
D
A

Y
O

N
E

: A
U

T
O

M
A

T
IN

G
J
U

N
O

S
W

IT
H

S
A

L
T

K
lim

a
i

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: AUTOMATING JUNOS WITH SALT

Network automation is a hot topic. Currently there are several popular configuration management systems
that can be used for networking – Puppet, Chef, Ansible, etc. Salt is one of them, but it is different because
it is event-driven and allows users to build event-driven infrastructure (EDI). Day One: Automating Junos
with Salt is a complete book for Junos® OS network engineers with little or no advanced knowledge in
programming, templating, or data structures. From fundamental concepts to working tutorials, this Day
One book will have you automating with Salt in no time at all.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n	Salt installation and basic settings to make it work with the Junos OS.

n Executing Junos commands remotely.

n Provisioning Junos device configurations with Salt.

n Integrating Junos devices in Salt’s event-driven infrastructure.

n Creating custom Salt modules with Junos PyEZ.

n Performing network verifications with Salt.

n Using NAPALM Salt modules to manage multivendor networks.

“Peter Klimai has written an engaging crash course about using Salt to manage Junos devices. If you are using
Salt and want to include Junos devices in your Salt operations, read this book. If you want to build an event-
driven automation environment around your Junos devices, read this book.”

Sean Sawtell, Senior Network Engineer, Juniper Networks,
author of Day One: Automating Junos with Ansible, 2nd Ed.

”The quality is top-notch. It is well-written and concise without leaving anything important out. Even though
I had never done anything in Salt, I was able to write a few states for our network in a day or two.”

 Said van de Klundert, Network Engineer for IBM Cloud,
 Juniper Ambassador, JNCIE-SP, JNCIE-DC

ISBN 978-1-941441-75-6

9 781941 441756

5 3 5 0 0

By Peter Klimai

DAY ONE: AUTOMATING JUNOS

WITH SALT

Learn how Salt works
with the Junos® OS
to build an event-driven
infrastructure (EDI).

D
A

Y
 O

N
E

: A
U

T
O

M
A

T
IN

G
 J

U
N

O
S

 W
IT

H
 S

A
L
T

K
lim

a
i

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: AUTOMATING JUNOS WITH SALT

Network automation is a hot topic. Currently there are several popular configuration management systems
that can be used for networking – Puppet, Chef, Ansible, etc. Salt is one of them, but it is different because it
is event-driven and allows users to build event-driven infrastructure (EDI). Day One: Automating Junos with
Salt is a complete book for Junos® OS network engineers unfamiliar with programming, templating,
or data structures. From fundamental concepts to working tutorials, this Day One book will have you
working with Salt in no time at all.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n	Install Salt and its basic settings to make it work with the Junos OS.

n Execute Junos commands remotely.

n Provision Junos device configurations with Salt.

n Integrate Junos devices in Salt’s event-driven infrastructure.

n Create custom Salt modules with Junos PyEZ.

n Perform network verifications with Salt.

n Use NAPALM Salt modules to manage multivendor networks.

“Peter Klimai has written an engaging crash course about using Salt to manage Junos devices. If you are using
Salt and want to include Junos devices in your Salt operations, read this book. If you want to build an event-
driven automation environment around your Junos devices, read this book.”

Sean Sawtell, Senior Network Engineer, Juniper Networks,
author of Day One: Automating Junos with Ansible, 2nd Ed.

”The quality is top-notch. It is well-written and concise without leaving anything important out. Even though
I had never done anything in Salt, I was able to write a few states for our network in a day or two.”

 Said van de Klundert, Network Engineer for IBM Cloud,
 Juniper Ambassador, JNCIE-SP, JNCIE-DC

ISBN 978-1-941441-75-6

9 781941 441756

5 3 5 0 0

By Peter Klimai

DAY ONE: AUTOMATING JUNOS

WITH SALT

Learn how Salt works
with the Junos® OS
to build an event-driven
infrastructure (EDI).

Day One: Automating Junos® with Salt
by Peter Klimai

Chapter 1: Introduction to Junos Automation with Salt . 7

Chapter 2: Basic Salt Architecture and Installation . 11

Chapter 3: Using Junos Proxy Minions . 15

Chapter 4: Executing Junos Commands with Salt . 20

Chapter 5: Provisioning Junos Configurations with Salt State Module 30

Chapter 6: Provisioning Junos Configurations –Advanced Example 36

Chapter 7: Junos Syslog Engine and Salt Reactors . 51

Chapter 8: Basics of Building Event-Driven Infrastructure . 57

Chapter 9: Creating Custom Modules for Salt with Junos PyEZ 63

Chapter 10: Validating Operational States of a Junos Device 73

Chapter 11: Automated Network Verifications with Salt and JSNAPy 81

Chapter 12: Junos Automation with Salt and NAPALM . 88

Appendix: References . 95

 iv

© 2018 by Juniper Networks, Inc.
All rights reserved. Juniper Networks and Junos are
registered trademarks of Juniper Networks, Inc. in the
United States and other countries. The Juniper Networks
Logo and the Junos logo, are trademarks of Juniper
Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners. Juniper Networks
assumes no responsibility for any inaccuracies in this
document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication
without notice.

Script Software License
© 2018 Juniper Networks, Inc. All rights reserved.
Licensed under the Juniper Networks Script Software
License (the “License”). You may not use this script file
except in compliance with the License, which is located at
http://www.juniper.net/support/legal/scriptlicense/. Unless
required by applicable law or otherwise agreed to in
writing by the parties, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.

Published by Juniper Networks Books
Author: Peter Klimai
Technical Reviewers: Khelil Sator, Nitin Kr, Dwarakanath
Yadavalli, Piyush Rai, Diogo Montagner, Sean Sawtell,
Said van de Klundert, Clay Haynes
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel
Illustrator: Karen Joice

ISBN: 978-1-941441-75-6 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-76-3 (ebook)

Version History: v1, October 2018
 2 3 4 5 6 7 8 9 10

http://www.juniper.net/dayone

About the Author
Dr. Peter Klimai is a Juniper Ambassador working as Lead
Engineer and Instructor at Poplar Systems (Juniper partner
in Russia since 2001). He is certified JNCIE-SEC #98,
JNCIE-ENT #393, JNCIE-SP #2253, JNCIP-DC, and
JNCI, and has several years of experience supporting
Juniper equipment for small and large companies. Peter
teaches Juniper classes on routing, security, automation
and troubleshooting and is especially enthusiastic about
network automation using various tools, as well as
network function virtualization.

Author’s Acknowledgments
While I was working on this book, many people helped me
with advice, reviews, and pushing me in the right direction
– without them this book would have been impossible to
complete. I would especially like to thank Patrick Ames,
Julie Wider, Nitin Kr, Khelil Sator, Diogo Montagner,
Dwarakanath Yadavalli, Leonid Mirenkov, Said Klundert,
Sean Sawtell, Alex Tarkhov, and Clay Haynes.

Feedback? Comments? Error reports? Email them to
dayone@juniper.net.

http://www.juniper.net/support/legal/scriptlicense/
http://www.juniper.net/dayone

 v

Welcome to Day One
This book is part of the Day One library, produced and published by Juniper Net-
works Books.

Day One books cover the Junos OS and Juniper Networks networking essentials
with straightforward explanations, step-by-step instructions, and practical exam-
ples that are easy to follow. You can obtain the books from various sources:

 � Download a free PDF edition at http://www.juniper.net/dayone.

 � Many of the library’s books are available on the Juniper app: Junos Genius.

 � Get the ebook edition for iPhones and iPads from the iBooks Store. Search for
Juniper Networks Books or the title of this book.

 � Get the ebook edition for any device that runs the Kindle app (Android, Kin-
dle, iPad, PC, or Mac) by opening your device’s Kindle app and going to the
Amazon Kindle Store. Search for Juniper Networks Books or the title of this
book.

 � Purchase the paper edition at Vervante Corporation (www.vervante.com) for
between $15-$40, depending on page length.

 � Note that most mobile devices can also view PDF files.

Target Audience
This book is written for network administrators and network engineers who are
starting to build and use network automation to make their jobs easier, and is fo-
cused on how to use the SaltStack (Salt) automation platform to configure and
manage Junos-based devices. However, once you’ve learned how to use Salt, you
can also leverage that knowledge to automate the administration of servers or net-
work gear from other vendors.

This Book’s GitHub Site
Go to: https://github.com/pklimai/day-one-junos-salt.

http://www.juniper.net/dayone
https://www.juniper.net/us/en/training/junos-genius/
http://www.vervante.com
https://github.com/pklimai/day-one-junos-salt

 vi

What You Need to Know Before Reading This Book
The author has made a few assumptions while writing this book:

 � You are a network engineer having some experience with managing computer
networks.

 � You understand typical network management tasks and willing to see possible
benefits of their automation.

 � You are familiar with Junos OS CLI.

 � You have basic understanding of programming languages.

 � This book is based on Salt 2018.3 (Oxygen) version. It generally applies to all
Junos-based platforms running Junos® OS version 11.4 or later.

What You Will Learn by Reading This Book
This book will help you get started automating Junos devices with Salt, the power-
ful configuration management and remote execution software platform from Salt-
Stack. You will learn relevant Salt concepts by practicing them, and we will go
step-by-step, to practice the following:

 � Salt installation and basic settings to make it work with Junos.

 � Executing Junos commands remotely.

 � Provisioning Junos device configurations with Salt.

 � Integrating Junos devices in Salt’s event-driven infrastructure.

 � Creating custom Salt modules with Junos PyEZ.

 � Performing network verifications with Salt.

 � Using NAPALM Salt modules to manage multivendor networks.

This chapter briefly reviews Junos and Junos Automation solutions, discusses net-
work automation a bit more generally, and then introduces the Salt platform. Use
the links at the end of each section to get the most recent news and updates.

Junos Automation
Junos is a powerful network operating system (OS) that was first released in 1998
and has gained the love and respect of network engineers all over the world ever
since.

Among the many reasons Junos is so pleasant to work with are its consistent fea-
tures among different physical and virtual platforms, stability, high performance,
and its convenient and powerful CLI. And although many of us first fell in love
with Junos after looking at its extremely appealing CLI, it is important to remem-
ber that a network OS is not the same as its CLI – it is much more.

In fact, there are many reasons why performing day-to-day network management
tasks using device CLI is not that good of an idea:

 � Monitoring by executing a series of CLI commands on multiple devices and
looking at their output is time consuming and not scalable. Clearly, the task
can, and should, be automated.

 � Provisioning configuration by typing in set-commands is time consuming and
does not guarantee consistency – this leads to future problems with trouble-
shooting, migrations, etc.

Chapter 1

Introduction to Junos Automation with Salt

 8 Chapter 1: Introduction to Junos Automation with Salt

 � Reacting to events manually, as in an emergency, is also not scalable, and as-
sumes you will be called at 4 a.m. just because you are the person who was able
to troubleshoot a similar issue last time.

So you decide to automate both operational and configuration tasks on your Junos
network devices, be they physical or virtual. To do so, you need to choose a proper
toolkit, and, generally, to decide how far you are willing to go.

Let’s briefly review the ways you can perform Junos automation. As Junos auto-
mation has a long history, there are multiple options with a use case for each
option.

Here is an incomplete list of features that were introduced, over time, to automate
Junos:

 � You can execute scripts written in XSLT, SLAX, or Python programming lan-
guages “on-box”, that is, on the device itself. Junos supports operational
scripts (they work as custom op-mode commands), event scripts (reacting to
different events), and commit scripts (customizing configuration processing),
as well as SNMP scripts (scripts executed by calling custom SNMP OID). On-
box scripts can do a lot of things but they are tied to a single device – so they
allow you to automate, but, generally, not to orchestrate tasks on multiple de-
vices.

 � You can connect to a Junos device using the NETCONF protocol, which is an
XML-based protocol typically using SSH transport. Then, you can execute re-
mote procedure calls (RPCs), which are analogs of Junos CLI commands, re-
motely, to query operational state and change configuration as needed. NET-
CONF is currently standardized in RFC 6241 and supported by multiple
vendors (although initially NETCONF appeared as improved version of Juni-
per’s JUNOScript protocol). There are multiple libraries for various program-
ming languages that implement the NETCONF protocol.

 � If you can make use of the Junos PyEZ library by using Python programming
language, it significantly simplifies your life by abstracting out details of work-
ing with NETCONF sessions (for example, opening and closing the connec-
tion, forming XML RPC documents, and parsing responses, etc.). With the
PyEZ library and the flexibility of Python, you can approach virtually any au-
tomation task – except, perhaps, for some extreme cases (see the bullet on JET
below), but that will require some Python coding, of course.

NOTE Multiple PyEZ use cases are covered in Day One: Junos PyEZ Cookbook,
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/
junos-pyez-cookbook/.

https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/junos-pyez-cookbook/
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/junos-pyez-cookbook/

 9 Network Automation

 � Junos also supports REST API, which is a stateless HTTP(S)-based manage-
ment interface that you can use as an alternative to NETCONF, if you prefer.
REST API is currently available for M, MX, T, PTX, and SRX Series Junos-
based platforms.

 � Junos Extension Toolkit (JET) is additional API available to program Junos
control plane. Generally, JET is rather low-level and gives you access to the
APIs of internal Junos daemons. With JET, you can modify device configura-
tion hundreds of times a second, as well as doing other mind-blowing things;
shooting yourself in the foot is also possible. JET is beyond the scope of this
book.

 � Junos Advanced Forwarding Toolkit (AFT) provides the packet forwarding en-
gine (PFE) APIs that can be used by the control plane. This is a rather new fea-
ture, please see review here: https://forums.juniper.net/t5/Industry-Solutions-
and-Trends/Juniper-Forwarding-Interface/ba-p/310823

 � Junos supports integration with automation management systems including
Ansible, Puppet, Chef, and Salt. Initially these systems were widely used for
managing the compute (server) infrastructure, and later they were successfully
adapted to managing network equipment. Generally, use of automation man-
agement systems allows automation without reinventing the wheel (having to
code everything yourself); for more complex tasks not foreseen by the develop-
ers, you can still code additional modules as needed. As you should already
know, this book covers Salt, or the SaltStack system, which has some unique
features reviewed in the next sections.

NOTE Day One: Automating Junos with Ansible, 2nd Edition available at
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/
automating-junos-ansible/, covers integration of Ansible with Junos in many
details.

Network Automation
Now let’s briefly discuss how much automation you want. This is not an official
classification, but for the purpose of this chapter, I suggest you consider three auto-
mation “stages”:

 � Automate some things – at this level, you start creating simple scripts to auto-
mate basic tasks; you also might be using an automation management system
but your workflows are not yet fully integrated –you still do a lot of work
manually.

 � Automate most things – this is the level where you apply DevOps or Network
Reliability Engineering (NRE) practices, with all changes going through a re-
view process, version control system, automated testing, and generally a Con-
tinuous Deployment (or DevNetOps) pipeline.

https://forums.juniper.net/t5/Industry-Solutions-and-Trends/Juniper-Forwarding-Interface/ba-p/310823
https://forums.juniper.net/t5/Industry-Solutions-and-Trends/Juniper-Forwarding-Interface/ba-p/310823
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/automating-junos-ansible/
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/automating-junos-ansible/

 10 Chapter 1: Introduction to Junos Automation with Salt

NOTE You can learn more on NRE and DevNetOps at the following URLs:
https://www.juniper.net/us/en/products-services/what-is/nre/ and https://www.
juniper.net/us/en/products-services/what-is/devnetops/ .

 � Automate all things – ideally, you automate your network up to a level where it
is almost completely self-driving (https://www.juniper.net/us/en/products-ser-
vices/what-is/self-driving-network/). This is not to say that in the end you will
just be sitting back and looking at your finished network. Similar to what hap-
pens in software development industry, where there is never a final software
version – the network automation system itself will need to be regularly fine-
tuned, upgraded, and extended, which guarantees you never stay idle.

Using the above classification, in this introductory book we’ll be somewhere be-
tween Levels 1 and 2. The idea is to start simple and gradually increase the cover-
age of things that are automated: monitoring, troubleshooting, configuration
deployment, migrations, the list goes on.

NOTE For an alternative five-step classification of network automation stages,
please consult: https://www.juniper.net/us/en/solutions/automation/the-automa-
tion-journey/.

Salt
Salt (https://saltstack.com/) is one of the most powerful, scalable, and flexible plat-
forms that allows you to automate key operational and configuration tasks in your
network. Salt is open source and it comes packaged with modules supporting Ju-
nos OS right out of the box.

One special advantage of Salt, compared to most other automation management
systems, is its native support for event-driven infrastructure (EDI). With Salt, you
can automatically react on certain events (such as Junos events) in certain ways, as
you see fit.

This book covers Salt installation, basic architecture, and the configuration that
must be performed to make Salt and Junos work together. It also addresses moni-
toring and configuration provisioning, and some EDI examples are discussed.

MORE? This book is intended to get you started with Salt for Junos. SaltStack
has extensive documentation available at https://docs.saltstack.com, and many
additional resources are cited in the Appendix at the end of this book.

https://www.juniper.net/us/en/products-services/what-is/nre/
https://www.juniper.net/us/en/products-services/what-is/devnetops/
https://www.juniper.net/us/en/products-services/what-is/devnetops/
https://www.juniper.net/us/en/products-services/what-is/self-driving-network/
https://www.juniper.net/us/en/products-services/what-is/self-driving-network/
https://www.juniper.net/us/en/solutions/automation/the-automation-journey/
https://www.juniper.net/us/en/solutions/automation/the-automation-journey/
https://saltstack.com/
https://docs.saltstack.com

This chapter explains the basics of Salt architecture and shows you how to install
Salt. The terminology used by Salt, the basics of its architecture, and how it applies
to managing Junos devices, are explained in-line with practical instructions telling
you how to perform each task.

