
THIS WEEK: MASTERING JUNOS
AUTOMATION PROGRAMMING

Junos automation scripting, known in the field simply as Junos scripting, is a key technolo-

gy and a fundamental capability that enables you to automate your Junos devices for your

own (and unique) operational requirements. You can deploy Junos scripts on any Juniper

Networks device that runs the Junos operating system, such as the highly successful MX

Mid-Range series (MX5/ 10/40/ 80 routers), the M- and T series of routers, the EX series

of Ethernet switches, and the SRX Services Gateways series of network devices. That’s a

lot of powerful iron.

The most common knowledge shift for many new Junos automation developers is to ac-

quire a good grasp of the XSLT programming paradigm. While many programmers may be

familiar with procedural languages such as Perl and Java, the transformation nature and

programming framework of XSLT could be new. So This Week: Mastering Junos Automation

Programming is written from the perspective of a “classical” script programmer, teaching

you about the specific tasks and functions of the Junos automation development environ-

ment. Spend a week with this book and you’ll be able to write, deploy, and debug Junos

automation scripts.

07500214

“Mastering Junos Automation Programming provides all the information you need to quickly

harness the power of Junos scripting and automation. This book teaches the reader SLAX, a

friendlier, more concise alternative to XSLT, through clear instruction, countless example scripts,

and helpful comparisons to other common programming languages and concepts. All the while

the authors provide best practices and valuable tips for overcoming common obstacles when

scripting with SLAX.”

Skyler Bingham, Security Development Engineer, Global Crossing

LEARN SOMETHING NEW ABOUT JUNOS THIS WEEK:

Interact with Junos using the XML API.

Use advanced print -formatting and regular-expression processing.

Understand advanced file storage and “scratch memory” usage.

Create complex XPath expression techniques for Junos automation.

Review techniques for integrating Junos automation with your management systems.

Research advanced event scripting topics.

Junos® Automation Series

THIS WEEK: MASTERING JUNOS
AUTOMATION PROGRAMMING

By Jeremy Schulman & Curtis Call

Master something new
about Junos this week.

S
ch

u
lm

a
n

 &
 C

a
ll

T
H

IS
 W

E
E

K
: M

A
S

T
E

R
IN

G
 JU

N
O

S
 A

U
T

O
M

A
T

IO
N

 P
R

O
G

R
A

M
M

IN
G

Published by Juniper Networks Books

www.juniper.net/books

ISBN 978-1936779321

9 781936 779321

5 2 0 0 0

http://www.juniper.net/books

THIS WEEK: MASTERING JUNOS
AUTOMATION PROGRAMMING

Junos automation scripting, known in the field simply as Junos scripting, is a key technolo-

gy and a fundamental capability that enables you to automate your Junos devices for your

own (and unique) operational requirements. You can deploy Junos scripts on any Juniper

Networks device that runs the Junos operating system, such as the highly successful MX

Mid-Range series (MX5/ 10/40/ 80 routers), the M- and T series of routers, the EX series

of Ethernet switches, and the SRX Services Gateways series of network devices. That’s a

lot of powerful iron.

The most common knowledge shift for many new Junos automation developers is to ac-

quire a good grasp of the XSLT programming paradigm. While many programmers may be

familiar with procedural languages such as Perl and Java, the transformation nature and

programming framework of XSLT could be new. So This Week: Mastering Junos Automation

Programming is written from the perspective of a “classical” script programmer, teaching

you about the specific tasks and functions of the Junos automation development environ-

ment. Spend a week with this book and you’ll be able to write, deploy, and debug Junos

automation scripts.

07500214

“Mastering Junos Automation Programming provides all the information you need to quickly

harness the power of Junos scripting and automation. This book teaches the reader SLAX, a

friendlier, more concise alternative to XSLT, through clear instruction, countless example scripts,

and helpful comparisons to other common programming languages and concepts. All the while

the authors provide best practices and valuable tips for overcoming common obstacles when

scripting with SLAX.”

Skyler Bingham, Security Development Engineer, Global Crossing

LEARN SOMETHING NEW ABOUT JUNOS THIS WEEK:

Interact with Junos using the XML API.

Use advanced print -formatting and regular-expression processing.

Understand advanced file storage and “scratch memory” usage.

Create complex XPath expression techniques for Junos automation.

Review techniques for integrating Junos automation with your management systems.

Research advanced event scripting topics.

Junos® Automation Series

THIS WEEK: MASTERING JUNOS
AUTOMATION PROGRAMMING

By Jeremy Schulman & Curtis Call

Master something new
about Junos this week.

S
ch

u
lm

a
n

 &
 C

a
ll

T
H

IS
 W

E
E

K
: M

A
S

T
E

R
IN

G
 JU

N
O

S
 A

U
T

O
M

A
T

IO
N

 P
R

O
G

R
A

M
M

IN
G

Published by Juniper Networks Books

www.juniper.net/books

ISBN 978-1936779321

9 781936 779321

5 2 0 0 0

http://www.juniper.net/books

Junos® Automation

This Week: Mastering Junos Automation
Programming

By Jeremy Schulman and Curtis Call

Chapter 1: Getting Started with Junos Automation Scripting . 5

 Chapter 2: SLAX Fundamentals . 19

Chapter 3: Essential SLAX Topics to Know . 59

Appendix . 121

	 ii	 		 ii	

© 2011 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, the Juniper Networks logo, Junos, NetScreen,
and ScreenOS are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. Junos is a trademark of
Juniper Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies
in this document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication without
notice. Products made or sold by Juniper Networks or compo-
nents thereof might be covered by one or more of the following
patents that are owned by or licensed to Juniper Networks: U.S.
Patent Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051,
6,333,650, 6,359,479, 6,406,312, 6,429,706, 6,459,579,
6,493,347, 6,538,518, 6,538,899, 6,552,918, 6,567,902,
6,578,186, and 6,590,785.

Published by Juniper Networks Books
Writers: Jeremy Schulman, Curtis Call
Editor in Chief: Patrick Ames
Copyediting and Proofing: Nancy Koerbel
Junos Product Management: Cathy Gadecki
J-Net Community Management: Julie Wider

ISBN: 978-1-936779-32-1 (print)
Printed in the USA by Vervante Corporation.
ISBN: 978-1-936779-33-8 (ebook)

Version History: v2 October 2011
 3 4 5 6 7 8 9 10 #7500214

About the Authors
Jeremy Schulman is a Senior Systems Engineer at Juniper
Networks who brings over 15 years of software engineering
experience to the company. Jeremy immediately recognized the
vast potential in using Junos automation technologies to help
Juniper customers lower cost, reduce risk, and ultimately deliver
improved services to their end-customers. Jeremy has created
innovative demonstrations and solutions for a wide range of
service provider and enterprise solutions, and continues to be a
driving force in the Junos Automation community.

Curtis Call is a Senior Systems Engineer at Juniper Networks, has
over a decade of experience working with Junos, and has authored
multiple books on Junos on-box automation. He is a Juniper
Networks Certified Internet Expert (JNCIE-M #43).

Authors’ Acknowledgments
Jeremy Schulman would like to acknowledge Phil Shafer and
Curtis Call for their inspiration, mentoring, and continuous
dedication to Junos automation efforts. Phil, a Distinguished
Engineer and the “father” of Junos automation, has in sharing his
insights into human interface automation has unlocked incredible
potential for using Junos automation well beyond common
applications. Curtis is a pillar of the Junos automation commu-
nity. His highly successful set of Junos automation books have
been instrumental in enabling a new generation of Juniper
customers to realize the potential of this key differentiating
technology. I would also like to thank Patrick for his editorial
mentoring and dedication. I greatly appreciate his tireless behind
the scenes efforts to make this book a reality. I am extremely
fortunate to be able to work with Phil, Curtis, and Patrick and to
contribute to the Junos automation community through writing
this book.

Curtis Call would like to acknowledge Jeremy for the great work
he put into this book and his diligence in seeing the project
through to the end, and would also like to acknowledge Patrick
for the large contributions he made in shaping this book. At times,
editors have such a big impact that they are almost an additional
co-author, and this is one of those times.

This book is available in a variety of formats at: www.juniper.net/
dayone.

Send your suggestions, comments, and critiques by email to
dayone@juniper.net.

	 		 iii	 	 iii

Welcome to This Week

This Week books are an outgrowth of the extremely popular Day One book series
published by Juniper Networks Books. Day One books focus on providing just the
right amount of information that you can apply, or absorb, in a day. On the other
hand, This Week books explore networking technologies and practices that in a
classroom setting might take several days to absorb. Both book series are available
from Juniper Networks at: www.juniper.net/dayone.

This Week is a simple premise – you want to make the most of your Juniper equip-
ment, utilizing its features and connectivity – but you don’t have time to search and
collate all the expert-level documents on a specific topic. This Week books collate
that information for you, and in about a week’s time, you’ll learn something signifi-
cantly new about Junos that you can put to immediate use.

This Week books are written by Juniper Networks subject matter experts and are
professionally edited and published by Juniper Networks Books. They are available
in multiple formats, from eBooks to bound paper copies, so you can choose how
you want to read and explore Junos or other Juniper Networks technologies, be it
on the train or in front of terminal access to your networking devices.

www.juniper.net/dayone

	 iv	 		 iv

What You Need to Know Before Reading

Before reading this book, you should be familiar with the basic administrative
functions of the Junos operating system. This includes the ability to work with
operational commands and to read, understand, and change the Junos configuration.
Juniper’s Day One books (www.juniper.net/dayone), as well as the training materials
available on the Fast Track portal, can help to provide this background (see the last
page of this book for these and other references).

Other things that you will find helpful as you explore the pages of this book:

�� Having access to a Junos device while reading this book is very useful. A
number of practice examples that reinforce the concepts being taught are
included. Most of these examples require creating or modifying a script and
then running it on a Junos device in order to see and understand the effect.

�� The best way to edit SLAX scripts is to use a text editor on your local PC or lap-
top and then to transfer the edited file to the Junos device using a file transfer
application. Doing this requires access to a basic ASCII text editor on your
local computer as well as software to transfer the updated script using scp or
ftp.

�� While a programming background is not a prerequisite for using this book, a
basic understanding of programming concepts is beneficial.

�� You have read Day One: Navigating The Junos Xml Hierarchy and are familiar
with introductory material on both XML and XPath as they relate to Junos.

Assumptions

This book makes a few assumptions about you, the reader, and your level of knowl-
edge:

�� You have a basic understanding of programming and scripting concepts – akin
to experience with languages like Perl or Bash.

�� You are familiar with XML document definitions, or can learn more about
XML from http://www.w3schools.com.

�� You are familiar with XPath expressions, or can learn more about XPath from
http://www.w3schools.com.

If you meet these requirements then this book’s contents will make sense to you and
the concepts and constructs will be easy to learn and master.

After Reading This Book You’ll Be Able To

This book can help you automate operation tasks on your devices and in your
network. You will learn specific tasks and functions in this book, and when you’re
done with it, you’ll be able to:

�� Understand the Junos automation programming model.

�� Understand the reasons for using SLAX as a programming language.

�� Understand the Junos automation development environment to write, deploy,
and debug scripts.

	 		 v

�� Understand the fundamentals of the SLAX language from the perspective of a
“classical” script programmer.

�� Interact with Junos using the XML API.

�� Learn to use interactive console I/O.

�� Learn to use advanced print-formatting and regular-expression processing.

�� Learn advanced file storage and “scratch memory” topics.

�� Learn complex XPath expression techniques for Junos.

�� Learn techniques for integrating Junos automation with your management
systems.

�� Learn advanced event scripting topics.

Additional Resources

The most common knowledge shift for many new Junos automation developers is to
acquire a good grasp of the XSLT programming paradigm. While many program-
mers may be familiar with procedural languages such as Perl and Java, the transfor-
mative nature and programming framework of XSLT may be new to them. The
following resources are excellent sources of information for getting up to speed or
diving deep into these technologies.

�� One of the best online places to learn about the standards-based languages and
protocols is the W3school site:

�� XML Tutorial: http://www.w3schools.com/xml/default.asp

�� XPath Tutorial: http://www.w3schools.com/xpath/default.asp

�� XSLT Tutorial: http://www.w3schools.com/xsl/default.asp

�� Junos also supports many of the Extensions to XSLT (EXSLT). Online docu-
mentation on EXSLT can be found at: http://www.exslt.org/ .

�� There are also a number of very good books available from O’Reilly Media,
including XSLT 1.0 Pocket Reference, Learning XSLT, and The XSLT Cook-
book. For more, go to http://www.oreilly.com.

�� Juniper Networks developed a four-hour interactive computer based training
video. This is an excellent starting point for quickly learning many of the
fundamentals of Junos scripting. This video can be found on the main Junos
automation site:

�� http://www.juniper.net/us/en/community/junos/script-automation/ .

�� The “Junoscriptorium” is a site hosted by Google Project that contains a vast
collection of Junos scripts. To access these scripts go to the main site: http://
code.google.com/p/junoscriptorium/ .

�� Juniper Networks hosts an online message board forum dedicated to Junos
Automation questions. The URL for this site is: http://forums.juniper.net/ and
then select Junos Automation (Scripting).

�� The Juniper Networks Technical Publications site contains the definitive
reference manuals on Junos automation, both “on-box” scripting and “off-
box” orchestration. As this material is periodically updated to document new

	 vi	 	

XML APIs, the documentation is found under a specific Junos release. The
Techpubs main site is: http://www.juniper.net/techpubs/.

�� The SLAX language was published to the open source community and is hosted
on the Google Project site: http://code.google.com/p/libslax/.

�� The complete SLAX reference language documentation can be found off this
main page, and directly at: http://code.google.com/p/libslax/downloads/
detail?name=slax-manual.html.

�� The SLAX project site also includes an off-box utility that can be used to
experiment and learn SLAX on a host machine (Unix/Cygwin). The ‘slaxproc’
utility provides a number of useful features, including converting between
SLAX and XSLT.

�� And of course there are other books about Junos automation, just like the one
you are reading, from Juniper Networks Books . Check out the current book
list, at www.juniper.net/dayone, and revisit frequently for new titles in the
growing library.

Chapter 1

Getting Started with Junos Automation Scripting

Introducing Junos Automation . 6

The Junos Script Programming Model . 11

Getting Started . 15

Hello, World Step-by-Step .17

Summary . 18

	 6	 This	Week:	Mastering	Junos	Automation	Programming

Junos automation scripting, known in the field simply as Junos scripting, is a key
technology and a fundamental capability that enables you to automate your Junos
devices for your own (and unique) operational requirements. You can deploy Junos
scripts on any Juniper Networks device that runs the Junos operating system, such as
the highly successful MX Mid-Range series (MX5/ 10/40/ 80 routers), the M- and T
series of routers, the EX series of Ethernet switches, and the SRX Services Gateways
series of network devices. That’s a lot of powerful iron.

This chapter will introduce key concepts about Junos automation scripting, such as
what it is and how it works, and it will then show you how to get started – what you
need and how to do it. Then at the end, it’s practice time.

TIP If you haven’t already, you should check the front matter of this book and the
authors’ list of assumptions about you and what you already know. After this
introductory chapter, this book is off on a tear, and by the end you’ll be writing some
pretty powerful stuff. The more you match the basic assumptions of this book’s
instructional requirements, the more sense it will all make and the faster you’ll be
able to flip through the pages and get back to work.

NOTE The end of this chapter gets you started with the equipment you need to follow along,
but for now, let’s introduce Junos automation scripting at a 10,000-foot level.

Introducing Junos Automation

Junos scripts are interpreted programs, meaning they do not need to be compiled into
machine code like C, or intermediate code like Java. Read the following script, a
complete example of a “Hello, World” Junos script written in SLAX:

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {
 <output> “Hello World!”;
 }
}

Let’s examine this script to understand what you’re looking at. The first line must
always declare the language version, and it is always 1.0 since Junos only supports
XSLT/XPath 1.0 at this time. The lines starting with “ns” are namespace declarations
– and don’t worry, the script does not “go out to the Web” to retrieve anything. The
“import” statement includes additional code provided by Juniper Networks, that is,
“helper” functions. Next, you can think of the “match /” block as the main starting
point for the script, like main() in “C”. This is an example of an operational script
(op script), so the results of the script must be returned within a <op-script-results>
element. Finally the <output> tag tells Junos to display a string to the console.

You might be thinking “Wow – what is all this?? … and how do I make heads or tails
of writing SLAX?” This book is your guide for learning SLAX for Junos automation,
so keep reading and it will all become perfectly clear!

	 Chapter	1:	Getting	Started	with	Junos	Automation	Scripting	 7

There are three main types of Junos automation scripts you will learn about:

�� operations automation (op scripts)

�� configuration automation (commit scripts)

�� event based automation (event scripts)

These automation scripts are referred to as on-box automation because the scripts
are physically located on the devices and run within the construct of the Junos
operating system.

An overview of these scripts is listed in Table 1.1.

Table�1.1� On-Box�Automation

Operations�Automation Configuration�Automation Event�Automation

What�does�
it�do?

Instructs Junos as prompted
by the command-line,
NETCONF, or other scripts.

Instructs Junos during the
configuration / commit process.

Instructs Junos of actions to
take in response to events.

How��it�
Works�with�
Junos

Creates custom commands for
specific solution/user needs.

Combines a series of iterative
steps to diagnose network
problems.

Performs controlled
configuration changes.

Abstracts a complex
configuration into a simple set of
base commands.

Options to provide warnings,
post logs, prevent the
configuration, self-correct the
configuration.

Gathers relevant
troubleshooting information
and correlates events from the
first leading indicators.

Automates event responses with
a set of actions.

Key�
Benefits

Reduces risk and improves
productivity.

Automates troubleshooting.

Offers a controlled
configuration.

Assures compliance with
business rules and network/
security policies.

Provides change management to
avert and even correct errors.

Simplifies and speeds setup of
complex configuration.

Automates time-of-day
configuration changes (e.g.
“green” power-saving actions).

Speeds time-to-resolve to reduce
the downtime and cost of
events.

Automates response to leading
indicators to minimize the
impact of events.

There is another form of Junos automation, commonly referred to as network
orchestration or off-box automation, used by a remote management system, such as,
for example, your management system (OSS/BSS). This type of automation uses the
standards-based protocol NETCONF (essentially XML over SSH) to remotely
connect to the Junos devices and perform operational and configuration commands.

The network orchestration topic is not covered in this book, but it is worth mention-
ing that Junos is capable of off-box automation using the same XML-based API used
by the on-box automation.

TIP Off-box automation is another book, another topic, but remember what you learn
here is applicable over there. (Look for a book on Off-box Junos Automation in the
near future in the Day One library at www.juniper.net/dayone.)

	 8	 This	Week:	Mastering	Junos	Automation	Programming

Why	Use	Junos	Automation	Scripting?

Obviously, if you’ve read this far, you’re interested in Junos scripting, but you should
also spend a few minutes covering the why, if only for the duration of this book.

Junos scripting is used in the largest of complex environments to enable scalability and
reliably, no matter the network’s purpose. It’s the key to simplifying operational
complexities and thus reducing the overall operational expense of managing and
troubleshooting the network. No matter your network size, you can simplify complex
operations, automate manual procedures, maximize uptime and availability, and
optimize operational efficiency. It’s true – it works – and the authors have seen it in
action.

Here are a few of the more common key benefits of using Junos automation from an
operators’ perspective, in case you might need some bullet points for your next staff
meeting:

�� Best Practices: You can validate and enforce configuration changes to always con-
form to your business rules and best current practices.

�� Leverage Expertise: You can enable everyone in your team to leverage the
configuration and troubleshooting expertise of your best engineers.

�� Customize: You can customize your day-to-day operations tasks with user-creat-
ed CLI commands for displaying, configuring, and troubleshooting workflow.

�� Simplify: You can embed configuration macros to abstract complex configura-
tions into simple sets of user-defined base commands.

�� Velocity and Agility: You can extend the Junos operating system with automation
capabilities to deliver differentiating features to address your network needs.

�� Reactive: You can embed your team’s diagnostic expertise in Junos to correlate
on-device events to detect, report, and correct issues before they impact your
network.

�� Proactive: You can apply some nifty time-based event automation to execute
repetitive tasks per maintenance and operating procedure.

�� Consistency: The Junos XML API provides for both on-device automation and
network orchestration via northbound interface to OSS/BSS management using
standards-based NETCONF and ensuring structured input / structured output.

�� Cross Device: You can leverage native Junos remote procedure call capability to
configure services and diagnose network issues effectively, spanning multiple
devices.

Is	Junos	Scripting	Difficult?

In two words: Absolutely not!

Those familiar with such scripting languages as Perl, Python, or even Bash, can quickly
become skilled Junos automation script developers.

You don’t need to be a programming “guru” to write Junos automation scripts, but it
is helpful if you are familiar with the fundamentals of scripting languages like Perl. The
focus of this book is to capture the perspective of a classical script programmer and
relate known techniques to those used for Junos scripting. That’s because the Junos
scripting programming model is a little different than what you might be used to, so

	 Chapter	1:	Getting	Started	with	Junos	Automation	Scripting	 9

the book takes what you already know and applies it to Junos scripting. Whatever is
different, you’ll simply learn along the way.

So	Do	I	Need	to	Learn	Yet	Another	Programming	Language?

Well, the point of this book is to teach you SLAX for Junos automation scripting, so
yes. But it’s easy to learn and you can pick it up in just a few hours. With this book
in front of you and your favorite text editor, you will be shown what to do, step-by-
step. You’ll soon learn in the rest of this chapter that SLAX is relatively lightweight
in terms of syntax, grammar, and programming constructs. By book’s end you’ll be
just like the rest of us who think SLAX actually makes Junos automation easy (and
fun!) to learn and implement.

Most people write Junos scripts in the Stylesheet Language Alternative syntax
(SLAX) because it’s easier than the alternative. SLAX is really nothing more than
syntactic sugar for the XSLT language.

XSLT, Extensible Stylesheet Language Transformations, is a declarative, XML-
based language used for the transformation of XML documents. XSLT is a stan-
dards-based language used to transform XML input into any form of textual
output.

NOTE Junos scripts can be written in SLAX, XSLT, or a combination of both. However,
this book focuses on SLAX.

As Junos scripts have their fundamentals in XSLT, you will need to be familiar with
XML and XPath concepts as they are instrumental in the XSLT (and therefore
SLAX) programming model.

Generally speaking, this is the most common “mind-shift” for new Junos script
developers - the XSLT programming model and used XPath expressions. While you
may be very familiar with procedural languages, such as Perl, the transformational
nature and programming framework of XSLT may be new. Stay close and this book
shows you how.

MORE? If you’re not familiar with the basics of XSLT, XML, or XPath, note that a number
of online references are presented in the front matter of this book.

Why	XSLT?

Junos management “under the hood” is based in XML. When you enter commands
on the Junos CLI, commands are actually converted to XML-based Remote Proce-
dure Calls (RPCs) and executed by the Junos management daemon. The Junos
configuration file is also represented as an XML file. XSLT is the standards based
language to manipulate XML … so XSLT is a natural fit for Junos.

