
Junos® Automation Series

Building High-IQ Networks means

automating your network adminis-

tration. Start scripting with JSNAP

and verify your network’s cutovers

in minutes instead of hours.

By Diogo Montagner

DAY ONE: USING JSNAP TO AUTOMATE
 NETWORK VERIFICATIONS

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: USING JSNAP TO AUTOMATE
 NETWORK VERIFICATIONS

Network engineers are constantly involved in planning and executing network changes
and they are always concerned about the state of the network after the changes have

been applied. The truth is, no one wants to go home and receive a call from the NOC

saying there is a problem with the network, especially in the area where your changes

were applied.

In order to reduce the risks of getting into an unpleasant situation after a change, many

engineers have developed procedures and tools to verify their networks. The good news

is that there is JSNAP – an automation tool that details pre- and post-verifications. JS-

NAP is a collection of SLAX scripts that runs on top of juise, the environment that runs

SLAX scripts off-the-box.

From setup, to sample scripts, to complete SLAX configurations, this Day One has it all

– and you can put what you’ve learned to use in a matter of hours.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

 � Deploy automation for the network verification process.

 � Understand the how to automate the verification process using JSNAP.

 � Improve the network verification process by being more assertive during pre- and post-network

verifications of a network change procedure.

 � Create automated network verification tests.

 � Use JSNAP in a snap.

“WOW! This is an impressive document. Personally I think it goes beyond a “Day One”

given the material and coverage. I am very, very impressed with the content and coverage.”

 Jeremy Schulman, Director

Automation Concept Engineering, Juniper Networks

ISBN 978-9367799185

9 789367 799185

5 2 0 0 0

By Diogo Montagner

Day One: Using JSNAP to Automate
 Network Verifications

Chapter 1: Automating Network Verifications . 9

Chapter 2: JSNAP Components . 17

Chapter 3: Developing Automated Network Verifications 29

Chapter 4: Tips and Tricks . 75

Chapter 5: Putting It All Together . 93

Appendix .127

Building High-IQ Networks means automating your network administration.
Start scripting with JSNAP and verify your network’s cutovers in minutes
instead of hours.

© 2014 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, Junos, Steel-Belted Radius,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo, the Junos logo,
and JunosE are trademarks of Juniper Networks, Inc. All
other trademarks, service marks, registered trademarks,
or registered service marks are the property of their
respective owners. Juniper Networks assumes no
responsibility for any inaccuracies in this document.
Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without
notice.

Published by Juniper Networks Books
Author: Diogo Montagner
Technical Reviewers: Jeremy Schulman, D.S.Satya
Narsinga Rao
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
J-Net Community Manager: Julie Wider

ISBN: 978-1-936779-91-8 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-936779-92-5 (ebook)

Version History: v1, May 2014
 2 3 4 5 6 7 8 9 10

About the Author
Diogo Montagner (JNCIE #1050 and PMP #1616862)
holds a Bachelor’s Degree in Computer Science from
Universidade Federal de Santa Maria (UFSM) and MBA
in Project Management from Fundação Getulio Vargas
(FGV). He has been working in the Juniper Advanced
Services Team since 2008.

Author’s Acknowledgments
I would like to first thank my wife Raiça and my
daughter Linda, who supported me throughout the
many early mornings and few weekends that it took me
to conclude this four-month-long project. Patrick Ames
for his thorough developmental edit and all his efforts to
make this project a reality. Antonio (Ato) Sanchez-
Monge, Anton Bernal, and Gary Matthews who helped,
guided, and mentored me on the path to publishing my
first book. Jeremy Schulman, and D.S. Satya Narsinga
Rao for allocating time in their busy schedules to do the
technical review of the book and for all the technical help
provided during its development. Damien Garros for his
help with a few XPath expressions. Last but not least,
Antonio (Ato) Sanchez-Monge and Geoffrey Younger for
being my beta readers.

This book is available in a variety of formats at:
http://www.juniper.net/dayone.

 iv

http://www.juniper.net/dayone

Welcome to Day One

This book is part of a growing library of Day One books, produced and
published by Juniper Networks Books.

Day One books were conceived to help you get just the information that
you need on day one. The series covers Junos OS and Juniper Networks
networking essentials with straightforward explanations, step-by-step
instructions, and practical examples that are easy to follow.

The Day One library also includes a slightly larger and longer suite of
This Week books, whose concepts and test bed examples are more
similar to a weeklong seminar.

You can obtain either series, in multiple formats:

 � Download a free PDF edition at http://www.juniper.net/dayone.

 � Get the ebook edition for iPhones and iPads from the iTunes Store.
Search for Juniper Networks Books.

 � Get the ebook edition for any device that runs the Kindle app
(Android, Kindle, iPad, PC, or Mac) by opening your device's
Kindle app and going to the Kindle Store. Search for Juniper
Networks Books.

 � Purchase the paper edition at either Vervante Corporation (www.
vervante.com) or Amazon (amazon.com) for between $12-$28,
depending on page length.

 � Note that Nook, iPad, and various Android apps can also view
PDF files.

 � If your device or ebook app uses .epub files, but isn't an Apple
product, open iTunes and download the .epub file from the iTunes
Store. You can now drag and drop the file out of iTunes onto your
desktop and sync with your .epub device.

 v

http://www.juniper.net/dayone
http://www.vervante.com
http://www.vervante.com
http://www.amazon.com

 vi

Audience

This book is intended for network administrators and provides field-
tested automated network verifications for common network deployment
scenarios, as well as brief background information needed to understand
and deploy these solutions in your own environment.

This book’s chapters are numbered in a logical sequence to identify, plan,
develop, and execute automated network verifications for network
changes affecting the entire network.

What You Need to Know Before Reading This Book

Before reading this book, you should be familiar with the basic adminis-
trative functions of the Junos operating system, including the ability to
work with operational commands and to read, understand, and change
Junos configurations. There are several books in the Day One library on
learning Junos, at www.juniper.net/dayone.

This book makes a few assumptions about you, the reader:

 � You are a network engineer who is familiar with network protocols.

 � You may or may not have programming knowledge.

 � You may or may not understand the business impact of a network
change.

 � You want to automate your network verification process.

 � You are responsible for planning or executing network changes.

 � You are responsible for network monitoring and proactive verifica-
tions.

What You Will Learn by Reading This Book

 � Understand the impact of a network change.

 � Deploy automation for the network verification process.

 � Understand the how to automate the verification process using
JSNAP.

 � Improve the network verification process by being more assertive
during pre- and post- network verifications of a network change
procedure.

 vii

 � Create automated network verification tests.

 � Use JSNAP in a snap.

Information Experience

This Day One book is singularly focused on one aspect of networking
technology that you might be able to do in one day. There are other
sources at Juniper Networks, from white papers to webinairs to online
forums such as J-Net (forums.juniper.net). Be sure to check them out,
too.

MORE? This book was developed for people with minimal or zero knowledge
in programming languages and XML. However, knowing a little bit of
both will help speed up the development of network verifications using
JSNAP. The following resources are a good starting point.

 � XML and XPath online tutorials:

 � XML: http://www.w3schools.com/xml/default.asp

 � XPath: http://www.w3schools.com/xpath/default.asp

 � SLAX Reference

 � This Week: Junos Automation Reference for SLAX 1.0,
available at http://www.juniper.net/dayone

If you have feedback for Juniper Networks about this book, please
send it to dayone@juniper.net.

Preface

Network engineers are constantly involved in planning and executing
network changes. From the most basic to the most complex changes,
network engineers are always concerned about the state of the network
after the changes have been applied. Questions like, “Did I break
something?” and, “Were our changes successfully deployed?” are
always worried about after planned activities are completed.

In order to reduce the risks of getting into an unpleasant situation after
a change, many engineers have developed procedures and tools to
verify their networks. The truth is, no one wants to go home and

 viii

receive a call from the NOC saying there is a problem with the net-
work, especially in the area where your changes were applied.

Throughout my network career, I have not only seen different tools
and procedures for network verification, I have developed my own
tools as well. This book will introduce you to a tool called JSNAP that
can make your life much easier. Even if you already have tools and
procedures in place, take the Day One tour. I am sure you will find it
useful, just as I did when I was introduced to JSNAP.

Diogo Montagner, May 2014

The pre- and post-verifications executed before and after a
network change are important steps that must not be skipped.
When preparing a network change, make sure you always include
the pre- and post-verifications in the plan. And whenever pos-
sible, automate those verifications.

Most network engineers agree on the importance of pre- and
post-verifications, however, there may be different opinions on
whether they should be automated or not. Let’s look at an exam-
ple you might be familiar with:

 “The network engineer started the pre-verification at 11:45 p.m.
The verification procedure is quite long and took about 30
minutes to collect all commands on all devices that were affected
by the change. Around 12:15 a.m. the engineer started to imple-
ment the network change, which was not a big change but had to
be applied on many devices. After working for three consecutive
hours, the engineer finished the change at 3:30 a.m. when he
started the post-verification. By 4:00 a.m. he finished the collec-
tion of the commands and started to compare output by output.
By now he was tired because he was awake for so many hours and
decided to cut short the comparison after he found that a few of
the devices he compared did not show any problem and he
believed the rest of changes were successfully deployed the same
as the ones he just checked. He skipped some of the comparisons
to shorten the post-verification process and around 5:00 a.m. he
completed the comparisons and moved to close the change,
declaring it a success.”

Chapter 1

Automating Network Verifications

 10 Day One: Using JSNAP to Automate Network Verifications

Despite the fact that the fictitious case presented here does not demon-
strate whether there was a problem with the cut over, it does demon-
strate two common problems of network changes: bad planning and
lack of automation with repetitive tasks.

Without getting into too much detail, a better plan would have helped
to avoid the risk that the engineer took when he decided to skip some
verification steps. That plan would have identified that the verification
steps were too long for a single engineer to execute, and that added
resources were needed to run the verification process. Whether the
resources needed were extra manpower, or automation tools, the
verification process would not have taken that long to execute and the
risk could have been avoided. Sound familiar?

Network automation is here to stay, and believe it or not, the verifica-
tion process is one of the easiest processes to automate, especially
when using a tool like JSNAP. But before jumping into how to use
JSNAP, let’s have a quick look at the Change Document and at the
Network Change Process.

The Change Document

Generally speaking, whenever a network is undergoing a planned
change, there must exist a document where these changes are docu-
mented. This document has different names in different organizations.
Someone may call it MOP (Method of Procedures), while others may
simply call it the Plan. No matter what you call it, always make sure
you have this document prepared before you start the changes because
the MOP is the document that presents the overview of the change, the
objectives, the change procedure itself (step-by-step), the pre- and
post-verifications, and, last but not least, the roll back procedure.

This Day One book focuses solely on the pre- and post-verifications
because that is where JSNAP can automate your network verification
process.

The Network Change Process

Let’s have a look in the overall change process so you have a baseline
for using JSNAP. Figure 1.1 presents an example of a change process.

Everything starts with MOP development. This is where you plan the
changes, assess the risk and the impact, and prepare the verification
procedures as well as the rollback procedures. Once all these items are
packed in a single document (the MOP), you submit a change request
and wait for approval.

 Chapter 1: Automating Network Verifications 11

Figure1.1 Example of a Change Process

On the day of the change, you will first execute the pre-snapshots, and
after that, you can apply the changes to the network. As soon as you
finish the changes, you collect the post-snapshots. (Some network
changes may require a waiting period before you start to collect the
post-snapshots in order to allow the churn caused by changes to
complete, for example, changes to an Internet BGP session that
receives a full routing table from the remote side.)

Once you have both pre- and post-snapshots in hand, it’s time to
compare them. If the comparison shows that everything is in the same
state, and this is what you were expecting as result of your changes,
you can move on to the change closure. If the comparison identifies a
problem, you must check what you have defined in the MOP for such
situations. Should you try to fix the issue or should you rollback the
change? That will depend on how the change was planned.

NOTE There is a small variant of the Network Change Process where there is
no previous collection of snapshots that can also be automated with
JSNAP. In that case, the snapshots are captured after the change and
can have its compliance checked against a group of criteria. This
approach is a bit more risky and should be used only in cases where it
is impossible to compare pre- and post-snapshots. An example of
where this approach fits is migrating the IGP of a network from OSPF

 12 Day One: Using JSNAP to Automate Network Verifications

to ISIS because you can’t compare OSPF snapshots (pre) with ISIS
snapshots (post). This book focus solely on network changes cases
where the pre- and post-snapshots can be compared against each other.

The closure of the change is an important step that is quite often
ignored by network engineers. In this step, information about the
duration of the change, the timeline of the change, what exactly
happened during the change, and notification of stakeholders are
performed and documented. This ensures that everyone affected by the
change is on the same page in regard to what has happened in the
change. Moreover, it stores the lessons learned from this change, which
are an invaluable asset for planning future changes.

Okay, these are pretty basic best practices, so let’s start to focus on the
Network Verification process where this book concentrates.

The Network Verification Process

The pre- and post-verification process is usually a three-step process.
The first and second steps are the same, yet executed at two different
moments in time. The third step is where you analyze the data from the
first and second steps and it is executed immediately after the second
step:

1. Collect the pre-snapshot before executing any changes.

2. Collect the post-snapshot after the changes have been executed.

3. Compare the pre- and post-snapshots searching for differences.

Network engineers execute this three-step process in different ways.
One may run it manually, command-by-command, while saving the
CLI output in a text file. Another may use a script to automatically
collect the output of the command and save it to a file. Our focus here
is in the automated way.

There are different techniques that can be used to automate networks,
and in each of them there are different ways to implement the interac-
tion with routers. When interacting with routers running Junos, you
can use Expect, Netconf, or SNMP.

Expect is a technique that relies on matching regular expressions to
identify when the router is ready to receive commands and when the
execution of a command has finished, but it is not the most reliable
way to collect commands from routers because it is very easy to get
incomplete collections. Netconf, on the other hand, when combined
with RPC calls, can give you the most reliable way of collecting
commands from routers.

 Chapter 1: Automating Network Verifications 13

Starting to sound complicated? Yes, sort of, but the good news is that
when using JSNAP you don’t need to worry about these details because
the outputs are always correctly collected. JSNAP leverages the power
of XML and XPath. While this technique may be new to you, it brings
a concise, simple, and powerful way of accessing the information
present in the output generated by the router. For instance, instead of
writing a complex parser code to extract a few words of information
from the router’s output, a simple XPath query can be used to obtain
the same information.

If you have ever found the automation of Steps 1 and 2 a problem, wait
until you try to automate Step 3, because it is not straightforward to
automate. Most engineers automate only the first and second steps,
and then use a tool to compare the text outputs generated. If you are in
this situation, you are actually in a good place because you already
have some sort of automation in place and believe that automation is
the way to go. If you are still on manual mode, then.... well, at least
you are reading the right book. :-)

When only the first and second steps are automated, there are a lot of
different comparison tools used by most engineers. One favorite, fldiff,
comes with most Linux distributions. This book uses Apple’s File-
Merge tool that comes in the XCode package, and you’ll see screen
captures from that program.

In order to demonstrate how the third step works when using a text
comparison tool, let’s consider the change in the routers:

lab@carbon> show configuration | compare rollback 1
[edit interfaces]
+ ge-2/1/0 {
+ description "Connected to PE1";
+ disable;
+ }
lab@carbon>

Assuming you have collected a pre-snapshot before applying the
change and a post-snapshot after the change has been applied, Figure
1.2 shows the output of a comparison between the pre-and the post-
snapshots using Apple’s FileMerge tool.

 14 Day One: Using JSNAP to Automate Network Verifications

Figure 1.2 Text Comparison Tool Output

You can see after the application of the change in the router that there
are two differences in the comparison. Maybe you were expecting to
see only one difference: the interface ge-2/1/0 in a down state. How-
ever, the interface ge-2/0/1 also went to a down state. It definitely
wasn’t caused by the configuration change that was deployed to the
router, but by something else that the network engineer responsible for
the change needs to verify.

The comparison presented in Figure 1.2 is a simple and easy example
because the change was simple and the output is clean, meaning there
is only one command output in the text file. Now, let’s check how the
comparison tool behaves with outputs of many commands, in this
case, the RSI (output from the request support information com-
mand) before and after the change. Figure 1.3 presents the comparison
of both the pre- and post-RSI outputs.

 Chapter 1: Automating Network Verifications 15

Figure 1.3 Pre- and Post-Comparison of RSI Outputs

According to information presented by FileMerge, Figure 1.3 shows
that there are now 235 differences in the comparison. But you can’t
just trust the number of differences presented by the tool because it
forces you to manually go through the entire comparison results to
make sure that two out of the 235 have legitimate differences. If you
think that’s confusing, wait until you see the next example.

In the next use case the huge amount of differences are not the only
problem. Figure 1.4 presents the same scenario as the previous exam-
ple but for some unexplained reason, the outputs of a few commands
are missing.

 16 Day One: Using JSNAP to Automate Network Verifications

Figure 1.4 Missing Command Outputs in the Comparison

Missing commands are always a big issue but especially if the missing
outputs are located in the pre-outputs (if the missing outputs are
located in the post-outputs you still have a chance to collect them). The
problem here is that during the comparison of the snapshots (i.e., after
the change) you don’t have the baseline of the state of the network
prior to your change, and depending on the type of your change, it will
be very difficult or it will take extra time to verify if everything went
well.

In the next chapters, you will learn how to expedite network verifica-
tion by developing automated verification procedures using JSNAP.

To be succinct, JSNAP is a collection of SLAX scripts that runs on
top of juise. For better understanding, this chapter will divide
JSNAP into four components: SLAX, juise, JSNAP Core, and the
Configuration File.

SLAX

The SLAX language was originally developed as part of Juniper
Networks Junos OS to simplify manipulation of XML outputs
produced by Junos. Before SLAX, the on-box script programming
had to be done using XSLT syntax. The XSLT syntax is complex
and requires a lot of typing to execute simple operations, hence
SLAX.

SLAX is nothing more than an alternate syntax for XSLT. In fact,
SLAX stands for Stylesheet Language Alternative syntaX while
XSLT stands for “eXtensible Stylesheet Language Transforma-
tion. The XSLT is the W3C’s (World Wide Web Consortium:
http://www.w3.org/Consortium/) standard for XML-to-XML
transformation. Here’s a simple code written in XSLT:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/">
 <xsl:variable name="VPNImportPolicies" select="/rpc-reply/configuration/
routing-instances/instance/vrf-import"/>
 <xsl:for-each select="$VPNImportPolicies">
 <xsl:variable name="tmp" select="."/>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

Chapter 2

JSNAP Components

http://www.w3.org/Consortium/

 18 Day One: Using JSNAP to Automate Network Verifications

It is not exactly straightforward, is it? Fortunately, SLAX can make a
network administrator’s life easier. Here’s the simple code now written
in SLAX:

version 1.1;

match / {

 var $VPNImportPolicies = /rpc-reply/configuration/routing-instances/
instance/vrf-import;

 for-each ($VPNImportPolicies) {
 var $tmp = .;
 }

}

You may not be able to judge if your life will be easier right now but
stay with this book and it becomes quickly evident. What’s cool is that
because SLAX is just another syntax for XSLT, it is possible to use
XSLT code inside SLAX. In fact, SLAX functions as a preprocessor for
XSLT. Figure 2.1 illustrates what happens inside a Junos router when a
SLAX script is used as input.

XML input document XML output document

SLAX script

XSLT script

JUNOS mgd

Figure 2.1 SLAX to XSLT Conversion in JUNOS

You can see there is a conversion going on. For now, that’s all you need
to know about SLAX. In fact, you don’t even need to know SLAX to
use JSNAP.

MORE? If you want to learn more about SLAX, look in the following Day One
books: Junos Automation Reference for SLAX 1.0, Mastering Junos
Automation, and Applying Junos Automation, all of which can be
found at http://www.juniper.net/dayone.

http://www.juniper.net/dayone

 Chapter 2: JSNAP Components 19

The Junos User Interface Script Environment

What may sound to you like a refreshing drink is actually the environ-
ment needed to run JSNAP. The Junos User Interface Script Environ-
ment, or juise, is an environment developed by Phil Shafer at Juniper to
run SLAX scripts off-the-box. Not only can you run SLAX scripts, juise
also helps when developing SLAX scripts, providing a off-box way to
test and debug them. Because JSNAP was developed using SLAX and
runs off-the-box, you need juise in order to run JSNAP. Recent versions
of Junos, such as 13.2, allow you to invoke the slax debugger (sdb) to
troubleshoot your on-box SLAX scripts.

MORE? For more on invoking the slax debugger (sdb) see: http://junos.com/
techpubs/en_US/junos13.2/topics/reference/command-summary/
op-invoke-debugger-cli.html .

Another function provided by juise to JSNAP is fthe ability to invoke
netconf environment. Netconf is the method used by juise to connect to
Junos routers in order to send RPC commands and receive their respec-
tive replies. Netconf runs on top of SSH, which means that all communi-
cations between juise and a router are flowing through an encrypted
channel.

Netconf Configuration

Here is the configuration required to enable Netconf support under SSH
on Junos routers. Try it in your lab’s sandbox:

[edit system]
services {
 ssh;
 netconf {
 ssh;
 }
}

If you are experiencing a problem connecting to Junos routers via
netconf, you can use the following steps to isolate where the problem is:

1. Verify if you can access the router via SSH from the server where
JSNAP is installed.

 � The most common problems seen in Step 1 are related to the
exchange of SSH keys. Make sure you have configured the SSH
client of the server where JSNAP is installed to automatically
answer ‘yes’ when exchanging SSH keys. If not, you may need to
answer ‘yes’ when juise attempts to connect to a router that does
not have its key generated in the known_hosts file. You can read
more about this in Chapter 4 of this book.

http://junos.com/techpubs/en_US/junos13.2/topics/reference/command-summary/op-invoke-debugger-cli.html
http://junos.com/techpubs/en_US/junos13.2/topics/reference/command-summary/op-invoke-debugger-cli.html
http://junos.com/techpubs/en_US/junos13.2/topics/reference/command-summary/op-invoke-debugger-cli.html

 20 Day One: Using JSNAP to Automate Network Verifications

2. Try to manually establish a netconf session with the router.

 � Problems seen in Step 2 are usually related to configuration issues
in the Junos router. The procedure to manually establish a
netconf connection and send RPC commands to the router is
displayed here:

 ssh lab@zim netconf

Finally, an example of an interaction with a Junos router using a
netconf session is similar to the following:

dmontagner@querencia:~/jsnap$ ssh lab@zim netconf
lab@zim's password:
<!-- No zombies were killed during the creation of this user interface -->
<!-- user lab, class j-super-user -->
<hello>
 <capabilities>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:confirmed-commit:1.0</
capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol=http,ftp,f
ile</capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>6227</session-id>
</hello>
]]>]]>

<rpc><command>show version</command></rpc>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.
juniper.net/junos/11.4R7/junos">
<software-information>
<host-name>zim_re0</host-name>
<product-model>m320</product-model>
<product-name>m320</product-name>

<... Omitted for brevity ...>

Downloading Juise

Juise is free and can be downloaded from GitHub (https://github.com/
Juniper/juise/). When you download the JSNAP software from Juniper,
juise comes packed with JSNAP and does not require a special installa-
tion for it.

One of the most important features of juise is the debugger. It will help
you when creating complex JSNAP configuration files or when trou-

 Chapter 2: JSNAP Components 21

bleshooting problems with your JSNAP configuration files. The
debugger requires a little bit of extra knowledge in SLAX but this book
should make it easy for you.

Make sure you have your lab set up with Netconf and juise. You’ll get
back to them shortly. In the next two sections, you’ll first see how
JSNAP works and then you’ll eventually start automation tests.

The JSNAP Core

The JSNAP core is a group of SLAX scripts that execute the three tasks
that JSNAP was designed for: collecting, comparing, and evaluating
snapshots. At the time of this writing, the current available version for
download at Juniper Web Site is 1.0 sub-version 6 (1.0.6) as you can
see here:

dmontagner@querencia:~$ jsnap --version

jsnap: ver: 1.0, 2013-JUN-13

e3d6994b82f1b4c2214fc438486ca06bf2b4dd82: jsnap/jsnap
2f1ae309464688152e8d108acf413eca91cc8d69: jsnap/jppc-exec.slax
c17dc9384c58bf7d8258f07f1a43874f09b351a4: jsnap/jppc-snap.slax
36ac8351b8bb6e292e0faa2b6f73d23465a37cca: jsnap/jppc-tests.slax
ab54be6ff257858d94cff054a406baf7f462d827: jsnap/jppc-utils.slax
401faf121d99f95fcc675192f6d2f656be11b012: lib/libjfile.slax
0c2c4680ba28ab915c4c85e377b05cc6dc25c50f: lib/libcbd.slax
c0852d740be86d60d9c56461625d7fdaac9d4a9a: lib/libxns.slax
e3d6994b82f1b4c2214fc438486ca06bf2b4dd82: bin/jsnap

The files listed in this output are the core files of JSNAP.

TIP If you want to check all files including juise and SLAX files, issue the
following command in your Linux box: dpkg –L jsnap. (bin/jsnap is a
symbolic link to jsnap/jsnap.)

The file bin/jsnap is the main script of JSNAP. This is the script you
must invoke to create snapshots, execute comparisons, and evaluate
snapshots against a predefined set of criteria. It has built-in help that is
displayed when JSNAP is invoked without any parameter or with
wrong parameters, such as those shown here:

dmontagner@querencia:~$ jsnap

 jsnap: snapshot data collection and validation

 jsnap --snap <name> [lts] <conf-file>
 Snapshot data and save as collection 'name'

 jsnap --check <name1>,<name2> [ts] <conf-file>

 22 Day One: Using JSNAP to Automate Network Verifications

 Check results of two snapshot collections 'name1' and 'name2'

 jsnap --snapcheck <name> [lts] <conf-file>
 Take a single snapshot as collection 'name' and checks results
 NOTE: does not compare two collections

 OPTIONS:
 -l | --login <login>
 -p | --passwd <passwd>
 -t | --target <target>
 -s | --section <section-name>
 --version

When you’re working with JSNAP, you’ll notice that it does not give
you an error message if you have entered a combination of wrong
parameters. Therefore, here are two examples of invoking JSNAP, one
for each operation.

1. The first example is a snapshot generation, such as this snapshot
collection from the router zim:

dmontagner@querencia:~/jsnap$ jsnap --snap pre_mw -l lab -t zim -p lab123 mw.conf
Connecting to lab@zim ...
CONNECTED.
EXEC: 'show chassis routing-engine' ...
SAVE: 'zim__show_chassis_re__pre_mw.xml' ...
dmontagner@querencia:~/jsnap$

In this example, pre_mw is the name of the snapshot, lab is the
username, lab123 is the user password, and mw.conf is the JSNAP
configuration file (which is discussed in the next section, The JSNAP
Configuration File).

2. The second example is a comparison between two snapshots, and
the following demonstrates the comparison between the pre_mw and
post_mw snapshots for the router zim:

dmontagner@querencia:~/jsnap$ jsnap --check pre_mw,post_mw -t zim -l lab -p lab123 mw.
conf
!!!
>>>
>>> TARGET: zim
>>>
!!!

CHECKING SECTION: show_chassis_re

- TEST FAILED: "Checking Routing Engine mastership state."

The status of Routing Engine 0 has changed from backup to master

The status of Routing Engine 1 has changed from master to backup

dmontagner@querencia:~/jsnap$

 Chapter 2: JSNAP Components 23

And you can see in the results of the snapshot comparison where the
mastership state of zim’s routing engines has changed during the
maintenance window.

The snapshot evaluation is very similar to the snapshot comparison,
the difference being that you run the tests only against a single snap-
shot. Test operators, which require two snapshots as input, cannot be
used in the snapshot evaluation mode, but when using the snapshot
comparison mode, all test operators can be used.

Now that you know how to operate JSNAP, let’s learn about its
configuration file.

The JSNAP Configuration File

The configuration file is where you define the commands that are used
to generate the snapshots. It is also used to define the tests that will be
used for comparing and evaluating snapshots.

The configuration file has a very simple structure. It contains two
sections: the Do Section and the Test Section. Here is a very simple
JSNAP configuration file:

do {
 show_chassis_re;
}

show_chassis_re {
 command show chassis routing-engine;
 iterate route-engine {
 id slot;
 no-diff mastership-state {
 info "Checking Routing Engine mastership state.";
 err "The status of Routing Engine %s has changed from %s to %s", $ID.1,
$PRE/mastership-state, $POST/mastership-state;
 }
 }
}

show_chassis_fpc {
 command show chassis fpc;
 iterate fpc {
 id slot;
 no-diff state {
 info "Checking the FPC state.";
 err "The state of FPC %s has changed from %s to %s.", $ID.1, $PRE/state,
$POST/state;
 }
 }
}

In the do section, you configure which test sections will be invoked if
JSNAP is executed without specifying a section name. The separation

 24 Day One: Using JSNAP to Automate Network Verifications

per section allows you to invoke JSNAP to create a snapshot of a single
command, even if your configuration file has many sections defined.