Salt Installation
Let’s start with some of the terminology involved: Salt Master is Salt’s main control
server. Salt Minion is a system managed by Salt. Salt typically uses agent-based ar-
chitecture, so devices managed by Salt need to run the Salt Minion process. As you
will see in Chapter 3, devices that can’t run the minion process for some reason can
still be managed by using proxy minions.

NOTE Generally, Salt is very flexible and every component is customizable and
replaceable. Salt setup may differ greatly depending on the use case – for example,
a masterless setup is possible. Additionally, the salt-ssh package allows Salt to
work in agentless mode (no minion process required). This option is not currently
used for Junos device management, so it will not be discussed here.

Setting up Salt and configuring it to work with Junos is quite easy if you follow the
steps in this chapter.

The initial lab setup used here is shown in Figure 2.1. The setup includes a Salt
Master server (master) and a Salt Minion server (minion1). Also shown is a schemat-
ic of Salt’s Event Bus using (by default) ZeroMQ distributed messaging software
for all communication between master and minions. All events that happen in the

Chapter 2

Basic Salt Architecture and Installation

 12 Chapter 2: Basic Salt Architecture and Installation

system are published onto the event bus and the subscribers listen for published
events, reacting accordingly. Based on this, event-driven infrastructure (EDI) can
be built, as discussed in later chapters.

Figure 2.1 Basic Salt Setup Diagram Used in This Chapter

There are two Linux Servers in the initial setup of Figure 2.1, specifically running
Ubuntu 16.04.4 LTS, (master and minion1). Other *nix flavors should work as well.
In our setup, servers run as virtual machines (VMs) using VMware ESXi hypervi-
sor but you can use any other option, such as KVM or VirtualBox, or public
cloud-based deployment.

At this point let’s assume you have both Linux servers (VMs) ready for Salt instal-
lation. When provisioning Linux, it is enough to install standard file system utili-
ties and OpenSSH server.

The easiest way to set up Salt, then, is through a bootstrap script (https://docs.salt-
stack.com/en/latest/topics/tutorials/salt_bootstrap.html). To install Salt on the
master server, issue the following commands:

lab@master:~$ curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
lab@master:~$ sudo sh bootstrap_salt.sh -M

Output is omitted for brevity. The installation will take a minute or so. When it
completes, you can check the Salt version by using the following command:

lab@master:~$ salt --version
salt 2018.3.2 (Oxygen)

On the minion1 server, install Salt by performing similar steps, but for this time do
not use the –M key:

lab@minion1:~$ curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
lab@minion1:~$ sudo sh bootstrap_salt.sh

... OMITTED ...

https://docs.saltstack.com/en/latest/topics/tutorials/salt_bootstrap.html
https://docs.saltstack.com/en/latest/topics/tutorials/salt_bootstrap.html

 13 Performing Basic Salt Configuration and Verification

lab@minion1:~$ salt-minion --version
salt-minion 2018.3.2 (Oxygen)

NOTE By default, the bootstrap script installs the latest stable Salt version, so it
may differ from the 2018.3.2 that is used for this chapter. This will typically not be
a problem. However, you can enforce the installation of a specific Salt version, if
you wish, by modifying the second command as follows: sudo sh bootstrap_salt.sh
-M git v2018.3.2 (this is for master; for minion, omit the –M key).

Performing Basic Salt Configuration and Verification
There’s one thing you definitely want to configure on the minion: that’s to tell it
where the master is (the default is actually to look for host named “salt”, which
does not readily meet the needs of our lab setup).

So, start configuring the minion process on the minion1 server by editing the minion
configuration file:

lab@minion1:~$ sudo vi /etc/salt/minion

NOTE Although the examples show you using the vi text editor, any text editor
of your choice will work.

Add the following line (in bold) to the file:

...
Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt
master: 10.254.0.200
...

Here, the IP address is the master server’s address in the lab setup. Replace it with
the address in your lab. Remember that lines starting with a hash are treated as
comments. Do not forget to save the changes.

Finally, restart the salt-minion process so it re-reads the configuration:

lab@minion1:~$ sudo service salt-minion restart

Now, switch to the open terminal session with the master and issue the following
command to view the minion’s public key status:

lab@master:~$ sudo salt-key --list-all
Accepted Keys:
Denied Keys:
Unaccepted Keys:
minion1.edu.example.com
Rejected Keys:

 14 Chapter 2: Basic Salt Architecture and Installation

Note the ID of the minion with an unaccepted key. The security system of Salt will
not allow communication until you accept minion’s key on master – so let’s do that
now:

lab@master:~$ sudo salt-key --accept=minion1.edu.example.com
The following keys are going to be accepted:
Unaccepted Keys:
minion1.edu.example.com
Proceed? [n/Y] y
Key for minion minion1.edu.example.com accepted.

Now let’s execute some of the Salt commands, using its remote execution capabili-
ties. Note we are testing basic Salt features here – no Junos at all is involved at this
point.

First, let’s ping our minion:

lab@master:~$ sudo salt '*' test.ping
minion1.edu.example.com:
 True

Here, you called the test.ping execution function that is used to make sure the
minion is up and responding. The communication happens over Salt’s ZeroMQ
message bus (so this is not an ICMP ping). The argument ‘*’ means that you want
to execute on all minions, it just happens that, so far, we only have one.

Generally speaking, various Salt execution modules allow you to perform (exe-
cute) some specific tasks on minions: test is just one of such modules.

Let’s now try the cmd.run function – it allows the running of arbitrary commands
on minions. Let’s check minion’s Python version, just for an example:

lab@master:~$ sudo salt minion* cmd.run 'python -V'
minion1.edu.example.com:
 Python 2.7.12

You can run any other commands on the minions the same way. Check out the full
Salt module index at https://docs.saltstack.com/en/latest/salt-modindex.html for
more examples. In Chapter 3, you will add Junos devices to the setup.

https://docs.saltstack.com/en/latest/salt-modindex.html

This chapter explains how Salt makes use of proxy minions to work with Junos
devices.

Adding Proxy Minions to Manage Junos Devices
Chapter 2 explained how to start managing a Linux server with Salt. However,
managing Junos devices with Salt is a bit different. You do not run a Salt minion
on-box with Junos devices; instead, a proxy minion process is used. The proxy
minion process may run either on the Salt master server or on some other server.
The latter option allows for load distribution in scaled setups and is a bit easier to
understand for educational purposes, so let’s use it here: proxy minions will run on
the minion1 server (see Figure 3.1, which shows an extension of the setup used pre-
viously in Figure 2.1).

Figure 3.1 Salt Setup for Managing Two Junos Devices

Chapter 3

Using Junos Proxy Minions

 16 Chapter 3: Using Junos Proxy Minions

You can see from Figure 3.1 that we added two Juniper vMX devices to the setup,
named vMX-1 and vMX-2. Their management IP addresses configured on fxp0 inter-
faces are also shown.

NOTE Day One: vMX Up and Running by Matt Dinham explains the architec-
ture and installation of vMX for KVM hypervisor: https://www.juniper.net/us/en/
training/jnbooks/day-one/automation-series/vmx-up-running/. The following blog
post by Clay Haynes shows how to run the vMX on VMware Fusion:
https://alostrealist.com/2018/04/16/running-the-vmx-on-vmware-fusion/.

NOTE This book will not use any vMX-specific functionality, so if you replace
the vMXs with any other Junos devices, such as physical MX/EX/SRX/QFX
Series, or a vSRX, everything will typically work the same way for the examples
discussed here.

As a prerequisite step, NETCONF over SSH must be enabled on both Junos de-
vices, as follows (this shows configuration for one device – make sure you perform
this on the other one as well):

lab@vMX-1> configure
Entering configuration mode

[edit]
lab@vMX-1# set system services netconf ssh

[edit]
lab@vMX-1# commit
commit complete

You can also see from Figure 3.1 that the minion server (minion1) will now also run
two Junos proxy minions, one for each of the two vMX devices in the topology.
Proxy minions are just software processes (daemons) used to manage, in this case,
a networking device. You need one proxy process per device, and for Junos one
such process requires about 100MB of RAM, so plan your system accordingly.

Refer again to Figure 3.1. From one “side” the proxy minion connects to Salt mas-
ter using the ZeroMQ bus, while from the other “side” it is connected to the Junos
device using NETCONF protocol (Junos PyEZ library is used under the hood).

To start configuring Salt proxy, edit the /etc/salt/proxy file on the minion1 server:

lab@minion1:~$ sudo vi /etc/salt/proxy

Add the master setting to it, indicating where the Salt master is:

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt
master: 10.254.0.200

https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/vmx-up-running/
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/vmx-up-running/
https://alostrealist.com/2018/04/16/running-the-vmx-on-vmware-fusion/

 17 Adding Proxy Minions to Manage Junos Devices

Before proceeding, it’s time to get familiar with one more Salt concept: pillar. The
Salt’s pillar system provides various data associated with minions. In the simplest
case, pillar files will be YAML files with defined variable values, but pillar data can
also be stored in a database such as SQL, obtained via REST API from some exter-
nal system, etc.

The location where pillar files are stored can vary. By default, it is in the /srv/pillar
directory of the master server (this is defined by pillar_roots parameter in the /etc/
salt/master configuration file on the Salt master). Let’s just use the default directory
– to do so, you will have to create it first:

lab@master:~$ sudo mkdir /srv/pillar

In this directory, create the /srv/pillar/proxy-1.sls file with the following content
(just replace host IP, username, and password with values matching your setup):

lab@master:~$ cat /srv/pillar/proxy-1.sls
proxy:
 proxytype: junos
 host: 10.254.0.41
 username: lab
 password: lab123
 port: 830

NOTE Salt certainly has ways to better secure your passwords, but that is beyond
the scope of this chapter. Please consult the following URLs for details: https://
docs.saltstack.com/en/latest/topics/best_practices.html#storing-secure-data and
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html

Similarly, create the /srv/pillar/proxy-2.sls file:

lab@master:~$ cat /srv/pillar/proxy-2.sls
proxy:
 proxytype: junos
 host: 10.254.0.42
 username: lab
 password: lab123
 port: 830

The two files that you just created essentially contain some mappings (pairs of keys
and corresponding values). For example, the key username maps to value lab, etc.
The key proxy has a nested mapping as a value, which is shown by indentation. The
format that you just used for these files is YAML (http://yaml.org/), while the file
extension is SLS (SaLt State).

Generally, SLS files can be in various formats: in the simplest case it is YAML, or it
can be YAML+Jinja (where Jinja is a templates format – see http://jinja.pocoo.
org/), or something else if properly customized (maybe even Python code – Salt is
very flexible). The next chapters will contain some additional examples and expla-
nations of the YAML+Jinja syntax.

https://docs.saltstack.com/en/latest/topics/best_practices.html#storing-secure-data
https://docs.saltstack.com/en/latest/topics/best_practices.html#storing-secure-data
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
http://yaml.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/

 18 Chapter 3: Using Junos Proxy Minions

Now let’s create the pillar top file. This file will define which minions have access
to which pillar data. In our case, the content will be as follows:

lab@master:~$ cat /srv/pillar/top.sls
base:
 'vMX-1':
 - proxy-1
 'vMX-2':
 - proxy-2

Here, base is the name of what is called environment in Salt. For example, you can
have testing/staging/production environments – here we will just use the default
base environment. Note also that the .sls extension for the proxy-1.sls and
proxy-2.sls file names must be omitted.

Now it’s time to perform settings on the minion side. Switch to the minion1 server.
Remember, this server will host two Junos proxy minion processes. For Junos
proxy to successfully communicate with Junos devices, a couple of Python pack-
ages are needed – namely, Junos PyEZ and jxmlease (and their dependencies as well).
To install those libraries, first install the Python PIP tool, and then the packages
themselves (output omitted for brevity):

lab@minion1:~$ sudo apt-get install python-pip

lab@minion1:~$ sudo pip install junos-eznc

lab@minion1:~$ sudo python -m easy_install --upgrade pyOpenSSL

lab@minion1:~$ sudo pip install jxmlease

NOTE Upgrade the pyopenssl package before installing jxmlease. The explicit
upgrade is used here as a workaround, otherwise you may see an error message
like this: AttributeError: 'module' object has no attribute 'SSL_ST_INIT'.

Okay, it’s time to launch the Junos Salt proxy processes:

lab@minion1:~$ sudo salt-proxy --proxyid=vMX-1 -d
lab@minion1:~$ sudo salt-proxy --proxyid=vMX-2 -d

NOTE The –d option makes salt-proxy run in the daemon mode. If you want the
program to just run in the terminal window, omit that key. In this case you will be
able to see some of the salt-proxy log messages in real time. You can modify the
level of logging using -l key, for example: sudo salt-proxy --proxyid=vMX-1 -l debug.
This approach can be useful for troubleshooting.

 19 Adding Proxy Minions to Manage Junos Devices

And, on the master, accept the minion keys, just as you did before:

lab@master:~$ sudo salt-key -a vMX-1
The following keys are going to be accepted:
Unaccepted Keys:
vMX-1
Proceed? [n/Y] y
Key for minion vMX-1 accepted.
lab@master:~$ sudo salt-key -a vMX-2
The following keys are going to be accepted:
Unaccepted Keys:
vMX-2
Proceed? [n/Y] y
Key for minion vMX-2 accepted.

How many minions do you think you have now? Let’s check with test.ping:

lab@master:~$ sudo salt '*' test.ping
minion1.edu.example.com:
 True
vMX-1:
 True
vMX-2:
 True

So, you have two more minions (proxies) in addition to minion1. In Chapter 4, you
will continue using the setup and see how to execute Junos commands using Salt.

In this chapter, you will see how various Junos commands can be executed using
Salt’s Junos execution module.

Junos Execution Module Overview
The Salt execution module for Junos, named salt.modules.junos, includes several
useful execution functions that allow you to perform different tasks on a Junos
device. This includes executing arbitrary CLI commands, loading and committing
the configuration, installing software, and more.

NOTE This chapter demonstrates a few examples of how the execution functions
can be used. The complete documentation for the Junos execution module, listing
all supported functions, and their parameters, is available at https://docs.saltstack.
com/en/latest/ref/modules/all/salt.modules.junos.html.

The next sections of this chapter provide some examples on how you can use the
Junos execution module’s capabilities.

Collecting and Printing Device Facts
You should remember that Salt execution modules contain execution functions
that you can reference using the <module>.<function> syntax.

Let’s first use the junos.facts execution function to collect a basic information bun-
dle from our managed vMX devices:

Chapter 4

Executing Junos Commands with Salt

https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.junos.html
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.junos.html

 21 Executing CLI Commands

lab@master:~$ sudo salt vMX* junos.facts
vMX-2:

 facts:

 2RE:
 False
 HOME:
 /var/home/lab
 RE0:

 last_reboot_reason:
 Router rebooted after a normal shutdown.
...
vMX-1:

 facts:

 2RE:
 False
 HOME:
 /var/home/lab
 RE0:

 last_reboot_reason:
 Router rebooted after a normal shutdown.
...

Even when output is abbreviated, you can see a bunch of information is collected
and displayed for each device. Needless to say, the tasks on different devices are
performed in parallel by Salt.

It’s helpful to note that the facts collected by junos.facts are stored in Salt grains.
Grains generally contain data about the managed system, and you can use that
data in various places while working with Salt. For example, you can use grains
for filtering minions when running execution functions, as in the following
command:

lab@master:~$ sudo salt -G 'os_family:junos' junos.facts

The output was intentionally omitted – it is the same as the previous example. But
in this example, the CLI command was only executed on devices that had the os_
family grain equal to junos, namely vMX-1 and vMX-2 (without that filter Salt would
also try to execute the junos.facts module on minion1 – that operation would be
unsuccessful).

Executing CLI Commands
The junos.cli execution function invokes the Junos CLI commands and returns the
output in the specified format (default is text, but you can request XML output as
well).

 22 Chapter 4: Executing Junos Commands with Salt

For example:

lab@master:~$ sudo salt -G 'os_family:junos' junos.cli "show interfaces fxp0.0 terse"
vMX-2:

 message:

 Interface Admin Link Proto Local Remote
 fxp0.0 up up inet 10.254.0.42/24
 out:
 True
vMX-1:

 message:

 Interface Admin Link Proto Local Remote
 fxp0.0 up up inet 10.254.0.41/24
 out:
 True

Executing Junos RPCs
You can use the junos.rpc module to execute Junos remote procedure calls (RPCs).
Don’t worry if you are unaware of the RPC term – this is just an official name for
Junos commands when executed using the application programming interface
(API). In particular, this happens every time you are working via the NETCONF
protocol. Remember, Junos proxy minion connects to a Junos device using
NETCONF.

Most Junos commands have associated RPCs, and you can easily figure out the
RPC corresponding to a command using the | display xml rpc command modifier,
for example in the show interfaces terse fxp0 command:

lab@vMX-1> show interfaces terse fxp0 | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/17.1R2/junos">
 <rpc>
 <get-interface-information>
 <terse/>
 <interface-name>fxp0</interface-name>
 </get-interface-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Now that you know the RPC, which is contained inside the <rpc> tags in the above
output, you can execute it using the junos.rpc module:

lab@master:~$ sudo salt vMX* junos.rpc get-interface-information interface_name
='fxp0' terse=True --out=json
{
 "vMX-2": {

 23 Executing Junos RPCs

 "rpc_reply": {
 "interface-information": {
 "physical-interface": {
 "oper-status": "up",
 "logical-interface": {
 "oper-status": "up",
 "address-family": {
 "address-family-name": "inet",
 "interface-address": {
 "ifa-local": "10.254.0.42/24"
 }
 },
 "admin-status": "up",
 "name": "fxp0.0",
 "filter-information": ""
 },
 "admin-status": "up",
 "name": "fxp0"
 }
 }
 },
 "out": true
 }
}
{
 "vMX-1": {
 "rpc_reply": {
 "interface-information": {
 "physical-interface": {
 "oper-status": "up",
 "logical-interface": {
 "oper-status": "up",
 "address-family": {
 "address-family-name": "inet",
 "interface-address": {
 "ifa-local": "10.254.0.41/24"
 }
 },
 "admin-status": "up",
 "name": "fxp0.0",
 "filter-information": ""
 },
 "admin-status": "up",
 "name": "fxp0"
 }
 }
 },
 "out": true
 }
}

Note that the XML RPC parameters (the nested <terse> and <interface-name> ele-
ments in the original RPC request) must be transformed to command line argu-
ments, as shown. Because the terse parameter does not have a value, you just
assign a value of True to it (a convention used by the Junos PyEZ library that is
working under the hood).

