration

	 209	 Playbook for Backing Up Device Configurations – Get Config 1

configuration. The dest option expects a (path and) filename for the output file. By
contrast the dest_dir option expects a path; it automatically assigns a filename in
the form ansible_host.format as seen in Chapter 5 with the juniper_junos_rpc
module.

Playbook for Backing Up Device Configurations – Get Config 1
The following playbook, get-config.yaml, creates a directory called backups in the
Ansible playbook directory and backs up device configurations into that directory.
Configurations are saved in files named <inventory_hostname>.conf (text format):

 1|---
 2|- name: Save configurations from Junos devices to files
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    config_dir: "backups"
12|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|
16|  tasks:
17|    - name: confirm/create device configuration directory
18|      file:
19|        path: "{{ config_dir }}"
20|        state: directory
21|      run_once: yes
22|      delegate_to: localhost
23|
24|    - name: save device configuration
25|      juniper_junos_config:
26|        provider: "{{ connection_settings }}"
27|        dest: "{{ config_filename }}"
28|        format: text
29|        retrieve: committed

Lines 1–8 are the typical start of an Ansible playbook for Junos automation.

Lines 10–14 define variables for the configuration backup directory, the name of
the configuration file within the backup directory, and the connection settings.

Lines 17–22 ensure the backup directory exists. We saw this pattern, including the
run_once argument, with the base-settings.yaml playbook in Chapter 7. But what is
the new argument delegate_to? That tells the task to execute on a host other than
the one currently being processed. In this case, setting delegate_to: localhost makes
it explicit that this task (checking or creating a directory on the local file system) is
to be executed on the localhost, not on the network device being processed (ara-
gorn or bilbo).

	 210	 Chapter 9: Backing Up Device Configuration

This use of delegate_to: localhost is actually redundant – because the play has con-
nection: local set, all tasks are executed on localhost, even if the task itself reaches
across the network to communicate with a network device. However, for tradi-
tional server-centric administration, which may not have connection: local set, it
may be important to force a task to execute locally rather than on a remote host.
In addition, we will see momentarily that this setting makes a nice change in the
playbook’s output for this task.

Lines 24–29 call the juniper_junos_config module to back up the device’s configura-
tion. The dest argument tells the module where to save the configuration, the for-
mat argument specifies the module should return the configuration in text format
(this is the default, so this line could be omitted), and the retrieve argument tells
the module to return the last committed configuration (in contrast with the candidate
configuration, meaning that if a configuration change is being made, return the
configuration with the in-process change).

Run the playbook against your test devices:

mbp15:aja2 sean$ ansible-playbook get-config.yaml

PLAY [Save configurations from Junos devices to files] *************************

TASK [confirm/create device configuration directory] ***
changed: [bilbo -> localhost]

TASK [save device configuration] ***
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=1    unreachable=0    failed=0

Notice the output for the “confirm/create device configuration directory” task,
specifically how it says [bilbo -> localhost] instead of just [bilbo]. This is the result
of the delegate_to option discussed above.

If you check your Ansible playbook (~/aja2) directory there should now be a sub-
directory called backups, within which there should be a backup of each of your
devices’ configurations:

mbp15:aja2 sean$ ls -ld backups
drwxr-xr-x@ 5 sean  staff  160 Apr 28 20:20 backups

mbp15:aja2 sean$ ls -1 backups/
aragorn.conf
bilbo.conf

mbp15:aja2 sean$ cat backups/aragorn.conf

	 211	 Using a User-Specific Backup Path – Get Config 2

## Last commit: 2018-04-20 03:33:20 UTC by sean
version 15.1X49-D90.7;
system {
    host-name aragorn;
...

This is a good start, but there are a few things that could be improved.

Using a User-Specific Backup Path – Get Config 2
The playbook currently places the configuration backup files within the Ansible
playbook directory. This may not be desirable. Consider what will happen when
you want to share your Ansible playbooks and supporting files with someone else,
but not the configurations of all your network devices: you will need to exclude
the backups directory from what you share with the other person. The Appendix
discusses source control and the problem of sharing too much becomes even more
apparent in that context.

So, what if we put the backups directory in our home directory instead? We could
change line 11 of the playbook, the backup_dir variable assignment, as shown:

11|    config_dir: "/Users/sean/backups"

That would work for the author, but it makes the playbook useless for anyone
else. What if we used the tilde (~) shortcut for “my home directory?”

11|    config_dir: "~/backups"

That will work for everyone, as it lets the system figure out the user’s home direc-
tory. However, it assumes that every module to which we would pass the config_
dir variable, or any other variables built from the config_dir variable, like
config_filename, understands the tilde (~) as the Unix/Linux shortcut for “my home
directory.” Is this a good assumption?

As it turns out, both the file and juniper_junos_config modules understand the tilde
and “expand” it to your home directory path (/Users/sean for the author’s system),
so the change mentioned above would work in this playbook. However, not every
module handles this “tilde expansion.” The author thinks it is poor practice,
therefore, to pass the tilde to a module as part of a pathname.

Fortunately, Ansible includes a filter that can help us. Ansible (and Jinja2) uses fil-
ters to modify data in some way. The basic format for using a filter is:

{{ data | filter }}

The data can be simple text or a variable. The filter does not modify the data di-
rectly; instead, it reads the data and returns a modified version of the data. For this
reason, you will usually see filters used in assignments (setting a new variable to
the modified version of the original data) or in when: conditions (testing the
“truthiness” of the modified version of the original data).

	 212	 Chapter 9: Backing Up Device Configuration

Jinja2 includes a number of filters that Ansible can use, and Ansible includes ad-
ditional filters of its own (see the links in the References section).

The filter we need is expanduser, which expands a path containing a tilde (~).
Change line 11 of the playbook as follows:

11|    config_dir: "{{ '~/backups' | expanduser }}"

Note the single quotes around the path '~/backups' – quotes make it clear that this
is a single string being passed to the expanduser filter (if it were a variable name, you
would not need the quotes), and the single quotes are to avoid confusion with the
double quotes surrounding the entire expression.

Also add a debug task before the current “confirm/create device configuration di-
rectory” task to display the config_dir variable, just so we can confirm that the fil-
ter works:

17|    - debug:
18|        var: config_dir

Now run the playbook again and check the results:

mbp15:aja2 sean$ ansible-playbook get-config.yaml --limit=aragorn

PLAY [Save configurations from Junos devices to files] *************************

TASK [debug] ***
ok: [aragorn] => {
    "config_dir": "/Users/sean/backups"
}

TASK [confirm/create device configuration directory] ***
changed: [aragorn -> localhost]

TASK [save device configuration] ***
ok: [aragorn]

PLAY RECAP ***
aragorn                    : ok=3    changed=1    unreachable=0    failed=0

mbp15:aja2 sean$ ls -d ~/back*
/Users/sean/backups

mbp15:aja2 sean$ ls -1 ~/backups/
aragorn.conf

Observe the output from the debug task; the path ~/backups has been expanded to
/Users/sean/backups (your home directory path will be different).

This is pretty nice. In fact, let’s expand on this a little bit – instead of creating just a
directory for configuration backups, what if we used this approach to create a di-
rectory hierarchy for all Ansible temporary and output files? We can move the tmp
directory used in Chapter 7 for template output into our new directory, use the
new directory to store reports we generate (see Chapter 10 for an example), etc.

	 213	 Using a User-Specific Backup Path – Get Config 2

Moving all temporary and output files out of the playbook directory hierarchy
makes it easier to share the playbooks when needed, because you do not need to
figure out what files from the playbook directory need to be excluded (not copied).

Modify the playbook as follows:

...
10|  vars:
11|    user_data_path: "{{ '~/ansible' | expanduser }}"
12|    config_dir: "{{ user_data_path }}/config_backups"
13|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}.conf"
14|    connection_settings:
15|      host: "{{ ansible_host }}"
16|
17|  tasks:
18|    - debug:
19|        var: user_data_path
20|
21|    - debug:
22|        var: config_dir
23|
24|    - name: confirm/create device configuration directory
25|      file:
26|        path: "{{ config_dir }}"
27|        state: directory
28|      run_once: yes
29|      delegate_to: localhost
...

Line 11 defines the user_data_path variable to store the path to new parent directory
~/ansible for our temporary and output files.

Line 12 builds on the user_data_path variable to store the path to the directory for
configuration backups.

Lines 18–22 display the two variables so we can confirm everything is working.

Run the playbook and check the results:

mbp15:aja2 sean$ ansible-playbook get-config.yaml --limit=aragorn

PLAY [Save configurations from Junos devices to files] *************************

TASK [debug] ***
ok: [aragorn] => {
    "user_data_path": "/Users/sean/ansible"
}

TASK [debug] ***
ok: [aragorn] => {
    "config_dir": "/Users/sean/ansible/config_backups"
}

TASK [confirm/create device configuration directory] ***
ok: [aragorn -> localhost]

TASK [save device configuration] ***
ok: [aragorn]

	 214	 Chapter 9: Backing Up Device Configuration

PLAY RECAP ***
aragorn                    : ok=4    changed=0    unreachable=0    failed=0

mbp15:aja2 sean$ ls -d ~/ans*
/Users/sean/ansible

mbp15:aja2 sean$ ls -1 ~/ansible/config_backups/
aragorn.conf

Nice!

Because we plan to use the new user_data_path variable in other playbooks, it may
be useful to put it in our group_vars/all.yaml file so it will be automatically avail-
able for all our other playbooks. In addition, should we need to change the loca-
tion of this parent directory for our output, we can change the variable in just one
location instead of across a number of playbooks.

Modify group_vars/all.yaml as follows (remember your ansible_python_interpreter
path may be different than the author’s):

ansible_python_interpreter: /usr/local/bin/python
user_data_path: "{{ '~/ansible' | expanduser }}"

Delete the user_data_path definition from the get-config.yaml playbook:

 1|---
 2|- name: Save configurations from Junos devices to files
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    config_dir: "{{ user_data_path }}/config_backups"
12|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|
16|  tasks:
17|    - debug:
18|        var: user_data_path
19|
20|    - debug:
21|        var: config_dir
22|
23|    - name: confirm/create device configuration directory
24|      file:
25|        path: "{{ config_dir }}"
26|        state: directory
27|      run_once: yes
28|      delegate_to: localhost
29|
30|    - name: save device configuration
31|      juniper_junos_config:
32|        provider: "{{ connection_settings }}"

	 215	 Keeping a Configuration History – Get Config 3

33|        dest: "{{ config_filename }}"
34|        format: text
35|        retrieve: committed

Run the playbook again (not shown). The results should be exactly the same as
last time – moving the definition of the user_data_path variable from the playbook
to a group_vars file should not change the value assigned to the variable.

NOTE	 Keep in mind that the value of the user_data_path variable is the same for
all devices. The value of a playbook variable that contains different values for
different devices could be affected if moved to a group_vars file.

NOTE	 In his production playbooks, the author has used several path variables
predefined in his equivalent of our group_vars/all.yaml variable file – not only an
equivalent to the user_data_path variable shown in this example, but also equiva-
lents to config_dir and several other output and temporary paths. However, the
author has found that when he showed a new team member a playbook which
used any of these predefined paths, the new team member was often confused by
the use of variables not defined in the playbook. For this reason, the author has
started moving many of his path variables out of his all.yaml file and back into the
playbooks where the paths are used. The author wanted to present the technique
of defining path variables in the all.yaml file, particularly for paths used in several
playbooks, but the reader should consider what balance of variables defined in
playbook vs. all.yaml will be best for his or her environment and team.

Before continuing into the next section, please delete the configuration backups
created so far:

mbp15:aja2 sean$ rm -r ~/ansible/
mbp15:aja2 sean$ rm -r ~/backups/

That gives us a “clean slate” as we improve our backup strategy.

Keeping a Configuration History – Get Config 3
The current get-config.yaml playbook will keep only the most recent configuration
backup for each device—it replaces any prior backup file each time it is run be-
cause, for a given device, the filename of the configuration backup is always the
same. What if we want to keep all unique configuration backups, allowing us to
create a configuration history?

There are two considerations we must address to make this happen. The first is
simply ensuring we create a new (uniquely named) file each time we run the play-
book, which can easily be accomplished by including a serial number or a date-
and-time string in the filename. Our examples use the date and time because, as we
have seen in previous chapters, we can get the local system date and time from An-
sible, and it lets us create filenames that will sort in chronological order.

	 216	 Chapter 9: Backing Up Device Configuration

The second is what to do when a new configuration backup is a duplicate of the
previous one: in other words, the device’s configuration did not change between
the two backups. The simple approach is to ignore this consideration, but over
time that would result in wasting disk space with numerous files that are identical
but for their filename. The numerous duplicate configuration files would also
make it more difficult to locate configuration changes in our history. It is prefer-
able to save only configuration files that represent a change of configuration from
the previous backup.

Let’s start with adding a date-and-time stamp to the filename. At the same time, if
we are going to keep a configuration history, we should probably save the configu-
ration files for each device in a device-specific subdirectory, so backups for differ-
ent devices are logically separated.

Change the get-config.yaml playbook as follows. In addition to adding the bold-
faced lines, delete the run_as and delegate_to arguments on the “confirm/create de-
vice configuration directory” task because each device now has a unique directory,
and delete the debug tasks that displayed the user_data_path and config_dir
variables:

 1|---
 2|- name: Create timestamp for filenames
 3|  hosts:
 4|    - localhost
 5|  connection: local
 6|  gather_facts: yes
 7|
 8|  vars:
 9|    systime: "{{ ansible_date_time.time | replace(':', '-') }}"
10|
11|  tasks:
12|    - debug:
13|        var: ansible_date_time.time
14|
15|    - debug:
16|        var: systime
17|
18|    - name: save timestamp in a variable for later use
19|      set_fact:
20|        timestamp: "{{ ansible_date_time.date }}_{{ systime }}"
21|
22|- name: Save configurations from Junos devices to files
23|  hosts:
24|    - all
25|  roles:
26|    - Juniper.junos
27|  connection: local
28|  gather_facts: no
29|
30|  vars:
31|    config_dir: "{{ user_data_path }}/config_backups/{{ inventory_hostname }}"
32|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}_{{ hostvars.localhost.
timestamp }}.conf"

	 217	 Keeping a Configuration History – Get Config 3

33|    connection_settings:
34|      host: "{{ ansible_host }}"
35|
36|  tasks:
37|    - name: confirm/create device configuration directory
38|      file:
39|        path: "{{ config_dir }}"
40|        state: directory
41|
42|    - name: save device configuration
43|      juniper_junos_config:
44|        provider: "{{ connection_settings }}"
45|        dest: "{{ config_filename }}"
46|        format: text
47|        retrieve: committed
48|
49|    - name: display path to latest backup file
50|      debug:
51|        msg: "The configuration backup is in {{ config_filename }}"

Lines 2–20 introduce a new play that runs on localhost and creates a variable time-
stamp with the date and time. The timestamp variable will be used later in the play-
book to add a timestamp to a configuration file’s name. This is modeled on the
showvars4.yaml playbook from Chapter 8.

Line 9 uses an Ansible filter, replace(), to modify how the system time is formatted
and assign the altered time to variable systime. Ansible’s variable ansible_date_time.
time uses colons as the separators between hour, minute, and second, such as
14:47:36. The problem is that colons can have special meaning to some UNIX
command-line tools, so we should avoid them in filenames. The filter replace(':',
'-') switches the colons with hyphens.

Remember from our earlier discussion of filters that replace()does not modify the
ansible_date_time.time variable; instead, it reads the data from the variable, modi-
fies that data, and returns the modified data so that it can be assigned to a new
variable. So line 9 reads the time from ansible_date_time.time, replaces colons with
dashes, and assigns the modified time to variable systime without changing vari-
able ansible_date_time.time.

The debug tasks on lines 12–16 are to help us see the change made by the filter; they
will be removed later.

Lines 18–20 create the timestamp variable containing the date and time (with hy-
phens) from the system clock. The playbook uses set_fact for this because the vari-
able needs to survive into the next play. (Recall from the discussion about variable
scope at the beginning of Chapter 8 that variables defined in the vars: section of a
play are in scope only for that play, not for subsequent plays.)

Line 31 redefines the config_dir variable so each device will have its own directory
for configuration backups.

Line 32 modifies the config_filename variable to include the timestamp defined in the

	 218	 Chapter 9: Backing Up Device Configuration

first play. Remember that timestamp was generated by localhost, not by the current
device, so we need to reference it via Ansible’s hostvars variable.

Lines 49-51 display the path and filename of the configuration backup just saved.
This is a convenience for anyone using the playbook.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-config.yaml

PLAY [Create timestamp for filenames] **

TASK [Gathering Facts] ***
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
    "ansible_date_time.time": "15:38:54"
}

TASK [debug] ***
ok: [localhost] => {
    "systime": "15-38-54"
}

TASK [save timestamp in a variable for later use] ******************************
ok: [localhost]

PLAY [Save configurations from Junos devices to files] *************************

TASK [confirm/create device configuration directory] ***
changed: [bilbo]
changed: [aragorn]

TASK [save device configuration] ***
ok: [aragorn]
ok: [bilbo]

TASK [display path to latest backup file] **************************************
ok: [bilbo] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/bilbo/
bilbo_2018-05-01_15-38-54.conf"
}
ok: [aragorn] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-01_15-38-54.conf"
}

PLAY RECAP ***
aragorn                    : ok=3    changed=1    unreachable=0    failed=0
bilbo                      : ok=3    changed=1    unreachable=0    failed=0
localhost                  : ok=4    changed=0    unreachable=0    failed=0

Look at the output for the first task that runs in the first play:

TASK [Gathering Facts] ***
ok: [localhost]

We do not have a “Gathering Facts” task in the playbook! Where did this come

	 219	 Removing the Localhost Play – Get Config 4

from? Because the first play has gather_facts: yes set, Ansible implicitly adds a task
to gather facts from each host in the play, in this case only localhost.

Now look at the output from the first and second debug tasks and observe how the
replace filter (playbook line 9) changed the format of the system time:

...
    "ansible_date_time.time": "15:38:54"
...
    "systime": "15-38-54"
...

Confirm that the configuration backups exist:

mbp15:aja2 sean$ ls -1 ~/ansible/config_backups/
aragorn
bilbo

mbp15:aja2 sean$ ls -1 ~/ansible/config_backups/aragorn/
aragorn_2018-05-01_15-38-54.conf

Nice!

Removing the Localhost Play – Get Config 4
What if we run the playbook for only one device?

mbp15:aja2 sean$ ansible-playbook get-config.yaml --limit=aragorn

PLAY [Create timestamp for filenames] **
skipping: no hosts matched

PLAY [Save configurations from Junos devices to files] *************************

TASK [confirm/create device configuration directory] ***
ok: [aragorn]

TASK [save device configuration] ***
fatal: [aragorn]: FAILED! => {"msg": "The task includes an option with an undefined variable. The error
was: {{ config_dir }}/{{ inventory_hostname }}_{{ hostvars.localhost.timestamp }}.conf: 'dict object'
has no attribute 'timestamp'\n\nThe error appears to have been in '/Users/sean/aja2/get-config.yaml':
line 42, column 7, but may\nbe elsewhere in the file depending on the exact syntax problem.\n\nThe
offending line appears to be:\n\n\n - name: save device configuration\n ̂ here\n\nexception
type: <class 'ansible.errors.AnsibleUndefinedVariable'>\nexception: {{ config_dir }}/{{ inventory_
hostname }}_{{ hostvars.localhost.timestamp }}.conf: 'dict object' has no attribute 'timestamp'"}
	 to retry, use: --limit @/Users/sean/aja2/get-config.retry

PLAY RECAP ***
aragorn : ok=1 changed=0 unreachable=0 failed=1

What happened here? Notice the first play was skipped:

PLAY [Create timestamp for filenames] **
skipping: no hosts matched

The first play runs only on localhost, but localhost was excluded by
--limit=aragorn.

	 220	 Chapter 9: Backing Up Device Configuration

Because the first play did not run, the timestamp variable was never defined, which
means timestamp could not be referenced in the second play, resulting in the follow-
ing error (emphasis added):

“The task includes an option with an undefined variable. The error was: {{ con-
fig_dir }}/{{ inventory_hostname }}_{{ hostvars.localhost.timestamp }}.conf: 'dict
object' has no attribute 'timestamp'.”

To run the playbook with --limit you must include localhost in the limit:

mbp15:aja2 sean$ ansible-playbook get-config.yaml --limit=localhost,aragorn

PLAY [Create timestamp for filenames] **

TASK [Gathering Facts] ***
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
    "ansible_date_time.time": "17:32:20"
}

TASK [debug] ***
ok: [localhost] => {
    "systime": "17-32-20"
}

TASK [save timestamp in a variable for later use] ******************************
ok: [localhost]

PLAY [Save configurations from Junos devices to files] *************************

TASK [confirm/create device configuration directory] ***
ok: [aragorn]

TASK [save device configuration] ***
ok: [aragorn]

TASK [display path to latest backup file] **************************************
ok: [aragorn] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-01_17-32-20.conf"
}

PLAY RECAP ***
aragorn                    : ok=3    changed=0    unreachable=0    failed=0
localhost                  : ok=4    changed=0    unreachable=0    failed=0

That’s better!

However, as you create more playbooks, some of which require localhost in the
limit list and some of which do not, it becomes difficult to remember which does
and which does not. And as you can see, the error message that results from forget-
ting to include localhost when using --limit is unlikely to be much help in remind-

	 221	 Removing the Localhost Play – Get Config 4

ing you that is the problem, because it says nothing about --limit.

Can we modify this playbook to not require localhost with --limit? Yes, we can!

Delete the entire first play of the playbook, and modify or add the boldfaced lines:

 1|---
 2|- name: Save configurations from Junos devices to files
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    systime: "{{ ansible_date_time.time | replace(':', '-') }}"
12|    timestamp: "{{ ansible_date_time.date }}_{{ systime }}"
13|    config_dir: "{{ user_data_path }}/config_backups/{{ inventory_hostname }}"
14|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}_{{ timestamp }}.conf"
15|    connection_settings:
16|      host: "{{ ansible_host }}"
17|
18|  tasks:
19|    - name: get localhost environment info (for date and time)
20|      setup:
21|      run_once: yes
22|      delegate_to: localhost
23|
24|    - name: confirm/create device configuration directory
25|      file:
26|        path: "{{ config_dir }}"
27|        state: directory
28|
29|    - name: save device configuration
30|      juniper_junos_config:
31|        provider: "{{ connection_settings }}"
32|        dest: "{{ config_filename }}"
33|        format: text
34|        retrieve: committed
35|
36|    - name: display path to latest backup file
37|      debug:
38|        msg: "The configuration backup is in {{ config_filename }}"

The entire first play, the one that ran on localhost, is gone.

Line 11 defines the systime variable from ansible_date_time.time, using the replace()
filter to change colons into hyphens.

Line 12 defines the timestamp variable from ansible_date_time.date and systime.

These two variables are defined for all hosts, not just localhost as was the case
with the previous version of the playbook.

Line 14 replaces the hostvars.localhost.timestamp reference with a simple timestamp
reference, because timestamp is now defined for each device.

	 222	 Chapter 9: Backing Up Device Configuration

Recall from our discussion of the previous version of the playbook that we needed
the play to gather facts from localhost in order to define the ansible_date_time vari-
able. But line 8 of our playbook has gather_facts: no. How are we going to get the
local date and time information?

When Ansible gathers facts, it basically runs the setup module. We have manually
run the setup module in previous chapters (ansible -m setup localhost) to view some
of the system-defined variables.

Lines 19–22 call the setup module from our playbook. There are no arguments
passed to the setup module itself (no lines indented after line 20), but we use the
run_once and delegate_to arguments on the task to ensure we run setup only one
time and that it gathers its facts from localhost.

One interesting thing about using run_once: even though the task is run under the
name of a single host, any resulting variables are automatically added to the host
variables for all hosts. This means that the ansible_date_time variable is defined for
all hosts against which we run the playbook.

Run the playbook on one of your test devices:

mbp15:aja2 sean$ ansible-playbook get-config.yaml --limit=bilbo

PLAY [Save configurations from Junos devices to files] *************************

TASK [get localhost environment info (for date and time)] **********************
ok: [bilbo -> localhost]

TASK [confirm/create device configuration directory] ***
ok: [bilbo]

TASK [save device configuration] ***
ok: [bilbo]

TASK [display path to latest backup file] **************************************
ok: [bilbo] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/bilbo/
bilbo_2018-05-01_17-41-22.conf"
}

PLAY RECAP ***
bilbo                      : ok=4    changed=0    unreachable=0    failed=0

Run the playbook again without --limit so it runs against all your devices. Notice
how all devices’ filenames are defined and include the timestamp, even though
only one device ran the setup module:

...
TASK [save device configuration] ***
ok: [aragorn]
ok: [bilbo]

TASK [display path to latest backup file] **************************************
ok: [bilbo] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/bilbo/

	 223	 Avoiding Duplicate Configuration Backups – Get Config 5

bilbo_2018-05-01_18-13-09.conf"
}
ok: [aragorn] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-01_18-13-09.conf"
}
...

Nice!

Avoiding Duplicate Configuration Backups – Get Config 5
Now let’s address the problem of duplicate configuration backups. At this point,
our get-config.yaml playbook saves every configuration backup under a unique,
time-stamped filename, with no attempt to determine if the newly backed up con-
figuration has the same contents (the same configuration) as the previous backup,
or to delete the new file when it is a duplicate. Let’s add those features.

You can see the problem if you simply diff the last two backups made by our play-
book for one of your test devices, because we have not changed the device’s con-
figuration while developing the playbook:

mbp15:aja2 sean$ cd ~/ansible/config_backups/aragorn/

mbp15:aragorn sean$ ls -1
aragorn_2018-05-01_15-38-54.conf
aragorn_2018-05-01_17-32-20.conf
aragorn_2018-05-01_17-42-42.conf
aragorn_2018-05-01_18-13-09.conf
aragorn_2018-05-01_18-24-56.conf

mbp15:aragorn sean$ diff aragorn_2018-05-01_18-13-09.conf aragorn_2018-05-01_18-24-56.conf

mbp15:aragorn sean$ cd ~/aja2/

Here the diff command returned no results, meaning the contents of the files were
the same. If there had been differences between the files, we would have gotten
some output from the diff command showing the differences. There is no need to
keep one of these files. The author’s preference is to delete the newer of the dupli-
cates; keeping the older one, with its time-stamped filename, helps to document
when we first backed up the changed configuration.

In the next few pages we update our playbook to do the following:

	� Get a list of existing configuration backups, if any.

	� If previous backups were found, save the name of the most recent backup.

	� Save the new configuration backup.

	� If there was a previous backup (step 2), diff the new backup with the previous
backup. If there was no previous backup, skip this step.

	 224	 Chapter 9: Backing Up Device Configuration

	� If the diff shows no change, delete the newer backup file. If no diff was done
(because there was no previous backup), skip this step.

There are several decisions in these steps. How does an Ansible playbook make
decisions?

Ansible offers several conditionals, statements which allow the playbook to make
a yes-or-no decision, and alter what the playbook does, based on some condition
like the value of a variable. The when conditional is the most fundamental condi-
tional; it allows Ansible to determine whether or not it should run the task with
which the when conditional is associated. Our updated playbook uses when on sev-
eral tasks to avoid executing the tasks for steps 4 and 5 when there was no previ-
ous backup to diff, and to decide if the diff found a change and thus if the newest
backup should be deleted.

The condition for when (or any other conditional) is a valid Jinja2 expression, with-
out double braces ({{ }}), that must evaluate to the Boolean values true or false.

An example of a task with a when condition:

- name: save file when data defined
  template:
    src: templates/save-info.j2
    dest: "{{ output_file }}"
  when: some_data is defined

This task would use the template module to process template/save-info.j2 only
when variable some_data exists. This would be useful if some_data might not exist
but contains data needed by the template.

For readers with a programming background, think of when as Ansible’s equivalent
to an if or if-then statement in most programming languages. If the example task
were in a Python program, an equivalent expression might look something like
this:

if some_data is defined:
    template(src=templates/save-info.j2, dest=output_file)

Now let’s modify the playbook to include the additional processing discussed
above. Add the boldfaced lines shown:

 1|---
 2|- name: Save configurations from Junos devices to files
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    systime: "{{ ansible_date_time.time | replace(':', '-') }}"
12|    timestamp: "{{ ansible_date_time.date }}_{{ systime }}"

	 225	 Avoiding Duplicate Configuration Backups – Get Config 5

13|    config_dir: "{{ user_data_path }}/config_backups/{{ inventory_hostname }}"
14|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}_{{ timestamp }}.conf"
15|    connection_settings:
16|      host: "{{ ansible_host }}"
17|
18|  tasks:
19|    - name: get localhost environment info (for date and time)
20|      setup:
21|      run_once: yes
22|      delegate_to: localhost
23|
24|    - name: confirm/create device configuration directory
25|      file:
26|        path: "{{ config_dir }}"
27|        state: directory
28|
29|    - name: get list of previous backups (if any)
30|      find:
31|        file_type: file
32|        path: "{{ config_dir }}"
33|        patterns: "{{ inventory_hostname }}*.conf"
34|      register: old_configs_details
35|
36|    - debug:
37|        var: old_configs_details
38|
39|    - name: save name of most recent previous backup
40|      set_fact:
41|        prev_config: "{{ old_configs_details.
files | sort(attribute='path') | map(attribute='path') | list | last }}"
42|      when: old_configs_details.matched > 0
43|
44|    - debug:
45|        var: prev_config
46|
47|    - name: save device configuration
48|      juniper_junos_config:
49|        provider: "{{ connection_settings }}"
50|        dest: "{{ config_filename }}"
51|        format: text
52|        retrieve: committed
53|
54|    - name: display path to latest backup file
55|      debug:
56|        msg: "The configuration backup is in {{ config_filename }}"
57|
58|    - name: get difference between backups
59|      shell: diff -I '^## Last [change|commit]' {{ prev_config }} {{ config_filename }}
60|      when: prev_config is defined
61|      register: diff_result
62|      failed_when: diff_result.rc > 1
63|
64|    - debug:
65|        var: diff_result
66|
67|    - name: delete new backup if same as previous
68|      file:
69|        path: "{{ config_filename }}"
70|        state: absent

	 226	 Chapter 9: Backing Up Device Configuration

71|      when: (diff_result.changed) and (diff_result.rc == 0)

Lines 29–34 use Ansible’s find module, which returns a list of files matching speci-
fied criteria, to get a list of earlier configuration backup files. Lines 31–33 provide
the matching criteria: only files (directory entries whose file_type is file), not di-
rectories or links; in the path (directory) specified by the config_dir variable; and
whose names match the specified patterns. Line 34 registers the results in variable
old_configs_details for use later in the playbook.

Lines 36–37 display the file information from the previous task. This task can be
removed, or its output suppressed with a verbosity argument, once you understand
how the playbook works. When we run the playbook shortly, observe two key
fields in the old_configs_details dictionary: matched, an integer count of the number
of items that matched the criteria, and files, a list of dictionaries in which each
dictionary contains the filename and other information about a matching file.

Lines 39–42 get the last file from the list of old backup files, sorted alphabetically
by name. Because the filenames contain a timestamp that will sort alphabetically
from oldest to newest, this effectively gives us the name of the most recent previous
configuration backup.

There is a lot happening in line 41, so let’s break it down. The variable reference
old_configs_details.files returns the list of dictionaries of information about each
file. This list is run through a series of filters (notice the “vertical bar” or pipe char-
acters, |). The first filter is sort(attribute='path'), which sorts the file list by the path
attribute of each dictionary in the list; path is the dictionary’s key for the fully qual-
ified filename. The next filter, map(attribute='path'), extracts just the path attribute
from the dictionaries and creates a new list containing those paths. However, the
list created by map is in a special format, so the next filter, list, reformats it as a
standard list. Finally, the last filter removes and returns the last entry in the list.
Because the list is, effectively, sorted by timestamp, this gives us the path (and file-
name) of the most recent backup file. That path is then assigned to the prev_config
variable.

Note the when condition on line 42. If there were no old backup files (if this is the
first backup for a device), the old_configs_details.files reference would return an
empty list, which will cause errors in the subsequent filters. The when condition
tests if there was at least one file found by the “get list of previous backups” task
by ensuring the old_configs_details.matched value is greater than zero; if old_con-
figs_details.matched is zero, the condition is false and the task is skipped, in which
case the prev_config variable is undefined.

The debug tasks on lines 44–45 and 64–65 can be removed, or their output sup-
pressed with verbosity arguments, when convenient. For now, they show interme-
diate results to help us understand the playbook’s operation.

Lines 58–62 find the difference between the new configuration backup (taken by

	 227	 Avoiding Duplicate Configuration Backups – Get Config 5

lines 47–52) and the previous backup. The Ansible shell module calls the Unix/
Linux command shell and executes the specified command. In our task, the base
command is diff with the filenames of the previous and new config backups. The
additional argument to diff, -I '^## Last [change|commit]', tells diff to ignore the
header line that Junos adds to the top of a configuration that includes the date and
time the configuration was committed. Junos updates the timestamp on this line
even if there was no configuration change in the commit. Ignoring this line lets diff
regard as the same two configuration backups which differ only by the commit
timestamp.

Line 62 uses a feature of Ansible we have not previously discussed. The failed_when
argument on a task lets us alter what Ansible module regards as failure for a given
task. Normally, the shell module looks at the return code from the called com-
mand; a non-zero return code is a failure, while a zero is success. However, diff, at
least on MacOS, uses the return code to indicate if the files were the same (return
code 0) or different (return code 1). We use failed_when to check the return code
(diff_result.rc) and consider the task a failure only if the code is 2 or greater.

NOTE	 The manpages for diff checked by the author do not document the return
codes, so the author is not sure if the behavior documented here is consistent for
all implentations. Should your version of diff use different return codes you may
be able to remove the failed_when argument, or change the test used by failed_when.
Another possible test is diff_result.stderr != "" to check if the diff command send
output (anything other than the empty string) to STDERR.

Lines 67–71 delete the new configuration backup when it matches the previous
backup. The when condition has two tests joined with and, so both tests must be
true. The first test, diff_result.changed, basically confirms that task “get difference
between backups” ran. The second test, diff_result.rc == 0, checks the return code
from the diff command called by task “get difference between backups” -- a return
code of 0 means no difference was found between the files.

NOTE	 Should your system’s implementation of diff use different return codes, an
alternate test is diff_result.stdout == "". If diff returned no output (the empty
string) then there was no difference found between the files.

Okay, its time to run the playbook and see how it works! So that we can see how
the playbook works for new devices and for unchanged configurations, let’s delete
all existing configuration backups for one of our test devices:

mbp15:aja2 sean$ rm -r ~/ansible/config_backups/aragorn/

Now run the playbook for that device:

mbp15:aja2 sean$ ansible-playbook get-config.yaml -l aragorn

PLAY [Save configurations from Junos devices to files] *************************

	 228	 Chapter 9: Backing Up Device Configuration

TASK [get localhost environment info (for date and time)] **********************
ok: [aragorn -> localhost]

TASK [confirm/create device configuration directory] ***************************
changed: [aragorn]

TASK [get list of previous backups (if any)] ***********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "old_configs_details": {
        "changed": false,
        "examined": 0,
        "failed": false,
        "files": [],
        "matched": 0,
        "msg": ""
    }
}

TASK [save name of most recent previous backup] ********************************
skipping: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "prev_config": "VARIABLE IS NOT DEFINED!"
}

TASK [save device configuration] ***
ok: [aragorn]

TASK [display path to latest backup file] **************************************
ok: [aragorn] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-15-49.conf"
}

TASK [get difference between backups] **
skipping: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "diff_result": {
        "changed": false,
        "skip_reason": "Conditional result was False",
        "skipped": true
    }
}

TASK [delete new backup if same as previous] ***********************************
skipping: [aragorn]

PLAY RECAP ***
aragorn                    : ok=8    changed=1    unreachable=0    failed=0

Observe that the “get list of previous backups (if any)” task found no existing files:

ok: [aragorn] => {

	 229	 Avoiding Duplicate Configuration Backups – Get Config 5

    "old_configs_details": {
        "changed": false,
        "examined": 0,
        "failed": false,
        "files": [],
        "matched": 0,
        "msg": ""
    }
}

As a result, the variable prev_config does not get defined:

TASK [save name of most recent previous backup] ********************************
skipping: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "prev_config": "VARIABLE IS NOT DEFINED!"
}

This means we skip testing for differences between the new and previous backup
(because there is no previous backup):

TASK [get difference between backups] **
skipping: [aragorn]

And, finally, we skip deleting the new configuration backup:

TASK [delete new backup if same as previous] ***********************************
skipping: [aragorn]

Check the directory where the backups for this device are stored to confirm the
new configuration file is still there:

mbp15:aja2 sean$ ls -l ~/ansible/config_backups/aragorn/
total 16
-rw-r--r--  1 sean  staff  4527 May 20 11:15 aragorn_2018-05-20_11-15-49.conf

Okay, the playbook handles the first backup for a device. Now let’s test if it han-
dles a backup with a change. Make a minor change to your test device:

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# set snmp description "vSRX for writing AJA2"

[edit]
sean@aragorn# commit and-quit
commit complete
Exiting configuration mode

Run the playbook again:

mbp15:aja2 sean$ ansible-playbook get-config.yaml -l aragorn

PLAY [Save configurations from Junos devices to files] *************************

TASK [get localhost environment info (for date and time)] **********************

	 230	 Chapter 9: Backing Up Device Configuration

ok: [aragorn -> localhost]

TASK [confirm/create device configuration directory] ***************************
ok: [aragorn]

TASK [get list of previous backups (if any)] ***********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "old_configs_details": {
        "changed": false,
        "examined": 1,
        "failed": false,
        "files": [
            {
                "atime": 1526829355.509161,
                "ctime": 1526829353.8808928,
                "dev": 16777221,
                "gid": 20,
                "inode": 8604987922,
                "isblk": false,
                "ischr": false,
                "isdir": false,
                "isfifo": false,
                "isgid": false,
                "islnk": false,
                "isreg": true,
                "issock": false,
                "isuid": false,
                "mode": "0644",
                "mtime": 1526829353.8808928,
                "nlink": 1,
                "path": "/Users/sean/ansible/config_backups/aragorn/aragorn_2018-05-20_11-15-49.
conf",
                "rgrp": true,
                "roth": true,
                "rusr": true,
                "size": 4527,
                "uid": 502,
                "wgrp": false,
                "woth": false,
                "wusr": true,
                "xgrp": false,
                "xoth": false,
                "xusr": false
            }
        ],
        "matched": 1,
        "msg": ""
    }
}

TASK [save name of most recent previous backup] ********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "prev_config": "/Users/sean/ansible/config_backups/aragorn/aragorn_2018-05-20_11-15-49.conf"
}

	 231	 Avoiding Duplicate Configuration Backups – Get Config 5

TASK [save device configuration] ***
ok: [aragorn]

TASK [display path to latest backup file] **************************************
ok: [aragorn] => {
    "msg": "The configuration backup is in /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-38-35.conf"
}

TASK [get difference between backups] **
changed: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
    "diff_result": {
        "changed": true,
        "cmd": "diff -d -I '^## Last [change|commit]' /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-15-49.conf /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-38-35.conf",
        "delta": "0:00:00.014214",
        "end": "2018-05-20 11:38:39.072608",
        "failed": false,
        "failed_when_result": false,
        "msg": "non-zero return code",
        "rc": 1,
        "start": "2018-05-20 11:38:39.058394",
        "stderr": "",
        "stderr_lines": [],
        "stdout": "173c173\n<     description \"virtual SRX for testing\";\n---\
n>     description \"vSRX for writing AJA2\";",
        "stdout_lines": [
            "173c173",
            "<     description \"virtual SRX for testing\";",
            "---",
            ">     description \"vSRX for writing AJA2\";"
        ]
    }
}

TASK [delete new backup if same as previous] ***********************************
skipping: [aragorn]

PLAY RECAP ***
aragorn                    : ok=10   changed=1    unreachable=0    failed=0

This time, there is a previous backup file:

ok: [aragorn] => {
    "old_configs_details": {
        "changed": false,
        "examined": 1,
        "failed": false,
        "files": [
            {
...
                "path": "/Users/sean/ansible/config_backups/aragorn/aragorn_2018-05-20_11-15-49.
conf",

	 232	 Chapter 9: Backing Up Device Configuration

...
            }
        ],
        "matched": 1,
        "msg": ""
    }
}

This means the prev_config variable gets defined:

ok: [aragorn] => {
    "prev_config": "/Users/sean/ansible/config_backups/aragorn/aragorn_2018-05-20_11-15-49.conf"
}

Thus the playbook runs the diff command, which finds a difference between the
new and previous configuration files:

ok: [aragorn] => {
    "diff_result": {
        "changed": true,
        "cmd": "diff -d -I '^## Last [change|commit]' /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-15-49.conf /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-38-35.conf",
        "delta": "0:00:00.014214",
        "end": "2018-05-20 11:38:39.072608",
        "failed": false,
        "failed_when_result": false,
        "msg": "non-zero return code",
        "rc": 1,
        "start": "2018-05-20 11:38:39.058394",
        "stderr": "",
        "stderr_lines": [],
        "stdout": "173c173\n<     description \"virtual SRX for testing\";\n---\
n>     description \"vSRX for writing AJA2\";",
        "stdout_lines": [
            "173c173",
            "<     description \"virtual SRX for testing\";",
            "---",
            ">     description \"vSRX for writing AJA2\";"
        ]
    }
}

Because the files differ, the new backup file is not deleted:

TASK [delete new backup if same as previous] ***********************************
skipping: [aragorn]

Confirm we now have two backup files:

mbp15:aja2 sean$ ls -l ~/ansible/config_backups/aragorn/
total 32
-rw-r--r--  1 sean  staff  4527 May 20 11:15 aragorn_2018-05-20_11-15-49.conf
-rw-r--r--  1 sean  staff  4525 May 20 11:38 aragorn_2018-05-20_11-38-35.conf

Manually diff the files. Note how the output from the manual diff command in-
cludes the changed timestamp which is excluded from consideration by the play-
book and which does not appear in the playbook’s output:

mbp15:aragorn sean$ pwd
/Users/sean/ansible/config_backups/aragorn

	 233	 Avoiding Duplicate Configuration Backups – Get Config 5

mbp15:aragorn sean$ diff aragorn_2018-05-20_11-15-49.conf aragorn_2018-05-20_11-38-35.conf
2c2
< ## Last commit: 2018-05-13 12:59:23 UTC by sean

> ## Last commit: 2018-05-13 18:59:10 UTC by sean
173c173
<     description "virtual SRX for testing";

>     description "vSRX for writing AJA2";

Run the playbook again. Because the device’s configuration has not changed, this
time the diff command finds no difference between the new and previous configu-
ration backup, and the new file is deleted:

...
TASK [debug] ***
ok: [aragorn] => {
    "diff_result": {
        "changed": true,
        "cmd": "diff -d -I '^## Last [change|commit]' /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-38-35.conf /Users/sean/ansible/config_backups/aragorn/
aragorn_2018-05-20_11-53-35.conf",
        "delta": "0:00:00.011416",
        "end": "2018-05-20 11:53:39.342873",
        "failed": false,
        "failed_when_result": false,
        "rc": 0,
        "start": "2018-05-20 11:53:39.331457",
        "stderr": "",
        "stderr_lines": [],
        "stdout": "",
        "stdout_lines": []
    }
}

TASK [delete new backup if same as previous] ***********************************
changed: [aragorn]
...