In the configuration there are two test sections but only one is invoked
in the do section. When JSNAP is invoked using this configuration file,
only the show_chassis_re section will generate snapshots. The only
way to generate snapshots for the show_chassis_fpc section, using this
same configuration file, is invoking JSNAP using the –s option and
passing the show_chassis_fpc section name as a parameter. This will
instruct JSNAP to collect snapshots only for the show_chassis_fpc
section, ignoring the other Test sections that are invoked in the Do
section.

NOTE When defining names for sections, avoid using a whitespace character
in the name. JSNAP will understand it as a delimiter and you may have
undesirable results when you check the snapshots produced by JSNAP.
You can use the underscore symbol in the section name as in: show_
chassis_fpc.

Analyzing a Sample Configuration File

Now that you are more familiar with the configuration file, let’s
analyze the test section in detail. The test section has the structure
presented here:

<TEST_SECTION_NAME> {
 command <JUNOS_COMMAND>;
 (item | iterate) XPATH {
 id <ID1>;
 <TEST_OPERATOR> <XML_ELEMENT> {
 info "<INFO_MESSAGE>";
 err "<ERROR_MESSAGE>";
 }
 }
}

NOTE As you can see, you are dealing with XML outputs. While having a
basic XML knowledge does help, it is not mandatory. There are many,
many XML tutorials available on the Internet, so if you need them, or
want to use them as a refresher, do so now because this Day One book
does not cover the basics of XML.

The name of the test section and the Junos command should be
straightforward for you. Just remember that not all Junos commands
will generate XML outputs.

 Chapter 2: JSNAP Components 25

NOTE Output modifiers are not supported in JSNAP. For example, show
interfaces | match MTU cannot be used in JSNAP.

The iterate XPATH block can appear multiple times inside the same
command. The same is true for the referenced XPATH. However, it is
good practice grouping all tests over the same XPATH inside the same
iterate XPATH block.

The iterate command is used when the XPATH refers to a node-set with
multiple elements while the item can only reference one element.

The id is an XPATH expression relative to the node-set being iterated
that specifies a unique data element that maps the first snapshot data
item with the second snapshot data item. It is possible to use single or
multiple IDs under the same iterate or item XPATH blocks.

NOTE One of the reasons that id was introduced in the JSNAP Configuration
File was to simplify complex XPath expressions when using them in
the err messages.

Finally, the test operators are used to instruct JSNAP how to analyse
the XML element when comparing it between two snapshots or when
using the checking mode. The next section of this chapter explains
these operators in detail.

The JSNAP Configuration File – Test Operators

The JSNAP Test Operators are divided into five categories according to
their applicability. This helps you to easily identify which operator you
should use for a particular test case:

 � Compare Elements or Element Values in Two Snapshots

 � Operate on Elements with Numeric or String Values

 � Operate on Elements with Numeric Values

 � Operate on Elements with String Values

 � Operate on XML Elements

MORE? For an example of a use case for each test operator, please refer to the
Junos Snapshot Administrator documentation available at: http://
www.juniper.net/techpubs/en_US/junos-snapshot1.0/topics/reference/
general/automation-junos-snapshot-operators-summary.html.

 26 Day One: Using JSNAP to Automate Network Verifications

Test Operators Used to Compare Elements or Element Values In Two
Snapshots

This category has four test operators: delta, list-not-less, list-not-more,
and no-diff.

Table 2.1 Compare Elements or Element Values in Two Snapshots

Operator Description

delta Use: Compare the change in value of an element to a delta.

Requirement: Must be present in both snapshots.

The delta can be specified as:

• an absolute percentage

• a positive or negative percentage

• an absolute fixed value

• a positive or negative fixed value

Example of Use: Identify if the number of routes received on a BGP session has
changed more than the specified delta.

list-not-less Use: Check if the item is present in the first snapshot but not present in the second
snapshot.

Requirement: None.

Example of Use: Check if interfaces were removed from the router.

list-not-more Use: Check if the item is present in the second snapshot but not present in the first
snapshot.

Requirement: None.

Example of Use: Check if new interfaces have been installed in the router.

no-diff Use: Compare data elements present in both snapshots, and verify if their value is
the same.

Requirement: Must be present in both snapshots.

Example of Use: Check if the operating state for all FPCs remains the same after
the change has been implemented.

 Chapter 2: JSNAP Components 27

Test Operators to Execute Tests Over Elements with Numeric or String Values

This category has three test operators: all-same, is-equal, and not-
equal.

Table 2.2 Execute Tests Over Elements with Numeric or String Values

Operator Description

all-same Use: Check if all content values for the specified element are the same. It can also
be used to compare all content values against another specified element.

Requirement: None.

Example of Use: Check if the OSPF interface priority are all the same or are all
equal to a specific interface.

is-equal Use: Check if the value (integer or string) of the specified element matches a given
value.

Requirement: None.

Example of Use: Check if the Member 0 is the Master member on a Virtual
Chassis.

not-equal Use: Check if the value (integer or string) of the specified element does not match
a given value.

Requirement: None.

Example of Use: Check if the Member 1 is NOT the Master member on a
Virtual-Chassis.

Test Operators to Execute Tests Over Elements with Numeric Values

This category has four test operators: in-range, is-gt, is-lt, and not-
range.

Table 2.3 Execute Tests Over Elements with Numeric Values

Operator Description

in-range Use: Check if the value of a specified element is in the given numeric range.

Requirement: None.

Example of Use: Check if the CPU Idle is within 20% ~ 99% range.

is-gt Use: Check if the value of a specified element is greater than a given numeric
value.

Requirement: None.

Example of Use: Check if the CPU Idle is greater than 20%.

is-lt Use: Check if the value of a specified element is lesser than a given numeric value.

Requirement: None.

Example of Use: Check if the CPU Idle is less than 20%.

not-range Use: Check if the value of a specified element is outside of a given numeric range.

Requirement: None.

Example of Use: Check if the CPU Idle is outside of 20% ~ 99% range.

 28 Day One: Using JSNAP to Automate Network Verifications

Test Operators to Execute Tests Over Elements with String Values

This category has three test operators: contains, is-in, and not-in.

Table 2.4 Execute Tests Over Elements with String Values

Operator Description

contains Use: Check if the specified element string value contains a given string value.

Requirement: None.

Example of Use: Check if all routing-engines of a Virtual-Chassis are running a
particular Junos version.

is-in Use: Check if the specified element string value is included in a given list of strings.

Requirement: None.

Example of Use: Check if the BGP peer state is in Established state.

not-in Use: Check if the specified element string value is NOT included in a given list of
strings.

Requirement: None.

Example of Use: Check if the BGP peer state is NOT in Established state.

That’s everything you need to know in order to create the JSNAP
configuration file, collect and compare snapshots, and start automat-
ing your network verification procedures. If you need to review, revisit
this brief but to-the-point review of all the JSNAP components.

The next chapter guides you through the development of a set of
automated tests for network verification.

At this point, you should readily understand the importance of having
an automated network verification process during the deployment of
any network changes. This chapter guides you in the process of
developing a group of automated tests to be used in most (if not all) of
your network changes.

The Network

The first thing you have to do before getting your hands dirty with
JSNAP is to define the coverage of the automated tests, because
frankly, not all networks are the same. For example, you may use
OSPF as an IGP while another reader may use IS-IS, and so on.

So, let’s define the network that the automated tests have to check for
this chapter, by first defining a network topology and then the network
architecture.

The topology to be used in this chapter to develop our set of automat-
ed network verification tests is illustrated in Figure 3.1.

Figure 3.1 Network Topology for Chapter 3

Chapter 3

Developing Automated Network Verifications

 30 Day One: Using JSNAP to Automate Network Verifications

Our IGP will be ISIS, full-mesh RSVP, and MP-iBGP. The network
service being delivered to the CE routers is MPLS VPN. Figure 3.2
shows the logical diagram for this chapter’s network architecture.

Figure 3.2 Logical Topology

Now let’s start to plan the tests.

Identifying The Network Areas

One of the most important things in project management is to not skip
the planning process.

First, you should write down the logical components that need to be
tested. A simplified version of the 5Ws and 2Hs approach (What,
When, Where, Why, Who) (How, How Much) is used to help identify
what tests need to be developed. In this case it’s 2Ws and 1H, or, What,
Where, and How. These are the repeating columns in Tables 3.1
through 3.7 that list the components of each major category.

Table 3.1 IGP Components

What Where How

IGP ISIS Adjacency PE1 and PE2 The status of ISIS adjacency must be the
same before and after the change.

ISIS Interfaces PE1 and PE2 There should be no change in the IGP
topology before and after the change.

 Chapter 3: Developing Automated Network Verifications 31

Table 3.2 Interface Components

What Where How

Interfaces

Operating Status PE1 and PE2 The operating status of the GE
interfaces must remain the same before
and after the change.

Admin Status PE1 and PE2 The admin status of the GE interfaces
must remain the same before and after
the change.

Total Interfaces PE1 and PE2 The number of GE interfaces in the
router must remain the same after the
change.

IP Addresses PE1 and PE2 The IP addresses of all GE interfaces
must remain unchanged.

Table 3.3 Chassis Components

What Where How

Chassis

Routing Engine
State

PE1 and PE2 All Routing Engines must be online
after the change.

Routing Engine 0
is the Master RE

PE1 and PE2 The RE0 should be the Master RE.

FPCs State PE1 and PE2 The state and number of the FPCs
must be the same before and after the
change.

PICs State PE1 and PE2 The state and number of the PICs must
be the same before and after the
change.

Hardware
Components

PE1 and PE2 All hardware components must be the
same before and after the change.

 32 Day One: Using JSNAP to Automate Network Verifications

Table 3.4 MP-iBGP Components

What Where How

MP-iBGP

MP-iBGP Sessions PE1 and PE2 The state of the MP-iBGP sessions
must be the same before and after the
change.

MP-iBGP Sessions PE1 and PE2 The number of routes on each
MP-iBGP session must not change
more than 30%.

MP-iBGP Sessions PE1 and PE2 The families enabled on all MP-iBGP
sessions must remain the same before
and after the change.

Table 3.5 CE Router Components

What Where How

CE Routers BGP Sessions PE1 and PE2 The BGP session between PE and CE
must be UP after the change.

BGP Routes PE1 and PE2 The number of active, received, and
advertised BGP routes should remain
the same after the change.

Table 3.6 RSVP Components

What Where How

RSVP Interfaces PE1 and PE2 There should be no change in the
RSVP topology after the change.

Sessions PE1 and PE2 All RSVP sessions must be UP after
the change.

 Chapter 3: Developing Automated Network Verifications 33

Table 3.7 MPLS Components

What Where How

MPLS Interfaces PE1 and PE2 The interfaces configured for MPLS
must remain the same after the
change.

LSPs PE1 and PE2 All LSPs must be UP after the change.

LSPs PE1 and PE2 All LSPs must be running over its
primary path after the change.

LSPs PE1 and PE2 All secondary LSPs must be UP after
the change.

Obviously, this chapter is not creating all possible tests – if this were a
real production network there would be many more JSNAP tests than
the ones listed here. By way of comparison, the last JSNAP configura-
tion file the author developed for a production network contained
more than 250 tests using about 49 Junos operational commands.
Imagine how long it would take to compare the pre- and post-outputs
of 49 Junos commands for one single router. Now imagine that your
change spans across five routers. That would be almost 250 outputs to
compare. Will you have time to check each of them in detail? Surely
not!

Writing the JSNAP Configuration File

Our focus on creating the configuration file for this book is to demon-
strate the power of JSNAP as well as giving you something meaningful
that can be applied to any network running a similar configuration.
The idea is to give you a starting point and then enable you to further
develop the configuration file on your own.

The network verifications this chapter will be conducting with JSNAP
have been separated into the following sequence:

 � IGP Network Verifications

 � Interface Verifications

 � Chassis Verifications

 34 Day One: Using JSNAP to Automate Network Verifications

 � BGP Network Verifications (Note that BGP and MP-iBGP will be
merged into a single configuration file here.)

 � RSVP Network Verifications

 � MPLS Network Verifications

Developing the JSNAP Configuration File – IGP Network Verifications

In the IGP area, there are two items to check. These two items will
possibly have more than two tests, but as the first step in this develop-
ment, you need to analyse the XML output of the commands that will
be used to generate the snapshots. The commands used to generate the
snapshots are: show isis adjacency and show isis interface. The
following shows the output of the show isis adjacency command, as
well as its output in XML format collected by JSNAP:

/*
 * Output of show isis adjacency – Text Format
 */
juniper@PE1> show isis adjacency
Interface System L State Hold (secs) SNPA
ge-0/0/3.0 PE2 2 Up 7 56:68:28:33:47:1b

juniper@PE1>

/*
 * Output of show isis adjacency – XML Format – Collected from CLI
 */
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3I0/junos">
 <isis-adjacency-information xmlns="http://xml.juniper.net/junos/12.3I0/junos-
routing" junos:style="brief">
 <isis-adjacency>
 <interface-name>ge-0/0/3.0</interface-name>
 <system-name>PE2</system-name>
 <level>2</level>
 <adjacency-state>Up</adjacency-state>
 <holdtime>6</holdtime>
 <snpa>56:68:28:33:4d:42</snpa>
 </isis-adjacency>
 </isis-adjacency-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

/*
 * Output of show isis adjacency – XML Format – Collected by JSNAP
 */
<?xml version="1.0"?>

 Chapter 3: Developing Automated Network Verifications 35

<jppc:section conf="isis.conf" mode="sample_isis_snap" name="show_isis_adjacency"
target="PE1" ts="2014-01-23T12:16:25-08:00" xmlns:jppc="http://xml.juniper.net/jppc">
 <isis-adjacency>
 <interface-name>ge-0/0/3.0</interface-name>
 <system-name>PE2</system-name>
 <level>2</level>
 <adjacency-state>Up</adjacency-state>
 <holdtime>7</holdtime>
 <snpa>56:68:28:33:47:1b</snpa>
 </isis-adjacency>
</jppc:section>

By the way, you should be interested in checking the elements that are
presented in bold. As you probably have noted, the XML output
collected directly from the router’s CLI and the one collected by JSNAP
are slightly different. Can you spot the difference? It is important to
note.

JSNAP has modified the XML output produced by the router, replac-
ing the XML root element. It not only replaced the root element but
also removed the XML tag <isis-adjacency-information>. This is an
important detail because it can confuse you when developing the
JSNAP configuration file.

TIP When developing the JSNAP configuration file, it is a good practice to
first collect an XML output with JSNAP of all Junos commands that
you will be using in the configuration file. In order to do that, you can
create a JSNAP configuraton file like this:

do {
 show_isis_adjacency_snapshot;
 show_isis_interface_snapshot;
}

show_isis_adjacency_snapshot {
 command show isis adjacency;
}

show_isis_interface {
 command show isis interface;
}

Okay, before continuing, let’s analyze the outputs for the show isis
interface command presented here:

/*
 * Output of show isis interface – Text Format
 */
juniper@PE1> show isis interface
IS-IS interface database:
Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric

 36 Day One: Using JSNAP to Automate Network Verifications

ge-0/0/3.0 2 0x1 Disabled PE2.02 10/10
lo0.0 0 0x1 Passive Passive 0/0

juniper@PE1>

/*
 * Output of show isis interface – XML Format – Collected from CLI
 */
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3I0/junos">
 <isis-interface-information xmlns="http://xml.juniper.net/junos/12.3I0/junos-
routing" junos:style="brief">
 <isis-interface heading="IS-IS interface database:">
 <interface-name>ge-0/0/3.0</interface-name>
 <circuit-type>2</circuit-type>
 <circuit-id>0x1</circuit-id>
 <isis-interface-state-one>Disabled</isis-interface-state-one>
 <dr-id-two>PE2.02</dr-id-two>
 <metric-one>10</metric-one>
 <metric-two>10</metric-two>
 </isis-interface>
 <isis-interface>
 <interface-name>lo0.0</interface-name>
 <circuit-type>0</circuit-type>
 <circuit-id>0x1</circuit-id>
 <isis-interface-state-one>Passive</isis-interface-state-one>
 <isis-interface-state-two>Passive</isis-interface-state-two>
 <metric-one>0</metric-one>
 <metric-two>0</metric-two>
 </isis-interface>
 </isis-interface-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

/*
 * Output of show isis interface – XML Format – Collected by JSNAP
 */
<?xml version="1.0"?>
<jppc:section conf="isis.conf" mode="sample_isis_snap" name="show_isis_interface"
target="PE1" ts="2014-01-23T12:16:25-08:00" xmlns:jppc="http://xml.juniper.net/jppc">
 <isis-interface heading="IS-IS interface database:">
 <interface-name>ge-0/0/3.0</interface-name>
 <circuit-type>2</circuit-type>
 <circuit-id>0x1</circuit-id>
 <isis-interface-state-one>Disabled</isis-interface-state-one>
 <dr-id-two>PE2.02</dr-id-two>
 <metric-one>10</metric-one>
 <metric-two>10</metric-two>
 </isis-interface>
 <isis-interface>
 <interface-name>lo0.0</interface-name>
 <circuit-type>0</circuit-type>

 Chapter 3: Developing Automated Network Verifications 37

 <circuit-id>0x1</circuit-id>
 <isis-interface-state-one>Passive</isis-interface-state-one>
 <isis-interface-state-two>Passive</isis-interface-state-two>
 <metric-one>0</metric-one>
 <metric-two>0</metric-two>
 </isis-interface>
</jppc:section>

When analyzing the XML outputs produced by JSNAP for show isis
adjacency (omitted for brevity) and show isis interface commands,
they have identified the following XPath:

Command: show isis adjacency
/isis-adjacency
/isis-adjacency/interface-name
/isis-adjacency/system-name
/isis-adjacency/adjacency-state

Command: show isis interface
/isis-interface
/isis-interface/interface-name
/isis-interface/isis-interface-state-one
/isis-interface/isis-interface-state-two
/isis-interface/metric-one
/isis-interface/metric-two

These XPaths are the ones to be used in these tests.

The first thing you need to do is to identify the IDs. For both com-
mands, the XML element you will choose as ID is interface-name.
This choice makes sense because when you issue these commands in
the router, the things you look for are the adjacencies established by
each interface.

Once the IDs are identified, you need to identify what kind of tests you
will execute against the elements present in these outputs. In the case of
show isis adjacency, you need to make sure that the adjacencies that
are present in the pre-snapshots are present in the post-snapshot and
with their same state. Moreover, the neighbor system on that interface,
as well as the type of the adjacency and its metric, must remain the
same. Finally, you must have the same number of interfaces and
adjacencies in the pre- and post-snapshots (assuming your change is
not to activate a new backbone link).

Now that the IDs and the tests have been identified, it is time to select
the JSNAP operators. The operators that fit in the tests are: no-diff,
list-not-less, and list-not-more.

Okay, with everything in place, it’s time to create the JSNAP Configu-
ration file for our IGP tests. Here is the complete JSNAP configuration
file for the IGP tests:

 38 Day One: Using JSNAP to Automate Network Verifications

do {
 check_show_isis_interface;
 check_show_isis_adjacency;
}

check_show_isis_interface {
 command show isis interface;
 iterate isis-interface {
 id ./interface-name;
 no-diff interface-name {
 info "Checking the ISIS interface names ...";
 err " ERROR: the interface %s has changed its name from %s to %s.", $ID.1,
$PRE/interface-name, $POST/interface-name;
 }
 no-diff circuit-type {
 info "Checking the ISIS circuit type ...";
 err " ERROR: the interface %s has changed its circuit type from %s to
%s.", $ID.1, $PRE/circuit-type, $POST/circuit-type;
 }
 no-diff isis-interface-state-one {
 info "Checking the L1 interface state ...";
 err " ERROR: the interface %s has changed its L1 interface state from %s
to %s.", $ID.1, $PRE/isis-interface-state-one, $POST/isis-interface-state-one;
 }
 no-diff isis-interface-state-two {
 info "Checking the L2 interface state ...";
 err " ERROR: the interface %s has changed its L2 interface state from %s
to %s.", $ID.1, $PRE/isis-interface-state-two, $POST/isis-interface-state-two;
 }
 no-diff metric-one {
 info "Checking the interface L1 metric ...";
 err " ERROR: the L1 metric for interface %s has changed from %s to %s.",
$ID.1, $PRE/metric-one, $POST/metric-one;
 }
 no-diff metric-two {
 info "Checking the interface L2 metric ...";
 err " ERROR: the L2 metric for interface %s has changed from %s to %s.",
$ID.1, $PRE/metric-two, $POST/metric-two;
 }
 list-not-less interface-name {
 info "Checking for missing ISIS interfaces ...";
 err " ERROR: the interface %s is missing.", $ID.1;
 }
 list-not-more interface-name {
 info "Checking for new ISIS interfaces ...";
 err " ERROR: the interface %s was not configured before.", $ID.1;
 }
 }
}

check_show_isis_adjacency {
 command show isis adjacency;
 iterate isis-adjacency {
 id ./interface-name;

 Chapter 3: Developing Automated Network Verifications 39

 no-diff interface-name {
 info "Checking the ISIS interface names ...";
 err " ERROR: the interface %s has changed from %s to %s.", $ID.1, $PRE/
interface-name, $POST/interface-name;
 }
 no-diff system-name {
 info "Checking the ISIS neighbour ...";
 err " ERROR: the ISIS neighbour on interface %s has changed from %s to
%s.", $ID.1, $PRE/system-name, $POST/system-name;
 }
 no-diff level {
 info "Checking the Level of the ISIS adjacency ...";
 err " ERROR: the ISIS Level on interface %s has changed from % to %s.",
$ID.1, $PRE/level, $POST/level;
 }
 no-diff snpa {
 info "Checking the Subnetwork Point of Attachment (SNPA) ...";
 err " ERROR: the SNPA for interface %s has changed from %s to %s.", $ID.1,
$PRE/snpa, $POST/snpa;
 }
 list-not-less {
 info "Checking for missing ISIS adjacencies ...";
 err " ERROR: the ISIS adjacency for interface %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new ISIS adjacencies ...";
 err " ERROR: the ISIS adjacency for interface %s was not configured
before.", $ID.1;
 }
 }
}

If you test this configuration file, depending on the ISIS configuration
you have in your network, you will find that some of the tests may fail
even if there are no changes in the ISIS before and after the network
change. This case and few others throughout the book will be covered
in the Chapter 4.

MORE? For easier cutting and pasting into your lab devices, the configuration
files for this book can be downloaded on this book’s landing page at
http://www.juniper.net/dayone.

Okay, you’ve completed the IGP part. Now, let’s develop the configura-
tion file for the interface tests.

Developing the JSNAP Configuration File – Interface Verifications

There are four tests to be executed in Interfaces: operating status,
admin status, number of interfaces, and logical addresses. There is
more than one Junos command that can be used to achieve the objec-

http://www.juniper.net/dayone

 40 Day One: Using JSNAP to Automate Network Verifications

tive of the Interface verifications. For instance, one could choose the
show interfaces command while another could choose the show
interfaces terse command.

TIP Whenever you are designing, operating, or automating a network, you
need to always think ahead. That means you always need to optimize
whatever you are doing. Since you have more than one option to use,
you should choose the most optimized option. In this case, it will be
the show interfaces terse command. Be aware that under some types
of deployments, for instance BNG, your router may have dozens of
thousands interfaces. In those scenarios, you have to add a selector to
your command. Let’s say you want to limit this analysis to all GE
interfaces only. The command used for this case would be show inter-
faces terse ge-*.

After you have identified the command to be used, let’s look at its
outputs. The following is from the show interfaces terse output and
its XML format collected by JSNAP:

juniper@PE1> show interfaces terse ge-*
Interface Admin Link Proto Local Remote
ge-0/0/0 up up
ge-0/0/0.0 up up inet 10.233.255.203/20
ge-0/0/1 up up
ge-0/0/1.0 up up inet 192.168.1.1/30
ge-0/0/2 up up
ge-0/0/2.0 up up inet 192.168.2.1/30
ge-0/0/3 up up
ge-0/0/3.0 up up inet 10.1.1.1/30
 iso
 mpls

juniper@PE1>

<?xml version="1.0"?>
<jppc:section conf="network_verifications.conf" mode="before" name="check_show_
interfaces_terse" target="pe1" ts="2014-03-11T06:28:47+11:00" xmlns:jppc="http://xml.
juniper.net/jppc">
 <physical-interface>
 <name>ge-0/0/0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <logical-interface>
 <name>ge-0/0/0.0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <filter-information/>
 <address-family>
 <address-family-name>inet</address-family-name>
 <interface-address>

 Chapter 3: Developing Automated Network Verifications 41

 <ifa-local junos:emit="emit" xmlns:junos="http://xml.juniper.net/
junos/*/junos">10.233.248.40/20</ifa-local>
 </interface-address>
 </address-family>
 </logical-interface>
 </physical-interface>
 <physical-interface>
 <name>ge-0/0/1</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <logical-interface>
 <name>ge-0/0/1.0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <description>Connection to CE10</description>
 <filter-information/>
 <address-family>
 <address-family-name>inet</address-family-name>
 <interface-address>
 <ifa-local junos:emit="emit" xmlns:junos="http://xml.juniper.net/
junos/*/junos">192.168.1.1/30</ifa-local>
 </interface-address>
 </address-family>
 </logical-interface>
 </physical-interface>
 <physical-interface>
 <name>ge-0/0/2</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <logical-interface>
 <name>ge-0/0/2.0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <description>Connection to CE11</description>
 <filter-information/>
 <address-family>
 <address-family-name>inet</address-family-name>
 <interface-address>
 <ifa-local junos:emit="emit" xmlns:junos="http://xml.juniper.net/
junos/*/junos">192.168.2.1/30</ifa-local>
 </interface-address>
 </address-family>
 </logical-interface>
 </physical-interface>
 <physical-interface>
 <name>ge-0/0/3</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <logical-interface>
 <name>ge-0/0/3.0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <description>Connection to PE2</description>
 <filter-information/>

 42 Day One: Using JSNAP to Automate Network Verifications

 <address-family>
 <address-family-name>inet</address-family-name>
 <interface-address>
 <ifa-local junos:emit="emit" xmlns:junos="http://xml.juniper.net/
junos/*/junos">10.1.1.1/30</ifa-local>
 </interface-address>
 </address-family>
 <address-family>
 <address-family-name>iso</address-family-name>
 </address-family>
 <address-family>
 <address-family-name junos:emit="emit" xmlns:junos="http://xml.
juniper.net/junos/*/junos">mpls</address-family-name>
 </address-family>
 </logical-interface>
 </physical-interface>
</jppc:section>

The tests identified for the Interfaces section are highlighted in the text
and XML output.. If you analyze these outputs, the following XPaths
are identified:

Command: show interfaces terse ge-*
/physical-interface
/physical-interface/name
/physical-interface/admin-status
/physical-interface/oper-status
/physical-interface/logical-interface
/physical-interface/logical-interface/name
/physical-interface/logical-interface/admin-status
/physical-interface/logical-interface/oper-status
/physical-interface/logical-interface/address-family/
/physical-interface/logical-interface/address-family/address-family-name
/physical-interface/logical-interface/address-family/interface-address
/physical-interface/global-interface/address-family/interface-address/ifa-local

Following the same procedure used on the IGP tests, the first thing to
do is the identification of the IDs to be used in the tests. For the
Interface tests, the XML element identified for ID is name. As you
noted, there are two different XML elements for name. Although they
have the same name, they are in different levels of the XML tree.

Now that we have the IDs identified, it is time to identify the tests. As
defined in Table 3.1 in Chapter 3, the administrative and operational
status of all GE interfaces must remain the same before and after the
change. Moreover, you must not have missing GE interfaces or new GE
interfaces after the change. Finally, and importantly, the IP addresses of
all interfaces must remain the same.

One important thing to note in this verification is the fact the scope of
the show interfaces terse command has been limited to GE interfaces
only. The explanation for this is covered in the Chapter 4.

 Chapter 3: Developing Automated Network Verifications 43

Having the IDs and tests identified, you can now select the JSNAP test
operators. The operators that best fit in the interface tests are: no-diff,
list-not-less, and list-not-more.