The XSLT programming model is shown in Figure 1.1. XSLT is an interpreted
language meaning that the XSLT “program” is executed by a binary executable that
is compiled on the target device (i.e. the Junos device). This binary is called the
XSLT processor. The XSLT processor takes two inputs as shown in Figure 1.1: the
first input is the XSLT program, also referred to as the stylesheet tree; and the
second optional input is the XML document, also referred to as the source tree. The
XSLT processor produces XML output (by default), and this output is referred to as
the result tree.

	 10	 This	Week:	Mastering	Junos	Automation	Programming

In short: XML input + XSLT program = new XML output.

result
tree

source
tree

XSLT
processor

stylesheet
tree

Figure�1.1� �The�XSLT�Programming�Model

Junos utilizes this same processing model for each of the automation script types:
operational scripts, commit scripts, and event scripts. The XSLT processor is built
into Junos, and the Junos script you write is the “stylesheet tree.”

In short: XML input + Your Script = XML output that Junos knows how to process.

Why	SLAX?

But why not just write scripts in native XSLT rather than learn a new syntax? XSLT is
a powerful tool for handling XML, but the syntax is cumbersome, verbose, and
“optimized” for machine-to-machine communication. XSLT can be inconvenient for
humans to write especially complex programs. If you’ve never experienced writing in
XSLT it might be worthwhile to examine some sample code on the Web. The occa-
sional benefits of writing programs in native XSLT are often outweighed by the
readability issues of dealing with the syntax. Simply put, writing programs in XSLT is
tedious and error-prone, so the Junos development team conceived of the Stylesheet
Language Alternative syntaX, or SLAX.

SLAX has a simple syntax that follows the style of C, or Perl. Programming con-
structs and XPath expressions are moved from complicated and verbose XML
elements and attributes to “classical” language constructs. The cumbersome nature
of writing XML hierarchies and dealing with escaped-quoting issues is replaced by
simple use of parentheses, curly braces, and simple quotation marks - all familiar
delimiters for programmers.

With SLAX, the underlying constructs are completely native to XSLT. Nothing is
added to the XSLT engine. You could think of SLAX as a pre-processor for XSLT,
turning SLAX constructs like if/then/else into the equivalent XSLT constructs like
<xsl:choose> and <xsl:if> before the real XSLT transformation engine gets invoked.

A few highlights on SLAX include:

�� You use if/then/else instead of <xsl:choose> and <xsl:if> elements.

�� You put test expressions in parentheses.

	 Chapter	1:	Getting	Started	with	Junos	Automation	Scripting	 11

�� You use == to test equality (to avoid building dangerous habits).

�� You use := for Result Tree Fragment (RTF) to node-set conversion.

�� Curly braces are used to show containment instead of closing tags.

�� You can perform string concatenation using the _ operator (lifted from perl6).

�� You write text strings using simple quotes instead of the <xsl:text> element.

�� Invoking named templates with a syntax resembling a function call.

�� Defining named templates with a syntax resembling a function definition.

�� Simplified namespace declarations.

�� Reducing the clutter in scripts, by allowing the important parts to be more
obvious to the reader.

�� Writing more human-readable scripts.

MORE? The complete SLAX language reference is available online at: http://code.google.
com/p/libslax/downloads/detail?name=slax-manual.html.

The Junos Script Programming Model

Let’s turn our attention to the fundamental programming model for each of the
three types of Junos scripts: op, commit, and event.

It’s important for you to understand how Junos executes these scripts in the context
of the operating system, but not via a detailed overview. Later sections in this book
provide useful tutorials, examples, and step-by-step techniques to take advantage of
each of these script types, and in some cases, combining two scripts to create very
powerful automation solutions.

MORE? See all the other books in the Junos Automation Series at www.juniper.net/dayone,
for in-depth coverage of all the script types.

Junos	Op	Scripts

Junos operational scripts, or op scripts, are typically the first type of script a new
programmer begins developing. That “Hello, World” program at the start of the
chapter is an op script. Op scripts are typically invoked by a user at the Junos CLI.
They are written to perform a series of actions and can include parameters provided
by the user or can prompt the user for input. An op script can automate the same
operational commands the user could enter directly. An op script can also be used to
automate configuration changes.

It is important to understand that op scripts are executed in the context of the user
invoking the script. So this means that the op script can only perform the functions
that the user could normally perform.

The Junos op-script programming model is illustrated in Figure 1.2.

http://www.juniper.net/dayone

	 12	 This	Week:	Mastering	Junos	Automation	Programming

<argument> {
 <name> . . .
 <value> . . .
}
<argument> {
 <name> . . .
 <value> . . .

<op-script-results> {
 . . .
}

result
tree

empty
Junos

op
script

Figure�1.2� �The�Op-Script�Programming�Model

Here are some important aspects of the diagram in Figure 1.2:

�� Conceptually, the source tree is empty, meaning that user-input is not provided
as an XML document. If the op script has user-defined parameters, they are
passed via param arguments defined in the script; this technique is similar to the
use of $ARGV in Perl, and will be more fully covered later in this book.

�� The op script is the stylesheet tree.

�� The result tree is generally a series of output statements defined within an
<op-script-results> XML block (such as the “Hello World” op script present-
ed at the start of this chapter).

The Junos operating system provides a comprehensive set XML-based API remote
procedure called (RPCs). The op script can invoke Junos commands by formulating
the XML RPC equivalent of the CLI command and communicating it directly to the
management daemon. The op script does not issue native CLI commands. For
example, a user at the CLI prompt would enter the command show chassis hardware
to display the hardware inventory. A Junos op script would use the equivalent XML
RPC : <get-chassis-inventory>.

NOTE� You can easily determine the XML RPC from the Junos CLI by using the “display
xml rpc” pipe-option after the command. For example, show chassis hardware |
display xml rpc would show you the XML RPC’s <get-chassis-inventory>.

MORE? For more introductory information on Junos op script programming refer to the
Juniper Networks booklet: This Week: Applying Junos Automation, available at
www.juniper.net/dayone.

Junos	Commit	Scripts

Junos commit scripts are programs that are invoked by Junos any time a commit (or

	 Chapter	1:	Getting	Started	with	Junos	Automation	Scripting	 13

commit check) operation occurs, as illustrated by Figure 1.3. A commit script can be
used to modify the candidate configuration, to issues warnings, or to prevent the
configuration from becoming active. The commit script can also perform operation-
al commands to retrieve Junos information, for example, <get-chassis-inventory>.

Here is a short list of when commit operations could occur, and in all of these cases,
the Junos commit script is executed in the root user context:

�� At device boot-up time when the configuration is initially loaded.

�� When a user at the CLI enters the commit or commit check command.

�� When an op script performs a configuration change.

�� When an event script performs a configuration change.

�� Upon automatic configuration rollback triggered by a commit confirmed.

�� When an OSS/BSS system is performing a configuration change; this is an
example of network orchestration or off-box automation whereby an external
management system is invoking the Junos XML API via the NETCONF
protocol.

<configuration> {
 . . .
}

result
tree

candidate
configuration

Junos

commit
script

<change> {
 . . .
}

<change> {
. . .
}

<transient-change> {
}

Figure�1.3� The�Commit�Script�Programming�Model

Here are some important aspects of the diagram in Figure 1.3:

�� The candidate configuration file is the source tree input.

�� The commit script is the stylesheet tree.

�� The result tree is a series of specific XML blocks that can make changes to the
candidate configuration, generate warnings, or even prevent the configuration
from becoming active.

Any Junos device can be configured to run multiple commit scripts. Each script,
however, receives the same copy of the candidate configuration. Although the Junos
operating system executes the commit scripts in the order specified in the configura-
tion file (in a serial fashion), the changes made by prior scripts in the list do not pass
to later scripts in the list.

MORE?� For more introductory information on Junos commit script programming refer to
the Juniper Networks booklet: This Week: Applying Junos Automation, available at
www.juniper.net/dayone.

	 14	 This	Week:	Mastering	Junos	Automation	Programming

Junos	Event	Scripts

Junos event scripts allow you to automate Junos when specific events occur. Exam-
ples of this include when an interface goes down or when it is Saturday at 5:00pm.
The type of events, triggers, and sequences of actions, can be combined into some
powerful automation controls, especially when you factor in that event scripts can
perform operational commands, make changes to the configuration, or log informa-
tion (e.g. to syslog).

By default event scripts are executed in the root user context, but they can be config-
ured to run in as specific user content as well. The event script programming model is
illustrated in Figure 1.4.

<event-script-results> {
 . . .
}

<event-script-input> {
 . . .
}

result
tree

source
tree

Junos

event
script

Figure�1.4� �The�Event�Script�Programming�Model

Here are some important aspects of the diagram in Figure 1.4:

�� The source tree is an XML <event-script-input> block that contains informa-
tion about the event, including the <trigger-event> child block that provides the
details on the event that triggered the event policy.

�� The event script is the stylesheet tree.

�� The result tree is contained within the <event-script-results> XML block.

MORE?� For more introductory information on Junos commit script programming refer to the
Juniper Networks booklet: This Week: Applying Junos Automation, available at
www.juniper.net/dayone.

Junos	Script	Global	Variables

Junos scripts have access to a number of global variables, namely: $hostname,
$product, $script, $user, $localtime, and $localtime-iso.

Junos 11.1 adds a new global variable: $junos-context. This variable is a node-set
that contains relevant information that scripts could be interested in. Facts such as
the user’s TTY, whether or not the script is running on the master RE, or the fact that
the commit script is running as part of the boot-up commit, are things that have been
requested in the past and are now being delivered through this global variable.

The use of a single variable to store all the desired information, rather than multiple

	 Chapter	1:	Getting	Started	with	Junos	Automation	Scripting	 15

parameters, is a departure from the past but offers an efficient and scalable solution
that can be added to in the future. The “legacy” global variables, e.g. $hostname,
will still be available for backwards compatibility.

MORE?� For more information on the $junos-context special variable, refer to “Special
Variables” in Chapter 2 of this book.

Getting Started

There are three basic steps required to develop, test, and deploy Junos scripts.
Remember that Junos scripts are physically stored on the Junos device.

The development cycle for Junos scripting is as follows:

�� Step 1: Writing the Junos script code, typically done on a host (development)
machine such as Windows, Mac, or Linux.

�� Step 2: Copying the Junos script code to a Junos device, and into the correct
directory.

�� Step 3: Testing the Junos script code, and troubleshooting either (a) syntax
errors or (b) logic errors. If the test fails, go back to Step 1.

NOTE� There is also a one-time step of enabling the scripts so that Junos knows that these
scripts are valid and will run in the proper context (op script, commit script, or event
script).

Did you know that the Junos device file-system can be mounted to your host
computer? This is a handy trick when you are developing scripts to eliminate the
“copy files to target” step. Since Junos can use NFS mounts, mounting the device is
fairly trivial if the host computer is Unix-based. If your host computer is Windows-
based, then a number of applications can be used to support the same remote file
system access. For Windows you could try WinSCP, which is free, and ExpanDrive,
which is not. For Macs you might try a program called CyberDuck.

Another tip is to make small edits on the Junos device by dropping into the Junos
OS shell and editing the script files directly with the VI Text Editor in Junos itself.

These are on-device development techniques that can cut down on the file and copy
steps, but care must be taken that the final scripts are saved off the device so as to
not lose important changes.

Step	1:	Writing	Scripts

You can use any text editor you wish to write Junos scripts.

There are also a number of commercial text editors that can be customized to
support SLAX syntax, meaning that keywords can be highlighted, and the structure
of the code can be properly indented. The Junos Automation user community has
developed highlight modes to support SLAX for jEdit and Eclipse . These are not
formally supported by Juniper Networks, but any question and suggestion regard-
ing these tools can be directed to the J-Net Junos Automation board.

	 16	 This	Week:	Mastering	Junos	Automation	Programming

MORE?� The jEdit program can be downloaded from: http://www.jedit.org/ and the SLAX
highlight mode can be downloaded from the J-Net Automation forum at http://
forums.juniper.net/t5/Junos-Automation-Scripting/What-tools-do-you-use-to-devel-
op-Junos-automation-scripts/td-p/52352.

MORE?� The Eclipse IDE can be downloaded from the site: http://www.eclipse.org/. It is
important to note, however, that the SLAX plug-in for Eclipse is still under develop-
ment, and should hopefully be completed by the time you are reading this book.

Step	2:	Storing	Scripts	on	the	Junos	Device

In order for Junos scripts to be correctly processed, they must be stored in the correct
location within the Junos file system: /var/run/scripts.

The /var/run/scripts directory should always point to the correct script directory
whether they are stored on flash or disk. A listing of this directory shows:

user@junos> file list /var/run/scripts

/var/run/scripts/:
commit/
event/
import@ -> /usr/libdata/cscript/import
lib/
op /

The top-level scripts directory has sub-directories for each of the script types: op
scripts are stored in the /var/run/scripts/op, commit scripts are stored in the /var/
run/scripts/commit directory, and event scripts are stored in the /var/run/scripts/
event.

ALERT! The /var/run/scripts/import directory is used exclusively by Junos, so don’t try to
put anything there.

NOTE Junos 11.1 added a new directory: /var/run/scripts/lib. This directory can be used
to store any files you would like to share between scripts. You can think of this as an
include directory.

Step	3:	Enabling	Scripts

In order for Junos SLAX scripts to be active, they must be properly enabled in the
Junos configuration file.

For op scripts:

[edit system scripts op]
set file my-op-script.slax

For commit scripts:

[edit system scripts commit]
set file my-commit-script.slax

For event scripts:

[edit event-options event-script]
set file my-event-script.slax

http://www.jedit.org/
http://forums.juniper.net/t5/Junos-Automation-Scripting/What-tools-do-you-use-to-develop-Junos-automation-scripts/td-p/52352
http://forums.juniper.net/t5/Junos-Automation-Scripting/What-tools-do-you-use-to-develop-Junos-automation-scripts/td-p/52352
http://forums.juniper.net/t5/Junos-Automation-Scripting/What-tools-do-you-use-to-develop-Junos-automation-scripts/td-p/52352
http://www.eclipse.org/

	 Chapter	1:	Getting	Started	with	Junos	Automation	Scripting	 17

Debugging	Scripts

Finally let’s review the debugging options available for Junos Automation scripting.
(Further details on this topic are presented in subsequent chapters.)

Typically, debugging falls into two broad categories: (1) correcting syntax errors and
(2) correcting logic errors.

People who are new to SLAX (or XSLT) typically debug syntax errors early on in the
three-step process. The development cycle of writing a script, copying it to a device,
and then finding that you have a syntax error can be quite time consuming. Juniper
has developed an off-line tool called slaxproc that you can use to debug these types
of syntax errors, to help ensure you have a syntax-error-free script before copying it
over to the Junos device. Details on slaxproc are discussed in the Appendix.

Debugging logic errors can be a bit more challenging, and you have the following
options available:

�� Using “print” statements in your code.

�� Using traceoptions file and flags to track program execution.

�� Using “trace” statements in your code to log custom messages to a traceop-
tions file.

�� Using “progress” statements in your code that are only invoked when you use
the detail option; this is only used for op-scripts.

In Junos 10.4, an on-target debugger was added that can be executed for op scripts,
using a hidden parameter: invoke-debugger cli, which is discussed in detail in the
Appendix.

Hello, World Step-by-Step

Okay, this chapter has reviewed what Junos Automation is, how it works, and what
you need to get started. Now let’s show you an example by using step-by-step
instructions for testing out the Hello, World op script that was at the start of this
chapter. You should now readily understand the steps cited.

The first step is to create the file, named hello-world.slax:

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import "../import/junos.xsl";

match / {
 <op-script-results> {
 <output> "Hello World!";
 }
}

When invoked, this script will output the string “Hello, World” to the CLI console.

The next step is to copy this file to the target Junos device in the target directory /
var/run/scripts/op. This step is commonly performed either using an FTP client or
the scp utility. The following is an example using scp:

	 18	 This	Week:	Mastering	Junos	Automation	Programming

user@mylaptop$ scp hello-world.slax user@junos:/var/run/script/op

The next step is to enable this script on the Junos device:

user@junos> configure

[edit]
set system scripts op file hello-world.slax

[edit]
commit and-quit

Finally the op script can be executed at the Junos CLI:

user@junos> op hello-world
Hello, World!

Voila! Hello World.

Summary

The rest of this book builds upon the short introduction of this chapter. Next you
should roll up your sleeves and get into the basic fundamentals of SLAX. After that,
the book covers a variety of topics including XPath, OSS integration, and file and
storage options.

There are three items in the Appendix that you can refer to at any time: jcs functions,
the slaxproc utility, and the op script debugger.

All of the material in this book is geared to provide a guide between familiar proce-
dural- based languages that you may know (such as Perl) and SLAX. Other books in
the Day One Junos Automation Series are available at www.juniper.net/dayone.

Chapter 2

SLAX Fundamentals

Fundamentals . 20

SLAX Script File Structure .21

Variables . 23

Control Statements . 39

Code Modularity .44

Using Junos Remote Procedure Calls (RPC) . 47

Console Input / Output . 51

Storage Input / Output . 54

Summary . 58

	 20	 This	Week:	Mastering	Junos	Automation	Programming	

To be proficient in SLAX programming you must be aware of a few fundamental
programming concepts. These concepts come from the XSLT programming environ-
ment, so if you are familiar with XSLT, then these will not be new to you. Wherever
you see SLAX in the following text, the same applies to XSLT, so you won’t need to
see “SLAX / XSLT” throughout this document. If Perl or Java is your programming
background, then some of these concepts might be unfamiliar and perhaps challeng-
ing at first. The goal of this chapter is to provide a guide to help you navigate between
familiar procedural based languages (such as Perl) and SLAX.

MORE? XPath expressions form the foundation for SLAX programming. If you are not
familiar with XPath expressions you are strongly encouraged to read Day One:
Navigating the Junos XML Hierarchy book found at www.juniper.net/dayone, or any
other online materials that can be found in the Reference Section at either the begin-
ning or end of this book.

Fundamentals

There are a few fundamental SLAX rules and concepts:

SLAX is based on XPath 1.0 and XSLT 1.0.
You can find a lot of reference material for XPath 2.0 and XSLT 2.0, but unfortu-
nately you cannot use it.

Variables are immutable.
This means that you can set a variable only once and cannot change it later.

The “Node-Set” variable data-type is from XPath.
A node-set is a set of XML nodes that can be processed by XPath expressions. Recall
that Junos RPC APIs are XML based, so their return values are node-sets. The Junos
configuration file is also an XML document, so it is very easy to process using the
node-set data-type. The following code snippet illustrates the definition of a node-set
variable:

var $my-ns-var := {
 <interface> {
 <name> "ge-0/0/0";
 }
 <interface> {
 <name> "ge-0/0/1";
 }
}

The “Result Tree Fragment” (RTF) variable data-type is from XSLT.
An RTF can either store a simple string or block of XML data (not a node-set). A
SLAX script can only perform the following actions on an RTF: emit it to the XSLT
result tree, convert it to a string, or convert it to a node-set so you can then operate on
the contents of the XML nodes. The following code snippet illustrates the definition
of a RTF variable:

var $my-rtf-var = {
 <interface> {
 <name> "ge-0/0/0";
 }
 <interface> {
 <name> "ge-0/0/1";
 }
}

http://www.juniper.net/dayone

	 Chapter	2:		SLAX	Fundamentals	 21

ALERT!	 You should pay close attention to the node-set and RTF code examples. They are
almost identical except that the variable assignment for the node-set variable
$my-ns-var is made using the colon-equals (:=) operator and the RTF variable
$my-rtf-var is made using equals (=) operator. This very small difference is a very
common programming error. Watch out for this one!

A Template only returns Result Tree Fragments.
A template is a block of code that can be used similarly to a procedure or subroutine
in procedural languages. Technically it is different from a XSLT function, but this
chapter discusses the specific differences in a later section. A template will only
return an RTF. If you want to use any resulting XML data, you must first convert it
to a node-set. Fortunately the SLAX language makes this a very easy process. You’ve
actually just seen this in the above examples – just use the colon-equals (:=) operator
to convert an RTF to a node-set.

Context Processing.
XPath and XSLT processing maintain a context for the current XML node being
processed. In Perl there is the $_ variable that serves a similar purpose. In SLAX, the
current context is identified using the decimal (.) expression value. It is important to
understand when the context is set and how to use this mechanism as it is a regular
technique for SLAX programming. Using the node-set code example shown above,
the following is a code snippet that illustrates the use of the current context node (.)
to iterate through the list of interfaces and output the name element value:

var $my-ns-var := {
 <interface> {
 <name> "ge-0/0/0";
 }
 <interface> {
 <name> "ge-0/0/1";
 }
}

for-each($my-ns-var/interface) {
 var $ifd = .; /* $ifd is being assigned the 'current' interface node */
 <output> $ifd/name;
}

SLAX Script File Structure

It is important for you to understand the structure of the SLAX script file, as there
are specific programming directives that must be placed in a specific order. Fortu-
nately all Junos script types follow the same basic file structure.

As you have already seen, SLAX supports code commenting using C-style open-
comment (/*) and close-comment (*/) notation. Comments can be located anywhere
in the SLAX file.

At the top of the file is the SLAX boilerplate that defines the commonly used
namespaces, and imports the templates provided by Junos.

version 1.0;
ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

import "../import/junos.xsl";

	 22	 This	Week:	Mastering	Junos	Automation	Programming	

You can include any additional namespace definitions following the ns jcs line, and
examples of adding your own namespaces are shown in a later section of this chapter.

You can include any additional import files after the junos.xsl file. These could be
written in SLAX, XSLT, or a combination of both. You can think of these as include
files, as their contents are effectively included into your script file.

NOTE The import statement is a top-level directive, meaning that it must at the top of the file
before any other variable or template definitions.

If you are writing an op script, you would then need to define any command line
parameters using the param directive:

param $interface;
param $mtu-size = 2000;

The param variables are immutable just like any other SLAX variable. You can,
however, define a parameter with a default value as illustrated by the mtu-size
parameter. If the user does not specify the mtu-size value when invoking the op
script, then the value (2000 in this case) would be used.

Op scripts also support the use of the special global variable called $arguments. The
$arguments variable is used by Junos to provide CLI help information to the user. The
$arguments variable is optional, but it should always be included to provide CLI help:

var $arguments = {
 <argument> {
 <name> 'interface';
 <description> 'The interface you want to control';
 }
 <argument> {
 <name> 'mtu-size';
 <description> 'The MTU size (default is 2000)';
 }
}

For event scripts you could embed the event definition into the script rather than
placing it into the Junos configuration file. This capability was added in Junos 9.0,
and is the recommended approach. The special global variable $event-definition is
recognized by Junos for this purpose.

Both the $arguments and $event-definition special variables are discussed later in
this chapter.

Next in the file structure is the main template, where the script code conceptually
begins. The most common programming practice is to put the main template at the
top of the file. The main template is the template that matches the first element in
input XML document, or empty if there is no input XML document (source-tree). The
template that matches anything (including an empty source-tree) is match /.