Finally, run a commit on your test device without making a configuration change.
This will update the timestamp in the configuration.

sean@aragorn> show configuration | match Last
## Last commit: 2018-05-13 18:59:10 UTC by sean

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# commit and-quit
commit complete
Exiting configuration mode

sean@aragorn> show configuration | match Last
## Last commit: 2018-05-13 19:19:59 UTC by sean	

Run the playbook again (not shown). The results should be essentially the same as

	 234	 Chapter 9: Backing Up Device Configuration

the previous run when there was no configuration change. This is thanks to play-
book ignoring the timestamp lines in the configurations.

Exercise for the Reader
Add to the playbook the ability to save to a file the difference found between new
and previous configurations. Only save the difference when there is a change. The
filename for the difference file should be the same as the new configuration backup
file but with a .diff extension.

Hint: use a template to save the difference file.

Partial Configuration Backups – Get Partial Config 1
Sometimes you do not need the entire configuration; a single Junos hierarchy is
sufficient. For the author, this has most often occurred when trying to either con-
firm a setting exists or identify devices with an old setting that needs to be updated
or removed. For these situations, the saved configurations are needed only tempo-
rarily, so the playbook in this section will store the configuration files in a tempo-
rary directory and the filenames will not need a timestamp.

Assume that your company has recently deployed new NTP servers. You need to
confirm that all network devices are using only the new NTP servers before the
server team retires the old servers.

If you are regularly backing up all device configurations, perhaps using the play-
book in the previous section of this chapter, you can search those backups. There
are a couple of reasons why this may be more challenging than taking and search-
ing a fresh backup of just the NTP server hierarchy.

	� Similar information may appear in other parts of the configuration. For exam-
ple, the old NTP servers may have also been, and may still be, DNS or RADIUS
servers. As a result, searching for the old NTP server’s IP may generate numer-
ous false matches from other configuration hierarchies.

	� If you have a history of archived configurations, the old NTP servers are likely
to appear in a number of older configurations simply because they were the
current NTP servers at the time the configuration backups were taken. This
makes it likely that a search will turn up numerous meaningless matches from
old configuration backups, and numerous duplicate matches from repeated
backups of each device. Restricting a search to configuration files created in the
last X days should help, but this approach also has limitations when working
with backups saved only when a device’s configuration has changed, because
the age of the last saved configuration varies by device.

These concerns can be mitigated by making a new backup for all devices, contain-
ing only the relevant configuration hierarchy, and putting the new backup in a di-
rectory free of old backups. Searches in that directory should be much more

	 235	 Partial Configuration Backups – Get Partial Config 1

focused because the files contain only relevant settings and the files represent the
current state of the devices.

Create the following playbook get-partial-config.yaml:

 1|---
 2|- name: Save partial configurations from Junos devices
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    config_dir: "{{ user_data_path }}/tmp"
12|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|
16|  tasks:
17|    - name: erase old backup directory if it exists
18|      file:
19|        path: "{{ config_dir }}"
20|        state: absent
21|      run_once: yes
22|      delegate_to: localhost
23|
24|    - name: create backup directory
25|      file:
26|        path: "{{ config_dir }}"
27|        state: directory
28|      run_once: yes
29|      delegate_to: localhost
30|
31|    - name: save device configuration
32|      juniper_junos_config:
33|        provider: "{{ connection_settings }}"
34|        dest: "{{ config_filename }}"
35|        format: text
36|        retrieve: committed
37|        filter: "system/ntp"

Most of this playbook follows familiar patterns. Lines 2–8 are the typical start to a
playbook. Lines 10–14 define some variables for the play, including the directory
and filename for the partial config backups.

Lines 17–22 delete the partial configuration backup directory, if it exists; this en-
sures we do not have old configuration backups from a prior run of the playbook
before we create new configuration backups. Lines 24–29 create the partial con-
figuration backup directory. Both tasks use the run_once and delegate_to options to
ensure the tasks are executed only once each during the playbook run, not once
per device, and the processing is done by the local system.

Lines 31–37 back up the device’s configuration as seen earlier in this chapter, with
one new addition: line 37 adds a new argument, filter, which limits the portion of

	 236	 Chapter 9: Backing Up Device Configuration

the device’s configuration that gets archived. The filter argument is formatted
similar to a UNIX directory path, using slashes (/) between descending levels of
the hierarchy (but never a leading slash). The filter paths always start from the
top of the Junos configuration hierarchy and must include each intermediate hier-
archy down to the desired hierarchy of the configuration.

NOTE	 The filter argument only works with predefined Junos configuration
hierarchy elements, not with names or user-defined elements. For example, you
can filter on interfaces to get the Junos interfaces configuration hierarchy, but not
on interfaces/lo0 because lo0 is a name.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-partial-config.yaml

PLAY [Save partial configurations from Junos devices] **************************

TASK [erase old backup directory if it exists] *********************************
ok: [bilbo -> localhost]

TASK [create backup directory] ***
changed: [bilbo -> localhost]

TASK [save device configuration] ***
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=3    changed=1    unreachable=0    failed=0

Check the results in the temporary directory:

mbp15:aja2 sean$ ls -1 ~/ansible/tmp/
aragorn.conf
bilbo.conf

mbp15:aja2 sean$ cat ~/ansible/tmp/aragorn.conf

## Last commit: 2018-05-13 21:36:10 UTC by sean
system {
    ntp {
        server 17.253.6.125;
        server 17.253.20.125;
    }
}

mbp15:aja2 sean$ cat ~/ansible/tmp/bilbo.conf

## Last changed: 2016-02-22 02:15:39 UTC
system {
    ntp {
        server 132.163.97.4;
        server 129.6.15.27;
    }
}

	 237	 Other Options – Get Partial Config 2

Pretend that 129.6.15.27 is one of the old NTP servers that we intend to retire. To
search the partial backups for the old NTP server, use grep:

mbp15:aja2 sean$ grep '129.6.15.27' ~/ansible/tmp/*.conf
/Users/sean/ansible/tmp/bilbo.conf:        server 129.6.15.27;

It looks like we need to update bilbo’s NTP settings!

Other Options – Get Partial Config 2
The juniper_junos_config module accepts an options argument that can influence
what is included in the configuration backup. The options argument accepts a dic-
tionary containing one or more key:value pairs specifying options for how the
configuration will be displayed; we’ll discuss two of the options and what they do.

The first option is inherit and it can be set to either inherit or default. This option
instructs Junos to show certain inherited or default settings when returning the
configuration. The author has found inherit: inherit to be the more useful setting.

The second option is groups and it can be set only to the value groups. This option
instructs Junos to label (add comments to help identify) inherited settings.

Because these options relate to inherited settings within a Junos configuration,
such as groups and interface-ranges, please ensure (some of) your test devices’ con-
figurations contain inheritable settings.

The author’s firewall aragorn includes a group to help set VRRP settings, which is
applied to one interface:

sean@aragorn> show configuration groups
vrrp-priority {
    interfaces {
        <*> {
            unit <*> {
                family inet {
                    address <*> {
                        vrrp-group <*> {
                            priority 110;
                            advertise-interval 1;
                            accept-data;
                        }
                    }
                }
            }
        }
    }
}

sean@aragorn> show configuration interfaces ge-0/0/0
apply-groups vrrp-priority;
unit 0 {
    family inet {
        address 198.51.100.2/26 {

	 238	 Chapter 9: Backing Up Device Configuration

            vrrp-group 100 {
                virtual-address 198.51.100.1;
            }
        }
    }
}

The author’s switch bilbo includes an interface-range:

sean@bilbo> show configuration interfaces
interface-range aja2 {
    member ge-0/1/0;
    member ge-0/1/1;
    unit 0 {
        family ethernet-switching {
            port-mode access;
            vlan {
                members aja2;
            }
        }
    }
}
vlan {
    unit 0 {
        family inet {
            address 198.51.100.5/26;
        }
    }
}

The groups and inherit options can be used separately, but the author finds that it is
most useful to combine them. The combination provides results similar to using
the “| display inheritance” modifier at the Junos command line. For example:

sean@bilbo> show configuration interfaces | display inheritance
##
## 'ge-0/1/0' was expanded from interface-range 'aja2'
##
ge-0/1/0 {
    ##
    ## '0' was expanded from interface-range 'aja2'
    ##
    unit 0 {
        ##
        ## 'ethernet-switching' was expanded from interface-range 'aja2'
        ##
        family ethernet-switching {
            ##
            ## 'access' was expanded from interface-range 'aja2'
            ##
            port-mode access;
            ##
            ## 'vlan' was expanded from interface-range 'aja2'
            ##
            vlan {
                ##
                ## 'aja2' was expanded from interface-range 'aja2'
                ##
                members aja2;

	 239	 Other Options – Get Partial Config 2

            }
        }
    }
}
##
## 'ge-0/1/1' was expanded from interface-range 'aja2'
##
ge-0/1/1 {
    ##
    ## '0' was expanded from interface-range 'aja2'
    ##
    unit 0 {
        ##
        ## 'ethernet-switching' was expanded from interface-range 'aja2'
        ##
        family ethernet-switching {
            ##
            ## 'access' was expanded from interface-range 'aja2'
            ##
            port-mode access;
            ##
            ## 'vlan' was expanded from interface-range 'aja2'
            ##
            vlan {
                ##
                ## 'aja2' was expanded from interface-range 'aja2'
                ##
                members aja2;
            }
        }
    }
}
vlan {
    unit 0 {
        family inet {
            address 198.51.100.5/26;
        }
    }
}

Modify the end of the get-partial-config.yaml playbook as follows:

...
31|    - name: save device configuration
32|      juniper_junos_config:
33|        provider: "{{ connection_settings }}"
34|        dest: "{{ config_filename }}"
35|        format: text
36|        retrieve: committed
37|        filter: "interfaces"
38|        options:
39|          groups: groups
40|          inherit: inherit

Run the playbook and examine the configuration file for each device. The file for
aragorn contains, in part:

...
interfaces {

	 240	 Chapter 9: Backing Up Device Configuration

    ge-0/0/0 {
        unit 0 {
            family inet {
                address 198.51.100.2/26 {
                    vrrp-group 100 {
                        virtual-address 198.51.100.1;
                        ##
                        ## '110' was inherited from group 'vrrp-priority'
                        ##
                        priority 110;
                        ##
                        ## '1' was inherited from group 'vrrp-priority'
                        ##
                        advertise-interval 1;
                        ##
                        ## 'accept-data' was inherited from group 'vrrp-priority'
                        ##
                        accept-data;
                    }
                }
            }
        }
    }
...

Observe how the settings from the applied group are shown and identified. How-
ever, notice that the apply-groups vrrp-priority statement that is part of the configu-
ration for interface ge-0/0/0 is not visible in the modified configuration output.

The file for bilbo contains, in part:

...
interfaces {
    ##
    ## 'ge-0/1/0' was expanded from interface-range 'aja2'
    ##
    ge-0/1/0 {
        ##
        ## '0' was expanded from interface-range 'aja2'
        ##
        unit 0 {
            ##
            ## 'ethernet-switching' was expanded from interface-range 'aja2'
            ##
            family ethernet-switching {
                ##
                ## 'access' was expanded from interface-range 'aja2'
                ##
                port-mode access;
                ##
                ## 'vlan' was expanded from interface-range 'aja2'
                ##
                vlan {
                    ##
                    ## 'aja2' was expanded from interface-range 'aja2'
                    ##
                    members aja2;
                }
            }
        }

	 241	 Extra and Required Variables – Get Partial Config 3

    }
...

This output shows how Junos built the configuration for ge-0/1/0 (and, not shown,
for ge-0/1/1) from the interface-range shown previously. However, note that the
interface-range definition itself is missing.

As you can see above, these options – specifically, the inherit option – supress the
display of certain configuration elements when showing the results of inheriting
those elements. The suppressed portions of the hierarchy include the groups hierar-
chy, apply-groups settings, and any interface-range definition.

This makes the 'inherit': 'inherit' option of limited value for full configuration
backups as you would not be able to restore a device to its original configuration
with such a backup file. However, if you are auditing a configuration to confirm all
settings have been applied correctly, seeing the configuration with groups and in-
terface-ranges “expanded” might be exactly what you want.

Take a few minutes to experiment with removing or commenting out the groups:
groups option and/or changing the inherit option to inherit: default. It may help to
comment out the filter option as well, so you see the entire configuration.

Extra and Required Variables – Get Partial Config 3
It is likely that you will need to modify the filter argument in the get-partial-con-
fig.yaml playbook each time you use the playbook, based on the Junos hierarchy
you need to check. However, modifying a playbook each time you need to use it is
generally not good practice. Among other reasons, it makes using the playbook
more difficult to use, particularly for users who may not be comfortable editing the
playbook file each time they wish to run the playbook.

An alternative approach is to assign the filter value using a variable provided on
the command-line, what Ansible calls an “extra” variable. When running a play-
book, you provide an extra variable using the --extra-vars or -e command-line
options.

Modify the get-partial-config.yaml playbook as follows:

 1|---
 2|- name: Save partial configurations from Junos devices
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    config_dir: "{{ user_data_path }}/tmp"
12|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}.conf"
13|    connection_settings:

	 242	 Chapter 9: Backing Up Device Configuration

14|      host: "{{ ansible_host }}"
15|
16|  tasks:
17|    - name: erase old backup directory if it exists
18|      file:
19|        path: "{{ config_dir }}"
20|        state: absent
21|      run_once: yes
22|      delegate_to: localhost
23|
24|    - name: create backup directory
25|      file:
26|        path: "{{ config_dir }}"
27|        state: directory
28|      run_once: yes
29|      delegate_to: localhost
30|
31|    - name: show filter setting from extra-vars command-line argument
32|      debug:
33|        var: filter
34|      run_once: yes
35|
36|    - name: save device configuration
37|      juniper_junos_config:
38|        provider: "{{ connection_settings }}"
39|        dest: "{{ config_filename }}"
40|        format: text
41|        retrieve: committed
42|        filter: "{{ filter }}"

Run the playbook with the argument --extra-vars="filter=system/host-name":

mbp15:aja2 sean$ ansible-playbook get-partial-config.yaml --extra-vars="filter=system/host-name"

PLAY [Save partial configurations from Junos devices] **************************

TASK [erase old backup directory if it exists] *********************************
changed: [bilbo -> localhost]

TASK [create backup directory] ***
changed: [bilbo -> localhost]

TASK [show filter setting from extra-vars command-line argument] ***************
ok: [bilbo] => {
    "filter": "system/host-name"
}

TASK [save device configuration] ***
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=1    changed=0    unreachable=0    failed=0
bilbo                      : ok=4    changed=2    unreachable=0    failed=0

Observe that the output from the “show filter setting...” task shows the value pro-
vided at the command-line for the filter variable.

	 243	 Extra and Required Variables – Get Partial Config 3

Display one of the partial configuration files to confirm it worked:

mbp15:aja2 sean$ cat ~/ansible/tmp/aragorn.conf

## Last commit: 2018-05-13 22:23:04 UTC by sean
system {
    host-name aragorn;
}

Great! But what happens if we forget to provide the value for filter?

mbp15:aja2 sean$ ansible-playbook get-partial-config.yaml -l aragorn

PLAY [Save partial configurations from Junos devices] **************************

TASK [erase old backup directory if it exists] *********************************
changed: [aragorn -> localhost]

TASK [create backup directory] ***
changed: [aragorn -> localhost]

TASK [show filter setting from extra-vars command-line argument] ***************
ok: [aragorn] => {
    "filter": "VARIABLE IS NOT DEFINED!"
}

TASK [save device configuration] ***
fatal: [aragorn]: FAILED! => {"msg": "The task includes an option with an undefined variable. The error
was: 'filter' is undefined\n\nThe error appears to have been in '/Users/sean/aja2/get-partial-config.
yaml': line 36, column 7, but may\nbe elsewhere in the file depending on the exact syntax problem.\n\
nThe offending line appears to be:\n\n\n - name: save device configuration\n ̂ here\n\nexception
type: <class 'ansible.errors.AnsibleUndefinedVariable'>\nexception: 'filter' is undefined"}
	 to retry, use: --limit @/Users/sean/aja2/get-partial-config.retry

PLAY RECAP ***
aragorn                    : ok=3    changed=2    unreachable=0    failed=1

Forgetting to provide the variable causes a failure. Digging into the somewhat
lengthy error message we see “The task includes an option with an undefined vari-
able. The error was: 'filter' is undefined.” However, if we do not know that the
filter variable is supposed to be provided by the user at the command-line, we
could easily assume this was a bug in the playbook, not a user omission.

We can tell Ansible that a variable is mandatory, which allows Ansible to provide a
somewhat clearer error message. This is done by adding the mandatory filter to the
variable references. Modify lines 33 and 42 as shown:

31|    - name: show filter setting from extra-vars command-line argument
32|      debug:
33|        var: filter | mandatory
34|      run_once: yes
35|
36|    - name: save device configuration
37|      juniper_junos_config:
38|        provider: "{{ connection_settings }}"
39|        dest: "{{ config_filename }}"
40|        format: text

	 244	 Chapter 9: Backing Up Device Configuration

41|        retrieve: committed
42|        filter: "{{ filter | mandatory }}"

NOTE	 The variable reference on line 42 is the important one because this is the
reference that is critical to the operation of the playbook. The debug task contain-
ing line 33 already gracefully handles undefined variables, and this task would
likely to be removed from a production version of this playbook. However, it is
normally best to include “| mandatory” on the first reference for a mandatory
variable, which in this example is line 33. If you wish to experiment, comment out
lines 31–34 and run the playbook to see how the results change from what is
shown below.

Run the playbook again without provided the filter variable:

mbp15:aja2 sean$ ansible-playbook get-partial-config.yaml -l aragorn

PLAY [Save partial configurations from Junos devices] **************************

TASK [erase old backup directory if it exists] *********************************
changed: [aragorn -> localhost]

TASK [create backup directory] ***
changed: [aragorn -> localhost]

TASK [show filter setting from extra-vars command-line argument] ***************
fatal: [aragorn]: FAILED! => {"msg": "Mandatory variable not defined."}

NO MORE HOSTS LEFT ***
	 to retry, use: --limit @/Users/sean/aja2/get-partial-config.retry

PLAY RECAP ***
aragorn                    : ok=2    changed=2    unreachable=0    failed=1

Observe that we now get the error message “Mandatory variable not defined”
when filter is referenced. This is probably an improvement, if only because it is
short and easy to understand, but it is actually less specific than the previous error.

One problem with these error messages, with or without the mandatory filter, is that
they do not tell the user how to define the required variable. Can we tell the play-
book to fail with a meaningful error message if the filter variable is not defined?

Ansible includes a core module called fail which tells the playbook to stop pro-
cessing a device and, optionally, provide an error message. (We used fail during
our debugging examples near the end of Chapter 7.) The fail module will normal-
ly have a when statement or other conditional (rarely do we want a playbook to al-
ways fail at the same place!). We can use the fail module with a when condition that
determines if the filter variable is undefined.

Modify the playbook as follows, removing the mandatory filters and adding the fail
task:

 1|---

	 245	 Extra and Required Variables – Get Partial Config 3

 2|- name: Save partial configurations from Junos devices
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    config_dir: "{{ user_data_path }}/tmp"
12|    config_filename: "{{ config_dir }}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|
16|  tasks:
17|    - name: fail if variable 'filter' is not defined
18|      fail:
19|        msg: >
20|          Specify the Junos configuration hierarchy you want to back up by
21|          providing the extra variable 'filter' on the command line.
22|          For example, --extra-vars 'filter=system/ntp'
23|      when: filter is not defined
24|
25|    - name: erase old backup directory if it exists
26|      file:
27|        path: "{{ config_dir }}"
28|        state: absent
29|      run_once: yes
30|      delegate_to: localhost
31|
32|    - name: create backup directory
33|      file:
34|        path: "{{ config_dir }}"
35|        state: directory
36|      run_once: yes
37|      delegate_to: localhost
38|
39|    - name: show filter setting from extra-vars command-line argument
40|      debug:
41|        var: filter
42|      run_once: yes
43|
44|    - name: save device configuration
45|      juniper_junos_config:
46|        provider: "{{ connection_settings }}"
47|        dest: "{{ config_filename }}"
48|        format: text
49|        retrieve: committed
50|        filter: "{{ filter }}"

Lines 17–23 are the new task which calls fail module. Note the when condition on
line 23, filter is not defined – this will return Boolean true when variable filter is
not defined, false when filter is defined (regardless of its value).

The msg argument on lines 19–22 dictates the error message that fail will display.
This playbook uses a feature of YAML, the greater-than sign (“>”), to spread the
rather long error message across three lines of the playbook. Ansible assembles the

	 246	 Chapter 9: Backing Up Device Configuration

lines, stripping the leading spaces (indentation), and inserting a single space be-
tween each assembled line.

Run the playbook without the required argument and note the error message, par-
ticularly how the three lines in the playbook were assembled into a single message:

mbp15:aja2 sean$ ansible-playbook get-partial-config.yaml -l aragorn

PLAY [Save partial configurations from Junos devices] **************************

TASK [fail if variable 'filter' is not defined] ********************************
fatal: [aragorn]: FAILED! => {"changed": false, "msg": "Specify the Junos configuration hierarchy you
want to back up by providing the extra variable 'filter' on the command line. For example, --extra-vars
'filter=system/ntp'\n"}
	 to retry, use: --limit @/Users/sean/aja2/get-partial-config.retry

PLAY RECAP ***
aragorn : ok=0 changed=0 unreachable=0 failed=1

The playbook fails, as expected, but with a more meaningful error message.

Run the playbook with the required argument:

mbp15:aja2 sean$ ansible-playbook get-partial-config.yaml -l aragorn -e "filter=system/host-name"

PLAY [Save partial configurations from Junos devices] **************************

TASK [fail if variable 'filter' is not defined] ********************************
skipping: [aragorn]

TASK [erase old backup directory if it exists] *********************************
changed: [aragorn -> localhost]

TASK [create backup directory] ***
changed: [aragorn -> localhost]

TASK [show filter setting from extra-vars command-line argument] ***************
ok: [aragorn] => {
    "filter": "system/host-name"
}

TASK [save device configuration] ***
ok: [aragorn]

PLAY RECAP ***
aragorn                    : ok=4    changed=2    unreachable=0    failed=0

Observe that Ansible skipped the fail task – because filter was defined, the when
condition was false.

mbp15:aja2 sean$ cat ~/ansible/tmp/aragorn.conf

## Last commit: 2018-05-13 22:23:04 UTC by sean
system {
    host-name aragorn;
}

Nice!

	 247	 Backups with Junos Read-Only Account

Backups with Junos Read-Only Account
The principle of least privilege suggests we should use an account with the mini-
mum permissions required for a given task. We have been taking our configuration
backups with the same super-user Junos account we’ve been using to change de-
vice configuration. Can we instead use an account with read-only permissions on
our Junos devices? A configuration backup, after all, requires that we read the
configuration, but should not require that we enter configuration mode or alter the
configuration.

We can do it, but there are a couple of challenges. Before we discuss the challenges,
however, let’s create a new, read-only account on our Junos devices.

NOTE	 We manually create – and will soon modify – our read-only account for
this example. The author leaves it as an exercise for the reader to integrate the
account into their base settings template.

Let’s start by creating a new SSH key pair, in RSA PEM format, for the read-only
account we intend to create. We then display the public key so we can copy it. At
your system command prompt:

$ ssh-keygen -m PEM -t rsa -f ~/.ssh/backup -C “backup@junos”
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase): <enter passphrase>
Enter same passphrase again: <re-enter passphrase>
Your identification has been saved in /Users/sean/.ssh/backup.
Your public key has been saved in /Users/sean/.ssh/backup.pub.
The key fingerprint is:
SHA256:6YX4HsdSgT6XzcO6jsaRRzKGRrHNE1DI45fkbt4HMN0 backup@junos
The key’s randomart image is:
+---[RSA 2048]----+
| .o=o |
| =+.o |
| o.==o.. |
| +oX+o*E |
| ..+SB= = |
| o=*o. . |
| +=++. |
| .+=... |
| .o.o. |
+----[SHA256]-----+

$ cat ~/.ssh/backup.pub
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC/WXGkDIYTG1sE8KVrlDfW+ynDYj0LQ8IBrSUA6m7FpXW07srnk45o1W9Z39Gn
46u/s1ti6Kripyqru4lpfMPgJhYh48XzcsvDoa1kzyE6dgZudy+2/YXLGWyoexXPho3TR2BYYCPoAk+l5nXS4VVEE34Dpvz+aQoO
0K/UwsZGvKdGL1SPMmJrY6ub6cYq1yA2wjqeXMpoxTZ0+yylQZt7BkPtd0OROQNkZ81U02AYIp2ktsqdyFq/
t399DH1Dweew81cEsNLPnd1YkAhB7686e32lchX9/rI+0MoMCn2vorqO5X5S2MOhDAbSNG0LfjnL6wIJSWuDu0l9tA5bydbJ
backup@junos

Now, let’s create an account called backup on one of our Junos devices using the
new public key and the built-in read-only class:

http://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html
http://docs.ansible.com/ansible/latest/playbooks_conditionals.html
http://docs.ansible.com/ansible/latest/modules/fail_module.html
http://docs.ansible.com/ansible/latest/modules/find_module.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-protocol-get-configuration.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-protocol-get-configuration.html

	 248	 Chapter 9: Backing Up Device Configuration

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# set system login user backup class read-only

[edit]
sean@aragorn# set system login user backup authentication ssh-rsa “ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQC/WXGkDIYTG1sE8KVrlDfW+ynDYj0LQ8IBrSUA6m7FpXW07srnk45o1W9Z
39Gn46u/s1ti6Kripyqru4lpfMPgJhYh48XzcsvDoa1kzyE6dgZudy+2/YXLGWyoexXPho3TR2BYYCPoAk+l5nXS
4VVEE34Dpvz+aQoO0K/
UwsZGvKdGL1SPMmJrY6ub6cYq1yA2wjqeXMpoxTZ0+yylQZt7BkPtd0OROQNkZ81U02AYIp2ktsqdyFq/
t399DH1Dweew81cEsNLPnd1YkAhB7686e32lchX9/rI+0MoMCn2vorqO5X5S2MOhDAbSNG0LfjnL6wIJSWuDu0l9
tA5bydbJ backup@junos”

[edit]
sean@aragorn# commit and-quit
commit complete
Exiting configuration mode

sean@aragorn>
Now, back at our system command prompt, let’s SSH to the device using our new
private key and confirm everything works. Use the -i (“identity”) option with the
ssh command to use the new private key file, and include the backup username, as
shown:

$ ssh -i ~/.ssh/backup backup@aragorn
Enter passphrase for key ‘/Users/sean/.ssh/backup’: <enter passphrase>
--- JUNOS 15.1X49-D90.7 built 2017-04-29 06:51:16 UTC

backup@aragorn> show configuration
Last commit: 2020-04-17 17:29:21 UTC by sean
version /* ACCESS-DENIED */;
system { /* ACCESS-DENIED */ };
security { /* ACCESS-DENIED */ };
interfaces { /* ACCESS-DENIED */ };
snmp { /* ACCESS-DENIED */ };
routing-options { /* ACCESS-DENIED */ };
protocols { /* ACCESS-DENIED */ };

backup@aragorn> exit

Hmm…the account works for login, but we cannot view the configuration. The
default read-only login class does not provide the necessary permissions.

Permissions for the Backup Account
Our first challenge is creating a login class with sufficient permissions to view the
configuration. Let’s create a new login class called read-config and update the back-
up account to use that class:

sean@aragorn> configure
Entering configuration mode

[edit]

	 249	 Backups with Junos Read-Only Account

sean@aragorn# edit system login

[edit system login]
sean@aragorn# set class read-config permissions [secret view view-configuration]

[edit system login]
sean@aragorn# set user backup class read-config

[edit system login]
sean@aragorn# commit and-quit
commit complete
Exiting configuration mode

sean@aragorn>

Log back into the device as backup and view the configuration again. This time, we
should be able to see everything, including the encrypted passwords and other “se-
crets” in the configuration:

$ ssh -i ~/.ssh/backup backup@aragorn
Enter passphrase for key ‘/Users/sean/.ssh/backup’: <enter passphrase>
--- JUNOS 15.1X49-D90.7 built 2017-04-29 06:51:16 UTC

backup@aragorn> show configuration
Last commit: 2020-04-17 19:09:18 UTC by sean
version 15.1X49-D90.7;
system {
 host-name aragorn;
 root-authentication {
 encrypted-password “$5$2VhUeUC5$ba4WLLZc8SoifKhetMBN5M16BnIs2KCKLZ90MV5L6i.”; ## SECRET-DATA
 }
...
}

backup@aragorn> exit

Connection to aragorn closed.

In theory, the view-configuration permission on the login class should allow our
backup user to view the entire configuration except secrets, and the secret permis-
sion adds that ability. However, the author has found there are a few areas of the
Junos configuration hierarchy that might still be unreadable.

For example, the author added the following to his firewall’s configuration using
his full-permission account:

system {
 scripts {
 op {
 file test.slax;
 }
 }
}
event-options {
 policy isis-adjacency {
 events rpd_isis_adjdown;

	 250	 Chapter 9: Backing Up Device Configuration

 then {
 raise-trap;
 }
 }
}

If we view the configuration as the backup user, we see the following:

system {
...
 scripts { /* ACCESS-DENIED */ };
...
}
...
event-options { /* ACCESS-DENIED */ };
...

With our full-permission account, we can alter the read-config login class as fol-
lows (boldfaced line):

sean@aragorn> show configuration system login class read-config
idle-timeout 5;
permissions [secret view view-configuration];
allow-configuration “event-options|system script”;

This change allows our backup account to view the relevant sections of the device’s
configuration. View your device’s configuration to confirm the change worked.

TIP	 Before finalizing your backup strategy, contrast configuration backups
taken using your full-permission account with those taken using your read-only
account, across a representative sampling of your devices and configurations. Be
sure the read-only account’s backups are not missing anything (or anything
important), whether marked ACCESS DENIED, as seen here, or simply missing from the
displayed configuration. Adjust the permissions on your read-only login class as
needed.

Running the Playbook with the Backup Account
Our second challenge is running the configuration backup playbook so that it uses
the new backup account when connecting to the Junos device. There are several
ways we can accomplish this.

One approach would be to create a login account on our system called backup, copy
the private key into that account’s ~/.ssh/ directory, use ssh-add to cache the pass-
phrase for the private key, and run the backup playbook as that user. This ap-
proach mimics the way we’ve been running our playbooks as our normal user, so
we will not do an example. This approach also assumes that we have the ability to
create user accounts as needed, which may not be the case in production
environments.

Instead, let’s see how we can run the playbook as a different user while we are
logged in as ourselves. We discuss three approaches. In your production environ-
ment, choose the approach that works best based on your requirements.

	 251	 Backups with Junos Read-Only Account

Ansible-playbook command-line arguments
One option is to use command-line arguments to ansible-playbook. We need three
arguments:

-u to specify the alternate username for the SSH connection

-k to tell Ansible to prompt for the SSH password, which will be used by the juni-
per_junos_config module as the passphrase for the private key

--private-key to specify the private key file to use for the SSH connection

Let’s run the playbook with the additional arguments:

$ ansible-playbook get-config.yaml -l aragorn -u backup --private-key ~/.ssh/backup -k
SSH password: <enter passphrase>

PLAY [Save configurations from Junos devices to files] ***

TASK [get localhost environment info (for date and time)] **********************
ok: [aragorn -> localhost]

TASK [confirm/create device configuration directory] ***************************
ok: [aragorn]

TASK [get list of previous backups (if any)] ***********************************
ok: [aragorn]

TASK [debug] ***
...

TASK [save name of most recent previous backup] ********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
 “prev_config”: “/Users/sean/ansible/config_backups/aragorn/aragorn_2020-04-26_10-26-15.conf”
}

TASK [save device configuration] ***
fatal: [aragorn]: FAILED! => {“changed”: false, “msg”: “Unable to open the configuration in exclusive
mode: LockError(severity: error, bad_element: lock-configuration, message: permission denied)”}

PLAY RECAP ***
aragorn : ok=7 changed=0 unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

We got a “permission denied” error in the “save device configuration” task – that
is our third challenge, which we return to shortly. Note, however, that the error is
not “Unable to make a PyEZ connection: ConnectAuthError(192.0.2.10)”, which is what
we would have gotten if the problem were an authentication failure.

Confirm that the authentication to the device worked by checking the messages
log. You should see a series of messages similar to this, showing successful authen-
tication and attempting to execute commands via NETCONF:

	 252	 Chapter 9: Backing Up Device Configuration

Apr 26 20:06:25 aragorn sshd[8422]: (pam_sm_acct_mgmt): DEBUG: PAM_USER: backup
Apr 26 20:06:25 aragorn sshd[8422]: Accepted publickey for backup from 192.0.2.1 port 61471 ssh2: RSA
db:cc:c3:af:24:e2:c4:60:d0:95:24:7a:21:47:36:69
Apr 26 20:06:26 aragorn mgd[8426]: UI_AUTH_EVENT: Authenticated user ‘backup’ at permission level
‘j-read-config’
Apr 26 20:06:26 aragorn mgd[8426]: UI_LOGIN_EVENT: User ‘backup’ login, class ‘j-read-config’ [8426],
ssh-connection ‘192.0.2.1 61471 192.0.2.10 830’, client-mode ‘cli’
Apr 26 20:06:26 aragorn mgd[8426]: UI_CMDLINE_READ_LINE: User ‘backup’, command ‘xml-mode netconf
need-trailer ‘
Apr 26 20:06:26 aragorn mgd[8426]: UI_LOGOUT_EVENT: User ‘backup’ logout
Apr 26 20:06:26 aragorn mgd[8425]: UI_AUTH_EVENT: Authenticated user ‘backup’ at permission level
‘j-read-config’
Apr 26 20:06:26 aragorn mgd[8425]: UI_LOGIN_EVENT: User ‘backup’ login, class ‘j-read-config’ [8425],
ssh-connection ‘192.0.2.1 61471 192.0.2.10 830’, client-mode ‘netconf’
Apr 26 20:06:26 aragorn mgd[8425]: UI_NETCONF_CMD: User ‘backup’ used NETCONF client to run command
‘close-session’
Apr 26 20:06:26 aragorn mgd[8425]: UI_LOGOUT_EVENT: User ‘backup’ logout

Using SSH-authentication agent
A second option is to use the ssh-add command to add the private key credentials
to the SSH authentication agent. (Remember to use ssh-agent first on Linux/Unix
systems.)

$ ssh-add ~/.ssh/backup
Enter passphrase for /Users/sean/.ssh/backup:
Identity added: /Users/sean/.ssh/backup (/Users/sean/.ssh/backup)

We can then run the playbook, adding the -u argument to connect as the backup
user. The -k and --private-key arguments we added in the previous approach are
not needed because the authentication agent provided the necessary identity.

$ ansible-playbook get-config.yaml -l aragorn -u backup

PLAY [Save configurations from Junos devices to files] *************************

TASK [get localhost environment info (for date and time)] **********************
ok: [aragorn -> localhost]

TASK [confirm/create device configuration directory] ***************************
ok: [aragorn]

TASK [get list of previous backups (if any)] ***********************************
ok: [aragorn]

TASK [debug] ***
...

TASK [save name of most recent previous backup] ********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
 “prev_config”: “/Users/sean/ansible/config_backups/aragorn/aragorn_2020-04-26_10-26-15.conf”
}

	 253	 Backups with Junos Read-Only Account

TASK [save device configuration] ***
fatal: [aragorn]: FAILED! => {“changed”: false, “msg”: “Unable to open the configuration in exclusive
mode: LockError(severity: error, bad_element: lock-configuration, message: permission denied)”}

PLAY RECAP ***
aragorn : ok=6 changed=0 unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

Again, we get a “permission denied” error in the “save device configuration” task,
which we fix shortly, but we can see that the playbook is accessing our Junos de-
vice with the alternate credentials.

This approach works because the SSH client can attempt to connect to the server
with each identity (private key) cached by the authentication agent, stopping when
it finds a combination of username and cached identity that works.

Arguments to juniper_junos_config module
A third option is to use arguments to the juniper_junos_config module that provide
the same data as we provided above at the command line – alternate username,
private key file, and passphrase.

Copy the get-config.yaml playbook to a new file get-config-readonly.yaml. Modify
or add the boldfaced lines:

 1|---
 2|- name: Save configurations from Junos devices to files using read-only account
 3| hosts:
 4| - all
 5| roles:
 6| - Juniper.junos
 7| connection: local
 8| gather_facts: no
 9|
10| vars:
11| systime: “{{ ansible_date_time.time | replace(‘:’, ‘-’) }}”
12| timestamp: “{{ ansible_date_time.date }}_{{ systime }}”
13| config_dir: “{{ user_data_path }}/config_backups/{{ inventory_hostname }}”
14| config_filename: “{{ config_dir }}/{{ inventory_hostname }}_{{ timestamp }}.conf”
15| diff_filename: “{{ config_dir }}/{{ inventory_hostname }}_{{ timestamp }}.diff”
16| connection_settings:
17| host: “{{ ansible_host }}”
18| user: backup
19| passwd: Passw0rd
20| ssh_private_key_file: ‘~/.ssh/backup’
21|
22| tasks:
23| - name: get localhost environment info (for date and time)
24| setup:
25| run_once: yes
26| delegate_to: localhost
...
51| - name: save device configuration
52| juniper_junos_config:
53| provider: “{{ connection_settings }}”
54| dest: “{{ config_filename }}”

	 254	 Chapter 9: Backing Up Device Configuration

55| format: text
56| retrieve: committed
...

Lines 18, 19, and 20 provide the necessary arguments to the juniper_junos_config
module, by way of the connection_settings dictionary. Substitute your private key’s
passphrase for the author’s on line 19.

Run the playbook and check the output.

$ ansible-playbook get-config-readonly.yaml -l aragorn

PLAY [Save configurations from Junos devices to files using read-only account] *

TASK [get localhost environment info (for date and time)] **********************
ok: [aragorn -> localhost]

TASK [confirm/create device configuration directory] ***************************
ok: [aragorn]

TASK [get list of previous backups (if any)] ***********************************
ok: [aragorn]

TASK [debug] ***
...

TASK [save name of most recent previous backup] ********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
 “prev_config”: “/Users/sean/ansible/config_backups/aragorn/aragorn_2020-04-26_10-26-15.conf”
}

TASK [save device configuration] ***
fatal: [aragorn]: FAILED! => {“changed”: false, “msg”: “Unable to open the configuration in exclusive
mode: LockError(severity: error, bad_element: lock-configuration, message: permission denied)”}

PLAY RECAP ***
aragorn : ok=6 changed=0 unreachable=0 failed=1 skipped=0 rescued=0
ignored=0

Obviously, having our private key’s passphrase in our playbook in plain text is a
serious security concern. If you choose this approach for your production environ-
ment, consider putting the passphrase in the Ansible vault, as discussed in Chapter
11.

With that security concern in mind, delete lines 19 and 20 (the passwd and ssh_pri-
vate_key_file lines) from get-config-readonly.yaml. We will rely on the authentica-
tion agent, combined with the user setting (line 18), as we further update the
playbook in the next section.

	 255	 Backups with Junos Read-Only Account

Changing Configuration Backup Method
Now let’s discuss that “permission denied” error, the third and final challenge we
must overcome to run our configuration backup as a read-only user.

We have seen that the juniper_junos_config module can both retrieve a device’s con-
figuration, and change the configuration. The module attempts to enter configura-
tion mode even if it does not need to change the configuration. The “permission
error” we’re getting is because our backup account does not have permission to
enter configuration mode.

We could add the configure permission to the read-config role, which would allow
our backup account to enter configuration mode, like this:

sean@aragorn# show | compare
[edit system login class read-config]
- permissions [secret view view-configuration];
+ permissions [configure secret view view-configuration];

The problem is, entering configuration mode is the first step to altering the con-
figuration, exactly what our read-only account is not supposed to be able to do.

Instead, let’s change the playbook to use a different module, one that does not
need to enter configuration mode. We can use either juniper_junos_command or juni-
per_junos_rpc, similar to either of the following:

- name: save device configuration
 juniper_junos_command:
 provider: “{{ connection_settings }}”
 commands: show configuration
 format: text

- name: save device configuration
 juniper_junos_rpc:
 provider: “{{ connection_settings }}”
 rpcs: get-configuration
 format: text
 attrs: { ‘database’: ‘committed’ }

Let’s use the first option for our playbook. Modify the “save device configuration”
task in our get-config-readonly.yaml playbook as follows:

 1|---
 2|- name: Save configurations from Junos devices to files using read-only account
 3| hosts:
 4| - all
 5| roles:
 6| - Juniper.junos
 7| connection: local
 8| gather_facts: no
 9|
10| vars:
11| systime: “{{ ansible_date_time.time | replace(‘:’, ‘-’) }}”
12| timestamp: “{{ ansible_date_time.date }}_{{ systime }}”
13| config_dir: “{{ user_data_path }}/config_backups/{{ inventory_hostname }}”
14| config_filename: “{{ config_dir }}/{{ inventory_hostname }}_{{ timestamp }}.conf”

	 256	 Chapter 9: Backing Up Device Configuration

15| diff_filename: “{{ config_dir }}/{{ inventory_hostname }}_{{ timestamp }}.diff”
16| connection_settings:
17| host: “{{ ansible_host }}”
18| user: backup
19|
20| tasks:
...
49| - name: save device configuration
50| juniper_junos_command:
51| provider: “{{ connection_settings }}”
52| commands: show configuration
53| dest: “{{ config_filename }}”
54| format: text
55| return_output: no
...

Now run the playbook:

$ ansible-playbook get-config-readonly.yaml -l aragorn

PLAY [Save configurations from Junos devices to files using read-only account] ***

TASK [get localhost environment info (for date and time)] **********************
ok: [aragorn -> localhost]

TASK [confirm/create device configuration directory] ***************************
ok: [aragorn]

TASK [get list of previous backups (if any)] ***********************************
ok: [aragorn]

TASK [debug] ***
...

TASK [save name of most recent previous backup] ********************************
ok: [aragorn]

TASK [debug] ***
ok: [aragorn] => {
 “prev_config”: “/Users/sean/ansible/config_backups/aragorn/aragorn_2020-04-28_10-57-06.conf”
}

TASK [save device configuration] ***
ok: [aragorn]

TASK [display path to latest backup file] **************************************
ok: [aragorn] => {
 “msg”: “The configuration backup is in /Users/sean/ansible/config_backups/aragorn/
aragorn_2020-04-28_11-16-31.conf”
}

TASK [get difference between backups] **
changed: [aragorn]

TASK [debug] ***
...

TASK [save diff file when change found] **
changed: [aragorn]

	 257	 References:

TASK [delete new backup if same as previous] ***********************************
skipping: [aragorn]

PLAY RECAP ***
aragorn : ok=11 changed=2 unreachable=0 failed=0 skipped=1 rescued=0
ignored=0

With the permissions problem solved, the playbook runs as expected. Excellent!

References:
Ansible and Jinja2 filters:
http://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html
http://jinja.pocoo.org/docs/2.9/templates/#list-of-builtin-filters

Ansible conditionals:
http://docs.ansible.com/ansible/latest/playbooks_conditionals.html

Ansible’s fail module:
http://docs.ansible.com/ansible/latest/modules/fail_module.html

Ansible’s find module:
http://docs.ansible.com/ansible/latest/modules/find_module.html

Junos get-configuration RPC and options:
https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summa-
ry/junos-xml-protocol-get-configuration.html

Chapters 4 and 5 used the juniper_junos_command and juniper_junos_rpc modules to
run a command or RPC to get specific information, the system’s uptime, from a
Junos device. This process could be repeated with other commands or RPCs to
gather different information. However, if you need a variety of facts about a device
– perhaps for a device inventory report that includes serial number, model number,
Junos version, and the like – it may become tedious to run numerous commands or
RPCs to gather and assemble the disparate facts required.