With all elements identified, let’s run the JSNAP Configuration file for
the Interface tests. The following output shows the complete JSNAP
configuration file:.

do {
 check_show_interfaces_terse;
}

check_show_interfaces_terse {
 command show interfaces terse ge-*;
 iterate physical-interface {
 id ./name;
 no-diff oper-status {
 info "Checking PHY operational status of interfaces ...";
 err " ERROR: the operational status for interface %s has changed
from %s to %s.", $ID.1, $PRE/oper-status, $POST/oper-status;
 }
 no-diff admin-status {
 info "Checking PHY admin status of interfaces ...";
 err " ERROR: the admin status for interface %s has changed from %s
to %s.", $ID.1, $PRE/admin-status, $POST/admin-status;
 }
 list-not-less name {
 info "Checking for missing interfaces at PHY level ...";
 err " ERROR: the interface %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new interfaces at PHY level ...";
 err " ERROR: the interface %s is new.", $ID.1;
 }
 }
 iterate physical-interface/logical-interface {
 id ./name;
 id ./address-family/address-family-name;
 id ./address-family/interface-address/ifa-local;
 no-diff oper-status {
 info "Checking LOGICAL operational status of interfaces ...";
 err " ERROR: the operational status for interface %s has changed
from %s to %s.", $ID.1, $PRE/oper-status, $POST/oper-status;
 }
 no-diff admin-status {
 info "Checking LOGICAL admin status of interfaces ...";
 err " ERROR: the admin status of interface %s has changed from %s
to %s.", $ID.1, $PRE/admin-status, $POST/admin-status;
 }
 list-not-less {
 info "Checking for missing interfaces at LOGICAL level ...";
 err " ERROR: the interface %s is missing.", $ID.1;
 }
 list-not-more {

 44 Day One: Using JSNAP to Automate Network Verifications

 info "Checking for new interfaces at LOGICAL level ...";
 err " ERROR: the interface %s is new.", $ID.1;
 }
 no-diff address-family/address-family-name {
 info "Checking the address family configured in the interfaces
...";
 err " ERROR: the address family for interface %s has changed from
%s to %s.", $ID.1, $PRE/address-family/address-family-name, $POST/address-family/
address-family-name;
 }
 list-not-less address-family/address-family-name {
 info "Checking for missing address family ...";
 err " ERROR: the address family %s is missing on interface %s.",
$ID.2, $ID.1;
 }
 list-not-more address-family/address-family-name {
 info "Checking for new family address ...";
 err " ERROR: the address family %s has been added to the interface
%s.", $ID.2, $ID.1;
 }
 no-diff address-family/interface-address/ifa-local {
 info "Checking the interface address configured under the interface
...";
 err " ERROR: the interface address for interface %s has changed
from %s to %s.", $ID.1, $PRE/address-family/interface-address/ifa-local, $POST/
address-family/interface-address/ifa-local;
 }
 list-not-less address-family/interface-address/ifa-local {
 info "Checking for missing interface address ...";
 err " ERROR: the interface address %s has gone missing on
interface %s.", $ID.3, $ID.1;
 }
 list-not-more address-family/interface-address/ifa-local {
 info "Checking for new interface address ...";
 err " ERROR: the interface address %s has been added to the
interface %s.", $ID.3, $ID.1;
 }
 }
}

MORE? More information about XML can be found at http://www.w3.org/
XML/Datamodel.html.

Before moving to the next group of tests, let’s analyze some new things
that appeared in this Interface configuration file.

The first thing to note is that there are two iterations inside the same
Junos command, and this is perfectly possible and in fact, you can have
as many iterations as you need. The second thing to note is the number
of IDs being used in the second iteration – additional IDs help to make
your informational and error messages much more clear and precise.

The next group of tests focus on the router’s components.

http://www.w3.org/XML/Datamodel.html
http://www.w3.org/XML/Datamodel.html

 Chapter 3: Developing Automated Network Verifications 45

Developing the JSNAP Configuration File – Chassis Verifications

The Chassis verification is a very particular case, especially if you are
planning to share a single JSNAP configuration file across different
Junos platforms. For example, MX Series routers will have SCB (or
SCBE) fabrics while T Series will have SIBs. In general, Junos routers
will have a service PIC while the SRX will have a SPC card, and so on.
As long as you stay with the common commands for checking the
chassis across all platforms, there should be no problem in sharing the
same JSNAP configuration file. If you do not, you may want to create
different files for each architecture; or, frankly, you can pack them all
together and ignore the errors when a Junos hardware specific com-
mand is executed in the wrong platform.

The Chassis verifications tests chosen for this book use general Junos
commands that are available in all Junos platforms. There are four
tests that have been identified to be automated: the RE’s state, the RE0
as Master, the FPC’s state, and the PIC’s state. The respective Junos
commands will be: show chassis routing-engine, show chassis fpc,
show chassis hardware, and show chassis fpc pic-status.

NOTE Junosphere is being used to create the network environment used in
this book, and while all Chassis verifications commands are available
there, their output is not as complete as the one collected from real
routers. For the sake of helping you getting the most out of this book,
for this case, a real router is used to collect the outputs.

Here is the output of show chassis hardware for a real router in both
text and XML formats:

lab@kenny> show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis 52061 M10
Midplane REV 03 710-001950 HF0237 M10 Backplane
Power Supply A Rev 04 740-002497 LL13962 AC Power Supply
Display REV 04 710-001995 HE6561 M10 Display Board
Routing Engine REV 08 740-003877 9000006124 RE-2.0
FEB REV 07 710-003310 HH4020 E-FEB
FPC 0 E-FPC
 PIC 0 REV 02 750-003072 HC4419 1x OC-48 SONET, SMSR
FPC 1 E-FPC
 PIC 3 REV 01 750-002982 HB9184 1x Tunnel
Fan Tray Rear Left Fan Tray

lab@kenny>

<?xml version="1.0"?>
<jppc:section conf="chassis.conf" mode="chassis_before" name="check_show_chassis_

 46 Day One: Using JSNAP to Automate Network Verifications

hardware" target="kenny-au" ts="2014-02-09T07:51:18+11:00" xmlns:jppc="http://xml.
juniper.net/jppc">
 <chassis junos:style="inventory" xmlns:junos="http://xml.juniper.net/
junos/*/junos">
 <name>Chassis</name>
 <serial-number>52061</serial-number>
 <description>M10</description>
 <chassis-module>
 <name>Midplane</name>
 <version>REV 03</version>
 <part-number>710-001950</part-number>
 <serial-number>HF0237</serial-number>
 <description>M10 Backplane</description>
 <model-number>CHAS-MP-M10-S</model-number>
 </chassis-module>
 <chassis-module>
 <name>Power Supply A</name>
 <version>Rev 04</version>
 <part-number>740-002497</part-number>
 <serial-number>LL13962</serial-number>
 <description>AC Power Supply</description>
 <model-number>PWR-M10-M5-AC-S</model-number>
 </chassis-module>
 <chassis-module>
 <name>Display</name>
 <version>REV 04</version>
 <part-number>710-001995</part-number>
 <serial-number>HE6561</serial-number>
 <description>M10 Display Board</description>
 </chassis-module>
 <chassis-module>
 <name>Routing Engine</name>
 <version>REV 08</version>
 <part-number>740-003877</part-number>
 <serial-number>9000006124</serial-number>
 <description>RE-2.0</description>
 <model-number>RE-333-256-S</model-number>
 </chassis-module>
 <chassis-module>
 <name>FEB</name>
 <version>REV 07</version>
 <part-number>710-003310</part-number>
 <serial-number>HH4020</serial-number>
 <description>E-FEB</description>
 <model-number>FEB-M10-E-S</model-number>
 </chassis-module>
 <chassis-module>
 <name>FPC 0</name>
 <description>E-FPC</description>
 <chassis-sub-module>
 <name>PIC 0</name>
 <version>REV 02</version>
 <part-number>750-003072</part-number>
 <serial-number>HC4419</serial-number>

 Chapter 3: Developing Automated Network Verifications 47

 <description>1x OC-48 SONET, SMSR</description>
 <model-number>PE-1OC48-SON-SMSR</model-number>
 </chassis-sub-module>
 </chassis-module>
 <chassis-module>
 <name>FPC 1</name>
 <description>E-FPC</description>
 <chassis-sub-module>
 <name>PIC 3</name>
 <version>REV 01</version>
 <part-number>750-002982</part-number>
 <serial-number>HB9184</serial-number>
 <description>1x Tunnel</description>
 <model-number>PE-TUNNEL</model-number>
 </chassis-sub-module>
 </chassis-module>
 <chassis-module>
 <name>Fan Tray</name>
 <description>Rear Left Fan Tray</description>
 <model-number>FANTRAY-M10-M5-S</model-number>
 </chassis-module>
 </chassis>
</jppc:section>

This next output shows the show chassis fpc in both formats:

lab@kenny> show chassis fpc | no-more
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Online 27 3 0 64 26 48
 1 Online 27 3 0 64 26 48

lab@kenny>

<?xml version="1.0"?>
<jppc:section conf="chassis.conf" mode="chassis_before" name="check_show_chassis_fpc"
target="kenny-au" ts="2014-02-09T07:51:18+11:00" xmlns:jppc="http://xml.juniper.net/
jppc">
 <fpc>
 <slot>0</slot>
 <state>Online</state>
 <temperature junos:celsius="28" xmlns:junos="http://xml.juniper.net/
junos/*/junos">28</temperature>
 <cpu-total>2</cpu-total>
 <cpu-interrupt>0</cpu-interrupt>
 <memory-dram-size>64</memory-dram-size>
 <memory-heap-utilization>26</memory-heap-utilization>
 <memory-buffer-utilization>48</memory-buffer-utilization>
 </fpc>
 <fpc>
 <slot>1</slot>
 <state>Online</state>
 <temperature junos:celsius="27" xmlns:junos="http://xml.juniper.net/

 48 Day One: Using JSNAP to Automate Network Verifications

junos/*/junos">27</temperature>
 <cpu-total>2</cpu-total>
 <cpu-interrupt>0</cpu-interrupt>
 <memory-dram-size>64</memory-dram-size>
 <memory-heap-utilization>26</memory-heap-utilization>
 <memory-buffer-utilization>48</memory-buffer-utilization>
 </fpc>
</jppc:section>

Last but not least, here’s the status of the PICs:.

lab@kenny> show chassis fpc pic-status | no-more
Slot 0 Online E-FPC
 PIC 0 Online 1x OC-48 SONET, SMSR
Slot 1 Online E-FPC
 PIC 3 Online 1x Tunnel

lab@kenny>

<?xml version="1.0"?>
<jppc:section conf="chassis.conf" mode="chassis_before" name="check_show_chassis_fpc_
pic_status" target="kenny-au" ts="2014-02-09T07:51:18+11:00" xmlns:jppc="http://xml.
juniper.net/jppc">
 <fpc>
 <slot>0</slot>
 <state>Online</state>
 <description>E-FPC</description>
 <pic>
 <pic-slot>0</pic-slot>
 <pic-state>Online</pic-state>
 <pic-type>1x OC-48 SONET, SMSR</pic-type>
 </pic>
 </fpc>
 <fpc>
 <slot>1</slot>
 <state>Online</state>
 <description>E-FPC</description>
 <pic>
 <pic-slot>3</pic-slot>
 <pic-state>Online</pic-state>
 <pic-type>1x Tunnel</pic-type>
 </pic>
 </fpc>
</jppc:section>

The output of show chassis hardware presented here introduces a level
of complexity to our JSNAP configuration file. First of all, you have
items that do not have version or part numbers. Second, if you look at
the XML output, you can observe two hierarchies: chassis-module and
chassis-sub-module. The trick here is that not all modules will have
this chassis-sub-module section, and while it may not make sense to
you right now, you will better understand in Chapter 4.

 Chapter 3: Developing Automated Network Verifications 49

Finally, as you probably have noticed, the XML output of show
chassis hardware has some elements that are not presented in its text
form. In order to display these extra elements in the normal form of the
output, you need to add an output modifier such as | detail or |
extensive.

Just like the hardware components of the router, the FPC status output
also introduces something new. This is the first output that you can’t
simply check for an exact match on these numbers because they are
likely to be different between one snapshot and another.

The last output of this section, the PIC status, is the simplest output to
be analyzed. It can be processed by JSNAP in the same way as for the
IGP and Interfaces sections.

Now let’s list all the XPaths needed to be analyzed with JSNAP. The
first group of XPaths is related to the hardware components:

Command: show chassis hardware
/chassis/chassis-module
/chassis/chassis-module/name
/chassis/chassis-module/version
/chassis/chassis-module/part-number
/chassis/chassis-module/serial-number
/chassis/chassis-module/description
/chassis/chassis-module/model-number
/chassis/chassis-module/chassis-sub-module
/chassis/chassis-module/chassis-sub-module/name
/chassis/chassis-module/chassis-sub-module/version
/chassis/chassis-module/chassis-sub-module/part-number
/chassis/chassis-module/chassis-sub-module/serial-number
/chassis/chassis-module/chassis-sub-module/description
/chassis/chassis-module/chassis-sub-module/model-number

The best operator to test these XPaths is the no-diff operator. You
may also want to test if new chassis modules and sub-modules were
inserted or removed. For this, you have to use the list-not-less and
list-not-more operators. The IDs for these XPaths will be named on
both the chassis-module and chassis-sub-module hierarchies.

The second group of XPath for this section is the show chassis fpc
XPaths.

Command: show chassis fpc
/fpc
/fpc/slot
/fpc/state
/fpc/temperature
/fpc/cpu-total
/fpc/memory-heap-utilization
/fpc/memory-buffer-utilization

 50 Day One: Using JSNAP to Automate Network Verifications

As mentioned before, the show chassis fpc output has numeric values.
There are a few different ways of comparing numeric values: you can
verify if the number is within a specified range, if it is equal to a
number, or if it has changed more than a specified value.

For temperature values, use the operator is-lt to check if the FPC’s
temperature is less than 55-Celsius degrees (131-Farenheit).

NOTE We are using the value of 55-Celsius degrees here because this is the
value that will trigger the Yellow alarm for temperature on an M10i
router. (See http://www.juniper.net/techpubs/en_US/release-indepen-
dent/junos/information-products/topic-collections/hardware/m-series/
m10i/hwguide/m10i-hwguide.pdf .). Remember to verify the environ-
mental conditions of the hardware you are working with before
defining this parameter.

The CPU utilization is a little tricky because it is very hard to define
what is the correct number, or range, the values should be, in order to
say that CPU is fine. The reason is that CPU spikes are sometimes
normal and expected. Best practice says that the CPU must be moni-
tored when the router has reached the steady state: routing protocols
are UP, running, and stable, the routing tables have converged, and the
traffic is flowing normally. (Note that the definition of steady state
includes much more than the examples cited here and this varies from
network to network.) So, what’s the number? Let’s use 70% and use
the is-lt operator to make sure the CPU value is below 70%. You
may want to fine-tune this number to best fit in your lab or network.

Monitoring memory utilization is very important and a bit easier to
define than the CPU. Usually, two verifications are used for memory:
one to verify if the memory has changed more than X% during the
change, and another to check if the memory is below Y% (or within
the range of, if you prefer). Again, defining the X and Y numbers
comes down to your network design and the hardware involved. A
general and safe rule of thumb is 70% for Y. If you want to check if the
utilization is within a range, you could check for 20% ~ 70% range.
The selection of X may depend on the type of the change you are doing
because some changes are expected to cause more churn in the memory
than others (for example, routing protocol changes). As a rule of
thumb, let’s go with 15% of variation. If you are asking yourself why
15% and not 20%, the explanation is that 70% + 15% will give you
85%, which is considered very high but still gives you some room to
take action before the system cracks down. Following the same idea of
the CPU values, you should adjust this value to best fit your network.

The heap and buffer utilization follow the same rules of memory

 Chapter 3: Developing Automated Network Verifications 51

monitoring. In addition, the same range and variation can be used for
both items.

NOTE Each ASIC family has its own memory management algorithm. For
instance, I-Chip, Trio, and Cassis have different internal memory
architecture, which may affect the maximum value selected for this
test. Moreover, in case your network is unstable, this value is expected
to oscillate within a wider range.

Finally, yet importantly, the state of each FPC must be monitored. For
this test, you can use the well-known no-diff operator.

The ID identified for the show chassis fpc command is slot.

The last test of this section is the verification of the PIC cards. The
third group of XPaths is listed below:

Command: show chassis fpc pic-status
/fpc
/fpc/slot
/fpc/pic
/fpc/pic/pic-slot
/fpc/pic/pic-state
/fpc/pic/pic-type

The output of show chassis fpc pic-status was a very simple one – it
can be verified using the no-diff operator. The difference from this
output from the all others you have seen so far is the number of IDs
that are required to identify the element being tested. For example,
identifying the test just by using the pic-slot is not a good option as a
router may contain many PIC slots 0. In this case, you have to define
two IDs: one for the FPC slot (chassis slot) where the PIC is inserted,
and the other for the slot of the FPC (sub-slot) where the PIC is
inserted. Therefore, the IDs identified for this test are: slot and
pic-slot.

Now that you have learned how to use some new JSNAP operators, it’s
time to create our JSNAP configuration file for the Chassis tests:

do {
 check_show_chassis_hardware;
 check_show_chassis_fpc;
 check_show_chassis_fpc_pic_status;
}

check_show_chassis_hardware {
 command show chassis hardware;
 iterate chassis/chassis-module {
 id name;
 no-diff name {
 info "Checking chassis modules names ...";

 52 Day One: Using JSNAP to Automate Network Verifications

 err " ERROR: the module %s has changed from %s to %s.", $ID.1, $PRE/name,
$POST/name;
 }
 no-diff version {
 info "Checking chassis module version ...";
 err " ERROR: the version of the module %s has changed from %s to %s.", $ID.1,
$PRE/name, $POST/name;
 }
 no-diff part-number {
 info "Checking chassis module part-number ...";
 err " ERROR: the part-number of module %s has changed from %s to %s.", $ID.1,
$PRE/part-number, $POST/part-number;
 }
 no-diff serial-number {
 info "Checking chassis module serial-number ...";
 err " ERROR: the serial-number of module %s has changed from %s to %s.",
$ID.1, $PRE/serial-number, $POST/serial-number;
 }
 no-diff description {
 info "Checking chassis module description ...";
 err " ERROR: the description of module %s has changed from %s to %s.", $ID.1,
$PRE/description, $POST/description;
 }
 no-diff model-number {
 info "Checking chassis module model-number ...";
 err " ERROR: the model-number of module %s has changed from %s to %s.", $ID.1,
$PRE/model-number, $POST/model-number;
 }
 list-not-less name {
 info "Checking for missing modules ...";
 err " ERROR: the module %s is missing.", $ID.1;
 }
 list-not-more name {
 info "Checking for new modules ...";
 err " ERROR: the module %s was installed.", $ID.1;
 }
 }
 iterate chassis/chassis-module/chassis-sub-module {
 id name;
 id ../name;
 no-diff name {
 info "Checking chassis sub-modules names ...";
 err " ERROR: the sub-module %s of module %s has changed from %s to %s.",
$ID.1, $ID.2, $PRE/name, $POST/name;
 }
 no-diff version {
 info "Checking chassis sub-module version ...";
 err " ERROR: the version of the sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/name, $POST/name;
 }
 no-diff part-number {
 info "Checking chassis sub-module part-number ...";
 err " ERROR: the part-number of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/part-number, $POST/part-number;

 Chapter 3: Developing Automated Network Verifications 53

 }
 no-diff serial-number {
 info "Checking chassis sub-module serial-number ...";
 err " ERROR: the serial-number of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/serial-number, $POST/serial-number;
 }
 no-diff description {
 info "Checking chassis sub-module description ...";
 err " ERROR: the description of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/description, $POST/description;
 }
 no-diff model-number {
 info "Checking chassis sub-module model-number ...";
 err " ERROR: the model-number of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/model-number, $POST/model-number;
 }
 list-not-less name {
 info "Checking for missing sub-modules ...";
 err " ERROR: the sub-module %s of module %s is missing.", $ID.1, $ID.2;
 }
 list-not-more name {
 info "Checking for new sub-modules ...";
 err " ERROR: the sub-module %s of module %s was installed.", $ID.1, $ID.2;
 }
 }
}

check_show_chassis_fpc {
 command show chassis fpc;
 iterate fpc {
 id slot;
 no-diff state {
 info "Checking FPC state ...";
 err " ERROR: the FPC %s has changed its state from %s to %s.", $ID.1, $PRE/
state, $POST/state;
 }
 list-not-less {
 info "Checking for missing FPCs ...";
 err " ERROR: the FPC %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new FPCs ...";
 err " ERROR: the FPC %s was installed.", $ID.1;
 }
 is-lt temperature, 55 {
 info "Checking if the temperature of the FPCs is below 55-Celsius degrees
(131-Farenheit).";
 err " ERROR: the temperature of FPC %s is %s (before was %s) Celsius
degrees.", $ID.1, $POST/temperature, $PRE/temperature;
 }
 is-lt cpu-total, 70 {
 info "Checking if the CPU utilisation of the FPCs is below 70%.";
 err " ERROR: the CPU utilisation of FPC %s is %s (before was %s).", $ID.1;
$POST/cpu-total, $PRE/cpu-total;

 54 Day One: Using JSNAP to Automate Network Verifications

 }
 in-range memory-heap-utilization, 20, 70 {
 info "Checking if the memory heap utilisation of the FPCs is within the
range of 20% ~ 70%.";
 err " ERROR: the memory heap utilisation of FPC %s is out-of-range (
Before = %s / After = %s).", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 delta memory-heap-utilization, 15% {
 info "Checking if the memory heap utilisation of the FPCs has changed more
than 15%.";
 err " ERROR: the memory heap utilisation of the FPC %s has changed from %s
to %s.", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 in-range memory-buffer-utilization, 20, 70 {
 info "Checking if the memory buffer utilisation of the FPCs is within the
range of 20% ~ 70%.";
 err " ERROR: the memory buffer utilisation of FPC %s is out-of-range (
Before = %s / After = %s).", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 delta memory-buffer-utilization, 15% {
 info "Checking if the memory buffer utilisation of the FPCs has changed
more than 15%.";
 err " ERROR: the memory buffer utilisation of the FPC %s has changed from
%s to %s.", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 }
}

check_show_chassis_fpc_pic_status {
 command show chassis fpc pic-status;
 iterate fpc/pic {
 id pic-slot;
 id ../slot;
 no-diff pic-type {
 info "Checking the PIC types ...";
 err " ERROR: the PIC type of PIC %s of FPC slot %s has changed from %s to
%s.", $ID.1, $ID.2, $PRE/pic-type, $POST/pic-type;
 }
 no-diff pic-state {
 info "Checking the PIC state ...";
 err " ERROR: the state of PIC %s of FPC slot %s has changed from %s to
%s.", $ID.1, $ID.2, $PRE/pic-state, $POST/pic-state;
 }
 list-not-less pic-slot {
 info "Checking for missing PICs ...";
 err " ERROR: the PIC %s of FPC slot %s is missing.", $ID.1, $ID.2;
 }
 list-not-more pic-slot {
 info "Checking for new PICs ...";
 err " ERROR: the PIC %s of FPC slot %s was installed.", $ID.1, $ID.2;
 }
 }
}

The Chassis verification required a wider range of JSNAP operators.

 Chapter 3: Developing Automated Network Verifications 55

You now have examples of dealing with numbers and multiple IDs.

Verifying the Routing Engines

You may have noticed that the routine to verify the Routing Engines of
the router was not included. Let’s make it an exercise of this chapter.

The list below contains the items you need to verify in the output of
show chassis routing-engine:

 � CPU Utilisation (Idle)

 � Mastership on RE0

 � Routing-Engine Temperature below 55 °C

The answer for this exercise is presented in the Appendix at the end of
this Day One book.

By the way, if you test this Chassis configuration file in your lab, you
will find that few tests are failing even though the pre- and post-snap-
shots are identical. That is an expected situation and it is covered in
detail in Chapter 4.

Now, let’s move to the next section of the configuration file: MP-iBGP.

Developing the JSNAP Configuration File – BGP Network Verifications

Although this chapter separates the BGP verifications into MP-iBGP
sessions and PE-CE BGP sessions, from the PE perspective they are all
BGP sessions. The differences between them are a type of the session
(internal versus external) and the instance where they run. Creating a
separate section to check MP-iBGP and another for PE-CE BGP
sessions may be too complicated for the brevity desired in this Day
One book, therefore the tests will be merged into a single section in the
JSNAP configuration file.

To start with, let’s select the BGP operational command to be used in
these BGP verifications. The most appropriate command is show bgp
summary, which is presented in both normal and XML (and it’s back to
using Junosphere for the output):.

juniper@PE1> show bgp summary
Groups: 3 Peers: 3 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0
 0 0 0 0 0 0
bgp.l3vpn.0
 6 6 0 0 0 0
bgp.mvpn.0
 0 0 0 0 0 0

 56 Day One: Using JSNAP to Automate Network Verifications

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
10.100.100.2 65000 35 34 0 0 11:41 Establ
 inet.0: 0/0/0/0
 bgp.l3vpn.0: 6/6/6/0
 bgp.rtarget.0: 0/1/1/0
 bgp.mvpn.0: 0/0/0/0
 VPNA.inet.0: 3/3/3/0
 VPNB.inet.0: 3/3/3/0
192.168.1.2 65100 31 32 0 0 12:19 Establ
 VPNA.inet.0: 2/2/2/0
192.168.2.2 65100 31 32 0 0 12:22 Establ
 VPNB.inet.0: 2/2/2/0

<?xml version="1.0"?>
<jppc:section conf="bgp.conf" mode="pre_bgp" name="bgp-summary" target="pe1" ts="2014-
02-14T07:05:02+11:00" xmlns:jppc="http://xml.juniper.net/jppc">
 <group-count>3</group-count>
 <peer-count>3</peer-count>
 <down-peer-count>0</down-peer-count>
 <bgp-rib junos:style="brief" xmlns:junos="http://xml.juniper.net/junos/*/
junos">
 <name>inet.0</name>
 <total-prefix-count>0</total-prefix-count>
 <received-prefix-count>0</received-prefix-count>
 <accepted-prefix-count>0</accepted-prefix-count>
 <active-prefix-count>0</active-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 <history-prefix-count>0</history-prefix-count>
 <damped-prefix-count>0</damped-prefix-count>
 <total-external-prefix-count>0</total-external-prefix-count>
 <active-external-prefix-count>0</active-external-prefix-count>
 <accepted-external-prefix-count>0</accepted-external-prefix-count>
 <suppressed-external-prefix-count>0</suppressed-external-prefix-count>
 <total-internal-prefix-count>0</total-internal-prefix-count>
 <active-internal-prefix-count>0</active-internal-prefix-count>
 <accepted-internal-prefix-count>0</accepted-internal-prefix-count>
 <suppressed-internal-prefix-count>0</suppressed-internal-prefix-count>
 <pending-prefix-count>0</pending-prefix-count>
 <bgp-rib-state>BGP restart is complete</bgp-rib-state>
 </bgp-rib>
 <bgp-rib junos:style="brief" xmlns:junos="http://xml.juniper.net/junos/*/
junos">
 <name>bgp.l3vpn.0</name>
 <total-prefix-count>6</total-prefix-count>
 <received-prefix-count>6</received-prefix-count>
 <accepted-prefix-count>6</accepted-prefix-count>
 <active-prefix-count>6</active-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 <history-prefix-count>0</history-prefix-count>
 <damped-prefix-count>0</damped-prefix-count>
 <total-external-prefix-count>0</total-external-prefix-count>
 <active-external-prefix-count>0</active-external-prefix-count>

 Chapter 3: Developing Automated Network Verifications 57

 <accepted-external-prefix-count>0</accepted-external-prefix-count>
 <suppressed-external-prefix-count>0</suppressed-external-prefix-count>
 <total-internal-prefix-count>6</total-internal-prefix-count>
 <active-internal-prefix-count>6</active-internal-prefix-count>
 <accepted-internal-prefix-count>6</accepted-internal-prefix-count>
 <suppressed-internal-prefix-count>0</suppressed-internal-prefix-count>
 <pending-prefix-count>0</pending-prefix-count>
 <bgp-rib-state>BGP restart is complete</bgp-rib-state>
 <vpn-rib-state>VPN restart is complete</vpn-rib-state>
 </bgp-rib>
 <bgp-rib junos:style="brief" xmlns:junos="http://xml.juniper.net/junos/*/
junos">
 <name>bgp.mvpn.0</name>
 <total-prefix-count>0</total-prefix-count>
 <received-prefix-count>0</received-prefix-count>
 <accepted-prefix-count>0</accepted-prefix-count>
 <active-prefix-count>0</active-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 <history-prefix-count>0</history-prefix-count>
 <damped-prefix-count>0</damped-prefix-count>
 <total-external-prefix-count>0</total-external-prefix-count>
 <active-external-prefix-count>0</active-external-prefix-count>
 <accepted-external-prefix-count>0</accepted-external-prefix-count>
 <suppressed-external-prefix-count>0</suppressed-external-prefix-count>
 <total-internal-prefix-count>0</total-internal-prefix-count>
 <active-internal-prefix-count>0</active-internal-prefix-count>
 <accepted-internal-prefix-count>0</accepted-internal-prefix-count>
 <suppressed-internal-prefix-count>0</suppressed-internal-prefix-count>
 <pending-prefix-count>0</pending-prefix-count>
 <bgp-rib-state>BGP restart is complete</bgp-rib-state>
 <vpn-rib-state>VPN restart is complete</vpn-rib-state>
 </bgp-rib>
 <bgp-peer heading="Peer AS InPkt OutPkt OutQ
Flaps Last Up/Dwn State|#Active/Received/Accepted/Damped..." junos:style="terse"
xmlns:junos="http://xml.juniper.net/junos/*/junos">
 <peer-address>10.100.100.2</peer-address>
 <peer-as>65000</peer-as>
 <input-messages>48</input-messages>
 <output-messages>47</output-messages>
 <route-queue-count>0</route-queue-count>
 <flap-count>0</flap-count>
 <elapsed-time junos:seconds="1055">17:35</elapsed-time>
 <peer-state junos:format="Establ">Established</peer-state>
 <bgp-rib junos:style="terse">
 <name>inet.0</name>
 <active-prefix-count>0</active-prefix-count>
 <received-prefix-count>0</received-prefix-count>
 <accepted-prefix-count>0</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 <bgp-rib junos:style="terse">
 <name>bgp.l3vpn.0</name>
 <active-prefix-count>6</active-prefix-count>
 <received-prefix-count>6</received-prefix-count>

 58 Day One: Using JSNAP to Automate Network Verifications

 <accepted-prefix-count>6</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 <bgp-rib junos:style="terse">
 <name>bgp.rtarget.0</name>
 <active-prefix-count>0</active-prefix-count>
 <received-prefix-count>1</received-prefix-count>
 <accepted-prefix-count>1</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 <bgp-rib junos:style="terse">
 <name>bgp.mvpn.0</name>
 <active-prefix-count>0</active-prefix-count>
 <received-prefix-count>0</received-prefix-count>
 <accepted-prefix-count>0</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 <bgp-rib junos:style="terse">
 <name>VPNA.inet.0</name>
 <active-prefix-count>3</active-prefix-count>
 <received-prefix-count>3</received-prefix-count>
 <accepted-prefix-count>3</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 <bgp-rib junos:style="terse">
 <name>VPNB.inet.0</name>
 <active-prefix-count>3</active-prefix-count>
 <received-prefix-count>3</received-prefix-count>
 <accepted-prefix-count>3</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 </bgp-peer>
 <bgp-peer junos:style="terse" xmlns:junos="http://xml.juniper.net/junos/*/
junos">
 <peer-address>192.168.1.2</peer-address>
 <peer-as>65100</peer-as>
 <input-messages>44</input-messages>
 <output-messages>44</output-messages>
 <route-queue-count>0</route-queue-count>
 <flap-count>0</flap-count>
 <elapsed-time junos:seconds="1093">18:13</elapsed-time>
 <peer-state junos:format="Establ">Established</peer-state>
 <bgp-rib junos:style="terse">
 <name>VPNA.inet.0</name>
 <active-prefix-count>2</active-prefix-count>
 <received-prefix-count>2</received-prefix-count>
 <accepted-prefix-count>2</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 </bgp-peer>
 <bgp-peer junos:style="terse" xmlns:junos="http://xml.juniper.net/junos/*/
junos">
 <peer-address>192.168.2.2</peer-address>
 <peer-as>65100</peer-as>

 Chapter 3: Developing Automated Network Verifications 59

 <input-messages>44</input-messages>
 <output-messages>44</output-messages>
 <route-queue-count>0</route-queue-count>
 <flap-count>0</flap-count>
 <elapsed-time junos:seconds="1096">18:16</elapsed-time>
 <peer-state junos:format="Establ">Established</peer-state>
 <bgp-rib junos:style="terse">
 <name>VPNB.inet.0</name>
 <active-prefix-count>2</active-prefix-count>
 <received-prefix-count>2</received-prefix-count>
 <accepted-prefix-count>2</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 </bgp-peer>
</jppc:section>

As you can see, the show bgp summary has all the information you need
to complete your BGP verifications. The items needed to be checked
were also identified.