 24 Chapter 4: Executing Junos Commands with Salt

You have also instructed Salt to provide output as JSON using the --out key. The
supported output formats (processed by outputters, or output modules of Salt)
include highstate, json, pprint, raw, txt, yaml, and more.

Pinging Hosts
You can perform basic reachability checks using the junos.ping execution function,
as follows:

lab@master:~$ sudo salt vMX* junos.ping "10.254.0.1" count=2
vMX-2:

 message:
...
 probe-results-summary:

 packet-loss:
 0
 probes-sent:
 2
 responses-received:
 2
 rtt-average:
 483
 rtt-maximum:
 494
 rtt-minimum:
 472
 rtt-stddev:
 11
 target-host:
 10.254.0.1
 target-ip:
 10.254.0.1
 out:
 True
vMX-1:

 message:
...
 probe-results-summary:

 packet-loss:
 0
 probes-sent:
 2
 responses-received:
 2
 rtt-average:
 368
 rtt-maximum:
 434
 rtt-minimum:
 303
 rtt-stddev:

 25 Working with Junos Configurations

 65
 target-host:
 10.254.0.1
 target-ip:
 10.254.0.1
 out:
 True

From the output (which was abbreviated to save space), you can see that the ICMP
ping from a Junos device to a target host, in this case 10.254.0.1, worked fine.

Working with Junos Configurations
If needed, several execution functions are in the Junos execution module so that
you can modify the Junos device configuration. Note that you will typically use the
Junos state module and state files covered in subsequent chapters to perform con-
figuration related tasks, rather than these Junos execution functions. Still, in some
cases, you will find working with configurations via execution module beneficial,
so let’s get acquainted.

Let’s say you want to enable the REST API service, and the REST API explorer, on
both vMX devices in the setup. The following configuration lines will do that (as
you see, this is placed in /srv/salt/myconfig.set file (more on Salt file locations in
later chapters):

lab@master:~$ cat /srv/salt/myconfig.set
set system services rest http
set system services rest enable-explorer

The following sequence of commands demonstrates how you can lock configura-
tion, load that piece of configuration from the myconfig.set file, print the configu-
ration diff, commit, and then unlock:

lab@master:~$ sudo salt vMX* junos.lock
vMX-1:

 message:
 Successfully locked the configuration.
 out:
 True
vMX-2:

 message:
 Successfully locked the configuration.
 out:
 True

lab@master:~$ sudo salt vMX* junos.load 'salt://myconfig.set' replace='True'
vMX-2:

 message:
 Successfully loaded the configuration.
 out:
 True

 26 Chapter 4: Executing Junos Commands with Salt

vMX-1:

 message:
 Successfully loaded the configuration.
 out:
 True

lab@master:~$ sudo salt vMX* junos.diff
vMX-1:

 message:

 [edit system services]
 + rest {
 + http;
 + enable-explorer;
 + }
 out:
 True
vMX-2:

 message:

 [edit system services]
 + rest {
 + http;
 + enable-explorer;
 + }
 out:
 True

lab@master:~$ sudo salt vMX* junos.commit_check
vMX-2:

 message:
 Commit check succeeded.
 out:
 True
vMX-1:

 message:
 Commit check succeeded.
 out:
 True

lab@master:~$ sudo salt vMX* junos.commit
vMX-2:

 message:
 Commit Successful.
 out:
 True
vMX-1:

 message:
 Commit Successful.
 out:
 True

 27 Working with Junos Configurations

lab@master:~$ sudo salt vMX* junos.unlock
vMX-2:

 message:
 Successfully unlocked the configuration.
 out:
 True
vMX-1:

 message:
 Successfully unlocked the configuration.
 out:
 True

NOTE It is a good practice for the automation systems or scripts to obtain
exclusive configuration lock before doing any changes. This way you are making
sure you are not interfering with someone else’s changes that are possibly being
performed at the same time.

Alternatively, you could use the junos.install_config function to do everything
with one command (it uses the exclusive configuration mode by default, and com-
mits the change if the commit check succeeds):

lab@master:~$ sudo salt vMX* junos.install_config 'salt://myconfig.set'
vMX-2:

 message:
 Successfully loaded and committed!
 out:
 True
vMX-1:

 message:
 Successfully loaded and committed!
 out:
 True

Interestingly, if you try to apply the same configuration again, the following
happens:

lab@master:~$ sudo salt vMX* junos.install_config 'salt://myconfig.set'
vMX-1:

 message:
 Configuration already applied!
 out:
 True
vMX-2:

 message:
 Configuration already applied!
 out:
 True

 28 Chapter 4: Executing Junos Commands with Salt

For completeness, here is how the output will look like if you try to push an incor-
rect Junos configuration (in this case, a typo was purposefully injected into mycon-
fig.set file):

lab@master:~$ sudo salt vMX* junos.install_config 'salt://myconfig.set'
vMX-1:

 format:
 set
 message:
 Could not load configuration due to : "ConfigLoadError(severity: error, bad_
element: 1system, message: error: syntax error
 error: syntax error)"
 out:
 False
vMX-2:

 format:
 set
 message:
 Could not load configuration due to : "ConfigLoadError(severity: error, bad_
element: 1system, message: error: syntax error
 error: syntax error)"
 out:
 False

Copying Files
The junos.file_copy execution function copies the file from the local server to the
Junos device. You need to provide two parameters: the source path where the file is
kept, and the destination path of the file that will be copied. For example:

lab@master:~$ sudo salt vMX* junos.file_copy /home/lab/hello.slax /var/db/scripts/op
vMX-2:

 message:
 Successfully copied file from /home/lab/hello.slax to /var/db/scripts/op
 out:
 True
vMX-1:

 message:
 Successfully copied file from /home/lab/hello.slax to /var/db/scripts/op
 out:
 True

Here, the file named hello.slax was copied from the /home/lab directory of the min-
ion1 server to the /var/db/scripts/op directory of both managed vMX devices.

 29 Installing Software Packages

Installing Software Packages
Finally, the junos.install_os function can be used to install the given software im-
age on the Junos OS device. The below example demonstrates installation of the
OpenConfig Junos package:

lab@master:~$ sudo salt vMX* junos.install_os salt:///junos-openconfig-x86-32-0.0.0.9.tgz
vMX-2:

 message:
 Installed the os.
 out:
 True
vMX-1:

 message:
 Installed the os.
 out:
 True

Here, the file junos-openconfig-x86-32-0.0.0.9.tgz is located on the master server, in
the file roots directory (default is /srv/salt/). It is copied to the devices automati-
cally and then installed, which can be checked afterwards on either of the vMX
devices:

lab@vMX-1> show version | match openc
JUNOS Openconfig [0.0.0.9]

In this case, no reboot was needed after the software package installation. In cases
when it is needed, the reboot=True parameter will additionally reboot the device
after software installation. Alternatively, the junos.shutdown function could be used.

NOTE This chapter gave you an idea of what you can do with Salt’s Junos
execution module. Remember, we did not cover all the available modules and
options – consult the above cited SaltStack documentation pages for that.

In this chapter, you will start working with Salt’s state system that allows you to
define in what state the managed devices must be in. In particular, you will work
with Junos state module, salt.states.junos, to apply Junos device configuration
changes. You will also start working with Jinja configuration templates, which are
a powerful way to automate your network device configurations.

Junos Configuration Management with Salt
Now it’s time to apply some Junos device configurations. Let’s say you want to
configure general infrastructure services on your vMX devices – namely, DNS and
NTP. One thing you want to take advantage of with automation systems like Salt
is configuration templating. That is, the network device feature configuration must
be separated from variable data like IP addresses, VLAN numbers, etc.

With Salt, the variable data is naturally stored in the pillar system. Let’s create a
separate file infrastructure_data.sls in the pillar root directory, containing lists of
all the NTP and DNS servers that you use:

lab@master:~$ cat /srv/pillar/infrastructure_data.sls
ntp_servers:
 - 192.168.0.250
 - 192.168.0.251
dns_servers:
 - 192.168.0.253
 - 192.168.0.254

This SLS file uses common YAML syntax whereby colons represent mappings be-
tween keys and corresponding values, and dashes represent sequence or list ele-
ments (a sequence or a list is just a number of ordered values, such as IP addresses

Chapter 5

Provisioning Junos Configurations with Salt
State Module

 31 Junos Configuration Management with Salt

in this example). Generally, indentation is important as it shows structure (nesting
of objects) in YAML.

Then, you want to allow your Junos proxy minions to use the data from the infra-
structure_data.sls file. To do that, edit the pillar’s top file as follows (new lines that
you need to add are in bold; please realize there are many other ways you can
achieve the same result):

lab@master:~$ cat /srv/pillar/top.sls
base:
 'vMX-1':
 - proxy-1
 'vMX-2':
 - proxy-2
 'vMX*':
 - infrastructure_data

And also refresh the pillar data , so that your minions can see the new pillar data,
as follows:

lab@master:~$ sudo salt vMX* saltutil.refresh_pillar
vMX-1:
 True
vMX-2:
 True

Now let’s create a configuration template – but you need to figure out where to
place it first. Salt has the concept of a file roots directory (actually, it could be a list
of directories). It’s configured as a file_roots parameter in the /etc/salt/master con-
figuration file on the Salt master, and this location is /srv/salt by default, so let’s
just use it for now. Create the directory as follows, if you haven’t done it already:

lab@master:~$ sudo mkdir /srv/salt

The important thing about file roots is that Salt runs a lightweight file server over
the ZeroMQ bus, and minions have access to the files. So, placing template files in
file roots directories automatically allows minions to read them, which is what you
want.

Now back to the template. You have multiple options of how you can create the
template – Junos text configuration, XML, or Junos set commands. In this exam-
ple let’s create a text configuration template as follows:

lab@master:~$ cat /srv/salt/infrastructure_config.conf
system {
 replace: name-server {
{%- for dns_server in pillar.dns_servers %}
 {{ dns_server }};
{%- endfor %}
 }
 replace: ntp {
{%- for ntp_server in pillar.ntp_servers %}
 server {{ ntp_server }};
{%- endfor %}
 }
}

 32 Chapter 5: Provisioning Junos Configurations with Salt State Module

And let’s discuss a few aspects of the template here:

 � The file is placed in the file roots directory on the master. It will be downloaded
by minions as needed.

 � The file extension is conf, which will tell the Junos state module that the con-
figuration should be treated as text format.

 � Because of the replace: tag, you are removing the previously existing DNS and
NTP configurations (if any) from the devices. This approach to configuration
can be called “declarative” because this way you unambiguously define exactly
what will be in those configuration stanzas after change is applied. Alterna-
tively, you could do merge load, so other DNS or NTP servers configured previ-
ously would remain in configuration.

 � You use Jinja syntax for loops (for – endfor keywords) and variable value sub-
stitution (double curly braces {{ }} around a variable).

 � Variables – namely, lists of servers – that are stored in pillar files, are accessed as
pillar.<var_name>.

The next step is to create a state SLS file. This file will describe what state you want
your network devices and their configurations to be in. It will reference the Junos
state module (named salt.states.junos), in particular the state function install_
config defined in it, to provision the configuration template.

NOTE Functions of the execution modules, as demonstrated in Chapter 4, could
also be used to load Junos device configurations, but the approach with using Salt
states is much more powerful.

NOTE For those familiar with Ansible, you can start thinking of Salt states as
something similar to Ansible playbooks.

Now let’s create the state SLS file in the files root directory on the master server as
follows:

lab@master:~$ cat /srv/salt/provision_infrastructure.sls
Install the infrastructure services config:
 junos.install_config:
 - name: salt:///infrastructure_config.conf
 - replace: True
 - timeout: 100

In this file:

 � Install the infrastructure services config is a state name (essentially, an arbi-
trary string describing what this state is going to do).

 � junos.install_config is a state function from a salt.states.junos state module;
the job of this function is to load and commit configurations on the Junos de-
vices.

 33 Junos Configuration Management with Salt

 � name refers to the path where the configuration (template) file is located.

 � replace: True specifies that the configuration file uses replace: statements.

 � timeout is NETCONF RPC timeout in seconds. It is especially relevant for com-
mands that take a while to execute.

MORE? The documentation on Salt state module for Junos is available at:
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html

NOTE The set of state functions may look similar to the set of execution
functions discussed in Chapter 4, but remember they are not the same. State
functions will be commonly invoked by state SLS files and they enforce some
specific state on the managed device. Execution functions do something not
related to enforcing a specific state. They are typically either executed from Salt
CLI or called from within SLS files to return some value – stay tuned for examples
of this use in the next few chapters.

Finally, to apply the configuration state described in the SLS file that you just cre-
ated, you need to execute a state.apply function (in this example, vMX devices ini-
tially have no NTP or DNS configuration):

lab@master:~$ sudo salt vMX* state.apply provision_infrastructure
vMX-2:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 14:28:38.504545
 Duration: 2483.845 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 2.484 s
vMX-1:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:

https://docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html

 34 Chapter 5: Provisioning Junos Configurations with Salt State Module

 Started: 14:28:38.498893
 Duration: 2775.099 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 2.775 s

For both vMX devices you can see reports that both configurations were success-
fully loaded and committed – let’s also check the configuration directly, right from
one of them:

lab@vMX-1> show configuration | compare rollback 1
[edit system]
+ name-server {
+ 192.168.0.253;
+ 192.168.0.254;
+ }
+ ntp {
+ server 192.168.0.250;
+ server 192.168.0.251;
+ }

So far, looks good!

And if you applied the same state again, the following would happen:

lab@master:~$ sudo salt vMX* state.apply provision_infrastructure
vMX-1:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 14:29:54.309258
 Duration: 1389.967 ms
 Changes:

 message:
 Configuration already applied!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)

 35 Junos Configuration Management with Salt

Failed: 0

Total states run: 1
Total run time: 1.390 s
vMX-2:

 ID: Install the infrastructure services config
 Function: junos.install_config
 Name: salt:///infrastructure_config.conf
 Result: True
 Comment:
 Started: 14:29:55.325782
 Duration: 550.128 ms
 Changes:

 message:
 Configuration already applied!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 550.128 ms

As nothing needed to be changed on the devices, no configuration change hap-
pened, and no commit was performed, which is natural: the state function has to
enforce a certain state, and does nothing if the device is already in that state.

Provisioning network services can be painful if performed manually. Automation
of this process improves speed of service delivery and reduces possible errors. This
chapter shows how L3VPN services can be configured on MPLS PE routers using
Salt.

Lab Setup
This chapter assumes you have a set of provider edge (PE) routers and each PE
router generally has multiple connected L3VPN customers. You want to provision
the corresponding configuration automatically using Salt.

The example topology used in this chapter is shown in Figure 6.1. As before, you
have two vMX devices acting, this time, as MPLS PE routers. The Salt master serv-
er, as well as minion1 server running the two Junos proxy minions, are not shown.
Consult previous chapters for details on how to set up Salt for managing Junos
devices.

In this example, the IP/MPLS backbone is contained of ge-0/0/0 and ge-0/0/1 links
connecting vMX-1 and vMX-2 back-to-back. It is pre-configured and not man-
aged by Salt.

More specifically, the initial configuration on PE vMX devices includes:

 � Full configuration of core-facing interfaces (family inet and MPLS);

 � Standard OSPF, LDP, and IBGP (with family inet-vpn unicast) configuration for
the IP/MPLS backbone;

Chapter 6

Provisioning Junos Configurations – Advanced
Example

 37 Lab Setup

 � Only physical parameters for customer-facing interfaces (ge-0/0/2) are config-
ured – namely, flexible-vlan-tagging and encapsulation flexible-ethernet-ser-
vices are configured. No units are configured on these interfaces – Salt must do
that;

 � No VRF (L3VPN) instances are configured for the customers – again, Salt must
do that;

 � The route-distinguisher-id is configured in routing-options hierarchy on both
PEs, so manual configuration for route-distinguisher in VRFs is not needed.

Edge customer-facing logical interfaces and L3VPN VRF instances must be provi-
sioned automatically using Salt, according to the Jinja templates and data specified
in pillar YAML files. The goal of this chapter is to show you how to create the re-
quired templates and pillar files.

Figure 6.1 The Network Topology Used in This Chapter

Additional points to consider:

 � The configuration used for each customer must be standardized using a con-
figuration template. You will use a Jinja template engine for that.

 � All variable parameters such as customer AS numbers and IP addresses, as well
as mappings of customers to PE devices, must be separated from the template
and stored in the pillar YAML files.

 � For simplicity, assume that each customer has no more than one Layer 3 con-
nection to each of the PEs.

 � The setup must allow for easily adding and removing customers from PE de-
vices, as well as modifying any service parameters.

 38 Chapter 6: Provisioning Junos Configurations – Advanced Example

Steps to Solve the Task
If you carefully read Chapter 5, you will recognize the same approach to solving
the configuration provisioning task. Only the template will be a bit more complex,
and you will have more variable data to substitute in it.