Each Junos script type has a different main template.

The main template for an op script is:

match / {
 <op-script-results> {
 /* your code goes here */
 }
}

As you can see, the main template is using the match anything notation (/), and the
code execution begins here.

	 Chapter	2:		SLAX	Fundamentals	 23

The main template for an event script is:

match / {
 <event-script-results> {
 /* your code goes here */
 }
}

And the main template for a commit script is:

match configuration {
 /* your code goes here */
}

Here you can see that the main template is more specifically scoped. It matches the
XML node called configuration, which is part of the candidate configuration
presented to the commit script at runtime.

MORE? The top-level match for a commit script is different from the op script and event
script because of helper-code found in the import file junos.xsl. For details on why
configuration is the main template, refer to This Week: Applying Junos Automa-
tion, available at www.juniper.net/dayone

Variables

Let’s review the variables in SLAX, starting with declarations.

Declarations

Naming

When declaring variables, you must observe the following rules:

The keyword var is used to define a variable. Once a variable is defined, it cannot be
changed. SLAX variables are immutable.

Variable names must start with the dollar-sign ($).

Variable names can contain any alpha characters (upper and/or lower case), numeric
values, the underscore (_), and the dash (-).

var $myvar = 5;

Do not start any variable name with junos because it is commonly reserved by
Juniper Networks.

Variable names can also contain the colon (:) character when designating a
namespace. Namespaces allow you to attach a prefix to a name so that you can iden-
tify it as your own. This prevents you from clobbering other variables that might
have the same base name. Using namespaces is a good practice if you are creating
global variables or creating functional libraries of code. Junos provides a functional
library for scripting, for example, the jcs:parse-ip() function:

var $myco:ip_info = jcs:parse-ip("192.168.1.29/24");

Do not declare any variables, templates, functions, parameters, elements, etc., using
any of the following reserved namespaces: junos, jcs, xnm, slax.

Do not declare any variables with the same name as any of the special variable

http://www.juniper.net/dayone

	 24	 This	Week:	Mastering	Junos	Automation	Programming	

names. You have already been introduced to the $arguments and $event-definition
special variables. Refer to the Special Variables section in this chapters for a complete
listing.

Scoping

Variables can be scoped in one of three levels: global (1), template/function (2), and
within a programming control-block (3). Only global variables can be overridden by
lower scoped definitions. Best practice is to avoid using the same variable name in
multiple nested scopes.

Global variables and parameters are declared outside of any templates. Global
variables and parameters are typically declared at the top of the script file, but this is
not a requirement.

Templates and functions are ways to modularize your code (the specific differences
between these two will be explained later in this chapter). These scoped variables are
declared within the code definition of the template or function. The following
example illustrates template variables ($var1, $str) and a template parameter
($arg1):

template foo($arg1) {
 var $var1 = $arg1 + 10;
 var $str = "the value is: " _ $var1; /* the "underscore" is the string-concat operator */
}

Assuming that the template foo was called with an argument of 1, the resulting value
in $str would be the value is: 11.

NOTE SLAX simplifies the syntax of template definitions. The template parameter $arg1
was declared within the definition of the template and does not require the keyword
param.

Template variables are typically declared at the top of the template definition, but this
is not required. Variables must be declared, however, before they can be used. For
example, the following produces a SLAX syntax error:

template foo($arg1) {
 var $str = "the value is: " _ $var1; /* SYTAX ERROR !! */
 var $var1 = $arg1 + 10;
}

However, you can intersperse your variables throughput the template definition:

template foo($arg1) {
 var $v1 = $arg1 + 10;
 <output> "v1 is: " _ $v1;

 var $v2 = $v1 * 1000;
 <output> "v2 is: " _ $v2;
}

SLAX supports two programming control blocks: for-each and the if/then/else.
Variables can be declared within the code portions of these control blocks. The
following illustrates a global variable ($iflist) being used by a template (show-in-
terface-list) that is using a for-each block. The $ifd variable is locally scoped
within the for-each block:

var $iflist := {
 <interface> {
 <name> "ge-0/0/0";

	 Chapter	2:		SLAX	Fundamentals	 25

 }
 <interface>
 <name> "ge-0/0/1";
 }
}

template show-interface-list() {
 for-each($iflist/interface) {
 var $ifd = .; /* the "dot" is the context node */
 <output> $ifd/name;
 }
}

The use of a locally scoped variable is a common technique to overcome some of the
challenges presented by immutable variables. In other procedural languages, the
$ifd variable would be declared outside the for-each loop, and it would be assigned
on each interaction. For example, the the following variable is NOT valid, but
would be a common error:

template show-interface-list() {
 var $ifd;

 for-each($iflist/interface) {
 $ifd = .; /* INVALID - variables are immutable! */
 <output> $ifd/name;
 }
}

Variables can be declared within the if/then/else control structures as well. For
example:

if($this > $that) {
 var $msg = "this is really bigger than that";
 <output> $msg;
}
else {
 var $msg = "that is not bigger than this";
 <output> $msg;
}

Control structures are further explained in an upcoming section of this chapter.

XPath	Data	Types

SLAX supports the four XPath data types: (string, number, boolean, and node-set,)
and the XSLT result-tree-fragment (RTF). Since XPath and XSLT variable types are
well documented in many reference documents, including the Day One books, this
section serves to provide only a brief overview and highlight key concepts.

Booleans

Boolean variables resolve to either true or false. There are no Boolean literal values,
but XPath provides true() and false() functions. XPath also provides a boolean()
function that explicitly converts an expression to either true or false.

The numeric value of 0 converts to false and any non-zero number converts to true.
An empty string (“” or ‘’) converts to false, and any non-empty string converts to
true. A non-empty node-set converts to true. An empty node-set converts to false.
An RTF always converts to true because it always contains a root node.

ALERT! Be careful when evaluating RTFs in a Boolean context since even an empty RTF
coverts to true.

	 26	 This	Week:	Mastering	Junos	Automation	Programming	

Examples:

var $bol = true(); /* true */
var $bol = 0; /* false in boolean expression */
var $bol = 17; /* true in boolean expression */
var $bol = "hello"; /* true in boolean expression */
var $bol = ""; /* false in boolean expression */

Here is an interesting example where a variable is assigned an empty node-set value.
This example assumes that the XML input document (source-tree) or current context
node does not have an element called null. The word null has no special meaning to
SLAX:

var $bol = /null; /* false in boolean expression */

Numbers

Numbers are stored as IEEE 754 floating point, including the special Not-A-Number
(NaN) value. You can define numeric variables with or without decimal points, as
math expressions, and by using the XPath number() function.

Examples:

var $num1 = 5;
var $num2 = 5.7;
var $num3 = $num1 + $num2;
var $num4 = $num1 + number("5.7"); /* results in 10.7 */
var $num5 = $num1 + true(); /* results is 6 because true() converts to the value 1 */

Strings

Strings can be defined by enclosing the words with either the double-quotation (") or
the single-quotation mark ('); but the same mark must be used to start and end the
string value. XPath also provides a string() function to convert a non-string variable
into a string expression.

You can have a double-quoted string that contains a single quote:

var $str = "How's it going?";

You can define a single-quoted string that contains a double quote:

var $str = 'She said: "How is it going?"';

But you cannot define a string value that includes both single and double quotes:

var $str = 'She said: "How's it going?'; /* INVALID!! */

Standard “C” character escaping is allowed as well:

var $str = "Hello, World!\n";

Result�Tree�Fragments

XSLT introduced the result tree fragment concept. As previously mentioned, there is
not a lot you can do with these other than emit them to the script output (result-tree),
treat them as a string, or convert them to a node-set.

ALERT! When declaring a result-tree-fragment variable with literal data, do not end the
statement with a semicolon.

var $my-rtf-var = {
 <interface> {

	 Chapter	2:		SLAX	Fundamentals	 27

 <name> "ge-0/0/0";
 }
 <interface>
 <name> "ge-0/0/1";
 }
}

Notice that there is no semicolon after the final close-brace (}).

NOTE The important concept to remember is that templates always return an RTF.

Consider the following example. Recall that op scripts can use the <output> tag to
cause the output to the Junos CLI. You can put these tags within a template and the
result would be the same if they were not in the template. The “Hello, World”
script:

match / {
 <op-script-results> {
 <output> "Hello, world!";
 }
}

This script emits the <op-script-results> element and all child elements to the
result-tree, as a result-tree-fragment! The match / code is a template, so anything it
returns is an RTF.

Junos processes the result-tree and knows that when it processes the <output> tag, it
transmits the text to the Junos CLI.

Since a template produces a result-tree-fragment, i.e. a blob that could to be pro-
cessed in the context of the result-tree, the script could be rewritten to produce the
same results:

match / {
 <op-script-results> {
 call hello-world();
 }
}

template hello-world() {
 <output> "Hello, World!";
}

Programmers often use a template to create complex XML data structures, and then
use the results. Since templates produce RTFs, the results must be converted to a
node-set using the := operator. Consider the following template that emits an RTF
of <color> elements:

template make-colors()
{
 <color> {
 <name> 'blue';

 <color> {
 <name> 'green';
 }
 <color> {
 <name> 'red';
 }
}

Then the code to call this template and convert the results into a usable node-set
would be:

	 28	 This	Week:	Mastering	Junos	Automation	Programming	

template list-colors() {

 var $colors := { call make-colors(); }

 for-each($colors/color) {
 var $color = .;

 var $msg = "This color is " _ $color/name _ ".";
 <output> $msg;
 }
}

The result on the Junos CLI would be:

This color is blue.
This color is green.
This color is red.

Node-Sets

Node-sets allow you to create, and more importantly, to manipulate complex data
structures in XML form. All of your interaction with Junos RPC API, for example
operational commands, is done by using node-sets. All of your interaction with the
Junos configuration is operating on the configuration node-set.

var $my-ns-var := {
 <interface> {
 <name> "ge-0/0/0";
 }
 <interface>
 <name> "ge-0/0/1";
 }
} /* no semicolon here */

NOTE The key difference between the node-set declaration and the RTF declaration is the
use of the := in the assignment of the literal value. Technically speaking, the code is
actually declaring an RTF and then converting it to a node-set using the := operator.

The key difference between using node-sets and RTFs is that XPath expressions only
operate on node-sets. Since most of your programming uses Junos RPCs that return
node-sets, and use XPath expressions, you quickly become very accustomed to using
node-sets.

There are a couple of special notes regarding node-sets.

The first is the use of the union operator (|). The union operator can be used to
create a combination of two node-sets. Consider the following node-sets:

var $primary-colors := {
 <color> { <name> 'red'; }
 <color> { <name> 'green'; }
 <color> { <name> 'blue'; }
}

var $fav-colors := {
 <color> { <name> 'blue'; }
 <color> { <name> 'yellow'; }
 <color> { <name> 'cranberry'; }
}

The union of these two node-sets:

for-each(($primary-colors | $fav-colors)/color) {

	 Chapter	2:		SLAX	Fundamentals	 29

 var $color = .;
 <output> 'This color is ' _ $color/name _ ".";
}

Would produce the output:

This color is red.
This color is green.
This color is blue.
This color is blue.
This color is yellow.
This color is cranberry.

NOTE Notice that the union of the two node-sets does not remove duplicates. Actually, it
doesn’t remove duplicate string values, but it does remove duplicate nodes. The two
<color> nodes with the same “blue” value are different nodes from different XML
documents. A node-set is a “set” so it cannot contain duplicate nodes.

MORE? You can find a number of great set-notation related XSLT cookbook recipes in the
XSLT Cookbook from O’Reilly Media (http://www.oreilly.com).

The second consideration with node-sets is with the comparison operators. The
following comparison operators can be applied to node-sets: less than (<), less than
or equal to (<=), greater than (>), great than or equal to (>=), is equal to (==), and not
equal to (!=). Given the special nature of these operators, a full discussion is
presented in Chapter 3.

MORE? EXSLT provides a set library of functions. Refer to http://www.exslt.org/set/index.
html for more details.

Complex	Data	Structures

Complex data structures are natively supported in SLAX, again through the use of
XML node-sets and XPath expressions. As you learned in the previous section, you
can easily create hierarchical data structures using XML parent/child elements, as
well as include XML attributes within the elements.

Mastering XML and XPath expressions enables you to master Junos script develop-
ment.

MORE? If you are looking for additional training material on XML and XPath, please refer
to the W3school website http://www.w3schools.com/ and the Day One book,
Navigating the Junos XML Hierarchy, at http://www.juniper.net/dayone.

If you are looking for good examples of complex data structures, you can take a
look at the Junos configuration. From any Junos device, use the following com-
mand:

user@junos> show configuration | display xml

You will be presented with the Junos configuration file in XML format.

Arrays

The XSLT language does not have a native array data-type, but there is a technique
for using node-set XPath expressions to accomplish the same effect.

http://www.exslt.org/set/index.html
http://www.exslt.org/set/index.html
http://www.w3schools.com/
http://www.juniper.net/dayone

	 30	 This	Week:	Mastering	Junos	Automation	Programming	

NOTE Array positions start at 1 and not at 0 as in Perl or C.

Since arrays are accessed via XPath expression, the array variable must be of node-set
type. The following is an example array of numbers:

var $numbers := {
 <n> 30;
 <n> 10;
 <n> 12;
 <n> 27;
}

Notice that the numbers must have an element tag to identify each node-set element.
In this case the tag <n> is being used to identify each element. The element name is
completely up to you.

ALERT! You must use the colon-equals (:=) assignment operator when defining arrays since
you need node-sets for XPath manipulation. Otherwise the variable assignment is an
RTF and you will observe a syntax error when you attempt to use XPath expressions
on an RTF.

The following code examples illustrate the use of arrays:

<output> $numbers/n[2];

Will produce:

10

Performing a FOR-EACH control loop:

for-each($numbers/n) {
 <output> .;
}

Will produce:

30
10
12
27

Hashes

The XSLT language does not have a native hash data-type, but there is a technique for
using node-set XPath expressions to accomplish the same effect. Consider a Perl hash
variable:

perl

my %hash = ();

$hash{"ge-0/0/0"} = "up";
$hash{"ge-1/0/0"} = "down";

print "ge-0/0/0 is " . $hash{"ge-0/0/0"} , "\n"

There are a number of approaches in SLAX. One is to make the key an attribute of
the data. For example:

var $hash := {
 <interface name="ge-0/0/0"> "up";
 <interface name="ge-1/0/0"> "down";
}

<output> "ge-0/0/0 is " _ $hash/interface[@name=='ge-0/0/0'];

	 Chapter	2:		SLAX	Fundamentals	 31

NOTE� The element name <interface> and the attribute name name are completely up to
you as the programmer.

Since there is only one attribute in this example, you could short hand the XPath
expression, as shown:

<output> "ge-0/0/0 is " _ $hash/interface[@*=='ge-0/0/0'];

A completely different approach is to make the key an element rather than an
attribute. For example:

var $hash := {
 <interface> {
 <name> "ge-0/0/0";
 <status> "up";
 }
 <interface> {
 <name> "ge-1/0/0";
 <status> "down";
 }
}

<output> "ge-0/0/0 is " _ $hash/interface[name=='ge-0/0/0']/status;

As you can see in the above examples, introducing new element names and an
element hierarchy changes the Path expression needed to extract the information. In
the example where the key is an attribute, the data (status) was simply the value of
the element <interface>. In the example where the key is an element (name), the
value of status was another element and both name and status are child elements of
interface.

Another approach is to use the XSLT <xsl:key> top-level element and key()
function. Consider the following example used to parse the Junos routing table. The
output of the show route command is:

user@junos> show route

inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:01:48
 > to 192.168.2.1 via ge-0/0/2.0
10.10.10.1/32 *[Direct/0] 03:39:02
 > via lo0.0
192.168.2.0/24 *[Direct/0] 03:38:28
 > via ge-0/0/2.0
192.168.2.16/32 *[Local/0] 03:38:32
 Local via ge-0/0/2.0

The following is the same output in XML format. Pay close attention to how the
script uses the <protocol-name> and the <nh>/<via> values as the upcoming script
will use these to produce hash-keys.:

user@junos> show route | display xml

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2R3/junos">
 <route-information xmlns="http://xml.juniper.net/junos/10.2R3/junos-routing">
 <!-- keepalive -->
 <route-table>
 <table-name>inet.0</table-name>
 <destination-count>4</destination-count>

	 32	 This	Week:	Mastering	Junos	Automation	Programming	

 <total-route-count>4</total-route-count>
 <active-route-count>4</active-route-count>
 <holddown-route-count>0</holddown-route-count>
 <hidden-route-count>0</hidden-route-count>
 <rt junos:style="brief">
 <rt-destination>0.0.0.0/0</rt-destination>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>Static</protocol-name>
 <preference>5</preference>
 <age junos:seconds="178">00:02:58</age>
 <nh>
 <selected-next-hop/>
 <to>192.168.2.1</to>
 <via>ge-0/0/2.0</via>
 </nh>
 </rt-entry>
 </rt>
 <rt junos:style="brief">
 <rt-destination>10.10.10.1/32</rt-destination>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>Direct</protocol-name>
 <preference>0</preference>
 <age junos:seconds="13212">03:40:12</age>
 <nh>
 <selected-next-hop/>
 <via>lo0.0</via>
 </nh>
 </rt-entry>
 </rt>
 <rt junos:style="brief">
 <rt-destination>192.168.2.0/24</rt-destination>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>Direct</protocol-name>
 <preference>0</preference>
 <age junos:seconds="13178">03:39:38</age>
 <nh>
 <selected-next-hop/>
 <via>ge-0/0/2.0</via>
 </nh>
 </rt-entry>
 </rt>
 <rt junos:style="brief">
 <rt-destination>192.168.2.16/32</rt-destination>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>Local</protocol-name>
 <preference>0</preference>
 <age junos:seconds="13182">03:39:42</age>
 <nh-type>Local</nh-type>
 <nh>
 <nh-local-interface>ge-0/0/2.0</nh-local-interface>
 </nh>

	 Chapter	2:		SLAX	Fundamentals	 33

 </rt-entry>
 </rt>
 </route-table>
 </route-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Now consider the following Junos script that is using the <xsl:key> top-level
element and key() function. The <xsl:key> element is a top-level declaration that is
used to create the cross-reference index used by the key() function. In the following
code example, there are two keys: one based on the route protocol (Static) and the
other is the next-hop value. Consider the following complete script:

version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

import "../import/junos.xsl";

/* Define <xsl:key> elements */
<xsl:key name="protocol" match="route-table/rt" use="rt-entry/protocol-name">;
<xsl:key name="next-hop" match="route-table/rt" use="rt-entry/nh/via">;

var $match-protocol = "Static"; /* we want to match on "static" routes */
var $match-interface = "ge-0/0/0.0"; /* we want to match on routes via interface ge-0/0/0.0 */

match / {
 <op-script-results> {
 var $results = jcs:invoke("get-route-information");

 /* Change current node to the $results XML document */
 for-each($results) {

 /* Display all static routes */
 <output> $match-protocol _ " routes: ";
 for-each(key("protocol", $match-protocol)) {
 <output> rt-destination;
 }

 /* Display all routes with next-hop of ge-0/0/0.0 */
 <output> "Next-hop " _ $match-interface _ ": ";
 for-each(key("next-hop", $match-interface)) {
 <output> rt-destination;
 }
 }
 }
}

The key() function is used within the for-each control structures. The node-list that
the key() function returns is defined by the key element. Both key element defini-
tions return route-table/rt node-sets since this was the match criteria in the
definition. Examining the code snipped:

for-each(key("protocol", $match-protocol)) {
 <output> rt-destination;
}

	 34	 This	Week:	Mastering	Junos	Automation	Programming	

The context node in the for-each loop returns any route-table/rt elements that
have a protocol-name element with the value equal to “Static”. In the above example
there is only one route that matches this:

<route-table>
 <table-name>inet.0</table-name>
 <destination-count>4</destination-count>
 <total-route-count>4</total-route-count>
 <active-route-count>4</active-route-count>
 <holddown-route-count>0</holddown-route-count>
 <hidden-route-count>0</hidden-route-count>
 <rt junos:style="brief">
 <rt-destination>0.0.0.0/0</rt-destination>
 <rt-entry>
 <active-tag>*</active-tag>
 <current-active/>
 <last-active/>
 <protocol-name>Static</protocol-name>
 <preference>5</preference>
 <age junos:seconds="178">00:02:58</age>
 <nh>
 <selected-next-hop/>
 <to>192.168.2.1</to>
 <via>ge-0/0/2.0</via>
 </nh>
 </rt-entry>
 </rt>

And the resulting rt-destination value in the for-each loop would be 0.0.0.0/0.

The same for-loop could have been written:

for-each(.//rt-entry[protocol-name == 'Static') {
 <output> ../rt-destination;
}

The key element and functions can be used to reduce processing time if you need to
traverse a data-set multiple times. There are also very powerful techniques to index
and sort using keys.

As you can see from the many code examples, you have the choice and flexibility to
determine the structure of your data and the techniques used to treat node-sets as
hash structures. This is one of the key strengths of using SLAX as a programming
language; the XML data processing capability is extremely flexible and powerful.

Special	Variables

All�Scripts

All scripts have the following parameters:

�� $product - contains the name of the local Junos device model.

�� $user - contains the name of the user executing the script.

�� $hostname - contains the local hostname of the Junos device.

�� $script - contains the name of the script that is currently running.

	 Chapter	2:		SLAX	Fundamentals	 35

�� $localtime - contains the local time when the script was executed using the
following example format: Fri Jan 7 14:07:33 2011.

�� $locatime-iso - contains an ISO format of the local time, for example:
2011-01-08 03:38:57 UTC.

Op�scripts

The $arguments variable is a special global variable for op scripts that provides the
command line argument help to the user.

Consider an op script that has two parameters: interface and admin-control. The
code to provide user help would look like the following:

/* global parameters - script command-line options*/

param $interface;
param $admin-control = 'disable';

/* global variable to provide command-line option help */

var $arguments = {
 <argument> {
 <name> 'interface';
 <description> 'The interface to control';
 }
 <argument> {
 <name> 'admin-control';
 <description> '[enable | disable], default is disable';
 }
}

NOTE Take special notice that the parameter name and the name in the $arguments
variable must match in name. For example, the first param is $interface, and the
first <argument>/<name> is ‘interface’.

NOTE Also notice that the $admin-control is assigned a value of ‘disable’. This means
that if the user does not provide the admin-control command-line option, then the
script behaves as if the user did provide the admin-control option with the value of
disable.

When a user selects help (?) on the command line, they would see the following:

user@junosdev> op change-interface ?

Possible completions:
 <[Enter]> Execute this command
 <name> Argument name
 admin-control [enable | disable], default is disable
 detail Display detailed output
 interface The interface to control
 | Pipe through a command

Event�scripts

Starting in Junos 9.0, event policies used to trigger event-based automation can be
directly configured into the event script rather than being stored in the Junos
configuration file. There are three main advantages to this approach:

	 36	 This	Week:	Mastering	Junos	Automation	Programming	

�� Reduced configuration size: Because the event policy is no longer a part of the
configuration file, the event-options configuration hierarchy is smaller, espe-
cially when multiple event scripts are in use.