Juniper’s Galaxy modules include juniper_junos_facts, a module that gathers a
number of frequently needed facts about a Junos device and presents those facts in
a single dictionary.

In this chapter we create two playbooks, each of which illustrates a way that juni-
per_junos_facts may be helpful: we create a playbook that generates a device inven-
tory report, which also allow us to further explore Jinja2 templates, including how
to use a template to save data to a file; and we create a playbook that generates dif-
ferent configuration settings based on the model of the device being configured.

Device Inventory Report
We want to generate a report containing basic information about our Ansible-
managed network devices, including serial number and Junos version. The report
should be in CSV (comma-separated value) format so it is plain text and thus easy
to create and troubleshoot, yet it can easily be read and analyzed using Microsoft
Excel or another spreadsheet application.

Because we may wish to keep the inventory reports over time, the playbook creates
a report directory to hold the ouptut.

Chapter 10

Gathering and Using Device Facts

	 259	 Device Inventory Report

Exploring juniper_junos_facts – Get Device Facts Version 1
Let’s start with seeing which facts are returned by the juniper_junos_facts module.
Create the playbook get-device-facts.yaml containing the following:

 1|---
 2|- name: Get facts from Junos device
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    connection_settings:
12|      host: "{{ ansible_host }}"
13|
14|  tasks:
15|    - name: get device facts
16|      juniper_junos_facts:
17|        provider: "{{ connection_settings }}"
18|      register: junos_facts
19|
20|    - name: show device facts
21|      debug:
22|        var: junos_facts

Everything here should be familiar from playbooks in earlier chapters, other than
the results of the juniper_junos_facts module itself, which we will see below. Let’s
run the playbook and see what facts are gathered (output edited for length):

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml

PLAY [Get facts from Junos device] **

TASK [get device facts] ***

ok: [aragorn]
ok: [bilbo]

TASK [show device facts] **

ok: [bilbo] => {
    "junos_facts": {
        "ansible_facts": {
            "junos": {
                "HOME": "/var/home/sean",
                "RE0": {
                    "last_reboot_reason": "Router rebooted after a normal shutdown.",
                    "mastership_state": "master",
                    "model": "EX2200-C-12T-2G",
                    "status": "Absent",
                    "up_time": "4 days, 19 hours, 57 minutes, 49 seconds"
                },
...

	 260	 Chapter 10: Gathering and Using Device Facts

                "has_2RE": false,
                "hostname": "bilbo",
                "hostname_info": {
                    "fpc0": "bilbo"
                },
                "ifd_style": "SWITCH",
...
                "master": "RE0",
                "master_state": true,
                "model": "EX2200-C-12T-2G",
                "model_info": {
                    "fpc0": "EX2200-C-12T-2G"
                },
                "personality": "SWITCH",
...
                "re_name": "fpc0",
                "serialnumber": "GP0211463844",
                "srx_cluster": null,
                "srx_cluster_id": null,
                "srx_cluster_redundancy_group": null,
                "switch_style": "VLAN",
                "vc_capable": true,
                "vc_fabric": false,
                "vc_master": "0",
                "vc_mode": "Enabled",
                "version": "12.3R12.4",
...
                "virtual": false
            }
        },
        "changed": false,
        "facts": {
            "HOME": "/var/home/sean",
            "RE0": {
                "last_reboot_reason": "Router rebooted after a normal shutdown.",
                "mastership_state": "master",
                "model": "EX2200-C-12T-2G",
                "status": "Absent",
                "up_time": "4 days, 19 hours, 57 minutes, 49 seconds"
            },
...
            "has_2RE": false,
            "hostname": "bilbo",
            "hostname_info": {
                "fpc0": "bilbo"
            },
            "ifd_style": "SWITCH",
...
            "master": "RE0",
            "master_state": true,
            "model": "EX2200-C-12T-2G",
            "model_info": {
                "fpc0": "EX2200-C-12T-2G"
            },
            "personality": "SWITCH",
...
            "re_name": "fpc0",
            "serialnumber": "GP0211463844",

	 261	 Device Inventory Report

            "srx_cluster": null,
            "srx_cluster_id": null,
            "srx_cluster_redundancy_group": null,
            "switch_style": "VLAN",
            "vc_capable": true,
            "vc_fabric": false,
            "vc_master": "0",
            "vc_mode": "Enabled",
            "version": "12.3R12.4",
...
            "virtual": false
        },
        "failed": false
    }
}
ok: [aragorn] => {
    "junos_facts": {
        "ansible_facts": {
            "junos": {
                "HOME": "/var/home/sean",
                "RE0": {
                    "last_reboot_reason": "0x4000:VJUNOS reboot",
                    "mastership_state": "master",
                    "model": "VSRX-S",
                    "status": "OK",
                    "up_time": "27 minutes"
                },
...
                "has_2RE": false,
                "hostname": "aragorn",
                "hostname_info": {
                    "re0": "aragorn"
                },
                "ifd_style": "CLASSIC",
...
                "master": "RE0",
                "master_state": true,
                "model": "VSRX",
                "model_info": {
                    "re0": "VSRX"
                },
                "personality": null,
...
                "re_name": "re0",
                "serialnumber": "3EE63E490CDE",
                "srx_cluster": false,
                "srx_cluster_id": null,
                "srx_cluster_redundancy_group": null,
                "switch_style": "VLAN_L2NG",
                "vc_capable": false,
                "vc_fabric": null,
                "vc_master": null,
                "vc_mode": null,
                "version": "15.1X49-D90.7",
...
                "virtual": null
            }
        },

	 262	 Chapter 10: Gathering and Using Device Facts

        "changed": false,
        "facts": {
            "HOME": "/var/home/sean",
            "RE0": {
                "last_reboot_reason": "0x4000:VJUNOS reboot",
                "mastership_state": "master",
                "model": "VSRX-S",
                "status": "OK",
                "up_time": "27 minutes"
            },
...
            "has_2RE": false,
            "hostname": "aragorn",
            "hostname_info": {
                "re0": "aragorn"
            },
            "ifd_style": "CLASSIC",
...
            "master": "RE0",
            "master_state": true,
            "model": "VSRX",
            "model_info": {
                "re0": "VSRX"
            },
            "personality": null,
...
            "re_name": "re0",
            "serialnumber": "3EE63E490CDE",
            "srx_cluster": false,
            "srx_cluster_id": null,
            "srx_cluster_redundancy_group": null,
            "switch_style": "VLAN_L2NG",
            "vc_capable": false,
            "vc_fabric": null,
            "vc_master": null,
            "vc_mode": null,
            "version": "15.1X49-D90.7",
...
            "virtual": null
        },
        "failed": false
    }
}

PLAY RECAP ***

aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

For each device, the juniper_junos_facts module returns a dictionary, which we as-
signed to playbook variable junos_facts, containing several keys. The keys changed
and failed are Boolean values indicating if the module changed the device (should
always be false for this module) or encountered an error.

The ansible_facts key holds the junos key, which contains the facts returned by the
juniper_junos_facts module. There is no key other than junos visible within the

	 263	 Device Inventory Report

ansible_facts key, which raises the question of why the module uses the nested key?
There is an interesting reason, which we discuss in the next section of this chapter.

Finally, the facts key holds a duplicate of the data in ansible_facts.junos. This is
primarily for backwards compatibility; this was the key used to return facts by the
older junos_get_facts module from Juniper’s Juniper.junos Galaxy modules, ver-
sions 1.4.3 and older.

There are too many facts to discuss them in detail in this book. Many facts are self-
explanatory. The Ansible module reads the PyEZ facts dictionary jnpr.junos.facts,
then adds or renames a few facts. See the PyEZ documentation for descriptions of
most facts, and the juniper_junos_facts module documentation for the few changes.
Links are in the References section at the end of this chapter.

Note that some facts are set to null; this usually means the device has no meaning-
ful answer to the “question” posed by that fact. For example, in the author’s out-
put above, both test devices have a single routing engine, so the references to RE1
are null because the devices have no RE1. Another example, the switch bilbo sets
the fields for SRX cluster details to null because an EX2200 cannot be part of an
SRX cluster, while the virtual SRX firewall aragorn sets the fields for virtual chas-
sis details to null because an SRX cannot be a member of a switch virtual chassis.

If your test environment includes an EX virtual chassis, or an SRX cluster, or an
MX router with dual routing engines, run the playbook against those devices and
explore the facts gathered. Many of the facts include more information when
working with multi-RE or multi-chassis devices.

Displaying Specific Facts – Get Device Facts Version 2
We can use keys from within either the facts or the ansible_facts.junos dictionaries
to display specific data about our devices. For example, if we wanted only the Ju-
nos version, we could alter the final task of the playbook, lines 20 – 22, to read
either...

20|    - name: show junos version
21|      debug:
22|        var: junos_facts.facts.version

...or...

20|    - name: show junos version
21|      debug:
22|        var: junos_facts.ansible_facts.junos.version

Take a moment and try both variations to confirm they work.

However, the ansible_facts key provides us an alternative approach that should be
easier to use. Ansible stores facts it discovers about hosts in its ansible_facts dic-
tionary. To see this, run the setup module against localhost, as we have done previ-
ously to view discovered facts such as the ansible_date_time dictionary:

	 264	 Chapter 10: Gathering and Using Device Facts

mbp15:aja2 sean$ ansible -m setup localhost
localhost | SUCCESS => {
    "ansible_facts": {
...
        "ansible_date_time": {
            "date": "2018-04-17",
            "day": "17",
            "epoch": "1523986296",
            "hour": "13",
            "iso8601": "2018-04-17T17:31:36Z",
            "iso8601_basic": "20180417T133136413732",
            "iso8601_basic_short": "20180417T133136",
            "iso8601_micro": "2018-04-17T17:31:36.413828Z",
            "minute": "31",
            "month": "04",
            "second": "36",
            "time": "13:31:36",
            "tz": "EDT",
            "tz_offset": "-0400",
            "weekday": "Tuesday",
            "weekday_number": "2",
            "weeknumber": "16",
            "year": "2018"
        },
...

Notice that ansible_date_time is contained within an ansible_facts dictionary!

But when we referenced ansible_date_time, such as in the show-vars-4.yaml playbook
in Chapter 8, we did not need to reference ansible_facts; we were able to directly
reference ansible_date_time. Ansible provides a little magic here, letting us directly
access discovered facts stored in ansible_facts.

The juniper_junos_facts module adds facts it discovers about devices to the ansible_
facts dictionary, using the junos key and its dictionary. Even better, juniper_junos_
facts does so whether or not we register the results from the module. What does
this mean for our playbook? It means we can skip the register argument on the
juniper_junos_facts task and access the keys within the junos dictionary without
additional qualification.

Modify the playbook as follows (delete the old lines 18 – 22 and add the boldfaced
lines):

 1|---
 2|- name: Get facts from Junos device
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    connection_settings:
12|      host: "{{ ansible_host }}"
13|

	 265	 Device Inventory Report

14|  tasks:
15|    - name: get device facts
16|      juniper_junos_facts:
17|        provider: "{{ connection_settings }}"
18|
19|    - name: show Junos version
20|      debug:
21|        var: junos.version
22|
23|    - name: show device uptime
24|      debug:
25|        var: junos.RE0.up_time

Now run the playbook:

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml --limit=aragorn

PLAY [Get facts from Junos device] **

TASK [get device facts] ***

ok: [aragorn]

TASK [show Junos version] ***

ok: [aragorn] => {
 "junos.version": "15.1X49-D90.7"
}

TASK [show device uptime] ***

ok: [aragorn] => {
 "junos.RE0.up_time": "5 hours, 45 minutes, 11 seconds"
}

PLAY RECAP ***

aragorn : ok=3 changed=0 unreachable=0 failed=0

Nice!

Saving Facts to a File – Get Device Facts Version 3
What if we want to save these facts to a file? The juniper_junos_facts module can
do this for us, provided we want all the facts and are not picky about the filename.

The savedir argument to the juniper_junos_facts module lets us specify a directory
in which we want to save a JSON file with the device’s facts. The file will be named
hostname-facts.json, where hostname is the value of the junos.hostname fact as dis-
covered by the module when it queries the device.

Modify the playbook as shown:

	 266	 Chapter 10: Gathering and Using Device Facts

 1|---
 2|- name: Get facts from Junos device
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    facts_dir: "{{ user_data_path }}/facts"
12|    connection_settings:
13|      host: "{{ ansible_host }}"
14|
15|  tasks:
16|    - name: confirm/create report directory
17|      file:
18|        path: "{{ facts_dir }}"
19|        state: directory
20|      run_once: yes
21|      delegate_to: localhost
22|
23|    - name: get device facts
24|      juniper_junos_facts:
25|        provider: "{{ connection_settings }}"
26|        savedir: "{{ facts_dir }}"

The facts_dir variable on line 11 holds the name of the directory in which we will
store the facts file, based on the user_data_path value we defined in Chapter 9 for
our device configuration backups and temporary files.

The task on lines 16–21 ensures the facts directory exists.

Line 25 is the savedir option, instructing the juniper_junos_facts module to save the
device’s facts in our new facts directory.

Now run the playbook:

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml --limit=aragorn

PLAY [Get facts from Junos device] **

TASK [confirm/create report directory] **

changed: [aragorn -> localhost]

TASK [get device facts] ***

ok: [aragorn]

PLAY RECAP ***

aragorn : ok=2 changed=1 unreachable=0 failed=0

Observe that a JSON file was created in the indicated directory:

	 267	 Device Inventory Report

mbp15:aja2 sean$ ls -l ~/ansible/facts/
total 16
-rw-r--r-- 1 sean staff 1406 Apr 17 22:05 aragorn-facts.json
-rw-r--r-- 1 sean staff 784 Apr 17 22:05 aragorn-inventory.xml

The juniper_junos_facts module also creates a hostname-inventory.xml file which
contains the XML results of the chassis-inventory RPC (“show chassis hardware”
command).

Display the JSON data:

mbp15:aja2 sean$ cat ~/ansible/facts/aragorn-facts.json
{"domain": null, "hostname_info": {"re0": "aragorn"}, "version_RE1": null, "version_RE0":
"15.1X49-D90.7", "re_master": {"default": "0"}, "serialnumber": "3EE63E490CDE", "vc_master": null,
"RE_hw_mi": false, "HOME": "/var/home/sean", "master_state": true, "re_info": {"default": {"default":
{"status": "OK", "last_reboot_reason": "0x4000:VJUNOS reboot", "model": "VSRX-S", "mastership_state":
"master"}, "0": {"status": "OK", "last_reboot_reason": "0x4000:VJUNOS reboot", "model": "VSRX-S",
"mastership_state": "master"}}}, "srx_cluster_id": null, "hostname": "aragorn", "virtual": null,
"version": "15.1X49-D90.7", "master": "RE0", "vc_fabric": null, "personality": null, "srx_cluster_
redundancy_group": null, "version_info": {"major": [15, 1], "type": "X", "build": 7, "minor": [49,
"D", 90]}, "re_name": "re0", "srx_cluster": false, "vc_mode": null, "vc_capable": false, "ifd_style":
"CLASSIC", "model_info": {"re0": "VSRX"}, "RE0": {"status": "OK", "last_reboot_reason": "0x4000:VJUNOS
reboot", "model": "VSRX-S", "up_time": "6 hours, 13 minutes, 3 seconds", "mastership_state":
"master"}, "RE1": null, "fqdn": "aragorn", "junos_info": {"re0": {"text": "15.1X49-D90.7", "object":
{"major": [15, 1], "type": "X", "build": 7, "minor": [49, "D", 90]}}}, "has_2RE": false, "switch_
style": "VLAN_L2NG", "model": "VSRX", "current_re": ["master", "node", "fwdd", "member", "pfem",
"fpc0", "re0", "fpc0.pic0"]}

The unformatted JSON data is very hard to read. We can use the following trick to
“pretty-print” the JSON data:

mbp15:aja2 sean$ python -m json.tool < ~/ansible/facts/aragorn-facts.json
{
    "HOME": "/var/home/sean",
    "RE0": {
        "last_reboot_reason": "0x4000:VJUNOS reboot",
        "mastership_state": "master",
        "model": "VSRX-S",
        "status": "OK",
        "up_time": "6 hours, 13 minutes, 3 seconds"
    },
    "RE1": null,
...
    "has_2RE": false,
    "hostname": "aragorn",
    "hostname_info": {
        "re0": "aragorn"
    },
    "ifd_style": "CLASSIC",
...
    "master": "RE0",
    "master_state": true,
    "model": "VSRX",
...
    "virtual": null
}

Much better!

	 268	 Chapter 10: Gathering and Using Device Facts

Saving Facts Using a Template – Get Device Facts Version 4
Recall that we wanted to create a CSV file with an inventory report. Saving the
device facts as JSON data is nice but does not satisfy our objective.

Ansible does not have a “save CSV file” module, but we can use Ansible’s core
module template to help us accomplish this task. We previously used the template
module in the base-settings.yaml playbook to generate Junos configuration files
from data in host and group variable files. For this playbook we use template to
take specific facts from the junos dictionary and write them to a file on disk.

Let’s start with a very basic template. Create file ~/aja2/template/device-facts.j2
with the following content:

{{ junos }}

This template inserts the entire junos dictionary (ansible_facts.junos) into the result
file. We will clean this up shortly.

Each device’s data is saved in a separate file, so we need to assemble several devic-
es’ files together to create a single report. To help with this, save the individual de-
vices’ results into a build directory underneath our facts directory. We discuss the
assembly process shortly.

Update the get-device-facts.yaml playbook as follows (remove the savedir argu-
ment from the “get device facts” task and add the boldfaced lines):

 1|---
 2|- name: Get facts from Junos device and save as CSV file
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    facts_dir: "{{ user_data_path }}/facts"
12|    facts_build_dir: "{{ user_data_path }}/facts/build"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|
16|  tasks:
17|    - name: confirm/create report directory
18|      file:
19|        path: "{{ facts_dir }}"
20|        state: directory
21|      run_once: yes
22|      delegate_to: localhost
23|
24|    - name: confirm/create build directory
25|      file:
26|        path: "{{ facts_build_dir }}"
27|        state: directory

	 269	 Device Inventory Report

28|      run_once: yes
29|      delegate_to: localhost
30|
31|    - name: get device facts
32|      juniper_junos_facts:
33|        provider: "{{ connection_settings }}"
34|
35|    - name: save device facts
36|      template:
37|        src: template/device-facts.j2
38|        dest: "{{ facts_build_dir }}/{{ inventory_hostname }}.txt"

Line 12 defines a variable with the path to our build directory.

Lines 24–29 ensure the build directory exists.

Lines 35–38 call the template module to save the device’s facts to a file. The output
file will be inventory_hostname.txt in the build directory.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml

PLAY [Get facts from Junos device and save as CSV file] **

TASK [confirm/create report directory] **

ok: [bilbo -> localhost]

TASK [confirm/create build directory] ***

changed: [bilbo -> localhost]

TASK [get device facts] ***

ok: [aragorn]
ok: [bilbo]

TASK [save device facts] **

changed: [aragorn]
changed: [bilbo]

PLAY RECAP ***

aragorn : ok=2 changed=1 unreachable=0 failed=0
bilbo : ok=4 changed=2 unreachable=0 failed=0

Check the results:

mbp15:aja2 sean$ ls -1 ~/ansible/facts/build/
aragorn.txt
bilbo.txt

mbp15:aja2 sean$ cat ~/ansible/facts/build/aragorn.txt
{u'domain': None, u'hostname_info': {u're0': u'aragorn'}, u'version_RE1': None, u'version_RE0':

	 270	 Chapter 10: Gathering and Using Device Facts

u'15.1X49-D90.7', u're_master': {u'default': u'0'}, u'serialnumber': u'3EE63E490CDE', u'vc_master':
None, u'RE_hw_mi': False, u'HOME': u'/var/home/sean', u'master_state': True, u're_info': {u'default':
{u'default': {u'status': u'OK', u'last_reboot_reason': u'0x4000:VJUNOS reboot', u'model': u'VSRX-S',
u'mastership_state': u'master'}, u'0': {u'status': u'OK', u'last_reboot_reason': u'0x4000:VJUNOS
reboot', u'model': u'VSRX-S', u'mastership_state': u'master'}}}, u'srx_cluster_id': None,
u'hostname': u'aragorn', u'virtual': None, u'version': u'15.1X49-D90.7', u'master': u'RE0', u'vc_
fabric': None, u'personality': None, u'srx_cluster_redundancy_group': None, u'version_info':
{u'major': [15, 1], u'type': u'X', u'build': 7, u'minor': [49, u'D', 90]}, u're_name': u're0', u'srx_
cluster': False, u'vc_mode': None, u'vc_capable': False, u'ifd_style': u'CLASSIC', u'model_info':
{u're0': u'VSRX'}, u'RE0': {u'status': u'OK', u'last_reboot_reason': u'0x4000:VJUNOS reboot',
u'model': u'VSRX-S', u'up_time': u'1 day, 10 hours, 40 minutes, 50 seconds', u'mastership_state':
u'master'}, u'RE1': None, u'fqdn': u'aragorn', u'junos_info': {u're0': {u'text': u'15.1X49-D90.7',
u'object': {u'major': [15, 1], u'type': u'X', u'build': 7, u'minor': [49, u'D', 90]}}}, u'has_2RE':
False, u'switch_style': u'VLAN_L2NG', u'model': u'VSRX', u'current_re': [u'master', u'node', u'fwdd',
u'member', u'pfem', u'fpc0', u're0', u'fpc0.pic0']}

Yes, those are the device facts, albeit not formatted for human consumption. We
can make this data more appealing by modifying the template to print each
key:value pair on its own line.

Modify template/device-facts.j2 as shown:

{% for fact_name, fact_data in junos.items() %}
    {{ fact_name }}: {{ fact_data }}
{% endfor %}

This template defines a for loop, which we have seen before, but this one is a little
different.

The for loops we used previously, when creating configuration files, were iterating
over a list (array) of data – each element in a list is a single value, such as an NTP
server IP. In this example, the for loop is iterating over the junos dictionary, mean-
ing each entry consists of both a key and a value.

Because we want to display both the key (name) and value (data) for each diction-
ary entry, the for loop declaration needs to follow this pattern:

{% for key, value in variable.items() %}

The new items() keyword (technically, a function or method of the underlying Py-
thon dictionary structure) in the for loop causes the loop to return both the key
and value for each element in the variable dictionary, which are assigned to the re-
spective key and value variables.

Run the playbook again (not shown) and view the results:

mbp15:aja2 sean$ cat ~/ansible/facts/build/aragorn.txt
    domain:
    hostname_info: {u're0': u'aragorn'}
    version_RE1:
    version_RE0: 15.1X49-D90.7
    re_master: {u'default': u'0'}
    serialnumber: 3EE63E490CDE
    vc_master:
    RE_hw_mi: False

	 271	 Device Inventory Report

    HOME: /var/home/sean
    master_state: True
    re_info: {u'default': {u'default': {u'status': u'OK', u'last_reboot_
reason': u'0x4000:VJUNOS reboot', u'model': u'VSRX-S', u'mastership_
state': u'master'}, u'0': {u'status': u'OK', u'last_reboot_
reason': u'0x4000:VJUNOS reboot', u'model': u'VSRX-S', u'mastership_state': u'master'}}}
    srx_cluster_id:
    hostname: aragorn
    virtual:
    version: 15.1X49-D90.7
    master: RE0
    vc_fabric:
    personality:
    srx_cluster_redundancy_group:
    version_info: {u'major': [15, 1], u'type': u'X', u'build': 7, u'minor': [49, u'D', 90]}
    re_name: re0
    srx_cluster: False
    vc_mode:
    vc_capable: False
    ifd_style: CLASSIC
    model_info: {u're0': u'VSRX'}
    RE0: {u'status': u'OK', u'last_reboot_
reason': u'0x4000:VJUNOS reboot', u'model': u'VSRX-S', u'up_
time': u'1 day, 11 hours, 12 minutes, 2 seconds', u'mastership_state': u'master'}
    RE1:
    fqdn: aragorn
 junos_info: {u're0': {u'text': u'15.1X49-D90.7', u'object': {u'major': [15, 1], u'type': u'X',
u'build': 7, u'minor': [49, u'D', 90]}}}
 has_2RE: False
 switch_style: VLAN_L2NG
 model: VSRX
 current_re: [u'master', u'node', u'fwdd', u'member', u'pfem', u'fpc0', u're0', u'fpc0.pic0']

Notice how each element of the junos dictionary starts on a new line, and each line
has the format key: value. Because many of the values are themselves dictionaries
with further key:value pairs, many of the lines wrap and are poorly formatted. The
order of the dictionary entries may vary, because Python dictionaries do not guar-
antee the sequence of elements in a dictionary. Still, this represents a significant
improvement over the first template.

We could make this output more attractive by, for example, displaying the junos
dictionary’s keys in sorted order, and by further indenting and formatting the next
level of dictionaries. The author will leave these tasks as excercises for the reader,
as we need to get back to the task of creating a CSV report.

Should you iterate over a dictionary without using items() – in other words, iterate
over the dictionary as if it were a list – you will get only the keys from the diction-
ary. If you wish to see this, modify the template as follows...

{% for fact in junos %}
 {{ fact }}
{% endfor %}

...and re-run the playbook. Go ahead, give it a try, we’ll wait for you.

	 272	 Chapter 10: Gathering and Using Device Facts

Creating a Single CSV Report – Get Device Facts Version 5
Right now, we have a separate result file for each device, not a single report, and
the devices’ results are not comma separated.

In order to generate a single CSV report, with one line for each device, we need to
make a few changes. First, our template needs to generate a single line for a device,
with different fields separated by commas. Second, we need to assemble the indi-
vidual device files and column labels into a single report. Third, while not strictly
necessary, it would be nice if each “column” in the CSV file had a label.

Adjusting the template to put all desired values (not necessarily all available values
from the junos dictionary) on a single line, separated by commas, could be done as
follows. This is a single line in the template, though it wraps to several lines here:

"{{ inventory_hostname }}","{{ junos.version }}","{{ junos.model }}","{{ junos.switch_style }}","{{
junos.serialnumber }}","{{ junos.has_2RE }}","{{ junos.master }}","{{ junos.vc_capable }}","{{ junos.
vc_fabric }}","{{ junos.vc_master }}","{{ junos.vc_mode }}","{{ junos.srx_cluster }}","{{ junos.srx_
cluster_id }}"

NOTE	 This report uses a subset of the available device facts; feel free to add or
remove facts to suit your reporting needs.

Run the playbook (not shown) and view the resulting files:

mbp15:aja2 sean$ cat ~/ansible/facts/build/aragorn.txt
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False","","","","Fal
se",""

Pretty good! It looks like a line from a CSV file. But the empty strings – "" – may
not be ideal; when viewed in a spreadsheet program, these will appear as empty
cells. These are the result of facts with null values. It would be nice if these null
values showed as a hyphen (-) or other placeholder instead of nothing; it helps as-
sure anyone looking at the results that the value was not simply missed.

Jinja2 can test if a value is null, though Jinja2 calls the same state none. We can use
an if-else control structure to either return a hyphen if a variable is null (none) or
return the value if the variable is not null (none). The basic format is:

1| {% if junos.srx_cluster_id is none %}
2| "-"
3| {% else %}
4| "{{ junos.srx_cluster_id }}"
5| {% endif %}

Line 1 starts the if-else control structure and contains the condition, the test that
evaluates to a Boolean true-or-false value. Here the condition junos.srx_cluster_id
is none tests if the variable junos.srx_cluster_id contains a null (none) value.

Line 2 is what the template will put in the output file if the condition is true. This
can be multiple lines, though here only one line is needed.

Line 3 starts the else portion of the control structure, separating the “true result”
portion of the if-else structure from the “false result” portion.

	 273	 Device Inventory Report

Line 4 is what the template will put in the output file if the condition is false. This
can be multiple lines, though here only one line is needed.

Line 5 ends the if-else control structure.

Note that, for Jinja2, the else section is optional with an if control structure. In a
template that should include something when a condition is true, but should do
nothing when the condition is false, you might have something like this:

 {% if <condition> %}
 include this line in the output when <condition> is true
 {% endif %}

While it is generally preferable for an if-else control structure to be formatted as
shown above, because seeing it across multiple lines and with indentation makes it
easier to understand, Jinja2 does not care about the formatting. This following one
line is logically equivalent to the five lines above, except for the leading spaces:

{% if junos.srx_cluster_id is none %}"-"{% else %}"{{ junos.srx_cluster_id }}"{% endif %}

This equivalence is sometimes important to getting correctly formatted output
from the template, because sometimes we want the template’s output to be differ-
ent from the preferred code layout. This template is one of those times; we want
the entire output to be on a single line. However, let’s start by using the preferred
code layout, as this makes it easier to debug any template problems other than line
breaks.

Change the device-facts.j2 template as follows (line numbers added for discussion,
and line 1 may wrap in the book):

 1|"{{ inventory_hostname }}","{{ junos.version }}","{{ junos.model }}","{{ junos.switch_
style }}","{{ junos.serialnumber }}","{{ junos.has_2RE }}","{{ junos.master }}","{{ junos.vc_
capable }}",
 2|{% if junos.vc_fabric is none %}
 3|    "-",
 4|{% else %}
 5|    "{{ junos.vc_fabric }}",
 6|{% endif %}
 7|{% if junos.vc_master is none %}
 8|    "-",
 9|{% else %}
10|    "{{ junos.vc_master }}",
11|{% endif %}
12|{% if junos.vc_mode is none %}
13|    "-",
14|{% else %}
15|    "{{ junos.vc_mode }}",
16|{% endif %}
17|{% if junos.srx_cluster is none %}
18|    "-",
19|{% else %}
20|    "{{ junos.srx_cluster }}",
21|{% endif %}
22|{% if junos.srx_cluster_id is none %}
23|    "-"

	 274	 Chapter 10: Gathering and Using Device Facts

24|{% else %}
25|    "{{ junos.srx_cluster_id }}"
26|{% endif %}

Line 1 includes the facts that should always have a value.

Lines 2-6 displays either a hyphen or the junos.vc_fabric fact, depending on wheth-
er or not vc_fabric is null (none).

Lines 7-11 do the same for the junos.vc_master fact.

And so on for the remaining three facts that may be null for some devices.

Run the playbook (not shown) and examine the results:

mbp15:aja2 sean$ cat ~/ansible/facts/build/aragorn.txt
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False",
    "-",
    "-",
    "-",
    "False",
    "-",

We got the hyphens we wanted, but we do not want the output spread across mul-
tiple lines like that, and the leading spaces before the hyphens or data are not re-
ally desirable either. Jinja2 includes the leading spaces and the trailing newline
characters from each line of the template which contains either plain text or a vari-
able reference that is not part of a Jinja2 control structure statement ({%...%}).

What if we reformat each of the if-else control structures onto a single line, like
this? (Line numbers added for discussion.)

1|"{{ inventory_hostname }}","{{ junos.version }}","{{ junos.model }}","{{ junos.switch_
style }}","{{ junos.serialnumber }}","{{ junos.has_2RE }}","{{ junos.master }}","{{ junos.vc_
capable }}",
2|{% if junos.vc_fabric is none %}"-",{% else %}"{{ junos.vc_fabric }}",{% endif %}
3|{% if junos.vc_master is none %}"-",{% else %}"{{ junos.vc_master }}",{% endif %}
4|{% if junos.vc_mode is none %}"-",{% else %}"{{ junos.vc_mode }}",{% endif %}
5|{% if junos.srx_cluster is none %}"-",{% else %}"{{ junos.srx_cluster }}",{% endif %}
6|{% if junos.srx_cluster_id is none %}"-"{% else %}"{{ junos.srx_cluster_id }}"{% endif %}

Now the template’s output looks something like this:

mbp15:aja2 sean$ cat ~/ansible/facts/build/aragorn.txt
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False",
"-","-","-","False","-"

We are getting closer. Jinja2 automatically suppresses the trailing newline from
lines that end with a control structure, so the newlines from lines 2–6 are not in-
cluded in the template’s output. But the newline from line 1 is still present, as this
line contains only variable references and text (the commas and quotation marks).
This causes our complete results to be spread across two lines.

One approach to fixing this is to add a hyphen to the opening of the control struc-
ture on the lines following the newline we wish to suppress – in other words, con-
trol structure lines start with {%- instead of just {%. The added hyphen tells Jinja2 to
suppress the newline from the previous line of the template. Update your template

	 275	 Device Inventory Report

to look like this:

1|"{{ inventory_hostname }}","{{ junos.version }}","{{ junos.model }}","{{ junos.switch_
style }}","{{ junos.serialnumber }}","{{ junos.has_2RE }}","{{ junos.master }}","{{ junos.vc_
capable }}",
2|{%- if junos.vc_fabric is none %}"-",{% else %}"{{ junos.vc_fabric }}",{% endif %}
3|{%- if junos.vc_master is none %}"-",{% else %}"{{ junos.vc_master }}",{% endif %}
4|{%- if junos.vc_mode is none %}"-",{% else %}"{{ junos.vc_mode }}",{% endif %}
5|{%- if junos.srx_cluster is none %}"-",{% else %}"{{ junos.srx_cluster }}",{% endif %}
6|{%- if junos.srx_cluster_id is none %}"-"{% else %}"{{ junos.srx_cluster_id }}"{% endif %}

While we needed to modify only line 2 to fix the current problem, the author chose
to update lines 2–6. Adding the hyphen to lines 3–6 has no effect because Jinja2 is
already suppressing the newlines from the preceding lines, but if we ever insert a
new variable reference, say {{ junos.ifd_style }}, between the current lines 4 and
5, we will not need to remember to add the hyphen to the next line.

The template’s output now looks something like this (one line of output for each
file, though it may wrap as shown here):

mbp15:aja2 sean$ cat ~/ansible/facts/build/aragorn.txt
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False","-","-","-
","False","-"

mbp15:aja2 sean$ cat ~/ansible/facts/build/bilbo.txt
"bilbo","12.3R12.4","EX2200-C-12T-2G","VLAN","GP0211463844","False","RE0","True","False","0","Enabl
ed","-","-"

We have CSV-formatted output for each device...but we are not quite done yet.
Now we must assemble the data files for different devices into a single CSV file.

Ansible has a core module called assemble that concatenates a group of files into a
new file. The files to be assembled must be within a single directory; assemble con-
catenates all the files in that directory into a new file. This is why we placed the
template output files into a different directory than the one where we wanted to
save the final inventory report. (We used a subdirectory of the report directory, but
that is not required.)

Let’s put a date stamp in the inventory report filename so the reports from differnt
runs of the playbook will have unique names.

Modify the get-device-facts.yaml playbook as follows:

 1|---
 2|- name: Get facts from Junos device and save as CSV file
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    facts_dir: "{{ user_data_path }}/facts"

	 276	 Chapter 10: Gathering and Using Device Facts

12|    facts_build_dir: "{{ user_data_path }}/facts/build"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|    systime: "{{ ansible_date_time.time | replace(':', '-') }}"
16|    timestamp: "{{ ansible_date_time.date }}_{{ systime }}"
17|    report_file: "{{ facts_dir }}/device-facts_{{ timestamp }}.csv"
18|
19|  tasks:
20|    - name: get localhost environment info
21|      setup:
22|      run_once: yes
23|      delegate_to: localhost
24|
25|    - name: confirm/create report directory
26|      file:
27|        path: "{{ facts_dir }}"
28|        state: directory
29|      run_once: yes
30|      delegate_to: localhost
31|
32|    - name: confirm/create build directory
33|      file:
34|        path: "{{ facts_build_dir }}"
35|        state: directory
36|      run_once: yes
37|      delegate_to: localhost
38|
39|    - name: get device facts
40|      juniper_junos_facts:
41|        provider: "{{ connection_settings }}"
42|
43|    - name: save device facts
44|      template:
45|        src: template/device-facts.j2
46|        dest: "{{ facts_build_dir }}/{{ inventory_hostname }}.csv"
47|
48|    - name: assemble inventory report
49|      assemble:
50|        src: "{{ facts_build_dir }}"
51|        dest: "{{ report_file }}"
52|      run_once: yes
53|      delegate_to: localhost

Lines 15–17 add new variables that work together to define a report filename with
a timestamp. We saw a similar pattern in Chapter 9 when creating backup files
with a timestamp in the filename.

Lines 20–23 run the Ansible setup module to get local environment information;
we are interested primarily in the local date and time to support the new systime
and timestamp variables on lines 15 and 16. We need run this module only once on
the localhost; lines 22 and 23 ensure this for us, without requiring that we specify
localhost when running the playbook with --limit. We saw this in Chapter 9 when
creating backup files with a timestamp in the filename.

On line 46 we change the extension of the template module’s output file to .csv

	 277	 Device Inventory Report

from .txt to better reflect the updated nature of the template’s results.

Lines 48–53 call the assemble module, concatenating the files in the build directory
(src argument) and creating a single CSV file (dest argument). Because we need
assemble the files only once, on the local host, the run_once: yes and delegate_to:
localhost arguments are included.

Run the playbook and review the CSV file:

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml

PLAY [Get facts from Junos device and save as CSV file] **

TASK [get localhost environment info] ***

ok: [bilbo -> localhost]

TASK [confirm/create report directory] **

ok: [bilbo -> localhost]

TASK [confirm/create build directory] ***

ok: [bilbo -> localhost]

TASK [get device facts] ***

ok: [aragorn]
ok: [bilbo]

TASK [save device facts] **

changed: [aragorn]
changed: [bilbo]

TASK [assemble inventory report] **

changed: [bilbo -> localhost]

PLAY RECAP ***

aragorn : ok=2 changed=1 unreachable=0 failed=0
bilbo : ok=6 changed=2 unreachable=0 failed=0

mbp15:aja2 sean$ cat ~/ansible/facts/device-facts_2018-04-22_20-32-05.csv
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False","-","-","-
","False","-"
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False","-","-","-
","False","-"
"bilbo","12.3R12.4","EX2200-C-12T-2G","VLAN","GP0211463844","False","RE0","True","False","0","Enabl
ed","-","-"
"bilbo","12.3R12.4","EX2200-C-12T-2G","VLAN","GP0211463844","False","RE0","True","False","0","Enabl
ed","-","-"

The CSV report looks good except that there are duplicate lines. Why? Take a
look at the contents of the build directory:

	 278	 Chapter 10: Gathering and Using Device Facts

mbp15:aja2 sean$ ls -1 ~/ansible/facts/build/
aragorn.csv
aragorn.txt
bilbo.csv
bilbo.txt

We did not delete the old .txt output files when we renamed the template output
files to .csv. Because the assemble module concatenates all files in the source direc-
tory, it happily included both the new .csv and old .txt files. A similar problem
would occur if you ran the playbook using a --limit, then ran it again with a dif-
ferent --limit matching a different set of devices – the second run would include
both sets of devices in the assembled report.

Let’s fix this by adding a task to delete the build directory before the current task
that creates it (or ensures that it exists). Update the playbook as follows:

...
19|  tasks:
20|    - name: get localhost environment info
21|      setup:
22|      run_once: yes
23|      delegate_to: localhost
24|
25|    - name: confirm/create report directory
26|      file:
27|        path: "{{ facts_dir }}"
28|        state: directory
29|      run_once: yes
30|      delegate_to: localhost
31|
32|    - name: delete old build directory if present
33|      file:
34|        path: "{{ facts_build_dir }}"
35|        state: absent
36|      run_once: yes
37|      delegate_to: localhost
38|
39|    - name: create build directory
40|      file:
41|        path: "{{ facts_build_dir }}"
42|        state: directory
43|      run_once: yes
44|      delegate_to: localhost
...

Lines 32–37 are the new task. We saw this pattern before when deleting temporary
files; this time we are deleting a directory.

Run the playbook again and check the results:

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml

PLAY [Get facts from Junos device and save as CSV file] **

TASK [get localhost environment info] ***

ok: [bilbo -> localhost]

	 279	 Device Inventory Report

TASK [confirm/create report directory] ***
ok: [bilbo -> localhost]

TASK [delete old build directory if present] ***********************************
changed: [bilbo -> localhost]

TASK [create build directory] **
changed: [bilbo -> localhost]

TASK [get device facts] ***

ok: [aragorn]
ok: [bilbo]

TASK [save device facts] **

changed: [bilbo]
changed: [aragorn]

TASK [assemble inventory report] **

changed: [bilbo -> localhost]

PLAY RECAP ***

aragorn : ok=2 changed=1 unreachable=0 failed=0
bilbo : ok=7 changed=4 unreachable=0 failed=0

mbp15:aja2 sean$ ls -1 ~/ansible/facts/build/
aragorn.csv
bilbo.csv

mbp15:aja2 sean$ cat ~/ansible/facts/device-facts_2018-04-22_21-04-30.csv
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False","-","-","-
","False","-"
"bilbo","12.3R12.4","EX2200-C-12T-2G","VLAN","GP0211463844","False","RE0","True","False","0","Enabl
ed","-","-"

Great! Now take a look at the CSV file using a spreadsheet or using the preview
feature of MacOS:

The only thing missing is the column headers...let’s add those next!

Column Headers – Get Device Facts Version 6
We can include column headers in our inventory report as part of the assemble
process, provided we first place a file with the headers in our build directory. How-
ever, the order of assembly becomes a consideration; we want the column headers
file to be the first file assembled, so the headers are the first row of the CSV report
file.

http://junos-ansible-modules.readthedocs.io/en/stable/juniper_junos_facts.html
http://junos-pyez.readthedocs.io/en/stable/jnpr.junos.facts.html
http://jinja.pocoo.org/docs/2.9/templates/#builtin-filters
http://jinja.pocoo.org/docs/2.9/templates/#whitespace-control

	 280	 Chapter 10: Gathering and Using Device Facts

According to Ansible’s online documentation, the assemble module assembles files
in “string sorting order.” As long as the filename for the column headers will sort
before the first device’s filename, the column headers will come first. One approach
is to name the column headers file something like AAA-column-headers.txt because a
filename starting with “AAA” should sort to the top of the list (remember to use
capital “A” not lower-case “a” because sorts are case sensitive, and “A” precedes
“a”).

The author uses a slightly different approach, but his approach may not work for
everyone. The author prefixes the filename for his column names with an under-
score (_). The underscore is easily typed, commonly used in filenames, and has no
other meaning to UNIX/Linux (many other symbols which can be used in file-
names also have meaning to the shell, and thus need to be escaped when entered as
part of a command). The underscore character (_) also precedes the lower-case
letter “a” when sorted, at least in the standard ASCII or ANSI sort order.

Unfortunately, the underscore comes after a capital “A” when sorted, so this nam-
ing convention will work correctly only if all the devices’ output filenames – which
really means all the inventory hostnames – start with lower-case letters. If you are
using capital first letters for your devices, you may wish to use the “AAA” prefix
instead.