As part of the solution, the following must be created or updated in Salt:

 � A Jinja configuration template.

 � Pillar YAML files with variable parameters, describing customers connected to
each of the PE devices.

 � A pillar top file to properly map pillar data to proxy minions.

 � A State SLS file to provision configurations.

Generally speaking, the configuration template is only created once, and is not
supposed to be modified unless you are implementing some new functionality, for
example, adding configuration options to the template. On the other hand, the pil-
lar YAML files will be changed every time you want to add or remove or modify
services for any of the customers. Regardless of the frequency with which you
modify the files, you will generally want to keep them all in a version control sys-
tem (VCS) repository such as Git.

NOTE Detailed coverage of version control systems is beyond the scope of this
book. You can find a lot of information on the Internet. A concise practical
introduction to Git is contained in the Appendix of Day One: Automating Junos
with Ansible, 2nd Edition by Sean Sawtell. https://www.juniper.net/us/en/training/
jnbooks/day-one/automation-series/automating-junos-ansible/.

Configuration Template
To easily create a configuration template, the most straightforward and effective
approach is to start with a configuration piece that you want to get from that tem-
plate. In this case, you want to get something like the following, but for each of the
customers on each PE:

interfaces {
 ge-0/0/2 {
 unit 100 {
 vlan-id 100;
 family inet {
 address 10.100.0.1/24;
 }
 }
 }
}
routing-instances {
 Cust_A {
 instance-type vrf;

https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/automating-junos-ansible/
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/automating-junos-ansible/

 39 Configuration Template

 interface ge-0/0/2.100;
 vrf-target target:65000:1;
 vrf-table-label;
 protocols {
 bgp {
 group EBGP-Cust_A {
 family inet {
 unicast {
 prefix-limit {
 maximum 10;
 teardown;
 }
 }
 }
 peer-as 65100;
 as-override;
 neighbor 10.100.0.2;
 }
 }
 }
 }

All the parameters here – such as interface names, AS numbers, and more, must be
replaced with variables passed to the template from the outside. So the Jinja2 con-
figuration template will include logical interfaces and VRF configurations for your
connected customers, but it will also have some operators (such as if and for) and
references to these variables. Using the above example, you should come up with
something akin to the following template:

lab@master:/srv/salt$ cat l3vpn.conf
groups {
 replace:
 L3VPN-SALT {
 {% if pillar.L3VPN_data %}
 interfaces {
 {% for VPN_entry in pillar.L3VPN_data %}
 {{ VPN_entry.interface_name }} {
 unit {{ VPN_entry.unit }} {
 vlan-id {{ VPN_entry.vlan_id }};
 family inet {
 address {{ VPN_entry.ip_mask }};
 }
 }
 }
 {% endfor %}
 }
 routing-instances {
 {% for VPN_entry in pillar.L3VPN_data %}
 {{ VPN_entry.customer_id }} {
 instance-type vrf;
 vrf-table-label;
 interface {{ VPN_entry.interface_name }}.{{ VPN_entry.unit }};
 vrf-target {{ pillar.customers[VPN_entry.customer_id].vrf_target }};
 protocols {
 bgp {
 group EBGP-{{ VPN_entry.customer_id }} {
 family inet {

 40 Chapter 6: Provisioning Junos Configurations – Advanced Example

 unicast {
 prefix-limit {
 maximum {{ VPN_entry.prefix_limit }};
 teardown;
 }
 }
 }
 peer-as {{ pillar.customers[VPN_entry.customer_id].AS }};
 as-override;
 neighbor {{ VPN_entry.customer_ip }};
 }
 }
 }
 }
 {% endfor %}
 }
 {% endif %}
 }
}
apply-groups L3VPN-SALT;

Several points to stress in regard to this template:

 � All template configuration is put inside the Junos configuration group named
L3VPN-SALT so that it is easy to see what part of the configuration was actually
uploaded by Salt. It also simplifies configuration modification or removal, as
you will see later.

 � The replace: tag ensures that previous content of L3VPN-SALT group is overwrit-
ten. The tag is only applied to that group so other groups will be left untouched.

 � The if operator is checking if pillar.VPN_data is empty or not. If it is empty, only
the empty configuration group is created.

 � The for operators are used to loop over multiple entries, corresponding to each
of the customers connected to a given PE.

 � Note how customer data is put inside the pillar.customers data structure. You
do not iterate over it in the template – but query the dictionary as needed while
iterating over the VPN_entry.

MORE? For more information on the Jinja template engine and its available
operators visit: http://jinja.pocoo.org.

The Pillar YAML Files
You decide exactly how you will distribute information in pillar files. In this ex-
ample, a subdirectory named l3vpn was created in the pillar root directory, with the
following three files:

lab@master:/srv/pillar/l3vpn$ ls
customers.sls vMX-1.sls vMX-2.sls

http://jinja.pocoo.org

 41 The Pillar YAML Files

lab@master:/srv/pillar/l3vpn$ cat customers.sls

customers:
 Cust_A:
 vrf_target: "target:65000:1"
 AS: 65100
 Cust_B:
 vrf_target: "target:65000:2"
 AS: 65200

lab@master:/srv/pillar/l3vpn$ cat vMX-1.sls
L3VPN_data:
 - customer_id: Cust_A
 interface_name: ge-0/0/2
 unit: 100
 vlan_id: 100
 ip_mask: 10.100.0.1/24
 customer_ip: 10.100.0.2
 prefix_limit: 10
 - customer_id: Cust_B
 interface_name: ge-0/0/2
 unit: 200
 vlan_id: 200
 ip_mask: 10.200.0.1/24
 customer_ip: 10.200.0.2
 prefix_limit: 15

lab@master:/srv/pillar/l3vpn$ cat vMX-2.sls
L3VPN_data:
 - customer_id: Cust_A
 interface_name: ge-0/0/2
 unit: 150
 vlan_id: 150
 ip_mask: 10.150.0.1/24
 customer_ip: 10.150.0.2
 prefix_limit: 10
 - customer_id: Cust_B
 interface_name: ge-0/0/2
 unit: 250
 vlan_id: 250
 ip_mask: 10.250.0.1/24
 customer_ip: 10.250.0.2
 prefix_limit: 15

As you can see, the customers.sls file defines the basic parameters for each custom-
er, while the PE device-specific files, vMX-1.sls and vMX-2.sls, define the actual cus-
tomer connections. These connections match what’s seen in Figure 6.1.

You also need to modify the pillar top file to make sure your minions have access
to the pillar data you just entered (new lines that must be added are here shown in
bold):

lab@master:~$ cat /srv/pillar/top.sls
base:
 'vMX-1':
 - proxy-1

 42 Chapter 6: Provisioning Junos Configurations – Advanced Example

 - l3vpn/vMX-1
 'vMX-2':
 - proxy-2
 - l3vpn/vMX-2
 'vMX*':
 - infrastructure_data
 - l3vpn/customers

Now let’s create the state SLS file:

lab@master:/srv/salt$ cat provision_l3vpn.sls
Install the L3 VPN config:
 junos.install_config:
 - name: salt:///l3vpn.conf
 - replace: True
 - timeout: 100
 - diffs_file: /home/lab/diff-{{ grains.id }}.log

This file is similar to one used in a previous chapter, it just referenced a different
template file this time. Also you provided the diffs_file parameter where the show
| compare output will be stored. Note how the grains.id variable, storing the min-
ion ID, is referenced so that the output is stored to a device-specific file.

Before proceeding, don’t forget to refresh the pillar data, so that your minions can
see the new pillar data, as follows:

lab@master:~$ sudo salt vMX* saltutil.refresh_pillar
vMX-2:
 True
vMX-1:
 True

Provisioning the Configurations
Let’s now apply the state defined in the provision_l3vpn.sls file:

lab@master:~$ sudo salt vMX* state.apply provision_l3vpn
vMX-2:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 09:19:00.351538
 Duration: 6099.638 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-2

 43 Provisioning the Configurations

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 6.100 s
vMX-1:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 09:19:00.354764
 Duration: 6898.965 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 6.899 s

The messages show that the operation succeeded. Let’s confirm by checking the
diffs files. Note that diff files are stored in the server running the proxy minions
(minion1 in our case), not the master server:

lab@minion1:~$ cat diff-vMX-1.log

[edit]
+ groups {
+ L3VPN-SALT {
+ interfaces {
+ ge-0/0/2 {
+ unit 100 {
+ vlan-id 100;
+ family inet {
+ address 10.100.0.1/24;
+ }
+ }
+ unit 200 {
+ vlan-id 200;
+ family inet {
+ address 10.200.0.1/24;
+ }
+ }
+ }
+ }
+ routing-instances {
+ Cust_A {
+ instance-type vrf;

 44 Chapter 6: Provisioning Junos Configurations – Advanced Example

+ interface ge-0/0/2.100;
+ vrf-target target:65000:1;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_A {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 10;
+ teardown;
+ }
+ }
+ }
+ peer-as 65100;
+ as-override;
+ neighbor 10.100.0.2;
+ }
+ }
+ }
+ }
+ Cust_B {
+ instance-type vrf;
+ interface ge-0/0/2.200;
+ vrf-target target:65000:2;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_B {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 15;
+ teardown;
+ }
+ }
+ }
+ peer-as 65200;
+ as-override;
+ neighbor 10.200.0.2;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ apply-groups L3VPN-SALT;

lab@minion1:~$ cat diff-vMX-2.log

[edit]
+ groups {
+ L3VPN-SALT {
+ interfaces {
+ ge-0/0/2 {
+ unit 150 {
+ vlan-id 150;

 45 Provisioning the Configurations

+ family inet {
+ address 10.150.0.1/24;
+ }
+ }
+ unit 250 {
+ vlan-id 250;
+ family inet {
+ address 10.250.0.1/24;
+ }
+ }
+ }
+ }
+ routing-instances {
+ Cust_A {
+ instance-type vrf;
+ interface ge-0/0/2.150;
+ vrf-target target:65000:1;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_A {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 10;
+ teardown;
+ }
+ }
+ }
+ peer-as 65100;
+ as-override;
+ neighbor 10.150.0.2;
+ }
+ }
+ }
+ }
+ Cust_B {
+ instance-type vrf;
+ interface ge-0/0/2.250;
+ vrf-target target:65000:2;
+ vrf-table-label;
+ protocols {
+ bgp {
+ group EBGP-Cust_B {
+ family inet {
+ unicast {
+ prefix-limit {
+ maximum 15;
+ teardown;
+ }
+ }
+ }
+ peer-as 65200;
+ as-override;
+ neighbor 10.250.0.2;
+ }
+ }
+ }

 46 Chapter 6: Provisioning Junos Configurations – Advanced Example

+ }
+ }
+ }
+ }
+ apply-groups L3VPN-SALT;

Verifying the configuration on vMX-1 and vMX-2 also shows the configuration
was provisioned properly by Salt (this is not shown for the sake of brevity). Let’s,
however, verify the routes in the Cust_A VRF instance on vMX-1:

lab@vMX-1> show route table Cust_A.inet.0

Cust_A.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.100.0.0/24 *[Direct/0] 00:06:50
 > via ge-0/0/2.100
10.100.0.1/32 *[Local/0] 00:06:50
 Local via ge-0/0/2.100
10.150.0.0/24 *[BGP/170] 00:06:50, localpref 100, from 192.168.0.2
 AS path: I, validation-state: unverified
 to 10.0.0.222 via ge-0/0/0.0, Push 16
 > to 10.0.1.222 via ge-0/0/1.0, Push 16

The route to the remote network is there. You can also check to see if a ping be-
tween remote Customer-A instances works as it should. The vr-A here is a virtual
router instance created manually on the vMX-1 just for testing purposes (emulat-
ing the Customer-A’s CE device):

lab@vMX-1> ping 10.150.0.2 routing-instance vr-A source 10.100.0.2 rapid
PING 10.150.0.2 (10.150.0.2): 56 data bytes
!!!!!
--- 10.150.0.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 2.156/2.371/2.679/0.173 ms

Modifying Service Configurations
Before you try to modify service configurations, let’s see what happens if you just
try to apply the same state again:

lab@master:~$ sudo salt vMX* state.apply provision_l3vpn
vMX-1:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 09:48:31.575527
 Duration: 1408.678 ms
 Changes:

 message:

 47 Modifying Service Configurations

 Configuration already applied!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 1.409 s
vMX-2:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 09:48:32.595480
 Duration: 557.786 ms
 Changes:

 message:
 Configuration already applied!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 557.786 ms

As you can see, Salt detects that no change on the devices is needed, and does not
perform a commit.

Now it is simple to modify the service parameters – just modify the YAML file and
re-run the Salt state.apply function. For example, let’s say you want to change
Customer B’s AS number from 65200 to 65300. You only need to change this in
customers.sls file (the changed value is in bold):

lab@master:~$ cat /srv/pillar/l3vpn/customers.sls
customers:
 Cust_A:
 vrf_target: "target:65000:1"
 AS: 65100
 Cust_B:
 vrf_target: "target:65000:2"
 AS: 65300

Apply the state:

lab@master:~$ sudo salt vMX* state.apply provision_l3vpn
vMX-2:

 ID: Install the L3 VPN config

 48 Chapter 6: Provisioning Junos Configurations – Advanced Example

 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 09:58:48.782514
 Duration: 6916.208 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 6.916 s
vMX-1:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 09:58:48.787701
 Duration: 7058.338 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 7.058 s

And check the diff files:

lab@minion1:~$ cat diff-vMX-1.log

[edit groups L3VPN-SALT routing-instances Cust_B protocols bgp group EBGP-Cust_B]
- peer-as 65200;
+ peer-as 65300;

lab@minion1:~$ cat diff-vMX-2.log

[edit groups L3VPN-SALT routing-instances Cust_B protocols bgp group EBGP-Cust_B]
- peer-as 65200;
+ peer-as 65300;

 49 Modifying Service Configurations

As another example, assume you want to remove Customer B’s service from the
vMX-1 device. Just remove the corresponding section from /srv/pillar/l3vpn/vMX-
1.sls and re-apply the state:

lab@master:~$ sudo salt vMX* state.apply provision_l3vpn
vMX-2:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 10:03:20.069114
 Duration: 560.277 ms
 Changes:

 message:
 Configuration already applied!
 out:
 True

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 560.277 ms
vMX-1:

 ID: Install the L3 VPN config
 Function: junos.install_config
 Name: salt:///l3vpn.conf
 Result: True
 Comment:
 Started: 10:03:19.866889
 Duration: 3110.515 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 3.111 s

lab@minion1:~$ cat diff-vMX-1.log

[edit groups L3VPN-SALT interfaces ge-0/0/2]
- unit 200 {
- vlan-id 200;

 50 Chapter 6: Provisioning Junos Configurations – Advanced Example

- family inet {
- address 10.200.0.1/24;
- }
- }
[edit groups L3VPN-SALT routing-instances]
- Cust_B {
- instance-type vrf;
- interface ge-0/0/2.200;
- vrf-target target:65000:2;
- vrf-table-label;
- protocols {
- bgp {
- group EBGP-Cust_B {
- family inet {
- unicast {
- prefix-limit {
- maximum 15;
- teardown;
- }
- }
- }
- peer-as 65300;
- as-override;
- neighbor 10.200.0.2;
- }
- }
- }
- }

Summary
This chapter has shown you how to provision more advanced configurations using
Salt. Once again, the basic idea is to separate the configuration template from vari-
able data, storing all variable data in the pillar system. Once data describing your
system changes, the configs are regenerated as needed, and applied to the managed
devices.

As you saw in this chapter, all configurations provisioned by Salt were put in a sep-
arate configuration group. This method has several advantages, including consis-
tency and visibility into what the automation system is doing. Changing and
removing of services with such an approach is really easy. Be aware that configura-
tion groups are a unique feature of Junos, so use them with caution when auto-
mating in multivendor environments. Be sure to read Chapter 12 and its coverage
of NAPALM modules for Salt that you may want to use in such a situation.

This chapter treated the deployment of L3VPN services – but of course, multiple
other services and configurations can be provisioned similarly, as long as you can
come up with a standardized template for them.

As a final note, the examples demonstrated here could be modified to implement a
Create, Read, Update, Delete (CRUD) model for services, with or without using
configuration groups.

This chapter dives into the Salt event-driven infrastructure (EDI). You will become
familiar with Salt engines using the Junos syslog engine as an example. Then you
will start working with Salt reactors, learning how to apply actions based on cer-
tain events. By the end of the chapter, you’ll also see how to post Slack messages
using Salt – again, this will be done based on the specific Junos event. Let’s get
going.

Salt Engines and Reactors
Salt engines are long-running processes managed by Salt. They are used for various
purposes and one of the common use cases is importing or exporting Salt events to
or from a ZeroMQ event bus. In this case, you can think of an engine as a “proxy”
transforming the event data to or from native Salt format.

Junos events are sent from devices as syslog messages, and it’s easy to see why Ju-
nos syslog engine is needed if you want to integrate Junos devices into Salt EDI: the
syslog engine will receive the syslog messages and translate them into data that can
be published to the native Salt event bus.

NOTE The official Junos syslog engine documentation is available at https://
docs.saltstack.com/en/latest/ref/engines/all/salt.engines.junos_syslog.html

The Salt reactor system is something that matches events seen on the event bus and
applies actions based on the configured rules. Essentially, with reactors your auto-
mation system becomes a closed feedback loop system.

To start working with EDI, you’ll enable the Junos syslog engine on the master
server (note however, that it can work on the minion as well). You will then config-
ure Junos devices to send syslog messages to the syslog engine. Finally, some reac-
tor rules will be configured and tested. The setup is summarized in Figure 7.1.