�� Easier deployment: By integrating the event policy within the event script,
installation becomes a matter of copying the script to the Junos device and
enabling the script under event-options. The actual event policy is distributed
within the event script and does not have to be configured on each device.

�� Consistent event policies: Because the event policy is embedded within the event
script, all Junos devices that enable the script share a consistent policy configu-
ration.

The $event-definition variable is a special global variable used to embed the event
policy.

The following is an example of an embedded event policy definition that would be
declared in the event script called check-var-utilization.slax:

var $event-definition = {
 <event-options> {
 <generate-event> {
 <name> "every-hour";
 <time-interval> "3600";
 }
 <policy> {
 <name> "check-var-utilization";
 <events> "every-hour";
 <then> {
 <event-script> {
 <name> "check-var-utilization.slax";
 }
 }
 }
 }
}

MORE? For more details on event scripting and embedding event policies, refer to This Week:
Appling Junos Automation book at www.juniper.net/dayone.

Junos�Context

Starting in Junos 11.1, a new global variable, $junos-context, contains information
that is common to all scripts as well as information that is specific to the script type.
The following presents the XML example formats for each of the script types.
Following these examples, each element is defined.

For op scripts:

<junos-context>
 <hostname>srx210</hostname>
 <product>srx210h</product>
 <localtime>Wed Aug 18 09:04:30 2010</localtime>
 <localtime-iso>2010-08-18 09:04:30 UTC</localtime-iso>
 <script-type>op</script-type>
 <pid>1643</pid>
 <tty>/dev/ttyp0</tty>
 <chassis>others</chassis>
 <routing-engine-name>re0</routing-engine-name>
 <re-master/>
 <user-context>

http://www.juniper.net/dayone

	 Chapter	2:		SLAX	Fundamentals	 37

 <user>jnpr</user>
 <class-name>j-super-user</class-name>
 <uid>2001</uid>
 <login-name>jnpr</login-name>
 </user-context>
 <op-context>
 <via-url/>
 </op-context>
</junos-context>

For commit scripts:

<junos-context>
 <hostname>srx210</hostname>
 <product>srx210h</product>
 <localtime>Wed Aug 18 12:30:20 2010</localtime>
 <localtime-iso>2010-08-18 12:30:20 UTC</localtime-iso>
 <script-type>commit</script-type>
 <pid>3003</pid>
 <tty>/dev/ttyp1</tty>
 <chassis>others</chassis>
 <routing-engine-name>re0</routing-engine-name>
 <re-master/>
 <user-context>
 <user>jnpr</user>
 <class-name>j-super-user-local</class-name>
 <uid>2001</uid>
 <login-name>jnpr</login-name>
 </user-context>
 <commit-context>
 <commit-sync/>
 <commit-confirm/>
 <commit-check/>
 <commit-boot/>
 <commit-comment>Walking and chewing gum</commit-comment>
 </commit-context>
</junos-context>

For event scripts:

<junos-context>
 <hostname>srx210</hostname>
 <product>srx210h</product>
 <localtime>Wed Aug 18 14:25:00 2010</localtime>
 <localtime-iso>2010-08-18 14:25:00 UTC</localtime-iso>
 <script-type>event</script-type>
 <pid>1587</pid>
 <chassis>others</chassis>
 <routing-engine-name>re0</routing-engine-name>
 <re-master/>
 <user-context>
 <user>root</user>
 <class-name>super-user</class-name>
 <uid>0</uid>
 <login-name>root</login-name>
 </user-context>
</junos-context>

The top-level elements:

�� <hostname> - The system hostname, same as $hostname.

�� <product> - The product, same as $product.

	 38	 This	Week:	Mastering	Junos	Automation	Programming	

�� <localtime> - Time that the script was invoked, same as $localtime.

�� <localtime-iso> - Time that the script was invoked - in ISO format, same as
$localtime-iso.

�� <script-type> - op, event, or commit.

�� <pid> - process ID number for the cscript process.

�� <tty> - TTY of the user’s session (if invoked by a user session).

�� <chassis> - either TX Matrix (lcc or scc), JCS (psd or rsd), or otherwise it is
“others”.

�� <routing-engine-name> - name of the RE that the script is running on.

�� <re-master> - only present if the script is running on the master routing-engine.

The <user-context> elements:

�� <user> - local name of user that invoked the script.

�� <class-name> - local class of user that invoked the script.

�� <uid> - UID of user that invoked the script.

�� <login-name> - login name of user that invoked the script. If AAA is in use, then
this is the name on the remote authentication server.

The <op-context> element:

�� <via-url> - only present if op script was executed via “op url”.

The <commit-context> elements:

�� <commit-sync> - only present if “commit synchronize” was performed.

�� <commit-confirm> - only present if “commit confirmed” was performed.

�� <commit-check> - only present if “commit check” was performed.

�� <commit-boot> - only present on the initial boot-up commit.

�� <commit-comment> - only present if a comment was included for the commit.

Here are some potential ideas that can now be explored, or completed, more efficiently:

�� A login script that only allows certain accounts to login at certain times of day:
Use $junos-context/tty to accurately logout the user through the <request-log-
out-user> RPC.

�� A login script that offers a menu-based system rather than giving the user console
access: Use $junos-context/tty to accurately logout the user through the <re-
quest-logout-user> RPC.

�� An event script that should only attempt configuration changes on the master
routing-engine: Use $junos-context/re-master to determine if the script is
running on the master routing-engine or not.

�� A commit script that should only run during the boot-up config: Use $junos-con-
text/commit-context/commit-boot to determine if the system is booting or not.

�� A commit script that should prevent certain changes based on the user: Use
$junos-context/user-context/user to determine the local user name, or $junos-
context/user-context/class-name to determine their local class.

	 Chapter	2:		SLAX	Fundamentals	 39

�� A script that should monitor its memory usage: Use $junos-context/pid to
determine the correct process ID to pull from “show system processes exten-
sive”.

�� A script that should kill a user’s login session: Use $junos-context/tty to
accurately logout the user through the <request-logout-user> RPC.

Control Statements

If	/	Then	/	Else	

SLAX supports a “C”/Perl style of the IF/THEN/ELSE construct. The syntax takes
the following forms:

if(<condition>) {
 …
}

Or:

if(<condition>) {
 …
}
else {
 …
}

Or:

if(<condition>) {
}
else if (<condition>) {
}
else {
}

This last example could have multiple else if clauses.

The <condition> is any valid Boolean expression. Keep in mind that a Boolean
expression can be the result of any simple test expression, complex XPath expres-
sion, results of function calls (but not templates!), and any combination of the
above.

MORE? For details on the specific Boolean test operations, please refer to http://www.
w3schools.com/xpath/xpath_operators.asp and the SLAX reference documentation
http://code.google.com/p/libslax .

One of the common questions asked is: “If I can only set a variable once, how do I
set a variable based on a conditional statement?”

The classic standard code would look something like this (Perl style):

#Perl
my $number = 0;

if($input < 10) {
 $number = 2;
}
else {
 $number = 17;
}

http://www.w3schools.com/xpath/xpath_operators.asp
http://www.w3schools.com/xpath/xpath_operators.asp
http://code.google.com/p/libslax

	 40	 This	Week:	Mastering	Junos	Automation	Programming	

SLAX style takes advantage of the fact that conditional controls effectively produce
expressions or RTFs. The above example would be coded in SLAX as follows:

var $number := {
 if($input < 10) {
 expr 2;
 else {
 expr 17;
 }
}

NOTE Technically speaking, when making the assignment to $number, the equals (=) sign
could have been used in place of the colon-equals (:=) sign. This is true only because the
variable $number is being treated as a simple data type (number) and the conditional
expression RTF produced a simple number; that is, not a node-set. If variable assign-
ment is being treated as a node-set, then the colon-equals assignment operation is
necessary. Here is such an example:

var $mynodes := {
 <color> "Green";
 if($this < $that) {
 <color> "Blue";
 <color> "Yellow";
 }
 else {
 <color> "Pink";
 <color> "Purple";
 }
}

for-each($mynodes/color) {
 <output> .;
}

When the IF clause is true, then the resulting output would be:

Green
Blue
Yellow

When the ELSE clause is true, then the resulting output would be:

Green
Pink
Purple

However, if you coded the $mynodes with the equals assignment (=) rather than the
colon-equals (:=), then the output would produce a runtime error, as shown:

error: Invalid type
error: runtime error: file /var/db/scripts/op/test.slax element for-each
error: Failed to evaluate the 'select' expression.

The reason for this error is that the for-each statement requires a node-set.

For-Each	

The for-each control statement is a native looping construct in XSLT that allows you
to loop through a node-set. The syntax is:

for-each(<xpath-expresssion>) {
 …

	 Chapter	2:		SLAX	Fundamentals	 41

}

You’ve seen an example of using for-each in the If/Then/Else section:

for-each($mynodes/color) {
 <output> .;
}

The dot value (.) becomes the iterated variable pointing to each of the nodes in the
node-set as they are processed by the for-each loop. The dot variable is used in the
same way as the $_ variable in Perl. The above could be re-written as:

for-each($mynodes/color) {
 var $color = .;
 <output> $color;
}

 The same code as above would be written in Perl as:

perl

foreach (@mynodes) {
 printf $_;
}

NOTE For large blocks of code with multiple layers for control, it is recommended to
explicitly assign a variable to the dot special variable.

As shown with the if/then/else, the for-each control can be used to create a
variable set of data. Here is an example that extracts a list of ge interfaces, just the
name and the IP-address fields.

var $ge_interfaces := {
 for-each($interfaces/interface[starts-with(name, "ge-")]) {
 var $ifd = .;

 <interface> {
 <name> $ifd/name;
 <ip-addr> $ifd/unit[name==0]/family/inet/address/name;
 }
 }
}

NOTE The node-list elements within the for-each control are created completely at your
discretion. The elements available to the $ifd are specific to the node-set presented
to the for-each <xpath expression>. That is, the choice of using the element name
<interface> with child elements of <name> and <ip-addr> are not tied to anything
specific. But $ifd/name is tied to the fact that the for-each interface node-set has a
name element and a unit element.

Effectively, you are able to dynamically create complex data structures.

for-each($ge-interfaces/interface) {
 <output> "Interface " _ name _ " has IP-addr of " _ ip-addr;
}

Would produce an example output of:

Interface ge-0/0/0 has IP-addr of 192.168.10.1/24
Interface ge-0/1/5 has IP-addr of 192.168.20.2/24
Interface ge-7/1/1 has IP-addr of 192.168.30.17/24

While

SLAX 1.0 does not have native support for a while control structure, but it is
available in SLAX 1.1. Until SLAX 1.1 is available in Junos, you must use the

	 42	 This	Week:	Mastering	Junos	Automation	Programming	

technique of using recursive templates to produce the desired coding results.

MORE? For further details on SLAX 1.1 and the while control structure, refer to http://code.
google.com/p/libslax.

Consider the following Perl while loop:

perl

my $counter = 0;

while($counter < $SOME-BIG-VALUE) {
 …
 $counter += $SOME-INC-VALUE;
}

The equivalent code in SLAX 1.0 would be:

match / { /* main block of code */

 call do-while-stuff(); /* call the template 'do-while-stuff' */

}

template do-while-stuff($counter = 0)
{
 if($counter < $SOME-BIG-VALUE) {
 …
 call do-while-stuff($counter = $counter + SOME-INC-VALUE); /* recursive template call *
 }
}

The use of the recursive template may appear to be a bit clumsy since you cannot
simply inline a while loop construct in your code.

ALERT! Junos script supports a maximum recursion depth of 3000. Exceeding this causes the
script to abort with an error. Also keep in mind that memory allocation for any
variables is not released until all of the recursive processing completes.

The recursive template must contain two parts: the first is the if control at the
beginning to ensure that the condition is still met, and second, the recursive call to the
template modifying the value of the condition variable.

Do-While

SLAX 1.0 does not have native support for a do-while control structure. You must
use the recursive template technique to produce the desired coding results.

Compare the standard do-while code:

perl

do {
 …
 $status = get-new-status();

} while ($status != "down")

With the SLAX equivalent:

match / {

 var $status = get-first-status();

http://code.google.com/p/libslax
http://code.google.com/p/libslax

	 Chapter	2:		SLAX	Fundamentals	 43

 call do-while-status-not-down($status); /* call the recursive template */
}

template do-while-status-not-down($status)
{
 …
 var $new-status = get-new-status();

 if($new-status != "down") {
 call do-while-status-not-down($status = $new-status);
 }
}

The primary difference between the while control structure and the do-while
control structure is that placement of the if within the recursive template.

ALERT! Keep in mind the recursion limits described in the prior sections.

For

SLAX 1.0 does not have native support for a for control structure, but it is available
in SLAX 1.1. Until SLAX 1.1 is available in Junos, you must use the technique of
using recursive templates to produce the desired coding results.

Compare a typical example for loop code:

perl

my $counter;

for($counter = 0; $counter < 10; $counter++) {
 …
}

With the SLAX equivalent:

match / {
 call do-ten-times();
}

template do-ten-times($counter = 0)
{
 if($counter < 10) {
 …
 call do-ten-times($counter = $counter + 1);
 }
}

You can see that the for control structure and the while control structure are
basically the same technique.

ALERT!�� Keep in mind the recursion limits described in the prior sections.

Loop	Controls

In other programming languages, there exist loop control instructions. For example,
Perl offers next within a loop to force execution back to next iteration/conditional
evaluation.

SLAX does not offer these types of looping control instructions.

	 44	 This	Week:	Mastering	Junos	Automation	Programming	

Code Modularity

There are a number of ways in which you can create modular code. One of the first
ways is to create import files – effectively libraries of routines that you can use in
multiple scripts. The second way is to separate sections of your code into templates or
functions. Templates and functions are akin to subroutines in other languages, but
each has specific differences that are covered in upcoming sections.

Importing	Files

Import files are a way for you to create code modularity between script files. Typically
this technique is used to create your own personal library of routines.

There are two items that you need keep in mind when creating import files.

The first is that import files must contain the same boilerplate as any other script file:

version 1.0;
ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

Do take note that the import of the “junos.xsl” files is not included.

The second item is that you should define your own namespace to ensure that the
names of your templates and functions do not collide with others. Creating a
namespace is very easy using the ns keyword. For example, let’s say you want to
create a namespace for your company called mycorp:

ns mycorp = http://xml.mycorp.com/junos;

The test string does not need to be a reachable URL; it simply must be a unique
character string. You then use the namespace prefix when you declare your templates
or functions. For example:

template mycorp:get-status() { … }

Once you have created your import file, you must do the following in the main script
file: first you must declare the same namespace that was used in the import file, and
second, import the file using the import keyword. If your import file was called
mycorp-lib.slax, then the main script would have the following:

version 1.0;
ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

ns mycorp = "http://xml.mycorp.com/junos"

import "../import/junos.xsl";
import "mycorp-lib.slax";

ALERT!� The import statement imports files relative to the location of the calling script. If the
calling script was located in /var/run/scripts/op and the import statement did not
include a directory prefix, then the imported file must also be located in /var/run/
scripts/op.

http://xml.mycorp.com/junos

	 Chapter	2:		SLAX	Fundamentals	 45

ALERT!� The Junos import file is stored in /var/run/scripts/import. This is a read-only
directory, and you cannot put your library files here. You could create the directory
/var/run/scripts/lib and store your import files there. If you do create a separate
directory, you must do this as root user, and change the directory permissions so that
other users can store their files. Starting in Junos 11.1, the lib directory is available
by default, and you do not need to create it.

Templates

Named templates are a native capability within SLAX. They are akin to macros in
the sense that they are called and expanded. This section highlights the SLAX syntax
and usage.

MORE? For more information on template definition and usage, please refer to This Week:
Applying Junos Automation at http://www.juniper.net/dayone.

The following is an example of a named template:

template my-template($counter = 0, $name)
{
 …
}

A named template can take parameters, and each of these parameters can be
declared with a default value. In the above example, if the caller does not include the
$counter parameter, then the value is 0 by default. The $name parameter does not
have a default value.

A template is expanded using the call statement. Parameters are passed by name,
meaning that their position in the template call is not important. For example, the
following examples are all equivalent:

call my-template($counter = 0, $name = "Bob");
call my-template($name = "Bob");
call my-template($name = "Bob", $counter = 0);

The other key point regarding templates is that they always produce a Result-Tree-
Fragment. For example, the following produce identical results:

var $mycolors := {
 <color> "Green";
 <color> "Blue";
 <color> "Yellow";
}

Is equivalent to :

template make-colors()
{
 <color> "Green";
 <color> "Blue";
 <color> "Yellow";
}

var $mycolors := {
 call make-colors();

And …

var $list := {
 <item> "Green";
 <item> "Blue";

	 46	 This	Week:	Mastering	Junos	Automation	Programming	

 <item> "Yellow";
}

template make-colors-from-list()
{
 for-each($list/item) {
 <color> .;
 }
}

var $mycolors := {
 call make-colors-from-list();
}

Functions

Functions are not native to SLAX but have been included as part of the Extended
XSLT Library (EXSLT). Junos includes the EXSLT functions that are part of the
libxslt distribution.

MORE? For complete library documentation on EXSLT support, refer to http://www.exslt.
org/.

SLAX 1.0 does not have native function syntax support, but this will be included in
SLAX 1.1. Until SLAX 1.1 is included in Junos, you will need to code SLAX func-
tions in XSLT.

In order to use functions in SLAX, you must include the func namespace declaration
at the top of the script file:

ns func extension = "http://exslt.org/functions";

ALERT! Notice the presence of the extension keyword. You must include this keyword when
including the EXSLT Functions namespace. A complete listing of EXSLT namespaces
and libraries can be found at http://www.exslt.org/.

You must then declare your own namespace, since custom functions are required to
have a defined namespace. Using the mycorp example, the complete top-of-file would
look like the following:

version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
ns func extension = "http://exslt.org/functions";

ns mycorp = "http://xml.mycorp.com/junos"

import "../import/junos.xsl";

You must use XSLT to declare the function since the syntax is not supported in SLAX
1.0. The following function simply increments the provided value:

	 Chapter	2:		SLAX	Fundamentals	 47

<func:function name="mycorp:incr">
{
 param $num;

 <func:result select="number($num+1)">;
}

ALERT! It is important to understand that the <func:result> element defines the value that
is being returned. It does not, however, stop code execution. This behavior is
different than the return statement in Perl or C. Also note that the data-type of the
return value is explicitly defined. For functions returning node-set values, for
example, use exsl:node-set(…)

The key benefit with functions is that they can return any type of value, not just an
RTF, as is the case with templates. Another difference is that function calls can be
included in Boolean expressions, and templates cannot. The following is a valid use:

if(mycorp:incr($somevalue) < 100) {
 …
}

MORE? Chapter 3 of this book has additional information on using functions in SLAX.

Using Junos Remote Procedure Calls (RPC)

All Junos script types can execute Junos RPCs. This means that commit scripts, for
example, could obtain runtime values via an RPC and update the configuration file
based on those results.

Creating	an	RPC	Request

The first step in executing an RPC is creating the XML-based command. The easiest
way to determine the RPC for virtually any Junos command is to use the | display
xml rpc option after a command. For example, to obtain the XML RPC for the com-
mand show chassis hardware detail:

user@junos> show chassis hardware detail | display xml rpc

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2R3/junos">
 <rpc>
 <get-chassis-inventory>
 <detail/>
 </get-chassis-inventory>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

The portion you need to construct the Junos script code is in the <rpc> element. The
equivalent command would be coded in SLAX as:

var $get-inventory = <get-chassis-inventory> {
 <detail>;
 }

	 48	 This	Week:	Mastering	Junos	Automation	Programming	

Notice how the $get-inventory variable is being assigned a Result-Tree-Fragment
that is the SLAX representation of the XML RPC.

Atomic	Execution	of	RPC

In order to execute an RPC command, the script needs to open a connection to the
Junos management daemon, then execute the command, and finally close the man-
agement connection. If your script has one or just a few RPCs to execute, you can use
the jcs:invoke() function to perform the open/execute/close steps atomically.

Using the RPC from the previous section, the code to atomically execute the RPC
would be:

match / {
 <op-script-results> {
 var $get-inventory = <get-chassis-inventory> {
 <detail>;
 }

 var $result = jcs:invoke($get-inventory);
 }
}

The results of the RPC command are stored in the $results variable. The $results
variable is a node-set, which then allows you to use XPath expression to use the
results.

If your RPC does not take any arguments, for example if you simply wanted to
execute the show chassis hardware command, you do not need to construct the RPC
in a variable, but rather just provide the RPC top-level element name to the
jcs:invoke() routine. For example:

match / {
 <op-script-results> {
 var $result = jcs:invoke('get-chassis-inventory');
 }
}

You should always check the return variable for an error. This is typically handled by
code in the following form:

if($result//self::xnm:error) {
 /* do error handling */
}

MORE? Chapter 3 of this book hasfurther information on error handling techniques.

Executing	a	Large	Number	of	RPCs

If your scripts need to run a large number of RPCs, then it would be more efficient to
explicitly open a connection, execute the large number of RPCs, and then finally close
the connection.

The jcs:open() routine is used to open a connection to the Junos management
daemon. If you call this routine without any parameters, it opens a connection to the
local Junos device; therefore, the one running the script.

	 Chapter	2:		SLAX	Fundamentals	 49

var $connection = jcs:open();

You can, however, use this same routine to open a connection to a remote Junos
device, and execute RPCs on that device:

var $remote-dev = jcs:open("192.168.17.22", "admin", "admin123");

As you can see from the above form, the first parameter is the hostname or IP-ad-
dress of the remote device, the next is the user-name, and finally there is the pass-
word. Generally speaking you do not want to hardcode passwords into your scripts.
You could prompt the user for a password using jcs:get-secret(), for example.

The jcs:execute() routine is used to execute the RPC once you have an open
connection. For example:

var $inventory = jcs:execute($connection, 'get-chassis-inventory');
var $inventory-detail = jcs:execute($connection, $get-inventory);

The jcs:close() routine is used to close the connection to the Junos management
daemon. For example:

expr jcs:close($connection);

The use of the expr keyword here is used to consume the return value, assuming you
do not care about the result of the jcs:close() routine.

Using	the	RPC	Results

Once you have executed an RPC you need to understand the XML structure of the
results so you can access the information accordingly. Recall that the return variable
to jcs:invoke() and jcs:execute() is a node-set data type.