Let’s create the column headers file in the template directory; the playbook will
copy it to the build directory (keep in mind the build directory is a temporary di-
rectory, which will be erased and recreated, so we cannot leave our column head-
ers file there). Create file template/_device-facts-columns.txt with the following
single line of column names (may wrap to multiple lines in the book):

"Hostname","Junos version","Model","Switch Style","Serial Number","Dual RE","Master","VC Capable","VC
Fabric","VC Master","VC Mode","SRX Cluster","SRX Cluster ID"

Add the “copy column headers file” task before the “assemble inventory report”
task near the end of the playbook:

 1|---
 2|- name: Get facts from Junos device and save as CSV file
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    facts_dir: "{{ user_data_path }}/facts"
12|    facts_build_dir: "{{ user_data_path }}/facts/build"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|    systime: "{{ ansible_date_time.time | replace(':', '-') }}"
16|    timestamp: "{{ ansible_date_time.date }}_{{ systime }}"

	 281	 Device Inventory Report

17|    report_file: "{{ facts_dir }}/device-facts_{{ timestamp }}.csv"
18|
19|  tasks:
20|    - name: get localhost environment info
21|      setup:
22|      run_once: yes
23|      delegate_to: localhost
24|
25|    - name: confirm/create report directory
26|      file:
27|        path: "{{ facts_dir }}"
28|        state: directory
29|      run_once: yes
30|      delegate_to: localhost
31|
32|    - name: delete old build directory if present
33|      file:
34|        path: "{{ facts_build_dir }}"
35|        state: absent
36|      run_once: yes
37|      delegate_to: localhost
38|
39|    - name: create build directory
40|      file:
41|        path: "{{ facts_build_dir }}"
42|        state: directory
43|      run_once: yes
44|      delegate_to: localhost
45|
46|    - name: get device facts
47|      juniper_junos_facts:
48|        provider: "{{ connection_settings }}"
49|
50|    - name: save device facts
51|      template:
52|        src: template/device-facts-5.j2
53|        dest: "{{ facts_build_dir }}/{{ inventory_hostname }}.csv"
54|
55|    - name: copy column headers file
56|      copy:
57|        src: template/_device-facts-columns.txt
58|        dest: "{{ facts_build_dir}}/"
59|      run_once: yes
60|      delegate_to: localhost
61|
62|    - name: assemble inventory report
63|      assemble:
64|        src: "{{ facts_build_dir }}"
65|        dest: "{{ report_file }}"
66|      run_once: yes
67|      delegate_to: localhost

Lines 55–60 are the new task, which uses Ansible’s copy method to copy the col-
umn headers file (src argument) into the build directory (dest argument).

Run the playbook and examine the results:

	 282	 Chapter 10: Gathering and Using Device Facts

mbp15:aja2 sean$ ansible-playbook get-device-facts.yaml

PLAY [Get facts from Junos device and save as CSV file] **

TASK [get localhost environment info] ***

ok: [bilbo -> localhost]

TASK [confirm/create report directory] ***
ok: [bilbo -> localhost]

TASK [delete old build directory if present] ***********************************
changed: [bilbo -> localhost]

TASK [create build directory] **
changed: [bilbo -> localhost]

TASK [get device facts] **
ok: [aragorn]
ok: [bilbo]

TASK [save device facts] ***
changed: [aragorn]
changed: [bilbo]

TASK [copy column headers file] **
changed: [bilbo -> localhost]

TASK [assemble inventory report] ***
changed: [bilbo -> localhost]

PLAY RECAP ***

aragorn : ok=2 changed=1 unreachable=0 failed=0
bilbo : ok=8 changed=5 unreachable=0 failed=0

mbp15:aja2 sean$ ls -1 ~/ansible/facts/build/
_device-facts-columns.txt
aragorn.csv
bilbo.csv

mbp15:aja2 sean$ cat ~/ansible/facts/device-facts_2018-04-22_22-17-12.csv
"Hostname","Junos version","Model","Switch Style","Serial Number","Dual RE","Master","VC Capable","VC
Fabric","VC Master","VC Mode","SRX Cluster","SRX Cluster ID"
"aragorn","15.1X49-D90.7","VSRX","VLAN_L2NG","3EE63E490CDE","False","RE0","False","-","-","-
","False","-"
"bilbo","12.3R12.4","EX2200-C-12T-2G","VLAN","GP0211463844","False","RE0","True","False","0","Enabl
ed","-","-"

Perfect!

	 283	 Device Configuration Based on Device Type – Base Settings 3

Device Configuration Based on Device Type – Base Settings 3
Junos configuration statements and options are remarkably consistent across dif-
ferent types of devices, but there are some places where configuration require-
ments diverge. One example is with configuring VLANs: MX and high-end SRX
devices use a “bridge domain” command set, legacy EX and branch SRX devices
use a “VLAN” command set, and newer EX and SRX devices use an “ELS” (En-
hanced Layer-2 Software) command set. If you write a playbook to configure
VLAN settings, the playbook will need to accommodate these differences.

For this chapter, we will use a simpler example: configuring the maximum number
of concurrent SSH or NETCONF sessions allowed by a device. Most Junos devices
allow large numbers of concurrent management connections, and you can set a
limit of hundreds of concurrent connections. For example, the author’s EX2200
will allow a limit as high as 250:

sean@bilbo> configure
Entering configuration mode

{master:0}[edit]
sean@bilbo# set system services ssh connection-limit ?
Possible completions:
  <connection-limit>   Maximum number of allowed connections (1..250)
{master:0}[edit]
sean@bilbo# set system services ssh rate-limit ?
Possible completions:
  <rate-limit>         Maximum number of connections per minute (1..250)
{master:0}[edit]
sean@bilbo#

However, some Junos devices accept far smaller values for the maximum number
of simultaneous connections. For example, the author’s vSRX will allow a limit
only as high as 5:

sean@aragorn> configure
Entering configuration mode

[edit]
sean@aragorn# set system services ssh connection-limit ?
Possible completions:
  <connection-limit>   Maximum number of allowed connections (1..5)
[edit]
sean@aragorn# set system services ssh rate-limit ?
Possible completions:
  <rate-limit>         Maximum number of connections per minute (1..5)
[edit]
sean@aragorn#

Similarly, many branch SRX devices, like the SRX210 or SRX300, allow only 3 or
5 depending on model and Junos version.

That’s a big difference. Limiting concurrent connections to a value far less than
250 can help mitigate the impact of some brute force or denial-of-service attacks,
so setting a limit in our base settings playbook and template would be useful.

	 284	 Chapter 10: Gathering and Using Device Facts

However, limiting all devices to 3 concurrent connections, the highest value al-
lowed by the most restrictive device, is probably undesirable.

Let’s update our base-settings.yaml playbook and base-settings.j2 template to in-
clude connection limits for SSH and NETCONF, but set the limit based on the de-
vice type. The basesettings.yaml playbook will gather facts from the devices; these
facts will be used by the template to set the appropriate values.

Add the boldfaced lines to the base-settings.yaml playbook as shown:

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    tmp_dir: "tmp"
12|    conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13|    connection_settings:
14|      host: "{{ ansible_host }}"
15|      timeout: 120
16|
17|  tasks:
18|    - name: confirm or create configs directory
19|      file:
20|        path: "{{ tmp_dir }}"
21|        state: directory
22|      run_once: yes
23|
24|    - name: get device facts
25|      juniper_junos_facts:
26|        provider: "{{ connection_settings }}"
27|
28|    - name: display device facts
29|      debug:
30|        var: junos
31|        verbosity: 1
32|
33|    - name: save device configuration using template
34|      template:
35|        src: template/base-settings.j2
36|        dest: "{{ conf_file }}"
37|
38|    - name: install generated configuration file onto device
39|      juniper_junos_config:
40|        provider: "{{ connection_settings }}"
41|        src: "{{ conf_file }}"
42|        load: replace
43|        comment: "playbook base-settings.yaml, commit confirmed"
44|        confirmed: 5
45|        diff: yes
46|        ignore_warning: yes
47|      register: config_results

	 285	 Device Configuration Based on Device Type – Base Settings 3

48|      notify: confirm previous commit
49|
50|    - name: show configuration change
51|      debug:
52|        var: config_results.diff_lines
53|      when: config_results.diff_lines is defined
54|
55|    # - name: delete generated configuration file
56|    #   file:
57|    #     path: "{{ conf_file }}"
58|    #     state: absent
59|
60|  handlers:
61|    - name: confirm previous commit
62|      juniper_junos_config:
63|        provider: "{{ connection_settings }}"
64|        comment: "playbook base-settings.yaml, confirming previous commit"
65|        commit: yes
66|        diff: no

The new tasks are similar to tasks we used in the get-device-facts.yaml playbook.
Lines 24–26 gather device facts (and save those facts in variable junos). Lines 28–
31 display the device facts when the playbook is run in verbose mode.

Lines 55–58 are commented out to avoid deleting the generated configuration file.
This is optional, but it helps when debugging the template.

To keep the logic for determining the connection limit fairly simple, we’ll use a
limit of 3 for all branch SRX devices (even though some will support 5 or more), a
limit of 5 for vSRX, and 10 for all other devices. Add or update the boldfaced lines
in the template base-settings.j2:

 1|#jinja2: lstrip_blocks: True
 2|{% set model = junos.model.lower() %}
 3|{% set personality = junos.personality | lower %}
 4|
 5|{#- Determine SSH connection-limit and rate-limit based on device facts #}
 6|{% if model == 'vsrx' %}
 7|    {% set max_ssh = 5 %}
 8|{% elif personality == 'srx_branch' %}
 9|    {% set max_ssh = 3 %}
10|{% else %}
11|    {% set max_ssh = 10 %}
12|{% endif %}
13|
14|{#- Generate basic settings for the device #}
15|system {
16|    host-name {{ inventory_hostname }};
17|    login {
18|        user sean {
19|            uid 2000;
20|            class super-user;
21|            authentication {
22|                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
23|            }
24|        }

	 286	 Chapter 10: Gathering and Using Device Facts

25|    }
26|    replace:
27|    name-server {
28|      {% for server in aja2_host.dns_servers %}
29|        {{ server }};
30|      {% endfor %}
31|    }
32|    services {
33|        delete: ftp;
34|        netconf {
35|            ssh {
36|                connection-limit {{ max_ssh }};
37|                rate-limit {{ max_ssh }};
38|            }
39|        }
40|        ssh {
41|            connection-limit {{ max_ssh }};
42|            rate-limit {{ max_ssh }};
43|        }
44|        delete: telnet;
45|        delete: web-management;
46|    }
47|    replace:
48|    ntp {
49|      {% for ntp in aja2_site.ntp_servers %}
50|        server {{ ntp }};
51|      {% endfor %}
52|    }
53|}
54|snmp {
55|    description "{{ aja2_host.snmp.description}}"
56|    location "{{ aja2_host.snmp.location}}"
57|}

Lines 5 and 14 are comments – note the {#...#} delimiters. These lines are essen-
tially ignored by Jinja2, but they help anyone reading the template understand
what is happening.

Note the extra hyphen after the opening of the comments on lines 5 and 14 – the
comments start with {#- instead of just {#. As we discussed earlier in this chapter,
the added hyphen suppresses the newline from the previous line. In this template,
that serves to suppress the blank lines 4 and 13 – the vertical white space helps us
understand the template by visually separating three “sections” of the template,
but we do not need the blank lines in the output.

Lines 2 and 3 copy values from the device facts into template variables – the Jinja2
{% set var = value %} control structure assigns a value to a variable. At the same
time, these lines convert to lower-case the text from the device facts before assign-
ing the lower-case to the template variables – more on how this works in a
moment.

String comparisons are case-sensitive – “Hello” is different from “hello” – and the
author prefers to have strings in a known case before making comparisons, unless

	 287	 Device Configuration Based on Device Type – Base Settings 3

preserving the original case is important. For this template, keeping the original
case is not important. Ensuring everything is lower-case means we need not be
concerned that, for example, some Junos devices might return their model as all
capitals while others might use mixed case, or that a change in PyEZ might alter
the case of the junos.personality fact from “SRX_BRANCH” to “SRX_branch.”

Two different approaches for making the text lower-case are shown: line 2 calls
the lower() method of Python’s string class, while line 3 uses the Jinja2 filter |lower.
They both do the same job, taking text from the variable on which they are called
and returning a lower-case version of that text – but there is an interesting differ-
ence between the two approaches. Should the variable have a null value, the low-
er() method throws an error (“AnsibleUndefinedVariable: ‘None’ has no attribute
‘lower’”) while the |lower filter does not. This is important on line 3 as aragorn, the
author’s vSRX, returns a null for its personality fact.

Lines 6–12 are the logic for determining the maximum sessions. We discussed if-
else control structures earlier in this chapter, but here we added an elif (“else if”)
element. The elif statement adds another comparison to an if-else structure. When
the condition of if is false, the condition of elif will be evaluated – if true, the subse-
quent lines will be in the template output; if false, move on to the next elif state-
ment (you can have more than one) or the else statement.

Note the double equal sign in the conditions on lines 6 and 8. A single equal sign
(=) is an assignment, copying the value on the right into the variable on the left. A
double equal sign (==) is a comparison that will return Boolean true if the values
on either side of the == are equal, false if the values are different.

Lines 7, 9, and 11 use the Jinja2 set control structure to assign the desired maxi-
mum connections value to the max_ssh template variable.

Lines 35–43 add the additional connection-limit and rate-limit settings we want,
using the max_ssh value determined earlier in the template.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml

PLAY [Generate and Install Configuration File] **

TASK [confirm or create configs directory] **

ok: [bilbo]

TASK [get device facts] ***

ok: [aragorn]
ok: [bilbo]

TASK [display device facts] ***

	 288	 Chapter 10: Gathering and Using Device Facts

skipping: [bilbo]
skipping: [aragorn]

TASK [save device configuration using template] ***

changed: [aragorn]
changed: [bilbo]

TASK [install generated configuration file onto device] ***

changed: [aragorn]
changed: [bilbo]

TASK [show configuration change] **

ok: [bilbo] => {
    "config_results.diff_lines": [
        "",
        "[edit system services ssh]",
        "+    connection-limit 10;",
        "+    rate-limit 10;",
        "[edit system services netconf ssh]",
        "+     connection-limit 10;",
        "+     rate-limit 10;",
        "[edit system ntp]",
        "-    server 172.29.135.60;"
    ]
}
ok: [aragorn] => {
    "config_results.diff_lines": [
        "",
        "[edit system services ssh]",
        "+    connection-limit 5;",
        "+    rate-limit 5;",
        "[edit system services netconf ssh]",
        "+     connection-limit 5;",
        "+     rate-limit 5;"
    ]
}

RUNNING HANDLER [confirm previous commit] ***

ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***

aragorn                    : ok=5    changed=2    unreachable=0    failed=0
bilbo                      : ok=6    changed=2    unreachable=0    failed=0

Observe that the configuration changes are exactly what we expected, with a limit
of 10 for the EX bilbo and 5 for the vSRX aragorn. You can also inspect the gener-
ated configuration files:

mbp15:aja2 sean$ grep limit tmp/aragorn.conf
                connection-limit 5;
                rate-limit 5;

	 289	 References

            connection-limit 5;
            rate-limit 5;

mbp15:aja2 sean$ grep limit tmp/bilbo.conf
                connection-limit 10;
                rate-limit 10;
            connection-limit 10;
            rate-limit 10;

Note that the configuration file for each device has the correct values.

References
Juniper_junos_facts module:
http://junos-ansible-modules.readthedocs.io/en/stable/juniper_junos_facts.html

PyEZ jnpr.junos.facts module:
http://junos-pyez.readthedocs.io/en/stable/jnpr.junos.facts.html

Jinja2 filters:
http://jinja.pocoo.org/docs/2.9/templates/#builtin-filters

Jinja2 whitespace control:
http://jinja.pocoo.org/docs/2.9/templates/#whitespace-control

You probably have some confidential data that you wish to use in your playbooks,
such as passwords, that should be kept encrypted for security. However, all the
Ansible data sources we have discussed so far are plain-text. How can we create an
encrypted data store that Ansible can read?

Ansible provides a solution with Ansible vault. In this chapter, we discuss the ansi-
ble-vault command for creating vault files and editing vault data, and we create
and run playbooks that read vault files.

The early part of this chapter shows fundamental ideas. Later in this chapter we
perform a practical example, building on the “base settings” playbook from earlier
chapters.

Creating a Vault File
To create a new vault file (to create a new file encrypted with vault), use the com-
mand ansible-vault create followed by the name of the new file to create. This will
prompt you for a password, then open your system default text editor (probably vi
or vim unless you have altered the default on your system) so you can add data to
the file. When you save the file and exit the editor, ansible-vault encrypts the data
and saves the vault file.

Chapter 11

Storing Private Variables – Ansible Vault

http://docs.ansible.com/ansible/latest/vault.html
https://kb.juniper.net/InfoCenter/index?page=content&id=KB31903

	 291	 Creating a Vault File

Let’s create a new vault file called vault1.yml, which will contain variables for a
playbook:

mbp15:aja2 sean$ ansible-vault create vault1.yml
New Vault password: <enter password>
Confirm New Vault password: <re-enter password>

You should now be in your system’s default text editor. Enter the following, then
save the file and exit the editor:

vault_test_1: hello world

You should now be back at the command prompt.

The ansible-vault command does not care about contents of the files it encrypts,
but if the file will contain variables for Ansible playbooks then you should use
YAML format for the data in vault files.

If you view the vault file as text, you will see it contains mostly gibberish:

mbp15:aja2 sean$ cat vault1.yml
$ANSIBLE_VAULT;1.1;AES256
37326463363539396634636430383737326465373635396665643661666539613934633237616265
3064636661353166643038643734356464653133663961620a373262656532353531616162626435
66376361373166393535656137326333633033643633653534343464346636316330663537313037
6430336335306266610a376239373964353665613463393535316231323839316434643834353033
30373362336462653566383166373833316437323562373362323835313333383930

If you have an existing file you wish to encrypt with vault, use ansible-vault’s en-
crypt option instead of create. To try this, first create a text file called vault2.yml
with the following data:

vault_test_2: goodbye cruel world

Now encrypt that file:

mbp15:aja2 sean$ ansible-vault encrypt vault2.yml
New Vault password:
Confirm New Vault password:
Encryption successful

mbp15:aja2 sean$ cat vault2.yml
$ANSIBLE_VAULT;1.1;AES256
36316661613636623063636263373039346630656236366238383035383338613834326431376439
6230386639383961366365653737653332303965313961620a646163363130356132303865353534
37346536633031313562613434666662313766616264663439383265373932666535623034326436
3337383364646534630a316663373965353230363639623532376439313066373235396663303735
65366462343739333665366663383031333166643839623664373438336138366661653435316437
3733313263663634356630356338396333306361343131336466

	 292	 Chapter 11: Storing Private Variables – Ansible Vault

Viewing or Editing the Contents of a Vault File
The ansible-vault command has a view option that displays the (decrypted) con-
tents of a vault file:

mbp15:aja2 sean$ ansible-vault view vault1.yml
Vault password: <enter password>

vault_test_1: hello world

There is also an edit option that will open the vault file’s (decrypted) contents in
your system default text editor so you can modify the file:

mbp15:aja2 sean$ ansible-vault edit vault2.yml
Vault password: <enter password>
< File opens in text editor >

NOTE	 Some versions of ansible-vault may require that you use the --ask-vault-
pass option in order to prompt you for the vault password, for example:
ansible-vault view --ask-vault-pass vault1.yml

Creating a Playbook That Reads a Vault File
Now let’s create a simple playbook that displays a variable from a vault file. Create
playbook test-vault.yaml with the following:

 1|---
 2|- name: Display variable from a vault
 3|  hosts:
 4|    - localhost
 5|  connection: local
 6|  gather_facts: no
 7|
 8|  tasks:
 9|    - name: import vault data
10|      include_vars: vault1.yml
11|
12|    - name: display variable
13|      debug:
14|        var: vault_test_1

Lines 9–10 use Ansible’s include_vars module to import the data from the (decrypt-
ed) vault file. This is needed because our test vault files are not in a “standard” lo-
cation for an Ansible data file, so Ansible will not automatically import their
contents. By default, imported variables are made top-level variables.

Lines 12–14 display the contents of the imported vault_test_1 variable.

TIP	 The include_vars module can be used to import most YAML data files,
whether vault-encrypted or not.

	 293	 Considerations for Vault Passwords

Now let’s run the playbook. We need to include the option --ask-vault-pass to tell
the ansible-playbook command that it needs to prompt for a vault password:

mbp15:aja2 sean$ ansible-playbook test-vault.yaml --ask-vault-pass
Vault password:

PLAY [Display variable from a vault] ***

TASK [import vault data] ***
ok: [localhost]

TASK [display variable] **
ok: [localhost] => {
    "vault_test_1": "hello world"
}

PLAY RECAP ***
localhost                  : ok=2    changed=0    unreachable=0    failed=0

Observe the output from the debug task, showing the plain-text contents of the
variable in the encrypted vault file.

The ansible-playbook command will not automatically prompt for a password if
you forget the --ask-vault-pass option, resulting in a playbook failure when it can-
not decrypt the vault file:

mbp15:aja2 sean$ ansible-playbook test-vault.yaml

PLAY [Display variable from a vault] ***

TASK [import vault data] ***
fatal: [localhost]: FAILED! => {"ansible_facts": {}, "ansible_included_var_
files": [], "changed": false, "message": "Attempting to decrypt but no vault secrets found"}
	 to retry, use: --limit @/Users/sean/aja2/test-vault.retry

PLAY RECAP ***
localhost                  : ok=0    changed=0    unreachable=0    failed=1

Note the error message: “Attempting to decrypt but no vault secrets found.”

Considerations for Vault Passwords
With Ansible versions up to and including 2.3, you can specify only one vault
password when running a playbook. If a playbook needs to read multiple vault
files, all the vault files must use the same password.

Ansible version 2.4 permits the user to specify multiple passwords, allowing a
playbook to use several vault files with different passwords. This is accomplished
with the new-in-2.4 option --vault-id.

	 294	 Chapter 11: Storing Private Variables – Ansible Vault

NOTE	 This book discusses and uses the options that work with Ansible 2.3 and
earlier, in part to avoid problems for readers who cannot yet upgrade to Ansible
2.4 or newer. Readers who are using 2.4, and who do not require backwards
compatibility, are encouraged to investigate the new --vault-id option.

The security of a vault may be increased by using longer passwords. Of course,
longer passwords are more difficult to enter (correctly) when prompted. In addi-
tion, the need to enter a password at a prompt means that a playbook that requires
a vault file cannot be run on a scheduled or unattended basis.

Ansible supports the ability to put your vault password in a text file and have the
ansible-vault and ansible-playbook commands read that text file to get the pass-
word. This permits the use of longer passwords and unattended execution of a
playbook. However, the password file itself is a potential security risk. Should you
use this approach, take steps to ensure the password file is readable only to autho-
rized users, and consider making the password file hidden and putting it in a direc-
tory separate from the Ansible playbooks and related files.

Use the --vault-password-file option with ansible-vault and ansible-playbook to
provide the (location and) name of the file containing the vault password.

Create file ~/vault-pass.txt and put your password for the vault1.yml file into the
new file. View the contents of the vault2.yml file using the password file:

mbp15:aja2 sean$ ansible-vault view --vault-password-file=~/vault-pass.txt vault2.yml

vault_test_2: goodbye cruel world

Now run the playbook test-vault.yaml using the password file:

mbp15:aja2 sean$ ansible-playbook test-vault.yaml --vault-password-file=~/vault-pass.txt

PLAY [Display variable from a vault] ***

TASK [import vault data] ***
ok: [localhost]

TASK [display variable] **
ok: [localhost] => {
    "vault_test_1": "hello world"
}

PLAY RECAP ***
localhost                  : ok=2    changed=0    unreachable=0    failed=0

Adding Passwords to Base Settings – Base Settings 4
Let’s add to our “base settings” playbook the password for the root account, and a
second, read-only account with a static password to be used by network monitor-
ing tools.

	 295	 Adding Passwords to Base Settings – Base Settings 4

Junos stores most sensitive data, including passwords, in an encrypted form in the
device’s configuration file. This example will store the encrypted passwords in the
vault, and enter the encrypted passwords into the device configuration.

Storing already-encrypted passwords in a vault may seem to be redundant. How-
ever, Junos prior to version 15.1 used MD5 for password hashing. MD5 is no lon-
ger considered to be cryptographically secure. Putting MD5-hashed passwords in
a vault adds a layer of security (ansible-vault uses SHA256 by default).

Even if you choose not to store your encrypted passwords in a vault, the pattern
shown here will work for other sensitive data.

Earlier in this chapter we saw how to import vault data using an include_vars task.
There is a problem with this approach: the playbook references a variable that you
cannot find unless you already know to decrypt the vault file. Pretend that you are
updating a playbook written by someone else and encounter the variable reference
“{{ root_password }}” in the playbook or in a Jinja2 template referenced by the
playbook. Where will you look for the definition of root_password? If the root_pass-
word variable is defined in a vault file, you will not be able to locate it using the
search feature of your text editor or the UNIX grep command. What then? With
our first example, where the playbook is small and the variable is referenced in the
playbook immediately after including the vault file, this may not seem to be a
problem. However, as playbooks get larger and more complex, it gets more dif-
ficult to see the connection.

For this second example, we use a different approach, one proposed by Ansible as
a best practice (see the link in the References section at the end of the chapter). We
modify one of our group_vars entries, creating a vault file that Ansible opens auto-
matically, thus eliminating the need for an include_vars task. In addition, our Jinja2
template references a variable that is in a plain-text data file, but that variable in
turn references a vault-encrypted variable in a file that is easy to locate, because it
is in the same directory as the plain-text variables file. Over the next few pages we
will update our data files to illustrate this approach.

There is a downside to this approach: we need to provide the vault password even
for playbooks that do not use the vault data, because Ansible needs to read all
group_vars data whether or not the playbook references any specific variable, in-
cluding the vault-encrypted variables.

Variable and Vault Files
Let’s start with the changes to our variables and adding the vault file. We currently
have a single file in group_vars for each group’s variables. However, Ansible lets you
create a subdirectory in group_vars for each group, and place multiple files contain-
ing group-specific variables in the group’s directory. When running a playbook,

	 296	 Chapter 11: Storing Private Variables – Ansible Vault

Ansible loads the variables from all the files in the group’s subdirectory. This is the
approach used for this example.

TIP	 Ansible supports a similar option for individual device variables – you can
create a subdirectory within host_vars for a device, and Ansible reads the data from
all files in the device’s subdirectory. We do not show an example with a host data
directory, but you may find this feature useful if you need to encrypt host-specific
data.

This example assumes all devices across the environment share the same root and
management account passwords, and thus we modify the all group’s variables. If
your environment uses different credentials for different sites, you could modify
the respective site-specific groups instead of the all group.

We currently have variables for all managed devices in file group_vars/all.yaml.
Create a directory group_vars/all (which corresponds to the all group). Move the
all.yaml variables file into the new directory, renaming it to vars.yaml:

mbp15:aja2 sean$ cd group_vars/

mbp15:group_vars sean$ ls -1
all.yaml
boston.yaml
sf.yaml

mbp15:group_vars sean$ mkdir all

mbp15:group_vars sean$ mv all.yaml all/vars.yaml

mbp15:group_vars sean$ tree .
.
├── all
│    └── vars.yaml
├── boston.yaml
└── sf.yaml

1 directory, 3 files

Now modify group_vars/all/vars.yaml to include the following new (boldfaced)
lines:

ansible_python_interpreter: /usr/local/bin/python
user_data_path: "{{ '~/ansible' | expanduser }}"
root_hash: "{{ vault_root_hash }}"
monitor_hash: "{{ vault_monitor_hash }}"

Observe that these variables, in a plain-text variables file, reference other vari-
ables. The two new vault_* variables will be in a new vault file that we will create
momentarily.

	 297	 Adding Passwords to Base Settings – Base Settings 4

Because we want to store the hashed (encrypted) password, log into one of your
test devices and copy the root password hash. If you have a mix of Junos versions,
particularly versions 12.3 or earlier, copy the root password hash from a device
running the oldest Junos version to ensure you are getting a hash that will be com-
patible with all the Junos versions in use. (See the link in the References section at
the end of the chapter for more details.)

sean@bilbo> show configuration system root-authentication
encrypted-password "$1$7as5CZnA$Xc1QTe5dW2ph8Y59l8.0j1"; ## SECRET-DATA

Create file group_vars/all/vault.yaml with the following variable definition, but use
the appropriate password hash for your devices:

vault_root_hash: "$1$7as5CZnA$Xc1QTe5dW2ph8Y59l8.0j1"

On one of your test devices (preferably one running the oldest version of Junos in
your environment), create a new account monitor and set its password. Show the
change. You can roll back the change, we just needed the new hash:

sean@bilbo> configure
Entering configuration mode

{master:0}[edit]
sean@bilbo# set system login user monitor authentication plain-text-password
New password:
Retype new password:

{master:0}[edit]
sean@bilbo# show system login user monitor
authentication {
    encrypted-password "1ZAduRAJ9$42vsgW1i0kuZcPYww46Xq1"; ## SECRET-DATA
}
## Warning: missing mandatory statement(s): 'class'

{master:0}[edit]
sean@bilbo# rollback
load complete

{master:0}[edit]
sean@bilbo# exit
Exiting configuration mode

Copy that password hash and add it to group_vars/all/vault.yaml:

vault_root_hash: "$1$7as5CZnA$Xc1QTe5dW2ph8Y59l8.0j1"
vault_monitor_hash: "1ZAduRAJ9$42vsgW1i0kuZcPYww46Xq1"

Save the vault.yaml file, then use ansible-vault encrypt to encrypt the file:

mbp15:aja2 sean$ ansible-vault encrypt --vault-password-file=~/vault-pass.txt group_vars/all/vault.
yaml
Encryption successful

If you view the vault.yaml file now it should be encrypted.

	 298	 Chapter 11: Storing Private Variables – Ansible Vault

Add Accounts to Base Settings Template
Now let’s update the template. Modify the template/base-settings.j2 template to
include the following boldfaced lines. (Line numbers added for discussion. Only
the relevant portion of the file is shown; do not delete lines not shown below.)

...
15|system {
16|    host-name {{ inventory_hostname }};
17|    root-authentication {
18|        encrypted-password "{{ root_hash }}";
19|    }
20|    login {
21|        user monitor {
22|            uid 2005;
23|            class read-only;
24|            authentication {
25|                encrypted-password "{{ monitor_hash }}";
26|            }
27|        }
28|        user sean {
29|            uid 2000;
30|            class super-user;
31|            authentication {
32|                ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";
33|            }
34|        }
35|    }
...

Run the base-settings.yaml playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml --ask-vault-pass --limit=aragorn
Vault password:

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create configs directory] *************************************
changed: [aragorn]

TASK [get device facts] **
ok: [aragorn]

TASK [display device facts] **
skipping: [aragorn]

TASK [save device configuration using template] ********************************
changed: [aragorn]

TASK [install generated configuration file onto device] ************************
changed: [aragorn]

TASK [show configuration change] ***
ok: [aragorn] => {
    "config_results.diff_lines": [
        "",

	 299	 Decrypting the Vault

        "[edit system root-authentication]",
        "-   encrypted-password \"$5$2VhUeUC5$ba4WLLZc8SoifKhetMBN5M16BnIs2KCKLZ90MV5L
6i.\"; ## SECRET-DATA",
        "+   encrypted-password \"$1$7as5CZnA$Xc1QTe5dW2ph8Y59l8.0j1\"; ## SECRET-DATA",
        "[edit system login]",
        "+    user monitor {",
        "+        uid 2005;",
        "+        class read-only;",
        "+        authentication {",
        "+            encrypted-password \"1ZAduRAJ9$42vsgW1i0kuZcPYww46Xq1\"; ## SECRET-DATA",
        "+        }",
        "+    }",
        "[edit snmp]",
        "-  description \"vSRX for writing AJA2\";",
        "+  description \"virtual SRX for testing\";"
    ]
}

RUNNING HANDLER [confirm previous commit] **************************************
ok: [aragorn]

PLAY RECAP ***
aragorn                    : ok=6    changed=3    unreachable=0    failed=0

Observe that no change to the playbook itself was needed. The additional vari-
ables, the new vault file, and the additions to the template completed the changes.

Decrypting the Vault
If your test devices are using non-production passwords, and thus security is not of
paramount importance, the author suggests decrypting the vault file with the root
and monitor password hashes. This removes the need to enter the vault password
when running playbooks in the remaining chapters of the book. If you wish to do
this, follow these steps:

mbp15:aja2 sean$ ansible-vault decrypt group_vars/all/vault.yaml
Vault password:
Decryption successful

mbp15:aja2 sean$ cat group_vars/all/vault.yaml

vault_root_hash: "$1$7as5CZnA$Xc1QTe5dW2ph8Y59l8.0j1"
vault_monitor_hash: "1ZAduRAJ9$42vsgW1i0kuZcPYww46Xq1"

If you do not wish to decrypt the vault, remember to use either the --ask-vault-pass
or the --vault-password-file options when running the playbooks in the remaining
chapters.

	 300	 Chapter 11: Storing Private Variables – Ansible Vault

References
Vault instructions:
http://docs.ansible.com/ansible/latest/vault.html

Vault variables best practices:
http://docs.ansible.com/ansible/latest/playbooks_best_practices.
html#variables-and-vaults

Junos hashing algorithms by version:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB31903

As your playbooks become more complicated, and as you create more templates to
manage more aspects of a device’s configuration, you will want to organize your
templates and tasks into logical units.

Ansible’s roles provide such a mechanism; they group tasks, templates, variables,
and other files into a directory structure. When a role is included in a playbook,
the tasks within the role execute as part of the playbook.

A given role may be included in more than one playbook. For example, you might
want a playbook that updates only SNMP settings on your devices, but might also
want to include those same SNMP settings in your “all settings” playbook. If you
put the SNMP settings into a role, you can easily include that role in both your “all
settings” playbook and your “update SNMP” playbook.

Roles Directory and Files
Ansible automatically looks for roles in a roles subdirectory within the playbook’s
directory. Each role is in an eponymously named subdirectory within the roles sub-
directory; for example, the files related to a role named snmp would be in the sub-
directory roles/snmp.

The directory for a role must contain one or more subdirectories, as needed for the
role, with specific names understood by Ansible. In this chapter, we discuss the fol-
lowing subdirectories, but Ansible supports a few others:

� tasks: Tasks that execute as part of the role.

� handlers: Handlers that may be notified by tasks in the role or in the play (in
the playbook).

Chapter 12

Roles

	 302	 Chapter 12: Roles

	� vars: Variables that may be referenced by the playbook or the role.

	� templates: Jinja2 templates that may be used by the role.

The tasks, handlers, and vars subdirectories should each contain a main.yml file
with the appropriate contents (the expected contents will become clear in the
examples).

The templates subdirectory should contain one or more Jinja2 templates. The tem-
plates’ filenames are not dictated by Ansible; the author suggests using descriptive
names for the template files.

Create directory ~/aja2/roles to contain the roles we create in this chapter:

mbp15:aja2 sean$ mkdir roles

A Role for SNMP Settings
Let’s start by creating a role to generate configuration files for SNMP settings. In
the next section of this chapter, we create the playbook that uses the role.

It is the author’s experience that, at least initially, a role and playbook are devel-
oped in parallel, with a lot of switching back-and-forth between role and play-
book as the various files are developed. The linear format of a book makes it
challenging to clearly represent the back-and-forth, so this chapter presents the
role and playbook separately. However, in the following discussion about the role
there are some “forward-looking” statements about the playbook, when the infor-
mation is needed to understand the contents of the role and its files.

For purposes of this example role, assume that we need some common SNMP set-
tings across all our devices, but that we have different SNMP community names
for managing firewalls versus switches. The role uses different Jinja2 templates for
the common settings and the different communities.

To start a role for SNMP settings, create directory ~/aja2/roles/snmp:

mbp15:aja2 sean$ mkdir roles/snmp

Our SNMP role needs tasks and templates; create the respective subdirectories:

mbp15:aja2 sean$ mkdir roles/snmp/tasks
mbp15:aja2 sean$ mkdir roles/snmp/templates

Create the following three Jinja2 templates in the roles/snmp/templates directory:

File snmp.j2 for the common SNMP settings:

#jinja2: lstrip_blocks: True
snmp {
    description "{{ aja2_host.snmp.description }}";
    location "{{ aja2_host.snmp.location }}";
    contact "netadmin@aja.com";

	 303	 A Role for SNMP Settings

    {# ensure there will be no community public on a device #}
    delete: community public;
}

File community_fw.j2 for the firewall management community:

#jinja2: lstrip_blocks: True
snmp {
    replace:
    community aja2_fw {
        authorization read-only;
        clients {
            192.168.1.100/32;
            0.0.0.0/0 restrict;
        }
    }
}

File community_sw.j2 for the switch management community:

#jinja2: lstrip_blocks: True
snmp {
    replace:
    community aja2_sw {
        authorization read-only;
        clients {
            192.168.2.200/32;
            0.0.0.0/0 restrict;
        }
    }
}

Next, we must write the tasks that render the templates, thereby creating configu-
ration files. To do this, we need to determine where the generated configuration
files will be saved.

Because we are generating multiple configuration files (fragments) from our sev-
eral template files, the fragments need to be assembled into a single configuration
file before installing the assembled file on the device. We put the assembly step in
playbook that uses the role. For this to work, we need a “build” subdirectory for
each device that contains the configuration fragments to be assembled for that
device.

Assume the playbook defines a config_assemble_build variable containing the path
to the “build” subdirectory. The tasks in the role that render the templates refer-
ence the config_assemble_build variable, so the generated configuration fragments
are placed in a location known to the playbook.

Create file roles/snmp/tasks/main.yml (line numbers added for discussion):

 1|---
 2|- name: common snmp settings
 3|  template:
 4|    src: snmp.j2
 5|    dest: "{{ config_assemble_build }}/snmp.conf"
 6|
 7|- name: firewall community

	 304	 Chapter 12: Roles

 8|  template:
 9|    src: community_fw.j2
10|    dest: "{{ config_assemble_build }}/snmp_community_fw.conf"
11|  when: ('srx' in group_names)
12|
13|- name: switch community
14|  template:
15|    src: community_sw.j2
16|    dest: "{{ config_assemble_build }}/snmp_community_sw.conf"
17|  when: ('ex' in group_names)

Lines 2–5 use Ansible’s template module, which we have seen previously, to render
a configuration file from the snmp.j2 template created above. Notice we need to
provide only the filename for the template (src) file, not the full path to the file; be-
cause the template and task are part of the same role, Ansible knows the correct
path. (If a task references a template outside the role, a full path would be needed.)
The destination for the completed configuration file needs both path and filename;
the path is read from the config_assemble_build variable defined in the playbook.

Lines 7–11 build a configuration file from the community_fw.j2 template. Because we
want this configuration only when the device is a firewall, the when condition on
line 11 tests to see if the current device is in group srx (more specifically, it tests to
see if the string 'srx' is in the list of group_names associated with the device).

Lines 13–17 are similar to lines 7 – 11, but for the community_sw.j2 template needed
only for switches.

The role should be complete. Do a quick check that you have the following files
and directories for the role:

mbp15:aja2 sean$ tree roles/snmp/
roles/snmp/
├── tasks
│  ├── main.yml
└── templates
    ├── community_fw.j2
    ├── community_sw.j2
    └── snmp.j2

2 directories, 4 files

A Playbook for the SNMP Role
Now create playbook snmp-settings.yaml in your ~/aja2 directory (line numbers
added for discussion):

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|    - snmp
 8|  connection: local

	 305	 A Playbook for the SNMP Role

 9|  gather_facts: no
10|
11|  vars:
12|    config_assemble: "{{ user_data_path }}/config/{{ inventory_hostname }}"
13|    config_assemble_build: "{{ config_assemble }}/build"
14|    config_file: "{{ config_assemble }}/snmp.conf"
15|    playbook_name: snmp-settings.yaml
16|    connection_settings:
17|      host: "{{ ansible_host }}"
18|      timeout: 120
19|
20|  pre_tasks:
21|    - name: confirm or create device config directory
22|      file:
23|        path: "{{ config_assemble }}"
24|        state: directory
25|
26|    - name: delete previous build directory
27|      file:
28|        path: "{{ config_assemble_build }}"
29|        state: absent
30|
31|    - name: create build directory
32|      file:
33|        path: "{{ config_assemble_build }}"
34|        state: directory
35|
36|  tasks:
37|    - name: assemble config fragments
38|      assemble:
39|        src: "{{ config_assemble_build }}"
40|        dest: "{{ config_file }}"
41|      notify: install config onto device
42|
43|  handlers:
44|    - name: install config onto device
45|      juniper_junos_config:
46|        provider: "{{ connection_settings }}"
47|        src: "{{ config_file }}"
48|        load: replace
49|        confirmed: 5
50|        diff: yes
51|        ignore_warning: yes
52|        comment: "playbook {{ playbook_name }}, commit confirmed"
53|      notify: confirm commit
54|
55|    - name: confirm commit
56|      juniper_junos_config:
57|        provider: "{{ connection_settings }}"
58|        commit: yes
59|        comment: "playbook {{ playbook_name }}, confirming previous commit"

Lines 2–9 are the familiar start of a playbook that works with Junos devices, but
with a notable addition. In the roles list, observe that we added our new snmp role
(line 7). This addition causes the play to, in essence, import the variables and ex-
ecute the tasks defined in the role.

	 306	 Chapter 12: Roles

NOTE	 Yes, the Galaxy modules we have been using (line 6) are actually a role!
The details of that role and its directories are outside the scope of this book. If you
want to explore a little, use the following command to locate the directory where
ansible-galaxy installed the role, and look in the role’s Juniper.junos/library
subdirectory.

mbp15:aja2 sean$ sudo ansible-galaxy info Juniper.junos | grep 'path:'
        path: [u'/etc/ansible/roles']

Lines 11–18 define some variables for the play, which are also available to roles
imported by the play. Note in particular line 13, the config_assemble_build variable
that we referenced in the role’s tasks (in file roles/snmp/tasks/main.yml).

Line 20 introduces something new, a pre_tasks section of the play. Ansible imports
a role and executes the role’s tasks before it executes the tasks defined in the tasks
section of the play that imports the role. However, we need to create the directories
that will receive the generated configuration files before we ask the role to generate
those files. The pre_tasks section of the play defines tasks that should be executed
first, before the role’s tasks are executed.

Lines 21–34 define three pre_tasks that ensure we have a directory in which to as-
semble our SNMP configuration, and a clean “build” subdirectory to place the
configuration fragments created by the role. This is a pattern we have used in other
examples in this book.

Lines 37–41 define the task that assembles the configuration fragments into a sin-
gle configuration file, then notifies the handler that will install that configuration
file onto a Junos device. Note the references to variables defined on lines 13 and 14
of the playbook.

Finally, lines 43–59 define two handlers. The first installs a configuration file on a
Junos device using a “commit confirmed” and the second confirms the commit.
Notice that one handler can notify another handler to run (line 53).