NOTE This can be the trickiest output to to deal with, partially caused by the
way Junos organizes the XML output of the show bgp summary com-
mand. For example, the MP-iBGP sessions will have many ribs,
including the VPNA and VPNB ribs, while the PE-CE BGP sessions
will have only its own rib. This can sometimes create confusion while
deciphering the output.

Analysing the XML output and the elements highlighted in the show
bgp summary output, you can identify the following XPaths that you
need to work with:

Command: show bgp summary
/group-count
/peer-count
/down-peer-count
/bgp-peer
/bgp-peer/peer-address
/bgp-peer/peer-as
/bgp-peer/flap-count
/bgp-peer/peer-state
/bgp-peer/bgp-rib
/bgp-peer/bgp-rib/name
/bgp-peer/bgp-rib/active-prefix-count
/bgp-peer/bgp-rib/received-prefix-count
/bgp-peer/bgp-rib/accepted-prefix-count
/bgp-rib/bgp-rib/suppressed-prefix-count

NOTE You probably haven’t noticed, but the BGP tests were carefully chosen
in order to be able to use the same BGP JSNAP configuration file for
both PE and CE routers. The situation would be different if, for

 60 Day One: Using JSNAP to Automate Network Verifications

example, you wanted to check to see if the inet, inet-vpn, and
inet-mvpn families are enabled on the MP-iBGP peers. It would be very
hard to create these tests using a single JSNAP file for BGP for both PE
and CE routers. The reason for this additional complexity is because
both types of BGP peers share the same XPath structure in the XML
output.

When analysing the identified XPaths for these BGP tests, you can
identify a good mix of JSNAP operators to be used in these tests. For
the first three XPaths, which relate to number of peers, you should use
the no-diff and is-gt JSNAP operators. In fact, the most appropriate
operator here is the no-diff. However, is-gt was introduced here for
two reasons: to demonstrate its use, and to show how to create rules
like Each BGP group has to have at least X neighbors configured.

The next four XPaths relate to the state of the BGP peer. Again, the
no-diff operator is the best choice here. You could use the delta
operator for checking the number of times that the BGP session has
flapped during the pre- and post-snapshots in a scenario where you are
expecting them to flap at least once during the change. One preference
is to use no-diff because you may want to be alerted anyway whenever
a BGP session has flapped. In addition, the state of the BGP peer could
be checked with the operator is-equal, because as you may know,
there is only one state of the BGP session that indicates it is operation-
al: Established.

Finally, but not less important, are the the BGP ribs verifications. First,
you can check if the ribs remain the same before and after the change
using the no-diff, list-not-more, and list-not-less operators.
Then, for each rib, you can check if the changes in the number of
routes is within a delta using the delta operator. Also, if you have
expected minimum and maximum numbers for routes on each rib, that
can be checked with the in-range operator.

NOTE To avoid surprises, monitoring the changes on the number of routes on
your network is an important verification. Each network has its own
dynamics, so some will have higher churn than others, therefore, you
need to identify what is the variation that is considered normal, and,
which one is the best delta value to choose for the JSNAP operator.

The last item to identify before getting your hands dirty writing the
JSNAP configuration for the BGP tests, are the IDs. Three IDs have
been identified for these tests: peer-address, peer-as, and rib-name.
With them, you can now develop the JSNAP configuration file for BGP,
presented here:

 Chapter 3: Developing Automated Network Verifications 61

do {
 check_bgp_summary;
}

check_bgp_summary {
 command show bgp summary;
 iterate . {
 no-diff group-count {
 info "Checking the number of BGP groups ...";
 err " ERROR: the number of BGP groups has changed from %s to %s.", $PRE/
group-count, $POST/group-count;
 }
 no-diff peer-count {
 info "Checking the number of BGP peers ...";
 err " ERROR: the number of BGP peers has changed from %s to %s.", $PRE/
peer-count, $POST/peer-count;
 }
 is-gt peer-count, 0 {
 info "Checking if the BGP configuration has at least 1 BGP peer configured
...";
 err " ERROR: the BGP configuration does not have any peer configured!";
 }
 no-diff down-peer-count {
 info "Checking the number of BGP peers down ...";
 err " ERROR: the number of BGP peers down has changed from %s to %s.", $PRE/
down-peer-count, $POST/down-peer-count;
 }
 }
 iterate bgp-peer {
 id peer-address;
 id peer-as;
 no-diff peer-address {
 info "Checking if the BGP peers addresses are still the same ...";
 err " ERROR: the BGP peer %s (ASN %s) has changed its address from %s to
%s.", $ID.1, $ID.2, $PRE/peer-address, $POST/peer-address;
 }
 no-diff peer-as {
 info "Checking if the BGP peers ASNs are still the same ...";
 err " ERROR: the ASN for the BGP peer %s has changed from %s to %s.", $ID.1.
$PRE/peer-asn, $POST/peer-asn;
 }
 no-diff flap-count {
 info "Checking if the BGP peer has flapped ...";
 err " ERROR: the BGP peer %s (ASN %s) has flapped.", $ID.1, $ID.2;
 }
 is-equal peer-state, "Established" {
 info "Checking if the BGP peers are in Established state ...";
 err " ERROR: the BGP peer %s (ASN %s) is not in Established state.", $ID.1,
$ID.2;
 }
 }
 iterate bgp-peer/bgp-rib {
 id name;
 id ../peer-address;

 62 Day One: Using JSNAP to Automate Network Verifications

 id ../peer-as;
 no-diff name {
 info "Checking if the BGP RIB name has changed ...";
 err " ERROR: the RIB %s of BGP peer %s (ASN %s) has changed from %s to %s.",
$ID.1, $ID.2, $ID.3, $PRE/name, $POST/name;
 }
 list-not-less name {
 info "Checking for missing RIBs ...";
 err " ERROR: the RIB %s for the BGP peer %s (ASN %s) has gone missing.",
$ID.1, $ID.2, $ID.3;
 }
 list-not-more name {
 info "Checking for new RIBs ...";
 err " ERROR: the RIB %s was not present before for the BGP peer %s (ASN
%s).", $ID.1, $ID.2, $ID.3;
 }
 delta active-prefix-count, 20% {
 info "Checking if the number of BGP active prefix has changed more than
20%.";
 err " ERROR: the number of BGP active prefixes for RIB %s on the BGP peer %s
(ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1, $ID.2,
$ID.3, $PRE/active-prefix-count, $POST/active-prefix-count;
 }
 delta received-prefix-count, 20% {
 info "Checking if the number of BGP received prefix has changed more than
20%.";
 err " ERROR: the number of BGP received prefixes for RIB %s on the BGP peer
%s (ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1, $ID.2,
$ID.3, $PRE/received-prefix-count, $POST/received-prefix-count;
 }
 delta accepted-prefix-count, 20% {
 info "Checking if the number of BGP accepted prefix has changed more than
20%.";
 err " ERROR: the number of BGP accepted prefixes for RIB %s on the BGP peer
%s (ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1, $ID.2,
$ID.3, $PRE/accepted-prefix-count, $POST/accepted-prefix-count;
 }
 delta suppressed-prefix-count, 20% {
 info "Checking if the number of BGP suppressed prefix has changed more than
20%.";
 err " ERROR: the number of BGP suppressed prefixes for RIB %s on the BGP
peer %s (ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1,
$ID.2, $ID.3, $PRE/suppressed-prefix-count, $POST/suppressed-prefix-count;
 }
 }
}

NOTE This configuration file has something different than the previous ones:
the tests against group-count, peer-count, and down-peer-count use a
different XPath, which is covered in Chapter 4.

One of the good things about using JSNAP to automate BGP verifica-
tions like these is the automation of the calculation methods. Imagine

 Chapter 3: Developing Automated Network Verifications 63

that the router you are executing these tests upon is an Internet Edge
router or a Route Reflector router where you may have many dozens
of BGP peers. Checking each and calculating the deviations one-by-one
is something you definitely don’t want to do after executing a network
change.

With the completion of the JSNAP configuration file for the BGP tests,
the development of a full set of automated network verification tests is
almost done. The next section will guide you through the development
of the network verification tests for the RSVP protocol.

Developing the JSNAP Configuration File – RSVP Network Verifications

Networks that require traffic engineering and MPLS fast-reroute
capabilities will make use of the RSVP protocol in order to signal the
MPLS LSPs. This feature is commonly found in Service Provider
networks but its use on Enterprise networks is increasing. Therefore
it’s important to include the RSVP network verifications here.

There are two tests identified for RSVP: interfaces and sessions. Let’s
start with the verifications of the RSVP sessions. The Junos operational
command to be used for the RSVP tests is show rsvp session, and here
are its normal and XML outputs:

juniper@PE1> show rsvp session
Ingress RSVP: 1 sessions
To From State Rt Style Labelin Labelout LSPname
10.100.100.2 10.100.100.1 Up 0 1 FF - 3 to-PE2
Total 1 displayed, Up 1, Down 0

Egress RSVP: 1 sessions
To From State Rt Style Labelin Labelout LSPname
10.100.100.1 10.100.100.2 Up 0 1 FF 3 - to-PE1
Total 1 displayed, Up 1, Down 0

Transit RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0

<?xml version="1.0"?>
<jppc:section conf="rsvp.conf" mode="rsvp_before" name="check_show_rsvp_sessions"
target="10.233.255.181" ts="2014-02-25T06:13:10+11:00" xmlns:jppc="http://xml.
juniper.net/jppc">
 <rsvp-session-data>
 <session-type>Ingress</session-type>
 <count>1</count>
 <rsvp-session junos:style="brief" xmlns:junos="http://xml.juniper.net/
junos/*/junos">
 <destination-address>10.100.100.2</destination-address>
 <source-address>10.100.100.1</source-address>

 64 Day One: Using JSNAP to Automate Network Verifications

 <lsp-state>Up</lsp-state>
 <route-count>0</route-count>
 <rsb-count>1</rsb-count>
 <resv-style>FF</resv-style>
 <label-in>-</label-in>
 <label-out>3</label-out>
 <name>to-PE2</name>
 </rsvp-session>
 <display-count>1</display-count>
 <up-count>1</up-count>
 <down-count>0</down-count>
 </rsvp-session-data>
 <rsvp-session-data>
 <session-type>Egress</session-type>
 <count>1</count>
 <rsvp-session junos:style="brief" xmlns:junos="http://xml.juniper.net/
junos/*/junos">
 <destination-address>10.100.100.1</destination-address>
 <source-address>10.100.100.2</source-address>
 <lsp-state>Up</lsp-state>
 <route-count>0</route-count>
 <rsb-count>1</rsb-count>
 <resv-style>FF</resv-style>
 <label-in>3</label-in>
 <label-out>-</label-out>
 <name>to-PE1</name>
 </rsvp-session>
 <display-count>1</display-count>
 <up-count>1</up-count>
 <down-count>0</down-count>
 </rsvp-session-data>
 <rsvp-session-data>
 <session-type>Transit</session-type>
 <count>0</count>
 <display-count>0</display-count>
 <up-count>0</up-count>
 <down-count>0</down-count>
 </rsvp-session-data>
</jppc:section>

One thing important to note here is related to the Transit RSVP
sessions. In case your network topology has many redundant paths
where the LSP can pass through, a change in this counter may not
indicate a problem. However, a constant change may indicate a
problem. For this reason, the test checks if the number changed slightly
instead of checking if it remains the same.

Analyzing the XML output identifies the following XPaths to build our
JSNAP tests:

Command: show rsvp session
/rsvp-session-data
/rsvp-session-data/session-type

 Chapter 3: Developing Automated Network Verifications 65

/rsvp-session-data/rsvp-session
/rsvp-session-data/rsvp-session/destination-address
/rsvp-session-data/rsvp-session/source-address
/rsvp-session-data/rsvp-session/lsp-state
/rsvp-session-data/rsvp-session/name
/rsvp-session-data/display-count
/rsvp-session-data/up-count
/rsvp-session-data/down-count

The XPaths identified for the RSVP tests are very similar to others
already identified in this chapter. The JSNAP test operators will be
no-diff, list-not-less, list-not-more, and delta. The IDs identified
for these XPaths are session-type and name.

The other group of RSVP tests is related to the interfaces configured
under the RSVP protocol. The test requirements predict no changes in
the RSVP topology. In order to check that, the JUNOS operational
command show rsvp interfaces is used and here are the normal and
XML outputs of this command:.

juniper@PE1> show rsvp interface
RSVP interface: 1 active
 Active Subscr- Static Available Reserved Highwater
Interface State resv iption BW BW BW mark
ge-0/0/3.0 Up 1 100% 1000Mbps 1000Mbps 0bps 0bps

<?xml version="1.0"?>
<jppc:section conf="rsvp.conf" mode="rsvp_before" name="check_show_rsvp_interface"
target="10.233.248.17" ts="2014-02-26T07:06:46+11:00" xmlns:jppc="http://xml.juniper.
net/jppc">
 <active-count>1</active-count>
 <rsvp-interface junos:style="brief" xmlns:junos="http://xml.juniper.net/
junos/*/junos">
 <interface-name>ge-0/0/3.0</interface-name>
 <index>75</index>
 <rsvp-status>Up</rsvp-status>
 <rsvp-telink>
 <active-reservation>1</active-reservation>
 <subscription>100</subscription>
 <static-bandwidth>1000Mbps</static-bandwidth>
 <available-bandwidth>1000Mbps</available-bandwidth>
 <total-reserved-bandwidth>0bps</total-reserved-bandwidth>
 <high-watermark>0bps</high-watermark>
 </rsvp-telink>
 </rsvp-interface>
</jppc:section>

NOTE If you noticed there is no checking on the traffic engineering informa-
tion here, it’s because this is a simple setup of RSVP topology.

 66 Day One: Using JSNAP to Automate Network Verifications

In the analysis of the show rsvp interface XML output, you can
identify the following XPaths:

Command: show rsvp interface
active-count
rsvp-interface/interface-name
rsvp-interface/rsvp-status

For this simple XML output, the ID is interface-name and the JSNAP
operators to be used on these verifications are no-diff, list-not-more,
and list-not-less.

With the XPaths, operators, and IDs identified, it’s time to write the
JSNAP configuration file for the RSVP tests:

do {
 check_show_rsvp_sessions;
 check_show_rsvp_interface;
}

check_show_rsvp_sessions {
 command show rsvp session;
 iterate rsvp-session-data {
 id session-type;
 no-diff count {
 info "Checking if the number of RSVP sessions has changed ...";
 err " ERROR: the number of | %s | RSVP sessions has changed from %s to
%s.", $ID.1, $PRE/count, $POST/count;
 }
 no-diff display-count {
 info "Checking if the number of displayed RSVP sessions has changed ...";
 err " ERROR: the number of | %s | displayed RSVP sessions has changed from
%s to %s.", $ID.1, $PRE/display-count, $POST/display-count;
 }
 no-diff up-count {
 info "Checking if the number of active (UP) RSVP sessions has changed
...";
 err " ERROR: the number of | %s | active (UP) RSVP sessions has changed
from %s to %s.", $ID.1, $PRE/up-count, $POST/up-count;
 }
 no-diff down-count {
 info "Checking if the number of inactive (DOWN) RSVP sessions has changed
...";
 err " ERROR: the number of | %s | inactive (DOWN) RSVP sessions has
changed from %s to %s.", $ID.1, $PRE/down-count, $POST/down-count;
 }
 }
 iterate rsvp-session-data/rsvp-session {
 id ../session-type;
 id name;
 no-diff source-address {
 info "Checking the source address of the RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s has changed its source address from
%s to %s", $ID.1, $ID.2, $PRE/source-address, $POST/source-address;

 Chapter 3: Developing Automated Network Verifications 67

 }
 no-diff destination-address {
 info "Checking the destination address of the RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s has changed its destination
address from %s to %s", $ID.1, $ID.2, $PRE/destination-address, $POST/destination-
address;
 }
 no-diff name {
 info "Checking the RSVP session names ...";
 err " ERROR: the | %s | RSVP session %s has changed its name from %s to
%s.", $ID.1, $ID.2, $PRE/name, $POST/name;
 }
 no-diff lsp-state {
 info "Checking the RSVP session state ...";
 err " ERROR: the | %s | RSVP session %s has changed its state from %s to
%s.", $ID.1, $ID.2, $PRE/lsp-state, $POST/lsp-state;
 }
 list-not-less name {
 info "Checking for missing RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s has gone missing.", $ID.1, $ID.2;
 }
 list-not-more name {
 info "Checking for new RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s was not present before.", $ID.1,
$ID.2;
 }
 }
}

check_show_rsvp_interface {
 command show rsvp interface;
 iterate . {
 no-diff active-count {
 info "Checking the number of active RSVP interfaces ...";
 err " ERROR: the number of active RSVP interfaces has changed from %s to
%s.", $PRE/active-count $POST/active-count;
 }
 }
 iterate rsvp-interface {
 id interface-name;
 no-diff interface-name {
 info "Checking if the name of the RSVP interface has changed ...";
 err " ERROR: the name of the RSVP interface %s has changed from %s to %s.",
$ID.1, $PRE/interface-name, $POST/interface-name;
 }
 no-diff rsvp-status {
 info "Checking the RSVP status for each interface ...";
 err " ERROR: the status of the RSVP interface %s has changed from %s to
%s.", $ID.1, $PRE/rsvp-status, $POST/rsvp-status;
 }
 list-not-less interface-name {
 info "Checking for missing RSVP interfaces ...";
 err " ERROR: the RSVP interface %s has gone missing.", $ID.1;
 }

 68 Day One: Using JSNAP to Automate Network Verifications

 list-not-more interface-name {
 info "Checking for new RSVP interfaces ...";
 err " ERROR: the RSVP interface %s was not present before.", $ID.1;
 }
 }
}

Okay that’s the completion of the configuration file for the RSVP
network verification tests, and there are only the MPLS tests left,
which are covered next. Almost there.

Developing the JSNAP Configuration File – MPLS Network Verifications

The MPLS group is the last group of network verifications developed
in this book, and in the beginning of this chapter, four items were
identified to be tested under the MPLS verification. The first MPLS test
is related to the interfaces and uses show mpls interface. The remain-
ing MPLS tests are related to MPLS LSPs and use the show mpls lsp
extensive command.

Here are the normal and XML outputs for the show mpls interface
command:

juniper@PE1> show mpls interface
Interface State Administrative groups (x: extended)
ge-0/0/3.0 Up <none>

<?xml version="1.0"?>
<jppc:section conf="mpls.conf" mode="mpls_before" name="check_show_mpls_interface"
target="10.233.255.192" ts="2014-02-28T07:23:10+11:00" xmlns:jppc="http://xml.
juniper.net/jppc">
 <mpls-interface>
 <interface-name>ge-0/0/3.0</interface-name>
 <mpls-interface-state>Up</mpls-interface-state>
 <no-group-flag/>
 </mpls-interface>
</jppc:section>

The following XPaths present the normal and XML outputs for the
show mpls lsp extensive command:

juniper@PE1> show mpls lsp extensive
Ingress LSP: 1 sessions

10.100.100.2
 From: 10.100.100.1, State: Up, ActiveRoute: 0, LSPname: to-PE2
 ActivePath: (primary)
 LSPtype: Static Configured, Penultimate hop popping
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up

 Chapter 3: Developing Automated Network Verifications 69

 Priorities: 7 0
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 10)
 10.1.1.2 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt
20=Node-ID):
 10.1.1.2
 5 Feb 28 13:10:09.269 Selected as active path
 4 Feb 28 13:10:09.268 Record Route: 10.1.1.2
 3 Feb 28 13:10:09.265 Up
 2 Feb 28 13:10:09.237 Originate Call
 1 Feb 28 13:10:09.237 CSPF: computation result accepted 10.1.1.2
 Created: Fri Feb 28 13:09:10 2014
Total 1 displayed, Up 1, Down 0

Egress LSP: 1 sessions

10.100.100.1
 From: 10.100.100.2, LSPstate: Up, ActiveRoute: 0
 LSPname: to-PE1, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: -
 Resv style: 1 FF, Label in: 3, Label out: -
 Time left: 121, Since: Fri Feb 28 13:10:08 2014
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 1 receiver 28834 protocol 0
 PATH rcvfrom: 10.1.1.2 (ge-0/0/3.0) 89 pkts
 Adspec: received MTU 1500
 PATH sentto: localclient
 RESV rcvfrom: localclient
 Record route: 10.1.1.2 <self>
Total 1 displayed, Up 1, Down 0

Transit LSP: 0 sessions
Total 0 displayed, Up 0, Down 0

juniper@PE1>

<?xml version="1.0"?>
<jppc:section conf="mpls.conf" mode="mpls_before" name="check_show_mpls_lsp_
extensive" target="10.233.255.181" ts="2014-03-01T09:02:55+11:00" xmlns:jppc="http://
xml.juniper.net/jppc">
 <rsvp-session-data>
 <session-type>Ingress</session-type>
 <count>1</count>
 <rsvp-session junos:style="detail" xmlns:junos="http://xml.juniper.net/
junos/*/junos">
 <mpls-lsp>
 <destination-address>10.100.100.2</destination-address>
 <source-address>10.100.100.1</source-address>
 <lsp-state>Up</lsp-state>
 <route-count>0</route-count>
 <name>to-PE2</name>

 70 Day One: Using JSNAP to Automate Network Verifications

 <lsp-description/>
 <active-path>(primary)</active-path>
 <lsp-type>Static Configured</lsp-type>
 <egress-label-operation>Penultimate hop popping</egress-label-
operation>
 <load-balance>random</load-balance>
 <mpls-lsp-attributes>
 <encoding-type>Packet</encoding-type>
 <switching-type>Packet</switching-type>
 <gpid>IPv4</gpid>
 </mpls-lsp-attributes>
 <mpls-lsp-path>
 <title>Primary</title>
 <name/>
 <path-active/>
 <path-state>Up</path-state>
 <setup-priority>7</setup-priority>
 <hold-priority>0</hold-priority>
 <smart-optimize-timer>180</smart-optimize-timer>
 <cspf-status>Computed ERO (S [L] denotes strict [loose] hops): (CSPF
metric: 10)</cspf-status>
 <explicit-route heading=" ">
 <address>10.1.1.2</address>
 <explicit-route-type>S</explicit-route-type>
 </explicit-route>
 <received-rro>Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W
8=Node 10=SoftPreempt 20=Node-ID):
 10.1.1.2</received-rro>
 <path-history>
 <sequence-number>5</sequence-number>
 <time>Feb 28 13:10:09.269</time>
 <log>Selected as active path</log>
 <route/>
 </path-history>
 <path-history>
 <sequence-number>4</sequence-number>
 <time>Feb 28 13:10:09.268</time>
 <log>Record Route:</log>
 <route>10.1.1.2</route>
 </path-history>
 <path-history>
 <sequence-number>3</sequence-number>
 <time>Feb 28 13:10:09.265</time>
 <log>Up</log>
 <route/>
 </path-history>
 <path-history>
 <sequence-number>2</sequence-number>
 <time>Feb 28 13:10:09.237</time>
 <log>Originate Call</log>
 <route/>
 </path-history>
 <path-history>
 <sequence-number>1</sequence-number>

 Chapter 3: Developing Automated Network Verifications 71

 <time>Feb 28 13:10:09.237</time>
 <log>CSPF: computation result accepted</log>
 <route>10.1.1.2</route>
 </path-history>
 </mpls-lsp-path>
 <lsp-creation-time>Fri Feb 28 13:09:10 2014</lsp-creation-time>
 </mpls-lsp>
 </rsvp-session>
 <display-count>1</display-count>
 <up-count>1</up-count>
 <down-count>0</down-count>
 </rsvp-session-data>
 <rsvp-session-data>
 <session-type>Egress</session-type>
 <count>1</count>
 <rsvp-session junos:style="detail" xmlns:junos="http://xml.juniper.net/
junos/*/junos">
 <destination-address>10.100.100.1</destination-address>
 <source-address>10.100.100.2</source-address>
 <lsp-state>Up</lsp-state>
 <route-count>0</route-count>
 <name>to-PE1</name>
 <lsp-path-type>Primary</lsp-path-type>
 <suggested-label-in>-</suggested-label-in>
 <suggested-label-out>-</suggested-label-out>
 <recovery-label-in>-</recovery-label-in>
 <recovery-label-out>-</recovery-label-out>
 <rsb-count>1</rsb-count>
 <resv-style>FF</resv-style>
 <label-in>3</label-in>
 <label-out>-</label-out>
 <psb-lifetime>150</psb-lifetime>
 <psb-creation-time>Fri Feb 28 13:10:08 2014</psb-creation-time>
 <sender-tspec>rate 0bps size 0bps peak Infbps m 20 M 1500</sender-tspec>
 <lsp-id>1</lsp-id>
 <tunnel-id>28834</tunnel-id>
 <proto-id>0</proto-id>
 <lsp-attribute-flags/>
 <packet-information heading=" PATH">
 <previous-hop>10.1.1.2</previous-hop>
 <interface-name>ge-0/0/3.0</interface-name>
 <count>73</count>
 </packet-information>
 <adspec>received MTU 1500 </adspec>
 <packet-information heading=" PATH">
 <next-hop>localclient</next-hop>
 </packet-information>
 <packet-information heading=" RESV">
 <previous-hop>localclient</previous-hop>
 </packet-information>
 <record-route heading=" Record route: ">
 <address>10.1.1.2</address>
 <self/>
 </record-route>

 72 Day One: Using JSNAP to Automate Network Verifications

 </rsvp-session>
 <display-count>1</display-count>
 <up-count>1</up-count>
 <down-count>0</down-count>
 </rsvp-session-data>
 <rsvp-session-data>
 <session-type>Transit</session-type>
 <count>0</count>
 <display-count>0</display-count>
 <up-count>0</up-count>
 <down-count>0</down-count>
 </rsvp-session-data>
</jppc:section>

The following XPaths can be identified by analyzing the first output:

Command: show mpls interface
/mpls-interface
/mpls-interface/mpls-interface-state

The ID identified for this XML output is interface-name.