Chapter 7

Junos Syslog Engine and Salt Reactors

https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.junos_syslog.html
https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.junos_syslog.html

 52 Chapter 7: Junos Syslog Engine and Salt Reactors

Figure 7.1 Salt Setup for Managing Two Junos Devices, Including the Junos Syslog Engine and Salt
Reactor.

Enabling Junos Syslog Engine
To enable Junos syslog engine, you will first need to install a couple of required
Python libraries: pyparsing and twisted. In this case, you do it on the master server:

lab@master:~$ sudo apt-get install python-pip
lab@master:~$ sudo pip install pyparsing
lab@master:~$ sudo pip install twisted

Here, output was omitted for brevity; pip installation in the first line is only neces-
sary if this tool was not installed before.

Now edit the Salt master configuration file, adding the following new lines to it:

lab@master:~$ sudo vi /etc/salt/master
engines:
 - junos_syslog:
 port: 10514

Here, you have chosen to use UDP port 10514 for syslog messages. You also need
to restart the Salt master process to apply new configuration, for example:

lab@master:~$ sudo killall salt-master
lab@master:~$ sudo salt-master –d

The Junos devices must send their logs to the master server address using the speci-
fied port, so the following configuration has to be provisioned on our Junos de-
vices (assuming that you want to send all facility and all severity events to Salt):

 53 Enabling Junos Syslog Engine

set system syslog host 10.254.0.200 any any
set system syslog host 10.254.0.200 port 10514

Now you can provision this configuration exactly as you want. Just as an exercise,
here, let’s load this configuration from a file, using the Salt execution function ju-
nos.install_config (discussed in a previous chapter):

lab@master:~$ cat /srv/salt/myconfig.set
set system syslog host 10.254.0.200 any any
set system syslog host 10.254.0.200 port 10514

lab@master:~$ sudo salt vMX* junos.install_config salt:///myconfig.set
vMX-2:

 message:
 Successfully loaded and committed!
 out:
 True
vMX-1:

 message:
 Successfully loaded and committed!
 out:
 True

Let’s now check events on the bus using this command:

lab@master:~$ sudo salt-run state.event pretty=True

...

jnpr/syslog/vMX-1/UI_CMDLINE_READ_LINE {
 "_stamp": "2018-08-21T13:37:29.148658",
 "daemon": "mgd",
 "event": "UI_CMDLINE_READ_LINE",
 "facility": 23,
 "hostip": "10.254.0.41",
 "hostname": "vMX-1",
 "message": "User 'lab', command 'configure '",
 "pid": "77339",
 "priority": 190,
 "raw": "<190>Aug 21 15:30:47 vMX-1 mgd[77339]: UI_CMDLINE_READ_
LINE: User 'lab', command 'configure '",
 "severity": 6,
 "timestamp": "2018-08-21 06:37:29"
}
jnpr/syslog/vMX-1/UI_DBASE_LOGIN_EVENT {
 "_stamp": "2018-08-21T13:37:29.155585",
 "daemon": "mgd",
 "event": "UI_DBASE_LOGIN_EVENT",
 "facility": 23,
 "hostip": "10.254.0.41",
 "hostname": "vMX-1",
 "message": "User 'lab' entering configuration mode",
 "pid": "77339",
 "priority": 189,

 54 Chapter 7: Junos Syslog Engine and Salt Reactors

 "raw": "<189>Aug 21 15:30:47 vMX-1 mgd[77339]: UI_DBASE_LOGIN_
EVENT: User 'lab' entering configuration mode",
 "severity": 5,
 "timestamp": "2018-08-21 06:37:29"
}
...
^C

Note, here we’re using the salt-run command that is executing Salt runners. Salt
runners are modules used to execute functions on the master server (rather than
minions). Clearly, the state.event function is used to output the events seen on the
bus. Because all communication happens over the bus, you will likely see many
other messages in addition to the ones shown in the above output. The above two
messages are actually messages from the vMX-1 device that were generated at the
moment the user entered the CLI configuration mode.

Also note the line at the beginning of each message, such as jnpr/syslog/vMX-1/UI_
CMDLINE_READ_LINE. It is called the event tag (or topic). The exact view of the topic
generated by Junos syslog engine is configurable, but we will use the default one
here, which is jnpr/syslog/<hostname>/<event-id>.

Configuring the Reactor
Now let’s enable the reactor. This is something you do in the Salt master configura-
tion file. Let’s say you want to react on the UI_COMMIT_COMPLETED Junos event, which
indicates that the configuration commit was just performed. Modify the master
configuration as follows (new lines are in bold), and then restart Salt master as you
did before:

lab@master:~$ sudo vi /etc/salt/master

engines:
 - junos_syslog:
 port: 10514

reactor:
 - 'jnpr/syslog/*/UI_COMMIT_COMPLETED':
 - salt://reactor/react_to_commit.sls

Here, the event tag is mapped to a reactor SLS file, content of which will be re-
viewed shortly. The * in the event tag indicates that any host sending a UI_COMMIT_
COMPLETED message will match.

NOTE If you are familiar with Junos OS event policies and event scripts, the
reactor settings may remind you of Junos event policies, while reactor files take the
place of event scripts. The big difference, though, is that Junos event policies and
scripts are tied to a single box, while with Salt you are orchestrating the network
as a single system.

 55 Configuring Slack Connection

The reactor SLS file for this example is as follows (also, you create a separate di-
rectory for your reactor files):

lab@master:~$ sudo mkdir /srv/salt/reactor
lab@master:~$ sudo vi /srv/salt/reactor/react_to_commit.sls
Run task based on event:
 local.state.apply:
 - tgt: {{ data['hostname'] }}
 - arg:
 - post_to_slack

In this SLS file:

 � “Run task based on event” is the human-readable ID.

 � The local prefix is rather counter-intuitive – it actually indicates that a remote
execution function (in this case, state.apply) will be run on targeted minions.

 � The tgt parameter defines the target, in this case the hostname extracted from
event data (which is equal to the minion ID in our case). Note that event data is
available in reactor SLS files via a special data variable.

 � The arg parameter defines function arguments, in this case you have post_to_
slack state file name provided as a parameter.

Overall, the result of executing the react_to_commit.sls file is similar to executing
this Salt command: salt 'minion-id' state.apply post_to_slack, with minion-id equal
to the hostname contained in the syslog event data.

Configuring Slack Connection
To keep this EDI chapter as simple as possible, the only action you take based on
the event is posting a Slack message. So, let’s define the post_to_slack.sls file.
Here’s its content:

lab@master:~$ cat /srv/salt/post_to_slack.sls
slack-message:
 slack.post_message:
 - channel: '#general'
 - from_name: pklimai
 - message: '{{ grains.id }}: This state was executed successfully.'
 - api_key: XXXX-XXXX

NOTE You can obtain the Slack API key for your channel here: https://api.slack.
com/custom-integrations/legacy-tokens.

As you can see, this state file executes a single state function slack.post_message,
passing channel and user names, message and API key as parameters. You can also
see how the minion ID, using grains data, is substituted into the message string.

https://api.slack.com/custom-integrations/legacy-tokens
https://api.slack.com/custom-integrations/legacy-tokens

 56 Chapter 7: Junos Syslog Engine and Salt Reactors

Testing the Reactor
If you have done everything right, after every commit, on either of the vMX de-
vices, you should now be getting a Slack message similar to what is shown in Fig-
ure 7.2. This is cool, but do not rest on your laurels too soon. Proceed to Chapter 8
and you will dive deeper into the Salt EDI!

Figure 7.2 Slack Chat Window

This chapter continues the discussion started in Chapter 7, explaining how you
can integrate Junos devices into Salt’s event-driven infrastructure (EDI).

Reacting on Events
Multiple events requiring a proper reaction may happen in your network at any
time. For example:

 � Interfaces and/or protocol sessions may flap or go down;

 � Devices and circuits may become over utilized;

 � Some services may become unreachable;

 � Wrong configurations may be applied by the user or automation system,
and so on.

With Salt, you can react as you see fit, based on such events. Among other things,
you can:

 � Change a network device’s configuration (not necessarily the same device that
reported the event);

 � Bounce interfaces, as well as software or hardware components;

 � Collect data and store it in the file system or commit to a version control system
such as Git;

 � Automatically create or update the support tickets on the ticketing server;

 � Send messages to various channels, such as email, SMS, Slack, HipChat, etc.

Chapter 8

Basics of Building Event-Driven Infrastructure

 58 Chapter 8: Basics of Building Event-Driven Infrastructure

With Salt, you can react any way you like to most anything that happens in your
network. But be sure not to overcomplicate the reactor system. Remember, actions
that you apply based on events may lead to changes that will cause some other
events – so you always need to analyze the possible consequences, and keep it sim-
ple and clear.

As all networks are different, there is no universal advice on what exactly to react
to, and how exactly to react. Many examples are available, however, so you can
see what can be done. In particular, Chapter 7 contained a simple example of post-
ing a Slack message based on a commit event. The next sections of this chapter
present an example that is a bit more involved, where, based on the event, device
configuration is checked and modified, if needed. Chapter 11 contains yet another
example where JSNAPy test is run, also based on some event. In addition, many
more examples are available, created by Juniper engineers and the community, so
please consult the Appendix at the end of this book for some additional
inspiration.

SLS File to Check and Enforce Configuration
Now let’s discuss another EDI example, where the workflow is as follows: when a
commit event for some device is received, that device must be checked for the pres-
ence of administratively disabled interfaces. If any of the interfaces (one or more)
are disabled, Salt must re-enable them immediately.

Let’s first look at the following outputs from a Junos device:

lab@vMX-1> show interfaces terse | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/17.1R2/junos">
 <rpc>
 <get-interface-information>
 <terse/>
 </get-interface-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

lab@vMX-1> show interfaces terse | display json
{
 "interface-information" : [
 {
 "attributes" : {"xmlns" : "http://xml.juniper.net/junos/17.1R2/junos-interface",
 "junos:style" : "terse"
 },
 "physical-interface" : [
 {
 "name" : [
 {
 "data" : "ge-0/0/0"
 }
],

 59 SLS File to Check and Enforce Configuration

 "admin-status" : [
 {
 "data" : "up"
 }
],
 "oper-status" : [
 {
 "data" : "up"
 }
],
... output trimmed ...

The first command here shows that the RPC corresponding to show interface terse
command is <get-interface-information>, with <terse> option (provided as a nested
XML element).

The second command’s output shows that once you get the RPC reply, the list con-
taining interface data is at the ['interface-information'][0]['physical-interface']
level, and when iterating for each of the interfaces, the interface name and admin
status are correspondingly at ['name'][0]['data'] and ['admin-status'][0]['data'].

Now you can create a state SLS file that checks for interface administrative status
and applies the proper configuration if the admin state is down:

lab@master:~$ cat /srv/salt/check_interfaces.sls
{% set intf_info = salt['junos.rpc']('get-interface-information', '', 'json', terse=True) %}
{% for interface in intf_info['rpc_reply']['interface-information'][0]['physical-interface'] %}
{% if interface['admin-status'][0]['data'] == 'down' %}
Enable interface {{ interface['name'][0]['data'] }}:
 junos.install_config:
 - name: salt://enable_interface.set
 - template_vars:
 interface_name: {{ interface['name'][0]['data'] }}
{% endif %}
{% endfor %}

And the referenced configuration file is as simple as:

lab@master:~$ cat /srv/salt/enable_interface.set
delete interfaces {{ template_vars['interface_name'] }} disable

In this SLS file:

 � You first call the junos.rpc execution function, providing RPC and output for-
mat (JSON) as parameters, and store the output to intf_info Jinja variable.

 � You iterate over each interface using for loop, and check the admin status. If it
is “down”, you apply junos.install_config state, providing the template file
name and template variable equal to the interface name.

Note the ID of the state includes the interface name, so it will be different for dif-
ferent interfaces. This part is critical for a situation when you have more than one
interface disabled, as the ID must be unique for different states inside the SLS file.

 60 Chapter 8: Basics of Building Event-Driven Infrastructure

Before inserting the SLS file into the reactor system, you can easily test the SLS file,
as follows (two interfaces were manually disabled on vMX-1 in advance):

lab@master:~$ sudo salt vMX-1 state.apply check_interfaces
vMX-1:

 ID: Enable interface ge-0/0/0
 Function: junos.install_config
 Name: salt://enable_interface.set
 Result: True
 Comment:
 Started: 08:10:12.372581
 Duration: 3751.626 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

 ID: Enable interface ge-0/0/1
 Function: junos.install_config
 Name: salt://enable_interface.set
 Result: True
 Comment:
 Started: 08:10:16.124440
 Duration: 2378.168 ms
 Changes:

 message:
 Successfully loaded and committed!
 out:
 True

Summary for vMX-1

Succeeded: 2 (changed=2)
Failed: 0

Total states run: 2
Total run time: 6.130 s

Not yet event-driven, but this SLS file works.

React Based on Event
Now let’s make the Salt system perform the same check-and-fix-if-needed every
time a commit is performed. To do so, proper Salt engine and reactor configura-
tion is required on the master server (most of this was configured in Chapter 7, but
let’s review everything again):

lab@master:~$ cat /etc/salt/master

engines:
 - junos_syslog:
 port: 10514

 61 React Based on Event

reactor:
 - 'jnpr/syslog/*/UI_COMMIT_COMPLETED':
 - salt://reactor/react_to_commit.sls

... output trimmed ...

lab@master:~$ sudo cat /srv/salt/reactor/react_to_commit.sls

Run task based on event:
 local.state.apply:
 - tgt: {{ data['hostname'] }}
 - arg:
 - check_interfaces

Also, Junos devices must be instructed to send syslog messages to a master server
IP address.

Let’s perform a quick check on a device:

[edit]
lab@vMX-1# set interfaces ge-0/0/0 disable

[edit]
lab@vMX-1# set interfaces ge-0/0/1 disable

[edit]
lab@vMX-1# commit
commit complete

[edit]
lab@vMX-1# show interfaces
ge-0/0/0 {
 unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
 }
}
ge-0/0/1 {
 unit 0 {
 family inet {
 address 10.1.0.1/24;
 }
 }
}
fxp0 {
 unit 0 {
 family inet {
 address 10.254.0.41/24;
 }
 }
}

[edit]
lab@vMX-1# run show system commit
0 2018-09-22 17:19:18 UTC by lab via netconf

 62 Chapter 8: Basics of Building Event-Driven Infrastructure

1 2018-09-22 17:19:16 UTC by lab via netconf
2 2018-09-22 17:19:13 UTC by lab via cli
... output trimmed ...

Although your configuration change was applied initially, you can see that almost
immediately afterward Salt again enabled both interfaces (in this case, by two dif-
ferent commits performed via NETCONF).

Summary
In the approach demonstrated in this chapter, you first created and tested the state
file, and only after that used it from within the reactor. This is a good approach as
the Salt reactor system may be rather challenging to troubleshoot. If you have to
do it, the most direct way is to stop the Salt master daemon and then start it in the
debug mode, using the –l debug key. Then, force the triggering event to happen and
see where it goes wrong. When finished, do not forget to restart the daemon as
normal.

The Salt reactor system is good if you want to perform simple “if this then that”
behavior logic – and this is something you want to start with. For something more
complicated, such as matching on multiple events happening in certain succession,
the Thorium “complex reactor” component of Salt can be used. Consult the docu-
mentation at https://docs.saltstack.com/en/latest/topics/thorium/index.html for
more details.

https://docs.saltstack.com/en/latest/topics/thorium/index.html

In this chapter you‘ll extend Salt capabilities with custom Python modules. When
developing such modules for working with Junos you can use the simple but pow-
erful Junos PyEZ library.

This chapter includes some Python code examples but they will be thoroughly ex-
plained. First, you will develop a very simple execution function just to get the
idea. Next, a more complicated function solving a realistic task will be
demonstrated.

Custom Salt Modules Review
Although a large number of professionally developed, well-tested modules already
exist for Salt, sometimes you may find yourself in the situation where some func-
tionality is not easily achievable with the existing ones. Salt allows you to easily
create and use custom modules.

NOTE This chapter will discuss creating execution modules. State modules can
also be created rather simply. Consult the official SaltStack documentation on
creating custom execution and state modules for more details: https://docs.
saltstack.com/en/latest/ref/modules/ and https://docs.saltstack.com/en/latest/ref/
states/writing.html.

Chapter 9

Creating Custom Modules for Salt with Junos PyEZ

https://docs.saltstack.com/en/latest/ref/modules/
https://docs.saltstack.com/en/latest/ref/modules/
https://docs.saltstack.com/en/latest/ref/states/writing.html
https://docs.saltstack.com/en/latest/ref/states/writing.html

 64 Chapter 9: Creating Custom Modules for Salt with Junos PyEZ

Here is a quick overview on creating execution modules for Salt:

 � You create modules using the Python programming language (alternatively,
Cython can be used).

 � The Python module is just a .py file including functions (defined with the def
keyword) that can be called by Salt.

 � The modules are put in the _modules directory (note the underscore in the begin-
ning) at the root of the Salt fileserver so, with default settings, the directory will
be /srv/salt/_modules.

 � Modules have access to pillar and grains data using special dictionaries named
__pillar__ and __grains__. They also have access to all of the Salt functions via
the __salt__ variable.

Creating a Simple Execution Module
Let’s create a very basic Salt module, named dayonejunos, including a function
named hello, as follows:

lab@master:~$ cat /srv/salt/_modules/dayonejunos.py

def hello(*args, **kwargs):
 ret = {}
 ret['pillar'] = __pillar__
 ret['grain'] = __grains__
 ret['rpc_result'] = __salt__['junos.rpc']('get-interface-information')
 return ret

In the first line of the hello function, an empty dictionary named ret is created.
Then it is filled with the Salt pillar and grain data using special variables men-
tioned above. Finally, the junos.rpc execution function is called via the __salt__ dic-
tionary, providing RPC name ('get-interface-information') as a parameter. The
output is again stored to ret dictionary, and this dictionary is returned from a
function in the last line.