Now let’s run the playbook. As the playbook runs, observe the order of the differ-
ent tasks; you can see how the play’s pre_tasks run first, followed by the snmp role’s
tasks, and finally the play’s tasks and handlers. Also notice that the role’s tasks are
prefixed with the role’s name, for example, snmp : common snmp settings.

mbp15:aja2 sean$ ansible-playbook snmp-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [confirm or create device config directory] *******************************
changed: [bilbo]
changed: [aragorn]

TASK [delete previous build directory] ***
ok: [aragorn]
ok: [bilbo]

http://docs.ansible.com/ansible/latest/playbooks_reuse_roles.html

	 307	 A Playbook for the SNMP Role

TASK [create build directory] **
changed: [bilbo]
changed: [aragorn]

TASK [snmp : common snmp settings] ***
changed: [bilbo]
changed: [aragorn]

TASK [snmp : firewall community] ***
skipping: [bilbo]
changed: [aragorn]

TASK [snmp : switch community] ***
skipping: [aragorn]
changed: [bilbo]

TASK [assemble config fragments] ***
changed: [bilbo]
changed: [aragorn]

RUNNING HANDLER [install config onto device] ***********************************
changed: [aragorn]
changed: [bilbo]

RUNNING HANDLER [confirm commit] ***
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=8    changed=6    unreachable=0    failed=0
bilbo                      : ok=8    changed=6    unreachable=0    failed=0

Look at the files generated by the playbook. The hierarchy should be similar to the
following, adjusted for your home directory and device names:

mbp15:aja2 sean$ tree ~/ansible/config/
/Users/sean/ansible/config/
├── aragorn
│    ├── build
│    │    ├── snmp.conf
│    │    └── snmp_community_fw.conf
│    └── snmp.conf
└── bilbo
     ├── build
     │    ├── snmp.conf
     │    └── snmp_community_sw.conf
     └── snmp.conf

4 directories, 6 files

View the contents of the snmp.conf file, and the files in the build directory, for one or
more of the devices and notice how the fragments are assembled.

	 308	 Chapter 12: Roles

TIP	 As you run the playbook repeatedly, you will find it stops processing
devices after the “assemble config fragments” task. Delete the assembled snmp.conf
files in the devices’ directories created by the previous run of the playbook before
running the playbook again (for example, rm ~/ansible/config/bilbo/snmp.conf).

NOTE	 If you are currently thinking “we could have written this playbook
without creating the snmp role and all its files,” you are correct, but this was a
fairly simple example. As we increase the complexity of the examples through the
rest of the chapter, it should become clearer how roles become building blocks that
help us build complicated playbooks and provide flexibility while minimizing
duplicate code.

Moving Setup Tasks and Handlers into a Role
Take another look at the snmp-settings.yaml playbook. Notice that there is very lit-
tle in this playbook that is specific to SNMP information. The playbook could be
copied to, for example, login-settings.yaml, and by replacing the snmp role with a
login role (assuming such a role has been created), and changing the values as-
signed to the playbook_name and config_file variables, the new file would become a
playbook for updating login settings.

However, doing so would require duplicate code between the snmp-settings.yaml
and login-settings.yaml playbooks, particularly the pre_tasks and handlers sections
of the files. Code sometimes needs to be changed. Why maintain the same code in
two different files? Why not move that code into a role?

Create a new role config_setup_commit with the following files and directories:

roles/config_setup_commit/
├── handlers
│    └── main.yml
├── tasks
│    └── main.yml
└── vars
     └── main.yml

File roles/config_setup_commit/handlers/main.yml contains the following (copied
from the handlers section of snmp-settings.yaml, extra indentation removed, and
variables used for confirm value):

- name: install config onto device
  juniper_junos_config:
    provider: "{{ connection_settings }}"
    src: "{{ config_file }}"
    load: replace
    confirmed: "{{ confirm_time }}"
    diff: yes
    ignore_warning: yes
    comment: "playbook {{ playbook_name }}, commit confirmed {{ confirm_time }}"
  notify: confirm commit

	 309	 Moving Setup Tasks and Handlers into a Role

- name: confirm commit
  juniper_junos_config:
    provider: "{{ connection_settings }}"
    commit: yes
    comment: "playbook {{ playbook_name }}, confirming previous commit"

File roles/config_setup_commit/tasks/main.yml contains the following (copied from
the pre_tasks section of snmp-settings.yaml and extra indentation removed):

- name: confirm or create device config directory
  file:
    path: "{{ config_assemble }}"
    state: directory

- name: delete previous build directory
  file:
    path: "{{ config_assemble_build }}"
    state: absent

- name: create build directory
  file:
    path: "{{ config_assemble_build }}"
    state: directory

File roles/config_setup_commit/vars/main.yml contains the following. The first two
variables are new, used to replace static values later in the variables file or in the
handlers file. The remaining variables were copied from the vars section of the
playbook.

commit_timeout: 120
confirm_time: 10
config_assemble: "{{ user_data_path }}/config/{{ inventory_hostname }}"
config_assemble_build: "{{ config_assemble }}/build"
connection_settings:
  host: "{{ ansible_host }}"
  timeout: "{{ commit_timeout }}"

Now delete the pre_tasks and handlers sections of the snmp-settings.yaml playbook,
and delete the three variables that were moved into the role. Also add the new role
to the roles list (the order of the list is important, for reasons we discuss momen-
tarily). The playbook now looks like this:

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|    - config_setup_commit
 8|    - snmp
 9|  connection: local
10|  gather_facts: no
11|
12|  vars:

	 310	 Chapter 12: Roles

13|    config_file: "{{ config_assemble }}/snmp.conf"
14|    playbook_name: snmp-settings.yaml
15|
16|  tasks:
17|    - name: assemble config fragments
18|      assemble:
19|        src: "{{ config_assemble_build }}"
20|        dest: "{{ config_file }}"
21|      notify: install config onto device

Because we have not changed the templates, in order to see the full effects of the
playbook, roll back the previous change on your test devices and delete the assem-
bled snmp.conf files from the last playbook run.

Run the playbook again:

mbp15:aja2 sean$ ansible-playbook snmp-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [config_setup_commit : confirm or create device config directory] *********
ok: [bilbo]
ok: [aragorn]

TASK [config_setup_commit : delete previous build directory] *******************
changed: [bilbo]
changed: [aragorn]

TASK [config_setup_commit : create build directory] ****************************
changed: [bilbo]
changed: [aragorn]

TASK [snmp : common snmp settings] ***
changed: [bilbo]
changed: [aragorn]

TASK [snmp : firewall community] ***
skipping: [bilbo]
changed: [aragorn]

TASK [snmp : switch community] ***
skipping: [aragorn]
changed: [bilbo]

TASK [assemble config fragments] ***
changed: [bilbo]
changed: [aragorn]

RUNNING HANDLER [config_setup_commit : install config onto device] *************
changed: [aragorn]
changed: [bilbo]

RUNNING HANDLER [config_setup_commit : confirm commit] *************************
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=8    changed=6    unreachable=0    failed=0
bilbo                      : ok=8    changed=6    unreachable=0    failed=0

	 311	 Adding a System Role and Playbook

Observe again the order of the tasks. You can see the tasks from the config_setup_
commit role run first, followed by the tasks from the snmp role, then the remaining
task from the playbook itself, and finally the handlers from the config_setup_commit
role.

How did the playbook know to run the tasks from the config_setup_commit role be-
fore the tasks from the snmp role? Because that was the order of the roles list in the
playbook. Roles are evaluated in order.

The Juniper.junos role needs to be imported before the config_setup_commit role,
because config_setup_commit (specifically, the handlers) relies on modules that are
part of Juniper.junos. If you reverse their order, you’ll get an error similar to this:

ERROR! no action detected in task. This often indicates a misspelled module name, or incorrect module
path.

The error appears to have been in '/Users/sean/aja2/roles/config_setup_commit/handlers/main.yml':
line 2, column 3, but may be elsewhere in the file depending on the exact syntax problem.

The offending line appears to be:

- name: install config onto device
 ̂ here

How did the handlers from config_setup_commit run separately, later than, the tasks
from the same role? Handlers run when notified, not when loaded. The handlers
were imported into the play when the tasks were run, but they were not executed
until the first handler was notified by the “assemble config fragments” task in the
playbook.

Adding a System Role and Playbook
Let’s define another role, one that creates settings for the Junos system hierarchy
(except the login hierarchy), and a new playbook to apply that role.

Create the following directories and files:

roles/system/
├── tasks
│    └── main.yml
└── templates
     └── system.j2

File roles/system/tasks/main.yml contains:

- name: system settings
  template:
    src: system.j2
    dest: "{{ config_assemble_build }}/system.conf"

File roles/system/templates/system.j2 contains the following, mostly copied from
our earlier base-settings.j2 template:

	 312	 Chapter 12: Roles

#jinja2: lstrip_blocks: True
{% set model = junos.model.lower() %}
{% set personality = junos.personality | lower %}

{#- Determine SSH connection-limit and rate-limit based on device facts #}
{% if model == 'vsrx' %}
  {% set max_ssh = 5 %}
{% elif personality == 'srx_branch' %}
  {% set max_ssh = 3 %}
{% else %}
  {% set max_ssh = 10 %}
{% endif %}

{#- Generate basic settings for the device #}
system {
    host-name {{ inventory_hostname }};
    domain-name aja2.com;
    domain-search [ aja2.com aja2.net ];
    replace:
    name-server {
      {% for server in aja2_host.dns_servers %}
        {{ server }};
      {% endfor %}
    }
    services {
        delete: ftp;
        netconf {
            ssh {
                connection-limit {{ max_ssh }};
                rate-limit {{ max_ssh }};
            }
        }
        ssh {
            connection-limit {{ max_ssh }};
            rate-limit {{ max_ssh }};
        }
        delete: telnet;
        delete: web-management;
    }
    replace:
    ntp {
      {% for ntp in aja2_site.ntp_servers %}
        server {{ ntp }};
      {% endfor %}
    }
}

Now copy the snmp-settings.yaml playbook to system-settings.yaml and change or
add the boldfaced lines in the new playbook (line numbers added for discussion):

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|    - config_setup_commit
 8|    - system

	 313	 Adding a System Role and Playbook

 9|  connection: local
10|  gather_facts: no
11|
12|  vars:
13|    config_file: "{{ config_assemble }}/system.conf"
14|    playbook_name: system-settings.yaml
15|
16|  pre_tasks:
17|    - name: get device facts
18|      juniper_junos_facts:
19|        provider: "{{ connection_settings }}"
20|
21|  tasks:
22|    - name: assemble config fragments
23|      assemble:
24|        src: "{{ config_assemble_build }}"
25|        dest: "{{ config_file }}"
26|      notify: install config onto device

Line 8 imports the new system role, replacing the snmp role.

Line 13 generates the name of the configuration file to be applied to the devices,
which should be changed from snmp.conf to system.conf.

Line 14 documents the name of the playbook during commits.

Lines 16–20 add a pre_task to gather system facts, copied from our playbook bas-
esettings.yaml. The template for the system hierarchy needs certain facts about the
device in order to set correct values. This was not needed for the SNMP settings
playbook because the SNMP templates did not rely on gathering information from
the device.

NOTE	 The fact gathering could have been added to the system role itself, as a
task, and would have worked fine in this example. However, what would happen
if we later create another role that needs device facts? Do we run the fact gathering
in both roles, duplicating code and effort if we use both roles in the same play-
book? Putting the fact gathering in the playbook avoids this concern.

Run the new playbook:

mbp15:aja2 sean$ ansible-playbook system-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [get device facts] **
ok: [aragorn]
ok: [bilbo]

TASK [config_setup_commit : confirm or create device config directory] *********
ok: [bilbo]
ok: [aragorn]

TASK [config_setup_commit : delete previous build directory] *******************
changed: [bilbo]
changed: [aragorn]

	 314	 Chapter 12: Roles

TASK [config_setup_commit : create build directory] ****************************
changed: [aragorn]
changed: [bilbo]

TASK [system : system settings] **
changed: [aragorn]
changed: [bilbo]

TASK [assemble config fragments] ***
changed: [bilbo]
changed: [aragorn]

RUNNING HANDLER [config_setup_commit : install config onto device] *************
changed: [aragorn]
changed: [bilbo]

RUNNING HANDLER [config_setup_commit : confirm commit] *************************
ok: [aragorn]
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=8    changed=5    unreachable=0    failed=0
bilbo                      : ok=8    changed=5    unreachable=0    failed=0

Observe the order of the tasks. Take a look at the generated files.

Note how little we needed to change in the playbook itself to obtain very different
results.

Building an “All Settings” Playbook
Now let’s build a playbook to configure all settings for which we have roles. At
present, that means only the snmp and system roles, but this can easily be expanded
to include additional roles.

Copy the system-settings.yaml file to all-settings.yaml and add the snmp role. (The
order, relative to each other, of the snmp and system roles in the roles list is not im-
portant, as they do not depend on each other.) Also update the two playbook vari-
ables as shown:

 1|---
 2|- name: Generate and Install Configuration File
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|    - config_setup_commit
 8|    - snmp
 9|    - system
10|  connection: local
11|  gather_facts: no
12|
13|  vars:
14|    config_file: "{{ config_assemble }}/all.conf"
15|    playbook_name: all-settings.yaml
16|

	 315	 Building an “All Settings” Playbook

17|  pre_tasks:
18|    - name: get device facts
19|      juniper_junos_facts:
20|        provider: "{{ connection_settings }}"
21|
22|  tasks:
23|    - name: assemble config fragments
24|      assemble:
25|        src: "{{ config_assemble_build }}"
26|        dest: "{{ config_file }}"
27|      notify: install config onto device

In order for the playbook to confirm the commit you need to roll back the last two
changes on some of your test devices. Otherwise, the applied configuration will be
unchanged from what is already on the device. The author rolled back changes on
bilbo, but not on aragorn; observe the differences between the devices in the out-
put for the two handlers. Run the playbook:

mbp15:aja2 sean$ ansible-playbook all-settings.yaml

PLAY [Generate and Install Configuration File] *********************************

TASK [get device facts] **
ok: [aragorn]
ok: [bilbo]

TASK [config_setup_commit : confirm or create device config directory] *********
ok: [bilbo]
ok: [aragorn]

TASK [config_setup_commit : delete previous build directory] *******************
changed: [bilbo]
changed: [aragorn]

TASK [config_setup_commit : create build directory] ****************************
changed: [bilbo]
changed: [aragorn]

TASK [snmp : common snmp settings] ***
changed: [bilbo]
changed: [aragorn]

TASK [snmp : firewall community] ***
skipping: [bilbo]
changed: [aragorn]

TASK [snmp : switch community] ***
skipping: [aragorn]
changed: [bilbo]

TASK [system : system settings] **
changed: [bilbo]
changed: [aragorn]

TASK [assemble config fragments] ***
changed: [aragorn]
changed: [bilbo]

	 316	 Chapter 12: Roles

RUNNING HANDLER [config_setup_commit : install config onto device] *************
ok: [aragorn]
changed: [bilbo]

RUNNING HANDLER [config_setup_commit : confirm commit] *************************
ok: [bilbo]

PLAY RECAP ***
aragorn                    : ok=9    changed=6    unreachable=0    failed=0
bilbo                      : ok=10   changed=7    unreachable=0    failed=0

Observe the order of the tasks. Take a look at the generated configuration files.

Consider how little we needed to change the playbook itself to create a new play-
book that sets both SNMP and System settings (and any other roles we may add in
the future). This is the power of using roles!

References
Ansible’s Roles reference:

http://docs.ansible.com/ansible/latest/playbooks_reuse_roles.html

Sometimes a playbook needs to be able to repeat a task several times. This chapter
discusses two situations where repeating a task is useful and how to accomplish it.

The first is automatically retrying a task that failed. This is most likely to be useful
for tasks that might fail because a device was temporarily unreachable, or its con-
figuration was temporarily locked thereby blocking the playbook from changing
the configuration.

The second is repeating a task for each element in a list. The list could come from a
number of sources – a data file, results from querying a device, etc. – but the gen-
eral idea is you want to repeat some task for each element.

Re-trying a Failed Task
Ansible has the ability to retry a task that failed. You can specify how many times
to retry the task, how long to wait between attempts, and even a condition that
can limit the types of failures that will cause the task to be retried.

Create playbook get-version.yaml with the following (line numbers added for
discussion):

 1|---
 2|- name: Get Junos version
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|

Chapter 13

Repeating Tasks

	 318	 Chapter 13: Repeating Tasks

10|  vars:
11|    connection_settings:
12|      host: "{{ ansible_host }}"
13|
14|  tasks:
15|    - name: get Junos version
16|      juniper_junos_rpc:
17|        rpcs:
18|          - get-software-information
19|        provider: "{{ connection_settings }}"
20|        formats: text
21|      register: jversion
22|      retries: 2
23|      delay: 15
24|      until: jversion is success
25|
26|    - name: display Junos version
27|      debug:
28|        var: jversion

Most of the playbook’s contents are already familiar. We used Juniper’s juniper_ju-
nos_rpc module in Chapter 5. The RPC get-software-information is the equivalent of
the Junos CLI command “show version.”

Lines 22– 24 are new. These lines together tell Ansible how it should retry the task
should it fail. Observe that these lines are indented to the level of the task; these
are Ansible arguments to the task, not arguments to the juniper_junos_rpc module.

Line 22, the retries argument, specifies the number of additional times the task
may be retried after the initial failure. In this example, we are asking for up to two
retries, or three attempts total.

Line 23, the delay argument, specifies how many seconds to wait between a failure
and the (next) retry.

Line 24, the until option, is the looping construct. In programming, a do-until or
until loop is a loop that repeats until some condition is true (in other words, the
loop repeats while the condition is false). The condition shown here, jversion is
success, uses the success test on the jversion registered variable to return true if the
task succeeded, or false if the task failed. So, line 24 tells Ansible to repeat the task,
the call to the juniper_junos_rpc module, until either it succeeds (the jversion is
success condition returns true) or the maximum number of retries have been
attempted.

NOTE	 In version 2.5, Ansible changed the syntax for using the success test. If you
are using Ansible 2.4 or earlier, line 24 should be written like a filter, using the pipe
character (|) rather than using the keyword is:
 until: jversion | success

TIP	 Ansible also has a failure test that returns true if the task failed or false if
the task succeeded (the opposite of the success test used above).

	 319	 Re-trying a Failed Task

Disconnect one of your test devices – the author disconnected his switch bilbo –
and run the playbook:

mbp15:aja2 sean$ ansible-playbook get-version.yaml

PLAY [Get Junos version] ***

TASK [get Junos version] ***
FAILED - RETRYING: get Junos version (2 retries left).
ok: [aragorn]
FAILED - RETRYING: get Junos version (1 retries left).
fatal: [bilbo]: FAILED! => {"attempts": 2, "changed": false, "msg": "Unable to make a PyEZ connection:
ConnectTimeoutError(198.51.100.5)"}

TASK [display Junos version] ***
ok: [aragorn] => {
    "jversion": {
        "attempts": 1,
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "text",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "rpc": "get-software-information",
        "stdout": "\nHostname: aragorn\nModel: vsrx\nJunos: 15.1X49-D90.7\
nJUNOS Software Release [15.1X49-D90.7]\n",
        "stdout_lines": [
            "",
            "Hostname: aragorn",
            "Model: vsrx",
            "Junos: 15.1X49-D90.7",
            "JUNOS Software Release [15.1X49-D90.7]"
        ]
    }
}
	 to retry, use: --limit @/Users/sean/aja2/get-version.retry

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=0    changed=0    unreachable=0    failed=1

Observe that aragorn succeeded, but that bilbo failed. During TASK [get Junos ver-
sion] you can see two lines starting with “FAILED - RETRYING:” – these lines show
that Ansible is retrying the task for a device (unfortunately, the message does not
say which device). Only after the retries do we see the failure message for bilbo:

fatal: [bilbo]: FAILED! => {"attempts": 2, "changed": false, "msg": "Unable to make a PyEZ connection:
ConnectTimeoutError(198.51.100.5)"}

Notice that the failure message includes "attempts": 2 showing that the task was
attempted several times.

Run the playbook again, but this time reconnect your test device right after the
first “FAILED – RETRYING” message appears:

	 320	 Chapter 13: Repeating Tasks

mbp15:aja2 sean$ ansible-playbook get-version.yaml

PLAY [Get Junos version] ***

TASK [get Junos version] ***
ok: [aragorn]
FAILED - RETRYING: get Junos version (2 retries left).
ok: [bilbo]

TASK [display Junos version] ***
ok: [bilbo] => {
    "jversion": {
        "attempts": 2,
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "text",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "rpc": "get-software-information",
        "stdout": "\
nfpc0:\n--\nHostname: bilbo\
nModel: ex2200-c-12t-2g\nJUNOS Base OS boot [12.3R12.4]\nJUNOS Base OS Software Suite [12.3R12.4]\
nJUNOS Kernel Software Suite [12.3R12.4]\nJUNOS Crypto Software Suite [12.3R12.4]\nJUNOS Online
Documentation [12.3R12.4]\nJUNOS Enterprise Software Suite [12.3R12.4]\nJUNOS Packet Forwarding
Engine Enterprise Software Suite [12.3R12.4]\nJUNOS Routing Software Suite [12.3R12.4]\nJUNOS Web
Management [12.3R12.4]\nJUNOS FIPS mode utilities [12.3R12.4]\n",
 "stdout_lines": [
       "",
            "fpc0:",
            "--",
            "Hostname: bilbo",
            "Model: ex2200-c-12t-2g",
            "JUNOS Base OS boot [12.3R12.4]",
            "JUNOS Base OS Software Suite [12.3R12.4]",
            "JUNOS Kernel Software Suite [12.3R12.4]",
            "JUNOS Crypto Software Suite [12.3R12.4]",
            "JUNOS Online Documentation [12.3R12.4]",
            "JUNOS Enterprise Software Suite [12.3R12.4]",
            "JUNOS Packet Forwarding Engine Enterprise Software Suite [12.3R12.4]",
            "JUNOS Routing Software Suite [12.3R12.4]",
            "JUNOS Web Management [12.3R12.4]",
            "JUNOS FIPS mode utilities [12.3R12.4]"
        ]
    }
}
ok: [aragorn] => {
    "jversion": {
        "attempts": 1,
        "attrs": null,
        "changed": false,
        "failed": false,
        "format": "text",
        "kwargs": null,
        "msg": "The RPC executed successfully.",
        "rpc": "get-software-information",
        "stdout": "\nHostname: aragorn\nModel: vsrx\nJunos: 15.1X49-D90.7\
nJUNOS Software Release [15.1X49-D90.7]\n",

	 321	 Re-trying a Failed Task

        "stdout_lines": [
            "",
            "Hostname: aragorn",
            "Model: vsrx",
            "Junos: 15.1X49-D90.7",
            "JUNOS Software Release [15.1X49-D90.7]"
        ]
    }
}

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Because connectivity to the device was restored after the first failure, this time we
see a single “FAILED – RETRYING” line followed by a successful result for bilbo.

Refining the Until Condition
Our get-version.yaml playbook will retry the juniper_junos_rpc task on any failure
of that task. That’s fine if the failure is something that might correct itself in a
short time, but if the failure is unlikely to be fixed, retrying the task several times
does not make much sense.

Fortunately, Juniper’s juniper_junos_rpc module returns error messages that indi-
cate the type of failure it is experiencing, and we can create an until condition that
checks the error message. Note again the failure message from bilbo when we left
it disconnected for the entire playbook run:

fatal: [bilbo]: FAILED! => {"attempts": 2, "changed": false, "msg": "Unable to make a PyEZ connection:
ConnectTimeoutError(198.51.100.5)"}

The phrase “ConnectTimeoutError” suggests the nature of the problem, which in
our test was a disconnected network cable. (If your computer connects directly to
the test device, so that disconnecting the test device causes your computer’s inter-
face to be down, you might get a “ConnectRefusedError” error instead.) Under
more realistic conditions, the device might have reached the maximum number of
NETCONF sessions or there may have been some other, possibly temporary,
problem, which may return “ConnectTimeoutError” or “ConnectRefusedError”
messages.

But what if the error message had contained “ConnectAuthError” indicating an
authentication failure? If the login credentials on the device are different from
what we are using, that problem is not likely to fix itself in the next few minutes,
so trying to connect again is unlikely to prove useful.

Let’s modify the until condition in the get-version.yaml playbook to avoid retrying
the task if we get an authentication failure, while still retrying the task for any oth-
er failure:

	 322	 Chapter 13: Repeating Tasks

...
24|      until: (jversion is success) or (jversion.msg.find("ConnectAuthError") >= 0)
...

There’s a lot going on in this condition, so let’s break it down.

The expression (jversion is success) is the same condition we had before, applying
the success test to the registered variable jversion and returning a Boolean value
indicating whether or not the task succeeded. The parentheses ensure this expres-
sion is evaluated as a unit, before being considered by the or operator that follows.

The or operator takes two Boolean values, from the expressions on either side of
the or, and returns a single Boolean value. If either of the two expressions are true,
then or determines that the entire condition is true. If both of the expressions are
false, then the entire condition is false.

The expression (jversion.msg.find("ConnectAuthError") >= 0) checks the message for
the phrase ConnectAuthError and returns true if found, false otherwise. Again, the
surrounding parentheses ensure this expression is evaluated as a unit, before being
considered by the or operator. Let’s break this expression down even further:

find("string") is a function that searches for string in the variable on which find is
called. Thus, jversion.msg.find("ConnectAuthError") searches for the string Connect-
AuthError in the variable jversion.msg.

If find() locates the string, it returns the location in the variable where the string
started, where the first character in the variable is location 0, the next character is
location 1, etc. However, if find() cannot locate the string in the variable, it returns
the value -1 to indicate that the string was not found.

The final part of the expression, >= 0, tests the number returned by find() to see if it
is zero or greater. If this test returns true, then the string ConnectAuthError was found
in the variable jversion.msg. However, if the >= 0 test returns false, it means that
find() returned -1 because the string was not found in the variable.

Putting it all together, if the task succeeds, or if the task fails with a message con-
taining “ConnectAuthError,” the until condition is true and Ansible moves on to
the next task in the playbook. On the other hand, if the task fails with some other
message, the until condition is false and Ansible repeats the task, if there are retries
left.

TIP	 To help understand the results of find(), run the following simple play-
book called show-find.yaml and observe the results. Try changing the variable
definition on line 9 and the find() tests on lines 12 and 14.

 1|---
 2|- name: Illustrating the find function
 3|  hosts:
 4|    - localhost
 5|  connection: local

	 323	 Re-trying a Failed Task

 6|  gather_facts: no
 7|
 8|  vars:
 9|    my_string: Hello World
10|
11|  tasks:
12|    - debug: msg={{ my_string.find("World") }}
13|
14|    - debug: msg={{ my_string.find("Apple") }}

MORE?	 Ansible also has Boolean operators and and not. Ansible’s Boolean opera-
tors or and and use short-circuit evaluation. See the References at the end of the
chapter for more information about these topics.

Let’s run our updated get-version.yaml playbook with one test device disconnected;
the author unplugged the network cable for bilbo. This run should look similar to
what we saw previously (results here edited for length):

mbp15:aja2 sean$ ansible-playbook get-version.yaml

PLAY [Get Junos version] ***

TASK [get Junos version] ***
ok: [aragorn]
FAILED - RETRYING: get Junos version (2 retries left).
FAILED - RETRYING: get Junos version (1 retries left).
fatal: [bilbo]: FAILED! => {"attempts": 2, "changed": false, "msg": "Unable to make a PyEZ connection:
ConnectTimeoutError(198.51.100.5)"}

TASK [display Junos version] ***
ok: [aragorn] => {
...
}
	 to retry, use: --limit @/Users/sean/aja2/get-version.retry

PLAY RECAP ***
aragorn                    : ok=2    changed=0    unreachable=0    failed=0
bilbo                      : ok=0    changed=0    unreachable=0    failed=1

Because the failure for bilbo is not an authentication problem, Ansible retries the
task twice.

Re-connect your test device.

Now let’s force an authentication failure so we can see how the playbook’s behav-
ior changes. The author disabled his account on his aragorn firewall, as follows:

root@aragorn> configure
Entering configuration mode

[edit]
root@aragorn# deactivate system login user sean

[edit]
root@aragorn# show | compare
[edit system login]
!     inactive: user sean { ... }

	 324	 Chapter 13: Repeating Tasks

[edit]
root@aragorn# commit confirmed and-quit
commit confirmed will be automatically rolled back in 10 minutes unless confirmed
commit complete
Exiting configuration mode

# commit confirmed will be rolled back in 10 minutes
root@aragorn>

Run the playbook again (results edited for length):

mbp15:aja2 sean$ ansible-playbook get-version.yaml

PLAY [Get Junos version] ***

TASK [get Junos version] ***
fatal: [aragorn]: FAILED! => {"attempts": 1, "changed": false, "msg": "Unable to make a PyEZ
connection: ConnectAuthError(192.0.2.10)"}
ok: [bilbo]

TASK [display Junos version] ***
ok: [bilbo] => {
...
}
	 to retry, use: --limit @/Users/sean/aja2/get-version.retry

PLAY RECAP ***
aragorn                    : ok=0    changed=0    unreachable=0    failed=1
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

The attempt to communicate with aragorn failed, as expected, but notice there
were no retries – the test for “ConnectAuthError” worked!

Repeating a Task Based on a List
In Chapter 8 we talked about a for loop in a Jinja2 template, and showed an ex-
ample using a list of DNS server IP addresses. This section shows how to do some-
thing similar in a playbook using Ansible’s loop option.

NOTE	 The loop option was introduced in Ansible 2.5. Earlier versions of Ansible
used a set of with_X looping options, such as with_items. If you are using Ansible
2.4 or earlier, you can replace loop with with_items in the examples in this chapter.
See the References section for a link to Ansible’s loop documentation.

The examples in this section use XML data from Junos devices. (We discussed
XML and XPath in Chapter 5.) In many of our playbooks, we request data in text
format because it is easier for humans to read. The playbook in this section will
process the data, and XML is easier to work with for automated processing.

TIP	 If you ever need to process data in text format, the author strongly
encourages you to become familiar with regular expressions.

	 325	 Repeating a Task Based on a List

Assume we want to query the LLDP neighbor data from our switches, with the
intention of using the name of the neighbor to create a description of the local in-
terface on our target device. However, assume that our switches may have con-
nected to them a number of IP phones or other devices that provide LLDP data,
but that we do not care about documenting. Thus, we wish to limit our interface
descriptions to known “uplink” interfaces which connect to other network
devices.

In other words, we want to use a device’s LLDP neighbor data to create a configu-
ration for the device’s “uplink” interfaces similar to this:

interfaces {
    ge-0/1/0 {
        description "to device aragorn port ge-0/0/0";
    }
    ge-0/1/1 {
        description "to device frodo port ge-0/1/1.0";
    }
}

In order to keep our discussion in this chapter focused on the looping construct
and XML query, we will stop short of uploading the interface descriptions to the
device; the reader can do this as an exercise, following the examples from earlier
chapters.

This is the LLDP neighbor data from the author’s switch bilbo:

sean@bilbo> show lldp neighbors
Local Interface    Parent Interface    Chassis Id          Port info          System Name
ge-0/1/0.0         -                   4c:96:14:0c:de:40   ge-0/0/0           aragorn
ge-0/1/1.0         -                   78:fe:3d:3d:f6:40   ge-0/1/1.0         frodo
ge-0/0/8.0         -                   7c:25:86:c1:af:07   ge-0/0/11          elrond

The uplink interfaces are ge-0/1/0 and ge-0/1/1, so the systems aragorn and frodo
are of interest. The device elrond connected to ge-0/0/8 is not of interest.

Add a list called uplinks containing the interface names for uplink interfaces to one
or more of your test devices’ host_vars files, within the aja2_host dictionary already
defined in that file. The author is updating his host_vars/bilbo.yaml file as follows
(boldfaced lines):

ansible_host: 198.51.100.5
aja2_host:
  dns_servers:
    - 8.8.4.4
    - 8.8.8.8
    - 198.51.100.101
  snmp:
    description: EX2200-C for testing
    location: Sean's home office
 uplinks:
    - ge-0/1/0
    - ge-0/1/1

	 326	 Chapter 13: Repeating Tasks

The two LLDP playbooks we will create in the following pages repeat certain tasks
for each element (interface) in the aja2_host.uplinks list.

LLDP as XML
Let’s start by getting a feel for what the LLDP data looks like in XML format. On
the author’s switch bilbo, the LLDP data is:

sean@bilbo> show lldp neighbors | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3R12/junos">
    <lldp-neighbors-information junos:style="brief">
        <lldp-neighbor-information>
            <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>
            <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>
            <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>
            <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>
            <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>
            <lldp-remote-system-name>aragorn</lldp-remote-system-name>
        </lldp-neighbor-information>
        <lldp-neighbor-information>
            <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>
            <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>
            <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>
            <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>
            <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>
            <lldp-remote-system-name>frodo</lldp-remote-system-name>
        </lldp-neighbor-information>
        <lldp-neighbor-information>
            <lldp-local-interface>ge-0/0/8.0</lldp-local-interface>
            <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>
            <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>
            <lldp-remote-chassis-id>7c:25:86:c1:af:07</lldp-remote-chassis-id>
            <lldp-remote-port-description>ge-0/0/11</lldp-remote-port-description>
            <lldp-remote-system-name>elrond</lldp-remote-system-name>
        </lldp-neighbor-information>
    </lldp-neighbors-information>
    <cli>
        <banner>{master:0}</banner>
    </cli>
</rpc-reply>

Notice all the LLDP data is contained within element lldp-neighbors-information,
within which there is an element lldp-neighbor-information for each neighbor. With-
in each lldp-neighbor-information element is a series of elements describing the
neighbor or the local interface to which the neighbor connects.

We want the lldp-remote-system-name elements, but only for the desired local inter-
faces. We can see the lldp-local-interface element identifies the local interface to
which the neighbor is connected.

The RPC we need Ansible to call is get-lldp-neighbors-information, which you can
confirm as follows:

sean@bilbo> show lldp neighbors | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3R12/junos">
    <rpc>

	 327	 Repeating a Task Based on a List

        <get-lldp-neighbors-information>
        </get-lldp-neighbors-information>
    </rpc>
    <cli>
        <banner>{master:0}</banner>
    </cli>
</rpc-reply>

We can specify an interface with the command, either on the CLI (shown here) or
as part of an RPC request (used later in this chapter):

sean@bilbo> show lldp neighbors interface ge-0/1/0 | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3R12/junos">
    <lldp-neighbors-information junos:style="detail">
        <lldp-neighbor-information>
            <lldp-index>1</lldp-index>
            <lldp-ttl>120</lldp-ttl>
            <lldp-timemark>Fri Feb 19 05:42:07 2016</lldp-timemark>
            <lldp-age>23</lldp-age>
            <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>
            <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>
            <lldp-local-port-id>527</lldp-local-port-id>
            <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>
            <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>
            <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>
            <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-subtype>
            <lldp-remote-port-id>510</lldp-remote-port-id>
            <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>
            <lldp-remote-system-name>aragorn</lldp-remote-system-name>
...
        </lldp-neighbor-information>
    </lldp-neighbors-information>
    <cli>
        <banner>{master:0}</banner>
    </cli>
</rpc-reply>

We get a lot more detail about the neighbor attached to the specified interface.
However, we get neighbor information only for the specified local interface (there
is only one lldp-neighbor-information element).

The RPC changes name when called for a single interface:

sean@bilbo> show lldp neighbors interface ge-0/1/0 | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3R12/junos">
    <rpc>
        <get-lldp-interface-neighbors-information>
                <interface-name>ge-0/1/0.0</interface-name>
        </get-lldp-interface-neighbors-information>
         </rpc>
        <cli>
            <banner>{master:0}</banner>
        </cli>
    </rpc-reply>

Observe the RPC is get-lldp-interface-neighbors-information, with argument inter-
face-name to specify the interface.

	 328	 Chapter 13: Repeating Tasks

LLDP by Interface – Get LLDP Interfaces Version 1
Let’s start our first LLDP playbook by just getting the LLDP data in XML format.
Create the following playbook get-lldp-interface.yaml:

 1|---
 2|- name: Get LLDP neighbor information
 3|  hosts:
 4|    - all
 5|  roles:
 6|    - Juniper.junos
 7|  connection: local
 8|  gather_facts: no
 9|
10|  vars:
11|    connection_settings:
12|      host: "{{ ansible_host }}"
13|
14|  tasks:
15|    - name: get lldp neighbor table
16|      juniper_junos_rpc:
17|        provider: "{{ connection_settings }}"
18|        rpcs: get-lldp-neighbors-information
19|        format: xml
20|      register: lldp
21|
22|    - name: display lldp neighbor data
23|      debug:
24|        var: lldp.stdout_lines

Lines 15–20 ask the juniper_junos_rpc module to run the get-lldp-neighbors-infor-
mation RPC and register the results in variable lldp.

Lines 22–24 display the LLDP results from the registered variable.

Run the playbook on your test device(s) which have LLDP data:

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

TASK [get lldp neighbor table] ***
ok: [bilbo]

TASK [display lldp neighbor data] **
ok: [bilbo] => {
    "lldp.stdout_lines": [
        "<lldp-neighbors-information style=\"brief\">",
        "  <lldp-neighbor-information>",
        "    <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>",
        "    <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
        "    <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
        "    <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>",
        "    <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>",
        "    <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
        "  </lldp-neighbor-information>",
        "  <lldp-neighbor-information>",

	 329	 Repeating a Task Based on a List

        "    <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>",
        "    <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
        "    <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
        "    <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>",
        "    <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>",
        "    <lldp-remote-system-name>frodo</lldp-remote-system-name>",
        "  </lldp-neighbor-information>",
        "  <lldp-neighbor-information>",
        "    <lldp-local-interface>ge-0/0/8.0</lldp-local-interface>",
        "    <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
        "    <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
        "    <lldp-remote-chassis-id>7c:25:86:c1:af:07</lldp-remote-chassis-id>",
        "    <lldp-remote-port-description>ge-0/0/11</lldp-remote-port-description>",
        "    <lldp-remote-system-name>elrond</lldp-remote-system-name>",
        "  </lldp-neighbor-information>",
        "</lldp-neighbors-information>"
    ]
}

PLAY RECAP ***
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Now let’s update the playbook to gather LLDP data for a single interface. Initially
we specify a single interface as part of the playbook; in the next section of this
chapter, we add the loop to iterate over our list of uplink interfaces.

Modify the get-lldp-interface.yaml playbook by changing or adding the boldfaced
lines:

...
14|  tasks:
15|    - name: get lldp neighbor table
16|      juniper_junos_rpc:
17|        provider: "{{ connection_settings }}"
18|        rpcs: get-lldp-interface-neighbors-information
19|        kwargs:
20|          interface_name: ge-0/1/0
21|        format: xml
22|      register: lldp
...

Line 18 changes the name of the RPC call.

Lines 19–20 provide the argument to the RPC that specifies the interface name.
Notice that the hyphen in the RPC argument interface-name shown above is re-
placed with an underscore in the Ansible playbook. This replacement does not
seem to be required in newer versions of the juniper_junos_rpc module but was nec-
essary in earlier versions.

Run the playbook again. There should be data for a single interface, ge-0/1/0.

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

TASK [get lldp neighbor table] ***
ok: [bilbo]

	 330	 Chapter 13: Repeating Tasks

TASK [display lldp neighbor data] **
ok: [bilbo] => {
    "lldp.stdout_lines": [
        "<lldp-neighbors-information style=\"detail\">",
        "  <lldp-neighbor-information>",
        "    <lldp-index>1</lldp-index>",
        "    <lldp-ttl>120</lldp-ttl>",
        "    <lldp-timemark>Fri Feb 19 06:11:05 2016</lldp-timemark>",
        "    <lldp-age>3</lldp-age>",
        "    <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>",
        "    <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
        "    <lldp-local-port-id>527</lldp-local-port-id>",
        "    <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>",
        "    <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
        "    <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>",
        "    <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-subtype>",
        "    <lldp-remote-port-id>510</lldp-remote-port-id>",
        "    <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>",
        "    <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
...
        "  </lldp-neighbor-information>",
        "</lldp-neighbors-information>"
    ]
}

PLAY RECAP ***
bilbo                      : ok=2    changed=0    unreachable=0    failed=0

Looping Through Interfaces – Get LLDP Interfaces Version 2
Now let’s have the playbook loop through the aja2_host.uplinks list we created in
our host_vars file(s), executing the juniper_junos_rpc task for each interface on the
list. Modify the get-lldp-interface.yaml playbook as shown (boldfaced lines):

...
14|  tasks:
15|    - name: get lldp neighbor table
16|      juniper_junos_rpc:
17|        provider: "{{ connection_settings }}"
18|        rpcs: get-lldp-interface-neighbors-information
19|        kwargs:
20|          interface_name: "{{ item }}"
21|        format: xml
22|      loop: "{{ aja2_host.uplinks }}"
23|      register: lldp
24|
25|    - name: display lldp neighbor data
26|      debug:
27|        var: lldp

Line 22, the loop option, tells Ansible that the task is a loop and should be repeated
once for each element of the list in the aja2_host.uplinks variable. Ansible takes the
first element from aja2_host.uplinks, puts it in a variable called item, and runs the
task with that variable. When the task completes, Ansible takes the next element

	 331	 Repeating a Task Based on a List

from the list, puts it in item, and runs the task again. In other words, Ansible iter-
ates over the aja2_host.uplinks list and puts each element in the item variable.

Line 20 provides the value of variable item, defined by the loop construct, to the
keyword argument interface_name. This causes the task to get LLDP data for a dif-
ferent interface during each iteration of the loop.

Line 27 is changed to display the entire registered output from the “get lldp neigh-
bor table” task as the data’s structure changes due to the loop option. This will
display a lot of data; we will revise this momentarily to limit the output.

NOTE	 Querying the device several times for LLDP data for each interface may be
inefficient. However, we start with this approach because it illustrates concepts
that can be used elsewhere and gives us the opportunity to explore the tools
needed to solve our problem. The second LLDP playbook, later in this chapter,
illustrates an alternative approach that is probably more efficient for most devices.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

TASK [get lldp neighbor table] ***
ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [display lldp neighbor data] **
ok: [bilbo] => {
    "lldp": {
        "changed": false,
        "msg": "All items completed",
        "results": [
            {
                "_ansible_ignore_errors": null,
                "_ansible_item_label": "ge-0/1/0",
                "_ansible_item_result": true,
                "_ansible_no_log": false,
                "_ansible_parsed": true,
                "attrs": null,
                "changed": false,
                "failed": false,
                "format": "xml",
...
                "item": "ge-0/1/0",
                "kwargs": {
                    "interface_name": "ge-0/1/0"
                },
...
                "stdout_lines": [
                    "<lldp-neighbors-information style=\"detail\">",
                    "  <lldp-neighbor-information>",
                    "    <lldp-index>1</lldp-index>",
                    "    <lldp-ttl>120</lldp-ttl>",

	 332	 Chapter 13: Repeating Tasks

                    "    <lldp-timemark>Fri Feb 19 07:21:02 2016</lldp-timemark>",
                    "    <lldp-age>24</lldp-age>",
                    "    <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>",
                    "    <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
                    "    <lldp-local-port-id>527</lldp-local-port-id>",
                    "    <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>",
                    "    <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-
subtype>",
                    "    <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>",
                    "    <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-
subtype>",
                    "    <lldp-remote-port-id>510</lldp-remote-port-id>",
                    "    <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>",
                    "    <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
...
                    "  </lldp-neighbor-information>",
                    "</lldp-neighbors-information>"
                ]
            },
            {
                "_ansible_ignore_errors": null,
                "_ansible_item_label": "ge-0/1/1",
                "_ansible_item_result": true,
                "_ansible_no_log": false,
                "_ansible_parsed": true,
                "attrs": null,
                "changed": false,
                "failed": false,
                "format": "xml",
...
                "item": "ge-0/1/1",
                "kwargs": {
                    "interface_name": "ge-0/1/1"
                },
...
                "stdout_lines": [
                    "<lldp-neighbors-information style=\"detail\">",
                    "  <lldp-neighbor-information>",
                    "    <lldp-index>4</lldp-index>",
                    "    <lldp-ttl>120</lldp-ttl>",
                    "    <lldp-timemark>Fri Feb 19 07:21:24 2016</lldp-timemark>",
                    "    <lldp-age>8</lldp-age>",
                    "    <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>",
                    "    <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
                    "    <lldp-local-port-id>529</lldp-local-port-id>",
                    "    <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>",
                    "    <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-
subtype>",
                    "    <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>",
                    "    <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-
subtype>",
                    "    <lldp-remote-port-id>531</lldp-remote-port-id>",
                    "    <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>",
                    "    <lldp-remote-system-name>frodo</lldp-remote-system-name>",
...
                    "  </lldp-neighbor-information>",
                    "</lldp-neighbors-information>"
                ]
            }

	 333	 Repeating a Task Based on a List

        ]
    }
}

PLAY RECAP ***

bilbo : ok=2 changed=0 unreachable=0 failed=0

Notice that the task “get lldp neighbor table” shows it ran twice for bilbo, using
two different values for item (two interface names):

ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

Perfect!