The first XML output is very simple, and the JSNAP operators to be
used to analyze it are: no-diff, list-not-less, and list-not-more.

The second output of the MPLS verifications, the show mpls lsp
extensive outputs, however, are a bit more complex. If you look at the
XML elements boldfaced, you will find that their analysis can be done
in the same way all other previous analyses have been done throughout
this book. The following Xpaths can be identified:

Command: show mpls lsp extensive
/rsvp-session-data
/rsvp-session-data/session-type
/rsvp-session-data/count
/rsvp-session-data/display-count
/rsvp-session-data/up-count
/rsvp-session-data/down-count
/rsvp-session-data/rsvp-session
/rsvp-session-data/rsvp-session/mpls-lsp
/rsvp-session-data/rsvp-session/mpls-lsp/destination-address
/rsvp-session-data/rsvp-session/mpls-lsp/source-address
/rsvp-session-data/rsvp-session/mpls-lsp/name
/rsvp-session-data/rsvp-session/mpls-lsp/lsp-description
/rsvp-session-data/rsvp-session/mpls-lsp/active-path
/rsvp-session-data/rsvp-session/mpls-lsp/mpls-lsp-path
/rsvp-session-data/rsvp-session/mpls-lsp/mpls-lsp-path/title
/rsvp-session-data/rsvp-session/mpls-lsp/mpls-lsp-path/name
/rsvp-session-data/rsvp-session/mpls-lsp/mpls-lsp-path/path-active
/rsvp-session-data/rsvp-session/mpls-lsp/mpls-lsp-path/path-state

The IDs identified for these XPaths are session-type and name. It’s
important to note the role the session-type ID is playing as there are
three types of MPLS LSPs: ingress, egress, and transit.

 Chapter 3: Developing Automated Network Verifications 73

After the identification of the XPaths and their IDs, it’s time to develop
the JSNAP configuration file for the MPLS network verifications.
Here’s the completed configuration file for the JSNAP tests.

do {
 check_show_mpls_interface;
 check_show_mpls_lsp_extensive;
}

check_show_mpls_interface {
 command show mpls interface;
 iterate mpls-interface {
 id interface-name;
 no-diff interface-name {
 info "Checking if there are changes in the name of the MPLS interfaces
...";
 err " ERROR: the interface %s has changed its name from %s to %s.", $PRE/
interface-name, $POST/interface-name;
 }
 no-diff mpls-interface-state {
 info "Checking the MPLS interface state ...";
 err " ERROR: the interface %s has changed its state from %s to %s.",
$ID.1, $PRE/mpls-interface-state, $POST/mpls-interface-state;
 }
 list-not-less interface-name {
 info "Checking for missing MPLS interfaces ...";
 err " ERROR: the interface %s has gone missing.", $ID.1;
 }
 list-not-more interface-name {
 info "Checking for new MPLS interfaces ...";
 err " ERROR: the interface %s was not present before.", $ID.1;
 }
 }
}

check_show_mpls_lsp_extensive {
 command show mpls lsp extensive;
 iterate rsvp-session-data/rsvp-session/mpls-lsp {
 id ../../session-type;
 id name;
 no-diff destination-address {
 info "Checking if the LSP has changed its destination address ...";
 err " ERROR: the %s LSP %s has changed its destination address from %s to
%s.", $ID.1, $ID.2, $PRE/destination-address, $POST/destination-address;
 }
 no-diff source-address {
 info "Checking if the LSP has changed its source address ...";
 err " ERROR: the %s LSP %s has changed its source address from %s to %s.",
$ID.1, $ID.2, $PRE/source-address, $POST/source-address;
 }
 no-diff lsp-state {
 info "Checking if the LSP state has changed ...";
 err " ERROR: the %s LSP %s has changed its state from %s to %s.", $ID.1,
$ID.2, $PRE/lsp-state, $POST/lsp-state;

 74 Day One: Using JSNAP to Automate Network Verifications

 }
 no-diff name {
 info "Checking if the LSP name has changed ...";
 err " ERROR: the %s LSP %s has changed its name from %s to %s.", $ID.1,
$ID.2, $PRE/name, $POST/name;
 }
 list-not-less name {
 info "Checking for missing LSPs ...";
 err " ERROR: the %s LSP %s has gone missing.", $ID.1, $ID.2;
 }
 list-not-more name {
 info "Checking for new LSPs ...";
 err " ERROR: the %s LSP %s was not present before.", $ID.1, $ID.2;
 }
 contains active-path, "(primary)" {
 info "Checking if the PRIMARY path is the active path for the LSP ...";
 err " ERROR: the %s LSP %s is not running on its PRIMARY path. It is
currently running on %s.", $ID.1, $ID.2, $POST/active-path;
 }
 }
 iterate rsvp-session-data {
 id session-type;
 no-diff count {
 info "Checking the number of LSPs ...";
 err " ERROR: the number of %s LSPs has changed from %s to %s.", $ID.1,
$PRE/count, $POST/count;
 }
 no-diff up-count {
 info "Checking the number of LSP in UP state ...";
 err " ERROR: the number of %s LSPs in UP state has changed from %s to %s.",
$ID.1, $PRE/up-count, $POST/up-count;
 }
 no-diff down-count {
 info "Checking the number of LSP in DOWN state ...";
 err " ERROR: the number of %s LSPs in DOWN state has changed from %s to
%s.", $ID.1, $PRE/down-count, $POST/down-count;
 }
 }
}

That completes the JSNAP configuration file for the MPLS network
verifications, and ends this chapter.

In this chapter, you not only learned a methodology to develop your
own JSNAP tests, but you have learned how to use the majority of the
JSNAP test operators.

If you have tested each of the JSNAP files produced in this chapter, and
noticed few errors here and there, don’t worry, because they are
intentional and they will be covered in Chapter 4.

In the previous chapter, you were guided through the development
of a JSNAP configuration file. You learned a simple methodology
to help you identify the tests you needed and how to write a
JSNAP configuration file for those tests.

In this chapter, you will gain from lessons learned from the
author’s experience using JSNAP for daily activities. These lessons
can be useful for you because they can help you reduce the time
you spend developing the configuration file.

Tip #1

The first tip is related to how JSNAP modifies the XML outputs
collected from the router. If you remember, this has been ex-
plained in detail at the beginning of Chapter 3. In summary,
JSNAP removes the first XML element of the output and replaces
it with JSNAP’s XML header. This is crucial information because
it affects the XPaths you are developing for each test. Therefore,
the tip is to create a simple JSNAP configuration file containing
only the commands (not JSNAP tests) in order to have sample
outputs to start with the configuration file development.

As an example for this tip, the following is a JSNAP configuration
file containing all the commands used in this book:

do {
 check_bgp_summary;
 check_show_chassis_hardware;
 check_show_chassis_fpc;
 check_show_chassis_fpc_pic_status;

Chapter 4

Tips and Tricks

 76 Day One: Using JSNAP to Automate Network Verifications

 check_show_isis_interface;
 check_show_isis_adjacency;
 check_show_interfaces_terse;
 check_show_mpls_interface;
 check_show_mpls_lsp_extensive;
 check_show_rsvp_sessions;
 check_show_rsvp_interface;
}

check_bgp_summary {
 command show bgp summary;
}

check_show_chassis_hardware {
 command show chassis hardware;
}

check_show_chassis_fpc {
 command show chassis fpc;
}

check_show_chassis_fpc_pic_status {
 command show chassis fpc pic-status;
}

check_show_isis_interface {
 command show isis interface;
}

check_show_isis_adjacency {
 command show isis adjacency;
}

check_show_interfaces_terse {
 command show interfaces terse;
}

check_show_mpls_interface {
 command show mpls interface;
}

check_show_mpls_lsp_extensive {
 command show mpls lsp extensive;
}

check_show_rsvp_sessions {
 command show rsvp session;
}

check_show_rsvp_interface {
 command show rsvp interface;
}

This may sound trivial for users who are familiar with JSNAP and
XML, but it will surely help those who are new to both.

 Chapter 4: Tips and Tricks 77

TRICK #1

As pointed out in Chapter 3, during the development of the configura-
tion file for the IGP and Chassis verifications, a few tests in the configu-
ration will fail if you use the configuration file developed in Chapter 3.
Let’s get to the bottom of that problem.

Here is the verification of the two JSNAP snapshots: chassis_before
and chassis_after:

dmontagner@querencia:~/jsnap$ jsnap --check chassis_before,chassis_after -t kenny-au
-l juniper chassis.conf
!!!
>>>
>>> TARGET: kenny-au
>>>
!!!

CHECKING SECTION: check_show_chassis_hardware

+ TEST PASSED: "Checking chassis modules names ..."
- TEST FAILED: "Checking chassis module version ..."

 ERROR: the version of the module FPC 0 has changed from to .

 ERROR: the version of the module FPC 1 has changed from to .

 ERROR: the version of the module Fan Tray has changed from to .

- TEST FAILED: "Checking chassis module part-number ..."

 ERROR: the part-number of module FPC 0 has changed from to .

 ERROR: the part-number of module FPC 1 has changed from to .

 ERROR: the part-number of module Fan Tray has changed from to .

- TEST FAILED: "Checking chassis module serial-number ..."

 ERROR: the serial-number of module FPC 0 has changed from to .

 ERROR: the serial-number of module FPC 1 has changed from to .

 ERROR: the serial-number of module Fan Tray has changed from to .

+ TEST PASSED: "Checking chassis module description ..."
- TEST FAILED: "Checking chassis module model-number ..."

 78 Day One: Using JSNAP to Automate Network Verifications

 ERROR: the model-number of module Display has changed from to .

 ERROR: the model-number of module FPC 0 has changed from to .

 ERROR: the model-number of module FPC 1 has changed from to .

+ TEST PASSED: "Checking for missing modules ..."
+ TEST PASSED: "Checking for new modules ..."
+ TEST PASSED: "Checking chassis sub-modules names ..."
+ TEST PASSED: "Checking chassis sub-module version ..."
+ TEST PASSED: "Checking chassis sub-module part-number ..."
+ TEST PASSED: "Checking chassis sub-module serial-number ..."
+ TEST PASSED: "Checking chassis sub-module description ..."
+ TEST PASSED: "Checking chassis sub-module model-number ..."
+ TEST PASSED: "Checking for missing sub-modules ..."
+ TEST PASSED: "Checking for new sub-modules ..."

CHECKING SECTION: check_show_chassis_fpc

+ TEST PASSED: "Checking FPC state ..."
+ TEST PASSED: "Checking for missing FPCs ..."
+ TEST PASSED: "Checking for new FPCs ..."
+ TEST PASSED: "Checking if the temperature of the FPCs is below 55-Celsius degrees
(131-Farenheit)."
+ TEST PASSED: "Checking if the CPU utilisation of the FPCs is below 70%."
+ TEST PASSED: "Checking if the memory' size of the FPCs remains unchanged."
+ TEST PASSED: "Checking if the memory heap utilisation of the FPCs is within the range
of 20% ~ 70%."
+ TEST PASSED: "Checking if the memory heap utilisation of the FPCs has changed more
than 15%."
+ TEST PASSED: "Checking if the memory buffer utilisation of the FPCs is within the
range of 20% ~ 70%."
+ TEST PASSED: "Checking if the memory buffer utilisation of the FPCs has changed more
than 15%."

CHECKING SECTION: check_show_chassis_fpc_pic_status

+ TEST PASSED: "Checking the PIC types ..."
+ TEST PASSED: "Checking the PIC state ..."
+ TEST PASSED: "Checking for missing PICs ..."
+ TEST PASSED: "Checking for new PICs ..."
dmontagner@querencia:~/jsnap$

Before continuing, let’s note that these outputs are based on a M10
router, so what you see failing in these tests may not fail in other
routers (for eample, the MX Series or T Series).

There are four tests that have failed: module version, module part-
number, module serial-number, and module model-number. Inspect-
ing the output you can see that the error message shows the values of
the two snapshots for all verifications that failed as empty. You may
say to yourself: Empty before and empty after is exactly the same

 Chapter 4: Tips and Tricks 79

thing, so it shouldn’t fail. That’s correct. But in order to understand
what is happening here, let’s review the no-diff JSNAP Test Operators
documentation available at http://www.juniper.net/techpubs/en_US/
junos-snapshot1.0/topics/reference/scripting/automation-junos-snap-
shot-operator-no-diff.html.

The description of the test operator says: “Junos Snapshot Administra-
tor test operator compares specified data elements that are present in
both the first and second snapshot collections and verifies that the
value is the same.” In other words, the XPaths being compared using
the no-diff operator must exist in both snapshots. So, how can you
avoid this type of error?

Starting with JSNAP 1.0.5, there are three new test operators: no-
diff-in, is-lt-in, and is-gt-in. The in suffix in the name of these
operators stands for ignore null. These new operators will not fail the
tests if both XPaths do not exist in both snapshots. The reason for
creating new operators instead of modifying the behavior of the
existing ones is to preserve the original behavior of the operators and
to avoid impact on systems that are using JSNAP today.

Replacing the no-diff test operator with no-diff-in for those four
tests that have failed will solve the problem and it will still check those
four XPaths when they are present. The same applies for tests using
is-lt and is-gt. Moreover, the tests executed over the snapshots of
show isis interface may fail for the same reason when testing the
XPath isis-interface-state-one and isis-interface-state-two,
depending on your ISIS configuration.

TIP #2

This next tip is definitely not documented anywhere in terms of using it
as presented here. It relies on the debug capabilities provided by juise
and requires a bit of SLAX knowledge, so apologies in advance in case
this tip gets too geeky.

If you’re having some difficulties in finding the correct XPaths for your
first JSNAP configuration files, and if you have a bit of programming
knowledge, it will be easy for you.

NOTE For the sake of demonstration, let’s assume the no-diff-in operator
does not exist and you want to figure out why the chassis verifications
are failing.

First, you have to instruct juise to drop into the debugger as you invoke
JSNAP. This is done by setting an environmental variable named JDB
in your shell with the value -d. The following shows you how to use the
juise debugger to troubleshoot JSNAP:

http://www.juniper.net/techpubs/en_US/junos-snapshot1.0/topics/reference/scripting/automation-junos-snapshot-operator-no-diff.html
http://www.juniper.net/techpubs/en_US/junos-snapshot1.0/topics/reference/scripting/automation-junos-snapshot-operator-no-diff.html
http://www.juniper.net/techpubs/en_US/junos-snapshot1.0/topics/reference/scripting/automation-junos-snapshot-operator-no-diff.html

 80 Day One: Using JSNAP to Automate Network Verifications

dmontagner@querencia:~/jsnap$ export JDB=-d
dmontagner@querencia:~/jsnap$ echo $JDB
-d

dmontagner@querencia:~/jsnap$ jsnap --check chassis_before,chassis_after -t kenny-au
-l juniper chassis.conf
sdb: The SLAX Debugger (version 0.12.3)
Type 'help' for help
(sdb)

Now, a bit of explanation about the JSNAP source code. All JSNAP
operators are defined in the jppc-tests.slax source file. Therefore,
any type of debug to locate problems related to XPaths used in the
configuration file must be done at this source file. Here’s an example of
the execution flow (a.k.a. stack trace) for the no-diff operator:

(sdb) w
#0 match / at jppc-exec.slax:67
#1 template do_check_target()
#2 template do_check_cmd()
#3 template do_check_select()
#4 template do_cmd_test()
 $cmd-ns = [node-set] (1) <check_show_chassis_hardware>
 $check-ns = [node-set] (1) <iterate>
 $test-ns = [node-set] (1) <no-diff>
 $pre-ns = [node-set] (8) <chassis-module>
 $pre-iddb = [node-set] (8) <id>
 $post-ns = [node-set] (8) <chassis-module>
 $post-iddb = [node-set] (8) <id>
(sdb)

The no-diff operator starts in line 132 of the jppc-tests.slax source
file (JSNAP 1.0.5 version). To list the source code from inside the
debugger, use the command l <NUMBER>. Here’s a snapshot of the
no-diff operator source code viewed from the debugger’s CLI:

(sdb) l 132
jppc-tests.slax:132: /* ################################## */
jppc-tests.slax:133: /* ################################## */
jppc-tests.slax:134: /* */
jppc-tests.slax:135: /* no-diff */
jppc-tests.slax:136: /* */
jppc-tests.slax:137: /* ################################## */
jppc-tests.slax:138: /* ################################## */
jppc-tests.slax:139:
jppc-tests.slax:140: <func:function name="jppc:EXEC_TEST_no-diff">
jppc-tests.slax:141: {
jppc-tests.slax:142: param $cmd-ns; /* entire section block */
jppc-tests.slax:143: param $check-ns; /* this collection within section */
(sdb) l 143
jppc-tests.slax:143: param $check-ns; /* this collection within section */
jppc-tests.slax:144: param $test-ns; /* this test within dataset */
jppc-tests.slax:145: param $pre-ns; /* precheck node-set for collection */
jppc-tests.slax:146: param $pre-iddb; /* precheck id database */

 Chapter 4: Tips and Tricks 81

jppc-tests.slax:147: param $post-ns; /* postcheck node-set for collection */
jppc-tests.slax:148: param $post-iddb; /* postcheck id database */
jppc-tests.slax:149:
jppc-tests.slax:150: if($test-ns/count) {
jppc-tests.slax:151: /* --- */
jppc-tests.slax:152: /* checking to see if the count of the */
jppc-tests.slax:153: /* element(s) has changed ... this really is */
jppc-tests.slax:154: /* only used with $check-ns/listof */
(sdb)

The next step is setting a breakpoint at line 188 in the jppc-tests.slax
source file. This line contains the following expression:

if(dyn:evaluate($boolexp) == false()) {

This expression is responsible for executing the no-diff test you have
defined in the configuration file. Whenever the execution reaches this
line, it will stop allowing you to inspect the parameters being used in
the test. To set a breakpoint, you have to use the command below:

(sdb) b jppc-tests.slax:188
Breakpoint 1 at file /usr/jawa/jsnap/jppc-tests.slax, line 188
(sdb)

Once the breakpoint is defined, you have to instruct the debugger to
continue the execution of the program. This is done by entering the
command c, as presented here:

(sdb) c
!!
>>>
>>> TARGET: kenny-au
>>>
!!
--
CHECKING SECTION: check_show_chassis_hardware
--
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb)

As you can see in the output, once the execution flow reached the line
188, it suspended the execution yet kept all memory and program
states. From this point you can start the inspection of the parameters,
but first a brief explanation of the variables:

 � $pre_ns: Contains the XML nodeset from the pre-snapshot that
will be used to compare against the POST snapshot.

 � $post_ns: Contains the XML nodeset from the post-snapshot
that will be used to compare against the PRE snapshot.

 � $xpath: The XML XPath inside the nodeset that will be checked
in both PRE and POST snapshot.

 82 Day One: Using JSNAP to Automate Network Verifications

 � $boolexp: The boolean expression that will be evaluated to
execute the test.

Now, let’s inspect the variables:
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Midplane</name>
<version>REV 03</version>
<part-number>710-001950</part-number>
<serial-number>HF0237</serial-number>
<description>M10 Backplane</description>
<model-number>CHAS-MP-M10-S</model-number>
</chassis-module>

(sdb) p $post_ns
[node-set] (1)
<chassis-module>
<name>Midplane</name>
<version>REV 03</version>
<part-number>710-001950</part-number>
<serial-number>HF0237</serial-number>
<description>M10 Backplane</description>
<model-number>CHAS-MP-M10-S</model-number>
</chassis-module>

(sdb) p $xpath
[string] "/name"

(sdb) p $boolexp
[string] "boolean($pre_ns/name = $post_ns/name)"

(sdb)

Let’s explain what’s going on in this inspection. The program is
executing the comparison of the chassis-module Midplane. The exact
part of the nodeset that will be compared can be identified by the
$xpath variable, which in this case contains the value of the element /
name. The value of this variable is Midplane in both pre- and post-snap-
shots, and our test was configured to detect if they were different. The
test that will be executed can be seen in the $boolexp (before its
evaluation). The evaluation of the variable $boolexp will produce the
following logical expression:

boolean(“Midplane” = “Midplane”)

If the result of this expression is true, then our JSNAP test will not fail.
If the result is false, then the JSNAP test will fail and present the error
message defined in the configuration file. This shows you how to check
what the value of the evaluation of this logical expression will be:

(sdb) p dyn:evaluate($boolexp)
[boolean] true

(sdb)

 Chapter 4: Tips and Tricks 83

As you can see, the result was true, exactly as expected. Now you may
be asking: Fine, but I wanted to check the failed tests, i.e., the version
test against the FPC component.

Since you already have the breakpoint configured, you just need to
continue the execution of the program until it reaches the test and the
component it is looking for: no-diff version test executed against the
FPC component. To achieve this, you need to use the command c in the
debugger’s CLI and each time the execution is suspended, you will
inspect the variable $pre_ns. Here’s how to execute this procedure:

(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Midplane</name>
<version>REV 03</version>
<part-number>710-001950</part-number>
<serial-number>HF0237</serial-number>
<description>M10 Backplane</description>
<model-number>CHAS-MP-M10-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Power Supply A</name>
<version>Rev 04</version>
<part-number>740-002497</part-number>
<serial-number>LL13962</serial-number>
<description>AC Power Supply</description>
<model-number>PWR-M10-M5-AC-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Display</name>
<version>REV 04</version>
<part-number>710-001995</part-number>
<serial-number>HE6561</serial-number>
<description>M10 Display Board</description>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>

 84 Day One: Using JSNAP to Automate Network Verifications

<name>Routing Engine</name>
<version>REV 08</version>
<part-number>740-003877</part-number>
<serial-number>9000006124</serial-number>
<description>RE-2.0</description>
<model-number>RE-333-256-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>FEB</name>
<version>REV 07</version>
<part-number>710-003310</part-number>
<serial-number>HH4020</serial-number>
<description>E-FEB</description>
<model-number>FEB-M10-E-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>FPC 0</name>
<description>E-FPC</description>
<chassis-sub-module>
<name>PIC 0</name>
<version>REV 02</version>
<part-number>750-003072</part-number>
<serial-number>HC4419</serial-number>
<description>1x OC-48 SONET, SMSR</description>
<model-number>PE-1OC48-SON-SMSR</model-number>
</chassis-sub-module>
</chassis-module>

(sdb)

Once you reach this point, you now have to continue the execution line
by line. This is done entering the command n in the debugger’s CLI:

(sdb) n
jppc-tests.slax:174: var $diffs := { for-each($common_iddb) { var $_id = .;
(sdb) n
jppc-tests.slax:181: var $pre_ns = jppc:id-to-xml($pre-ns, $_id);
(sdb) n
jppc-utils.slax:188: var $dyn_xpath = { for-each($id-ns/id) {

<.... omitted for brevity>

(sdb) n
jppc-utils.slax:194: <func:result select="$dynobj">;

 Chapter 4: Tips and Tricks 85

(sdb) n
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $boolexp
[string] "boolean($pre_ns/version = $post_ns/version)"

<... omitted for brevity ...>

(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Midplane</name>
<version>REV 03</version>
<part-number>710-001950</part-number>
<serial-number>HF0237</serial-number>
<description>M10 Backplane</description>
<model-number>CHAS-MP-M10-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Power Supply A</name>
<version>Rev 04</version>
<part-number>740-002497</part-number>
<serial-number>LL13962</serial-number>
<description>AC Power Supply</description>
<model-number>PWR-M10-M5-AC-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Display</name>
<version>REV 04</version>
<part-number>710-001995</part-number>
<serial-number>HE6561</serial-number>
<description>M10 Display Board</description>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>Routing Engine</name>
<version>REV 08</version>
<part-number>740-003877</part-number>

 86 Day One: Using JSNAP to Automate Network Verifications

<serial-number>9000006124</serial-number>
<description>RE-2.0</description>
<model-number>RE-333-256-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>FEB</name>
<version>REV 07</version>
<part-number>710-003310</part-number>
<serial-number>HH4020</serial-number>
<description>E-FEB</description>
<model-number>FEB-M10-E-S</model-number>
</chassis-module>

(sdb) c
Reached breakpoint 1, at /usr/jawa/jsnap/jppc-tests.slax:188
jppc-tests.slax:188: if(dyn:evaluate($boolexp) == false()) {
(sdb) p $pre_ns
[node-set] (1)
<chassis-module>
<name>FPC 0</name>
<description>E-FPC</description>
<chassis-sub-module>
<name>PIC 0</name>
<version>REV 02</version>
<part-number>750-003072</part-number>
<serial-number>HC4419</serial-number>
<description>1x OC-48 SONET, SMSR</description>
<model-number>PE-1OC48-SON-SMSR</model-number>
</chassis-sub-module>
</chassis-module>

(sdb) p $post_ns
[node-set] (1)
<chassis-module>
<name>FPC 0</name>
<description>E-FPC</description>
<chassis-sub-module>
<name>PIC 0</name>
<version>REV 02</version>
<part-number>750-003072</part-number>
<serial-number>HC4419</serial-number>
<description>1x OC-48 SONET, SMSR</description>
<model-number>PE-1OC48-SON-SMSR</model-number>
</chassis-sub-module>
</chassis-module>

(sdb) p $xpath
[string] "/version"

 Chapter 4: Tips and Tricks 87

(sdb) p $boolexp
[string] "boolean($pre_ns/version = $post_ns/version)"

(sdb) p dyn:evaluate($boolexp)
[boolean] false

(sdb) p $pre_ns/version
[node-set] (0)

(sdb) p $post_ns/version
[node-set] (0)

(sdb)

The boldfaced output shows the reason why the test is failing: both
$pre_ns/version and $post_ns/version are NULL. Remember that
the definition of the no-diff test operator requires the XPath to be
present in both pre- and post-snapshots.

The procedure demonstrated here may seem complicated for someone
who does not have programming knowledge, but if you manage to
understand it, you will quickly find the reasons why some of your
JSNAP tests are not working as you expect. Based on experience, you
will only need this tip a few times when dealing with complex Junos
XML structures. Most of the time, you won’t need it.

TRICK #2

In the section on network verification for the router’s Interfaces
presented in Chapter 3, the scope of the show interface terse com-
mand was limited to list only GE interfaces. The reason for this is that
the router has some special interfaces that are used internally by Junos
that may or may not have all the elements that the normal interfaces
(ge, xe, lo, et, so, etc.) have. Sometimes these special interfaces will not
have the family address, address, or logical interface elements depend-
ing on what you have configured on your router, and the hardware
type in use.

The best way to go around this problem is limiting the scope of the
show interfaces command, guaranteeing that you have all the ele-
ments on the XML snapshots of this section. Therefore, no test should
fail by the absence of an XPath that is being tested. Here’s an example
of an interface that can create problems if it is included in our interface
verifications:

juniper@PE1> show interfaces pimd
Physical interface: pimd, Enabled, Physical link is Up
 Interface index: 26, SNMP ifIndex: 11
 Type: PIMD, Link-level type: PIM-Decapsulator, MTU: Unlimited, Speed: Unlimited
 Device flags : Present Running
 Input packets : 0

 88 Day One: Using JSNAP to Automate Network Verifications

 Output packets: 0

juniper@PE1>

juniper@PE1> show interfaces pimd | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.3I0/junos">
 <interface-information xmlns="http://xml.juniper.net/junos/12.3I0/junos-interface"
junos:style="normal">
 <physical-interface>
 <name>pimd</name>
 <admin-status junos:format="Enabled">up</admin-status>
 <oper-status>up</oper-status>
 <local-index>26</local-index>
 <snmp-index>11</snmp-index>
 <if-type>PIMD</if-type>
 <link-level-type>PIM-Decapsulator</link-level-type>
 <mtu>Unlimited</mtu>
 <speed>Unlimited</speed>

 <if-device-flags>
 <ifdf-present/>
 <ifdf-running/>
 </if-device-flags>
 <if-config-flags>
 </if-config-flags>
 <traffic-statistics junos:style="brief">
 <input-packets>0</input-packets>
 <output-packets>0</output-packets>
 </traffic-statistics>
 </physical-interface>
 </interface-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

As you can see, there are many XPath elements being checked under
the interface verifications that do not appear in the pimd interface. The
situation can be different if you are using multicast in your network.
And that is why the identification of the tests done in Chapter 3 is
something that must be done prior to developing the JSNAP configura-
tion file – in order to avoid surprises later.

TIP #3

This tip is simple but it is something that administrators ask how to do.
It relates to invoking JSNAP to collect snapshots in multiple routers.
JSNAP requires one CLI command to collect a snapshot from a router.
So how do you collect the same snapshot from different routers?

Here is a simplified version of how to run JSNAP across multiple
routers with one single command line:

 Chapter 4: Tips and Tricks 89

#!/bin/bash
ROUTERS=`cat routers.txt`
SNAP=$1

if ["$SNAP" = ""]; then
 echo ""
 echo " ERROR: you must provide a snapshot name !!!"
 echo ""
 echo " Syntax:"
 echo ""
 echo ""
 echo "./collect_snapshots.sh <SNAPSHOT_NAME>"
 echo ""
else

 for router in $ROUTERS; do
 echo "Collecting snapshot '$1' for router $router"
 jsnap --snap $1 -l juniper -p Clouds -t $router mw_checks.conf
 done
fi

In this bash script, the list of routers that will be used to collect the
snapshot is located inside the routers.txt file. This file is a text file that
contains one router per line. (If you use names instead of IP addresses,
make sure the names can be resolved.)