Using the show chassis hardware as an example, you can examine the results in
XML format using the | display xml on the command line. For example:

user@junos> show chassis hardware | display xml

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2R3/junos">
 <chassis-inventory xmlns="http://xml.juniper.net/junos/10.2R3/junos-chassis">
 <chassis junos:style="inventory">
 <name>Chassis</name>
 <serial-number>JN1113BF5ADD</serial-number>
 <description>J2320</description>
 <chassis-module>
 <name>Midplane</name>
 <version>REV 06</version>
 <part-number>710-017558</part-number>
 <serial-number>VG6201</serial-number>
 </chassis-module>
 <chassis-module>
 <name>System IO</name>
 <version>REV 07</version>
 <part-number>710-017562</part-number>
 <serial-number>VG6640</serial-number>
 <description>J23X0 System IO</description>
 </chassis-module>
 <chassis-module>
 <name>Crypto Module</name>
 <description>Crypto Acceleration</description>
 </chassis-module>
 <chassis-module>
 <name>Routing Engine</name>

	 50	 This	Week:	Mastering	Junos	Automation	Programming	

 <version>REV 12</version>
 <part-number>710-017560</part-number>
 <serial-number>VG6966</serial-number>
 <description>RE-J2320-2000</description>
 </chassis-module>
 <chassis-module>
 <name>FPC 0</name>
 <description>FPC</description>
 <chassis-sub-module>
 <name>PIC 0</name>
 <description>4x GE Base PIC</description>
 </chassis-sub-module>
 </chassis-module>
 <chassis-module>
 <name>FPC 3</name>
 <version>REV 13</version>
 <part-number>750-015153</part-number>
 <serial-number>VG9667</serial-number>
 <description>FPC</description>
 <chassis-sub-module>
 <name>PIC 0</name>
 <description>8x GE uPIM</description>
 </chassis-sub-module>
 </chassis-module>
 <chassis-module>
 <name>Power Supply 0</name>
 </chassis-module>
 </chassis>
 </chassis-inventory>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

The result variable is rooted at the element immediately following the <rpc-reply>
element; in this example, that would be <chassis-inventory>.

For example, if you wanted to loop through each of the <chassis-module> elements
displaying only those with serial numbers, the code would be:

match / {
 <op-script-results> {

 var $inventory = jcs:invoke('get-chassis-inventory');

 for-each($inventory/chassis/chassis-module[serial-number]) {
 <output> "Module " _ name _ ", serial number: " _ serial-number;
 }
 }
}

This script would produce the following output:

Module Midplane, serial number: VG6201
Module System IO, serial number: VG6640
Module Routing Engine, serial number: VG6966
Module FPC 3, serial number: VG9667

ALERT! Mastering XPath expressions is the key to mastering Junos automation scripting.
Without a good understanding of XPath and XSLT processing, the for-each loop in
the above example might be difficult to understand.

	 Chapter	2:		SLAX	Fundamentals	 51

Console Input / Output

Using	jcs:get-input()	and	jcs:get-secret()

Both jcs:get-input() and jcs:get-secret() can be used in op scripts to obtain
console input from the user. The jcs:get-input() routine echoes the text that the
user enters, while the jcs:get-secret() does not echo the text.

Consider the following example op script that is used to remotely login to another
Junos device and retrieve the software version:

version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

import "../import/junos.xsl";

match / {
 <op-script-results> {

 var $remote-host = jcs:get-input("Enter host-name: ");
 var $user-name = jcs:get-input("Enter user-name: ");
 var $password = jcs:get-secret("Enter password: ");

 /* Open the remote connection */
 var $connection = jcs:open($remote-host, $user-name, $password);

 if($connection) {
 var $result = jcs:execute($connection, "get-software-information");

 /* Grab the version - This path should work on both single and multi-re systems */
 var $version =
 $result/..//software-information[1]/package-information[name == "junos"];
 expr jcs:output("Junos version on remote host: ", $version/comment);
 }
 else {
 expr jcs:output("Unable to open a connection.");
 }
 }
}

Understanding	<output>	Versus	jcs:output()	Versus	jcs:printf()

Both <output> and jcs:output() can be used by op scripts to send strings to the
console.

The <output> elements are consumed by Junos as part of the result-tree, that is, at
the completion of the Junos script. When you use jcs:output(), the output is
immediately sent to the console. Consider the following code:

match / {
 <op-script-results> {
 <output> "One";
 <output> "Two";
 expr jcs:output("Three");
 expr jcs:output("Four");
 <output> "Five";
 }
}

	 52	 This	Week:	Mastering	Junos	Automation	Programming	

The actual console output will be:

Three
Four
One
Two
Five

ALERT!� You cannot use <output> or jcs:output() from a commit script. You can use these
with event scripts if you also configure an output file in the event policy definition
because it always signals a commit failure to Junos, which halts the requested com-
mit.

The jcs:printf() function does not actually send a string to the console. Rather it creates a
formatted string, which can then be output to the console (or file, or other variable,
etc.)

The following code example uses jcs:printf() to display the op script global
parameters:

match / {
 <op-script-results> {

 /* Display the parameters */
 expr jcs:output(jcs:printf("%15s %-10s", "Parameter", "Value"));
 expr jcs:output(jcs:printf("%15s %-10s", "$user", $user));
 expr jcs:output(jcs:printf("%15s %-10s", "$hostname", $hostname));
 expr jcs:output(jcs:printf("%15s %-10s", "$script", $script));
 expr jcs:output(jcs:printf("%15s %-10s", "$localtime", $localtime));

 var $string = jcs:get-input("Enter string: ");
 var $width = jcs:get-input("Enter width: ");
 var $precision = jcs:get-input("Enter precision: ");
 expr jcs:output(jcs:printf("|%*.*s|", $width, $precision, $string));
 }
}

MORE? For details on the jcs:printf() formatting controls, please refer to the Appendix.

Using	<xsl:message>

The <xsl:message> element is used to produce an immediate error message. For
example:

<xsl:message> "Unable to create connection"

would produce the following console output:

error: Unable to create connection

ALERT!� The error message is sent to the standard error (STDERR) device. You should be
careful when using this element in commit scripts

One feature of the <xsl:message> element is that it can be used to immediately
terminate the script. This produces a similar result as exit or die routines in other
languages. To do this, include the terminate=”yes” attribute. For example:

<xsl:message terminate="yes"> "No connection, aborting script now"

	 Chapter	2:		SLAX	Fundamentals	 53

Using	jcs:progress()

The jcs:progress() routine is used for debugging purposes. When you run op
scripts you can include a detail option. If you use the detail option, then the
output from jcs:progress() is included in the detailed output. If you do not include
the detail option, then the jcs:progress() output is not displayed. If you do have
traceoptions enabled, however, the strings are logged to the traceoptions file regard-
less of if the detail option is used.

For example:

match / {
 <op-script-results> {
 <output> "One";
 <output> "Two";
 expr jcs:progress("Starting jcs:output");
 expr jcs:output("Three");
 expr jcs:output("Four");
 <output> "Five";
 }
}

When invoking the script with the detail command:

user@junos> op test detail
2011-03-02 04:10:56 UTC: running op script 'test.slax'
2011-03-02 04:10:56 UTC: opening op script '/var/db/scripts/op/test.slax'
2011-03-02 04:10:56 UTC: reading op script 'test.slax'
2011-03-02 04:10:56 UTC: Starting jcs:output
Three
Four
2011-03-02 04:10:56 UTC: inspecting op output 'test.slax'
One
Two
Five
2011-03-02 04:10:56 UTC: finished op script 'test.slax'

Using	<xnm:warning>	and	<xnm:error>	for	Commit	Scripts

There are special element tags for producing output from commit scripts.

The <xnm:warning> element can be used to output a warning message, for example:

match configuration {
 <xnm:warning> {
 <message> "This is a test";
 }
}

would produce the following output:

user@junos# commit
warning: This is a test
configuration check succeeds

The <xnm:error> element can be used to output an error message, and then signals
Junos to prevent the candidate configuration from becoming active. For example:

match configuration {
 <xnm:error> {
 <message> "Don't let this commit succeed";
 }
}

	 54	 This	Week:	Mastering	Junos	Automation	Programming	

would produce the following output:

user@junos# commit
error: Don't let this commit succeed
error: 1 error reported by commit scripts
error: commit script failure

NOTE� The <xnm:warning> and <xnm:error> elements are part of the commit script result
tree. This means that your code can check for the existence of these warning/errors.
For example, if you have an op script that makes a configuration change, your script
should look for the presence of <xnm:error> elements in the result to determine if the
commit succeeded or failed.

MORE? For additional information on commit scripts, please refer to This Week: Applying
Junos Automation at http://www.juniper.net/dayone.

Storage Input / Output

Reading	from	Files

Your Junos scripts can read and write data files from the local file system.

One of the simplest ways to read an XML file that is stored on the local file system is
using the XSLT document() function. The following example illustrates the use of
document():

match / {
 <op-script-results> {

 /* Load document into script */
 var $chassis-info = document("/var/home/jnpr/chassis-inventory.xml");

 /*
 * Retrieve chassis name, use local-name() function to avoid
 * dealing with namespaces
 */

 var $chassis = $chassis-info//*[local-name() == "chassis"];
 var $chassis-name = $chassis/*[local-name() == "name"];

 <output> "Chassis name is " _ $chassis-name;
 }
}

If the file is not XML, you can use the Junos <file-get> RPC and process each line
using a jcs:break-lines() loop. Assume there is a file with the following contents:

Jones, Bob, 35, Male
Lee, Sandra, 82, Female
Baker, Lee, 19, Male
Lewis, Alison, 38, Female

The following script would read this file and display each line of data.

match / {
 <op-script-results> {
 var $rpc = <file-get> {

	 Chapter	2:		SLAX	Fundamentals	 55

 <filename> "/var/tmp/people.csv";
 <encoding> "ascii";
 }

 var $people = jcs:invoke($rpc);
 if($people//self::xnm:error) {
 expr jcs:output("Unable to open file: ", $people//self::xnm:error/message);
 <xsl:message terminate="yes">;
 }

 var $people_data = jcs:break-lines($people/file-contents);

 for-each($people/*) {
 var $line = .;
 <output> $line;
 }
 }
}

If the file did not exist, for example, the following would be displayed:

Unable to open file:
Failed to open file (/var/tmp/people.csv): No such file or directory

Writing	to	Files

There are a number of options available when writing to files. If you are writing a
non XML-based file, you could use the Junos <file-put> RPC, the <exsl:document>
element, or the <redirect:write> element.

The primary benefit of using <file-put> is you can control the file permissions when
writing the file. The primary downside of using <file-put> is that you cannot use it
to write XML documents.

The following example retrieves the system section of the configuration file in text
(hierarchal tree) and stores it to a local file.

match / {
 <op-script-results> {

 var $show-config-system = <get-configuration format="text"> {
 <configuration> {
 <system>;
 }
 }

 var $config = jcs:invoke($show-config-system);

 var $writing = <file-put> {
 <filename>"/var/tmp/system-config.txt";
 <encoding> "ascii";
 <permission> "644";
 <delete-if-exist>;
 <file-contents> $config;
 }

 var $result-writing = jcs:invoke($writing);
 }
}

For writing ASCII files or XML documents, you can use either of the two extension

	 56	 This	Week:	Mastering	Junos	Automation	Programming	

elements.

The primary benefit of using <exsl:document> is the flexibility of options that it
offers. The downside is that you cannot control the permissions and the file owner is
set to nobody.

When you use this element, you must include the exsl namespace and extension
definition as shown in the following complete script example:

version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
ns exsl extension = "http://exslt.org/common";

import "../import/junos.xsl";

match / {
 <op-script-results> {
 var $rpc = <get-chassis-inventory> { <detail>; }

 var $inventory = jcs:invoke($rpc);

 <exsl:document href="/var/tmp/inventory.xml"> {
 copy-of $inventory;
 }
 }
}

MORE? For details on the <exsl:document> element, please refer to http://www.exslt.org/exsl/
elements/document/index.html.

The primary benefit of using <redirect:write> is that you can append data to an
existing file as of Junos 11.1.

The downside is that you cannot control the permissions and the file owner is set to
nobody.

When you use this element, you must include the redirect namespace and extension
definition as shown in the following complete script example:

version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
ns redirect extension = "org.apache.xalan.xslt.extensions.Redirect";

import "../import/junos.xsl";

match / {
 <op-script-results> {
 var $rpc = <get-chassis-inventory> { <detail>; }

 var $inventory = jcs:invoke($rpc);

 <redirect:write file="/var/tmp/inventory.xml"> {
 copy-of $inventory;
 }
 }
}

http://www.exslt.org/exsl/elements/document/index.html
http://www.exslt.org/exsl/elements/document/index.html

	 Chapter	2:		SLAX	Fundamentals	 57

MORE? For details on the <redirect:write> element, please refer to
http://xml.apache.org/xalan-j/extensionslib.html.

MORE?� For further information on using File I/O in Junos script, please refer Chapter 3.

Writing	to	the	Syslog	File

All Junos scripts can write to the syslog (/var/log/messages) file using the
jcs:syslog() routine. The jcs:syslog() routine is a variable argument routine
with the first argument being the facility/severity level indication and the remaining
parameters being a comma separated list of strings to include. For example:

match / {
 <op-script-results> {

 expr jcs:syslog("external.info", "Example syslog message: \"Insert message here\"");
 expr jcs:syslog("daemon.debug", "This message is from ", $script);
 expr jcs:syslog(12, "This is a ", "user\\", "warning.");
 }
}

Writing	to	the	Traceoptions	File

You can configure Junos to enable traceoptions for each of the different script types.
The jcs:trace() routine takes a comma-separated list of strings and writes to the
traceoptions file.

For example, if your Junos configuration included the following:

user@junos# show system scripts op
traceoptions {
 file opscripts;
 flag input;
 flag rpc;
}

And your script included a call to jcs:trace(), for example:

expr jcs:trace("This is a traceoptions message from script: ", $script);

Then you could see the message logged to the file opscripts:

user@junosjeremy@j2320-1> show log opscripts
Mar 4 06:32:13 j2320-1 clear-log[3112]: logfile cleared
Mar 4 06:32:14 complete script processing begins
Mar 4 06:32:14 opening op script '/var/db/scripts/op/test.slax'
Mar 4 06:32:14 reading op script 'test.slax'
Mar 4 06:32:15 op script processing begins
Mar 4 06:32:15 running op script 'test.slax'
Mar 4 06:32:15 opening op script '/var/db/scripts/op/test.slax'
Mar 4 06:32:15 reading op script 'test.slax'
Mar 4 06:32:15 This is a traceoptions message from script: test.slax
Mar 4 06:32:15 op script output
Mar 4 06:32:15 begin dump
<?xml version="1.0"?>
<op-script-results xmlns:junos="http://xml.juniper.net/junos/*/junos" xmlns:xnm="http://xml.
juniper.net/xnm/1.1/xnm" xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0"/>
Mar 4 06:32:15 end dump

	 58	 This	Week:	Mastering	Junos	Automation	Programming	

Mar 4 06:32:15 inspecting op output 'test.slax'
Mar 4 06:32:15 finished op script 'test.slax'

“Scratch	Pad	Memory”

Junos scripts can read and write information into the Junos Utility MIB. This is a
handy technique for sharing data between scripts, as well as making data accessible
for SNMP- based management systems.

The following types of data can be stored in the Utility MIB:

�� String

�� Integer

�� Unsigned Integer

�� Counter

�� Counter64

When you store a value in a Utility MIB, there is also a timestamp record of when the
value was last written.

The following Junos RPCs are used to utilize the Utility MIB:

�� <request-snmp-utility-mib-set> is used to create/set a MIB variable and
update the associate timestamp.

�� <get-snmp-object> is used to retrieve the value of any SNMP MIB, inclusive of
Utility MIB values.

�� <request-snmp-utility-mib-clear> is used to delete a Utility MIB variable and
its associated timestamp value.

ALERT! Values that are stored in the SNMP Utility MIB are local only to the routing-engine
where the script is running. You may need to take this into consideration when
writing scripts for systems equipped with redundant routing-engines.

MORE?� Junos script examples for using the Utility MIB can be found Chapter 3.

Summary

This chapter has covered the core SLAX programming language concepts that are
similar to other common scripting languages. You should experiment with the
examples from this chapter and get more familiar with the SLAX programming
paradigm. After just a bit of practice you will have grasped the fundamentals of
writing Junos automation scripts. The next chapter takes it up a notch, covering
many “tips and tricks” as well as advanced topics that can help you master your
automation activities.

Chapter 3

Essential SLAX Topics to Know

Fundamental Topics .60

File and Storage Topics . 82

OSS Integration Topics . 97

Event Script Topics . 109

Summary . 120

	 60	 This	Week:	Mastering	Junos	Automation	Programming	

This chapter covers several topics that you need to know to be productive and creative
with Junos automation scripting. The need to know items are arranged into four
buckets that will make more sense when you’re done with the chapter than when
you’re just beginning:

�� Fundamentals

�� File and storage

�� OSS integration

�� Event Script

Write notes in the margins, use the on-screen highlighter in Acrobat, or try the eBook
tools in your eBook reader — do whatever works best to make notes about the many
essential SLAX features and knobs that can make Junos sing.

Fundamental Topics

First, let’s cover some fundamental SLAX topics that you will use as a foundation for
future scripting. They include searching for error elements, learning complex XPath
expressions, using custom functions, learning all you can about the jcs: functions, and
displaying output from Junos commands.

Searching	for	Error	Elements	(<xnm:error>)

The <xnm:error> element is returned by Junos to indicate that an error occurred. It is
important to check for this element whenever the operation of a script could result in
an error and the script is expected to react to it. For example, anytime an op or event
script performs a commit, it should be ready to handle the various potential errors,
such as a database locking error, a configuration load error, or any kind of commit
error.

Proper care must be taken when building the location path to ensure that when an
error occurs it is actually retrieved. The <xnm:error> element is in a different location
relative to the node-set’s context, depending on whether your variable is a converted
result tree fragment or was returned as a node-set.

The difference exists because a result tree fragment is converted to a node-set by
placing the entire XML structure under a single root node and creating a node-set that
contains that root-node. For example, the following results in a tree fragment:

<parent> {
 <child> “text”;
}

And would be converted into this XML document:

/ {
 <parent> {
 <child> “text”;
 }
}

And the node-set variable would consist of a single node: the root node of the XML
document.

Node-sets returned by functions are different, however. These returned node-sets have
as their context node the child of <rpc-reply>, rather than the root node of the XML
document.

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 61

For example, here are the XML results of the show version command:

user@junosjnpr@srx210> show version | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/10.4D0/junos”>
 <software-information>
 <host-name>srx210</host-name>
 <product-model>srx210h</product-model>
 <product-name>srx210h</product-name>
 <jsr/>
 <package-information>
 <name>junos</name>
 <comment>JUNOS Software Release [10.4-20100719_ib4_11_1.0]</comment>
 </package-information>
 </software-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

The node-set returned in response to the <get-software-information> API element
and would have a single node of <software-information>. Why does this mat-
ter? Because your node-set might consist of a / node, which is a parent to the
<xnm:error> node:

/ {
 <xnm:error> {
 <message> “jcs:load-configuration called with invalid parameters”;
 }
}

Or, the node might be the actual <xnm:error> node:

<xnm:error> {
 <token> “This-Is-The-Bad-API-Element-I-Used”;
 <message> “syntax error”;
}

Or, the node might be an element node, which is a parent or ancestor of the
<xnm:error> node:

<commit-results> {
 <routing-engine junos:style=’normal’> {
 <name> “re0”;
 <xnm:error> {
 <message> “\nssh is not enabled\n”;
 }
 <xnm:error> {
 <message> “\n1 error reported by commit scripts\n”;
 }
 <xnm:error> {
 <message> “\ncommit script failure\n”;
 }
 }
}

The first error message is the result of an invalid call to the jcs:load-configura-
tion() template. The second error message was generated by sending an invalid API
element to jcs:invoke(). And the third error message was generated by attempting
to perform a commit via jcs:execute() that resulted in a commit failure.

	 62	 This	Week:	Mastering	Junos	Automation	Programming	

Converted�Result�Tree�Fragments

The jcs:load-configuration() template is a common source of result tree fragments
that need to be parsed for <xnm:error> elements. If the $results variable captured the
result of jcs:load-configuration() then the following location path can be used to
locate a <xnm:error> within the $results variable:

$results//xnm:error

The // is a shortcut for /descendant-or-self::node()/, and the default axis is the
child axis, so the full location path is actually:

 $results/descendant-or-self::node()/child::xnm:error

This location path works great for converted result tree fragments because the
node-set’s context node is always the root node of the XML document, so any nodes
of interest are always children of the node rather than the node itself.

Node-sets

Using $results//xnm:error does not always work with node-sets, however, because
<xnm:error> is often the actual node-set’s context node. The $results//xnm:error
location path only works if <xnm:error> is the child of the context node, not if it is the
context node itself. Converted result tree fragments are always set to the root node,
but returned node-sets are set to an actual element node. Because of this, it’s necessary
to move back to the context node’s parent before attempting to use the // location
path operator:

 $results/..//xnm:error

The .. operator is short for parent::node(), so the full path is actually:

$results/parent::node()/descendant-or-self::node()/child::xnm:error

This works whether the <xnm:error> message is the context node or a descendant of
the context node, so it is appropriate to use with a node-set variable; however, it
doesn’t work with a converted result tree fragment because there is no parent of the
root node so the parent::node() in the path results in an empty result.

A�Location�Path�for�All�Cases

A location path that works for all converted result tree fragments:

$results//xnm:error

And this works for returned node-sets:

$results/..//xnm:error

But isn’t there a location path that could be used for both? Actually, there is. Recall
that the problem with using the // operator is that the default axis is the child
axis. This prevented us from using the // with a node-set because the <xnm:error>
might be the context node rather than the child of the context node, but using the self
axis rather than the child axis avoids this problem.

The following location path works for both converted result tree fragments as well as
returned node-sets, whether the <xnm:error> node is the context node or not:

$results//self::xnm:error

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 63

And here it is expanded:

$results/descendant-or-self::node()/self::xnm:error

This location path always works because the descendant-or-self axis returns all
nodes that are either the context node or its descendants, and the self axis returns
the current context node. So whether <xnm:error> is the context node, or is a
descendant, it will be selected, making this location path ideal to use when searching
for a <xnm::error> element in your script results.

Complex	XPath	Expressions

For the first example, the goal is to retrieve the <interface> nodes of all interfaces
with names that begin with fe and that do not have a logical unit 100.

Predicate�Inside�a�Predicate

The name restriction is easy to accomplish through the use of a standard predicate:

$configuration/interfaces/interface[starts-with(name, “fe”)]

However, the second restriction requires a more advanced design. The context node
at this point is <interface>, so the objective is to devise a boolean expression that
will return true if there are no child <unit> nodes that have a <name> of 100. This
can be achieved by using the jcs:empty() function, but the argument for that
function is a location path, and this location path itself requires a predicate, which
provides the complete example of a location path that uses a predicate within a
predicate:

$configuration/interfaces/interface[starts-with(name, “fe”)][jcs:empty(unit[name == “100”])];

This location path is processed by first looking for any <interfaces> child nodes,
then looking for any <interface> child nodes. The <interface> nodes are subjected
to two predicates. First, their <name> child element is compared to the fe string to
determine if the text contents of <name> begin with fe. If that evaluates to true then
the second predicate is checked, which provides a location path to the jcs:empty()
function. This location path looks for any child <unit> nodes, but the returned
<unit> nodes are themselves subjected to a predicate before being provided as input
to jcs:empty(). This inner predicate checks for any <name> child nodes with a value
of 100. If one is present then the unit node is provided to jcs:empty(), which
returns false because the node-set argument is not empty. If no <name> nodes with
values of 100 for the <unit> nodes are present, then an empty node-set is provided
to jcs:empty(), which returns true, thereby causing the outer predicate to evaluate
to true and the <interface> node to be included in the resulting node-set.