Now look at the output for the “display lldp neighbor data” task. Because the reg-
istered variable lldp, created by the “get lldp neighbor table” task, contains the
results of multiple iterations of the task, Ansible stores the results for each itera-
tion of the task in a results list. Each element in results is a dictionary that con-
tains roughly the same fields that we would expect in the registered variable for a
similar task without the loop, plus a few new fields. Among the new fields in each
result dictionary is item, which contains the contents of the item variable during
the loop iteration that created that result (we use item later in this chapter). Review
the output so you understand the structure.

We want to display only the stdout_lines field for each element in lldp.results. Said
differently, we want to iterate over the lldp.results list and display the stdout_lines
field. Iteration...that sounds like a loop!

Modify the last task of the playbook as follows:

...
25| - name: display lldp neighbor data
26| debug:
27| var: item.stdout_lines
28| loop: "{{ lldp.results }}"

Line 28 creates a loop to iterate over the different results.

Line 27 now displays the stdout_lines field from the current item from the loop.

Because of how Ansible displays loop status and how the debug module works in a
loop, we will get a lot of extra output when we run this playbook (edited for
length in the output below). We’ll discuss the reasons and minimize this extra out-
put momentarily.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

	 334	 Chapter 13: Repeating Tasks

TASK [get lldp neighbor table] ***
ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [display lldp neighbor data] **
ok: [bilbo] => (item={'_ansible_parsed': True, u'changed': False, ..., u'stdout_lines': [u'<lldp-
neighbors-information style="detail">', ..., u' <lldp-remote-system-name>aragorn</lldp-remote-
system-name>', ..., u'</lldp-neighbors-information>'], '_ansible_ignore_errors': None, '_ansible_no_
log': False}) => {
 "item": {
 "attrs": null,
 "changed": false,
...
 "stdout_lines": [
 "<lldp-neighbors-information style=\"detail\">",
...
 " <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
...
 "</lldp-neighbors-information>"
]
 },
 "item.stdout_lines": [
 "<lldp-neighbors-information style=\"detail\">",
...
 " <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
...
 "</lldp-neighbors-information>"
]
}
ok: [bilbo] => (item={'_ansible_parsed': True, u'changed': False, ..., u'stdout_lines': [u'<lldp-
neighbors-information style="detail">', ..., u' <lldp-remote-system-name>frodo</lldp-remote-
system-name>', ..., u'</lldp-neighbors-information>'], '_ansible_ignore_errors': None, '_ansible_no_
log': False}) => {
 "item": {
 "attrs": null,
 "changed": false,
...
 "stdout_lines": [
 "<lldp-neighbors-information style=\"detail\">",
...
 " <lldp-remote-system-name>frodo</lldp-remote-system-name>",
...
 "</lldp-neighbors-information>"
]
 },
 "item.stdout_lines": [
 "<lldp-neighbors-information style=\"detail\">",
...
 " <lldp-remote-system-name>frodo</lldp-remote-system-name>",
...
 "</lldp-neighbors-information>"
]
}

PLAY RECAP ***
bilbo : ok=2 changed=0 unreachable=0 failed=0

This output of the “display lldp neighbor data” task has been significantly short-

	 335	 Repeating a Task Based on a List

ened in the book. There are two reasons for the extra output.

First, Ansible displays each item’s contents as it reports success (or failure) for each
iteration through the loop. Labelling each loop iteration lets us see what the loop is
working on and monitor the status of playbook operation. This is usually a ben-
efit, as we can see with the “get lldp neighbor table” task where item contains just
an interface name:

TASK [get lldp neighbor table] ***
ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

However, in the “display lldp neighbor data” task, item contains the entire results
from one iteration of the previous task’s loop. That’s a lot of data! In fact, it is so
much data that it makes it difficult for us to realize the intended benefit of labelling
each loop iteration.

TASK [display lldp neighbor data] **
ok: [bilbo] => (item={'_ansible_parsed': True, u'changed': False, ..., u'stdout_lines': [u'<lldp-
neighbors-information style="detail">', ..., u' <lldp-remote-system-name>aragorn</lldp-remote-
system-name>', ..., u'</lldp-neighbors-information>'], '_ansible_ignore_errors': None, '_ansible_no_
log': False}) => {
...
}
ok: [bilbo] => (item={'_ansible_parsed': True, u'changed': False, ..., u'stdout_lines': [u'<lldp-
neighbors-information style="detail">', ..., u' <lldp-remote-system-name>frodo</lldp-remote-
system-name>', ..., u'</lldp-neighbors-information>'], '_ansible_ignore_errors': None, '_ansible_no_
log': False}) => {
...
}

Fortunately, Ansible offers some loop control options, including a label option,
that we can use to specify a different (smaller!) identifier for each iteration of the
loop.

The second source of extra output is the debug module. When called in a loop using
its var argument and told to display a field from a dictionary, debug displays the full
dictionary followed by the requested field. Note, for example, how the output
shows both the full item dictionary and the item.stdout_lines field, though our
playbook requested only the item.stdout_lines field:

 "item": {
 "attrs": null,
 "changed": false,
...
 },
 "item.stdout_lines": [
 "<lldp-neighbors-information style=\"detail\">",
...
 " <lldp-remote-system-name>frodo</lldp-remote-system-name>",
...
 "</lldp-neighbors-information>"
]

If we call debug with the msg argument instead of the var argument, debug does not

	 336	 Chapter 13: Repeating Tasks

display the extra output.

Modify the last task of the playbook as follows:

25| - name: display lldp neighbor data
26| debug:
27| msg: "{{ item.stdout_lines }}"
28| loop: "{{ lldp.results }}"
29| loop_control:
30| label: "{{ item.item }}"

Line 27 uses the msg argument to the debug module instead of the var argument.

Lines 29 and 30 add the loop_control option label, which provides an alternative
identifier for each loop iteration. Here we use item.item, which is interface name
recorded during the “get lldp neighbor table” loop and stored in its results list.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

TASK [get lldp neighbor table] ***
ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [display lldp neighbor data] **
ok: [bilbo] => (item=ge-0/1/0) => {
 "msg": [
 "<lldp-neighbors-information style=\"detail\">",
 " <lldp-neighbor-information>",
 " <lldp-index>4</lldp-index>",
 " <lldp-ttl>120</lldp-ttl>",
 " <lldp-timemark>Thu Jan 21 05:47:47 2016</lldp-timemark>",
 " <lldp-age>14</lldp-age>",
 " <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-local-port-id>527</lldp-local-port-id>",
 " <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>",
 " <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-subtype>",
 " <lldp-remote-port-id>510</lldp-remote-port-id>",
 " <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>",
 " <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
...
 " </lldp-neighbor-information>",
 "</lldp-neighbors-information>"
]
}
ok: [bilbo] => (item=ge-0/1/1) => {
 "msg": [
 "<lldp-neighbors-information style=\"detail\">",
 " <lldp-neighbor-information>",
 " <lldp-index>3</lldp-index>",
 " <lldp-ttl>120</lldp-ttl>",

	 337	 Repeating a Task Based on a List

 " <lldp-timemark>Thu Jan 21 05:48:00 2016</lldp-timemark>",
 " <lldp-age>7</lldp-age>",
 " <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-local-port-id>529</lldp-local-port-id>",
 " <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>",
 " <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-subtype>",
 " <lldp-remote-port-id>531</lldp-remote-port-id>",
 " <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>",
 " <lldp-remote-system-name>frodo</lldp-remote-system-name>",
...
 " </lldp-neighbor-information>",
 "</lldp-neighbors-information>"
]
}

PLAY RECAP ***
bilbo : ok=2 changed=0 unreachable=0 failed=0

Much better! Now our loop iterations are identified with only the relevant inter-
face name from item.item, and the debug output includes only the stdout_lines field.

Querying our LLDP Data – Get LLDP Interfaces Version 3
Now let’s add an XML XPath query to our get-lldp-interface.yaml playbook to
extract only the specific elements we want from our XML LLDP data.

Modify the playbook by removing the “display lldp neighbor data” task and add-
ing the boldfaced lines as follows:

...
14| tasks:
15| - name: get lldp neighbor table
16| juniper_junos_rpc:
17| provider: "{{ connection_settings }}"
18| rpcs: get-lldp-interface-neighbors-information
19| kwargs:
20| interface_name: "{{ item }}"
21| format: xml
22| loop: "{{ aja2_host.uplinks }}"
23| register: lldp
24|
25| - name: get neighbor details
26| xml:
27| xmlstring: "{{ item }}"
28| xpath: //lldp-remote-system-name | //lldp-remote-port-description
29| content: text
30| loop: "{{ lldp.results | map(attribute='stdout') | list }}"
31| register: neighbors
32|
33| - name: show neighbor details
34| debug:
35| var: neighbors

Lines 25–31 call the xml module and register the results in variable neighbors.

	 338	 Chapter 13: Repeating Tasks

Line 30 uses the loop option to iterate over a list of XML results extracted from the
lldp variable registered by the “get lldp neighbor table” task. We use the map() and
list filters we saw in Chapter 9 to extract only the desired field, in this case the
stdout field, from the original lldp.results data and create a new list. This new list
is presented to loop, which means for each iteration through the loop the item vari-
able will contain a string with XML data for one interface.

For the reader’s consideration: why does line 30 extract the stdout field, while the
previous version of this playbook displayed the stdout_lines field?

Line 27, the xmlstring argument, provides a text string representing the XML data
to query. We provide the item variable from the loop, letting us query the XML
data for a single interface with each iteration of the loop.

Line 28 is the XPath path expression. We do not need to worry about multiple
matches here, as the XML data is for a single LLDP neighbor, so we do not need a
predicate. However, we use the pipe (“|”) to return two different elements from
our data set.

Lines 33–35 display the results from the XPath operations, contained in the neigh-
bors variable registered by task “get neighbor details.” From Chapter 5 we know
that we probably only care about the matches field, which contains the XPath query
results, but let’s start by viewing the complete neighbors data. This will give us a lot
of output (edited for length below) but we will reduce it momentarily.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] **

TASK [get lldp neighbor table] **

ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [get neighbor details] **
ok: [bilbo] => (item=<lldp-neighbors-information style="detail">
 <lldp-neighbor-information>
 <lldp-index>4</lldp-index>
 <lldp-ttl>120</lldp-ttl>
 <lldp-timemark>Thu Jan 21 07:17:01 2016</lldp-timemark>
 <lldp-age>5</lldp-age>
 <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>
 <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>
 <lldp-local-port-id>527</lldp-local-port-id>
 <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>
 <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>
 <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>
 <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-subtype>
 <lldp-remote-port-id>510</lldp-remote-port-id>
 <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>
 <lldp-remote-system-name>aragorn</lldp-remote-system-name>

	 339	 Repeating a Task Based on a List

...
 </lldp-neighbor-information>
</lldp-neighbors-information>
)
ok: [bilbo] => (item=<lldp-neighbors-information style="detail">
 <lldp-neighbor-information>
 <lldp-index>3</lldp-index>
 <lldp-ttl>120</lldp-ttl>
 <lldp-timemark>Thu Jan 21 07:17:05 2016</lldp-timemark>
 <lldp-age>7</lldp-age>
 <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>
 <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>
 <lldp-local-port-id>529</lldp-local-port-id>
 <lldp-local-port-ageout-count>0</lldp-local-port-ageout-count>
 <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>
 <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>
 <lldp-remote-port-id-subtype>Locally assigned</lldp-remote-port-id-subtype>
 <lldp-remote-port-id>531</lldp-remote-port-id>
 <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>
 <lldp-remote-system-name>frodo</lldp-remote-system-name>
...
 </lldp-neighbor-information>
</lldp-neighbors-information>
)

TASK [show neighbor details] ***
ok: [bilbo] => {
 "neighbors": {
 "changed": false,
 "msg": "All items completed",
 "results": [
 {
...
 "changed": false,
 "count": 2,
 "failed": false,
...
 "item": "<lldp-neighbors-information style=\"detail\">\n <lldp-neighbor-information>\n
<lldp-index>4</lldp-index>\n <lldp-ttl>120</lldp-ttl>\n <lldp-timemark>Thu Jan 21 07:17:01
2016</lldp-timemark>\n <lldp-age>5</lldp-age>\n <lldp-local-interface>ge-0/1/0.0</lldp-local-
interface>\n <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>\n <lldp-
local-port-id>527</lldp-local-port-id>\n <lldp-local-port-ageout-count>0</lldp-local-port-ageout-
count>\n <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>\n
<lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>\n <lldp-remote-port-id-
subtype>Locally assigned</lldp-remote-port-id-subtype>\n <lldp-remote-port-id>510</lldp-remote-
port-id>\n <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>\n <lldp-remote-
system-name>aragorn</lldp-remote-system-name>\n <lldp-system-description>\n
<lldp-remote-system-description>Juniper Networks, Inc. vsrx internet router, kernel JUNOS
15.1X49-D90.7, Build date: 2017-04-29 06:17:35 UTC Copyright (c) 1996-2017 Juniper Networks, Inc.</
lldp-remote-system-description>\n </lldp-system-description>\n <lldp-remote-system-capabilities-
supported>Bridge Router</lldp-remote-system-capabilities-supported>\n <lldp-remote-system-
capabilities-enabled>Bridge Router</lldp-remote-system-capabilities-enabled>\n <lldp-remote-
management-address-type>IPv4</lldp-remote-management-address-type>\n
<lldp-remote-management-address>198.51.100.1</lldp-remote-management-address>\n <lldp-remote-
management-address-port-id>510</lldp-remote-management-address-port-id>\n <lldp-remote-management-
address-sub-type>1</lldp-remote-management-address-sub-type>\n <lldp-remote-management-address-
interface-subtype>ifIndex(2)</lldp-remote-management-address-interface-subtype>\n
<lldp-remote-management-addr-oid>1.3.6.1.2.1.31.1.1.1.1.510</lldp-remote-management-addr-oid>\n

	 340	 Chapter 13: Repeating Tasks

<lldp-remote-org-def-info-oui>0.12.f</lldp-remote-org-def-info-oui>\n <lldp-remote-org-def-info-
subtype>1</lldp-remote-org-def-info-subtype>\n <lldp-remote-org-def-info-index>1</lldp-remote-org-
def-info-index>\n <lldp-remote-org-def-info>036C1D0000</lldp-remote-org-def-info>\n <lldp-
remote-org-def-info-oui>0.12.f</lldp-remote-org-def-info-oui>\n
<lldp-remote-org-def-info-subtype>3</lldp-remote-org-def-info-subtype>\n <lldp-remote-org-def-
info-index>2</lldp-remote-org-def-info-index>\n <lldp-remote-org-def-info>0100000000</lldp-remote-
org-def-info>\n <lldp-remote-org-def-info-oui>0.12.f</lldp-remote-org-def-info-oui>\n <lldp-
remote-org-def-info-subtype>4</lldp-remote-org-def-info-subtype>\n
<lldp-remote-org-def-info-index>3</lldp-remote-org-def-info-index>\n <lldp-remote-org-def-
info>05EA</lldp-remote-org-def-info>\n </lldp-neighbor-information>\n</
lldp-neighbors-information>\n",
 "matches": [
 {
 "lldp-remote-port-description": "ge-0/0/0"
 },
 {
 "lldp-remote-system-name": "aragorn"
 }
],
...
 },
 {
...
 "changed": false,
 "count": 2,
 "failed": false,
...
 "item": "<lldp-neighbors-information style=\"detail\">\n <lldp-neighbor-information>\n
<lldp-index>3</lldp-index>\n <lldp-ttl>120</lldp-ttl>\n <lldp-timemark>Thu Jan 21 07:17:05
2016</lldp-timemark>\n <lldp-age>7</lldp-age>\n <lldp-local-interface>ge-0/1/1.0</lldp-local-
interface>\n <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>\n <lldp-
local-port-id>529</lldp-local-port-id>\n <lldp-local-port-ageout-count>0</lldp-local-port-ageout-
count>\n <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>\n
<lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>\n <lldp-remote-port-id-
subtype>Locally assigned</lldp-remote-port-id-subtype>\n <lldp-remote-port-id>531</lldp-remote-
port-id>\n <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>\n <lldp-
remote-system-name>frodo</lldp-remote-system-name>\n <lldp-system-description>\n
<lldp-remote-system-description>Juniper Networks, Inc. ex2200-c-12t-2g Ethernet Switch, kernel JUNOS
15.1R6.7, Build date: 2017-04-23 00:39:39 UTC Copyright (c) 1996-2017 Juniper Networks, Inc.</
lldp-remote-system-description>\n </lldp-system-description>\n <lldp-remote-system-capabilities-
supported>Bridge Router</lldp-remote-system-capabilities-supported>\n <lldp-remote-system-
capabilities-enabled>Bridge Router</lldp-remote-system-capabilities-enabled>\n <lldp-med-remote-
system-class>Network Connectivity</lldp-med-remote-system-class>\n
<lldp-remote-org-def-info-oui>0.12.f</lldp-remote-org-def-info-oui>\n <lldp-remote-org-def-info-
subtype>1</lldp-remote-org-def-info-subtype>\n <lldp-remote-org-def-info-index>1</lldp-remote-org-
def-info-index>\n <lldp-remote-org-def-info>036C110000</lldp-remote-org-def-info>\n <lldp-
remote-org-def-info-oui>0.12.f</lldp-remote-org-def-info-oui>\n
<lldp-remote-org-def-info-subtype>3</lldp-remote-org-def-info-subtype>\n <lldp-remote-org-def-
info-index>2</lldp-remote-org-def-info-index>\n <lldp-remote-org-def-info>0100000000</lldp-remote-
org-def-info>\n <lldp-remote-org-def-info-oui>0.12.f</lldp-remote-org-def-info-oui>\n <lldp-
remote-org-def-info-subtype>4</lldp-remote-org-def-info-subtype>\n
<lldp-remote-org-def-info-index>3</lldp-remote-org-def-info-index>\n <lldp-remote-org-def-
info>05EA</lldp-remote-org-def-info>\n <lldp-remote-org-def-info-oui>0.80.c2</lldp-remote-org-def-
info-oui>\n <lldp-remote-org-def-info-subtype>1</lldp-remote-org-def-info-subtype>\n <lldp-
remote-org-def-info-index>4</lldp-remote-org-def-info-index>\n <lldp-remote-org-def-info>0000</
lldp-remote-org-def-info>\n <lldp-remote-org-def-info-oui>0.90.69</lldp-remote-org-def-info-oui>\n
<lldp-remote-org-def-info-subtype>1</lldp-remote-org-def-info-subtype>\n <lldp-remote-org-def-
info-index>5</lldp-remote-org-def-info-index>\n <lldp-remote-org-def-

	 341	 Repeating a Task Based on a List

info>475030323131343633353138</lldp-remote-org-def-info>\n <lldp-remote-org-def-info-oui>0.80.c2</
lldp-remote-org-def-info-oui>\n <lldp-remote-org-def-info-subtype>3</lldp-remote-org-def-info-
subtype>\n <lldp-remote-org-def-info-index>6</lldp-remote-org-def-info-index>\n <lldp-remote-
org-def-info>000004616A6132</lldp-remote-org-def-info>\n <lldp-remote-org-def-info-oui>0.12.bb</
lldp-remote-org-def-info-oui>\n <lldp-remote-org-def-info-subtype>1</lldp-remote-org-def-info-
subtype>\n <lldp-remote-org-def-info-index>7</lldp-remote-org-def-info-index>\n <lldp-remote-
org-def-info>000F04</lldp-remote-org-def-info>\n </lldp-neighbor-information>\n</lldp-neighbors-
information>\n",
 "matches": [
 {
 "lldp-remote-port-description": "ge-0/1/1.0"
 },
 {
 "lldp-remote-system-name": "frodo"
 }
],
...
 }
]
 }
}

PLAY RECAP ***
bilbo : ok=3 changed=0 unreachable=0 failed=0

Because the first two tasks are both loops, we get the contents of the item variable
for each iteration of the loop in each task. As we saw previously, this adds some
additional output to our results – just the local interface name on the “get lldp
neighbor table” task, but the full XML string being queried on the “get neighbor
details” task.

Can we use a loop control label to display something shorter for the “get neighbor
details” task? Ideally, we should display just the local interface name, so the loop
label would match the “get lldp neighbor table” task. However, despite its length,
the item variable for the “get neighbor details” task is a single string of XML data,
not a dictionary in which we can easily reference a field. Yet within that XML is
the lldp-local-interface tag, we just need to figure out a way to isolate its contents.

Regular expressions, or regex, are a powerful tool for searching for patterns of
text in strings. We can use Ansible’s regex_search() filter to look for '<lldp-local-
interface>[^<]+'. That will search for the opening tag <lldp-local-interface> fol-
lowed by any text that matches the regex pattern [^<]+, which matches any text
that does not contain a '<' character. We want the regex stop matching when it
finds the next '<' because that marks the start of the closing tag, meaning the regex
has matched the complete interface name.

NOTE	 Regular expressions are a complex topic. A detailed explanation of how
regex work or the full meaning of the pattern [^<]+ is outside the scope of this
book. Please see the References section at the end of this chapter for additional
resources.

	 342	 Chapter 13: Repeating Tasks

Now turn your attention to the output of the “show neighbor details” task. Ob-
serve the now-familiar results list, and that each dictionary within the results list
contains a matches list with the XML tags found by our XPath query. Also observe
that each dictionary in the results list also contains an item field with the XML
data that was queried. We can use the matches and item fields to clean up the output
of this task.

Modify the last two tasks as follows:

25| - name: get neighbor details
26| xml:
27| xmlstring: "{{ item }}"
28| xpath: //lldp-remote-system-name | //lldp-remote-port-description
29| content: text
30| loop: "{{ lldp.results | map(attribute='stdout') | list }}"
31| register: neighbors
32| loop_control:
33| label: "{{ item | regex_search('<lldp-local-interface>[^<]+') }}"
34|
35| - name: show neighbor details
36| debug:
37| msg: "{{ item.matches }}"
38| loop: "{{ neighbors.results }}"
39| loop_control:
40| label: "{{ item.item | regex_search('<lldp-local-interface>[^<]+') }}"

Lines 32 and 33 add the loop control label discussed above, using the regex_
search() filter to extract only the opening tag and interface name from the XML
data.

TIP	 It is possible to get just the interface name without the tag by adding a
second filter step using regex_replace(). This will be left as an exercise for the
reader.

Line 38 adds a loop to the “show neighbor details” task to iterate over the neigh-
bors.results list.

Line 37 displays only the matches list from each iteration of the loop.

Lines 39 and 40 use basically the same loop control label as lines 32 and 33 to dis-
play the local interface name, except it references the “inner” item variable that
was part of the neighbors.results list.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-interface.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

TASK [get lldp neighbor table] ***
ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

	 343	 Repeating a Task Based on a List

TASK [get neighbor details] **
ok: [bilbo] => (item=<lldp-local-interface>ge-0/1/0.0)
ok: [bilbo] => (item=<lldp-local-interface>ge-0/1/1.0)

TASK [show neighbor details] ***
ok: [bilbo] => (item=<lldp-local-interface>ge-0/1/0.0) => {
 "msg": [
 {
 "lldp-remote-port-description": "ge-0/0/0"
 },
 {
 "lldp-remote-system-name": "aragorn"
 }
]
}
ok: [bilbo] => (item=<lldp-local-interface>ge-0/1/1.0) => {
 "msg": [
 {
 "lldp-remote-port-description": "ge-0/1/1.0"
 },
 {
 "lldp-remote-system-name": "frodo"
 }
]
}

PLAY RECAP ***
bilbo : ok=3 changed=0 unreachable=0 failed=0

Nice!

Using a Single RPC Call – Get LLDP List Version 1
One concern with the get-lldp-interface.yaml playbook is that it calls the juniper_ju-
nos_rpc module once for every interface for which we want LLDP information. This
could be rather inefficient if we wish to know about a large number of interfaces.

We can change the playbook to make a single call to juniper_junos_rpc to retrieve the
entire LLDP neighbor table. We can then use XPath expressions with predicates to ex-
tract only the interfaces of interest.

Enter the following playbook, get-lldp-list.yaml (lines 30 and 31 are long and may
wrap in the book; each should be a single line in your playbook):

 1|---
 2|- name: Get LLDP neighbor information
 3| hosts:
 4| - all
 5| roles:
 6| - Juniper.junos
 7| connection: local
 8| gather_facts: no
 9|
10| vars:
11| connection_settings:
12| host: "{{ ansible_host }}"

	 344	 Chapter 13: Repeating Tasks

13|
14| tasks:
15| - name: get lldp neighbor table
16| juniper_junos_rpc:
17| provider: "{{ connection_settings }}"
18| rpcs: get-lldp-neighbors-information
19| format: xml
20| register: lldp
21|
22| - name: display lldp neighbor results
23| debug:
24| var: lldp.stdout_lines
25|
26| - name: get neighbor details
27| xml:
28| xmlstring: "{{ lldp.stdout }}"
29| xpath: >
30| //lldp-neighbor-information[starts-with(lldp-local-interface, '{{ item }}')]/lldp-remote-
system-name |
31| //lldp-neighbor-information[starts-with(lldp-local-interface, '{{ item }}')]/lldp-remote-
port-description
32| content: text
33| loop: "{{ aja2_host.uplinks }}"
34| register: neighbors
35|
36| - name: show neighbor results
37| debug:
38| var: neighbors

Lines 15–20 get the device’s entire LLDP neighbor table as XML data. Notice we
no longer need a loop on this task.

Lines 22–24 display the XML LLDP data, just so we can confirm that we get the
entire table (including interfaces in which we are not interested).

Lines 26–34 query the saved XML data using XPath path expressions with predi-
cates to filter for a specific interface. Note the loop (line 34) which iterates over our
list of uplink interfaces, aja2_host.uplinks. Note also the reference to the item vari-
able in the XPath predicates, [starts-with(lldp-local-interface, '{{ item }}')], on
lines 30 and 31.

Because the xpath argument (lines 29–31) is rather long, it is spread across multiple
lines using the “>” trick we saw in the get-partial-config.yaml playbook near the
end of Chapter 9. Be sure to include the pipe character (“|”) at the end of line 30.

Lines 36–38 display the complete neighbor results.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-list.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] **

TASK [get lldp neighbor table] **

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tests.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_error_handling.html
https://en.wikipedia.org/wiki/Boolean_expression
https://en.wikipedia.org/wiki/Regular_expression
https://www.regular-expressions.info/
http://www.regular-expressions-cookbook.com/
https://en.wikipedia.org/wiki/Short-circuit_evaluation

	 345	 Repeating a Task Based on a List

ok: [bilbo]

TASK [display lldp neighbor results] **

ok: [bilbo] => {
 "lldp.stdout_lines": [
 "<lldp-neighbors-information style=\"brief\">",
 " <lldp-neighbor-information>",
 " <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>",
 " <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>",
 " <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
 " </lldp-neighbor-information>",
 " <lldp-neighbor-information>",
 " <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>",
 " <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>",
 " <lldp-remote-system-name>frodo</lldp-remote-system-name>",
 " </lldp-neighbor-information>",
 " <lldp-neighbor-information>",
 " <lldp-local-interface>ge-0/0/8.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>7c:25:86:c1:af:07</lldp-remote-chassis-id>",
 " <lldp-remote-port-description>ge-0/0/11</lldp-remote-port-description>",
 " <lldp-remote-system-name>elrond</lldp-remote-system-name>",
 " </lldp-neighbor-information>",
 "</lldp-neighbors-information>"
]
}

TASK [get neighbor details] ***

ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [show full neighbor results] ***

ok: [bilbo] => {
 "neighbors": {
 "changed": false,
 "msg": "All items completed",
 "results": [
 {
...
 "changed": false,
 "count": 2,
 "failed": false,
...
 "xpath": "//lldp-neighbor-information[starts-with(lldp-local-interface, 'ge-
0/1/0')]/lldp-remote-system-name | //lldp-neighbor-information[starts-with(lldp-local-interface,
'ge-0/1/0')]/lldp-remote-port-description\n"
 }

	 346	 Chapter 13: Repeating Tasks

 },
 "item": "ge-0/1/0",
 "matches": [
 {
 "lldp-remote-port-description": "ge-0/0/0"
 },
 {
 "lldp-remote-system-name": "aragorn"
 }
],
 "msg": 2,
...
 },
 {
...
 "changed": false,
 "count": 2,
 "failed": false,
...
 "xpath": "//lldp-neighbor-information[starts-with(lldp-local-interface, 'ge-
0/1/1')]/lldp-remote-system-name | //lldp-neighbor-information[starts-with(lldp-local-interface,
'ge-0/1/1')]/lldp-remote-port-description\n"
 }
 },
 "item": "ge-0/1/1",
 "matches": [
 {
 "lldp-remote-port-description": "ge-0/1/1.0"
 },
 {
 "lldp-remote-system-name": "frodo"
 }
],
 "msg": 2,
...
 }
]
 }
}

PLAY RECAP ***

bilbo : ok=4 changed=0 unreachable=0 failed=0

Observe in the “display lldp neighbor results” task’s output that our XML LLDP
data contains the local interface ge-0/0/8.0, whose neighbor we do not care about.

However, observe in the “show neighbor results” task’s output that we recieved
results for only the two uplink interfaces. The loop and XPath expressions in the
“get neighbor details” task effectively extracted only the interfaces of interest.

Let’s clean up the output of the “show neighbor results” task. Modify the play-
book as follows:

36| - name: show neighbor results
37| debug:
38| msg: "{{ item.matches }}"

	 347	 Repeating a Task Based on a List

39| loop: "{{ neighbors.results }}"
40| loop_control:
41| label: "{{ item.item }}"

This uses the same technique we discussed for the get-lldp-interface.yaml playbook
to loop through the results list and display only the desired data.

Run the playbook:

mbp15:aja2 sean$ ansible-playbook get-lldp-list.yaml --limit=bilbo

PLAY [Get LLDP neighbor information] ***

TASK [get lldp neighbor table] ***
ok: [bilbo]

TASK [display lldp neighbor results] ***
ok: [bilbo] => {
 "lldp.stdout_lines": [
 "<lldp-neighbors-information style=\"brief\">",
 " <lldp-neighbor-information>",
 " <lldp-local-interface>ge-0/1/0.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>4c:96:14:0c:de:40</lldp-remote-chassis-id>",
 " <lldp-remote-port-description>ge-0/0/0</lldp-remote-port-description>",
 " <lldp-remote-system-name>aragorn</lldp-remote-system-name>",
 " </lldp-neighbor-information>",
 " <lldp-neighbor-information>",
 " <lldp-local-interface>ge-0/1/1.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>78:fe:3d:3d:f6:40</lldp-remote-chassis-id>",
 " <lldp-remote-port-description>ge-0/1/1.0</lldp-remote-port-description>",
 " <lldp-remote-system-name>frodo</lldp-remote-system-name>",
 " </lldp-neighbor-information>",
 " <lldp-neighbor-information>",
 " <lldp-local-interface>ge-0/0/8.0</lldp-local-interface>",
 " <lldp-local-parent-interface-name>-</lldp-local-parent-interface-name>",
 " <lldp-remote-chassis-id-subtype>Mac address</lldp-remote-chassis-id-subtype>",
 " <lldp-remote-chassis-id>7c:25:86:c1:af:07</lldp-remote-chassis-id>",
 " <lldp-remote-port-description>ge-0/0/11</lldp-remote-port-description>",
 " <lldp-remote-system-name>elrond</lldp-remote-system-name>",
 " </lldp-neighbor-information>",
 "</lldp-neighbors-information>"
]
}

TASK [get neighbor details] **
ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [show neighbor results] ***
ok: [bilbo] => (item=ge-0/1/0) => {
 "msg": [
 {
 "lldp-remote-port-description": "ge-0/0/0"
 },

	 348	 Chapter 13: Repeating Tasks

 {
 "lldp-remote-system-name": "aragorn"
 }
]
}
ok: [bilbo] => (item=ge-0/1/1) => {
 "msg": [
 {
 "lldp-remote-port-description": "ge-0/1/1.0"
 },
 {
 "lldp-remote-system-name": "frodo"
 }
]
}

PLAY RECAP ***
bilbo : ok=4 changed=0 unreachable=0 failed=0

Now the output of the last task is much shorter and contains only data of interest.

Two Templates for Interface Descriptions – Get LLDP List Version 2
Let’s create two templates that take the results of our XML query from the regis-
tered variable neighbors and create Junos configuration snippets that assign de-
scriptions to device interfaces. Why two templates? To illustrate two approaches,
each of which has some benefits over the other.

First, modify the get-lldp-list.yaml playbook as shown (remove the two debug
tasks and add or update the boldfaced lines):

 1|---
 2|- name: Get LLDP neighbor information and save interface descriptions using templates
 3| hosts:
 4| - all
 5| roles:
 6| - Juniper.junos
 7| connection: local
 8| gather_facts: no
 9|
10| vars:
11| connection_settings:
12| host: "{{ ansible_host }}"
13| tmp_dir: "{{ user_data_path }}/tmp"
14| template_dir: "template"
15|
16| tasks:
17| - name: get lldp neighbor table
18| juniper_junos_rpc:
19| provider: "{{ connection_settings }}"
20| rpcs: get-lldp-neighbors-information
21| format: xml
22| register: lldp
23|
24| - name: get neighbor details
25| xml:

	 349	 Repeating a Task Based on a List

26| xmlstring: "{{ lldp.stdout }}"
27| xpath: >
28| //lldp-neighbor-information[starts-with(lldp-local-interface, '{{ item }}')]/lldp-remote-
system-name |
29| //lldp-neighbor-information[starts-with(lldp-local-interface, '{{ item }}')]/lldp-remote-
port-description
30| content: text
31| loop: "{{ aja2_host.uplinks }}"
32| register: neighbors
33|
34| - name: save interface descriptions, template 1
35| template:
36| src: "{{ template_dir }}/int-desc-1.j2"
37| dest: "{{ tmp_dir }}/{{ inventory_hostname }}-{{ item.item | replace('/', '-') }}.conf"
38| loop: "{{ neighbors.results }}"

Lines 34–38 use the template module to generate a configuration file based on the
template file int-desc-1.j2 for each interface in our results. Because we get a con-
figuration file for each interface, the configurations’ filenames should be distinct,
which we accomplish by including the interface name in the filename.

This task uses a loop over the neighbors.results list to populate the item variable
with data about each matching interface in turn, mostly for use in the template
which we create momentarily. However, line 37 uses the item element of the item
variable (item.item), which contains the interface name, to help generate the file-
name in which we store the template’s results. The replace() filter replaces the
slashes in Junos’ interface names with hyphens (for example, ge-0/0/0 becomes ge-
0-0-0) because putting slashes in Unix filenames is poor practice.

Now, let’s create our first template. Create, if needed, a template directory within
your playbook directory:

mbp15:aja2 sean$ mkdir template

Create file int-desc-1.j2 in the template directory (line numbers added for
discussion):

 1|#jinja2: lstrip_blocks: True
 2|{% set neighbor_name = '-' %}
 3|{% set neighbor_desc = '-' %}
 4|{% for match in item.matches %}
 5| {% if match.has_key('lldp-remote-system-name') %}
 6| {% set neighbor_name = match['lldp-remote-system-name'] %}
 7| {% endif %}
 8| {% if match.has_key('lldp-remote-port-description') %}
 9| {% set neighbor_desc = match['lldp-remote-port-description'] %}
10| {% endif %}
11|{% endfor %}
12|interfaces {
13| {{ item.item }} {
14| description "to device {{ neighbor_name }} port {{ neighbor_desc }}";
15| }
16|}

This template will not work correctly, for reasons we will discuss shortly, but it
would be a logical starting point.

	 350	 Chapter 13: Repeating Tasks

Lines 2 and 3 declare a pair of variables to hold the neighbor’s hostname and inter-
face description after we extract them from the item variable. They are declared at
the top of the file to ensure they are valid; they should be updated with correct in-
formation in the loop on lines 4–11.

Lines 4–11 are a for loop that iterates over the item.matches list, the list of XPath
matches from the XML data. Recall that each entry in the list is a single-item dic-
tionary (if needed, look back a few pages to the results from the last time we ran
get-lldp-list.yaml). The two if statements (lines 5–7 and 8–10) test each entry to
see whether it contains the key 'lldp-remote-system-name' or 'lldp-remote-port-de-
scription' and, when the appropriate key is found, assigns the value to the appro-
priate variable.

Lines 12–16 are the Junos configuration snippet. Line 13 is the interface name
from item.item, while line 14 creates the interface description from the variables
declared on lines 2 and 3.

Run the updated get-lldp-list.yaml and check the resulting *.conf files:

mbp15:aja2 sean$ ansible-playbook get-lldp-list.yaml --limit=bilbo

PLAY [Get LLDP neighbor information and save interface descriptions using templates]

TASK [get lldp neighbor table] **

ok: [bilbo]

TASK [get neighbor details] ***

ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [save interface descriptions, template 1] **

changed: [bilbo] => (item={...})
changed: [bilbo] => (item={...})

PLAY RECAP ***

bilbo : ok=3 changed=1 unreachable=0 failed=0

mbp15:aja2 sean$ cat ~/ansible/tmp/bilbo-ge-0-1-0.conf
interfaces {
 ge-0/1/0 {
 description "to device - port -";
 }
}

Where are the device name and interface? Why does the output still have the hy-
phens from lines 2 and 3 of the template?

With Jinja2 templates, when you update a simple variable within a loop, the up-
date exists only within the loop. The change to the variable does not survive after

	 351	 Repeating a Task Based on a List

the loop ends. As a result, the assignments made on lines 6 and 9 of the template
do not survive past the end of the loop on line 11. The original values from lines 2
and 3 are still valid, however, and are used on line 14.

Let’s revise our template to work around this situation.

Modify template/int-desc-1.j2 as follows:

 1|#jinja2: lstrip_blocks: True
 2|{% set neighbor = {'name':'', 'desc':''} %}
 3|{% for match in item.matches %}
 4| {% if match.has_key('lldp-remote-system-name') %}
 5| {% if neighbor.update({'name': match['lldp-remote-system-name']}) %}{% endif %}
 6| {% endif %}
 7| {% if match.has_key('lldp-remote-port-description') %}
 8| {% if neighbor.update({'desc': match['lldp-remote-port-description']}) %}{% endif %}
 9| {% endif %}
10|{% endfor %}
11|interfaces {
12| {{ item.item }} {
13| description "to device {{ neighbor.name }} port {{ neighbor.desc }}";
14| }
15|}

Line 2 declares a variable neighbor that contains a dictionary, with key:value pairs
to hold the LLDP neighbor’s name and description.

Lines 5 and 8 now update the neighbor dictionary when the appropriate key is
found. This change will survive the for loop, but it needs to be done in a rather in-
teresting way. The code neighbor.update({'name': match['lldp-remote-system-name']})
calls the update() function on the neighbor dictionary. This update() function is the
Python function from the underlying Python dictionary implementation, not a Jin-
ja2 function. Because this is not a Jinja2 function, we need to “trick” Jinja2 into
running it, so we used the function call as the condition of an if statement. Jinja2
thinks it is evaluating an if condition, so it calls neighbor.update() for us, passing
the updated dictionary entry {'name': match['lldp-remote-system-name']} as an argu-
ment. Because the if statement is otherwise empty it does nothing else.

Now the updated description on line 13 should get the correct data. Note the
change from underscore (‘_’) to period (‘.’) in the variable references, because they
are now referencing the name and desc keys of the neighbor dictionary.

Run the playbook again (not shown) and confirm we get the desired results in the
two *.conf files:

mbp15:aja2 sean$ cat ~/ansible/tmp/bilbo-ge-0-1-0.conf
interfaces {
 ge-0/1/0 {
 description "to device aragorn port ge-0/0/0";
 }
}

mbp15:aja2 sean$ cat ~/ansible/tmp/bilbo-ge-0-1-1.conf

	 352	 Chapter 13: Repeating Tasks

interfaces {
 ge-0/1/1 {
 description "to device frodo port ge-0/1/1.0";
 }
}

One nice thing about this first template is that the logic (the set, for, and if state-
ments) is all together, and the Junos configuration lines are all together, so it is easy
to follow the logic and to envision the Junos configuration emerging from the
template.

One downside to the approach used with this first template is that it generates a
separate config file for each interface; these files need to be assembled before being
applied to the device’s configuration.

Can we create a single config file with all desired interfaces’ descriptions? Yes, we
can, if we move the loop over the neighbors.results list from the playbook into the
template.

Add a new task (boldfaced lines) to the end of the get-lldp-list.yaml playbook:

...
34| - name: save interface descriptions, template 1
35| template:
36| src: "{{ template_dir }}/int-desc-1.j2"
37| dest: "{{ tmp_dir }}/{{ inventory_hostname }}-{{ item.item | replace('/', '-') }}.conf"
38| loop: "{{ neighbors.results }}"
39|
40| - name: save interface descriptions, template 2
41| template:
42| src: "{{ template_dir }}/int-desc-2.j2"
43| dest: "{{ tmp_dir }}/{{ inventory_hostname }}.conf"

Notice that the new task does not include a loop.

Create the new template, template/int-desc-2.j2:

 1|#jinja2: lstrip_blocks: True
 2|interfaces {
 3|{% for result in neighbors.results %}
 4| {{ result.item }} {
 5| {% set neighbor = {'name':'', 'desc':''} %}
 6| {% for match in result.matches %}
 7| {% if match.has_key('lldp-remote-system-name') %}
 8| {% if neighbor.update({'name': match['lldp-remote-system-name']}) %}{% endif %}
 9| {% endif %}
10| {% if match.has_key('lldp-remote-port-description') %}
11| {% if neighbor.update({'desc': match['lldp-remote-port-description']}) %}{% endif %}
12| {% endif %}
13| {% endfor %}
14| description "to device {{ neighbor.name }} port {{ neighbor.desc }}";
15| }
16|{% endfor %}
17|}

	 353	 Repeating a Task Based on a List

The new template uses a for loop (lines 3 – 16) to iterate over neighbors.results,
replacing the loop: "{{ neighbors.results }}" loop used with the previous task. Be-
cause the loop is within the template, the template creates a single file with the de-
scriptions for all interfaces.

The logic within the outer for loop is similar to the previous template; in fact,
many lines are exactly the same. The most notable change is the result variable
from the for loop (line 3) replaces the item variable from the playbook’s loop.

However, the Junos configuration lines get scattered through the template (lines 2,
4, 14, 15, and 17), making it a bit harder to follow the logic and to envision the
config file that will emerge from the template.