The result of the execution of the script is showed here:

dmontagner@querencia:~/jsnap$./collect_snapshots.sh before
Collecting snapshot 'before' for router ce10
Connecting to juniper@ce10 ...
The authenticity of host 'ce10 (10.233.255.196)' can't be established.
ECDSA key fingerprint is 47:d0:79:ec:57:90:ae:39:a6:51:b5:68:bc:a5:f9:56.
Are you sure you want to continue connecting (yes/no)?yes
CONNECTED.
EXEC: 'show bgp summary' ...
SAVE: 'ce10__check_bgp_summary__before.xml' ...
Collecting snapshot 'before' for router ce11
Connecting to juniper@ce11 ...
The authenticity of host 'ce11 (10.233.255.192)' can't be established.
ECDSA key fingerprint is 91:e7:e7:93:71:c0:21:24:96:db:30:93:05:35:36:9d.
Are you sure you want to continue connecting (yes/no)?yes
CONNECTED.
EXEC: 'show bgp summary' ...
SAVE: 'ce11__check_bgp_summary__before.xml' ...
Collecting snapshot 'before' for router ce20
Connecting to juniper@ce20 ...
The authenticity of host 'ce20 (10.233.255.195)' can't be established.
ECDSA key fingerprint is d7:ca:d2:8c:f6:33:9d:71:a3:c9:2b:c5:a4:4d:a5:11.
Are you sure you want to continue connecting (yes/no)?yes
CONNECTED.
EXEC: 'show bgp summary' ...
SAVE: 'ce20__check_bgp_summary__before.xml' ...
Collecting snapshot 'before' for router ce21

 90 Day One: Using JSNAP to Automate Network Verifications

Connecting to juniper@ce21 ...
The authenticity of host 'ce21 (10.233.255.191)' can't be established.
ECDSA key fingerprint is 59:e1:ca:69:52:7b:9c:f2:b1:0b:a4:89:72:c6:5c:6c.
Are you sure you want to continue connecting (yes/no)?yes
CONNECTED.
EXEC: 'show bgp summary' ...
SAVE: 'ce21__check_bgp_summary__before.xml' ...
Collecting snapshot 'before' for router pe1
Connecting to juniper@pe1 ...
The authenticity of host 'pe1 (10.233.255.190)' can't be established.
ECDSA key fingerprint is 7d:c0:35:6c:f1:5f:54:51:c6:8e:5b:76:a2:61:5a:56.
Are you sure you want to continue connecting (yes/no)?yes
CONNECTED.
EXEC: 'show bgp summary' ...
SAVE: 'pe1__check_bgp_summary__before.xml' ...
Collecting snapshot 'before' for router pe2
Connecting to juniper@pe2 ...
The authenticity of host 'pe2 (10.233.255.189)' can't be established.
ECDSA key fingerprint is 6a:32:76:a4:27:b3:ae:6f:01:a4:7f:28:93:fc:6a:e9.
Are you sure you want to continue connecting (yes/no)?yes
CONNECTED.
EXEC: 'show bgp summary' ...
SAVE: 'pe2__check_bgp_summary__before.xml' ...
dmontagner@querencia:~/jsnap$

This script can be easily modified to support multiple routers, in case
you need to use different JSNAP configuration files for different groups
of routers. With another simple modification, the same script can be
used to execute the snapshot collection as well as the comparison.
Since the focus here is not bash scripting, you are charge of any
improvements.

One thing to note, however, are the messages about the authenticity of
the hosts. That is the standard SSH message displayed every time you
want to connect to a device via SSH and your SSH known_hosts file
does not contain an entry for the device. JSNAP connects to the devices
via NETCONF over SSH, so it relies on the SSH client of your opera-
tional system. Once the known_hosts file has an entry for the device, it
won’t ask you for confirmation anymore.

There is one way to modify this behavior by instructing the SSH client
to automatically add the host entry in the known_hosts file. To achieve
this, you need to set the parameter in /etc/ssh/ssh_config to no as
shown here:

StrictHostKeyChecking no

NOTE Do be careful changing this parameter becasue it can affect all SSH
sessions initiated in the host where you made the change. If you use the
SSH client from this host to access non-trusted devices, you should
keep this parameter set to yes.

 Chapter 4: Tips and Tricks 91

Tip #4

This tip is related to XML attributes. If you are not familiar with XML
and tried to answer the exercise proposed in Chapter 3, you probably
had some difficulties trying to figure out how to check if the tempera-
ture of the routing engine is higher than 55 °C. The problem of analyz-
ing the routing engine temperature is related to the way the informa-
tion presented. Let’s check the relevant XML output:

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.4R8/junos">
 <route-engine-information xmlns="http://xml.juniper.net/junos/10.4R8/junos-
chassis">
 <route-engine>
 <slot>0</slot>
 <mastership-state>master</mastership-state>
 <mastership-priority>master</mastership-priority>
 <status>OK</status>
 <temperature junos:celsius="32">32 degrees C / 89 degrees F</temperature>
 <cpu-temperature junos:celsius="30">30 degrees C / 86 degrees F</cpu-
temperature>
 <memory-dram-size>2048</memory-dram-size>

<... omitted for brevity ...>

If you use the XPath /route-engine/temperature, the value used for
comparison will be “32 degrees C / 89 degrees F” rather than just
“32”. Therefore, we won’t be able to use is-lt or is-gt operators.

The problem here is that the number is actually presented using a XML
attribute. The Xpath /route-engine/temperature will access the element
value. To access the value of the element’s attribute, you need the
following XPath:

/route-engine/temperature/@junos:celsius

NOTE The JSNAP configuration file to check if the temperature is higher than
55 °C can be found in Appendix A of this book.

Tip #5

The last item to present is related to XML. When developing the
JSNAP configuration file for the BGP verifications in Chapter 3, the
iteration to analyze the XPaths peer-count, peer-groupt-count and
active-count uses an XPath not seen before in this book. Here’s a
snippet of the JSNAP BGP configuration file:

check_bgp_summary {
 command show bgp summary;
 iterate . {
 no-diff group-count {
 info "Checking the number of BGP groups ...";

 92 Day One: Using JSNAP to Automate Network Verifications

 err " ERROR: the number of BGP groups has changed from %s to %s.", $PRE/
group-count, $POST/group-count;
 }
 no-diff peer-count {
 info "Checking the number of BGP peers ...";
 err " ERROR: the number of BGP peers has changed from %s to %s.", $PRE/
peer-count, $POST/peer-count;
 }
 is-gt peer-count, 0 {
 info "Checking if the BGP configuration has at least 1 BGP peer configured
...";
 err " ERROR: the BGP configuration does not have any peer configured!";
 }
 no-diff down-peer-count {
 info "Checking the number of BGP peers down ...";
 err " ERROR: the number of BGP peers down has changed from %s to %s.",
$PRE/down-peer-count, $POST/down-peer-count;
 }
 }

<... omitted for brevity ...>

The XPath that is being iterated is “.”. Before more explanation, let’s
first look in the part of the XML output that this XPath will be analyz-
ing:

<?xml version="1.0"?>
<jppc:section xmlns:jppc="http://xml.juniper.net/jppc" name="check_bgp_summary"
mode="before" conf="network_verifications.conf" target="pe1" ts="2014-03-
11T06:28:47+11:00">
 <group-count>3</group-count>
 <peer-count>3</peer-count>
 <down-peer-count>0</down-peer-count>
 <bgp-rib xmlns:junos="http://xml.juniper.net/junos/*/junos" junos:style="brief">
<name>inet.0</name>
<total-prefix-count>0</total-prefix-count>

<... omitted for brevity ...>

The representation of the XPaths for the elements group-count,
peer-count, and down-peer-count is:

./group-count

./peer-count

./down-peer-count

So the XPath that needs to be iterated to extract the values of these
XML elements is “.”.

This chapter combines all individual JSNAP files developed in
Chapter 3 into a single file. It allows the collection of all snapshots
required for network verifications tests to be in a single JSNAP
execution. The same is true for the snapshot comparison between
the pre- and post-snapshots.

MORE? See this book’s landing page on http://www.juniper.net/dayone for
.txt files of the configuration in its entirety.

The Complete JSNAP Configuration

Here’s the final and complete JSNAP configuration file for all
network verifications tests presented in this book:

do {
 check_show_isis_interface;
 check_show_isis_adjacency;
 check_show_interfaces_terse;
 check_show_chassis_hardware;
 check_show_chassis_fpc;
 check_show_chassis_fpc_pic_status;
 check_bgp_summary;
 check_show_rsvp_sessions;
 check_show_rsvp_interface;
 check_show_mpls_interface;
 check_show_mpls_lsp_extensive;
}

check_show_isis_interface {
 command show isis interface;
 iterate isis-interface {
 id ./interface-name;

Chapter 5

Putting It All Together

http://www.juniper.net/dayone%20for%20.txt
http://www.juniper.net/dayone%20for%20.txt

 94 Day One: Using JSNAP to Automate Network Verifications

 no-diff interface-name {
 info "Checking the ISIS interface names ...";
 err " ERROR: the interface %s has changed its name from %s to %s.", $ID.1,
$PRE/interface-name, $POST/interface-name;
 }
 no-diff circuit-type {
 info "Checking the ISIS circuit type ...";
 err " ERROR: the interface %s has changed its circuit type from %s to
%s.", $ID.1, $PRE/circuit-type, $POST/circuit-type;
 }
 no-diff-in isis-interface-state-one {
 info "Checking the Level 1 interface state ...";
 err " ERROR: the interface %s has changed its Level 1 interface state from
%s to %s.", $ID.1, $PRE/isis-interface-state-one, $POST/isis-interface-state-one;
 }
 no-diff-in isis-interface-state-two {
 info "Checking the Level 2 interface state ...";
 err " ERROR: the interface %s has changed its Level 2 interface state from
%s to %s.", $ID.1, $PRE/isis-interface-state-two, $POST/isis-interface-state-two;
 }
 no-diff metric-one {
 info "Checking the interface Level 1 metric ...";
 err " ERROR: the Level 1 metric for interface %s has changed from %s to
%s.", $ID.1, $PRE/metric-one, $POST/metric-one;
 }
 no-diff metric-two {
 info "Checking the interface Level 2 metric ...";
 err " ERROR: the Level 2 metric for interface %s has changed from %s to
%s.", $ID.1, $PRE/metric-two, $POST/metric-two;
 }
 list-not-less interface-name {
 info "Checking for missing ISIS interfaces ...";
 err " ERROR: the interface %s is missing.", $ID.1;
 }
 list-not-more interface-name {
 info "Checking for new ISIS interfaces ...";
 err " ERROR: the interface %s was not configured before.", $ID.1;
 }
 }
}

check_show_isis_adjacency {
 command show isis adjacency;
 iterate isis-adjacency {
 id ./interface-name;
 no-diff interface-name {
 info "Checking the ISIS interface names ...";
 err " ERROR: the interface %s has changed from %s to %s.", $ID.1, $PRE/
interface-name, $POST/interface-name;
 }
 no-diff system-name {
 info "Checking the ISIS neighbour ...";
 err " ERROR: the ISIS neighbour on interface %s has changed from %s to
%s.", $ID.1, $PRE/system-name, $POST/system-name;

 Chapter 5: Putting It All Together 95

 }
 no-diff level {
 info "Checking the Level of the ISIS adjacency ...";
 err " ERROR: the ISIS Level on interface %s has changed from % to %s.",
$ID.1, $PRE/level, $POST/level;
 }
 no-diff snpa {
 info "Checking the Subnetwork Point of Attachment (SNPA) ...";
 err " ERROR: the SNPA for interface %s has changed from %s to %s.", $ID.1,
$PRE/snpa, $POST/snpa;
 }
 list-not-less {
 info "Checking for missing ISIS adjacencies ...";
 err " ERROR: the ISIS adjacency for interface %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new ISIS adjacencies ...";
 err " ERROR: the ISIS adjacency for interface %s was not configured
before.", $ID.1;
 }
 }
}

check_show_interfaces_terse {
 command show interfaces terse;
 iterate physical-interface {
 id ./name;
 no-diff oper-status {
 info "Checking PHY operational status of interfaces ...";
 err " ERROR: the operational status for interface %s has changed
from %s to %s.", $ID.1, $PRE/oper-status, $POST/oper-status;
 }
 no-diff admin-status {
 info "Checking PHY admin status of interfaces ...";
 err " ERROR: the admin status for interface %s has changed from %s
to %s.", $ID.1, $PRE/admin-status, $POST/admin-status;
 }
 list-not-less name {
 info "Checking for missing interfaces at PHY level ...";
 err " ERROR: the interface %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new interfaces at PHY level ...";
 err " ERROR: the interface %s is new.", $ID.1;
 }
 }
 iterate physical-interface/logical-interface {
 id ./name;
 id ./address-family/address-family-name;
 id ./address-family/interface-address/ifa-local;
 no-diff oper-status {
 info "Checking LOGICAL operational status of interfaces ...";
 err " ERROR: the operational status for interface %s has changed
from %s to %s.", $ID.1, $PRE/oper-status, $POST/oper-status;

 96 Day One: Using JSNAP to Automate Network Verifications

 }
 no-diff admin-status {
 info "Checking LOGICAL admin status of interfaces ...";
 err " ERROR: the admin status of interface %s has changed from %s
to %s.", $ID.1, $PRE/admin-status, $POST/admin-status;
 }
 list-not-less {
 info "Checking for missing interfaces at LOGICAL level ...";
 err " ERROR: the interface %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new interfaces at LOGICAL level ...";
 err " ERROR: the interface %s is new.", $ID.1;
 }
 no-diff address-family/address-family-name {
 info "Checking the address family configured in the interfaces
...";
 err " ERROR: the address family for interface %s has changed from
%s to %s.", $ID.1, $PRE/address-family/address-family-name, $POST/address-family/
address-family-name;
 }
 list-not-less address-family/address-family-name {
 info "Checking for missing address family ...";
 err " ERROR: the address family %s is missing on interface %s.",
$ID.2, $ID.1;
 }
 list-not-more address-family/address-family-name {
 info "Checking for new family address ...";
 err " ERROR: the address family %s has been added to the interface
%s.", $ID.2, $ID.1;
 }
 no-diff address-family/interface-address/ifa-local {
 info "Checking the interface address configured under the interface
...";
 err " ERROR: the interface address for interface %s has changed
from %s to %s.", $ID.1, $PRE/address-family/interface-address/ifa-local, $POST/
address-family/interface-address/ifa-local;
 }
 list-not-less address-family/interface-address/ifa-local {
 info "Checking for missing interface address ...";
 err " ERROR: the interface address %s has gone missing on
interface %s.", $ID.3, $ID.1;
 }
 list-not-more address-family/interface-address/ifa-local {
 info "Checking for new interface address ...";
 err " ERROR: the interface address %s has been added to the
interface %s.", $ID.3, $ID.1;
 }
 }
}

check_show_chassis_hardware {
 command show chassis hardware;
 iterate chassis/chassis-module {

 Chapter 5: Putting It All Together 97

 id name;
 no-diff name {
 info "Checking chassis modules names ...";
 err " ERROR: the module %s has changed from %s to %s.", $ID.1, $PRE/name,
$POST/name;
 }
 no-diff version {
 info "Checking chassis module version ...";
 err " ERROR: the version of the module %s has changed from %s to %s.", $ID.1,
$PRE/version, $POST/version;
 }
 no-diff part-number {
 info "Checking chassis module part-number ...";
 err " ERROR: the part-number of module %s has changed from %s to %s.", $ID.1,
$PRE/part-number, $POST/part-number;
 }
 no-diff serial-number {
 info "Checking chassis module serial-number ...";
 err " ERROR: the serial-number of module %s has changed from %s to %s.",
$ID.1, $PRE/serial-number, $POST/serial-number;
 }
 no-diff description {
 info "Checking chassis module description ...";
 err " ERROR: the description of module %s has changed from %s to %s.", $ID.1,
$PRE/description, $POST/description;
 }
 no-diff model-number {
 info "Checking chassis module model-number ...";
 err " ERROR: the model-number of module %s has changed from %s to %s.", $ID.1,
$PRE/model-number, $POST/model-number;
 }
 list-not-less name {
 info "Checking for missing modules ...";
 err " ERROR: the module %s is missing.", $ID.1;
 }
 list-not-more name {
 info "Checking for new modules ...";
 err " ERROR: the module %s was installed.", $ID.1;
 }
 }
 iterate chassis/chassis-module/chassis-sub-module {
 id name;
 id ../name;
 no-diff name {
 info "Checking chassis sub-modules names ...";
 err " ERROR: the sub-module %s of module %s has changed from %s to %s.",
$ID.1, $ID.2, $PRE/name, $POST/name;
 }
 no-diff-in version {
 info "Checking chassis sub-module version ...";
 err " ERROR: the version of the sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/name, $POST/name;
 }
 no-diff-in part-number {

 98 Day One: Using JSNAP to Automate Network Verifications

 info "Checking chassis sub-module part-number ...";
 err " ERROR: the part-number of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/part-number, $POST/part-number;
 }
 no-diff-in serial-number {
 info "Checking chassis sub-module serial-number ...";
 err " ERROR: the serial-number of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/serial-number, $POST/serial-number;
 }
 no-diff description {
 info "Checking chassis sub-module description ...";
 err " ERROR: the description of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/description, $POST/description;
 }
 no-diff model-number {
 info "Checking chassis sub-module model-number ...";
 err " ERROR: the model-number of sub-module %s of module %s has changed
from %s to %s.", $ID.1, $ID.2, $PRE/model-number, $POST/model-number;
 }
 list-not-less name {
 info "Checking for missing sub-modules ...";
 err " ERROR: the sub-module %s of module %s is missing.", $ID.1, $ID.2;
 }
 list-not-more name {
 info "Checking for new sub-modules ...";
 err " ERROR: the sub-module %s of module %s was installed.", $ID.1, $ID.2;
 }
 }
}

check_show_chassis_fpc {
 command show chassis fpc;
 iterate fpc {
 id slot;
 no-diff state {
 info "Checking FPC state ...";
 err " ERROR: the FPC %s has changed its state from %s to %s.", $ID.1, $PRE/
state, $POST/state;
 }
 list-not-less {
 info "Checking for missing FPCs ...";
 err " ERROR: the FPC %s is missing.", $ID.1;
 }
 list-not-more {
 info "Checking for new FPCs ...";
 err " ERROR: the FPC %s was installed.", $ID.1;
 }
 is-lt temperature, 55 {
 info "Checking if the temperature of the FPCs is below 55-Celsius degrees
(131-Farenheit).";
 err " ERROR: the temperature of FPC %s is %s (before was %s) Celsius
degrees.", $ID.1, $POST/temperature, $PRE/temperature;
 }
 is-lt cpu-total, 70 {

 Chapter 5: Putting It All Together 99

 info "Checking if the CPU utilisation of the FPCs is below 70%.";
 err " ERROR: the CPU utilisation of FPC %s is %s (before was %s).", $ID.1;
$POST/cpu-total, $PRE/cpu-total;
 }
 in-range memory-heap-utilization, 20, 70 {
 info "Checking if the memory heap utilisation of the FPCs is within the
range of 20% ~ 70%.";
 err " ERROR: the memory heap utilisation of FPC %s is out-of-range (
Before = %s / After = %s).", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 delta memory-heap-utilization, 15% {
 info "Checking if the memory heap utilisation of the FPCs has changed more
than 15%.";
 err " ERROR: the memory heap utilisation of the FPC %s has changed from %s
to %s.", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 in-range memory-buffer-utilization, 20, 70 {
 info "Checking if the memory buffer utilisation of the FPCs is within the
range of 20% ~ 70%.";
 err " ERROR: the memory buffer utilisation of FPC %s is out-of-range (
Before = %s / After = %s).", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 delta memory-buffer-utilization, 15% {
 info "Checking if the memory buffer utilisation of the FPCs has changed
more than 15%.";
 err " ERROR: the memory buffer utilisation of the FPC %s has changed from
%s to %s.", $ID.1, $PRE/memory-dram-size, $POST/memory-dram-size;
 }
 }
}

check_show_chassis_fpc_pic_status {
 command show chassis fpc pic-status;
 iterate fpc/pic {
 id pic-slot;
 id ../slot;
 no-diff pic-type {
 info "Checking the PIC types ...";
 err " ERROR: the PIC type of PIC %s of FPC slot %s has changed from %s to
%s.", $ID.1, $ID.2, $PRE/pic-type, $POST/pic-type;
 }
 no-diff pic-state {
 info "Checking the PIC state ...";
 err " ERROR: the state of PIC %s of FPC slot %s has changed from %s to
%s.", $ID.1, $ID.2, $PRE/pic-state, $POST/pic-state;
 }
 list-not-less pic-slot {
 info "Checking for missing PICs ...";
 err " ERROR: the PIC %s of FPC slot %s is missing.", $ID.1, $ID.2;
 }
 list-not-more pic-slot {
 info "Checking for new PICs ...";
 err " ERROR: the PIC %s of FPC slot %s was installed.", $ID.1, $ID.2;
 }

 100 Day One: Using JSNAP to Automate Network Verifications

 }
}

check_bgp_summary {
 command show bgp summary;
 iterate . {
 no-diff group-count {
 info "Checking the number of BGP groups ...";
 err " ERROR: the number of BGP groups has changed from %s to %s.", $PRE/
group-count, $POST/group-count;
 }
 no-diff peer-count {
 info "Checking the number of BGP peers ...";
 err " ERROR: the number of BGP peers has changed from %s to %s.", $PRE/
peer-count, $POST/peer-count;
 }
 is-gt peer-count, 1 {
 info "Checking if the BGP configuration has at least 1 BGP peer configured
...";
 err " ERROR: the BGP configuration does not have any peer configured!";
 }
 no-diff down-peer-count {
 info "Checking the number of BGP peers down ...";
 err " ERROR: the number of BGP peers down has changed from %s to %s.", $PRE/
down-peer-count, $POST/down-peer-count;
 }
 }
 iterate bgp-peer {
 id peer-address;
 id peer-as;
 no-diff peer-address {
 info "Checking if the BGP peers addresses are still the same ...";
 err " ERROR: the BGP peer %s (ASN %s) has changed its address from %s to
%s.", $ID.1, $ID.2, $PRE/peer-address, $POST/peer-address;
 }
 no-diff peer-as {
 info "Checking if the BGP peers ASNs are still the same ...";
 err " ERROR: the ASN for the BGP peer %s has changed from %s to %s.", $ID.1.
$PRE/peer-asn, $POST/peer-asn;
 }
 no-diff flap-count {
 info "Checking if the BGP peer has flapped ...";
 err " ERROR: the BGP peer %s (ASN %s) has flapped.", $ID.1, $ID.2;
 }
 is-equal peer-state, "Established" {
 info "Checking if the BGP peers are in Established state ...";
 err " ERROR: the BGP peer %s (ASN %s) is not in Established state.", $ID.1,
$ID.2;
 }
 }
 iterate bgp-peer/bgp-rib {
 id name;
 id ../peer-address;
 id ../peer-as;

 Chapter 5: Putting It All Together 101

 no-diff name {
 info "Checking if the BGP RIB name has changed ...";
 err " ERROR: the RIB %s of BGP peer %s (ASN %s) has changed from %s to %s.",
$ID.1, $ID.2, $ID.3, $PRE/name, $POST/name;
 }
 list-not-less name {
 info "Checking for missing RIBs ...";
 err " ERROR: the RIB %s for the BGP peer %s (ASN %s) has gone missing.",
$ID.1, $ID.2, $ID.3;
 }
 list-not-more name {
 info "Checking for new RIBs ...";
 err " ERROR: the RIB %s was not present before for the BGP peer %s (ASN
%s).", $ID.1, $ID.2, $ID.3;
 }
 delta active-prefix-count, 20% {
 info "Checking if the number of BGP active prefix has changed more than
20%.";
 err " ERROR: the number of BGP active prefixes for RIB %s on the BGP peer %s
(ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1, $ID.2,
$ID.3, $PRE/active-prefix-count, $POST/active-prefix-count;
 }
 delta received-prefix-count, 20% {
 info "Checking if the number of BGP received prefix has changed more than
20%.";
 err " ERROR: the number of BGP received prefixes for RIB %s on the BGP peer
%s (ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1, $ID.2,
$ID.3, $PRE/received-prefix-count, $POST/received-prefix-count;
 }
 delta accepted-prefix-count, 20% {
 info "Checking if the number of BGP accepted prefix has changed more than
20%.";
 err " ERROR: the number of BGP accepted prefixes for RIB %s on the BGP peer
%s (ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1, $ID.2,
$ID.3, $PRE/accepted-prefix-count, $POST/accepted-prefix-count;
 }
 delta suppressed-prefix-count, 20% {
 info "Checking if the number of BGP suppressed prefix has changed more than
20%.";
 err " ERROR: the number of BGP suppressed prefixes for RIB %s on the BGP
peer %s (ASN %s) has changed more than 20 percent (before = %s / after = %s).", $ID.1,
$ID.2, $ID.3, $PRE/suppressed-prefix-count, $POST/suppressed-prefix-count;
 }
 }
}

check_show_rsvp_sessions {
 command show rsvp session;
 iterate rsvp-session-data {
 id session-type;
 no-diff count {
 info "Checking if the number of RSVP sessions has changed ...";
 err " ERROR: the number of | %s | RSVP sessions has changed from %s to
%s.", $ID.1, $PRE/count, $POST/count;

 102 Day One: Using JSNAP to Automate Network Verifications

 }
 no-diff display-count {
 info "Checking if the number of displayed RSVP sessions has changed ...";
 err " ERROR: the number of | %s | displayed RSVP sessions has changed from
%s to %s.", $ID.1, $PRE/display-count, $POST/display-count;
 }
 no-diff up-count {
 info "Checking if the number of active (UP) RSVP sessions has changed
...";
 err " ERROR: the number of | %s | active (UP) RSVP sessions has changed
from %s to %s.", $ID.1, $PRE/up-count, $POST/up-count;
 }
 no-diff down-count {
 info "Checking if the number of inactive (DOWN) RSVP sessions has changed
...";
 err " ERROR: the number of | %s | inactive (DOWN) RSVP sessions has
changed from %s to %s.", $ID.1, $PRE/down-count, $POST/down-count;
 }
 }
 iterate rsvp-session-data/rsvp-session {
 id ../session-type;
 id name;
 no-diff source-address {
 info "Checking the source address of the RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s has changed its source address from
%s to %s", $ID.1, $ID.2, $PRE/source-address, $POST/source-address;
 }
 no-diff destination-address {
 info "Checking the destination address of the RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s has changed its destination
address from %s to %s", $ID.1, $ID.2, $PRE/destination-address, $POST/destination-
address;
 }
 no-diff name {
 info "Checking the RSVP session names ...";
 err " ERROR: the | %s | RSVP session %s has changed its name from %s to
%s.", $ID.1, $ID.2, $PRE/name, $POST/name;
 }
 no-diff lsp-state {
 info "Checking the RSVP session state ...";
 err " ERROR: the | %s | RSVP session %s has changed its state from %s to
%s.", $ID.1, $ID.2, $PRE/lsp-state, $POST/lsp-state;
 }
 list-not-less name {
 info "Checking for missing RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s has gone missing.", $ID.1, $ID.2;
 }
 list-not-more name {
 info "Checking for new RSVP sessions ...";
 err " ERROR: the | %s | RSVP session %s was not present before.", $ID.1,
$ID.2;
 }
 }
}

 Chapter 5: Putting It All Together 103

check_show_rsvp_interface {
 command show rsvp interface;
 iterate . {
 no-diff active-count {
 info "Checking the number of active RSVP interfaces ...";
 err " ERROR: the number of active RSVP interfaces has changed from %s to
%s.", $PRE/active-count $POST/active-count;
 }
 }
 iterate rsvp-interface {
 id interface-name;
 no-diff interface-name {
 info "Checking if the name of the RSVP interface has changed ...";
 err " ERROR: the name of the RSVP interface %s has changed from %s to %s.",
$ID.1, $PRE/interface-name, $POST/interface-name;
 }
 no-diff rsvp-status {
 info "Checking the RSVP status for each interface ...";
 err " ERROR: the status of the RSVP interface %s has changed from %s to
%s.", $ID.1, $PRE/rsvp-status, $POST/rsvp-status;
 }
 list-not-less interface-name {
 info "Checking for missing RSVP interfaces ...";
 err " ERROR: the RSVP interface %s has gone missing.", $ID.1;
 }
 list-not-more interface-name {
 info "Checking for new RSVP interfaces ...";
 err " ERROR: the RSVP interface %s was not present before.", $ID.1;
 }
 }
}

check_show_mpls_interface {
 command show mpls interface;
 iterate mpls-interface {
 id interface-name;
 no-diff interface-name {
 info "Checking if there are changes in the name of the MPLS interfaces
...";
 err " ERROR: the interface %s has changed its name from %s to %s.", $PRE/
interface-name, $POST/interface-name;
 }
 no-diff mpls-interface-state {
 info "Checking the MPLS interface state ...";
 err " ERROR: the interface %s has changed its state from %s to %s.",
$ID.1, $PRE/mpls-interface-state, $POST/mpls-interface-state;
 }
 list-not-less interface-name {
 info "Checking for missing MPLS interfaces ...";
 err " ERROR: the interface %s has gone missing.", $ID.1;
 }
 list-not-more interface-name {
 info "Checking for new MPLS interfaces ...";

 104 Day One: Using JSNAP to Automate Network Verifications

 err " ERROR: the interface %s was not present before.", $ID.1;
 }
 }
}

check_show_mpls_lsp_extensive {
 command show mpls lsp extensive;
 iterate rsvp-session-data/rsvp-session/mpls-lsp {
 id ../../session-type;
 id name;
 no-diff destination-address {
 info "Checking if the LSP has changed its destination address ...";
 err " ERROR: the %s LSP %s has changed its destination address from %s to
%s.", $ID.1, $ID.2, $PRE/destination-address, $POST/destination-address;
 }
 no-diff source-address {
 info "Checking if the LSP has changed its source address ...";
 err " ERROR: the %s LSP %s has changed its source address from %s to %s.",
$ID.1, $ID.2, $PRE/source-address, $POST/source-address;
 }
 no-diff lsp-state {
 info "Checking if the LSP state has changed ...";
 err " ERROR: the %s LSP %s has changed its state from %s to %s.", $ID.1,
$ID.2, $PRE/lsp-state, $POST/lsp-state;
 }
 no-diff name {
 info "Checking if the LSP name has changed ...";
 err " ERROR: the %s LSP %s has changed its name from %s to %s.", $ID.1,
$ID.2, $PRE/name, $POST/name;
 }
 list-not-less name {
 info "Checking for missing LSPs ...";
 err " ERROR: the %s LSP %s has gone missing.", $ID.1, $ID.2;
 }
 list-not-more name {
 info "Checking for new LSPs ...";
 err " ERROR: the %s LSP %s was not present before.", $ID.1, $ID.2;
 }
 contains active-path, "(primary)" {
 info "Checking if the PRIMARY path is the active path for the LSP ...";
 err " ERROR: the %s LSP %s is not running on its PRIMARY path. It is
currently running on %s.", $ID.1, $ID.2, $POST/active-path;
 }
 }
 iterate rsvp-session-data {
 id session-type;
 no-diff count {
 info "Checking the number of LSPs ...";
 err " ERROR: the number of %s LSPs has changed from %s to %s.", $ID.1,
$PRE/count, $POST/count;
 }
 no-diff up-count {
 info "Checking the number of LSP in UP state ...";
 err " ERROR: the number of %s LSPs in UP state has changed from %s to %s.",

 Chapter 5: Putting It All Together 105

$ID.1, $PRE/up-count, $POST/up-count;
 }
 no-diff down-count {
 info "Checking the number of LSP in DOWN state ...";
 err " ERROR: the number of %s LSPs in DOWN state has changed from %s to
%s.", $ID.1, $PRE/down-count, $POST/down-count;
 }
 }
}

Demonstration of the Configuration’s Use

With the final configuration file in place, it’s time to demonstrate its use
in a simulated network change that creates at least one problem in
each of the areas tested here. Since this simulation is executed in
Junosphere, the Chassis verifications are skipped as some of the
hardware details tested in the Chassis verifications are not presented in
the VJX router in Junosphere.