Preceding�Sibling�Nodes

The preceding-sibling axis is not used as much as the parent, child, and descendant
axes, but it can prove valuable when it is necessary to match nodes at specific
locations relative to the context node.

As an example, assume that a script needs to identify which op scripts have been
annotated with a comment. Here is the relevant XML structure that must be parsed:

<configuration>
 <system>
 <scripts>

	 64	 This	Week:	Mastering	Junos	Automation	Programming	

 <op>
 <junos:comment>/* Colossal Cave Adventure */</junos:comment>
 <file>
 <name>adventure.slax</name>
 </file>
 <file>
 <name>commit-script-builder.slax</name>
 </file>
 <junos:comment>/* Test script */</junos:comment>
 <file>
 <name>test.slax</name>
 </file>
 </op>
 </scripts>
 </system>
</configuration>

As shown here, there is no hierarchical relationship between a comment and its
annotated statement. It is instead the order that matters, because the <junos:comment>
node annotates the element that follows.

Therefore, a location path that is designed to retrieve any commented op scripts must
look for <file> nodes within the <op> hierarchy that have an immediately preceding
<junos:comment> node. This can be achieved through the following location path:

$configuration/system/scripts/op/file[preceding-sibling::*[1][self::comment]]

When this location path processes the <file> nodes, they are subjected to a single
predicate before being included in the resulting node-set. This predicate does a
location path search along the preceding-sibling axis using a wildcard node test to
ensure that all siblings are returned, but it subjects them to two inner predicates.
First, it only selects the first sibling, matching only the node immediately prior to the
<file> node being considered. Next, it checks to see if that first sibling is a <comment>
node. (The self::comment check is equivalent to name() == “comment”). If this is the
case, then the immediately preceding node is a <comment> node, which causes the
predicate evaluates to true, and the <file> node under comparison is included as part
of the returned node-set.

ALERT!� Note that there is a discrepancy between the XML structure shown here and the
location path, because the XML structure shown here had the node shown as
<junos:comment>, whereas the location path referred to it as <comment>. The reason
for this difference relates to the default namespace stripping that Junos performs on
element nodes. Before the configuration is provided to the op script, the junos
namespace has been stripped, transforming <junos:comment> into <comment>.

Checking�Preceding�Nodes

The next example of a complex XPath expression considers how to look through
preceding nodes to see if the current node is the first of its kind. This could be useful if
a script needs to perform a task on an IGMP group, as seen in the show igmp group
command, but you only wish to perform the task once per group.

Here is the XML data structure in question:

<igmp-group-information>
 <mgm-interface-groups>
 <interface-name>fe-0/0/3.0</interface-name>
 <mgm-group-count>1</mgm-group-count>
 <mgm-group junos:style=”igmp”>

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 65

 <multicast-group-address>227.1.1.2</multicast-group-address>
 <multicast-source-address>0.0.0.0</multicast-source-address>
 <last-address>Local</last-address>
 <mgm-timeout>0</mgm-timeout>
 <mgm-type>Static</mgm-type>
 </mgm-group>
 </mgm-interface-groups>
 <mgm-interface-groups>
 <interface-name>ge-0/0/0.0</interface-name>
 <mgm-group-count>1</mgm-group-count>
 <mgm-group junos:style=”igmp”>
 <multicast-group-address>225.0.0.1</multicast-group-address>
 <multicast-source-address>0.0.0.0</multicast-source-address>
 <last-address>Local</last-address>
 <mgm-timeout>0</mgm-timeout>
 <mgm-type>Static</mgm-type>
 </mgm-group>
 </mgm-interface-groups>
 <mgm-interface-groups>
 <interface-name>fe-0/0/2.0</interface-name>
 <mgm-group-count>2</mgm-group-count>
 <mgm-group junos:style=”igmp”>
 <multicast-group-address>225.0.0.1</multicast-group-address>
 <multicast-source-address>0.0.0.0</multicast-source-address>
 <last-address>Local</last-address>
 <mgm-timeout>0</mgm-timeout>
 <mgm-type>Static</mgm-type>
 </mgm-group>
 <mgm-group junos:style=”igmp”>
 <multicast-group-address>226.1.1.1</multicast-group-address>
 <multicast-source-address>0.0.0.0</multicast-source-address>
 <last-address>Local</last-address>
 <mgm-timeout>0</mgm-timeout>
 <mgm-type>Static</mgm-type>
 </mgm-group>
 </mgm-interface-groups>
</igmp-group-information>

The challenge is to identify if a <multicast-group-address> node is the first occur-
rence of a particular group, and one way to do this works using two location paths.
The first location-path is used to determine the nodes the for-each loop should
process:

for-each($results/mgm-interface-groups/mgm-group/multicast-group-address)

As shown here, this loop processes each <multicast-group-address> node, and the
rest of the code is included within the for-each loop’s code block.

The next step is to record the current address into a variable so that it can be
referenced in the second location path:

var $address = .;

The second location path uses the preceding axis to look at all the prior <multi-
cast-group-address> nodes within the XML document, and it checks if the value of
the preceding node is equal to the value recorded in the $address variable. In this
example, the resulting node-set is provided as an argument to jcs:empty(), so this
could be performed within an if statement that should only be executed when this is
the first occurrence of the particular multicast group:

if(jcs:empty(preceding::multicast-group-address[. == $address]))

	 66	 This	Week:	Mastering	Junos	Automation	Programming	

The combined code example:

for-each($results/mgm-interface-groups/mgm-group/multicast-group-address) {
 var $address = .;
 if(jcs:empty(preceding::multicast-group-address[. == $address])) {
 /* actions that should only be performed once per group */
 }
}

Using	Custom	Functions

Templates are a familiar topic for most SLAX coders. It is through templates that
large scripts are modularized and recursive tasks are performed. In addition to
templates, functions greatly expand the capability and usefulness of Junos Automa-
tion with their range of uses, from counting the number of characters in a string with
the string-length() function, to performing Junos API requests through the
jcs:invoke() function.

Functions�Versus�Templates

A less familiar topic is the ability to replace custom templates with custom functions.
This capability was released as part of Junos 9.4, when support for EXSLT functions
and elements was added. Within EXSLT is an element called <func:function>. Using
this element allows custom functions to be created and then used within SLAX scripts
in the same manner as the standard functions available to SLAX scripts. Using
custom functions instead of templates provides the following advantages:

�� Functions can return all types of data values: boolean, string, number, node-set,
or result tree fragment.

�� Function results can be assigned directly to variables without requiring clunky
syntax.

�� Function calls can be performed within the argument list of other function calls,
or within location path predicates.

These advantages allow for a more compact and elegant script. Instead of writing
this:

var $true = “true”;
var $false = “false”;
var $upper-case = { call is-upper-case($string = $input-string); }
var $count = { call count-substring($string = $input-string, $substring = “GE-”); }
if($upper-case == $true && $count > 5) {
...

...you can write this:

 if(st:is-upper-case($input-string) && st:count-substring($input-string, “GE-”) > 5) {
...

There are, however, a few disadvantages to using custom SLAX functions that you
should know about:

�� Custom SLAX functions require Junos 9.4, whereas templates were supported
when SLAX was first developed.

�� The function definition syntax is not SLAX-ified yet in SLAX 1.0 (but will be in
SLAX 1.1), meaning the function header will not say function st:is-upper-
case(), it will say <func:function name=”st:is-upper-case”>.

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 67

�� Most <func:function> error messages are not intuitive, and in one circum-
stance the error message is not even reported to the console.

The good news is that these disadvantages will disappear with time. Junos 9.4 was
released in 1Q09, and as more time passes, more and more networks will have
moved beyond this version, clearing the way for using custom functions. And Junos
developers are considering enhancements to SLAX, both to create SLAX statements
for function definition, as well as to improve error messages for <func:function>
problems.

Namespaces

Before a custom function can be used, two namespaces must be declared within the
script’s header, in addition to the three default boilerplate namespaces that every
script must contain. The first namespace is the EXSLT function namespace:

 ns func extension = “http://exslt.org/functions”;

Using func as the namespace prefix is not required, but it is highly recommended in
order to match the example code and to follow the common convention. Also note
the presence of the extension keyword – that’s necessary so Junos treats
<func:function> and <func:result> as extension elements.

The second namespace that must be created is a unique namespace that will be
assigned to the custom functions.

ALERT!� Unlike templates, it is not possible to create a custom function that lacks a
namespace.

The assigned namespace can be given any unique value, but the appropriate method
would be to base it on a URL possessed by you or your organization, so that no
conflicts arise between namespaces used by different script writers.

Here is an example of a custom namespace. This namespace is used by the Colossal
Cave Adventure SLAX script:

 ns adv = “http://xml.juniper.net/adventure”;

Function�Definition

Custom functions are defined by enclosing the code contents within a
<func:function> element. The name of the function is assigned to the name attri-
bute of the <func:function> element:

<func:function name=”test:example-function”>
{
 expr jcs:output(“This is an example of a function”);
}

Once defined, this function can now be called in the same manner as a standard
SLAX function:

match / {
 expr test:example-function();
}

http://exslt.org/functions
http://xml.juniper.net/adventure

	 68	 This	Week:	Mastering	Junos	Automation	Programming	

Function�Arguments

Function arguments are defined by including param statements at the top of the
function code block. Multiple param statements can be included, and their order
dictates the order of the arguments passed to the function. Default values can be
provided for function arguments in the exact same way as with template parameters:

<func:function name=”test:show-string”>
{
 param $string;

 expr jcs:output(“Here is the string: “, $string);
}

It’s legal to call a function without including all of its arguments, but when this occurs
the default values are assigned to the non-included arguments (or an empty string if
no default value is provided).It is an error, however, to call a function with too many
arguments.

Function�Results

One of the advantages of functions is their ability to return results of any data
type. Templates can only return result tree fragments, but functions can also return
booleans, numbers, strings, and node-sets. This is accomplished by assigning the
desired return value to the <func:result> element by using its select attribute:

<func:function name=”test:is-odd”>
{
 param $number;

 if(math:abs($number) mod 2 == 1) {
 <func:result select=”true()”>;
 }
 else {
 <func:result select=”false()”>;
 }
}

ALERT! Note that <func:result> does not terminate the function, it only assigns the value to
return when the function ends. It is an error to use <func:result> more than once in
the same code path. For example, you cannot assign <func:result> to a default value
and then later assign it to a more specific value.

ALERT! Do not write to the result tree within a function. It is invalid to do so, and it results in
early script termination. Worse, prior to Junos 11.2, no error is shown to the script
user.

Full�Example

Here is an example of an op script that includes a custom function to convert a string
into upper case:

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
ns func extension = “http://exslt.org/functions”;

http://xml.juniper.net/junos/*/junos
http://xml.juniper.net/xnm/1.1/xnm
http://xml.juniper.net/junos/commit-scripts/1.0
http://exslt.org/functions

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 69

ns test = “http://xml.juniper.net/test”;

import “../import/junos.xsl”;

match / {
 expr jcs:output(“abcd = “, test:to-upper-case(“abcd”));
}

<func:function name=”test:to-upper-case”>
{
 param $string;

 var $upper-case = translate($string, ‘abcdefghijklmnopqrstuvwxyz’,
 ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’);

 <func:result select=”$upper-case”>;
}

When	to	Use	jcs:invoke()	and	jcs:execute()	Functions

Both the jcs:invoke() and jcs:execute() functions are used by Junos scripts to
interact with the XML API. The jcs:invoke() function was introduced at the same
time as commit scripts. By using it scripts were able to send the requested XML API
element to Junos, which would execute the desired action and return the results.

Here is an example of a jcs:invoke() call, which returns the current software
version information:

var $result = jcs:invoke(“get-software-information”);

This example illustrates how the name of the desired API element can be provided as
a string to jcs:invoke(); however, if any child elements or attributes are necessary,
then a result tree fragment variable can be created instead, allowing the API element
to be provided in XML format rather than simply as a string name:

var $config-rpc = {
 <get-configuration database=”committed”> {
 <configuration> {
 <interfaces>;
 }
 }
}

var $result = jcs:invoke($config-rpc);

The jcs:invoke() function is atomic: it first creates a new Junoscript session and
then invokes the desired API element within that session. Once the action has
completed and the results are retrieved, the session is closed and the results are
returned to the calling script as a node-set. In the preceding example, these results
are assigned to the variable $result.

The script, however, proved insufficient when attempting to change the configura-
tion from an op or event script, because safely changing the configuration involves
first locking the configuration database, then loading the configuration changes,
then committing the configuration, and finally releasing the configuration database
lock. In other words, proper configuration changes require four API calls, but the
jcs:invoke() function was only designed to process one request per Junoscript
session. It isn’t possible to lock the database in one jcs:invoke() call and then load

http://xml.juniper.net/test

	 70	 This	Week:	Mastering	Junos	Automation	Programming	

the changes within the locked session in the next, because each function call operates
within an entirely separate Junoscript session, and the configuration lock is tied to the
session, not to the script.

Because of this deficiency, a new approach was released in Junos 9.3: the
jcs:execute() function. This function works identically to jcs:invoke() as far as its
API input and output; however, it differs in that it does not create a Junoscript
session. Instead, a session must first be opened through the jcs:open() function,
stored in a variable, and then that variable must be provided to the jcs:execute()
function so it knows in which session it should execute the desired command. Once
all processing is done, jcs:close() should be called to close the created Junoscript
session.

Returning to the initial examples shown for jcs:invoke(), here is how they could be
completed using jcs:execute() instead:

var $connection = jcs:open();
var $result = jcs:execute($connection, “get-software-information”);
expr jcs:close($connection);

And the second example:

var $connection = jcs:open();
var $config-rpc = {
 <get-configuration database=”committed”> {
 <configuration> {
 <interfaces>;
 }
 }
}

var $result = jcs:execute($connection, $config-rpc);
expr jcs:close($connection);

With the introduction of the jcs:execute() function, it is possible for op scripts and
event scripts to safely modify the configuration without any concern that they will
interfere with configuration changes that were already in progress (either by other
users, or by other applications), because the database could be locked, the configura-
tion loaded and committed, and the database unlocked, all within a single Junoscript
session. Here is an example of how that can be done. In the code below, the $configu-
ration variable has already been populated with the desired change:

var $connection = jcs:open();
var $lock-results = jcs:execute($connection, “lock-database”);
var $load-results = jcs:execute($connection, $configuration);
var $commit-results = jcs:execute($connection,”commit-configuration”);
var $unlock-results = jcs:execute($connection, “unlock-database”);
expr jcs:close($connection);

ALERT! Remember best practice is to check for errors at all the steps listed above and to halt
the commit process if any occurred.

This introduces the first type of action that can be performed by jcs:execute() but
not by jcs:invoke(), namely changing the configuration, and this is the most com-
mon action that a script performs that would necessitate using jcs:execute().
However, there are two other circumstances where jcs:execute() must, or in the last
case, should, be used.

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 71

The first case is when using remote procedure calls.

The ability for a script to interact with remote Junos devices through the Junos API
was first introduced in Junos 9.3 in combination with ssh-agent, and Junos 9.6
added the ability to login with a provided username and password. In both cases, it’s
accomplished by providing a hostname argument to the jcs:open() function so that
the function creates the desired Junoscript session on the remote device, rather than
locally.

/* using ssh-agent to pass thru username/password credentials */

var $remote-connection-1 = jcs:open($remote-host);

/* using explicing username/password credentials encoded in the script */

var $remote-connection-2 = jcs:open($remote-host, $username, $password);

The first example demonstrates how jcs:open() can be used to open a session with
a remote device in combination with ssh-agent, and the second example shows how
a session could be opened by providing the username and password as strings to
jcs:open().

Once the session is opened, it’s handled just like a local session, and any API element
that can be used locally can be used remotely as well. Here is the original example of
show version again, this time executed on a remote host:

var $connection = jcs:open($remote-host, $username, $password);
var $result = jcs:execute($connection, “get-software-information”);
expr jcs:close($connection);

Configuration changes and remote procedure calls are two scenarios that mandate
the use of jcs:execute() instead of jcs:invoke(), but the third scenario is not as
stringent as these two.

This third scenario occurs when a script has to execute a large quantity of API calls.
In this case, jcs:invoke() could be used rather than jcs:execute(), however, there
could be a large performance difference in favor of jcs:execute() because it does
not have to open and close a Junoscript session in order to execute its API element.
While the opening and closing action is sub-second, repeating it dozens of times can
become noticeable.

As an example, on a MX960 a simple script was written that called show version
100 times through two separate recursive templates, one that used jcs:invoke(),
and one that used jcs:execute(). The jcs:execute() method took around a second
to perform all 100 executions of show version. On the other hand, jcs:invoke()
required almost 20 seconds. This is just a rough example, and the actual processing
time depends on the routing engine’s CPU and the load of the Junos device, as well
as the complexity of the API request, but the difference in processing speed between
the two functions when many API requests are made is always present.

Does this mean that jcs:execute() should always be used in place of jcs:invoke()?
Not necessarily. The main appeal to jcs:invoke() is its simplicity, as there is no need
to open and close a session separately from the function call. This approach is
sufficient in a large amount of scripts that only use, at most, a handful of API calls
and as such would not experience a noticeable performance difference. Once the
number of API calls starts to number in the dozens, however, then it is a good idea to
consider switching the jcs:invoke() calls with jcs:execute() calls instead.

	 72	 This	Week:	Mastering	Junos	Automation	Programming	

Using	the	<command>	RPC

There are times when you might simply want to execute a set of commands without
invoking the underlying Junos RPC.

For example, the following two scripts are equivalent

match / {
 <op-script-results> {
 var $rpc = <command> “show chassis hardware”;

 copy-of jcs:invoke($rpc);

 }
}

… and …

match / {
 <op-script-results> {
 var $rpc = <get-chassis-inventory>;

 copy-of jcs:invoke($rpc);

 }
}

There are very few cases when using the <command> RPC is necessary, generally only
when an XML RPC is not available. (If you identify a command that does not
provide an XML RPC, it is most likely a bug, and you should report this to Juniper
Networks.)

A common mistake when using the <command> RPC is trying to use the pipe com-
mands. For example, the following is not technically supported:

<command> “show interface terse | match up”

You may find that using the pipe command may work in some cases, on some devices,
for some releases of Junos, but again, it’s not technically supported, so you shouldn’t
use the pipe constructs.

Highlights	of	the	jcs:	Function	Library

The jcs: namespace at the top of all Junos scripts provides you access to a set of
useful functions. For example, you have already seen the use of jcs:invoke() and
jcs:execute(). This section highlights a few others that you should familiarize
yourself with, as they can prove very handy.

MORE? A complete listing of the jcs function library can be found at http://www.juniper.net/
techpubs/en_US/junos11.1/information-products/topic-collections/config-guide-
automation/index.html

jcs:break-lines()

Let’s say that you’ve got data in a CSV file and you’d like to have an op script process
the contents. You would first use the <file-get> RPC to load the contents into a
variable. But now you need to break the file contents into distinct lines (rows/records)
for processing. You can use the jcs:break-lines() function to do this:

http://www.juniper.net/techpubs/en_US/junos11.1/information-products/topic-collections/config-guide-automation/index.html
http://www.juniper.net/techpubs/en_US/junos11.1/information-products/topic-collections/config-guide-automation/index.html
http://www.juniper.net/techpubs/en_US/junos11.1/information-products/topic-collections/config-guide-automation/index.html

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 73

match / {
 <op-script-results> {

 /* Read the file */
 var $rpc = {
 <file-get> {
 <filename> “/var/tmp/mydata.csv”;
 /* Leading and trailing newlines aren’t added when raw encoding is used */
 <encoding> “raw”;
 }
 }
 var $file = jcs:invoke($rpc);

 /* Split into lines */
 var $lines = jcs:break-lines($file/file-contents);

 for-each($lines) {
 var $line = .;

 <output> “line “ _ position() _ “: “ _ $line;
 }
 }
}

If the file mydata.csv contained:

Jeremy,Schulman,Male,40
Bob,Jones,Male,23
Sara,Parker,Female,50

The resulting output of the script would be:

line 1: Jeremy,Schulman,Male,40
line 2: Bob,Jones,Male,23
line 3: Sara,Parker,Female,50

jcs:first-of()

This function is handy for finding the first non-empty value of a given list or essen-
tially creating a series of “if item A is empty, then check item B, then check item C,
etc.”

For example, let’s say you are creating routing policies for BGP. BGP supports
hierarchical policy definitions: global definitions, group definitions, and peer specific
definitions. You could use jcs:first-of() to find the import policy for a given peer,
as illustrated in this example:

match / {
 <op-script-results> {

 /* Retrieve desired peer */
 var $peer = jcs:get-input(“Enter BGP peer address: “);

 /* Get the configuration */
 var $rpc = <get-configuration database=”committed” inherit=”inherit”>;
 var $configuration = jcs:invoke($rpc);

 /* Retrieve the peer config */
 var $peer-config = $configuration/protocols/bgp//neighbor[name == $peer];

 /* If peer is not found then give an error */
 if(jcs:empty($peer-config)) {

	 74	 This	Week:	Mastering	Junos	Automation	Programming	

 <output> “Error: BGP peer “ _ $peer _ “ was not found”;
 }
 /* Otherwise, display the import policies */
 else {
 /* Find the correct import policy configuration for the peer */
 var $import = jcs:first-of($peer-config/import, $peer-config/../import,
 $peer-config/../../import, “*None*”);

 /* Handle node-sets differently than strings */
 var $policy-string = {
 /* If a node-set, then add all the values */
 if(exsl:object-type($import) == “node-set”) {
 for-each($import) {
 expr . _ “ “;
 }
 }
 /* If a string then just add */
 else {
 expr $import;
 }
 }

 <output> “Import policies: “ _ $policy-string;
 }
 }
}

The jcs:first-of() in the example is looking at the configuration hierarchy first at
the peer specific neighbor level ($peer-config/import), then up one level at the group
level ($peer-config/../import), and finally at the global level ($peer-config/../../
import).

jcs:hostname()

This is a handy function for performing a DNS lookup based on an IP address. For
example:

var $host = jcs:hostname(”mydevice.juniper.net”);

It also looks at the on-box system static-host-mapping configuration for name
resolution in addition to querying DNS.

jcs:parse-ip()

This function is useful for decomposing the various IPv4 and IPv6 addresses into
specific elements.