Let’s run the playbook and check the resulting config file:

mbp15:aja2 sean$ ansible-playbook get-lldp-list.yaml --limit=bilbo

PLAY [Get LLDP neighbor information and save interface descriptions using templates]

TASK [get lldp neighbor table] **

ok: [bilbo]

TASK [get neighbor details] ***

ok: [bilbo] => (item=ge-0/1/0)
ok: [bilbo] => (item=ge-0/1/1)

TASK [save interface descriptions, template 1] **

ok: [bilbo] => (item={...})
ok: [bilbo] => (item={...})

TASK [save interface descriptions, template 2] **

changed: [bilbo]

PLAY RECAP ***

bilbo : ok=4 changed=1 unreachable=0 failed=0

mbp15:aja2 sean$ cat ~/ansible/tmp/bilbo.conf
interfaces {
 ge-0/1/0 {
 description "to device aragorn port ge-0/0/0";
 }
 ge-0/1/1 {
 description "to device frodo port ge-0/1/1.0";
 }
}

Nice! Just the way a Junos configuration should look.

	 354	 Chapter 13: Repeating Tasks

We could bring together the Junos lines of the template just a little bit – swap lines
2 and 3, and swap lines 16 and 17 – but the resulting configuration would not be
quite as nicely formatted:

interfaces {
 ge-0/1/0 {
 description "to device aragorn port ge-0/0/0";
 }
}
interfaces {
 ge-0/1/1 {
 description "to device frodo port ge-0/1/1.0";
 }
}

Each of these templates is viable; select the approach you like best.

References
Ansible playbook loops:
https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

Ansible tests:
https://docs.ansible.com/ansible/latest/user_guide/playbooks_tests.html

Ansible error handling:
https://docs.ansible.com/ansible/latest/user_guide/playbooks_error_handling.html

Boolean expressions:
https://en.wikipedia.org/wiki/Boolean_expression

Regular Expressions:
https://en.wikipedia.org/wiki/Regular_expression
https://www.regular-expressions.info/

A Regular Expressions book the author likes:
http://www.regular-expressions-cookbook.com/

Short-circuit evaluation:
https://en.wikipedia.org/wiki/Short-circuit_evaluation

There will come a time when you want a playbook to do something for which an
Ansible module does not yet exist, or which cannot be done (the way you want it
done) by combining existing modules. At that time, you may need to create a new,
custom Ansible module to accomplish the task.

This chapter introduces the ideas behind writing custom modules for Ansible. See
Ansible’s documentation link in the References section at the end of the chapter for
more complete information about this topic.

Writing custom modules means programming, usually in the Python language. An-
sible does not really care what programming language you use to write your mod-
ule, provided your module complies with Ansible’s module interface standard.
However, Ansible is written mostly in Python and includes a Python library to help
with the interface between your module and the Ansible playbook that called it. As
a result, writing modules in Python is usually the easiest option.

The discussion in this chapter assumes the reader is already familiar with Python
2.7 and PyEZ. The code is presented complete, not built in stages, and discussed
only at a fairly high level.

NOTE	 The author uses a somewhat different development process than what
Ansible proposes in their developer documentation, using their “hacking/test-
module script.” The reader is encouraged to explore Ansible’s process as well and
adopt whichever approach you find works best.

Chapter 14

Custom Ansible Modules

	 356	 Chapter 14: Custom Ansible Modules

The Problem
Recall in Chapter 10 we updated our base-settings playbook and template to set
connection-limit and rate-limit values for SSH and NETCONF connections. Be-
cause some devices only support 3 or 5 connections, while others support hun-
dreds, we used a test based on device model and personality to determine if we
should set the various *-limit values to 3, 5, or 10. That test worked well as an il-
lustration of using if-elif-else to make decisions in a template, but it is simplified
relative to the real-world variation in maximum values across various Junos de-
vices and versions.

It would be nice if we could just query a device to find out the maximum value it
supports for its SSH and NETCONF *-limit settings. Unfortunately, if there is a
command or RPC that returns that value, the author has not been able to find it.

However, there are two ways we can find the value for a given device at the Junos
command line in configuration mode. We saw the first in Chapter 10, leveraging
the CLI’s interactive help feature:

{master:0}[edit]
sean@bilbo# set system services ssh rate-limit ?
Possible completions:
 <rate-limit> Maximum number of connections per minute (1..250)
{master:0}[edit]
sean@bilbo# set system services ssh rate-limit

The second is to try setting one of the *-limit settings to an unsupported value; the
error message tells us the supported range for the device:

{master:0}[edit]
sean@bilbo# set system services ssh rate-limit 1000
 ̂
Value 1000 is not within range (1..250) at '1000'

{master:0}[edit]
sean@bilbo#

Can we use either of these approaches with the juniper_junos_config module? You
can use the following playbook to test each approach (line numbers added), just
uncomment either line 21 or 22 to test either approach:

 1|---
 2|- name: Find max SSH -- testing Junos CLI approaches
 3| hosts:
 4| - all
 5| roles:
 6| - Juniper.junos
 7| connection: local
 8| gather_facts: no
 9|
10| vars:
11| connection_settings:
12| host: "{{ ansible_host }}"
13| timeout: 120
14|

	 357	 Functional Description of Our Custom Module

15| tasks:
16| - name: install set commands onto device
17| juniper_junos_config:
18| provider: "{{ connection_settings }}"
19| load: set
20| lines:
21| - set system services ssh rate-limit ?
22| # - set system services ssh rate-limit 1000

The first approach fails because ‘?’ is not a numeric value and is not recognized
during RPC calls as a request for help. Even though we provide a CLI-style “set”
command as an argument, the juniper_junos_config module does not access the de-
vice’s command line. The actual error message received by the author:

...
TASK [install set commands onto device] **
fatal: [bilbo]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: error, bad_element: ?, message: error: Invalid numeric value: '?')"}
...

This error message does not help us; it does not reveal the range of valid values.

The second approach fails, as expected, because the value is out of range:

...
TASK [install set commands onto device] **
fatal: [bilbo]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:
ConfigLoadError(severity: error, bad_element: 1000, message: error: Value 1000 is not within range
(1..250))"}
...

This error message contains the range of valid values, and we could process that in
a playbook to extract the maximum allowed value. However, doing this in a play-
book will require several tasks, and if the playbook’s focus is installing a configu-
ration template (similar to our base-settings playbook) then the series of tasks
devoted to interpreting the error might be confusing. A single task – a custom
module – that returns the desired value for a device would make such a playbook
much cleaner.

NOTE	 See test-max-ssh-ansible-only.yaml in the GitHub repository for this book
for an example of a Ansible playbook that implements the second test, forcing a
failure and interpreting the message, without a custom module.

Functional Description of Our Custom Module
Our custom module will use PyEZ to implement both approaches discussed above
for determining the SSH limit allowed by a given device. Why both approaches?
Because we can! The first approach, not possible with the juniper_junos_config
module, can be done with some trickery in PyEZ. Our module will use one ap-
proach to find the maximum allowed value for rate-limit, the other to find connec-
tion-limit. In every device the author has checked the same maximum applies to
both settings but testing them separately lets us illustrate both approaches.

	 358	 Chapter 14: Custom Ansible Modules

The module will return both the maximum values allowed by the device for its
connection-limit and rate-limit settings, and suggested values for the device’s con-
nection-limit and rate-limit settings that, in most cases, will be much lower than
the maximum allowed values. The suggested values will let us remove the max_ssh
decision logic from our base-settings.j2 template.

Our module should accept the following arguments from the playbook:

	� host: The hostname or IP address of the device being tested. (Required; nor-
mally set to ansible_host by the playbook.)

	� test_value: The out-of-range value used for the second approach (catching the
exception). Overriding the default test value is useful for testing some aspects
of the module. (Optional; default to 0.)

	� connection_limit: The value to which we want to set our device’s connection-
limit settings, provided the device supports at least the indicated number of
connections. (Optional; default to 15.)

	� rate_limit: The value to which we want to set our device’s rate-limit settings,
provided the device supports at least this rate. (Optional; default to 10.)

For simplicity we assume SSH key-based authentication using the logged-in user’s
username, so we do not need to pass username and password to the module.
(PyEZ automatically reads the current user’s name from the operating system
when one is not provided).

The functionality of the module will divide into two major areas:

	� A new class that handles the communication with the Junos device and subse-
quent processing of the data retrieved from the device. The “Developing the
Class” section of this chapter focuses on our new class.

	� The code that interfaces with Ansible and the playbook, and which instantiates
an object of our new class. The “Creating the Ansible Module” section of this
chapter discusses the interface code.

Ansible provides a Python library, containing the AnsibleModule class, that han-
dles most of the interface work. This means the interface code looks similar across
different custom modules. Part of the functionality provided by the AnsibleMod-
ule class includes assigning default values to arguments that may not have been
passed by the playbook. We further discuss AnsibleModule in the “Creating the
Ansible Module” section of this chapter.

Developing the Class
Let’s start by creating the MaxSSHConnections class that communicates with the
Junos device and processes the results.

	 359	 Developing the Class

While developing a class that will be part of a custom Ansible module, the author
has found it helpful to create a stand-alone program that tests the class. Executing
the class from a stand-alone program, outside of Ansible, usually makes it easier to
debug the class. There are a few reasons for this:

	� The feedback that Python provides at the command line is often better than
what you get when the feedback is filtered through Ansible and a running play-
book.

	� You can use a Python debugger with a stand-alone program.

	� Ansible modules should not print to the screen (we discuss why shortly), but
printing variables and other data is often useful during module development
and debugging.

	� A test program often makes it easier to change the test data being supplied to
the class than would be the case with a complete playbook.

Create file test_max_ssh_connections.py with the following Python code (line num-
bers added for discussion):

 1|#!/usr/bin/env python
 2|"""Query devices for maximum allowed SSH connection-limit and rate-limit."""
 3|
 4|import re
 5|import sys
 6|from jnpr.junos import Device
 7|from jnpr.junos.exception import ConfigLoadError
 8|from jnpr.junos.utils.config import Config
 9|from jnpr.junos.utils.start_shell import StartShell
 10|from pprint import pprint
 11|
 12|
 13|##
 14|
 15|class MaxSSHConnections(object):
 16| """Class to query devices or maximum connection-limit setting."""
 17|
 18| def __init__(self, device, **kwargs):
 19| """Initialize instance variables."""
 20| self.dev = Device(host=device, normalize=True)
 21|
 22| self.desired_connection_limit = kwargs.get('connection_limit', 15)
 23| self.desired_rate_limit = kwargs.get('rate_limit', 10)
 24| self.test_value = kwargs.get('test_value', 0)
 25|
 26| self.results = {'host': device,
 27| 'connection_max': 0,
 28| 'rate_max': 0,
 29| 'connection_limit': 0,
 30| 'rate_limit': 0,
 31| 'exception_message': '',
 32| 'shell_results': [],
 33| 'warnings': []
 34| }
 35|

	 360	 Chapter 14: Custom Ansible Modules

 36| # ------------------------- #
 37|
 38| def get_max_connections(self):
 39| """Use shell commands to find maximum allowed connection-limit."""
 40| # the list of commands that will:
 41| # - exit from the command shell to the Junos CLI
 42| # - enter configuration mode
 43| # - issue the command "set system services ssh connection-limit ?",
 44| # which will return help information we want to process
 45| # - exit configuration mode
 46| shell_commands = [
 47| {'command': 'exit', 'prompt': '> ', 'max': False},
 48| {'command': 'configure', 'prompt': '# ', 'max': False},
 49| {'command': 'set system services ssh connection-limit ?',
 50| 'prompt': '# ', 'max': True},
 51| {'command': 'exit', 'prompt': '> ', 'max': False}
 52|]
 53|
 54| # open a command shell on the device
 55| shell = StartShell(self.dev)
 56| shell.open()
 57|
 58| # iterate over the list of commands, capturing the output from
 59| # the command in whose results we are interested ('max' = True)
 60| max_msg = None
 61| for shellcmd in shell_commands:
 62| shellout = shell.run(shellcmd['command'], shellcmd['prompt'])
 63| self.results['shell_results'].append(shellout)
 64|
 65| if shellout[0] is False:
 66| msg = 'Shell command "%s" did not complete as expected: %s' \
 67| % (shellcmd['command'], shellout[1])
 68| raise RuntimeError(msg)
 69|
 70| if shellcmd['max']:
 71| max_msg = shellout[1]
 72|
 73| shell.close()
 74|
 75| # process the command output to find the max allowed value
 76| if max_msg is not None:
 77| max_arr = max_msg.splitlines()
 78| regex = r'connection-limit[^\(\[]*[\(\[]\d+\.\.(\d+)'
 79| max_str = None
 80| for line in max_arr:
 81| m = re.search(regex, line, flags=re.IGNORECASE)
 82| if m is not None:
 83| max_str = m.group(1)
 84| break
 85|
 86| if max_str is not None:
 87| reported_max = int(max_str)
 88| self.results['connection_max'] = reported_max
 89| if reported_max < self.desired_connection_limit:
 90| self.results['connection_limit'] = reported_max
 91| else:
 92| self.results['connection_limit'] = \
 93| self.desired_connection_limit
 94| else:

	 361	 Developing the Class

 95| msg = 'Regex match expected but not found in command results'
 96| raise ValueError(msg)
 97| else:
 98| msg = 'Missing expected results from shell commands.'
 99| raise ValueError(msg)
100|
101| # ------------------------- #
102|
103| def get_max_rate(self):
104| """Set an invalid value for rate-limit and process the exception."""
105| # configuration object for Junos device
106| cfg = Config(self.dev)
107|
108| # make sure no config change is pending before our set command
109| diff = cfg.diff()
110| if diff is not None:
111| msg = 'Uncommitted change found: %s' % str(diff)
112| raise RuntimeError(msg)
113|
114| # try to set a invalid (too large) value for rate-limit
115| set_cmd = 'set system services ssh rate-limit ' + str(self.test_value)
116| try:
117| cfg.load(set_cmd, format='set')
118| # Config load should raise exception if the test value is invalid.
119| # If we got here, it means the device accepted the (apparently
120| # valid) rate-limit, so roll back the change and assume the
121| # test value is the maximum allowed rate limit
122| cfg.rollback()
123| msg = 'Test configuration loaded without error, actual max '
124| msg += 'rate limit may be higher than the test value '
125| msg += '%s.' % str(self.test_value)
126| self.results['warnings'].append(msg)
127| self.results['rate_max'] = self.test_value
128| if self.test_value < self.desired_rate_limit:
129| self.results['rate_limit'] = self.test_value
130| else:
131| self.results['rate_limit'] = self.desired_rate_limit
132| except ConfigLoadError as err:
133| self.results['exception_message'] = err.message
134| # catch the expected ConfigLoadError from the invalid rate-limit
135| match = re.search(r'\(\d+\.\.(\d+)\)', err.message)
136| if match is not None:
137| max_str = int(match.group(1))
138| reported_max = int(max_str)
139| self.results['rate_max'] = reported_max
140| if reported_max < self.desired_rate_limit:
141| self.results['rate_limit'] = reported_max
142| else:
143| self.results['rate_limit'] = self.desired_rate_limit
144| else:
145| msg = 'Regex match expected but not found in caught '
146| msg += 'exception: %s' % str(err)
147| raise ValueError(msg)
148|
149| # ------------------------- #
150|
151| def run(self):
152| """Run the device test and return result."""

	 362	 Chapter 14: Custom Ansible Modules

153| # open a PyEZ connection to the device
154| self.dev.open()
155|
156| # get max connection limit (first approach)
157| self.get_max_connections()
158|
159| # get max rate limit (second approach)
160| self.get_max_rate()
161|
162| # close device connection
163| self.dev.close()
164|
165|
166|##
167|
168|def main():
169| """Test the MaxSSHConnections class."""
170| desired_connections = 15
171| desired_rate = 10
172| test_value = 0
173| device = 'bilbo'
174|
175| find_max = MaxSSHConnections(device, test_value=test_value,
176| rate_limit=desired_rate,
177| connection_limit=desired_connections)
178| try:
179| find_max.run()
180| except Exception as err:
181| print(str(err))
182| sys.exit(1)
183|
184| pprint(find_max.results)
185|
186|
187|##
188|
189|if __name__ == '__main__':
190| main()

Lines 15 – 163 define the class MaxSSHConnections, which uses the two ap-
proaches discussed earlier to get the device’s maximum connection-limit and rate-
limit values. The class has four methods.

Lines 18 – 34 comprise the class’ __init__() method, called when we instantiate an
object from the class. This method initializes our instance variables, including
self.dev for the PyEZ Device object, and self.results to contain the results that the
class returns to the calling process.

Lines 38 – 99 comprise the class’s get_max_connections() method. This method con-
nects to the device and determines the maximum value for the SSH connection-lim-
it setting. This method uses the first approach discussed earlier in the chapter,
leveraging the CLI help system.

NOTE	 The get_max_connections() method uses a technique sometimes called
screen scraping, running commands at the device’s user-interactive command line
and gathering text results that need to be processed. Screen scraping is not the

	 363	 Developing the Class

preferred approach to automation with Junos devices; your automation should use
the RPC API whenever possible, whether directly or via frameworks like PyEZ or
Ansible. Reserve screen scraping for the rare situations that are not addressed by a
device’s API, or for automation with devices that do not have an API.

Lines 103 – 147 comprise the class’s get_max_rate() method. This method connects
to the device and determines the maximum value for the SSH rate-limit setting.
This method uses the second approach discussed earlier in the chapter, setting
rate-limit to an invalid value and catching the resulting exception.

Lines 151 – 163 are the class’s run() method, which provides a single method that
the calling program can use to do everything needed by the object. This method
opens the initial PyEZ device connection, then calls the get_max_connections() and
get_max_rate() methods to perform most of the work of the class.

Lines 168 – 184 comprise the main() method that drives the testing of the class.
This method declares variables equivalent to those that will be passed from the
Ansible playbook (remember to change the device variable to one of your test de-
vices), instantiates an object of the MaxSSHConnections class, and then calls the run()
method on the object. This method also prints the results of the class’ work, con-
tained in the find_max.results variable.

There are a couple things to observe in this program:

	� The MaxSSHConnections class does not print anything. During testing as part
of a stand-alone program, like this one, you can add print statements to the
class as needed for debugging; however, you must remove all print statements
before creating the Ansible module. The Ansible module returns JSON data to
the playbook on STDOUT. Because print statements also send their results to
STDOUT, the printed output is likely to interfere with the playbook’s interpre-
tation of the module’s results; the combination of the module’s results and print
output is unlikely to be valid JSON. (See also “Python logging module” in the
References at the end of the chapter.)

	� Exceptions, with meaningful messages, are used to indicate problems during
class execution. It is up to the main() method to catch the exceptions. To some
extent this is a deliberate simplification for the book, but this approach legiti-
mately helps with the design Ansible module as well. Raising exceptions for all
errors means the Ansible module will need one simple technique for handling
module failures, which we will see later in this chapter.

	� Module results that should be passed back to the Ansible playbook are collect-
ed in Python data structure(s), such as this example’s results dictionary. Be-
cause playbook results are converted to JSON format, try to use simple vari-
ables, lists and dictionaries.

	� The results dictionary includes eight fields, two of which are helpful but not
strictly necessary, and two of which help with understanding the module (or

	 364	 Chapter 14: Custom Ansible Modules

with debugging) but which should probably be removed from a production
version of this module. More on the results fields momentarily.

Now run the test program:

mbp15:aja2 sean$ python test_max_ssh_connections.py
{'connection_limit': 15,
 'connection_max': 250,
 'exception_message': 'error: Value 0 is not within range (1..250)',
 'host': 'bilbo',
 'rate_limit': 10,
 'rate_max': 250,
 'shell_results': [(True,
 u'exit\r\r\nexit\r\n\r\n{master:0}\r\nsean@bilbo> '),
 (True,
 u'configure \r\nEntering configuration mode\r\n\r\n{master:0}[edit]\r\nsean@bilbo#
'),
 (True,
 u'set system services ssh connection-limit ?\r\nPossible completions:\r\n
<connection-limit> Maximum number of allowed connections (1..250)\r\n{master:0}[edit]\r\n\rsean@
bilbo# set system services ssh connection-limit \x08\x08\x08\r\n
^\r\nsyntax error, expecting <data>.\r\n\r\n{master:0}[edit]\r\nsean@bilbo# '),
 (True,
 u'exit \r\nExiting configuration mode\r\n\r\n{master:0}\r\nsean@bilbo> ')],
 'warnings': []}

Let’s briefly discuss the output, which is the contents of the MaxSSHConnections
class’ results dictionary. The connection_max and rate_max fields contain the values
detected by the class as the maximum values allowed by the device for the respec-
tive settings. The connection_limit and rate_limit fields contain suggested values for
configuring the respective settings on the device, using the lesser of the detected
maximums or the arguments of the same names passed to the class when it was
instantiated. These four values are the required output of this class as discussed
earlier in this chapter.

The host field simply confirms the device that was queried. The warnings field con-
tains messages related to the class’ results, things that the user might want to be
aware of but that were not a fatal error.

Finally, the shell_results and exception_message fields are included to help during
development and debugging of the module but should be removed from a produc-
tion version. The exception_message field contains the error message from the excep-
tion raised by trying to set an invalid rate-limit value on the device. The
shell_results field contains the results of executing the series of shell and CLI com-
mand to get the allowed range of values for the device’s connection-limit setting.

Change the variables defined in the main() method and run the program again to
see how the results change for different arguments. For example, set test_value =
12 (line 172) to see how the results change when the test value is valid rather than
invalid:

	 365	 Creating the Ansible Module

mbp15:aja2 sean$ python test_max_ssh_connections.py
{'connection_limit': 15,
 'connection_max': 250,
 'exception_message': '',
 'host': 'bilbo',
 'rate_limit': 10,
 'rate_max': 12,
 'shell_results': [(True,
 u'exit\r\r\nexit\r\n\r\n{master:0}\r\nsean@bilbo> '),
 (True,
 u'configure \r\nEntering configuration mode\r\n\r\n{master:0}[edit]\r\nsean@bilbo#
'),
 (True,
 u'set system services ssh connection-limit ?\r\nPossible completions:\r\n
<connection-limit> Maximum number of allowed connections (1..250)\r\n{master:0}[edit]\r\n\rsean@
bilbo# set system services ssh connection-limit \x08\x08\x08\r\n
^\r\nsyntax error, expecting <data>.\r\n\r\n{master:0}[edit]\r\nsean@bilbo# '),
 (True,
 u'exit \r\nExiting configuration mode\r\n\r\n{master:0}\r\nsean@bilbo> ')],
 'warnings': ['Test configuration loaded without error, actual max rate limit may be higher than the
test value 12.']}

Notice that the key 'exception_message' has an empty string for a value (because
there was no exception), and the 'warnings' key contains a message that informs
the user that the test value might not have provided the best results.

Creating the Ansible Module
Now let’s convert our test program into a custom Ansible module. This should
require no changes to the MaxSSHConnections class, but will require some adjust-
ments to the import statements and the main() method.

Ansible looks for modules in a few locations. Probably the easiest for custom mod-
ules is a library subdirectory within the directory where the playbooks live. If you
are using GitHub or other source control (see the Appendix), this location also
keeps the new module within the project’s directory for easy inclusion in the code
repository for your playbooks.

Within your ~/aja2 directory, create a new library subdirectory, then copy the test_
max_ssh_connections.py program into the library subdirectory as max_ssh_connec-
tions.py.

mbp15:aja2 sean$ mkdir library

mbp15:aja2 sean$ cp test_max_ssh_connections.py library/max_ssh_connections.py

Open the library/max_ssh_connections.py program in your text editor. Modify the
import statements at the top of the program as shown (line numbers added for
discussion):

 1|#!/usr/bin/env python
 2|"""Query devices for maximum allowed SSH connection-limit and rate-limit."""

	 366	 Chapter 14: Custom Ansible Modules

 3|
 4|import re
 5|from ansible.module_utils.basic import AnsibleModule
 6|from jnpr.junos import Device
 7|from jnpr.junos.exception import ConfigLoadError
 8|from jnpr.junos.utils.config import Config
 9|from jnpr.junos.utils.start_shell import StartShell
 10|
 11|
 12|##
...

Line 5 imports the AnsibleModule class, which provides a lot of the interface be-
tween the playbook and our new module. The import lines for sys and pprint have
been removed as we no longer need them.

When a playbook calls a module, Ansible assembles the arguments from the play-
book into a JSON data set and passes the JSON data to the called module. The
AnsibleModule class makes it easy for the module to parse the argument data.
Some of what AnsibleModule can do when a custom module is called:

	� Throw an error if required arguments are missing.

	� Throw an error if an unexpected argument is provided.

	� Assign default values for optional arguments that are not provided by the play-
book.

	� Confirm the data type of arguments (e.g. integer vs. string). If no type is speci-
fied, arguments are assumed to be strings.

AnsibleModule also helps return results from the module back to the calling play-
book. It provides methods for indicating whether the module had a failure or
changed the target device, and returning any additional data the module needs to
return to the calling playbook.

Let’s put AnsibleModule to work. Delete the current main() method and replace it
with the following (line numbers added for discussion):

...
165|##
166|
167|def main():
168| """Test the MaxSSHConnections class."""
169| # define arguments from Ansible
170| module = AnsibleModule(
171| argument_spec=dict(
172| host=dict(required=True),
173| test_value=dict(required=False, type='int', default=0),
174| rate_limit=dict(required=False, type='int', default=10),
175| connection_limit=dict(required=False, type='int', default=15)
176|)
177|)
178|
179| # copy playbook arguments into local variables

	 367	 Creating the Ansible Module

180| host = module.params['host']
181| test_value = module.params['test_value']
182| rate_limit = module.params['rate_limit']
183| connection_limit = module.params['connection_limit']
184|
185| # instantiate MaxSSHConnections and run
186| find_max = MaxSSHConnections(host, test_value=test_value,
187| rate_limit=rate_limit,
188| connection_limit=connection_limit)
189| try:
190| find_max.run()
191| except Exception as err:
192| module.fail_json(msg=str(err), results=find_max.results)
193|
194| module.exit_json(changed=False, results=find_max.results,
195| rate_limit=find_max.results['rate_limit'],
196| connection_limit=find_max.results['connection_limit'])
197|
198|
199|##
200|
201|if __name__ == '__main__':
202| main()

Lines 170 – 177 instantiate an object module from the AnsibleModule class. The
argument_spec dictionary tells AnsibleModule about the arguments it should expect
from the playbook.

Line 172 says we expect an argument called host. Because required=True, the host
argument must be provided; the module will throw an error if it is missing.

Line 173 says we might get an argument called test_value. Because required=False,
this argument is optional. Should test_value not be provided, default=0 automati-
cally sets the value of test_value to 0. Because AnsibleModule assumes arguments
are strings unless we tell it otherwise, the type='int' setting tells AnsibleModule
that this particular argument must be an integer. Other types include ‘bool’ for
Boolean values, ‘dict’ for dictionary (key:value) data, and ‘list’ for list/array data.

Lines 174 and 175 do the same thing as line 173 but for the arguments rate_limit
and connection_limit, with appropriate default values.

Lines 180 – 183 copy each of the arguments from the module.params dictionary into
local variables. The AnsibleModule object module keeps all the arguments in a dic-
tionary called params. While not strictly necessary, it is often easier to work with the
argument’s values if they are copied into local variables.

Lines 186 – 188 instantiates object find_max from our class MaxSSHConnections,
providing all the arguments needed for the class to do its work.

Lines 189 – 192 calls find_max.run(), the run() method of our MaxSSHConnections
class, to process the device and generate the required output. The call to run() is
within a try-except block to catch any exceptions raised by the module. In this
module we do not need to do anything with exceptions other than report the

http://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html

	 368	 Chapter 14: Custom Ansible Modules

failure back to the Ansible playbook, which is handled by the module.fail_json()
method call on line 192. The structure of our example module allows all errors to
be handled in a single try-except block, so a single fail_json() call is sufficient.
However, a module that handles failures at different places in the code might have
multiple fail_json() calls.

Lines 194 – 196 call the module.exit_json() method to exit the module without an
error.

Note we have two different exits from our playbook, the module.fail_json() call on
line 192 and the module.exit_json() call on lines 194–196. Both exit_json() and
fail_json() are methods defined in the AnsibleModule class. The major difference
between them is that the fail_json() method indicates the module encountered an
error – the calling playbook will record a fatal result for the task – while exit_
json() indicates a successful completion of the module – the calling playbook will
record an ok or changed result for the task.

When an Ansible module exits, it returns results to the calling playbook as a JSON
dictionary (key:value data). The return dictionary should include at least the key
"failed" with a Boolean value indicating whether or not the module encountered a
fatal error (this value, when True, tells the playbook to display the red “fatal” sta-
tus for the task), and the key "changed" with a Boolean value indicating whether the
module changed the target host in some way (this value tells the calling playbook
whether to display the green “ok” or yellow “changed” status for the task).

The return data can also include a "msg" key with a status or error message. While
a "msg" key is optional, a module should include an error message when it encoun-
ters a failure so users of the playbook understand why the module failed.

The module can also include any other key:value data it needs to return to the call-
ing playbook, where the key should be a meaningful identifier and the value can be
anything (simple value, list, dictionary) in JSON format.

Take another look at lines 194–196 showing a normal exit (no error), and line 192
showing an exit with error. Notice that in both cases we return the entire results
dictionary from the find_max object. Observe that the names of the keyword argu-
ments to the exit_json() and fail_json() methods are the unquoted keys desired in
the JSON results.

Lines 194–196 also copy the most important two results values into their own
keys connection_limit and rate_limit. Duplicating selected results is not required,
but in some cases, it makes it a little easier for the playbook to reference the most
important return data from the module.

Note also that we return changed=False because this module does change the target
device. A module that can change the target device may have two exit_json() calls,
one that sets changed=False and another that sets changed=True. Alternately, the mod-
ule can set a Boolean variable, named something like host_changed, to True or False
and return that variable’s value in the exit_json() call (changed=host_changed).

	 369	 Creating the Ansible Module

On line 192, notice the msg key is set to the exception’s error message. We do not
need to explicitly set failed=True because fail_json() does this for us.

TIP	 In order to keep this example fairly straightforward, the author suggested
copying the test_max_ssh_connections.py test program to create the library/max_ssh_
connections.py custom module. This creates a problem should the MaxSSHCon-
nections class need to be modified in the future: you have two copies of the class
definition, one in the test program and one in the module. If you update the class
in test_max_ssh_connections.py, you need to manually replicate those changes to
library/max_ssh_connections.py, an error-prone process. It might be better to put the
class definition in a separate file and import that file into both the test program and
the module; changes to the single copy of the class definition are incorporated into
both the test program and the module. The GitLab repository for this book
contains a second example of selected files from this chapter showing one ap-
proach to putting the class in a separate, importable file.

Testing the Custom Module
Let’s create a simple playbook to test the completed module. In your ~/aja2 direc-
tory, create playbook get-max-ssh.yaml:

 1|---
 2|- name: Get maximum ssh rate-limit and connection-limit
 3| hosts:
 4| - all
 5| connection: local
 6| gather_facts: no
 7|
 8| tasks:
 9| - name: get max ssh
10| max_ssh_connections:
11| host: "{{ ansible_host }}"
12| test_value: 50
13| # rate_limit: 15
14| connection_limit: 25
15| register: max_ssh
16|
17| - debug:
18| var: max_ssh

Run the playbook and observe the results:

mbp15:aja2 sean$ ansible-playbook get-max-ssh.yaml

PLAY [Get maximum ssh rate-limit and connection-limit] **

TASK [get max ssh] **

ok: [aragorn]
ok: [bilbo]

TASK [debug] ***

	 370	 Chapter 14: Custom Ansible Modules

ok: [bilbo] => {
 "max_ssh": {
 "changed": false,
 "connection_limit": 25,
 "failed": false,
 "rate_limit": 10,
 "results": {
 "connection_limit": 25,
 "connection_max": 250,
 "exception_message": "",
 "host": "198.51.100.5",
 "rate_limit": 10,
 "rate_max": 50,
 "shell_results": [
 [
 true,
 "exit\r\r\nexit\r\n\r\n{master:0}\r\nsean@bilbo> "
],
 [
 true,
 "configure \r\nEntering configuration mode\r\n\r\n{master:0}[edit]\r\nsean@bilbo# "
],
 [
 true,
 "set system services ssh connection-limit ?\r\nPossible completions:\r\n <connection-
limit> Maximum number of allowed connections (1..250)\r\n{master:0}[edit]\r\n\rsean@bilbo# set
system services ssh connection-limit \b\b\b\r\n ̂ \r\
nsyntax error, expecting <data>.\r\n\r\n{master:0}[edit]\r\nsean@bilbo# "
],
 [
 true,
 "exit \r\nExiting configuration mode\r\n\r\n{master:0}\r\nsean@bilbo> "
]
],
 "warnings": [
 "Test configuration loaded without error, actual max rate limit may be higher than the
test value 50."
]
 }
 }
}
ok: [aragorn] => {
 "max_ssh": {
 "changed": false,
 "connection_limit": 5,
 "failed": false,
 "rate_limit": 5,
 "results": {
 "connection_limit": 5,
 "connection_max": 5,
 "exception_message": "error: Value 50 is not within range (1..5)",
 "host": "192.0.2.10",
 "rate_limit": 5,
 "rate_max": 5,
 "shell_results": [
 [
 true,
 "exit\r\r\nexit\r\n\r\nsean@aragorn> "

	 371	 Creating the Ansible Module

],
 [
 true,
 "configure \r\nEntering configuration mode\r\n\r\n[edit]\r\nsean@aragorn# "
],
 [
 true,
 "set system services ssh connection-limit ?\r\nPossible completions:\r\n <connection-
limit> Maximum number of allowed connections (1..5)\r\n[edit]\r\n\rsean@aragorn# set system services
ssh connection-limit \b\b\b\r\n ̂ \r\nsyntax error,
expecting <data>.\r\n\r\n[edit]\r\nsean@aragorn# "
],
 [
 true,
 "exit \r\nExiting configuration mode\r\n\r\nsean@aragorn> "
]
],
 "warnings": []
 }
 }
}

PLAY RECAP ***

aragorn : ok=2 changed=0 unreachable=0 failed=0
bilbo : ok=2 changed=0 unreachable=0 failed=0

Review the output and note how the arguments in the playbook affected the re-
sults. For example, note that the test_value of 50 provides a good test for aragorn,
but bilbo warns that this value was valid. Change some of the arguments in the
playbook – for example, uncomment the rate_limit argument or comment out the
test_value argument – and run the playbook again, observing how the results
change.

Now simulate a failure – the author disconnected his bilbo switch – and run the
playbook again:

mbp15:aja2 sean$ ansible-playbook get-max-ssh.yaml

PLAY [Get maximum ssh rate-limit and connection-limit] **

TASK [get max ssh] **

ok: [aragorn]
fatal: [bilbo]: FAILED! => {"changed": false, "msg": "ConnectTimeoutError(198.51.100.5)", "results":
{"connection_limit": 0, "connection_max": 0, "exception_message": "", "host": "198.51.100.5", "rate_
limit": 0, "rate_max": 0, "shell_results": [], "warnings": []}}

TASK [debug] ***

ok: [aragorn] => {
...
}
	 to retry, use: --limit @/Users/sean/aja2/get-max-ssh.retry

	 372	 Chapter 14: Custom Ansible Modules

PLAY RECAP ***

aragorn : ok=2 changed=0 unreachable=0 failed=0
bilbo : ok=0 changed=0 unreachable=0 failed=1

Observe that bilbo records a failure with an error message.

Adding max_ssh_connections to the Base Settings Playbook
Let’s update our base-settings.yaml playbook and base-settings.j2 template to use
our new max_ssh_connections module and its results. This same change can be made
to the system role we created in Chapter 12, but doing so will be left as an exercise
for the reader.

Modify the base-settings.yaml playbook as shown, replacing the tasks that called
the juniper_junos_facts module and displayed its results with the tasks that call our
max_ssh_connections module and display its results:

 1|---
 2|- name: Generate and Install Configuration File
 3| hosts:
 4| - all
 5| roles:
 6| - Juniper.junos
 7| connection: local
 8| gather_facts: no
 9|
10| vars:
11| tmp_dir: "tmp"
12| conf_file: "{{ tmp_dir}}/{{ inventory_hostname }}.conf"
13| connection_settings:
14| host: "{{ ansible_host }}"
15| timeout: 120
16|
17| tasks:
18| - name: confirm or create configs directory
19| file:
20| path: "{{ tmp_dir }}"
21| state: directory
22| run_once: yes
23|
24| - name: get max ssh values
25| max_ssh_connections:
26| host: "{{ ansible_host }}"
27| rate_limit: 8
28| register: jmax
29|
30| - name: display max ssh values
31| debug:
32| var: jmax
33|
34| - name: save device configuration using template
35| template:
36| src: template/base-settings.j2
37| dest: "{{ conf_file }}"
38|

	 373	 Adding max_ssh_connections to the Base Settings Playbook

39| - name: install generated configuration file onto device
40| juniper_junos_config:
41| provider: "{{ connection_settings }}"
42| src: "{{ conf_file }}"
43| load: replace
44| comment: "playbook base-settings.yaml, commit confirmed"
45| confirmed: 5
46| diff: yes
47| ignore_warning: yes
48| register: config_results
49| notify: confirm previous commit
50|
51| - name: show configuration change
52| debug:
53| var: config_results.diff_lines
54| when: config_results.diff_lines is defined
55|
56| # - name: delete generated configuration file
57| # file:
58| # path: "{{ conf_file }}"
59| # state: absent
60|
61| handlers:
62| - name: confirm previous commit
63| juniper_junos_config:
64| provider: "{{ connection_settings }}"
65| comment: "playbook base-settings.yaml, confirming previous commit"
66| commit: yes
67| diff: no

Lines 24—28 call our new module and register the results in variable jmax.

Modify the template/base-settings.j2 template to remove the logic that calculated
the max_ssh variable (was lines 2—12) and instead use the results from our new reg-
istered variable jmax to set our rate-limit and connection-limit values:

 1|#jinja2: lstrip_blocks: True
 2|
 3|{#- Generate basic settings for the device #}
 4|system {
 5| host-name {{ inventory_hostname }};
 6| root-authentication {
 7| encrypted-password "{{ root_hash }}";
 8| }
 9| login {
10| user monitor {
11| uid 2005;
12| class read-only;
13| authentication {
14| encrypted-password "{{ monitor_hash }}";
15| }
16| }
17| user sean {
18| uid 2000;
19| class super-user;
20| authentication {
21| ssh-rsa "ssh-rsa AAAAB3NzaC1y...vPzOaX3gt8Uv sean@mbp15.local";

	 374	 Chapter 14: Custom Ansible Modules

22| }
23| }
24| }
25| replace:
26| name-server {
27| {% for server in aja2_host.dns_servers %}
28| {{ server }};
29| {% endfor %}
30| }
31| services {
32| delete: ftp;
33| netconf {
34| ssh {
35| connection-limit {{ jmax.connection_limit }};
36| rate-limit {{ jmax.rate_limit }};
37| }
38| }
39| ssh {
40| connection-limit {{ jmax.connection_limit }};
41| rate-limit {{ jmax.rate_limit }};
42| }
43| delete: telnet;
44| delete: web-management;
45| }
46| replace:
47| ntp {
48| {% for ntp in aja2_site.ntp_servers %}
49| server {{ ntp }};
50| {% endfor %}
51| }
52|}
53|snmp {
54| description "{{ aja2_host.snmp.description}}"
55| location "{{ aja2_host.snmp.location}}"
56|}

Run the playbook:

mbp15:aja2 sean$ ansible-playbook base-settings.yaml

PLAY [Generate and Install Configuration File] **

TASK [confirm or create configs directory] **

ok: [bilbo]

TASK [get max ssh values] ***

ok: [aragorn]
ok: [bilbo]

TASK [display max ssh values] ***

ok: [bilbo] => {
 "jmax": {
 "changed": false,
 "connection_limit": 15,

	 375	 Adding max_ssh_connections to the Base Settings Playbook

 "failed": false,
 "rate_limit": 8,
 "results": {
 "connection_limit": 15,
 "connection_max": 250,
 "exception_message": "error: Value 0 is not within range (1..250)",
 "host": "198.51.100.5",
 "rate_limit": 8,
 "rate_max": 250,
 "shell_results": [
 [
 true,
 "exit\r\r\nexit\r\n\r\n{master:0}\r\nsean@bilbo> "
],
 [
 true,
 "configure \r\nEntering configuration mode\r\n\r\n{master:0}[edit]\r\nsean@bilbo# "
],
 [
 true,
 "set system services ssh connection-limit ?\r\nPossible completions:\r\n <connection-
limit> Maximum number of allowed connections (1..250)\r\n{master:0}[edit]\r\n\rsean@bilbo# set
system services ssh connection-limit \b\b\b\r\n ̂ \r\
nsyntax error, expecting <data>.\r\n\r\n{master:0}[edit]\r\nsean@bilbo# "
],
 [
 true,
 "exit \r\nExiting configuration mode\r\n\r\n{master:0}\r\nsean@bilbo> "
]
],
 "warnings": []
 }
 }
}
ok: [aragorn] => {
 "jmax": {
 "changed": false,
 "connection_limit": 5,
 "failed": false,
 "rate_limit": 5,
 "results": {
 "connection_limit": 5,
 "connection_max": 5,
 "exception_message": "error: Value 0 is not within range (1..5)",
 "host": "192.0.2.10",
 "rate_limit": 5,
 "rate_max": 5,
 "shell_results": [
 [
 true,
 "exit\r\r\nexit\r\n\r\nsean@aragorn> "
],
 [
 true,
 "configure \r\nEntering configuration mode\r\n\r\n[edit]\r\nsean@aragorn# "
],
 [
 true,

	 376	 Chapter 14: Custom Ansible Modules

 "set system services ssh connection-limit ?\r\nPossible completions:\r\n <connection-
limit> Maximum number of allowed connections (1..5)\r\n[edit]\r\n\rsean@aragorn# set system services
ssh connection-limit \b\b\b\r\n ̂ \r\nsyntax error,
expecting <data>.\r\n\r\n[edit]\r\nsean@aragorn# "
],
 [
 true,
 "exit \r\nExiting configuration mode\r\n\r\nsean@aragorn> "
]
],
 "warnings": []
 }
 }
}

TASK [save device configuration using template] ***

ok: [aragorn]
changed: [bilbo]

TASK [install generated configuration file onto device] ***

ok: [aragorn]
changed: [bilbo]

TASK [show configuration change] **

skipping: [aragorn]
ok: [bilbo] => {
 "config_results.diff_lines": [
 "[edit system services ssh]",
 "- connection-limit 10;",
 "+ connection-limit 15;",
 "- rate-limit 10;",
 "+ rate-limit 8;",
 "[edit system services netconf ssh]",
 "- connection-limit 10;",
 "+ connection-limit 15;",
 "- rate-limit 10;",
 "+ rate-limit 8;"
]
}

RUNNING HANDLER [confirm previous commit] ***

ok: [bilbo]

PLAY RECAP ***

aragorn : ok=4 changed=0 unreachable=0 failed=0
bilbo : ok=7 changed=2 unreachable=0 failed=0

In this example run, there is no change to aragorn’s configuration but bilbo was
updated with new connection-limit and rate-limit settings.