Also, as you can see, the function hello may accept some positional (args) and
named (kwargs) arguments, but they are just not used in our case.

Now you need to synchronize the modules, copying them from the master file
server to the (proxy) minions. You can do it like this:

lab@master:~$ sudo salt vMX-* saltutil.sync_modules
vMX-1:
 - modules.dayonejunos
vMX-2:
 - modules.dayonejunos

And now you can execute your custom function the usual Salt way (note the out-
put of the command is abbreviated, but you can see parts of grain and pillar data,
as well as RPC output for the command you requested):

 65 Creating a Simple Execution Module

lab@master:~$ sudo salt vMX-* dayonejunos.hello
vMX-1:

 grain:

 cpuarch:
 x86_64
 dns:

 domain:
 ip4_nameservers:
 - 8.8.8.8
 ip6_nameservers:
 nameservers:
 - 8.8.8.8
...
 pillar:

 L3VPN_data:
 |_

 customer_id:
 Cust_A
 customer_ip:
 10.100.0.2
 interface_name:
 ge-0/0/2
 ip_mask:
 10.100.0.1/24
 prefix_limit:
 10
 unit:
 100
 vlan_id:
 100
 customers:

 Cust_A:
...
 rpc_result:

 out:
 True
 rpc_reply:

 interface-information:

 physical-interface:
 |_

 active-alarms:

 interface-alarms:

 alarm-not-present:
 active-defects:

 interface-alarms:
...

 66 Chapter 9: Creating Custom Modules for Salt with Junos PyEZ

vMX-2:

 grain:

 cpuarch:
 x86_64
 dns:

 domain:
 ip4_nameservers:
 - 8.8.8.8
 ip6_nameservers:
 nameservers:
 - 8.8.8.8
...

So, it works. Time to build something perhaps more useful.

Solving a Practical Problem with Execution Function
Let’s add a new function to the dayonejunos module. The task is as follows:

 � Name the module function check_traceoptions.

 � This function must check your Junos device configuration for possibly enabled
traceoptions (a Junos equivalent of debug). To reduce the load on the devices,
all traceoptions must normally be disabled so you want to warn users if this is
not the case.

 � As traceoptions may be enabled at various levels of configuration, the function
must take this into account.

 � Also take into account that traceoptions can be deactivated, in this case do not
warn the user.

 � The result of running the function must include the list of hierarchies at which
traceoptions are enabled for a device.

Before proceeding to the function source code, let’s look at the Junos configuration
example that has some traceoptions enabled:

[edit]
lab@vMX-1# show protocols
bgp {
 inactive: traceoptions {
 file bgp;
 flag nsr-synchronization;
 }
 group IBGP {
 type internal;
 local-address 192.168.0.1;
 family inet {
 unicast;
 }

 67 Creating a Simple Execution Module

 family inet-vpn {
 unicast;
 }
 neighbor 192.168.0.2;
 }
}
ospf {
 traceoptions {
 file ospf;
 flag nsr-synchronization;
 }
 area 0.0.0.0 {
 interface ge-0/0/0.0 {
 interface-type p2p;
 }
 interface ge-0/0/1.0 {
 interface-type p2p;
 }
 interface lo0.0;
 }
}

Here, both OSPF and BGP traceoptions are in the configuration, but the BGP ones
have been deactivated. Now you might be thinking that the task of analyzing such
configurations is hard, because you never know in advance where traceoptions
knobs will be located – and you may be right, analyzing configuration in text form
is not very pleasant. Let’s instead look at the same configuration in XML:

[edit]
lab@vMX-1# show protocols | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/17.1R2/junos">
 <configuration junos:changed-seconds="1535125177" junos:changed-
localtime="2018-08-24 15:39:37 UTC">
 <protocols>
 <bgp>
 <traceoptions inactive="inactive">
 <file>
 <filename>bgp</filename>
 </file>
 <flag>
 <name>nsr-synchronization</name>
 </flag>
 </traceoptions>
 <group>
 <name>IBGP</name>
 <type>internal</type>
 <local-address>192.168.0.1</local-address>
 <family>
 <inet>
 <unicast>
 </unicast>
 </inet>
 <inet-vpn>
 <unicast>
 </unicast>
 </inet-vpn>
 </family>
 <neighbor>

 68 Chapter 9: Creating Custom Modules for Salt with Junos PyEZ

 <name>192.168.0.2</name>
 </neighbor>
 </group>
 </bgp>
 <ospf>
 <traceoptions>
 <file>
 <filename>ospf</filename>
 </file>
 <flag>
 <name>nsr-synchronization</name>
 </flag>
 </traceoptions>
 <area>
 <name>0.0.0.0</name>
 <interface>
 <name>ge-0/0/0.0</name>
 <interface-type>p2p</interface-type>
 </interface>
 <interface>
 <name>ge-0/0/1.0</name>
 <interface-type>p2p</interface-type>
 </interface>
 <interface>
 <name>lo0.0</name>
 </interface>
 </area>
 </ospf>
 <ldp>
 <interface>
 <name>all</name>
 </interface>
 <interface>
 <name>fxp0.0</name>
 <disable/>
 </interface>
 </ldp>
 </protocols>
 </configuration>
 <cli>
 <banner>[edit]</banner>
 </cli>
</rpc-reply>

Analyzing this XML configuration, it turns out that you just need to locate the
<traceoptions> tag, making sure it does not have the inactive="inactive" attribute
applied. To do this, use the power of XPath, which is a standard query language
used for selecting nodes from an XML document. With XPath, the task is solved
with a few lines of code – you’ll see how in a moment.

NOTE Detailed coverage of XML and XPath is beyond the scope of this book. An
XML tutorial is available at https://www.w3schools.com/xml/. An XPath introduc-
tion can be found at https://www.w3schools.com/xml/xpath_intro.asp.

The source code of the new function is as follows – place it in the dayonejunos.py file:

https://www.w3schools.com/xml/
https://www.w3schools.com/xml/xpath_intro.asp

 69 Creating a Simple Execution Module

(1) Perform the required imports
from lxml import etree

(2) Execution function definition
def check_traceoptions(*args, **kwargs):
 '''
 Execution function to check if non-deactivated traceoptions
 are enabled in Junos device configuration
 '''

 # (3) Get reference to the Device instance
 conn = __proxy__['junos.conn']()

 # (4) Create an empty dictionary
 ret = {}

 # (5) Fill in values corresponding to 'result' and 'out' keys
 ret['result'] = True
 ret['out'] = True

 # (6) Try executing the <get-config> Junos RPC
 try:
 conf = conn.rpc.get_config()
 # (7) In case of an error, stop
 except Exception as exception:
 ret['message'] = 'RPC execution failed due to "{0}"'.format(exception)
 ret['out'] = False
 ret['result'] = None
 return ret

 # (8) Build XML Element Tree
 conf_tree = etree.ElementTree(conf)

 # (9) Perform hierarchical search for <traceoptions> tag
 traceoptions_list = conf_tree.xpath(".//traceoptions")

 # (10) The hierarchies list will store configuration stanzas
 # where non-deactivated traceoptions were found
 hierarchies = []

 # (11) Iterate over the traceoptions_list
 for traceopt in traceoptions_list:
 # Only append configuration hierarchy to the list if
 # traceoptions are active (no 'inactive' attribute)
 # at this level
 if traceopt.xpath("./@inactive") != ["inactive"]:
 hierarchies.append(conf_tree.getpath(traceopt))

 # (12) Update the result dictionary with found hierarchies
 ret['conf_stanzas'] = hierarchies

 # (13) Set message in the result dictionary
 if len(hierarchies) != 0:
 ret['result'] = False
 ret['message'] = "Enabled traceoptions were detected!"
 else:
 ret['message'] = "No traceoptions for this device"

 # (14) Return the result from execution function
 return ret

 70 Chapter 9: Creating Custom Modules for Salt with Junos PyEZ

In addition to the comments in the Python code, here are some extra explanations on
what is happening in the function:

1. Import etree module from lxml library. This is needed to use ElementTree class in
the below code. Note that although lxml is a third-party library, it is one of the
requirements of Junos PyEZ, so if you have PyEZ installed, you already have
lxml.

2. Define the new function using def keyword. After that line, you have a documen-
tation comment enclosed by three quotes, explaining the function purpose.

3. Use special __proxy__ dictionary to obtain a reference to a Junos device connection
(essentially, an instance of PyEZ Device class). Remember the module will be
executed on the proxy minion that already has a NETCONF connection to the
managed device.

4. Create a new empty dictionary named ret. Later, it will be filled in with some data
and returned from a function.

5. Fill in the initial 'result' and 'out' fields in the dictionary. The 'result' value will
be True if there are no traceoptions enabled, and False otherwise. A common
convention for 'out' is for it to be set to True if the device was able to call RPC
successfully.

6. Start the try/except block, which is used to process possible exceptional situations
in Python. In that block, execute the get-config Junos RPC using PyEZ rpc object
nested inside the device instance. Store the result to conf variable.

7. The except block will only execute if an exception happened. In this case, return
from function, setting 'out' value to False and 'result' value to None (as neither
True nor False seems suitable in such a situation).

8. Build the XML Element Tree from the device XML configuration. For more
details on lxml, consult https://lxml.de/tutorial.html.

9. Use XPath to search for traceoptions element node in the configuration. The trick
here is to do a recursive search at all levels, which is accomplished by using a
double slash syntax (//). The result of XPath application is a list, stored to a
variable traceoptions_list.

10. The hierarchies variable is a list that will store configuration stanzas where
non-deactivated traceoptions were found. Assign an empty list to this variable
initially.

11. Iterate over the traceoptions_list. At each pass, the traceopt variable will take a
value of an element that matched the XPath (essentially, traceoptions are enabled
at some level). Check if traceoptions are deactivated, and if not, update the
hierarchies list with the path to the new element.

https://lxml.de/tutorial.html

 71 Running the check_traceoptions Function

12. Update the ret dictionary with a hierarchies list.

13. Set 'result' and 'message' keys in the result dictionary, depending whether
active traceoptions were found in the configuration.

14. Return the result from the execution function.

DISCUSSION At this point you may be wondering why a PyEZ RPC call in Step
6 was needed at all? Couldn’t we have just retrieved the configuration using
something like a __salt__['junos.rpc']('get-config') call to the execution function?
Well, although the junos.rpc function is able to return data in multiple formats, it
does not really return XML data that can be easily processed with XPath. Instead,
a Python object created using the jxmlease library is returned from that function if
you specify XML output format. So, to be able to work with XPath, this approach
was required.

Running the check_traceoptions Function
Finally, let’s sync the modules and run the execution function:

lab@master:~$ sudo salt vMX-* saltutil.sync_modules
vMX-1:
 - modules.dayonejunos
vMX-2:
 - modules.dayonejunos

lab@master:~$ sudo salt vMX-* dayonejunos.check_traceoptions
vMX-2:

 conf_stanzas:
 message:
 No traceoptions for this device
 out:
 True
 result:
 True
vMX-1:

 conf_stanzas:
 - /configuration/interfaces/traceoptions
 - /configuration/protocols/ospf/traceoptions
 message:
 Enabled traceoptions were detected!
 out:
 True
 result:
 False

You can see that for the vMX-2 device, no traceoptions are enabled, while a couple
of configuration stanzas on vMX-1 do include them.

 72 Chapter 9: Creating Custom Modules for Salt with Junos PyEZ

Summary
Note that if you have a larger configuration part (such as a routing protocol) deac-
tivated, and that larger configuration includes traceoptions, the above discussed
check_traceoptions function will treat these traceoptions as enabled if there is no
explicit inactive attribute exactly at the traceoptions level. The idea of this ap-
proach is to make sure that traceoptions are explicitly disabled and will not be-
come activated accidentally, when a larger configuration part is activated.

Using the approach demonstrated in this chapter, you can use Python and PyEZ to
create many other useful Salt modules for managing Junos devices. As an exercise,
you might want to extend the example used in this chapter, building an execution
function that not only detects, but also disables the traceoptions in the Junos de-
vice configuration!

MORE? You can find lots of script ideas for Junos PyEZ in Day One: Junos PyEZ
Cookbook at https://www.juniper.net/dayone.

https://www.juniper.net/dayone

It’s time to validate and test the status of your network devices with Salt. This ap-
proach uses state SLS files and Salt’s ability to call execution functions from the
state files. Additionally, you’ll use Python to define your SLS files (instead of the
default combination of Jinja and YAML).

A Need to Test
You always want to make sure your network functionality does not degrade after
changing configurations, upgrading software, or changing the traffic load. Even
during normal operations there is a need to continuously check how your network
works with the timely collection of feedback from its elements.

Salt has a few ways to perform network testing. The approach discussed in this
chapter is based on the fact that Salt execution functions can be called from SLS
state files and the resulting structured output can be analyzed. Then, depending on
the results of the analysis, various actions can be performed. In the simplest case,
this can be just outputting a corresponding message to the administrator, and in a
bit more complex scenario, self-healing can be attempted. Let’s go validate some
states.

Chapter 10

Validating Operational States of a Junos Device

 74 Chapter 10: Validating Operational States of a Junos Device

Example Scenario
Figure 10.1 illustrates a basic example scenario used in this chapter. You have two
routers connected using two links (any resemblance to actual production network
topologies is purely coincidental). The OSPF protocol using area 0.0.0.0 runs on
both links. You want to make sure that the OSPF neighbors are in the Full State, as
in this example output from vMX-1:

lab@vMX-1> show ospf neighbor
Address Interface State ID Pri Dead
10.0.0.222 ge-0/0/0.0 Full 192.168.0.2 128 37
10.0.1.222 ge-0/0/1.0 Full 192.168.0.2 128 36

Figure 10.1 Network Topology Used for This Chapter.

As you will see next, the SLS state file will use the junos.rpc execution module to
get this data in JSON so it can be parsed for the value of the State field. So before
we start looking at an actual SLS file performing a test, let’s look at the JSON out-
put corresponding to the same command:

lab@vMX-1> show ospf neighbor | display json
{
 "ospf-neighbor-information" : [
 {
 "attributes" : {"xmlns" : "http://xml.juniper.net/junos/17.1R2/junos-routing"},
 "ospf-neighbor" : [
 {
 "neighbor-address" : [
 {
 "data" : "10.0.0.222"
 }
],
 "interface-name" : [
 {
 "data" : "ge-0/0/0.0"
 }
],
 "ospf-neighbor-state" : [
 {
 "data" : "Full"
 }
],
 "neighbor-id" : [
 {

 75 Example Scenario

 "data" : "192.168.0.2"
 }
],
 "neighbor-priority" : [
 {
 "data" : "128"
 }
],
 "activity-timer" : [
 {
 "data" : "31"
 }
]
 },
 {
 "neighbor-address" : [
 {
 "data" : "10.0.1.222"
 }
],
 "interface-name" : [
 {
 "data" : "ge-0/0/1.0"
 }
],
 "ospf-neighbor-state" : [
 {
 "data" : "Full"
 }
],
 "neighbor-id" : [
 {
 "data" : "192.168.0.2"
 }
],
 "neighbor-priority" : [
 {
 "data" : "128"
 }
],
 "activity-timer" : [
 {
 "data" : "39"
 }
]
 }
]
 }
]
}

From this output, the list of OSPF neighbors is located at the ['ospf-neighbor-infor-
mation'][0]['ospf-neighbor'] level. Once you are processing the particular neighbor
(for example, in a for-loop), the actual state is located at the ['ospf-neighbor-
state'][0]['data'] level. Note how Junos OS commonly uses lists with strictly one
element in JSON representations of RPC outputs, so you have to obtain only this
list element with [0] indexing – this may be a bit confusing at first.

 76 Chapter 10: Validating Operational States of a Junos Device

Additionally, the Junos RPC corresponding to the show ospf neighbor command is
easily obtained using the Junos CLI:

lab@vMX-1> show ospf neighbor | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/17.1R2/junos">
 <rpc>
 <get-ospf-neighbor-information>
 </get-ospf-neighbor-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

So, you can see that the RPC name that you need is get-ospf-neighbor-information.

Now let’s create the state SLS file that will perform the test – in this case you are
testing for the presence of exactly two OSPF neighbors in the ‘Full’ state:

lab@master:/srv/salt$ cat test-ospf.sls

{% set ospf_neighbors = salt['junos.rpc']('get-ospf-neighbor-information', '', 'json') %}

{% set full_neighbors_count = {'count': 0} %}
{% set expected_neighbors_count = 2 %}

{% for neighbor in ospf_neighbors['rpc_reply']['ospf-neighbor-information'][0]['ospf-neighbor'] %}
 {% if neighbor['ospf-neighbor-state'][0]['data'] == 'Full' %}
 {% if full_neighbors_count.update({'count': full_neighbors_count.count + 1}) %}
 {% endif %}
 {% endif %}
{% endfor %}

Print results of OSPF neighbor status test:
 module.run:
 - name: test.echo
 text:

{% if full_neighbors_count.count == expected_neighbors_count %}
 - OSPF neighbor test passed with {{ full_neighbors_count.count }} full neighbors
{% else %}
 - OSPF neighbor test failed with {{ full_neighbors_count.count }} full neighbors
{% endif %}

As discussed previously, Salt state files are, by default, a combination of Jinja (tem-
plate engine) and YAML (data serialization language). The following is a basic
description of how this SLS state file is processed:

1. You call the junos.rpc execution function using salt[<module-name>.<function-
name>] syntax. You pass parameters including RPC name and the desired output
format (JSON). The result is stored to the Jinja variable named ospf_neighbors.