�� Host IP address (or NULL in the case of an error)

�� Protocol family (inet for IPv4 or inet6 for IPv6)

�� Prefix length

�� Network address

�� Network mask in dotted decimal notation for IPv4 addresses (left blank for
IPv6 addresses)

For example:

match / {
 <op-script-results> {

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 75

 var $address-set := {
 <address> “10.0.0.1/255.0.0.0”;
 <address> “192.168.254.13/23”;
 <address> “::ffff:0:0:10.100.1.1/96”;
 }

 /* Go through each address in the set and display its information */
 for-each($address-set/address) {
 <output> “---”;
 <output> “Address: “ _ .;
 var $result = jcs:parse-ip(.);
 <output> jcs:printf(“%8s %s”, “Host:”, $result[1]);
 <output> jcs:printf(“%8s %s”, “Family:”, $result[2]);
 <output> jcs:printf(“%8s %s”, “Prefix:”, $result[3]);
 <output> jcs:printf(“%8s %s”, “Network:”, $result[4]);
 if($result[2] == “inet”) {
 <output> jcs:printf(“%8s %s”, “Mask:”, $result[5]);
 }
 }
 }
}

Would result in the following output:

Address: 10.0.0.1/255.0.0.0
 Host: 10.0.0.1
 Family: inet
 Prefix: 8
Network: 10.0.0.0
 Mask: 255.0.0.0
Address: 192.168.254.13/23
 Host: 192.168.254.13
 Family: inet
 Prefix: 23
Network: 192.168.254.0
 Mask: 255.255.254.0
Address: ::ffff:0:0:10.100.1.1/96
 Host: ::ffff:0:0:a64:101
 Family: inet6
 Prefix: 96
Network: 0:0:0:ffff::

jcs:printf()

Unlike its counterpart in other languages, jcs:printf() is used to create a formatted
string, but it does not output that string. For example:

match / {
 <op-script-results> {

 /* Display the parameters */
 expr jcs:output(jcs:printf(“%15s %-10s”, “Parameter”, “Value”));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$user”, $user));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$hostname”, $hostname));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$product”, $product));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$script”, $script));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$localtime”, $localtime));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$localtime-iso”, $localtime-iso));

 }
}

	 76	 This	Week:	Mastering	Junos	Automation	Programming	

Results in:

 Parameter Value
 $user jnpr
 $hostname srx210
 $product srx210h
 $script test.slax
 $localtime Tue Jun 21 08:57:19 2011
$localtime-iso 2011-06-21 08:57:19 UTC

TIP There are many formatting features supported by jcs:printf(). These features are
listed in the appendix of this book. Familiarize yourself with them as much as you
can, as there are many unique things you can do in Junos and you will find this
function very handy.

jcs:regex()

Junos supports the standard “C” library regular expression functionality. An entire
appendix that comprehensively goes through the capabilities is dedicated to this
subject, but here is a simple example:

match / {
 <op-script-results> {

 /* parse the $localtime-iso parameter */
 var $regex =
 “([[:digit:]]*)-0?([[:digit:]]*)-0?([[:digit:]]*) 0?([0-9]*):0?([0-9]*):0?([0-9]*).*”;

 var $result = jcs:regex($regex, $localtime-iso);

 /* Display the complete match */

 <output> “Time: “ _ $result[1];

 /* Display all the captured subexpressions */
 <output> “Year: “ _ $result[2];
 <output> “Month: “ _ $result[3];
 <output> “Day: “ _ $result[4];
 <output> “Hour: “ _ $result[5];
 <output> “Minute: “ _ $result[6];
 <output> “Second: “ _ $result[7];
 }
}

Results in:

Time: 2011-04-23 02:37:44 UTC
Year: 2011
Month: 4
Day: 23
Hour: 2
Minute: 37
Second: 44

jcs:split()

This function is another handy text-processing utility. In the case of the CSV file, you
could use this function to split the comma-separated fields. The pattern for splitting
can be a regular expression as well. Here is an example:

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 77

match / {
 <op-script-results> {

 call show-substrings($pattern = “[A-Z]+”, $string = “10.4R1.9”);

 call show-substrings($pattern = “\\.”, $string = “10.100.2.1”);

 call show-substrings($pattern = “[[.space.]]+”, $string =
 “ge-0/0/0.0 up up inet 10.0.0.10/24”);
 }
}

template show-substrings($pattern, $string) {
 expr jcs:output(“_\r \n”, $string);
 expr jcs:output(str:padding(string-length($string), “-”));
 var $result = jcs:split($pattern, $string);
 for-each($result) {
 expr jcs:output(.);
 }
}

Results in:

10.4R1.9

10.4
1.9

10.100.2.1

10
100
2
1

ge-0/0/0.0 up up inet 10.0.0.10/24
--
ge-0/0/0.0
up
up
inet
10.0.0.10/24

jcs:sysctl()

This function provides read-only access to the SYSCTL variables, useful for trouble-
shooting system level issues. For example:

match / {
 <op-script-results> {

 <output> “kern.osrelease=” _ jcs:sysctl(“kern.osrelease”);
 <output> “kern.hostname=” _ jcs:sysctl(“kern.hostname”, “s”);
 <output> “kern.osrevision=” _ jcs:sysctl(“kern.osrevision”, “i”);
 <output> “hw.re.mastership=” _ jcs:sysctl(“hw.re.mastership”, “i”);
 <output> “hw.product.model=” _ jcs:sysctl(“hw.product.model”, “s”);
 }
}

Results in:

kern.osrelease=10.4R1.9
kern.hostname=srx210

	 78	 This	Week:	Mastering	Junos	Automation	Programming	

kern.osrevision=199506
hw.re.mastership=1
hw.product.model=srx210h

One handy sysctl is the kern.ticks value. You could use this value to profile sections
of your code by placing calls to get this value around the code; then subtracting the
start time from the end time.

Displaying	Output	from	Junos	Commands

One of the common uses for op scripts is to create new display commands, which
show combined information that was previously not available through a single
source in a format agreeable to the script writer. Information from other commands
can be retrieved individually and then applied to the format of the new command, but
what if a large section of an existing command’s output is desired, verbatim, in the
new op script’s output?

It is, of course, possible to manually mimic the Junos command output through the
op script’s code, but there is an easier alternative that can be used: displaying the CLI
output of normal Junos commands as part of your op script output.

To understand how this is possible, first consider the interaction between the manage-
ment daemon MGD, and CLI processes in Junos. CLI commands are run through
MGD, which typically return its results to CLI as a XML document. CLI then takes
this XML document and displays it according to the programmed parameters for the
command.

In other words, this is what MGD provides to the CLI when asked to display show
version:

<software-information>
 <host-name>srx210</host-name>
 <product-model>srx210h</product-model>
 <product-name>srx210h</product-name>
 <jsr/>
 <package-information>
 <name>junos</name>
 <comment>JUNOS Software Release [10.2R1.8]</comment>
 </package-information>
</software-information>

But, CLI takes the XML input, renders the output in its specific format, and then
shows the following to the user:

user@junosjnpr@srx210> show version
Hostname: srx210
Model: srx210h
JUNOS Software Release [10.2R1.8]

To illustrate the significance of this, consider the following op script:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {
 <op-script-results> {
 <software-information> {
 <host-name> “srx210”;

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 79

 <product-model> “MX960”;
 <product-name> “MX960”;
 <package-information> {
 <name> “junos”;
 <comment> “JUNOS Software Release [10.5R1]”;
 }
 }
 }
}

Note that, instead of using the <output> result tree element, as might be expected,
the script instead uses the <software-information> element, which is usually provid-
ed from MGD to CLI, and has crafted specific values. This XML data is then
provided to the CLI, which displays it in the following way:

user@junosjnpr@srx210> op show-fake-version
Hostname: srx210
Model: MX960
JUNOS Software Release [10.5R1]

While displaying a modified show version is not of much practical use, the underly-
ing concept, that the CLI is capable of interpreting MGD-delivered XML data, can
be used in scripts in a couple of different ways:

�� Displaying an aggregate of multiple CLI commands through a single op script

�� Displaying a subset of a CLI commands output

The first bulleted example is likely the most relevant. As demonstrated by the
preceding op script, it is possible to instruct the CLI to display normal Junos
command output by providing the appropriate XML elements in the result tree.
This can be done manually as above, but it is far more likely that a script writer
instead delivers the XML results received from jcs:invoke() by using the copy-of
statement to copy the returned variables XML contents into the result tree.

The main consideration when performing this action is that the command output
must be copied into the top-level <op-script-results> result tree element, other-
wise it isn’t processed as desired by the CLI. Here is an example of a script that
displays multiple show chassis outputs via a single op script:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

match / {

 <op-script-results> {
 var $chassis-hardware = jcs:invoke(“get-chassis-inventory”);
 var $chassis-environment = jcs:invoke(“get-environment-information”);
 var $chassis-routing-engine = jcs:invoke(“get-alarm-information”);
 var $chassis-thresholds = jcs:invoke(“get-temperature-threshold-information”);

 <output> “Chassis hardware:”;
 copy-of $chassis-hardware;

 <output> “__________\nChassis environment:”;
 copy-of $chassis-environment;

 <output> “__________\nChassis alarms:”;

	 80	 This	Week:	Mastering	Junos	Automation	Programming	

 copy-of $chassis-routing-engine;

 <output> “__________\nChassis temperature thresholds:”;
 copy-of $chassis-thresholds;
 }
}

And here is the output displayed on the CLI:

user@junosjnpr@srx210> op chassis-outputs
Chassis hardware:
Hardware inventory:
Item Version Part number Serial number Description
Chassis AD2309AA0380 SRX210h
Routing Engine REV 28 750-021779 AAAG9521 RE-SRX210-HIGHMEM
FPC 0 FPC
 PIC 0 2x GE, 6x FE, 1x 3G
Power Supply 0

Chassis environment:
Class Item Status Measurement
Temp Routing Engine OK 43 degrees C / 109 degrees F
 Routing Engine CPU Absent
Fans SRX210 Chassis fan OK Spinning at high speed
Power Power Supply 0 OK

Chassis alarms:
No alarms currently active

Chassis temperature thresholds:
 Fan speed Yellow alarm Red alarm
Item Normal High Normal Bad fan Normal Bad fan
Chassis default 48 54 65 55 75 65
Routing Engine 55 60 75 65 85 70

The second bulleted example where this can be useful is when an op script should
display a subset of the normal output of a Junos command. This requires more manual
coding than the prior bulleted example, as the parent elements must be manually added
into the script underneath the <op-script-results> element, and then specific elements
must be copied into the result tree based on what subset is desired to be shown. The
result is that all the boilerplate for the command, such as the header, is displayed, but
only the desired portion of the output is included.

As an example, consider the show interface filters command. It can provide specific
interface names if only certain interfaces are desired, but it does not currently have an
option to only display certain address families. The following script allows the user to
select an address family, and only interfaces that have filters for that address family are
displayed.

The first step to achieve it is to consider the command’s XML output. This is done by
appending | display xml to the command, which shows the following:

user@junosjnpr@srx210> show interfaces filters | display xml

<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/10.2R1/junos”>
 <interface-filter-information xmlns=”http://xml.juniper.net/junos/10.2R1/junos-interface”
junos:style=”filter”>
 <physical-interface>
 <name>ge-0/0/0</name>
 <admin-status>up</admin-status>
 <oper-status>up</oper-status>
 <logical-interface>
 <name>ge-0/0/0.0</name>
 <admin-status>up</admin-status>

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 81

 <oper-status>up</oper-status>
 <filter-information>
 </filter-information>
 <filter-information>
 <filter-family>inet</filter-family>
 </filter-information>
 <filter-information>
 <filter-family>mpls</filter-family>
 <filter-input>mpls-example</filter-input>
 </filter-information>
 </logical-interface>
 </physical-interface>
...

The above gives us all the information needed to write the script. First, it indicates
what the top-level XML element is for this output: <interface-filter-informa-
tion>. Next, it shows what element needs to be selectively included in the result tree:
<logical-interface>, which is a child of <physical-interface>. And finally, it
shows the XML hierarchy that must be navigated in order to determine if a particu-
lar interface has a firewall filter of the indicated family or not.

With the above information in mind, here is the completed op script:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;

var $arguments = {
 <argument> {
 <name> “family”;
 <description> “Address family to display: inet, inet6, mpls, etc”;
 }
}

param $family;

match / {
 <op-script-results> {

 var $results = jcs:invoke(“get-interface-filter-information”);

 /* Embed top-level element into result tree */
 <interface-filter-information junos:style=”filter”> {

 /* Only include the logical-interface nodes that have an assigned
 * filter from the desired family.
 */
 for-each($results/physical-interface/logical-interface) {

 /* Filter family must match, and an input or output filter must be present */
 if(filter-information[filter-family == $family][filter-input | filter-output]){
 <physical-interface> {
 <logical-interface> {
 /* Copy all child elements except other family filters */
 copy-of *[name() != “filter-information” || filter-family==$family];
 }
 }
 }
 }
 }
 }
}

	 82	 This	Week:	Mastering	Junos	Automation	Programming	

And here is the script’s output:

user@junosjnpr@srx210> op filters-by-family family inet
Interface Admin Link Proto Input Filter Output Filter
fe-0/0/2.100 up down inet inet-example
fe-0/0/2.200 up down inet inet-example
jnpr@srx210> op filters-by-family family mpls
Interface Admin Link Proto Input Filter Output Filter
ge-0/0/0.0 up up mpls mpls-example
fe-0/0/2.100 up down mpls mpls-example mpls-output
fe-0/0/2.300 up down mpls fe-0/0/2.300-o

This can be much more involved than simply copying the entire command results to
the result tree, but it does provide the advantage of customizing the actual Junos-
standard output that users are accustomed to.

NOTE� Because scripts that follow this approach are taking advantage of the MGD-to-CLI
XML communication patterns, there is some risk of change between incremental
Junos versions that would not be present were one to merely stick with the standard
<output> method.

File and Storage Topics

It’s coffee break time. Let all those fundamental topics sink in and go back and refresh
your memory about any that really caught your eye. If you’re not yet excited by the
potential of Junos automation scripting with SLAX, you must be a File and Storage
kind of scripter. If so, put that coffee down and let’s get at it.

File	I/O:	Reading

The Junos XML API contains two separate elements that can be used to retrieve files
from the file system: <file-get> and <file-show>. While both have equivalent
functionality, their usage and results vary.

Encoding�Types

The same three encoding options exist for both <file-show> and <file-get>, and are
selected based on the <encoding> child element:

�� ascii: Retrieves the file in ASCII format, but extra newlines are added before
and, if the file does not already end with a newline, after the file contents, so this
encoding format is not appropriate if the exact contents are required.

�� base64: This encoding returns the file contents in base64 format. It should
always be used when working with binary files.

�� raw: Added in Junos 10.1. This encoding returns the file contents in ASCII
format but does not add any extra newlines. If the script must work with the
exact file contents, then this would be the appropriate encoding type.

<file-show>

The <file-show> API element is the equivalent of the file show CLI command. Its
only required child element is <filename>, which specifies what file should be re-
trieved. The <encoding> child element is optional, and should only be included if the
default ASCII encoding is not desired:

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 83

<file-show> {
 <filename> “filename”; /* Mandatory */
 <encoding> “base64 or raw”; /* Optional - defaults to ascii */
}

XML	Results

When a file is successfully read, the <file-show> API element returns the file con-
tents within a <file-content> element. The following three examples show the
<file-content> results of a text file that consists of the string no newlines. These are
shown in SLAX format to make the presence of newlines more obvious.

ASCII encoding:

<file-content> “
no newlines
“;

Raw encoding:

<file-content> “no newlines”;

Base64 encoding:

<file-content> “
bm8gbmV3bGluZXMK
“;

If an error occurs (for example, the file doesn’t exist or the user does not have
adequate permissions) then an <xnm:error> element is returned along with a
<message> child element explaining why the file could not be retrieved:

<xnm:error> {
 <message> “
could not resolve file: /var/home/lab/test20
“;
}

Location	Paths

Location paths with <file-show> are simple. The file content is the returned node in
the node-set, so the contents can be retrieved by referring to the variable itself:

var $results = jcs:invoke($file-show-rpc);
if(contains($results, “this is inside of the file?”))
...

Wildcard	Filename	Selection

Just like the file show CLI command, the <file-show> API element can include the
* character in the filename as a wildcard. This could be useful if the exact filename is
unknown; however, only one filename is allowed to match the wildcard expression.
If more than one filename matches, then a <xnm:error> element is returned indicat-
ing that the wildcard expression resolves to multiple files.

The following example shows the use of <file-show> to retrieve the ASCII contents
of a file. If the file contains the word contents then it is displayed on the console,
otherwise an error string is displayed:

match / {
 <op-script-results> {
 var $rpc = {
 <file-show> {
 <filename> “/var/home/lab/test1”;
 }
 }

	 84	 This	Week:	Mastering	Junos	Automation	Programming	

 var $results = jcs:invoke($rpc);
 if(contains($results, “contents”)) {
 copy-of $results;
 }
 else {
 expr jcs:output(“‘contents’ is not included within the file.”);
 }
 }
}

ALERT! Prior to Junos 11.1, the <file-show> element had no default directory, so its <file-
name> element must include the complete path to the file. In Junos 11.1 and beyond,
the default directory depends on the script type: (user’s home directory for op scripts,
/var/tmp for commit and event scripts, and / for op scripts executed by event policies).

<file-get>

The <file-get> API element was added in Junos 9.0 along with the <file-put>
element to facilitate Junos script inline file transfers. Similar to <file-show>, it
requires that the <filename> child element indicate what file should be read, but
unlike <file-show>, the <encoding> element is mandatory when using <file-get>,
because it has no default encoding format.

The <file-get> element has no supported CLI equivalent, however, its functionality
can be performed from the CLI by using the hidden file-mgd get command . No
ASCII results are displayed, making the CLI command rarely beneficial, but the XML
results can be seen by appending | display xml to the command.

<file-get> {
 <filename> “filename”; /* Mandatory */
 <encoding> “ascii base64 or raw”; /* Mandatory */
}

XML	Results

When a file is successfully read, the <file-get> API element returns a <file-get-re-
sults> element that includes the file contents within a <file-contents> element as
well as a <success> element. The next three examples show the <file-get-results>
results of a text file that consists of the string no newlines. These are shown in SLAX
format to make the presence of newlines obvious.

ASCII	encoding:

<file-get-results> {
 <file-contents> “
no newlines
“;
 <success>;
}

NOTE Prior to Junos 10.0R3 and 10.1R1, files that ended with a newline would have an
additional newline added.

Raw encoding:

<file-get-results> {
 <file-contents> “no newlines”;
 <success>;
}

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 85

Base64 encoding:

<file-get-results> {
 <file-contents> “
bm8gbmV3bGluZXMK
“;
 <success>;
}

If an error occurs (for example, the file doesn’t exist or the user does not have
adequate permissions) then an <xnm:error> element is returned along with a
<message> child element explaining why the file could not be retrieved:

<xnm:error> {
 <message> “
Failed to open file (/var/home/lab/test): No such file or directory
“;
}

Default	Directory

The <file-get> element defaults to the /var/tmp directory for relative file-
names. Use an absolute filename if the file is located in a different directory.

Location	Paths

Location paths with <file-get> differ from those used with <file-show>. The
returned node in the node-set is <file-get-results>, and to retrieve the actual file
contents, the <file-contents> child element must be referenced:

var $results = jcs:invoke($file-get-rpc);
if(contains($results/file-contents, “this is inside the file?”))
...

In addition, the <success> element can be checked with the following location path:

if($results/success) {
 ...
}
...

Example	Usage

This example shows the use of <file-get> to retrieve the ASCII contents of a file. If
the file contains the word contents then it is displayed on the console, otherwise an
error string is displayed:

match / {
 <op-script-results> {
 var $rpc = {
 <file-get> {
 <filename> “/var/home/jnpr/test”;
 <encoding> “ascii”;
 }
 }
 var $results = jcs:invoke($rpc);
 if(contains($results/file-contents, “contents”)) {
 expr jcs:output($results/file-contents);
 }
 else {
 expr jcs:output(“‘contents’ is not included within the file.”);
 }
 }
}

	 86	 This	Week:	Mastering	Junos	Automation	Programming	

Table�3.1�� Comparison�of�<file-show>�and�<file-get>

<file-show> <file-get>

Minimum�Junos�Version 5.6 9.0

<encoding>�element
Optional – defaults to ascii if not present.
Valid options are “base64” or “raw”.

Mandatory. Valid options are “ascii”,
“base64”, or “raw”.

Returned�node <file-content> <file-get-results>

File�content�node <file-content>
<file-contents>, which is a child of <file-get-
results>

Default�directory
None, prior to Junos 11.1, but as of that
version, it depends on the script type.

/var/tmp

Filename�wildcards
Supported as long as it resolves to only one
file.

Unsupported

File	I/O:	Writing

The <file-put> API element, added in Junos 9.0, is used to write information to disk.
When invoked, it creates the indicated output file and then writes the desired content,
provided as either an ASCII or base64 string, to the new file. An error is returned if
the output file already exists, unless the <delete-if-exist> child element is specified,
in which case the file is deleted prior to being recreated and written. It is not currently
possible to append it to an existing file.

NOTE One workaround that can be used, if appending is necessary, is to read the current file
contents into a variable, append the new content to the current content, and then
overwrite the file with the combined contents.

The <file-put> API element contains both mandatory and optional child elements:

<file-put> {
 <filename> “filename”; /* Mandatory */
 <encoding> “base64 or ascii”; /* Mandatory */
 <permission> “file permission string”; /* Optional */
 <delete-if-exist>; /* Optional */
 <file-contents> ““; /* Mandatory */
}

The mandatory <filename> element indicates the name, and optionally the complete
path, of the output file. If an absolute file path is not provided then the file is placed
into the default directory, which is the home directory of the script’s executing user.
Remember, however, that commit scripts are executed by root, not the user that
performed the commit, and event scripts are executed by root by default as well, so in
both of those cases the default directory would be the home directory of the root user:
/root. The created output file is owned by the user that executed the script, and its
group will be set to staff (or wheel if the script is being run by root.)

The <encoding> element is mandatory and must be set to either base64 or ASCII . It
indicates the format of the <file-contents> element’s content. If it is set to ASCII,
then the content is written directly to disk, but if base64 is selected, then the content
is converted from base64 into ASCII before being written.

By default, files are created with permissions of 0600 (u=rw), but if a different
permission level is desired, then the optional <permission> element can be included

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 87

with the permissions specified in either numeric or symbolic format:

Permission examples:

<permission> “u=r”; /* read-only for user */
<permission> “666”; /* read/write access for all users */
<permission> “u=rw,go=r”; /* read/write for user, read-only for group/others */
<permission> “644”; /* read/write for user, read-only for group/others */

As previously mentioned, if the output file already exists then the write operation
will fail and a <xnm:error> message is returned. Alternatively, the <delete-if-ex-
ist> element can be included in the API call if an existing file should be overwritten.
When used, Junos deletes the existing file and then recreates it with its new content,
rather than returning an error.