Review the generated configuration files. Note that aragorn’s settings are all 5

	 377	 References

because that is the maximum allowed by the device, but bilbo, which allows a
maximum setting of 250, instead gets the higher rate-limit setting specified in the
playbook and the connection-limit that is the default in the module.

mbp15:aja2 sean$ grep "limit" tmp/*.conf
tmp/aragorn.conf: connection-limit 5;
tmp/aragorn.conf: rate-limit 5;
tmp/aragorn.conf: connection-limit 5;
tmp/aragorn.conf: rate-limit 5;
tmp/bilbo.conf: connection-limit 15;
tmp/bilbo.conf: rate-limit 8;
tmp/bilbo.conf: connection-limit 15;
tmp/bilbo.conf: rate-limit 8;

References
Ansible’s documentation about developing modules:
http://docs.ansible.com/ansible/latest/dev_guide/developing_modules.html

Most professional programmers use a source control or version control system to
track changes to their source code. Network engineers typically do not think of
themselves as programmers, but anyone developing automation, including Ansible
playbooks and associated files, is doing work similar to programming. Readers
should consider treating their automation work with the same care that a tradi-
tional programmer treats their source code.

This chapter is a very brief introduction to source control, just enough to get you
and your team started. Entire books have been written about using various source
control systems, so if your team embraces this technology you should be able to
find additional resources to help.

What is Source Control and Why Use It?
Version control, or revision control, is a system or process for managing changes
to documents, computer programs, web sites, etc. Version control can be a manual
process, such as appending a “-2” to a filename when saving an updated version of
a document, or it can be implemented using (features of) a computer program.

A version control system is software intended to manage changes to documents or
source code. Version control systems intended to manage source code typically in-
clude a source code repository, a way of storing source code and related files, and
making those files available to the users (programmers) as needed. The author re-
fers to these as source control systems.

For our purposes, source code includes our Ansible playbooks, Jinja2 templates,
inventory files, and host and group data files.

Source control systems usually offer a number of features of interest to automation
engineers, programmers, web site developers, and similar information workers.

Appendix

Using Source Control

	 379	 Check Company Standards

The following descriptions are intentionally generic; exact terms, features, and
operational details vary between different source control systems.

	� Shared repository for the “master” copy of the source files. Team members
share source code or other files via the repository, not by emailing the files to
each other or handing around flash drives. (Raise your hand if you ever partici-
pated in a “sneaker net” using floppy disks. Yes, the author has earned his gray
hair. ;))

	� Controlled access to the source files – authorized users can read or download
the files, and a possibly smaller group of authorized users can upload or change
files.

	� Some form of branching, the ability for a developer to work on one or more
files without changing the “master” copy being used by others. For example, a
developer may create a branch when they are making significant changes to an
existing program (or playbook or template), changes that may temporarily
break the program until the update is complete and tested. Other users can
continue to work with the unmodified “master” copy while the developer com-
pletes his or her work in their private branch.

	� Some form of merging, bringing the changes made in a branch into the
“master” version of the project so they are available to all users.

	� The ability to roll back changes to a previous state. For example, a developer
realizes that the changes he has been making are going in the wrong direction
and wants to return to a “known good” version of the project.

In short, source control makes it easy to share automation work between team
members and provides a backup and restore facility.

Check Company Standards
This Appendix uses Git and GitHub to illustrate the use of source control. While
both are popular choices, particularly for open-source software projects, there are
other version control systems and source code repositories. If your company em-
ploys engineers, programmers, web developers, or similar information workers,
they may already have a source control system in place. It might even be Git!

Even if there is no corporate standard source control system, check with the infor-
mation security team or other appropriate approvers before putting corporate
data in an Internet-based system like GitHub, which could put your company’s
intellectual property outside of your company’s exclusive control.

The examples in this Appendix avoid using the Ansible playbooks and related files
we have been developing. This was done so that the reader can work through the
Git and GitHub examples without using files in the ~/aja2 directory that might
contain corporate hostnames, IP addresses, or credentials.

	 380	 Appendix: Using Source Control

Brief Introduction to Git
Git was originally developed by Linus Torvalds in 2005 when he and the other de-
velopers working on the Linux kernel needed a new version control system. Git is
a distributed version control system, designed to support developers working in
different locations, connected to each other via the Internet. Each developer’s sys-
tem has a full copy of the repository for each project they are working on, so they
can work offline.

This Appendix introduces Git using the git command-line program. We create a
new repository (project), create a branch, and merge the branch.

Global Settings
Start by telling Git your name and email address. Git associates this information
with your changes so team members will know who made what change. These set-
tings are global, meaning they apply to all repositories created or copied to your
computer. You should make these settings on each computer where you use Git:

mbp15:aja2 sean$ git config --global user.name "Sean Sawtell"

mbp15:aja2 sean$ git config --global user.email "my_email@juniper.net"

mbp15:aja2 sean$ git config --global --list
user.name=Sean Sawtell
user.email=my_email@juniper.net

Starting a Repository
Now let’s create a new repository to hold the files for a new project called widget.
In your home directory, create a new subdirectory widget, then change into that
directory:

mbp15:aja2 sean$ cd ~
mbp15:~ sean$ mkdir widget
mbp15:~ sean$ cd widget/
mbp15:widget sean$

Now tell Git that this directory is a new repository by using the git init command.
Git creates a hidden subdirectory, .git, that Git uses to keep track of changes made
to the files created in the repository:

mbp15:widget sean$ git init
Initialized empty Git repository in /Users/sean/widget/.git/

mbp15:widget sean$ ls -a
.       ..      .git

mbp15:widget sean$ ls -a .git/
.               HEAD            config          hooks           objects
..              branches        description     info            refs

https://github.com/

	 381	 Brief Introduction to Git

The git status command tells you the current state of your repository:

mbp15:widget sean$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

“On branch master” tells us we are currently working on the original branch of
the project’s files, called master by default. When we create and use a different
branch, the status will reflect the alternate branch name.

“No commits yet” tells us we have not yet committed a change. A commit is when
you tell Git to take a “snapshot” of the current state of the repository, keeping
track of changes to existing files or files that have been added or deleted.

“Nothing to commit” confirms that there are no files yet in the repository.

Let’s add a couple files -- for now, they can be empty – and then use git status
again to see the status change:

mbp15:widget sean$ touch ansible.cfg

mbp15:widget sean$ touch play-widget.yaml

mbp15:widget sean$ git status
On branch master

No commits yet

Untracked files:
  (use "git add <file>..." to include in what will be committed)

	 ansible.cfg
	 play-widget.yaml

nothing added to commit but untracked files present (use "git add" to track)

Notice that Git sees the new files but does not yet consider them part of the reposi-
tory – they are untracked files at this point. To include the files in the repository,
use the git add command:

mbp15:widget sean$ git add ansible.cfg

mbp15:widget sean$ git add play-widget.yaml

mbp15:widget sean$ git status
On branch master

No commits yet

Changes to be committed:
  (use "git rm --cached <file>..." to unstage)

        new file:   ansible.cfg
        new file:   play-widget.yaml

	 382	 Appendix: Using Source Control

TIP	 Instead of adding the files individually, we could have used “git add .” to
add all files in the current directory, or “git add –-all” to add all untracked files.

Now commit the change (the addition of the two new files) using the git commit
command. The –m option includes a message with the commit. If you forget to pro-
vide a message with –m then git will open your system’s default text editor (which
is probably vi or vim, unless you have changed the default) and ask you to enter a
message there. Messages should briefly describe the change:

mbp15:widget sean$ git commit -m "first widget playbook"
[master (root-commit) 6b5b8e6] first widget playbook
 2 files changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 ansible.cfg
 create mode 100644 play-widget.yaml

mbp15:widget sean$ git status
On branch master
nothing to commit, working tree clean

Making and Committing Changes
Let’s modify a file and add another file. Add the following to file ansible.cfg:

[defaults]
inventory = inventory

Create file inventory containing the following:

localhost
Now check the repository’s status:

mbp15:widget sean$ git status
On branch master
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

        modified:   ansible.cfg

Untracked files:
  (use "git add <file>..." to include in what will be committed)

        inventory

no changes added to commit (use "git add" and/or "git commit -a")

Git knows ansible.cfg has been modified, though the change is “not staged for
commit.” Git sees the new file inventory as an untracked file. We need to add inven-
tory as we did above:

mbp15:widget sean$ git add inventory

mbp15:widget sean$ git status
On branch master
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

	 383	 Brief Introduction to Git

        new file:   inventory

Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

        modified:   ansible.cfg

There are two approaches to including a changed file in a commit. One is to git add
the file, which will “stage” it for the next commit. The easier approach, assuming
you wish to include all changed files in the commit, is to add the –a or --all flag to
the git commit command, which tells git to include changes to all tracked files that
have changed (but not new, untracked files):

mbp15:widget sean$ git commit -a -m "add Ansible defaults and inventory file"
[master 057299a] add Ansible defaults and inventory file
 2 files changed, 4 insertions(+)
 create mode 100644 inventory

mbp15:widget sean$ git status
On branch master
nothing to commit, working tree clean

TIP	 You can combine the -a and -m options if you wish: git commit -am "mes-
sage".

Now that we have two commits, let’s use the git log command to review the com-
mit log (history):

mbp15:widget sean$ git log
commit 057299ab9b60810ca3b06ec4da0458462b649a84 (HEAD -> master)
Author: Sean Sawtell <my_email@juniper.net>
Date:   Sun Oct 1 12:34:42 2017 -0400

    add Ansible defaults and inventory file

commit 6b5b8e6d67ce44d52d8c744282232ee301cce72c
Author: Sean Sawtell <my_email@juniper.net>
Date:   Sun Oct 1 11:59:28 2017 -0400

    first widget playbook

Each commit has a unique ID number, generated by your system. The ID numbers
you will see on your system will be different from those shown above. The log also
shows the name and email address of the “author” who committed the change, the
date and time of the commit, and the commit message.

You can also view the log in an abbreviated format using the --oneline option:

mbp15:widget sean$ git log --oneline
057299a (HEAD -> master) add Ansible defaults and inventory file
6b5b8e6 first widget playbook

Note the short ID number at the left of each line, followed by the commit message.

	 384	 Appendix: Using Source Control

Branching and Merging
List the existing branches using the git branch command. At the moment, the only
branch is master:

mbp15:widget sean$ git branch
* master

Let’s create a new branch called play1 where we can work on our first playbook.
The command to switch to a different, existing, branch is git checkout <branch>. To
create a new branch and immediately switch to it, use git checkout –b <newbranch>:

mbp15:widget sean$ git checkout -b play1
Switched to a new branch 'play1'

mbp15:widget sean$ git branch
  master
* play1

The asterisk in the output of git branch indicates that play1 is the active branch.

Update play-widget.yaml to contain the following:

- name: Show system date
  hosts:
    - localhost
  connection: local
  gather_facts: yes

  tasks:
    - debug: var=ansible_date_time.date

Then commit the change:

mbp15:widget sean$ git commit -am "added task to playbook"
[play1 7e60c92] added task to playbook
 1 file changed, 9 insertions(+)

And confirm that it appears in the commit log:

mbp15:widget sean$ git log --oneline
7e60c92 (HEAD -> master) added task to playbook
057299a add Ansible defaults and inventory file
6b5b8e6 first widget playbook

Run the playbook, if you wish, to ensure it works.

At the moment, the updates to play-widget.yaml exist only in the play1 branch, not
in the master branch. Confirm this by checking out master and displaying the file:

mbp15:widget sean$ git checkout master
Switched to branch 'master'

mbp15:widget sean$ cat play-widget.yaml

mbp15:widget sean$ 

	 385	 Brief Introduction to Git

Observe that the play-widget.yaml file in the master branch is empty. Viewing the
commit log shows why; the master branch does not have the commit associated
with the updated playbook:

mbp15:widget sean$ git log --oneline
057299a (HEAD -> master) add Ansible defaults and inventory file
6b5b8e6 first widget playbook

Let’s merge the changes into the master branch using the git merge command and
the name of the branch to be merged into the current branch:

mbp15:widget sean$ git merge play1
Updating 057299a..7e60c92
Fast-forward
 play-widget.yaml | 9 +++++++++
 1 file changed, 9 insertions(+)

mbp15:widget sean$ git log --oneline
7e60c92 (HEAD -> master, play1) added task to playbook
057299a add Ansible defaults and inventory file
6b5b8e6 first widget playbook

The output from git merge shows it updated the play-widget.yaml file, adding nine
lines (note the “+” symbols for added lines; deleted lines display “-” and modified
lines display both). The output from git log shows the commit made after chang-
ing the playbook file.

Merges with Conflicts
It is best if changes are made in only one of the branches prior to the merge, but
git merge is pretty good about figuring out how to blend changes made in both
branches. This is true even with changes made to the same file in both branches
(for example, if play-widget.yaml was altered in both master and play1 branches).
There are limits, however, and one example is conflicting changes to the same line
of the file. Let’s make conflicting changes to the playbook and see how to resolve
them.

You should be on the master branch. Change the task in play-widget.yaml as shown:

  tasks:
    - name: show date
      debug: var=ansible_date_time.date

Then commit that change:

mbp15:widget sean$ git commit -am "add label to debug task"
[master aa136d9] add label to debug task
 1 file changed, 2 insertions(+), 1 deletion(-)

Now switch to the play1 branch:

mbp15:widget sean$ git checkout play1
Switched to branch 'play1'

	 386	 Appendix: Using Source Control

Change the task in play-widget.yaml as shown:

  tasks:
    - debug:
        Var: ansible_date_time.date

Commit the change, then switch back to the master branch and merge the change:

mbp15:widget sean$ git commit -am "change debug task to key-value format"
[play1 5317c89] change debug task to key-value format
 1 file changed, 2 insertions(+), 1 deletion(-)

mbp15:widget sean$ git checkout master
Switched to branch 'master'

mbp15:widget sean$ git merge play1
Auto-merging play-widget.yaml
CONFLICT (content): Merge conflict in play-widget.yaml
Automatic merge failed; fix conflicts and then commit the result.

Observe that the merge cannot complete due to a “Merge conflict” in the play-
book. Human intervention is needed to resolve the problem.

Open the playbook in your text editor. You will find some new lines in the file;
these are to help you identify the conflict (line numbers added for discussion):

 1|---
 2|- name: Show system date
 3|  hosts:
 4|    - localhost
 5|  connection: local
 6|  gather_facts: yes
 7|
 8|  tasks:
 9|<<<<<<< HEAD
10|    - name: show date
11|      debug: var=ansible_date_time.date
12|=======
13|    - debug:
14|        var: ansible_date_time.date
15|>>>>>>> play1

Line 9 and line 15 bracket the conflicting lines, while line 12 separates the changes
between the two branches. In this example, the change to the master branch is
shown first, identified by line 9 (think of HEAD as “the last commit on the current
branch”), while the changes to the play1 branch are second, identified by line 15.

Remove line 11 and delete the hyphen (“-”) from line 13 to resolve the conflict, in
this case keeping aspects of both changes. Remove lines 9, 12, and 15 (as labeled
above) to delete Git’s markers from the file. The task should now look like this:

  tasks:
    - name: show date
      debug:
        var: ansible_date_time.date

	 387	 Brief Introduction to Git

Save the file, then commit the change:

mbp15:widget sean$ git commit -am "fix merge conflict on playbook"
[master 702e7f7] fix merge conflict on playbook

Take a look at the commit log; you can see the commits from each branch, fol-
lowed by the commit resolving the conflict:

mbp15:widget sean$ git log
commit 702e7f74e02882a77c35039ffd2bb077beffc780 (HEAD -> master)
Merge: aa136d9 5317c89
Author: Sean Sawtell <my_email@juniper.net>
Date:   Tue Oct 3 11:17:36 2017 -0400

    fix merge conflict on playbook

commit 5317c89976db45009327fe234ae61604a20ddc2e (play1)
Author: Sean Sawtell <my_email@juniper.net>
Date:   Tue Oct 3 10:56:23 2017 -0400

    change debug task to key-value format

commit aa136d945c415b6df353a9adcf8589a106e7c00d
Author: Sean Sawtell <my_email@juniper.net>
Date:   Tue Oct 3 10:54:24 2017 -0400

    add label to debug task
...

The master branch is now up-to-date, but you should also update the play1 branch:

mbp15:widget sean$ git checkout play1
Switched to branch 'play1'

mbp15:widget sean$ git merge master
Updating 5317c89..702e7f7
Fast-forward
 play-widget.yaml | 3 ++-
 1 file changed, 2 insertions(+), 1 deletion(-)

Deleting Branches
You may wish to delete a temporary or working branch, generally after all changes
have been committed and merged to master. Let’s delete the play1 branch. Start by
making master the current branch, then use the git branch --delete command to de-
lete play1:

mbp15:widget sean$ git checkout master
Switched to branch 'master'

mbp15:widget sean$ git branch --delete play1
Deleted branch play1 (was 702e7f7).

mbp15:widget sean$ git branch
* master

Note that master is now the only branch.

	 388	 Appendix: Using Source Control

You can force the deletion of a branch that contains committed changes that have
not been merged to master using git branch –D. Assume our repository has a branch
test1 with committed changes that have not been merged to master, and we want
to delete test1 without merging the changes (we wish to discard the changes):

mbp15:widget sean$ git branch --delete test1
error: The branch 'test1' is not fully merged.
If you are sure you want to delete it, run 'git branch -D test1'.

mbp15:widget sean$ git branch -D test1
Deleted branch test1 (was 1fc496f).

Showing Differences
The command git status shows you which files have changed since the last com-
mit, but it does not show what changed in those files. We can use git diff to see the
changes made within the files.

Edit the task in the play-widget.yaml file as follows:

  tasks:
    - name: show date and time
      debug:
        var: ansible_date_time.iso8601

Use git diff to see the change:

mbp15:widget sean$ git diff
diff --git a/play-widget.yaml b/play-widget.yaml
index d324fae..0e6ce1e 100644
--- a/play-widget.yaml
+++ b/play-widget.yaml
@@ -6,6 +6,6 @@
   gather_facts: yes

   tasks:
-    - name: show date
+    - name: show date and time
       debug:
-        var: ansible_date_time.date
+        var: ansible_date_time.iso8601

You can also see what changed relative to an earlier commit by specifying the com-
mit ID of the commit, either the long commit ID from git log or the short commit
ID from git log --oneline:

mbp15:widget sean$ git diff 7e60c9220e8f7a310cbed6cb6fcc7180dbbaadaa
diff --git a/play-widget.yaml b/play-widget.yaml
index 4576fb7..0e6ce1e 100644
--- a/play-widget.yaml
+++ b/play-widget.yaml
@@ -6,4 +6,6 @@
   gather_facts: yes

   tasks:
-    - debug: var=ansible_date_time.date

	 389	 Brief Introduction to Git

+    - name: show date and time
+      debug:
+        var: ansible_date_time.iso8601

We can also show the differences between any two commits. This gets more conve-
nient if we use the short IDs from git log --oneline. Let’s show the change from
commit “add label to debug task” and the commit “add Ansible defaults and in-
ventory file”:

mbp15:widget sean$ git log --oneline
702e7f7 (HEAD -> master) fix merge conflict on playbook
5317c89 change debug task to key-value format
aa136d9 add label to debug task
7e60c92 added task to playbook
057299a add Ansible defaults and inventory file
6b5b8e6 first widget playbook

mbp15:widget sean$ git diff aa136d9 057299a
diff --git a/play-widget.yaml b/play-widget.yaml
index 43040bd..e69de29 100644
--- a/play-widget.yaml
+++ b/play-widget.yaml
@@ -1,10 +0,0 @@

-- name: Show system date
-  hosts:
-    - localhost
-  connection: local
-  gather_facts: yes
-
-  tasks:
-    - name: show date
-      debug: var=ansible_date_time.date

Commit the outstanding changes to the playbook:

mbp15:widget sean$ git commit -am "update date output to include time"
[master 65e9037] update date output to include time
 1 file changed, 2 insertions(+), 2 deletions(-)

mbp15:widget sean$ git status
On branch master
nothing to commit, working tree clean

mbp15:widget sean$ git log --oneline
65e9037 (HEAD -> master) update date output to include time
702e7f7 fix merge conflict on playbook
5317c89 change debug task to key-value format
aa136d9 add label to debug task
7e60c92 added task to playbook
057299a add Ansible defaults and inventory file
6b5b8e6 first widget playbook

We will soon discuss using Git with a shared repository, which will enable a team
to share source files and synchronize changes between each team member’s system.
First, however, we need to talk about GitHub, which will be our shared repository.

	 390	 Appendix: Using Source Control

Brief Introduction to GitHub
GitHub is a web-based Git repository. Launched in 2008, today it is “the largest
host of source code in the world” [Wikipedia, June 29, 2018]. Developers can cre-
ate repositories, branch and merge, and even edit files, using the GitHub WebUI.
Developers can also work in their local development environment and use the git
program to push their changes to GitHub over the Internet.

The popularity of Git and GitHub for open source projects, combined with the
desire of many enterprises to keep their source code on servers they control rather
than “in the cloud,” has led to the creation of enterprise GitHub-like products.
Examples include GitHub Enterprise and GitLab. Many of these products work
similarly to GitHub; if your company uses one of these products, you may wish to
follow the examples using your corporate solution, altering instructions as needed
to accommodate WebUI differences.

NOTE	 The GitHub screen captures in this chapter were taken on June 29, 2018.
What you see may differ should GitHub update their WebUI.

Open you web browser and navigate to https://github.com/. If you do not already
have a GitHub account (that you can use for these examples), sign up for one using
the box on the main page or the Sign up link in the upper right corner of the page.
If you already have an account, click the Sign in link and log in:

If this is a new account, or if your existing account has no associated repositories,
the screen after logging in will offer only a couple of choices.

	 391	 Brief Introduction to GitHub

If your account already has one or more associated repositories, the screen after
logging in will display the list of your repositories.

Click the New repository button to begin a new project in a new repository. Fill in
the fields for creating a new repository as shown in the following screen capture,
except that the Owner should be your account:

	 392	 Appendix: Using Source Control

The fields on this page are:

Owner: The GitHub account that has administrative authority for the repository.
Normally this will be the creator of the repository.

Repository name: A name for the repository, ideally a descriptive name for the
project. The name must be unique within the list of repositories associated with
the owner.

Description: An optional description for the repository.

Public or Private: GitHub allows public repositories that can be seen by anyone,
and private repositories that are visible only to accounts selected by the repository
owner. GitHub charges for private repositories, so we will use public repositories
for our examples.

Intitialize...README: GitHub can include in the new repository a “read me” file
with which you can describe the contents or purpose of the repository. The file-
name will be README.md. The extension .md indicates the file uses GitHub’s Mark-
down format.

Add .gitignore: GitHub can include in the new repository a .gitignore file, which
includes appropriate settings for the programming language selected here. We dis-
cuss .gitignore later in this chapter; briefly, it tells Git to ignore certain files.

Add a license: Open source projects are typically made available under one of sev-
eral common open-source licenses. GitHub can include a file containing the license
agreement if you select the appropriate license type.

Click the Create repository button to have GitHub initialize the new repository.

	 393	 Brief Introduction to GitHub

This should take you to the main screen for the repository, displaying the list of
files or directories in the repository and the contents of the README file:

You can see the new repository, including the file list showing the .gitignore and
README.md files. Let’s edit one of the files. Click the blue README.md in the file list. The
next screen will show the file’s contents:

	 394	 Appendix: Using Source Control

Click the pencil icon to the upper right of the file’s contents to edit the file. Modify
the file as shown here:

To commit (save) the change, scroll to the bottom of the page, add a commit mes-
sage in the small text box (where the picture shows “add description to READ-
ME”) and click the Commit changes button:

The screen should now look similar to this:

	 395	 Using Git with GitHub

Click the thingamajig link (circled above) to return to the project’s file list:

You can see the commit history by clicking the 2 commits link (circled above; the
number will change as more changes are committed):

Using Git with GitHub
While it is possible to edit files and commit changes using the GitHub WebUI, a
more common approach is for developers to work with a local copy of a GitHub
repository. Developers use their preferred text editor to edit local files, then syn-
chronize changes between their local repository and GitHub.

GitHub allows developers to use either HTTPS or SSH when synchronizing re-
positories. Using SSH requires creating and configuring an SSH key pair, while
HTTPS uses your GitHub username and password. The following examples show
HTTPS, but the author encourages you to explore the SSH option if you will be
using GitHub for production use. The References section at the end of this chapter
includes a link to GitHub’s SSH instructions.

	 396	 Appendix: Using Source Control

Cloning an Existing Repository
Let’s start with showing how to clone an existing repository. This is a common sit-
uation: there is an existing project on GitHub that you wish to copy to a local re-
pository and work with. We use our thingamajig project for this example.

In your web browser, navigate to your thingamajig project. One approach is to
click the GitHub icon in the upper left corner of the GitHub page, then click the
thingamajig link in the list of your repositories:

Click the Clone or download button to expose the options for cloning the reposi-
tory. Click the “copy to clipboard” button to the right of the URL to copy the URL
to your system’s clipboard:

	 397	 Using Git with GitHub

In your command shell, change to your home directory (or whatever directory you
want to be the parent of the repository directory). Then run the command git
clone with the copied URL to create a new repository in a new directory containing
a copy of the thingamajig project. Your URL will differ from what is shown in the
examples because your GitHub username is different from the author’s username:

mbp15:widget sean$ cd ~

mbp15:~ sean$ git clone https://github.com/sean1986/thingamajig.git
Cloning into 'thingamajig'...
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 7 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (7/7), done.

You should now have a subdirectory ~/thingamajig. Change into that subdirectory
and note the files within that match what we created on GitHub, plus the .git di-
rectory where Git tracks changes:

mbp15:~ sean$ cd thingamajig/

mbp15:thingamajig sean$ ls -al
total 16
drwxr-xr-x   5 sean  staff   170 Oct  9 13:11 .
drwxr-xr-x+ 38 sean  staff  1292 Oct  9 13:11 ..
drwxr-xr-x  12 sean  staff   408 Oct  9 13:11 .git
-rw-r--r--   1 sean  staff  1157 Oct  9 13:11 .gitignore
-rw-r--r--   1 sean  staff   103 Oct  9 13:11 README.md

mbp15:thingamajig sean$ cat README.md
# thingamajig
test file for learning how to use GitHub with *Day One: Automating Junos with Ansible, 2ed*

In order to simulate a second team member who is also working with the thing-
amajig repository, create a directory ~/user2 and clone thingamajig into that direc-
tory also. (Because we will switch back and forth between these two copies of the
repository, it may be convenient to use a second command shell window for this.)

mbp15:thingamajig sean$ cd ~

mbp15:~ sean$ mkdir user2

mbp15:~ sean$ cd user2/

mbp15:user2 sean$ git clone https://github.com/sean1986/thingamajig.git
Cloning into 'thingamajig'...
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 7 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (7/7), done.

mbp15:user2 sean$ cd thingamajig/

mbp15:thingamajig sean$ pwd
/Users/sean/user2/thingamajig

	 398	 Appendix: Using Source Control

Let’s make a change and push that change back to GitHub. In your first command
shell window, or in the ~/thingamajig directory, open README.md in your text editor
and add a copyright notice as follows:

# thingamajig
test file for learning how to use GitHub with *Day One: Automating Junos with Ansible, 2ed*

(c) 2018 Juniper Networks, Inc.

Commit the change and check the status:

mbp15:thingamajig sean$ git commit -am "add copyright to README"
[master 681856e] add copyright to README
 1 file changed, 1 insertion(+)

mbp15:thingamajig sean$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
  (use "git push" to publish your local commits)
nothing to commit, working tree clean

Observe that Git knows your local repository is “ahead of 'origin/master' by 1
commit,” meaning that the local repository has a newer commit than the last com-
mit on GitHub. To push the changes – the most recent commit – to GitHub, use
the git push command:

mbp15:thingamajig sean$ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 349 bytes | 349.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/sean1986/thingamajig.git
   5a28822..681856e  master -> master

Refresh the GitHub page in your web browser. You should see that GitHub has an
updated copy of README.md containing the copyright notice.

Switch to your second command shell window or to ~/user2/thingamajig and look
at the README file:

mbp15:thingamajig sean$ pwd
/Users/sean/user2/thingamajig

mbp15:thingamajig sean$ cat README.md
# thingamajig
test file for learning how to use GitHub with *Day One: Automating Junos with Ansible, 2ed*

Observe that this “second team member” has an old copy of the repository.
GitHub has been updated, based on the changes pushed by the “first team mem-
ber,” but all other team members need to pull an update to the repository using the
git pull command:

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_revision_control
https://git-scm.com/
https://en.wikipedia.org/wiki/Git
https://github.com/
https://en.wikipedia.org/wiki/GitHub
https://guides.github.com/features/mastering-markdown/
https://help.github.com/articles/connecting-to-github-with-ssh/

	 399	 Using Git with GitHub

mbp15:thingamajig sean$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0
Unpacking objects: 100% (3/3), done.
From https://github.com/sean1986/thingamajig
   e023752..4cbdf38  master     -> origin/master
Updating e023752..4cbdf38
Fast-forward
 README.md | 2 ++
 1 file changed, 2 insertions(+)

mbp15:thingamajig sean$ cat README.md
# thingamajig
test file for learning how to use GitHub with *Day One: Automating Junos with Ansible, 2ed*

(c) 2018 Juniper Networks, Inc.

Run git log to see the change log. Note that the log shows the commit made by the
other team member:

mbp15:thingamajig sean$ git log --oneline
4cbdf38 (HEAD -> master, origin/master, origin/HEAD) add copyright to README
5a28822 add description to README
8e153c3 Initial commit

Any team member (with appropriate GitHub permissions) can make changes,
commit them, and push those changes to GitHub. All other team members can
pull those updates.

Pushing a Local Repository
The git clone command works well for repositories that were originally created on
GitHub, or at least are up-to-date on GitHub, but what if we started a project lo-
cally and now want to upload it to GitHub?

Our widget project is such a project – we initially created it on our local system,
not on GitHub. Assume that we now want to share the widget project with other
team members using GitHub.

The first step is to create an empty project on GitHub that will become the shared
repository for the project. In your web browser, on the GitHub page, click the +
button in the upper right corner and choose New repository from the menu:

	 400	 Appendix: Using Source Control

We want a completely empty GitHub repository, because we will upload the files
from our local Git repository. Enter the repository name widget and, optionally, a
description, as shown, then click the Create repository button. (Do not include a
README.md, .gitignore, or license file):

This time GitHub, seeing the repository is empty, should display some instructions
for uploading repository files from other locations:

	 401	 Using Git with GitHub

Note the instructions to “push an existing repository from the command line.”
This is what we want to do! Keep in mind that your URL will be different from
what is shown, as your URL will include your GitHub username, not that author’s
username.

In your command shell, change to the widget project directory and ensure there are
no uncommitted changes:

mbp15:thingamajig sean$ cd ~/widget/

mbp15:widget sean$ git status
On branch master
nothing to commit, working tree clean
mbp15:widget sean$

Now run the two commands from the GitHub instructions:

mbp15:widget sean$ git remote add origin https://github.com/sean1986/widget.git

mbp15:widget sean$ git push -u origin master
Counting objects: 22, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (20/20), done.
Writing objects: 100% (22/22), 1.85 KiB | 316.00 KiB/s, done.
Total 22 (delta 10), reused 0 (delta 0)
remote: Resolving deltas: 100% (10/10), done.
To https://github.com/sean1986/widget.git
 * [new branch]      master -> master
Branch master set up to track remote branch master from origin.

The git remote add command adds to your local repository a link to a remote re-
pository. The expected name for a remote or shared repository is origin. The URL
specifies the location for the remote repository.

	 402	 Appendix: Using Source Control

The git push command, as we have already seen, pushes the current state of the
local repository (more specifically, the current branch) to the remote repository.
However, when doing the initial push of a branch created locally, we need to in-
clude the -u (or --set-upstream) argument followed by the remote repository name
origin. The argument master indicates we are pushing the master branch.

In your web browser, refresh the GitHub page. You should now see the files that
are part of the widget project.

Because the command git push -u origin master pushes the master branch to the ori-
gin server, you should repeat this command for any other branches you wish to
upload to the remote repository. For example, assuming the repository has a
branch called sean, the following command would push branch sean to GitHub:

mbp15:widget sean$ git push -u origin sean
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 296 bytes | 296.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/sean1986/widget.git
 * [new branch]      sean -> sean
Branch sean set up to track remote branch sean from origin.

Once the initial push is completed, subsequent pushes will not require the addi-
tional command line options. To demonstrate this, add a new play to play-widget.
yaml:

- name: Show system date
  hosts:
    - localhost
  connection: local
  gather_facts: yes

  tasks:
    - name: show date and time
      debug:
        var: ansible_date_time.iso8601

    - name: show hostname
      debug:
        var: ansible_hostname

Commit and push this change:

mbp15:widget sean$ git commit -am "add hostname to playbook"
[master 7f85d8c] add hostname to playbook
 1 file changed, 5 insertions(+), 1 deletion(-)

mbp15:widget sean$ git push
Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.

	 403	 The .gitignore File

Writing objects: 100% (3/3), 341 bytes | 341.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/sean1986/widget.git
   65e9037..7f85d8c  master -> master

Other team members will clone, pull, and push normally. For example, become
your “second user” by changing to your ~/user2 directory or second terminal tab,
then clone the widget repository using its URL (obtained from GitHub):

mbp15:thingamajig sean$ cd ..

mbp15:user2 sean$ git clone https://github.com/sean1986/widget.git
Cloning into 'widget'...
remote: Counting objects: 28, done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 28 (delta 15), reused 27 (delta 14), pack-reused 0
Unpacking objects: 100% (28/28), done.

mbp15:user2 sean$ cat widget/play-widget.yaml

- name: Show system date
  hosts:
    - localhost
  connection: local
  gather_facts: yes

  tasks:
    - name: show date and time
      debug:
        var: ansible_date_time.iso8601

    - name: show hostname
      debug:
        var: ansible_hostname

The .gitignore File
There are likely to be some files that need to exist within the repository directory,
but that you do not want included in the repository or pushed to the remote re-
pository. The .gitignore file provides a way to tell Git to ignore such files.

Consider, for example, if our ~/aja2/group_vars/all.yaml file contained the
following:

ansible_python_interpreter: /usr/local/bin/python
user_data_path: /Users/sean/ansible

These paths, particularly the user_data_path, are specific to your system or user-
name. Should you choose to place the aja2 project in source control, other team
members will need to have their own, unique versions of this file.

	 404	 Appendix: Using Source Control

Other examples include temporary files or directories, such as the ~/aja2/tmp/ di-
rectory where some of our playbooks from earlier chapters have placed result files
that we did not need to keep long-term.

Let’s simulate these files in our widget project, along with a group variables file
that will be the same for all users and should be included in the repository:

mbp15:~ sean$ cd ~/widget/
mbp15:widget sean$ mkdir tmp
mbp15:widget sean$ mkdir group_vars
mbp15:widget sean$ touch tmp/result.json
mbp15:widget sean$ touch group_vars/all.yaml
mbp15:widget sean$ touch group_vars/boston.yaml

mbp15:widget sean$ tree
.
├── ansible.cfg
├── group_vars
│    ├── all.yaml
│    └── boston.yaml
├── inventory
├── play-widget.yaml
└── tmp
      └── result.json

2 directories, 6 files

Add the boston.yaml file to the repository, then check the status of the repository:

mbp15:widget sean$ git add group_vars/boston.yaml

mbp15:widget sean$ git status
On branch master
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

        new file:   group_vars/boston.yaml

Untracked files:
  (use "git add <file>..." to include in what will be committed)

        group_vars/all.yaml
        tmp/

Git identifies the contents of the tmp directory and the group_vars/all.yaml files as
untracked. These files will not be pushed to GitHib. However, if we leave things as
they are, we will keep seeing these untracked files in the output every time we run
git status; this will quickly get annoying.

Git looks for a file called .gitignore in the top directory of a repository. The files
and directories listed in .gitignore are ignored by Git. Create ~/widget/.gitignore
with the following contents:

# user-specific data for all hosts
all.yaml

	 405	 The .gitignore File

# temp files or contents of a temp directory
*.tmp
tmp/
temp/

# Ansible retry (after failure) files
*.retry

# Mac OS X Desktop Services Store
.DS_Store

Lines starting with hash marks (‘#’) are comments. The line group_vars/all.yaml
instructs Git to ignore that file.

The following lines instruct Git to ignore the contents of our tmp directory and oth-
er common temporary files and directories:

*.tmp
tmp/
temp/

The line *.retry tells Git to ignore Ansible’s “retry” files, created when a playbook
encounters an error for one or more hosts.

Finally, for macOS users, the line .DS_Store tells Git to ignore any .DS_Store files
that macOS might create in your project directories.

Check the status of the repository again:

mbp15:widget sean$ git status
On branch master
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

        new file:   group_vars/boston.yaml

Untracked files:
  (use "git add <file>..." to include in what will be committed)

        .gitignore

Notice that the ignored files no longer appear in the output. However, .gitignore
itself now appears as an untracked file. We should add .gitignore to our repository
so it gets shared with other team members. (It is unlikely this file will contain any
user-specific settings).

mbp15:widget sean$ git add .gitignore

mbp15:widget sean$ git status
On branch master
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

	 new file:   .gitignore
	 new file:   group_vars/boston.yaml

	 406	 Appendix: Using Source Control

Commit the changes and push the repository to GitHub:

mbp15:widget sean$ git commit -m "new files including .gitignore"
[master e519e97] new files including .gitignore
 2 files changed, 13 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 group_vars/boston.yaml

mbp15:widget sean$ git push
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 313 bytes | 313.00 KiB/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/sean1986/widget.git
   e519e97..5e4d58e  master -> master

Switch to your web browser and look at the GitHub widget repository file list.
Notice that the tmp directory does not appear, and within the group_vars directory
only the boston.yaml file appears:

Deleting the Example Repositories
Feel free to delete the local repositories created during this chapter by simply delet-
ing the directories:

mbp15:repos sean$ cd ~
mbp15:~ sean$ rm -rf user2/
mbp15:~ sean$ rm -rf widget/
mbp15:~ sean$ rm -rf thingamajig/

To delete a repository from GitHub, view the repository and click the Settings link:

	 407	 Deleting the Example Repositories

Scroll to the bottom of the Settings page and click the Delete this repository button
inside the Danger Zone box:

In the confirmation window, enter the name of the repository and click the button
I understand the consequences, delete this repository to delete the repository:

	 408	 Appendix: Using Source Control

You may be prompted to enter your GitHub password as well; do so if prompted.

References:
Version control and distributed version control:
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_revision_control

Git:
https://git-scm.com/
https://en.wikipedia.org/wiki/Git

GitHub:
https://github.com/
https://en.wikipedia.org/wiki/GitHub

GitHub’s Markdown reference:
https://guides.github.com/features/mastering-markdown/

GitHub using SSH keys:
https://help.github.com/articles/connecting-to-github-with-ssh/

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Distributed_revision_control
https://git-scm.com/
https://en.wikipedia.org/wiki/Git
https://github.com/
https://en.wikipedia.org/wiki/GitHub
https://guides.github.com/features/mastering-markdown/
https://help.github.com/articles/connecting-to-github-with-ssh/

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Author
	This Book’s GitHub Site
	Welcome to Day One
	Target Audience
	What You Need to Know Before Reading This Book
	What You Will Learn by Reading This Book
	Book Structure and Approach to Learning

	Chapter 1: Introduction: Automation and Ansible
	What is Automation?
	Why Use Automation?
	Business Scenarios for Network Automation
	Off-box vs. On-box Automation
	What is Ansible?
	Overview of Ansible Terminology
	Ansible vs. Ansible Tower vs. AWX
	Where Can Ansible Help?

	Chapter 2: Installing Ansible
	System Requirements
	Software Versions Used While Writing This Book
	Ansible’s Installation Instructions
	Installing Ansible on macOS
	Installing Ansible on Linux
	Quick Ansible Test
	References

	Chapter 3: Understanding JSON and YAML
	What are JSON and YAML?
	Data
	Lists
	Dictionaries
	JSON
	YAML
	Text Editor Tips
	References

	Chapter 4: Running a Command – Your First Playbook
	The (manual) Command
	Playbook Directory and Files
	Path to the Python Interpreter
	Uptime Version 1.0
	Uptime Version 1.1
	Uptime Version 1.2
	Uptime Version 1.3
	Errors During Playbook Execution
	Limiting Devices
	Repeating a Playbook for Devices with Errors
	Debugging Playbooks
	References

	Chapter 5: Junos, RPC, NETCONF, and XML
	Junos Management Architecture
	Finding RPCs
	Revising the Uptime Playbook – Uptime Version 2.0
	Parsed Output – Uptime Version 2.1
	Introducing “When” – Uptime Version 2.2
	juniper_junos_rpc Options – Show Interfaces
	XML and XPath
	References

	Chapter 6: Using SSH Keys
	What is an SSH Key Pair?
	Generating a Key Pair
	Installing the Public Key on a Junos Device
	Caching Your Private Key Passphrase
	Multiple Key Pairs
	Security Considerations
	Playbook Using Key-based Authentication – Uptime Version 3
	References

	Chapter 7: Generating and Installing Junos Configuration Files
	Configuration Files
	Manually Loading Configuration Files
	Installing Text Configuration Files with Ansible
	Installing Set Commands with Ansible
	Generating Configuration Files – Base Settings 1.0
	Installing the Generated Configuration – Base Settings 1.1
	Displaying Changes – Base Settings 1.2
	Cleaning Up Temporary Files – Base Settings 1.3
	Deleting Settings That Might Not Be Present
	Commit Confirmed – Base Settings 1.4
	Loading Configuration Via Console
	Debugging Templates
	References

	Chapter 8: Data Files and Inventory Groups
	Variables
	Host Data Files
	Using List Data – Base Settings 2
	More Device-Specific Data and Escape Characters
	Inventory Options
	Group Data Files
	Alternate Inventory Directory Layout
	References

	Chapter 9: Backing Up Device Configuration
	Revisiting the juniper_junos_config Module
	Playbook for Backing Up Device Configurations – Get Config 1
	Using a User-Specific Backup Path – Get Config 2
	Keeping a Configuration History – Get Config 3
	Removing the Localhost Play – Get Config 4
	Avoiding Duplicate Configuration Backups – Get Config 5
	Partial Configuration Backups – Get Partial Config 1
	Other Options – Get Partial Config 2
	Extra and Required Variables – Get Partial Config 3
	Backups with Junos Read-Only Account
	Running the Playbook with the Backup Account
	Using SSH-authentication agent
	Changing Configuration Backup Method
	References:

	Chapter 10 Gathering and Using Device Facts
	Device Inventory Report
	Device Configuration Based on Device Type – Base Settings 3
	References

	Chapter 11 Storing Private Variables – Ansible Vault
	Creating a Vault File
	Viewing or Editing the Contents of a Vault File
	Creating a Playbook That Reads a Vault File
	Considerations for Vault Passwords
	Adding Passwords to Base Settings – Base Settings 4
	Decrypting the Vault
	References

	Chapter 12 Roles
	Roles Directory and Files
	A Role for SNMP Settings
	A Playbook for the SNMP Role
	Moving Setup Tasks and Handlers into a Role
	Adding a System Role and Playbook
	Building an “All Settings” Playbook
	References

	Chapter 13 Repeating Tasks
	Re-trying a Failed Task
	Repeating a Task Based on a List
	References

	Chapter 14Custom Ansible Modules
	The Problem
	Developing the Class
	Creating the Ansible Module
	Adding max_ssh_connections to the Base Settings Playbook
	References

	Appendix Using Source Control
	What is Source Control and Why Use It?
	Check Company Standards
	Brief Introduction to Git
	Brief Introduction to GitHub
	Using Git with GitHub
	The .gitignore File
	Deleting the Example Repositories
	References