2. You create a variable named full_neighbors_count, which is a dictionary contain-
ing a single key named 'count' with an initial value of 0. You need to use a
dictionary because you will want to modify the counter in a for-loop.

 77 Example Scenario

3. The expected_neighbors_count variable will contain the expected number of Full
OSPF neighbors (in this case, two).

4. Perform iteration (for-loop) over the list of OSPF neighbors extracted using
RPC call. In the body of a loop, update full_neighbors_count counter if the state
is Full.

5. Use the module.run state module that allows using execution functions in state
files. In this case you just execute the test.echo module that prints a text
message.

6. A different text message is printed depending on the value of full_neighbors_
count.count variable – either the test passed or not.

Let’s now execute the state:

lab@master:/srv/salt$ sudo salt vMX* state.apply test-ospf
vMX-1:

 ID: Print results of OSPF neighbor status test
 Function: module.run
 Name: test.echo
 Result: True
 Comment: Module function test.echo executed
 Started: 05:57:28.657801
 Duration: 5.904 ms
 Changes:

 ret:
 - OSPF neighbor test passed with 2 full neighbors

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 5.904 ms
vMX-2:

 ID: Print results of OSPF neighbor status test
 Function: module.run
 Name: test.echo
 Result: True
 Comment: Module function test.echo executed
 Started: 05:57:29.702003
 Duration: 6.652 ms
 Changes:

 ret:
 - OSPF neighbor test passed with 2 full neighbors

 78 Chapter 10: Validating Operational States of a Junos Device

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 6.652 ms

In this case, everything was fine in our small network so the tests passed. If you
had OSPF neighbor states other than ‘Full’, then a test failure message would be
shown.

A Variation in Python
The SLS file from a previous section was created as a Jinja+YAML file, which is
Salt’s default. However, you can use other template engines (for example, Mako)
and other data formatting languages (for example, JSON). You can even create
your SLS file as pure Python code, and that is what you will do in this section. So if
you felt like too much logic was put in the Jinja template in the previous section,
this way you can move all logic into Python code (alternatively, you could put Py-
thon code in a custom module, similar to what you did in Chapter 9) .

This next file, called test-ospf-py.sls, is actually doing the same thing as test-ospf.
sls in the previous section, but it is now rewritten as Python code:

lab@master:/srv/salt$ cat test-ospf-py.sls
#! py

def run():
 full_neighbors_count = 0
 expected_neighbors_count = 2
 ospf_neighbors = __salt__['junos.rpc']('get-ospf-neighbor-information', '', 'json')
 for neighbor in ospf_neighbors['rpc_reply']['ospf-neighbor-information'][0]['ospf-neighbor']:
 if neighbor['ospf-neighbor-state'][0]['data'] == 'Full':
 full_neighbors_count += 1
 if full_neighbors_count == expected_neighbors_count:
 txt_result = "OSPF neighbor test passed with %s full neighbors " % full_neighbors_count
 else:
 txt_result = "OSPF neighbor test failed with %s full neighbors " % full_neighbors_count
 res = {
 "Print results of OSPF neighbor status test" : {
 "module.run": [{ "name": "test.echo", "text": [txt_result] }]
 }
 }
 return res

The explanation of how this SLS state file works:

1. The first line (#!py) instructs Salt that this is a Python SLS file so it must be
processed accordingly.

2. The run() function is defined – it is a convention that SLS files written in Python
must follow. The function must return the generated state content as a Python
object.

 79 Example Scenario

3. Create variables named full_neighbors_count (counter for the number of OSPF
neighbors in the ‘Full’ state) and expected_neighbors_count (the expected number
of ‘Full’ OSPF neighbors - in this case, two).

4. You call the junos.rpc execution function using the __salt__ special object. You
pass parameters including RPC name and the desired output format (JSON).
The result is stored to the Python variable named ospf_neighbors.

5. Perform iteration (for loop) over the list of OSPF neighbors extracted using
RPC call. Update full_neighbors_count counter if a state is ‘Full’.

6. Depending on the equality between the expected and actual number of OSPF
neighbors, assign the value to txt_results variable (it basically contains the
result of our test).

7. Create a res variable (Python dictionary, including some nested dictionaries and
lists) matching closely the structure of the SLS file from the previous section
(the YAML part of it), putting txt_results inside it.

8. Return res.

Now let’s run the state file (to show a difference, one of the OSPF adjacencies was
broken before the command was executed):

lab@master:/srv/salt$ sudo salt vMX* state.apply test-ospf-py
vMX-1:

 ID: Print results of OSPF neighbor status test
 Function: module.run
 Name: test.echo
 Result: True
 Comment: Module function test.echo executed
 Started: 10:25:06.594210
 Duration: 7.697 ms
 Changes:

 ret:
 - OSPF neighbor test failed with 1 full neighbors

Summary for vMX-1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 7.697 ms
vMX-2:

 ID: Print results of OSPF neighbor status test
 Function: module.run
 Name: test.echo
 Result: True
 Comment: Module function test.echo executed
 Started: 10:25:06.685827
 Duration: 5.817 ms

 80 Chapter 10: Validating Operational States of a Junos Device

 Changes:

 ret:
 - OSPF neighbor test failed with 1 full neighbors

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 5.817 ms

Overall, the state file written in Python behaves the same way as the more common
Jinja+YAML version.

As you might guess, it is possible to perform more complicated tests using the ap-
proach demonstrated in this chapter. Regardless of what testing methodology or
framework you use, the more of your network’s functionality is covered with tests,
the better.

The next chapter covers another way of network testing, via integration of Salt
with the JSNAPy tool.

This chapter explains how you can integrate Salt with JSNAPy, an open source
tool automating network verifications for Junos.

Overview of JSNAPy
JSNAPy (Junos SNAPshot Administrator in Python) allows you to automatically
collect and verify operational and configuration data from your Junos devices.

MORE? This chapter only reviews JSNAPy very briefly, and then covers integrating
it with Salt. JSNAPy is explained in details in Day One: Enabling Automated
Network Verifications with JSNAPy available at: https://www.juniper.net/dayone.
Source code for this tool, with some additional examples and documentation, is
available at https://github.com/Juniper/jsnapy.

To connect to devices, JSNAPy uses the NETCONF protocol (exploiting Junos
PyEZ library under the hood). The data is collected in the form of snapshots, out-
puts of given commands or RPCs. Snapshots can be stored as files or records in a
SQLite database. The four main operations of JSNAPy are:

 � Snap – take a snapshot.

 � Check – compare the two snapshots taken at different times (e.g. before and
after maintenance) based on given test conditions. This is sometimes referred
to as “snap-snap-check workflow”.

 � Snapcheck – take a snapshot and compare it against predefined test conditions
(“snapcheck workflow”).

 � Diff – show the difference between two snapshots, without specifying test con-
ditions.

Chapter 11

Automated Network Verifications with Salt and
JSNAPy

https://www.juniper.net/dayone%20
https://github.com/Juniper/jsnapy

 82 Chapter 11: Automated Network Verifications with Salt and JSNAPy

For this chapter, a snapcheck workflow will be used.

At the time of this writing, JSNAPy is available in three forms: CLI tool, Ansible
module, or Python module. The Junos execution and state modules for Salt do not
have out-of-the-box JSNAPy integration, but this does not in any way prevent you
from using JSNAPy with Salt. Really, with the flexibility of Salt, integration of this
and possibly other tools (for example, some custom PyEZ scripts) is not hard to do.

Example Scenario
Let’s show you how this integration can be done. The basic setup is as follows:

 � The Salt reactor system, in response to Junos events pushed by the Junos syslog
engine to the Salt event bus, invokes a reactor SLS file.

 � The reactor SLS file references Salt runner (Python code executed on the master
server), passing the required parameters (such as the device hostname for this
event) to it.

 � Salt runner imports JSNAPy Python library and calls JSNAPy methods as need-
ed. This assumes the master server has PyEZ, JSNAPy, and the jxmlease libraries
installed.

The setup is illustrated in Figure 11.1. Although not shown, JSNAPy, when in-
voked, actually connects to the Junos devices using NETCONF sessions initiated
from the master server.

Figure 11.1 The Example Lab Setup for This Chapter.

 83 Example Scenario

In the example scenario that we consider, the system will react to commit messages
(UI_COMMIT_COMPLETED) from vMX-1 and vMX-2 devices, and will perform a basic
configuration audit check (for this example we will check that no Telnet service is
enabled in the setup, as this service is insecure). The vMX device configurations
are similar to ones in Chapter 7 (the Salt master server’s address is configured as a
destination for syslog messages).

The results of the test will be sent to the network administrator’s email addresses
using JSNAPy’s built-in capabilities.

Install and Configure JSNAPy
To implement the outlined plan, first install the required packages (PyEZ, JSNAPy
and jxmlease) on the master server:

lab@master:~$ sudo pip install junos-eznc
lab@master:~$ sudo python -m easy_install --upgrade pyOpenSSL
lab@master:~$ sudo pip install jxmlease
lab@master:~$ sudo pip install jsnapy

The output is omitted to save space. Note that the same PyEZ and jxmlease pack-
ages were installed and used in the previous chapters on the minion1 server run-
ning the proxies – and only now are they needed on the master because we are
going to use Salt runner, and runners are executed on the master server.

Now that JSNAPy is installed, edit its configuration file to make sure it looks like
this:

lab@master:~$ sudo vi /etc/jsnapy/jsnapy.cfg

[DEFAULT]
config_file_path = /etc/jsnapy
snapshot_path = /etc/jsnapy/snapshots
test_file_path = /etc/jsnapy/testfiles

Also, in the directory /etc/jsnapy/testfiles containing the tests, put the test file
with the following content:

lab@master:~$ cat /etc/jsnapy/testfiles/test_telnet.yml
tests_include:
 - test_telnet_config

test_telnet_config:
 - rpc: get-config
 - kwargs:
 filter_xml: configuration/system
 - item:
 xpath: system/services
 tests:
 - not-exists: telnet
 err: "Test Failed! Disallowed telnet service is configured."
 info: "Test passed."

 84 Chapter 11: Automated Network Verifications with Salt and JSNAPy

This is a simple JSNAPy test checking for the presence of telnet service configura-
tion in the [edit system services] hierarchy on a Junos device. As you can see, JS-
NAPy’s test files are created in YAML and for the most part they are
self-explanatory. In this case you are asking for get-config RPC output (also filter-
ing out only the system configuration) and checking if the telnet element exists at
the system/services level. Please consult the above cited book, or JSNAPy docu-
mentation, for more details and available options.

Also, in this chapter you will use JSNAPy’s ability to notify you on the results of a
test using email. So, create the following file and instead of XXXXX, enter you
email parameters:

lab@master:~$ cat /etc/jsnapy/send_mail.yml
from: XXXXX
to: XXXXX
sub: JSNAPy results
recipient_name: Admin
sender_name: JSNAPy
server: XXXXX
passwd: XXXXX

This finishes our simple setup of JSNAPy. It will be called from a Python module,
shown next.

Configure Runners and Reactors
Now, make sure you have the following in your master server configuration (/etc/
salt/master):

engines:
 - junos_syslog:
 port: 10514

reactor:
 - 'jnpr/syslog/*/UI_COMMIT_COMPLETED':
 - salt://reactor/react_to_commit.sls

runner_dirs:
 - /srv/salt/runners

Here, the engines and reactor sections are the same as you had previously, in Chap-
ters 7 and 8. Consult those chapters if you need a refresher. Generally, the reactor
triggers an SLS file based on events. As it did previously, the system will be reacting
to a Junos commit event, calling the react_to_commit.sls file.

The runner_dirs is a new section that you must add to the master configuration to
be able to execute runners, so do not forget to do so, and then restart the Salt mas-
ter. Also create the /srv/salt/runners directory which, in this example, will contain
your runners.

 85 Example Scenario

The content of react_to_commit.sls file is as follows:

lab@master:~$ cat /srv/salt/reactor/react_to_commit.sls
Execute JSNAPy tests:
 runner.run_jsnapy.audit_config:
 - args:
 device: {{ data['hostname'] }}

Here, the SLS file calls a runner named run_jsnapy, in particular, a function named
audit_config defined in it. The function will receive the device argument, whose val-
ue is extracted from the syslog message received on the event bus (the data
variable).

Now you can create a runner file:

lab@master:~$ cat /srv/salt/runners/run_jsnapy.py
(1)
import salt.runner
from jnpr.jsnapy import SnapAdmin

(2)
def audit_config(*args, **kvargs):

 # (3)
 CONF_DATA = """
tests:
 - test_telnet.yml

mail: /etc/jsnapy/send_mail.yml

hosts:
"""

 vMX_1_DATA = """
 - device: 10.254.0.41
 username: lab
 passwd: lab123
"""

 vMX_2_DATA = """
 - device: 10.254.0.42
 username: lab
 passwd: lab123
"""

 # (4)
 if "device" in kvargs:
 if kvargs["device"] == "vMX-1":
 CONF_DATA += vMX_1_DATA
 if kvargs["device"] == "vMX-2":
 CONF_DATA += vMX_2_DATA
 else: # possibly called by salt-run
 CONF_DATA += (vMX_1_DATA + vMX_2_DATA)

 # (5)
 snapadmin = SnapAdmin()
 result = snapadmin.snapcheck(CONF_DATA, "pre")

 86 Chapter 11: Automated Network Verifications with Salt and JSNAPy

And the explanation of how this Python code is processed:

1. Perform the necessary imports, in particular SnapAdmin class from jnpr.jsnapy
library. This class allows calling JSNAPy from Python code.

2. Define audit_config function.

3. Create three string variables - CONF_DATA, vMX_1_DATA, vMX_2_DATA.
The ultimate goal is to build a JSNAPy YAML configuration string depending
on what devices we need to run tests on.

4. Depending on the “device” parameter passed to the function, either append
vMX-1 or vMX-2 data to CONF_DATA, or append both (if no “device” is
provided).

5. Create an instance of SnapAdmin class named snapadmin – it will be used to call
JSNAPy from the Python code. Then, call snapcheck method passing CONF_
DATA as a parameter (note that JSNAPy workflow used in this runner is
“snapcheck”). Another parameter is a snapshot name (in this case “pre” – the
name does not matter much in this particular scenario).

To test the setup, you perform a commit operation on vMX-1 device, and, if every-
thing was done right, you receive an email with test results! Next, commit on
vMX-2 gives you another email (see Figure 11.2). In this case, vMX-1 had Telnet
enabled so the test failed. For vMX-2, the test passed as no telnet was in
configuration.

Fig. 11.2 Example Emails From JSNAPy.

 87 Summary

Alternatively, you can execute a test (on both devices) manually using the salt-run
command as follows to get the same result (and yes, emails are also sent out):

lab@master:~$ sudo salt-run run_jsnapy.audit_config
Connecting to device 10.254.0.42
Taking snapshot of RPC: get-config
**************************** Device: 10.254.0.42 ****************************
Tests Included: test_telnet_config
*************************RPC is get-config*************************
PASS | All "telnet" do not exists at xpath "system/services" [1 matched]
------------------------------- Final Result!! -------------------------------
test_telnet_config : Passed
Total No of tests passed: 1
Total No of tests failed: 0
Overall Tests passed!!!
Connecting to device 10.254.0.41
Taking snapshot of RPC: get-config
**************************** Device: 10.254.0.41 ****************************
Tests Included: test_telnet_config
*************************RPC is get-config*************************
Test Failed! Disallowed telnet service is configured.
FAIL | "telnet" exists at xpath "system/services" [0 matched / 1 failed]
------------------------------- Final Result!! -------------------------------
test_telnet_config : Failed
Total No of tests passed: 0
Total No of tests failed: 1
Overall Tests failed!!!
None

Summary
In this example, the results of the test were simply sent to the administrator’s email
for review. Performing other types of reactions, based on the test results, is cer-
tainly possible. This includes sending other types of notifications as well as trying
some Junos device configuration self-healing.

We will not be demonstrating it here, but the basic outline for self-healing scenario
could be as follows:

 � The runner executing JSNAPy snapcheck analyzes the test result and based on
that generates a custom Salt event.

 � Salt reactor matches on that event and applies SLS file that performs the re-
quired configuration change.

Basically, anything can be done – but remember to keep your workflows as simple
and clear as possible.

The previous chapters of this book showed you how Salt works with the Junos OS,
using specialized execution and state modules that give you all the control and
flexibility you need when managing Junos-based network devices.

Salt also includes NAPALM modules support for multivendor network device
management, now discussed in this chapter.

NAPALM Review
NAPALM stands for Network Automation and Programmability Abstraction
Layer with Multivendor support and allows you to manage Junos as well as some
other vendors’ equipment using an uniform interface.

NAPALM is open-source Python library, with source code available at https://
github.com/napalm-automation/napalm and documentation at http://napalm.
readthedocs.io/en/latest/.

Let’s get our hands dirty with just a bit of Python NAPALM code before proceed-
ing to Salt. On the minion1 server, install NAPALM library using the pip tool:

lab@minion1:~$ sudo pip install napalm

This chapter also assumes that hostnames vMX-1 and vMX-2 are resolvable to
corresponding IP addresses. You can achieve this by setting up DNS or just adding
these entries to hosts file (do it on both master and minion1):

$ cat /etc/hosts
10.254.0.41 vMX-1
10.254.0.42 vMX-2
...