The Pre-Snapshot

First of all, there are six routers (CE10, CE11, CE20, CE21, PE1, and
PE2) to collect the snapshots. The snapshot name collected is called
before. Here’s the snapshot collection before the network change takes
place:

dmontagner@querencia:~/jsnap$ ROUTERS=`cat routers.txt`dmontagner@querencia:~/jsnap/
final_conf_files/final_simulation$ for router in $ROUTERS; do jsnap --snap before -l
juniper -p Clouds -t $router network_verifications.conf ; done
Connecting to juniper@ce10 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'ce10__check_show_isis_interface__before.xml' ...
EXEC: 'show isis adjacency' ...
SAVE: 'ce10__check_show_isis_adjacency__before.xml' ...
EXEC: 'show interfaces terse' ...
SAVE: 'ce10__check_show_interfaces_terse__before.xml' ...
EXEC: 'show chassis hardware' ...
SAVE: 'ce10__check_show_chassis_hardware__before.xml' ...
EXEC: 'show chassis fpc' ...
SAVE: 'ce10__check_show_chassis_fpc__before.xml' ...
EXEC: 'show chassis fpc pic-status' ...
SAVE: 'ce10__check_show_chassis_fpc_pic_status__before.xml' ...
EXEC: 'show bgp summary' ...
SAVE: 'ce10__check_bgp_summary__before.xml' ...
EXEC: 'show rsvp session' ...
SAVE: 'ce10__check_show_rsvp_sessions__before.xml' ...
EXEC: 'show rsvp interface' ...
SAVE: 'ce10__check_show_rsvp_interface__before.xml' ...
EXEC: 'show mpls interface' ...
SAVE: 'ce10__check_show_mpls_interface__before.xml' ...
EXEC: 'show mpls lsp extensive' ...

 106 Day One: Using JSNAP to Automate Network Verifications

SAVE: 'ce10__check_show_mpls_lsp_extensive__before.xml' ...
Connecting to juniper@ce11 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'ce11__check_show_isis_interface__before.xml' ...
EXEC: 'show isis adjacency' ...
SAVE: 'ce11__check_show_isis_adjacency__before.xml' ...
EXEC: 'show interfaces terse' ...
SAVE: 'ce11__check_show_interfaces_terse__before.xml' ...
EXEC: 'show chassis hardware' ...
SAVE: 'ce11__check_show_chassis_hardware__before.xml' ...
EXEC: 'show chassis fpc' ...
SAVE: 'ce11__check_show_chassis_fpc__before.xml' ...
EXEC: 'show chassis fpc pic-status' ...
SAVE: 'ce11__check_show_chassis_fpc_pic_status__before.xml' ...
EXEC: 'show bgp summary' ...
SAVE: 'ce11__check_bgp_summary__before.xml' ...
EXEC: 'show rsvp session' ...
SAVE: 'ce11__check_show_rsvp_sessions__before.xml' ...
EXEC: 'show rsvp interface' ...
SAVE: 'ce11__check_show_rsvp_interface__before.xml' ...
EXEC: 'show mpls interface' ...
SAVE: 'ce11__check_show_mpls_interface__before.xml' ...
EXEC: 'show mpls lsp extensive' ...
SAVE: 'ce11__check_show_mpls_lsp_extensive__before.xml' ...
Connecting to juniper@ce20 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'ce20__check_show_isis_interface__before.xml' ...
EXEC: 'show isis adjacency' ...
SAVE: 'ce20__check_show_isis_adjacency__before.xml' ...
EXEC: 'show interfaces terse' ...
SAVE: 'ce20__check_show_interfaces_terse__before.xml' ...
EXEC: 'show chassis hardware' ...
SAVE: 'ce20__check_show_chassis_hardware__before.xml' ...
EXEC: 'show chassis fpc' ...
SAVE: 'ce20__check_show_chassis_fpc__before.xml' ...
EXEC: 'show chassis fpc pic-status' ...
SAVE: 'ce20__check_show_chassis_fpc_pic_status__before.xml' ...
EXEC: 'show bgp summary' ...
SAVE: 'ce20__check_bgp_summary__before.xml' ...
EXEC: 'show rsvp session' ...
SAVE: 'ce20__check_show_rsvp_sessions__before.xml' ...
EXEC: 'show rsvp interface' ...
SAVE: 'ce20__check_show_rsvp_interface__before.xml' ...
EXEC: 'show mpls interface' ...
SAVE: 'ce20__check_show_mpls_interface__before.xml' ...
EXEC: 'show mpls lsp extensive' ...
SAVE: 'ce20__check_show_mpls_lsp_extensive__before.xml' ...
Connecting to juniper@ce21 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'ce21__check_show_isis_interface__before.xml' ...
EXEC: 'show isis adjacency' ...

 Chapter 5: Putting It All Together 107

SAVE: 'ce21__check_show_isis_adjacency__before.xml' ...
EXEC: 'show interfaces terse' ...
SAVE: 'ce21__check_show_interfaces_terse__before.xml' ...
EXEC: 'show chassis hardware' ...
SAVE: 'ce21__check_show_chassis_hardware__before.xml' ...
EXEC: 'show chassis fpc' ...
SAVE: 'ce21__check_show_chassis_fpc__before.xml' ...
EXEC: 'show chassis fpc pic-status' ...
SAVE: 'ce21__check_show_chassis_fpc_pic_status__before.xml' ...
EXEC: 'show bgp summary' ...
SAVE: 'ce21__check_bgp_summary__before.xml' ...
EXEC: 'show rsvp session' ...
SAVE: 'ce21__check_show_rsvp_sessions__before.xml' ...
EXEC: 'show rsvp interface' ...
SAVE: 'ce21__check_show_rsvp_interface__before.xml' ...
EXEC: 'show mpls interface' ...
SAVE: 'ce21__check_show_mpls_interface__before.xml' ...
EXEC: 'show mpls lsp extensive' ...
SAVE: 'ce21__check_show_mpls_lsp_extensive__before.xml' ...
Connecting to juniper@pe1 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'pe1__check_show_isis_interface__before.xml' ...
EXEC: 'show isis adjacency' ...
SAVE: 'pe1__check_show_isis_adjacency__before.xml' ...
EXEC: 'show interfaces terse' ...
SAVE: 'pe1__check_show_interfaces_terse__before.xml' ...
EXEC: 'show chassis hardware' ...
SAVE: 'pe1__check_show_chassis_hardware__before.xml' ...
EXEC: 'show chassis fpc' ...
SAVE: 'pe1__check_show_chassis_fpc__before.xml' ...
EXEC: 'show chassis fpc pic-status' ...
SAVE: 'pe1__check_show_chassis_fpc_pic_status__before.xml' ...
EXEC: 'show bgp summary' ...
SAVE: 'pe1__check_bgp_summary__before.xml' ...
EXEC: 'show rsvp session' ...
SAVE: 'pe1__check_show_rsvp_sessions__before.xml' ...
EXEC: 'show rsvp interface' ...
SAVE: 'pe1__check_show_rsvp_interface__before.xml' ...
EXEC: 'show mpls interface' ...
SAVE: 'pe1__check_show_mpls_interface__before.xml' ...
EXEC: 'show mpls lsp extensive' ...
SAVE: 'pe1__check_show_mpls_lsp_extensive__before.xml' ...
Connecting to juniper@pe2 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'pe2__check_show_isis_interface__before.xml' ...
EXEC: 'show isis adjacency' ...
SAVE: 'pe2__check_show_isis_adjacency__before.xml' ...
EXEC: 'show interfaces terse' ...
SAVE: 'pe2__check_show_interfaces_terse__before.xml' ...
EXEC: 'show chassis hardware' ...
SAVE: 'pe2__check_show_chassis_hardware__before.xml' ...
EXEC: 'show chassis fpc' ...

 108 Day One: Using JSNAP to Automate Network Verifications

SAVE: 'pe2__check_show_chassis_fpc__before.xml' ...
EXEC: 'show chassis fpc pic-status' ...
SAVE: 'pe2__check_show_chassis_fpc_pic_status__before.xml' ...
EXEC: 'show bgp summary' ...
SAVE: 'pe2__check_bgp_summary__before.xml' ...
EXEC: 'show rsvp session' ...
SAVE: 'pe2__check_show_rsvp_sessions__before.xml' ...
EXEC: 'show rsvp interface' ...
SAVE: 'pe2__check_show_rsvp_interface__before.xml' ...
EXEC: 'show mpls interface' ...
SAVE: 'pe2__check_show_mpls_interface__before.xml' ...
EXEC: 'show mpls lsp extensive' ...
SAVE: 'pe2__check_show_mpls_lsp_extensive__before.xml' ...
dmontagner@querencia:~/jsnap$

In order to demonstrate JSNAP in action a problem in the network is
introduced to simulate an issue found after the network change has
been completed:.

[edit]
juniper@PE1# show interfaces ge-0/0/3
unit 0 {
 description "Connection to PE2";
 family inet {
 address 10.1.1.1/30;
 }
 family iso;
 family mpls;
}

[edit]
juniper@PE1# set interfaces ge-0/0/3 disable

[edit]
juniper@PE1# commit and-quit
commit complete
Exiting configuration mode

juniper@PE1>

As you can see, the problem is a very simple one that can easily happen
in any network change. In this particular topology, this issue is very
disruptive, as it will affect pretty much everything on the PE side.

The Post-Snapshot

At this point in our simulation, let’s consider that the network change
has finished and it is about to start the network verifications. Time to
collect the post snapshot:

dmontagner@querencia:~/jsnap$ ROUTERS=`cat routers.txt`
dmontagner@querencia:~/jsnap$ for router in $ROUTERS; do jsnap --snap after -l juniper

 Chapter 5: Putting It All Together 109

-p Clouds -t $router network_verifications.conf ; done
Connecting to juniper@ce10 ...
CONNECTED.
EXEC: 'show isis interface' ...
SAVE: 'ce10__check_show_isis_interface__after.xml' ...
EXEC: 'show isis adjacency' ...
SAVE: 'ce10__check_show_isis_adjacency__after.xml' ...
EXEC: 'show interfaces terse' ...

<... omitted for brevity ...>

EXEC: 'show mpls interface' ...
SAVE: 'pe2__check_show_mpls_interface__after.xml' ...
EXEC: 'show mpls lsp extensive' ...
SAVE: 'pe2__check_show_mpls_lsp_extensive__after.xml' ...
dmontagner@querencia:~/jsnap$

For the sake of brevity, the outputs presented have been truncated.
They are very similar to the ones collected in the pre-snapshot.

With the pre- (before) and post- (after) snapshots in hand, it is time to
use our comprehensive set of JSNAP tests. The execution of the
verification is presented here:

dmontagner@querencia:~/jsnap$ for router in $ROUTERS; do jsnap --check before,after -l
juniper -p Clouds -t $router network_verifications.conf; done
!!!
>>>
>>> TARGET: ce10
>>>
!!!

CHECKING SECTION: check_show_isis_interface

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS circuit type ..."
+ TEST PASSED: "Checking the Level 1 interface state ..."
+ TEST PASSED: "Checking the Level 2 interface state ..."
+ TEST PASSED: "Checking the interface Level 1 metric ..."
+ TEST PASSED: "Checking the interface Level 2 metric ..."
+ TEST PASSED: "Checking for missing ISIS interfaces ..."
+ TEST PASSED: "Checking for new ISIS interfaces ..."

CHECKING SECTION: check_show_isis_adjacency

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS neighbour ..."
+ TEST PASSED: "Checking the Level of the ISIS adjacency ..."
+ TEST PASSED: "Checking the Subnetwork Point of Attachment (SNPA) ..."
+ TEST PASSED: "Checking for missing ISIS adjacencies ..."
+ TEST PASSED: "Checking for new ISIS adjacencies ..."

CHECKING SECTION: check_show_interfaces_terse

 110 Day One: Using JSNAP to Automate Network Verifications

+ TEST PASSED: "Checking PHY operational status of interfaces ..."
+ TEST PASSED: "Checking PHY admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at PHY level ..."
+ TEST PASSED: "Checking for new interfaces at PHY level ..."
+ TEST PASSED: "Checking LOGICAL operational status of interfaces ..."
+ TEST PASSED: "Checking LOGICAL admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking for new interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking the address family configured in the interfaces ..."
+ TEST PASSED: "Checking for missing address family ..."
+ TEST PASSED: "Checking for new family address ..."
+ TEST PASSED: "Checking the interface address configured under the interface ..."
+ TEST PASSED: "Checking for missing interface address ..."
+ TEST PASSED: "Checking for new interface address ..."
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!

CHECKING SECTION: check_bgp_summary

+ TEST PASSED: "Checking the number of BGP groups ..."
+ TEST PASSED: "Checking the number of BGP peers ..."
+ TEST PASSED: "Checking if the BGP configuration has at least 1 BGP peer configured
..."
+ TEST PASSED: "Checking the number of BGP peers down ..."
+ TEST PASSED: "Checking if the BGP peers addresses are still the same ..."
+ TEST PASSED: "Checking if the BGP peers ASNs are still the same ..."
+ TEST PASSED: "Checking if the BGP peer has flapped ..."
+ TEST PASSED: "Checking if the BGP peers are in Established state ..."
+ TEST PASSED: "Checking if the BGP RIB name has changed ..."
+ TEST PASSED: "Checking for missing RIBs ..."
+ TEST PASSED: "Checking for new RIBs ..."
- TEST FAILED: "Checking if the number of BGP active prefix has changed more than 20%."

 ERROR: the number of BGP active prefixes for RIB inet.0 on the BGP peer
192.168.1.1 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP received prefix has changed more than
20%."

 ERROR: the number of BGP received prefixes for RIB inet.0 on the BGP peer
192.168.1.1 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP accepted prefix has changed more than
20%."

 ERROR: the number of BGP accepted prefixes for RIB inet.0 on the BGP peer
192.168.1.1 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

+ TEST PASSED: "Checking if the number of BGP suppressed prefix has changed more than
20%."

CHECKING SECTION: check_show_rsvp_sessions

+ TEST PASSED: "Checking if the number of RSVP sessions has changed ..."

 Chapter 5: Putting It All Together 111

+ TEST PASSED: "Checking if the number of displayed RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of active (UP) RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of inactive (DOWN) RSVP sessions has changed
..."
+ TEST PASSED: "Checking the source address of the RSVP sessions ..."
+ TEST PASSED: "Checking the destination address of the RSVP sessions ..."
+ TEST PASSED: "Checking the RSVP session names ..."
+ TEST PASSED: "Checking the RSVP session state ..."
+ TEST PASSED: "Checking for missing RSVP sessions ..."
+ TEST PASSED: "Checking for new RSVP sessions ..."

CHECKING SECTION: check_show_rsvp_interface

- TEST FAILED: "Checking the number of active RSVP interfaces ..."
XPath error : Invalid expression
jcs:printf($_dynpf/pfmt,$PRE/active-count $POST/active-count)
 ̂
xmlXPathEval: evaluation failed
dyn:evaluate() : unable to evaluate expression 'jcs:printf($_dynpf/pfmt,$PRE/active-
count $POST/active-count)'
+ TEST PASSED: "Checking if the name of the RSVP interface has changed ..."
+ TEST PASSED: "Checking the RSVP status for each interface ..."
+ TEST PASSED: "Checking for missing RSVP interfaces ..."
+ TEST PASSED: "Checking for new RSVP interfaces ..."

CHECKING SECTION: check_show_mpls_interface

+ TEST PASSED: "Checking if there are changes in the name of the MPLS interfaces ..."
+ TEST PASSED: "Checking the MPLS interface state ..."
+ TEST PASSED: "Checking for missing MPLS interfaces ..."
+ TEST PASSED: "Checking for new MPLS interfaces ..."

CHECKING SECTION: check_show_mpls_lsp_extensive

+ TEST PASSED: "Checking if the LSP has changed its destination address ..."
+ TEST PASSED: "Checking if the LSP has changed its source address ..."
+ TEST PASSED: "Checking if the LSP state has changed ..."
+ TEST PASSED: "Checking if the LSP name has changed ..."
+ TEST PASSED: "Checking for missing LSPs ..."
+ TEST PASSED: "Checking for new LSPs ..."
+ TEST PASSED: "Checking if the PRIMARY path is the active path for the LSP ..."
+ TEST PASSED: "Checking the number of LSPs ..."
+ TEST PASSED: "Checking the number of LSP in UP state ..."
+ TEST PASSED: "Checking the number of LSP in DOWN state ..."
!!!
>>>
>>> TARGET: ce11
>>>
!!!

CHECKING SECTION: check_show_isis_interface

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS circuit type ..."
+ TEST PASSED: "Checking the Level 1 interface state ..."

 112 Day One: Using JSNAP to Automate Network Verifications

+ TEST PASSED: "Checking the Level 2 interface state ..."
+ TEST PASSED: "Checking the interface Level 1 metric ..."
+ TEST PASSED: "Checking the interface Level 2 metric ..."
+ TEST PASSED: "Checking for missing ISIS interfaces ..."
+ TEST PASSED: "Checking for new ISIS interfaces ..."

CHECKING SECTION: check_show_isis_adjacency

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS neighbour ..."
+ TEST PASSED: "Checking the Level of the ISIS adjacency ..."
+ TEST PASSED: "Checking the Subnetwork Point of Attachment (SNPA) ..."
+ TEST PASSED: "Checking for missing ISIS adjacencies ..."
+ TEST PASSED: "Checking for new ISIS adjacencies ..."

CHECKING SECTION: check_show_interfaces_terse

+ TEST PASSED: "Checking PHY operational status of interfaces ..."
+ TEST PASSED: "Checking PHY admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at PHY level ..."
+ TEST PASSED: "Checking for new interfaces at PHY level ..."
+ TEST PASSED: "Checking LOGICAL operational status of interfaces ..."
+ TEST PASSED: "Checking LOGICAL admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking for new interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking the address family configured in the interfaces ..."
+ TEST PASSED: "Checking for missing address family ..."
+ TEST PASSED: "Checking for new family address ..."
+ TEST PASSED: "Checking the interface address configured under the interface ..."
+ TEST PASSED: "Checking for missing interface address ..."
+ TEST PASSED: "Checking for new interface address ..."
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!

CHECKING SECTION: check_bgp_summary

+ TEST PASSED: "Checking the number of BGP groups ..."
+ TEST PASSED: "Checking the number of BGP peers ..."
+ TEST PASSED: "Checking if the BGP configuration has at least 1 BGP peer configured
..."
+ TEST PASSED: "Checking the number of BGP peers down ..."
+ TEST PASSED: "Checking if the BGP peers addresses are still the same ..."
+ TEST PASSED: "Checking if the BGP peers ASNs are still the same ..."
+ TEST PASSED: "Checking if the BGP peer has flapped ..."
+ TEST PASSED: "Checking if the BGP peers are in Established state ..."
+ TEST PASSED: "Checking if the BGP RIB name has changed ..."
+ TEST PASSED: "Checking for missing RIBs ..."
+ TEST PASSED: "Checking for new RIBs ..."
- TEST FAILED: "Checking if the number of BGP active prefix has changed more than 20%."

 ERROR: the number of BGP active prefixes for RIB inet.0 on the BGP peer
192.168.2.1 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP received prefix has changed more than

 Chapter 5: Putting It All Together 113

20%."

 ERROR: the number of BGP received prefixes for RIB inet.0 on the BGP peer
192.168.2.1 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP accepted prefix has changed more than
20%."

 ERROR: the number of BGP accepted prefixes for RIB inet.0 on the BGP peer
192.168.2.1 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

+ TEST PASSED: "Checking if the number of BGP suppressed prefix has changed more than
20%."

CHECKING SECTION: check_show_rsvp_sessions

+ TEST PASSED: "Checking if the number of RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of displayed RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of active (UP) RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of inactive (DOWN) RSVP sessions has changed
..."
+ TEST PASSED: "Checking the source address of the RSVP sessions ..."
+ TEST PASSED: "Checking the destination address of the RSVP sessions ..."
+ TEST PASSED: "Checking the RSVP session names ..."
+ TEST PASSED: "Checking the RSVP session state ..."
+ TEST PASSED: "Checking for missing RSVP sessions ..."
+ TEST PASSED: "Checking for new RSVP sessions ..."

CHECKING SECTION: check_show_rsvp_interface

- TEST FAILED: "Checking the number of active RSVP interfaces ..."
XPath error : Invalid expression
jcs:printf($_dynpf/pfmt,$PRE/active-count $POST/active-count)
 ̂
xmlXPathEval: evaluation failed
dyn:evaluate() : unable to evaluate expression 'jcs:printf($_dynpf/pfmt,$PRE/active-
count $POST/active-count)'
+ TEST PASSED: "Checking if the name of the RSVP interface has changed ..."
+ TEST PASSED: "Checking the RSVP status for each interface ..."
+ TEST PASSED: "Checking for missing RSVP interfaces ..."
+ TEST PASSED: "Checking for new RSVP interfaces ..."

CHECKING SECTION: check_show_mpls_interface

+ TEST PASSED: "Checking if there are changes in the name of the MPLS interfaces ..."
+ TEST PASSED: "Checking the MPLS interface state ..."
+ TEST PASSED: "Checking for missing MPLS interfaces ..."
+ TEST PASSED: "Checking for new MPLS interfaces ..."

CHECKING SECTION: check_show_mpls_lsp_extensive

+ TEST PASSED: "Checking if the LSP has changed its destination address ..."
+ TEST PASSED: "Checking if the LSP has changed its source address ..."
+ TEST PASSED: "Checking if the LSP state has changed ..."
+ TEST PASSED: "Checking if the LSP name has changed ..."

 114 Day One: Using JSNAP to Automate Network Verifications

+ TEST PASSED: "Checking for missing LSPs ..."
+ TEST PASSED: "Checking for new LSPs ..."
+ TEST PASSED: "Checking if the PRIMARY path is the active path for the LSP ..."
+ TEST PASSED: "Checking the number of LSPs ..."
+ TEST PASSED: "Checking the number of LSP in UP state ..."
+ TEST PASSED: "Checking the number of LSP in DOWN state ..."
!!!
>>>
>>> TARGET: ce20
>>>
!!!

CHECKING SECTION: check_show_isis_interface

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS circuit type ..."
+ TEST PASSED: "Checking the Level 1 interface state ..."
+ TEST PASSED: "Checking the Level 2 interface state ..."
+ TEST PASSED: "Checking the interface Level 1 metric ..."
+ TEST PASSED: "Checking the interface Level 2 metric ..."
+ TEST PASSED: "Checking for missing ISIS interfaces ..."
+ TEST PASSED: "Checking for new ISIS interfaces ..."

CHECKING SECTION: check_show_isis_adjacency

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS neighbour ..."
+ TEST PASSED: "Checking the Level of the ISIS adjacency ..."
+ TEST PASSED: "Checking the Subnetwork Point of Attachment (SNPA) ..."
+ TEST PASSED: "Checking for missing ISIS adjacencies ..."
+ TEST PASSED: "Checking for new ISIS adjacencies ..."

CHECKING SECTION: check_show_interfaces_terse

+ TEST PASSED: "Checking PHY operational status of interfaces ..."
+ TEST PASSED: "Checking PHY admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at PHY level ..."
+ TEST PASSED: "Checking for new interfaces at PHY level ..."
+ TEST PASSED: "Checking LOGICAL operational status of interfaces ..."
+ TEST PASSED: "Checking LOGICAL admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking for new interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking the address family configured in the interfaces ..."
+ TEST PASSED: "Checking for missing address family ..."
+ TEST PASSED: "Checking for new family address ..."
+ TEST PASSED: "Checking the interface address configured under the interface ..."
+ TEST PASSED: "Checking for missing interface address ..."
+ TEST PASSED: "Checking for new interface address ..."
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!

CHECKING SECTION: check_bgp_summary

+ TEST PASSED: "Checking the number of BGP groups ..."

 Chapter 5: Putting It All Together 115

+ TEST PASSED: "Checking the number of BGP peers ..."
+ TEST PASSED: "Checking if the BGP configuration has at least 1 BGP peer configured
..."
+ TEST PASSED: "Checking the number of BGP peers down ..."
+ TEST PASSED: "Checking if the BGP peers addresses are still the same ..."
+ TEST PASSED: "Checking if the BGP peers ASNs are still the same ..."
+ TEST PASSED: "Checking if the BGP peer has flapped ..."
+ TEST PASSED: "Checking if the BGP peers are in Established state ..."
+ TEST PASSED: "Checking if the BGP RIB name has changed ..."
+ TEST PASSED: "Checking for missing RIBs ..."
+ TEST PASSED: "Checking for new RIBs ..."
- TEST FAILED: "Checking if the number of BGP active prefix has changed more than 20%."

 ERROR: the number of BGP active prefixes for RIB inet.0 on the BGP peer
192.168.1.5 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP received prefix has changed more than
20%."

 ERROR: the number of BGP received prefixes for RIB inet.0 on the BGP peer
192.168.1.5 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP accepted prefix has changed more than
20%."

 ERROR: the number of BGP accepted prefixes for RIB inet.0 on the BGP peer
192.168.1.5 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

+ TEST PASSED: "Checking if the number of BGP suppressed prefix has changed more than
20%."

CHECKING SECTION: check_show_rsvp_sessions

+ TEST PASSED: "Checking if the number of RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of displayed RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of active (UP) RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of inactive (DOWN) RSVP sessions has changed
..."
+ TEST PASSED: "Checking the source address of the RSVP sessions ..."
+ TEST PASSED: "Checking the destination address of the RSVP sessions ..."
+ TEST PASSED: "Checking the RSVP session names ..."
+ TEST PASSED: "Checking the RSVP session state ..."
+ TEST PASSED: "Checking for missing RSVP sessions ..."
+ TEST PASSED: "Checking for new RSVP sessions ..."

CHECKING SECTION: check_show_rsvp_interface

- TEST FAILED: "Checking the number of active RSVP interfaces ..."
XPath error : Invalid expression
jcs:printf($_dynpf/pfmt,$PRE/active-count $POST/active-count)
 ̂
xmlXPathEval: evaluation failed
dyn:evaluate() : unable to evaluate expression 'jcs:printf($_dynpf/pfmt,$PRE/active-
count $POST/active-count)'
+ TEST PASSED: "Checking if the name of the RSVP interface has changed ..."

 116 Day One: Using JSNAP to Automate Network Verifications

+ TEST PASSED: "Checking the RSVP status for each interface ..."
+ TEST PASSED: "Checking for missing RSVP interfaces ..."
+ TEST PASSED: "Checking for new RSVP interfaces ..."

CHECKING SECTION: check_show_mpls_interface

+ TEST PASSED: "Checking if there are changes in the name of the MPLS interfaces ..."
+ TEST PASSED: "Checking the MPLS interface state ..."
+ TEST PASSED: "Checking for missing MPLS interfaces ..."
+ TEST PASSED: "Checking for new MPLS interfaces ..."

CHECKING SECTION: check_show_mpls_lsp_extensive

+ TEST PASSED: "Checking if the LSP has changed its destination address ..."
+ TEST PASSED: "Checking if the LSP has changed its source address ..."
+ TEST PASSED: "Checking if the LSP state has changed ..."
+ TEST PASSED: "Checking if the LSP name has changed ..."
+ TEST PASSED: "Checking for missing LSPs ..."
+ TEST PASSED: "Checking for new LSPs ..."
+ TEST PASSED: "Checking if the PRIMARY path is the active path for the LSP ..."
+ TEST PASSED: "Checking the number of LSPs ..."
+ TEST PASSED: "Checking the number of LSP in UP state ..."
+ TEST PASSED: "Checking the number of LSP in DOWN state ..."
!!!
>>>
>>> TARGET: ce21
>>>
!!!

CHECKING SECTION: check_show_isis_interface

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS circuit type ..."
+ TEST PASSED: "Checking the Level 1 interface state ..."
+ TEST PASSED: "Checking the Level 2 interface state ..."
+ TEST PASSED: "Checking the interface Level 1 metric ..."
+ TEST PASSED: "Checking the interface Level 2 metric ..."
+ TEST PASSED: "Checking for missing ISIS interfaces ..."
+ TEST PASSED: "Checking for new ISIS interfaces ..."

CHECKING SECTION: check_show_isis_adjacency

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS neighbour ..."
+ TEST PASSED: "Checking the Level of the ISIS adjacency ..."
+ TEST PASSED: "Checking the Subnetwork Point of Attachment (SNPA) ..."
+ TEST PASSED: "Checking for missing ISIS adjacencies ..."
+ TEST PASSED: "Checking for new ISIS adjacencies ..."

CHECKING SECTION: check_show_interfaces_terse

+ TEST PASSED: "Checking PHY operational status of interfaces ..."
+ TEST PASSED: "Checking PHY admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at PHY level ..."
+ TEST PASSED: "Checking for new interfaces at PHY level ..."

 Chapter 5: Putting It All Together 117

+ TEST PASSED: "Checking LOGICAL operational status of interfaces ..."
+ TEST PASSED: "Checking LOGICAL admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking for new interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking the address family configured in the interfaces ..."
+ TEST PASSED: "Checking for missing address family ..."
+ TEST PASSED: "Checking for new family address ..."
+ TEST PASSED: "Checking the interface address configured under the interface ..."
+ TEST PASSED: "Checking for missing interface address ..."
+ TEST PASSED: "Checking for new interface address ..."
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!

CHECKING SECTION: check_bgp_summary

+ TEST PASSED: "Checking the number of BGP groups ..."
+ TEST PASSED: "Checking the number of BGP peers ..."
+ TEST PASSED: "Checking if the BGP configuration has at least 1 BGP peer configured
..."
+ TEST PASSED: "Checking the number of BGP peers down ..."
+ TEST PASSED: "Checking if the BGP peers addresses are still the same ..."
+ TEST PASSED: "Checking if the BGP peers ASNs are still the same ..."
+ TEST PASSED: "Checking if the BGP peer has flapped ..."
+ TEST PASSED: "Checking if the BGP peers are in Established state ..."
+ TEST PASSED: "Checking if the BGP RIB name has changed ..."
+ TEST PASSED: "Checking for missing RIBs ..."
+ TEST PASSED: "Checking for new RIBs ..."
- TEST FAILED: "Checking if the number of BGP active prefix has changed more than 20%."

 ERROR: the number of BGP active prefixes for RIB inet.0 on the BGP peer
192.168.2.5 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP received prefix has changed more than
20%."

 ERROR: the number of BGP received prefixes for RIB inet.0 on the BGP peer
192.168.2.5 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

- TEST FAILED: "Checking if the number of BGP accepted prefix has changed more than
20%."

 ERROR: the number of BGP accepted prefixes for RIB inet.0 on the BGP peer
192.168.2.5 (ASN 65000) has changed more than 20 percent (before = 3 / after = 0).

+ TEST PASSED: "Checking if the number of BGP suppressed prefix has changed more than
20%."

CHECKING SECTION: check_show_rsvp_sessions

+ TEST PASSED: "Checking if the number of RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of displayed RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of active (UP) RSVP sessions has changed ..."
+ TEST PASSED: "Checking if the number of inactive (DOWN) RSVP sessions has changed
..."

 118 Day One: Using JSNAP to Automate Network Verifications

+ TEST PASSED: "Checking the source address of the RSVP sessions ..."
+ TEST PASSED: "Checking the destination address of the RSVP sessions ..."
+ TEST PASSED: "Checking the RSVP session names ..."
+ TEST PASSED: "Checking the RSVP session state ..."
+ TEST PASSED: "Checking for missing RSVP sessions ..."
+ TEST PASSED: "Checking for new RSVP sessions ..."

CHECKING SECTION: check_show_rsvp_interface

- TEST FAILED: "Checking the number of active RSVP interfaces ..."
XPath error : Invalid expression
jcs:printf($_dynpf/pfmt,$PRE/active-count $POST/active-count)
 ̂
xmlXPathEval: evaluation failed
dyn:evaluate() : unable to evaluate expression 'jcs:printf($_dynpf/pfmt,$PRE/active-
count $POST/active-count)'
+ TEST PASSED: "Checking if the name of the RSVP interface has changed ..."
+ TEST PASSED: "Checking the RSVP status for each interface ..."
+ TEST PASSED: "Checking for missing RSVP interfaces ..."
+ TEST PASSED: "Checking for new RSVP interfaces ..."

CHECKING SECTION: check_show_mpls_interface

+ TEST PASSED: "Checking if there are changes in the name of the MPLS interfaces ..."
+ TEST PASSED: "Checking the MPLS interface state ..."
+ TEST PASSED: "Checking for missing MPLS interfaces ..."
+ TEST PASSED: "Checking for new MPLS interfaces ..."

CHECKING SECTION: check_show_mpls_lsp_extensive

+ TEST PASSED: "Checking if the LSP has changed its destination address ..."
+ TEST PASSED: "Checking if the LSP has changed its source address ..."
+ TEST PASSED: "Checking if the LSP state has changed ..."
+ TEST PASSED: "Checking if the LSP name has changed ..."
+ TEST PASSED: "Checking for missing LSPs ..."
+ TEST PASSED: "Checking for new LSPs ..."
+ TEST PASSED: "Checking if the PRIMARY path is the active path for the LSP ..."
+ TEST PASSED: "Checking the number of LSPs ..."
+ TEST PASSED: "Checking the number of LSP in UP state ..."
+ TEST PASSED: "Checking the number of LSP in DOWN state ..."
!!!
>>>
>>> TARGET: pe1
>>>
!!!

CHECKING SECTION: check_show_isis_interface

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS circuit type ..."
+ TEST PASSED: "Checking the Level 1 interface state ..."
+ TEST PASSED: "Checking the Level 2 interface state ..."
+ TEST PASSED: "Checking the interface Level 1 metric ..."
+ TEST PASSED: "Checking the interface Level 2 metric ..."
+ TEST PASSED: "Checking for missing ISIS interfaces ..."

 Chapter 5: Putting It All Together 119

+ TEST PASSED: "Checking for new ISIS interfaces ..."

CHECKING SECTION: check_show_isis_adjacency

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS neighbour ..."
+ TEST PASSED: "Checking the Level of the ISIS adjacency ..."
+ TEST PASSED: "Checking the Subnetwork Point of Attachment (SNPA) ..."
- TEST FAILED: "Checking for missing ISIS adjacencies ..."

 ERROR: the ISIS adjacency for interface ge-0/0/3.0 is missing.

+ TEST PASSED: "Checking for new ISIS adjacencies ..."

CHECKING SECTION: check_show_interfaces_terse

+ TEST PASSED: "Checking PHY operational status of interfaces ..."
- TEST FAILED: "Checking PHY admin status of interfaces ..."

 ERROR: the admin status for interface ge-0/0/3 has changed from up to down.

+ TEST PASSED: "Checking for missing interfaces at PHY level ..."
+ TEST PASSED: "Checking for new interfaces at PHY level ..."
- TEST FAILED: "Checking LOGICAL operational status of interfaces ..."

 ERROR: the operational status for interface ge-0/0/3.0 has changed from up to down.

+ TEST PASSED: "Checking LOGICAL admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking for new interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking the address family configured in the interfaces ..."
+ TEST PASSED: "Checking for missing address family ..."
+ TEST PASSED: "Checking for new family address ..."
+ TEST PASSED: "Checking the interface address configured under the interface ..."
+ TEST PASSED: "Checking for missing interface address ..."
+ TEST PASSED: "Checking for new interface address ..."
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!

CHECKING SECTION: check_bgp_summary

+ TEST PASSED: "Checking the number of BGP groups ..."
+ TEST PASSED: "Checking the number of BGP peers ..."
+ TEST PASSED: "Checking if the BGP configuration has at least 1 BGP peer configured
..."
- TEST FAILED: "Checking the number of BGP peers down ..."

 ERROR: the number of BGP peers down has changed from 0 to 1.

+ TEST PASSED: "Checking if the BGP peers addresses are still the same ..."
+ TEST PASSED: "Checking if the BGP peers ASNs are still the same ..."
- TEST FAILED: "Checking if the BGP peer has flapped ..."

 ERROR: the BGP peer 10.100.100.2 (ASN 65000) has flapped.

 120 Day One: Using JSNAP to Automate Network Verifications

- TEST FAILED: "Checking if the BGP peers are in Established state ..."

 ERROR: the BGP peer 10.100.100.2 (ASN 65000) is not in Established state.

+ TEST PASSED: "Checking if the BGP RIB name has changed ..."
- TEST FAILED: "Checking for missing RIBs ..."

 ERROR: the RIB inet.0 for the BGP peer 10.100.100.2 (ASN 65000) has gone
missing.

 ERROR: the RIB bgp.l3vpn.0 for the BGP peer 10.100.100.2 (ASN 65000) has gone
missing.

 ERROR: the RIB bgp.rtarget.0 for the BGP peer 10.100.100.2 (ASN 65000) has
gone missing.

 ERROR: the RIB bgp.mvpn.0 for the BGP peer 10.100.100.2 (ASN 65000) has gone
missing.

 ERROR: the RIB VPNA.inet.0 for the BGP peer 10.100.100.2 (ASN 65000) has gone
missing.

 ERROR: the RIB VPNB.inet.0 for the BGP peer 10.100.100.2 (ASN 65000) has gone
missing.

+ TEST PASSED: "Checking for new RIBs ..."
+ TEST PASSED: "Checking if the number of BGP active prefix has changed more than 20%."
+ TEST PASSED: "Checking if the number of BGP received prefix has changed more than
20%."
+ TEST PASSED: "Checking if the number of BGP accepted prefix has changed more than
20%."
+ TEST PASSED: "Checking if the number of BGP suppressed prefix has changed more than
20%."

CHECKING SECTION: check_show_rsvp_sessions

- TEST FAILED: "Checking if the number of RSVP sessions has changed ..."

 ERROR: the number of | Ingress | RSVP sessions has changed from 1 to 0.

 ERROR: the number of | Egress | RSVP sessions has changed from 1 to 0.

- TEST FAILED: "Checking if the number of displayed RSVP sessions has changed ..."

 ERROR: the number of | Ingress | displayed RSVP sessions has changed from 1 to
0.

 ERROR: the number of | Egress | displayed RSVP sessions has changed from 1 to

 Chapter 5: Putting It All Together 121

0.

- TEST FAILED: "Checking if the number of active (UP) RSVP sessions has changed ..."

 ERROR: the number of | Ingress | active (UP) RSVP sessions has changed from 1
to 0.

 ERROR: the number of | Egress | active (UP) RSVP sessions has changed from 1
to 0.

+ TEST PASSED: "Checking if the number of inactive (DOWN) RSVP sessions has changed
..."
+ TEST PASSED: "Checking the source address of the RSVP sessions ..."
+ TEST PASSED: "Checking the destination address of the RSVP sessions ..."
+ TEST PASSED: "Checking the RSVP session names ..."
+ TEST PASSED: "Checking the RSVP session state ..."
- TEST FAILED: "Checking for missing RSVP sessions ..."

 ERROR: the | Ingress | RSVP session to-PE2 has gone missing.

 ERROR: the | Egress | RSVP session to-PE1 has gone missing.

+ TEST PASSED: "Checking for new RSVP sessions ..."

CHECKING SECTION: check_show_rsvp_interface

+ TEST PASSED: "Checking the number of active RSVP interfaces ..."
+ TEST PASSED: "Checking if the name of the RSVP interface has changed ..."
- TEST FAILED: "Checking the RSVP status for each interface ..."

 ERROR: the status of the RSVP interface ge-0/0/3.0 has changed from Up to
Down.

+ TEST PASSED: "Checking for missing RSVP interfaces ..."
+ TEST PASSED: "Checking for new RSVP interfaces ..."

CHECKING SECTION: check_show_mpls_interface

+ TEST PASSED: "Checking if there are changes in the name of the MPLS interfaces ..."
- TEST FAILED: "Checking the MPLS interface state ..."

 ERROR: the interface ge-0/0/3.0 has changed its state from Up to Dn.

+ TEST PASSED: "Checking for missing MPLS interfaces ..."
+ TEST PASSED: "Checking for new MPLS interfaces ..."

CHECKING SECTION: check_show_mpls_lsp_extensive

+ TEST PASSED: "Checking if the LSP has changed its destination address ..."
+ TEST PASSED: "Checking if the LSP has changed its source address ..."
- TEST FAILED: "Checking if the LSP state has changed ..."

 ERROR: the Ingress LSP to-PE2 has changed its state from Up to Dn.

 122 Day One: Using JSNAP to Automate Network Verifications

+ TEST PASSED: "Checking if the LSP name has changed ..."
+ TEST PASSED: "Checking for missing LSPs ..."
+ TEST PASSED: "Checking for new LSPs ..."
- TEST FAILED: "Checking if the PRIMARY path is the active path for the LSP ..."

 ERROR: the Ingress LSP to-PE2 is not running on its PRIMARY path. It is
currently running on (none).

- TEST FAILED: "Checking the number of LSPs ..."

 ERROR: the number of Egress LSPs has changed from 1 to 0.

- TEST FAILED: "Checking the number of LSP in UP state ..."

 ERROR: the number of Ingress LSPs in UP state has changed from 1 to 0.

 ERROR: the number of Egress LSPs in UP state has changed from 1 to 0.

- TEST FAILED: "Checking the number of LSP in DOWN state ..."

 ERROR: the number of Ingress LSPs in DOWN state has changed from 0 to 1.

!!!
>>>
>>> TARGET: pe2
>>>
!!!

CHECKING SECTION: check_show_isis_interface

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS circuit type ..."
+ TEST PASSED: "Checking the Level 1 interface state ..."
+ TEST PASSED: "Checking the Level 2 interface state ..."
+ TEST PASSED: "Checking the interface Level 1 metric ..."
+ TEST PASSED: "Checking the interface Level 2 metric ..."
+ TEST PASSED: "Checking for missing ISIS interfaces ..."
+ TEST PASSED: "Checking for new ISIS interfaces ..."

CHECKING SECTION: check_show_isis_adjacency

+ TEST PASSED: "Checking the ISIS interface names ..."
+ TEST PASSED: "Checking the ISIS neighbour ..."
+ TEST PASSED: "Checking the Level of the ISIS adjacency ..."
+ TEST PASSED: "Checking the Subnetwork Point of Attachment (SNPA) ..."
- TEST FAILED: "Checking for missing ISIS adjacencies ..."

 ERROR: the ISIS adjacency for interface ge-0/0/1.0 is missing.

+ TEST PASSED: "Checking for new ISIS adjacencies ..."

CHECKING SECTION: check_show_interfaces_terse

+ TEST PASSED: "Checking PHY operational status of interfaces ..."

 Chapter 5: Putting It All Together 123

+ TEST PASSED: "Checking PHY admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at PHY level ..."
+ TEST PASSED: "Checking for new interfaces at PHY level ..."
+ TEST PASSED: "Checking LOGICAL operational status of interfaces ..."
+ TEST PASSED: "Checking LOGICAL admin status of interfaces ..."
+ TEST PASSED: "Checking for missing interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking for new interfaces at LOGICAL level ..."
+ TEST PASSED: "Checking the address family configured in the interfaces ..."
+ TEST PASSED: "Checking for missing address family ..."
+ TEST PASSED: "Checking for new family address ..."
+ TEST PASSED: "Checking the interface address configured under the interface ..."
+ TEST PASSED: "Checking for missing interface address ..."
+ TEST PASSED: "Checking for new interface address ..."
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!
---> ERROR: section '' not found ... SKIPPING!

CHECKING SECTION: check_bgp_summary

+ TEST PASSED: "Checking the number of BGP groups ..."
+ TEST PASSED: "Checking the number of BGP peers ..."
+ TEST PASSED: "Checking if the BGP configuration has at least 1 BGP peer configured
..."
- TEST FAILED: "Checking the number of BGP peers down ..."

 ERROR: the number of BGP peers down has changed from 0 to 1.

+ TEST PASSED: "Checking if the BGP peers addresses are still the same ..."
+ TEST PASSED: "Checking if the BGP peers ASNs are still the same ..."
- TEST FAILED: "Checking if the BGP peer has flapped ..."

 ERROR: the BGP peer 10.100.100.1 (ASN 65000) has flapped.

- TEST FAILED: "Checking if the BGP peers are in Established state ..."

 ERROR: the BGP peer 10.100.100.1 (ASN 65000) is not in Established state.

+ TEST PASSED: "Checking if the BGP RIB name has changed ..."
- TEST FAILED: "Checking for missing RIBs ..."

 ERROR: the RIB inet.0 for the BGP peer 10.100.100.1 (ASN 65000) has gone
missing.

 ERROR: the RIB bgp.l3vpn.0 for the BGP peer 10.100.100.1 (ASN 65000) has gone
missing.

 ERROR: the RIB bgp.rtarget.0 for the BGP peer 10.100.100.1 (ASN 65000) has
gone missing.

 ERROR: the RIB bgp.mvpn.0 for the BGP peer 10.100.100.1 (ASN 65000) has gone
missing.

 124 Day One: Using JSNAP to Automate Network Verifications

 ERROR: the RIB VPNA.inet.0 for the BGP peer 10.100.100.1 (ASN 65000) has gone
missing.

 ERROR: the RIB VPNB.inet.0 for the BGP peer 10.100.100.1 (ASN 65000) has gone
missing.

+ TEST PASSED: "Checking for new RIBs ..."
+ TEST PASSED: "Checking if the number of BGP active prefix has changed more than 20%."
+ TEST PASSED: "Checking if the number of BGP received prefix has changed more than
20%."
+ TEST PASSED: "Checking if the number of BGP accepted prefix has changed more than
20%."
+ TEST PASSED: "Checking if the number of BGP suppressed prefix has changed more than
20%."

CHECKING SECTION: check_show_rsvp_sessions

- TEST FAILED: "Checking if the number of RSVP sessions has changed ..."

 ERROR: the number of | Ingress | RSVP sessions has changed from 1 to 0.

 ERROR: the number of | Egress | RSVP sessions has changed from 1 to 0.

- TEST FAILED: "Checking if the number of displayed RSVP sessions has changed ..."

 ERROR: the number of | Ingress | displayed RSVP sessions has changed from 1 to
0.

 ERROR: the number of | Egress | displayed RSVP sessions has changed from 1 to
0.

- TEST FAILED: "Checking if the number of active (UP) RSVP sessions has changed ..."

 ERROR: the number of | Ingress | active (UP) RSVP sessions has changed from 1
to 0.

 ERROR: the number of | Egress | active (UP) RSVP sessions has changed from 1
to 0.

+ TEST PASSED: "Checking if the number of inactive (DOWN) RSVP sessions has changed
..."
+ TEST PASSED: "Checking the source address of the RSVP sessions ..."
+ TEST PASSED: "Checking the destination address of the RSVP sessions ..."
+ TEST PASSED: "Checking the RSVP session names ..."
+ TEST PASSED: "Checking the RSVP session state ..."
- TEST FAILED: "Checking for missing RSVP sessions ..."

 ERROR: the | Ingress | RSVP session to-PE1 has gone missing.

 Chapter 5: Putting It All Together 125

 ERROR: the | Egress | RSVP session to-PE2 has gone missing.

+ TEST PASSED: "Checking for new RSVP sessions ..."

CHECKING SECTION: check_show_rsvp_interface

+ TEST PASSED: "Checking the number of active RSVP interfaces ..."
+ TEST PASSED: "Checking if the name of the RSVP interface has changed ..."
+ TEST PASSED: "Checking the RSVP status for each interface ..."
+ TEST PASSED: "Checking for missing RSVP interfaces ..."
+ TEST PASSED: "Checking for new RSVP interfaces ..."

CHECKING SECTION: check_show_mpls_interface

+ TEST PASSED: "Checking if there are changes in the name of the MPLS interfaces ..."
+ TEST PASSED: "Checking the MPLS interface state ..."
+ TEST PASSED: "Checking for missing MPLS interfaces ..."
+ TEST PASSED: "Checking for new MPLS interfaces ..."

CHECKING SECTION: check_show_mpls_lsp_extensive

+ TEST PASSED: "Checking if the LSP has changed its destination address ..."
+ TEST PASSED: "Checking if the LSP has changed its source address ..."
- TEST FAILED: "Checking if the LSP state has changed ..."

 ERROR: the Ingress LSP to-PE1 has changed its state from Up to Dn.

+ TEST PASSED: "Checking if the LSP name has changed ..."
+ TEST PASSED: "Checking for missing LSPs ..."
+ TEST PASSED: "Checking for new LSPs ..."
- TEST FAILED: "Checking if the PRIMARY path is the active path for the LSP ..."

 ERROR: the Ingress LSP to-PE1 is not running on its PRIMARY path. It is
currently running on (none).

- TEST FAILED: "Checking the number of LSPs ..."

 ERROR: the number of Egress LSPs has changed from 1 to 0.

- TEST FAILED: "Checking the number of LSP in UP state ..."

 ERROR: the number of Ingress LSPs in UP state has changed from 1 to 0.

 ERROR: the number of Egress LSPs in UP state has changed from 1 to 0.

- TEST FAILED: "Checking the number of LSP in DOWN state ..."

 ERROR: the number of Ingress LSPs in DOWN state has changed from 0 to 1.

dmontagner@querencia:~/jsnap$

 126 Day One: Using JSNAP to Automate Network Verifications

Analyzing the results of the network verification presented here, there are
some observations that can be made:

 � A simple configuration mistake (or problem) can be devastating in
some network designs.

 � A simple problem or mistake can lead to other cascading problems.

 � JSNAP can be very assertive by automatically identifying each one
of the network problems.

 � JSNAP can execute a very large number of verifications across a
very large number of devices taking much less time than any other
method.

 � In some network scenarios, it is better to have different JSNAP files
to be used with different groups of routers. For instance, we could
have a JSNAP configuration file for CE routers, another for PE
routers, and a third one for P routers.

 � Some tests failed reporting what appears to be a software problem
in JSNAP (RSVP tests). Those errors are caused because under the
failure condition of the topology of this book, few of the XPaths
tested by the RSVP tests will not be present in the post- snapshot.
Because the JSNAP test operators in use on those tests require both
pre- and post-snapshots to contain the XPath being tested, JSNAP
will fail the tests whenever one or both snapshots don’t contain the
XPath being tested.

 � Chassis verifications were disabled (skipped) in these tests because
the network topology was running in Junosphere. Junosphere uses
virtual-routers that may or may not have the complete hardware
information needed for the Chassis verifications developed in this
book.

Summary

The development of a JSNAP configuration file may be a bit difficult
when you first learn about JSNAP, but this book was developed with the
idea of helping network engineers to automate network verification tests,
as well as helping them to accelerate the JSNAP learning process.
Moreover, the book focuses on developing the most used set of network
verifications that can be applied to a wide range of networks. Complex
networks will require further development of the JSNAP configuration
file presented in this book, but for sure, this configuration file can be used
as a starting point.

I hope you have enjoyed your journey through this book.

 – Diogo Montagner

Here is the JSNAP Configuration file for CPU, the answer to
Chapter 3’s JSNAP Challenge:

do {
 check_cpu;
}

check_cpu {
 command show chassis routing-engine;
 iterate route-engine {
 id slot;
 in-range cpu-idle, 20, 99 {
 info "Checking if CPU Idle is within 20% ~ 99%.";
 err "The CPU utilisation of RE %s is too high!", $ID.1;
 }
 no-diff status {
 info "Checking the REs have changed its status...";
 err " ERROR: the RE %s has changed its status from %s to %s.", $ID.1,
$PRE/status, $POST/status;
 }
 is-lt temperature/@junos:celsius, 55 {
 info "Checking if the Routing-Engine temperature is below 55 degrees
Celsius ...";
 err " ERROR: the Routing-Engine temperature is higher than 55 degress
Celsius (current = %s degrees Celsius).", $POST/temperature/@junos:celsius;
 }
 }
 item route-engine[slot = '0'] {
 is-equal mastership-state, "master" {
 info "Checking if RE0 is the Master RE ...";
 err " ERROR: RE0 is not the Master RE. Its current state is %s",
$POST/mastership-state;
 }
 }
}

Appendix

Answer to the Chapter 3 Challenge

 128 Day One: Using JSNAP to Automate Network Verifications

What To Do, Where To Go Next

http://www.juniper.net/dayone

Free access to all Day One and This Week Juniper books in PDF
format.

www.juniper.net/junos

Everything you need for Junos adoption and education.

http://forums.juniper.net/jnet

The Juniper-sponsored J-Net Communities forum is dedicated to
sharing information, best practices, and questions about Juniper
products, technologies, and solutions. Register to participate at this
free forum.

http://www.juniper.net/techpubs/en_US/junos-snapshot1.0/information-products/pathway-
pages/junos-snapshot.html#overview

The Junos Snapshot Administrator technical documentation.

http://www.juniper.net/support/downloads/?p=jsnap#sw

Download the Junos Snapshot Administrator software.

https://github.com/Juniper/junos-snapshot-administrator

The Junos Snapshot Administrator repository on GitHub.

http://www.juniper.net/dayone
http://www.juniper.net/junos
http://forums.juniper.net/jnet
http://www.juniper.net/techpubs/en_US/junos-snapshot1.0/information-products/pathway-pages/junos-snapshot.html#overview
http://www.juniper.net/techpubs/en_US/junos-snapshot1.0/information-products/pathway-pages/junos-snapshot.html#overview
http://www.juniper.net/support/downloads/?p=jsnap#sw
https://github.com/Juniper/junos-snapshot-administrator

	Front Cover
	Back Cover
	Title Page and Table of Contents
	Copyright and About the Author
	Welcome to Day One
	Audience
	What You Need to Know Before Reading This Book
	What You Will Learn by Reading This Book
	Information Experience
	Preface
	Chapter 1: Automating Network Verifications
	The Change Document
	The Network Change Process
	The Network Verification Process

	Chapter 2: JSNAP Components
	SLAX
	The Junos User Interface Script Environment
	The JSNAP Core
	The JSNAP Configuration File
	The JSNAP Configuration File – Test Operators

	Chapter 3: Developing Automated Network Verifications
	The Network
	Writing the JSNAP Configuration File

	Chapter 4: Tips and Tricks
	Tip #1
	TRICK #1
	TIP #2
	TRICK #2
	TIP #3
	Tip #4
	Tip #5

	Chapter 5: Putting It All Together
	The Complete JSNAP Configuration
	Demonstration of the Configuration’s Use
	Summary

	Appendix Answer to the Chapter 3 Challenge
	What To Do, Where To Go Next