Chapter 12

Junos Automation with Salt and NAPALM

https://github.com/napalm-automation/napalm
https://github.com/napalm-automation/napalm
http://napalm.readthedocs.io/en/latest/
http://napalm.readthedocs.io/en/latest/

 89 NAPALM Review

Now start an interactive Python session and load a NAPALM network driver for
Junos (although NAPALM is cross-vendor, let’s use Junos for the example here):

lab@minion1:~$ python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from napalm import get_network_driver
>>> driver = get_network_driver('junos')

Now create a device instance and open the connection to it:

>>> device = driver('vMX-1', 'lab', 'lab123')
>>> device.open()

Check the available object attributes with the dir() function – you can see you
have a lot of options:

>>> dir(device)
['__class__', '__del__', '__delattr__', '__dict__', '__doc__', '__enter__', '__exit__', '__
format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__
reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__
weakref__', '_canonical_int', '_detect_config_format', '_get_address_family', '_is_json_format', '_
load_candidate', '_lock', '_netmiko_close', '_netmiko_open', '_parse_route_stats', '_parse_
value', '_rpc', '_unlock', 'cli', 'close', 'commit_config', 'compare_config', 'compliance_
report', 'config_lock', 'config_replace', 'connection_tests', 'device', 'discard_config', 'get_arp_
table', 'get_bgp_config', 'get_bgp_neighbors', 'get_bgp_neighbors_detail', 'get_config', 'get_
environment', 'get_facts', 'get_firewall_policies', 'get_interfaces', 'get_interfaces_
counters', 'get_interfaces_ip', 'get_ipv6_neighbors_table', 'get_lldp_neighbors', 'get_lldp_
neighbors_detail', 'get_mac_address_table', 'get_network_instances', 'get_ntp_peers', 'get_ntp_
servers', 'get_ntp_stats', 'get_optics', 'get_probes_config', 'get_probes_results', 'get_route_
to', 'get_snmp_information', 'get_users', 'hostname', 'ignore_warning', 'is_
alive', 'keepalive', 'key_file', 'load_merge_candidate', 'load_replace_candidate', 'load_
template', 'locked', 'open', 'password', 'ping', 'port', 'post_connection_tests', 'pre_connection_
tests', 'profile', 'rollback', 'ssh_config_file', 'timeout', 'traceroute', 'username']

Let’s, for example, check the route to the 10.254.0.1 host:

>>> device.get_route_to("10.254.0.1")
{u'10.254.0.0/24': [{'protocol': u'Direct', 'last_active': True, 'outgoing_
interface': u'fxp0.0', 'current_active': True, 'routing_table': u'inet.0', 'next_
hop': None, 'selected_next_hop': True, 'preference': 0, 'inactive_
reason': u'', 'age': 4822293, u'protocol_attributes': {}}]}

The output is a Python object providing the same information that you could get
from the Junos CLI as follows:

lab@vMX-1> show route 10.254.0.1

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.254.0.0/24 *[Direct/0] 7w6d 19:40:31
 > via fxp0.0

However, the major difference here is that NAPALM will present routing informa-
tion in a uniform way for any supported network device, whether it runs Junos or
something else.

 90 Chapter 12: Junos Automation with Salt and NAPALM

Configuring NAPALM Proxy for Junos
To make Junos devices work with Salt via NAPALM modules, you will need to
enable a NAPALM proxy in much the same way as you enabled Junos proxy min-
ions in Chapter 3. The only difference is in the pillar configuration, which now will
be like this:

lab@master:~$ cat /srv/pillar/proxy-1.sls
proxy:
 proxytype: napalm
 driver: junos
 fqdn: vMX-1
 username: lab
 password: lab123

lab@master:~$ cat /srv/pillar/proxy-2.sls
proxy:
 proxytype: napalm
 driver: junos
 fqdn: vMX-2
 username: lab
 password: lab123

Figure 12.1 Lab Setup Used in This Chapter

See Fig. 12.1 for an illustration. Similar to what you did before, you will also need
to start the Salt proxy processes on the minion1 server, for example:

lab@minion1:~$ sudo killall salt-proxy
lab@minion1:~$ sudo salt-proxy --proxyid=vMX-1 -d
lab@minion1:~$ sudo salt-proxy --proxyid=vMX-2 -d

Perform the basic connectivity check to make sure everything was set up properly:

lab@master:~$ sudo salt vMX* test.ping
vMX-1:
 True
vMX-2:
 True

 91 Configuring NAPALM Proxy for Junos

Salt uses multiple modules that exploit NAPALM – this includes the NET execu-
tion module for basic functions such as configuration load and commit, the routes
execution module, the BGP execution module, the Netconfig state module, and
many more. NAPALM also works with YANG models, including OpenConfig,
allowing you to create and apply vendor-neutral network device configurations.

MORE? For a complete list of modules you can use for network automation
with Salt, see: https://docs.saltstack.com/en/latest/topics/network_automation/
index.html.

Now use the NAPALM route module to get a route to 10.254.0.1, similar to what
you did with Python in the previous section:

lab@master:~$ sudo salt vMX-1 route.show 10.254.0.1 --out json
{
 "vMX-1": {
 "comment": "",
 "result": true,
 "out": {
 "10.254.0.0/24": [
 {
 "protocol": "Direct",
 "last_active": true,
 "current_active": true,
 "age": 4825895,
 "routing_table": "inet.0",
 "next_hop": null,
 "outgoing_interface": "fxp0.0",
 "preference": 0,
 "selected_next_hop": true,
 "protocol_attributes": {},
 "inactive_reason": ""
 }
]
 }
 }
}

Uploading Device Configurations
Now let’s load some basic configuration – in this example you want to enable
LLDP on two interfaces for both vMX devices in the topology (needless to say,
you could also use some advanced templating here – for example, Jinja syntax us-
ing pillar data, as demonstrated in previous chapters, but we will limit ourselves to
a very simple example):

lab@master:~$ sudo cat /srv/salt/lldp.conf
protocols {
 lldp {
 interface ge-0/0/0;
 interface ge-0/0/1;
 }
}

https://docs.saltstack.com/en/latest/topics/network_automation/index.html
https://docs.saltstack.com/en/latest/topics/network_automation/index.html

 92 Chapter 12: Junos Automation with Salt and NAPALM

Now create a state file as follows:

lab@master:~$ cat /srv/salt/lldp.sls
Enable LLDP:
 netconfig.managed:
 - template_name: salt://lldp.conf

Here, “Enable LLDP” is a state name and you are referencing the NAPALM net-
config.managed state function, providing the path to template (configuration) file as
an argument.

Now you can apply the state:

lab@master:~$ sudo salt vMX* state.apply lldp
vMX-2:

 ID: Enable LLDP
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 05:39:36.002885
 Duration: 3114.969 ms
 Changes:

 diff:
 [edit protocols]
 + lldp {
 + interface ge-0/0/0;
 + interface ge-0/0/1;
 + }

Summary for vMX-2

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 3.115 s
vMX-1:

 ID: Enable LLDP
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 05:39:35.997927
 Duration: 4450.342 ms
 Changes:

 diff:
 [edit protocols]
 + lldp {
 + interface ge-0/0/0;
 + interface ge-0/0/1;
 + }

Summary for vMX-1

 93 Configuring NAPALM Proxy for Junos

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 4.450 s

You can see the configuration was applied successfully. You can also get the state
of the now-configured LLDP protocol using the LLDP NAPALM execution mod-
ule, as follows:

lab@master:~$ sudo salt vMX* net.lldp --out json
{
 "vMX-2": {
 "comment": "",
 "result": true,
 "out": {
 "ge-0/0/1": [
 {
 "remote_port_description": "ge-0/0/1",
 "remote_port": "519",
 "remote_system_
description": "Juniper Networks, Inc. vmx internet router, kernel JUNOS 17.1R2.7, Build date: 2017-
06-17 09:46:28 UTC Copyright (c) 1996-2017 Juniper Networks, Inc.",
 "remote_chassis_id": "00:05:86:1B:0C:C0",
 "remote_system_name": "vMX-1",
 "parent_interface": "-",
 "remote_system_capab": "Bridge Router",
 "remote_system_enable_capab": "Bridge Router"
 }
],
 "ge-0/0/0": [
 {
 "remote_port_description": "ge-0/0/0",
 "remote_port": "518",
 "remote_system_
description": "Juniper Networks, Inc. vmx internet router, kernel JUNOS 17.1R2.7, Build date: 2017-
06-17 09:46:28 UTC Copyright (c) 1996-2017 Juniper Networks, Inc.",
 "remote_chassis_id": "00:05:86:1B:0C:C0",
 "remote_system_name": "vMX-1",
 "parent_interface": "-",
 "remote_system_capab": "Bridge Router",
 "remote_system_enable_capab": "Bridge Router"
 }
]
 }
 }
}
{
 "vMX-1": {
 "comment": "",
 "result": true,
 "out": {
 "ge-0/0/1": [
 {
 "remote_port_description": "ge-0/0/1",
 "remote_port": "519",
 "remote_system_

 94 Chapter 12: Junos Automation with Salt and NAPALM

description": "Juniper Networks, Inc. vmx internet router, kernel JUNOS 17.1R2.7, Build date: 2017-
06-17 09:46:28 UTC Copyright (c) 1996-2017 Juniper Networks, Inc.",
 "remote_chassis_id": "00:05:86:C9:68:C0",
 "remote_system_name": "vMX-2",
 "parent_interface": "-",
 "remote_system_capab": "Bridge Router",
 "remote_system_enable_capab": "Bridge Router"
 }
],
 "ge-0/0/0": [
 {
 "remote_port_description": "ge-0/0/0",
 "remote_port": "518",
 "remote_system_
description": "Juniper Networks, Inc. vmx internet router, kernel JUNOS 17.1R2.7, Build date: 2017-
06-17 09:46:28 UTC Copyright (c) 1996-2017 Juniper Networks, Inc.",
 "remote_chassis_id": "00:05:86:C9:68:C0",
 "remote_system_name": "vMX-2",
 "parent_interface": "-",
 "remote_system_capab": "Bridge Router",
 "remote_system_enable_capab": "Bridge Router"
 }
]
 }
 }
}

Note that both the way you applied the configuration using netconfig module, and
the way you checked LLDP status, were completely vendor- and OS-independent.

Summary
As normally happens when abstraction layers are added, with NAPALM your
work becomes more high-level. You don’t have to think of fine details, such as the
vendor-specific ways of loading configurations, and operational data you get from
different devices is now uniform.

Compared to working with specialized vendor modules there may be some draw-
backs as well, as you may lose some flexibility; just choose the approach that best
fits your needs.

NOTE The principles discussed in the previous chapters of this book, including
remote execution, configuration management, and the basics of EDI, remain the
same if you choose to use the Salt NAPALM modules.

For your convenience this Appendix is an entire list of references to resources that
were used during preparation of the book, many of which were cited within the
text, that you can consult for additional examples and explanations.

This Book’s Git Repository
https://github.com/pklimai/day-one-junos-salt

SaltStack Official Documentation
Main documentation page: https://docs.saltstack.com/en/latest/

Junos execution modules for Salt: https://docs.saltstack.com/en/latest/ref/modules/all/
salt.modules.junos.html

Junos state modules for Salt: https://docs.saltstack.com/en/latest/ref/states/all/salt.
states.junos.html

Junos proxy for Salt: https://docs.saltstack.com/en/latest/ref/proxy/all/salt.proxy.junos.
html#module-salt.proxy.junos

Junos Syslog engine for Salt: https://docs.saltstack.com/en/latest/ref/engines/all/salt.
engines.junos_syslog.html

Network automation with Salt documentation page: https://docs.saltstack.com/en/
latest/topics/network_automation/index.html

Appendix

References

https://github.com/pklimai/day-one-junos-salt
https://docs.saltstack.com/en/latest/
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.junos.html
https://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.junos.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.junos.html
https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.junos_syslog.html
https://docs.saltstack.com/en/latest/ref/engines/all/salt.engines.junos_syslog.html
https://docs.saltstack.com/en/latest/topics/network_automation/index.html
https://docs.saltstack.com/en/latest/topics/network_automation/index.html

 96 Appendix: References

YouTube Videos on Junos Automation with Salt
Part 1 - Introduction to SaltStack: https://www.youtube.com/watch?v=JK7z6xnj1k0

Part 2 - Junos specific Salt components (Junos proxy, execution modules and state
modules): https://www.youtube.com/watch?v=QE1l8OMwjQU

Part 3 - Junos Syslog Engine and reactors: https://www.youtube.com/
watch?v=QFU6RzCgG4I

Useful GitHub Repositories
Hands on Labs around Junos Event Driven automation: https://github.com/ksator/
automation_summit_Q3_2018

Junos automation with Salt (presentations, FAQ and Wiki): https://github.com/ksa-
tor/junos-automation-with-saltstack

Automated Tickets management with Junos Syslog using Salt: https://github.com/
JNPRAutomate/automated_tickets_management_with_syslog_saltstack_RT

Junos Automation with Juniper’s AppFormix and Salt: https://github.com/JNPRAu-
tomate/automated_junos_configuration_changes_with_appformix_saltstack

Junos OS show command output collection using Salt: https://github.com/JNPRAu-
tomate/automated_junos_show_commands_collection_with_syslog_saltstack

Junos OS Configuration Continuous Backup with Salt: https://github.com/JNPRAu-
tomate/automated_junos_configuration_backup_with_syslog_saltstack

Junos OS automation demo with Appformix, SaltStack and GitLab: https://github.
com/JNPRAutomate automated_junos_show_commands_collection_with_appformix_
saltstack
Junos OS automation demo with Appformix, SaltStack and Northstar: https://
github.com/JNPRAutomate/network_anomalies_automated_remediation_with_appfor-
mix_northstar_saltstack

Juniper Day One Books Library
https://www.juniper.net/dayone

To learn more about Junos PyEZ, check out Day One: Junos PyEZ Cookbook.

In addition to covering Ansible, Day One: Automating Junos with Ansible, 2nd Edi-
tion, introduces you to such topics as XML, JSON, YAML, and the Git version
control system.

Day One: Enabling Automated Network Verifications with JSNAPy covers the JSNAPy
tool.

https://www.youtube.com/watch?v=JK7z6xnj1k0
https://www.youtube.com/watch?v=QE1l8OMwjQU
https://www.youtube.com/watch?v=QFU6RzCgG4I
https://www.youtube.com/watch?v=QFU6RzCgG4I
https://github.com/ksator/automation_summit_Q3_2018
https://github.com/ksator/automation_summit_Q3_2018
https://github.com/ksator/junos-automation-with-saltstack
https://github.com/ksator/junos-automation-with-saltstack
https://github.com/JNPRAutomate/automated_tickets_management_with_syslog_saltstack_RT
https://github.com/JNPRAutomate/automated_tickets_management_with_syslog_saltstack_RT
https://github.com/JNPRAutomate/automated_junos_configuration_changes_with_appformix_saltstack
https://github.com/JNPRAutomate/automated_junos_configuration_changes_with_appformix_saltstack
https://github.com/JNPRAutomate/automated_junos_show_commands_collection_with_syslog_saltstack
https://github.com/JNPRAutomate/automated_junos_show_commands_collection_with_syslog_saltstack
https://github.com/JNPRAutomate/automated_junos_configuration_backup_with_syslog_saltstack
https://github.com/JNPRAutomate/automated_junos_configuration_backup_with_syslog_saltstack
https://github.com/JNPRAutomate/automated_junos_show_commands_collection_with_appformix_saltstack
https://github.com/JNPRAutomate/automated_junos_show_commands_collection_with_appformix_saltstack
https://github.com/JNPRAutomate/automated_junos_show_commands_collection_with_appformix_saltstack
https://github.com/JNPRAutomate/network_anomalies_automated_remediation_with_appformix_northstar_saltstack
https://github.com/JNPRAutomate/network_anomalies_automated_remediation_with_appformix_northstar_saltstack
https://github.com/JNPRAutomate/network_anomalies_automated_remediation_with_appformix_northstar_saltstack
https://www.juniper.net/dayone

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Author
	Welcome to Day One
	Target Audience
	This Book’s GitHub Site
	What You Need to Know Before Reading This Book
	What You Will Learn by Reading This Book

	Chapter 1: Introduction to Junos Automation with Salt
	Junos Automation
	Network Automation
	Salt

	Chapter 2: Basic Salt Architecture and Installation
	Salt Installation
	Performing Basic Salt Configuration and Verification

	Chapter 3: Using Junos Proxy Minions
	Adding Proxy Minions to Manage Junos Devices

	Chapter 4: Executing Junos Commands with Salt
	Junos Execution Module Overview
	Collecting and Printing Device Facts
	Executing CLI Commands
	Executing Junos RPCs
	Pinging Hosts
	Working with Junos Configurations
	Copying Files
	Installing Software Packages

	Chapter 5: Provisioning Junos Configurations with SaltState Module
	Junos Configuration Management with Salt

	Chapter 6: Provisioning Junos Configurations – AdvancedExample
	Lab Setup
	Steps to Solve the Task
	Configuration Template
	The Pillar YAML Files
	Provisioning the Configurations
	Modifying Service Configurations
	Summary

	Chapter 7: Junos Syslog Engine and Salt Reactors
	Salt Engines and Reactors
	Enabling Junos Syslog Engine
	Configuring the Reactor
	Configuring Slack Connection
	Testing the Reactor

	Chapter 8: Basics of Building Event-Driven Infrastructure
	Reacting on Events
	SLS File to Check and Enforce Configuration
	React Based on Event
	Summary

	Chapter 9: Creating Custom Modules for Salt with Junos PyEZ
	Custom Salt Modules Review
	Creating a Simple Execution Module
	Running the check_traceoptions Function
	Summary

	Chapter 10: Validating Operational States of a Junos Device
	A Need to Test
	Example Scenario

	Chapter 11: Automated Network Verifications with Salt andJSNAPy
	Example Scenario
	Summary

	Chapter 12: Junos Automation with Salt and NAPALM
	NAPALM Review
	Configuring NAPALM Proxy for Junos
	Summary

	Appendix References
	This Book’s Git Repository
	SaltStack Official Documentation
	YouTube Videos on Junos Automation with Salt
	Useful GitHub Repositories
	Juniper Day One Books Library