The <file-contents> mandatory element contains the content that should be
written to disk in either ASCII or base64 format.

ALERT! This element has a unique restriction that it must be the final element within the
<file-put> API call.

This is necessary so that the script engine is already aware of the destination file and
its parameters before it processes the <file-contents> element, so that it can start
writing the data to disk immediately as it reads the file content, which could be
essential when working with large files.

Writing�to�Non-Local�Routing-Engines

Beginning in Junos 10.4, scripts can use the re#, node#, or fpc# URLs to write to
non-local routing-engines in dual-routing-engine systems, chassis clusters, and EX
VCs respectively. When using this URL notation, Junos first writes the file contents
to a temporary file on the local routing-engine and then copies the temporary file to
its intended destination. This behavior causes a difference in the <delete-if-exist>
and <permission> child elements of <file-put>. The file copy operation overwrites
existing files by default, so <delete-if-exist> has no effect, and the <permission>
element only affects newly created files, but existing files retain their current permis-
sions, and as of the time of this writing, write permission can only be granted to the
file owner when using this URL notation. Another difference that occurs when using
URL notation is that the file’s group ownership is assigned based on the destination
directory’s group ownership, rather than the group of the script’s executing user.

NOTE� These differences apply whenever using URL notation with the <file-put> API
element, even if the destination is to the local routing-engine.

XML�Results

A successful write operation results in a <file-put-results> element being re-
turned, with child elements of <success> and <filename>, which contain the full
path of the written file.

<file-put-results>
 <success/>
 <filename>
 /var/home/jnpr/example-file
 </filename>
</file-put-results>

	 88	 This	Week:	Mastering	Junos	Automation	Programming	

If an error occurs, then a <xnm:error> element is returned. The contents of its <mes-
sage> element vary, depending on the error seen, but here are some examples:

When the destination file already exists and <delete-if-exist> is not used:

<xnm:error>
 <message>
 Destination file exists
 </message>
</xnm:error>

Permission is denied to create a new file:

<xnm:error>
 <message>
 Write to destination file (/root/example-file) failed: Permission denied
 </message>
</xnm:error>

Permission is denied to delete existing file through <delete-if-exist>:

<xnm:error>
 <message>
 User jnpr failed to delete file /root/example-file: Permission denied
 </message>
</xnm:error>

Example�Usage

The following op script writes “Example file contents” to the output file “example-
file” in the executing user’s home directory. Permissions are set to 644, the file is
overwritten if necessary, and any resulting error messages are displayed on the screen:

match / {
 <op-script-results> {
 var $rpc = {
 <file-put> {
 <filename> “example-file”;
 <permission> “644”;
 <encoding> “ascii”;
 <delete-if-exist>;
 <file-contents> “Example file contents”;
 }
 }
 var $results = jcs:invoke($rpc);
 if($results//self::xnm:error) {
 for-each($results//self::xnm:error) {
 expr jcs:output(message);
 }
 }
 }
}

SNMP	Utility	MIB

The Utility MIB, first introduced in Junos 8.4, gives network operators the ability to
make any data value available via SNMP. It consists of five separate tables, one per
data type: 32-bit counter, 64-bit counter, integer, unsigned-integer, and octet string.
Each data value is identified by an ASCII instance name and has an accompanying
timestamp also recorded in the MIB, in DateAndTime Hexadecimal format, that
stores the last time the value was modified.

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 89

CLI�Access

The Utility MIB can be modified through two hidden CLI commands:

user@junosjnpr@srx210> request snmp utility-mib set ?
Possible completions:
 instance
 object-type
 object-value

user@junosjnpr@srx210> request snmp utility-mib clear ?
Possible completions:
 instance
 object-type

In both cases, the instance refers to the ASCII name of the data instance (80 charac-
ter maximum), and the object-type refers to one of the five data types:

�� counter – 32-bit counter

�� counter64 – 64-bit counter

�� integer – signed integer

�� unsigned-integer – unsigned integer

�� string – string

The MIB values can be polled remotely by a normal SNMP management system, or
they can be viewed on the CLI using the show snmp mib walk command. For exam-
ple, to see the entire contents of the Utility MIB, use the following command:

user@junosjnpr@srx210> show snmp mib walk jnxUtil

The data instances are displayed in OID notation by default, but their ASCII names
are shown instead if the ascii option is appended to the show snmp mib walk
command:

user@junosjnpr@srx210> show snmp mib walk jnxUtil ascii

Here is an example of adding, viewing, and then removing an instance from the
Utility MIB:

First, use request snmp utility-mib set to add the data instance:

user@junosjnpr@srx210> request snmp utility-mib set instance example object-type integer object-
value 1000
Utility mib result: successfully populated utility mib database

The data instance can now be viewed via the show snmp mib walk command (the
ASCII option was added in Junos 9.6):

user@junosjnpr@srx210> show snmp mib walk jnxUtil
jnxUtilIntegerValue.101.120.97.109.112.108.101 = 1000
jnxUtilIntegerTime.101.120.97.109.112.108.101 = 07 da 07 10 0a 1f 35 00 2b 00 00

user@junosjnpr@srx210> show snmp mib walk jnxUtil ascii
jnxUtilIntegerValue.”example” = 1000
jnxUtilIntegerTime.”example” = 07 da 07 10 0a 1f 35 00 2b 00 00

Last, remove the instance with the request snmp utility-mib clear command:

user@junosjnpr@srx210> request snmp utility-mib clear instance example object-type integer
Utility mib result: successfully de-populated utility mib database

	 90	 This	Week:	Mastering	Junos	Automation	Programming	

Object�Value�OIDs

The OIDs of the Utility MIB instances are created by appending the ASCII numeric
value of the instance name to the base OID for the value of the particular object type.
Due to this conversion from ASCII, the numeric values are effectively between 32 and
126.

Table�3.2� Object�Value�OIDs

Object�Type Value�MIB�Object Value�Base�OID

counter jnxUtilCounter32Value 1.3.6.1.4.1.2636.3.47.1.1.1.1.2

counter64 jnxUtilCounter64Value 1.3.6.1.4.1.2636.3.47.1.1.2.1.2

Integer jnxUtilIntegerValue 1.3.6.1.4.1.2636.3.47.1.1.3.1.2

unsigned-integer jnxUtilUintValue 1.3.6.1.4.1.2636.3.47.1.1.4.1.2

string jnxUtilStringValue 1.3.6.1.4.1.2636.3.47.1.1.5.1.2

To illustrate the data shown in Table 3.2, with an object-type of integer, and a name of
“example”, the Utility MIB instance can be accessed at the following OID
(e=101,x=120, a=97, etc.):

user@junosjnpr@srx210> show snmp mib get 1.3.6.1.4.1.2636.3.47.1.1.3.1.2.101.120.97.109.112.108.101
jnxUtilIntegerValue.101.120.97.109.112.108.101 = 1000

user@junosjnpr@srx210> show snmp mib get 1.3.6.1.4.1.2636.3.47.1.1.3.1.2.101.120.97.109.112.108.101
ascii
jnxUtilIntegerValue.”example” = 1000

Timestamp�OIDs

To retrieve the DateAndTime timestamp of the latest change to the data instance,
follow the same process as with the object value OIDs, except with a slightly different
base OID:

Table�3.3� Timestamp�OIDs

Object�Type Timestamp�MIB�Object Timestamp�Base�OID

counter jnxUtilCounter32Time 1.3.6.1.4.1.2636.3.47.1.1.1.1.3

counter64 jnxUtilCounter64Time 1.3.6.1.4.1.2636.3.47.1.1.2.1.3

Integer jnxUtilIntegerTime 1.3.6.1.4.1.2636.3.47.1.1.3.1.3

unsigned-integer jnxUtilUintTime 1.3.6.1.4.1.2636.3.47.1.1.4.1.3

string jnxUtilStringTime 1.3.6.1.4.1.2636.3.47.1.1.5.1.3

user@junosjnpr@srx210> show snmp mib get 1.3.6.1.4.1.2636.3.47.1.1.3.1.3.101.120.97.109.112.108.101
jnxUtilIntegerTime.101.120.97.109.112.108.101 = 07 da 07 10 0a 37 34 00 2b 00 00

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 91

user@junosjnpr@srx210> show snmp mib get 1.3.6.1.4.1.2636.3.47.1.1.3.1.3.101.120.97.109.112.108.1
01 ascii
jnxUtilIntegerTime.”example” = 07 da 07 10 0a 37 34 00 2b 00 00

MORE?� For more information, see the Utility MIB, and other enterprise-specific MIBs,
within the Juniper technical documentation suite, available online at www.juniper.
net/techpubs/.

Adding�MIB�Instances�Within�a�Script

The Utility MIB can be manipulated from within any type of script: op, commit, or
event. Adding instances to the Utility MIB is done using the <request-snmp-utili-
ty-mib-set> API element, as shown in this example:

var $rpc = {
 <request-snmp-utility-mib-set> {
 <instance> “example”;
 <object-type> “string”;
 <object-value> “example string”;
 }
}

Once you’ve created the RPC definition, you can execute it using either the
jcs:execute() or jcs:invoke() function. For example:

var $result = jcs:invoke($rpc);

When the RPC is successful, the following result is returned:

<snmp-utility-mib-results>
 <snmp-utility-mib-result>
 successfully populated utility mib database
 </snmp-utility-mib-result>
</snmp-utility-mib-results>

When an error occurs, it is returned in a <xnm:error> element.

Clearing�MIB�Instances�Within�a�Script

To clear Utility MIB instances, use the <request-snmp-utility-mib-clear> API
element, as shown below:

var $rpc = {
 <request-snmp-utility-mib-clear> {
 <instance> “example”;
 <object-type> “string”;
 }
}

var $result = jcs:invoke($rpc);

If no errors are encountered, the following is returned:

<snmp-utility-mib-results>
 <snmp-utility-mib-result>
 successfully de-populated utility mib database
 </snmp-utility-mib-result>
</snmp-utility-mib-results>

(Note that the above result is returned even if the instance does not currently exist,

	 92	 This	Week:	Mastering	Junos	Automation	Programming	

so long as there are no actual errors in the request).

Walking�the�Utility�MIB�Within�a�Script

The Utility MIB can be walked by a script in the same way as any other MIB:

var $rpc = {
 <walk-snmp-object> {
 <snmp-object-name> “jnxUtil”;
 }
}

var $result = jcs:invoke($rpc);

This provides results similar to the following:

<snmp-object-information>
 <snmp-object>
 <name>
 jnxUtilStringValue.101.120.97.109.112.108.101
 </name>
 <index>
 <index-name>
 jnxUtilStringName
 </index-name>
 <index-value>
 example
 </index-value>
 </index>
 <object-value-type>
 ASCII string
 </object-value-type>
 <object-value>
 example string
 </object-value>
 <oid>
 1.3.6.1.4.1.2636.3.47.1.1.5.1.2.101.120.97.109.112.108.101
 </oid>
 </snmp-object>
 <snmp-object>
 <name>
 jnxUtilStringTime.101.120.97.109.112.108.101
 </name>
 <index>
 <index-name>
 jnxUtilStringName
 </index-name>
 <index-value>
 example
 </index-value>
 </index>
 <object-value-type>
 Hex string
 </object-value-type>
 <object-value>
 07 da 07 10 0e 2e 2b 00 2b 00 00
 </object-value>
 <oid>
 1.3.6.1.4.1.2636.3.47.1.1.5.1.3.101.120.97.109.112.108.101
 </oid>
 </snmp-object>
</snmp-object-information>

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 93

Alternatively, as of Junos 9.6, the ASCII instance name can be retrieved by including
the <ascii> child element:

var $rpc = {
 <walk-snmp-object> {
 <snmp-object-name> “jnxUtil”;
 <ascii>;
 }
}

var $result = jcs:invoke($rpc);

Which provides results similar to the following:

<snmp-object-information>
 <snmp-object>
 <name>
 jnxUtilStringValue.”example”
 </name>
 <index>
 <index-name>
 jnxUtilStringName
 </index-name>
 <index-value>
 example
 </index-value>
 </index>
 <object-value-type>
 ASCII string
 </object-value-type>
 <object-value>
 example string
 </object-value>
 <oid>
 1.3.6.1.4.1.2636.3.47.1.1.5.1.2.101.120.97.109.112.108.101
 </oid>
 </snmp-object>
 <snmp-object>
 <name>
 jnxUtilStringTime.”example”
 </name>
 <index>
 <index-name>
 jnxUtilStringName
 </index-name>
 <index-value>
 example
 </index-value>
 </index>
 <object-value-type>
 Hex string
 </object-value-type>
 <object-value>
 07 da 07 10 0e 2e 2b 00 2b 00 00
 </object-value>
 <oid>
 1.3.6.1.4.1.2636.3.47.1.1.5.1.3.101.120.97.109.112.108.101
 </oid>
 </snmp-object>
</snmp-object-information>

	 94	 This	Week:	Mastering	Junos	Automation	Programming	

Retrieving�Utility�MIB�Instance�Values�Within�a�Script

To retrieve a specific instance, use the <get-snmp-object> API element, as the example
below demonstrates:

var $rpc = {
 <get-snmp-object> {
 <snmp-object-name> “1.3.6.1.4.1.2636.3.47.1.1.5.1.2.101.120.97.109.112.108.101”;
 }
}

var $result = jcs:invoke($rpc);

Which returns results similar to the following:

<snmp-object-information>
 <snmp-object>
 <name>
 jnxUtilStringValue.101.120.97.109.112.108.101
 </name>
 <index>
 <index-name>
 jnxUtilStringName
 </index-name>
 <index-value>
 example
 </index-value>
 </index>
 <object-value-type>
 ASCII string
 </object-value-type>
 <object-value>
 example string
 </object-value>
 <oid>
 1.3.6.1.4.1.2636.3.47.1.1.5.1.2.101.120.97.109.112.108.101
 </oid>
 </snmp-object>
</snmp-object-information>

The object name does not have to be provided in OID format. A string instance with
a name of “example” could be referred to in the API call through any of these three
options:

<get-snmp-object> {
 <snmp-object-name> “1.3.6.1.4.1.2636.3.47.1.1.5.1.2.101.120.97.109.112.108.101”;
}

<get-snmp-object> {
 <snmp-object-name> “jnxUtilStringValue.101.120.97.109.112.108.101”;
}

<get-snmp-object> {
 <snmp-object-name> “jnxUtilStringValue.e.x.a.m.p.l.e”;
}

In addition, just as with <walk-snmp-object>, Junos 9.6 introduced the <ascii> child
element option, which can be included in the API call to request that the name be
returned in ASCII rather than OID format:

var $rpc = {
 <get-snmp-object> {
 <snmp-object-name> “jnxUtilStringValue.e.x.a.m.p.l.e”;

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 95

 <ascii>;
 }
}

var $result = jcs:invoke($rpc);

Which returns the following:

<snmp-object-information>
 <snmp-object>
 <name>
 jnxUtilStringValue.”example”
 </name>
 <index>
 <index-name>
 jnxUtilStringName
 </index-name>
 <index-value>
 example
 </index-value>
 </index>
 <object-value-type>
 ASCII string
 </object-value-type>
 <object-value>
 example string
 </object-value>
 <oid>
 1.3.6.1.4.1.2636.3.47.1.1.5.1.2.101.120.97.109.112.108.101
 </oid>
 </snmp-object>
</snmp-object-information>

Using	the	Utility	MIB	as	a	“Scratch	Pad”

One of the challenges of the SLAX language is its inability to change variable values
because they are immutable, meaning that once set they must always retain the same
value. This can be a strange concept for many script writers to understand, and
though it is possible to achieve most objectives through other means, such as
recursion, working around this limitation does require a different way of thinking
about the program flow than some programmers might be used to.

One possible workaround to this language quirk is to use the Utility MIB to store
transient data. In effect, the MIB can be used as a scratch pad, where values are
recorded and later retrieved as needed. Returning to the subject of changeable
variables, this means that when a script writer wants to set a variable’s value, they
would set an instance in the Utility MIB, and when they want to use that value, they
would retrieve the instance from the Utility MIB. In this way, the same functionality
available to changeable variables can be used within SLAX scripts.

There are a few things to consider before using this approach, however:

�� Data stored in the Utility MIB is not script specific, meaning that any other
program, user, or even external management system can read the values being
used by the script. As a result, it would be inappropriate to put sensitive data
such as passwords into the MIB.

�� The Utility MIB is writable by other programs, scripts, or users. This means
that the scripts MIB instances could be altered by others, thereby interfering
with the script operation.

	 96	 This	Week:	Mastering	Junos	Automation	Programming	

�� Due to the high rate of Junos API calls that this approach can require, it is often
preferable to use the jcs:execute() function rather than jcs:invoke() when using
the MIB as a scratch pad. For details on the reason for this, consult the previous
section of this chapter that discusses the jcs:execute() and jcs:invoke() functions.

�� To keep the Utility MIB from becoming cluttered, scripts should remove any
transient instances from the MIB before terminating their operation.

As an example, consider the case where a script is trying to determine the longest
interface description. This could be accomplished through a recursive template script
design, but in this case, the Utility MIB is used to store the string that is currently
considered the longest, while the script parses through the rest of the interface
configuration, looking for any that might be longer.

This design would include a for-each loop to cycle through all the interface descrip-
tions, and an idea of how this can be done is shown in this next example, where the
$configuration variable has been previously filled through a call to <get-configura-
tion>, and the $connection variable has already been initialized by the jcs:open()
function:

for-each($configuration/interfaces/interface/description) {
 /* Retrieve current longest description */
 var $get-rpc = {
 <get-snmp-object> {
 <snmp-object-name> “jnxUtilStringValue.l.o.n.g.e.s.t”;
 }
 }
 var $longest-string = jcs:execute($connection, $get-rpc);

 /* Replace if new description is longer */
 if(string-length(.) > string-length($longest-string/snmp-object/object-value)) {
 var $put-rpc = {
 <request-snmp-utility-mib-set> {
 <instance> “longest”;
 <object-type> “string”;
 <object-value> .;
 }
 }
 var $result = jcs:execute($connection, $put-rpc);
 }
}

The code example works by first retrieving the current value of the Utility MIB during
each pass through the for-each loop, and storing it in a locally scoped variable. This
variable is then compared to the description of the current node, and if the current
description is longer than the value stored in the Utility MIB, as a string instance
named “longest”, then it is written into the Utility MIB as the new longest descrip-
tion value.

After the for-each loop has processed all the interface descriptions, the script can
retrieve the longest one by checking the final instance value in the Utility MIB:

/* Display the longest description */
var $get-rpc = {
 <get-snmp-object> {
 <snmp-object-name> “jnxUtilStringValue.l.o.n.g.e.s.t”;
 }
}

var $longest-string = jcs:execute($connection, $get-rpc);

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 97

<output> “Longest interface description: “ _ $longest-string/snmp-object/object-value;

Finally, before terminating, the script should remove its instance from the Utility
MIB to prevent any unnecessary clutter from accumulating in the MIB:

/* Remove from Utility MIB */
var $clear-rpc = {
 <request-snmp-utility-mib-clear> {
 <instance> “longest”;
 <object-type> “string”;
 }
}

var $result = jcs:execute($connection, $clear-rpc);

OSS Integration Topics

Generating	Junos	SNMP	Traps	(“Spoofing”)

Junos scripts can generate any of the supported SNMP traps by using the <re-
quest-snmp-spoof-trap> API Element. This RPC contains two child elements:
<trap> - which indicates the name of the trap that should be generated, and <vari-
able-bindings> - which is a string containing the values of any varbinds that should
be set. Any required varbinds that are not given values will have default ones
assigned.

 Here is an example of spoofing the “coldStart” trap:

var $rpc = {
 <request-snmp-spoof-trap> {
 <trap> “coldStart”;
 }
}

var $results = jcs:invoke($rpc);

Using this code results in the following trap being generated as seen in the SNMP
traceoptions file:

Aug 13 04:00:14 snmpd[0] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Aug 13 04:00:14 snmpd[0] <<< V2 Trap
Aug 13 04:00:14 snmpd[0] <<< Source: 10.0.0.10
Aug 13 04:00:14 snmpd[0] <<< Destination: 10.0.0.60
Aug 13 04:00:14 snmpd[0] <<< Version: SNMPv2
Aug 13 04:00:14 snmpd[0] <<< Community: Target
Aug 13 04:00:14 snmpd[0] <<<
Aug 13 04:00:14 snmpd[0] <<< OID : sysUpTime.0
Aug 13 04:00:14 snmpd[0] <<< type : TimeTicks
Aug 13 04:00:14 snmpd[0] <<< value: (1313378) 3:38:53.78
Aug 13 04:00:14 snmpd[0] <<<
Aug 13 04:00:14 snmpd[0] <<< OID : snmpTrapOID.0
Aug 13 04:00:14 snmpd[0] <<< type : Object
Aug 13 04:00:14 snmpd[0] <<< value: coldStart
Aug 13 04:00:14 snmpd[0] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

The <variable-bindings> element is a string containing a comma-separated list of
varbinds, each of which consists of the object’s name, its instance number within
brackets, and the assigned value.

	 98	 This	Week:	Mastering	Junos	Automation	Programming	

Here is an example of providing varbind values for a spoofed linkDown trap:

var $rpc = {
 <request-snmp-spoof-trap> {
 <trap> “linkDown”;
 <variable-bindings> “ifIndex[501]=501, ifAdminStatus[501]=1, ifOperStatus[501]=2,
ifName[501]=ge-0/0/0”;
 }
}

var $results = jcs:invoke($rpc);

And this code generates the following trap:

Aug 13 04:31:33 snmpd[0] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Aug 13 04:31:33 snmpd[0] <<< V2 Trap
Aug 13 04:31:33 snmpd[0] <<< Source: 10.0.0.10
Aug 13 04:31:33 snmpd[0] <<< Destination: 10.0.0.60
Aug 13 04:31:33 snmpd[0] <<< Version: SNMPv2
Aug 13 04:31:33 snmpd[0] <<< Community: Target
Aug 13 04:31:33 snmpd[0] <<<
Aug 13 04:31:33 snmpd[0] <<< OID : sysUpTime.0
Aug 13 04:31:33 snmpd[0] <<< type : TimeTicks
Aug 13 04:31:33 snmpd[0] <<< value: (1501186) 4:10:11.86
Aug 13 04:31:33 snmpd[0] <<<
Aug 13 04:31:33 snmpd[0] <<< OID : snmpTrapOID.0
Aug 13 04:31:33 snmpd[0] <<< type : Object
Aug 13 04:31:33 snmpd[0] <<< value: linkDown
Aug 13 04:31:33 snmpd[0] <<<
Aug 13 04:31:33 snmpd[0] <<< OID : ifIndex.501
Aug 13 04:31:33 snmpd[0] <<< type : Number
Aug 13 04:31:33 snmpd[0] <<< value: 501
Aug 13 04:31:33 snmpd[0] <<<
Aug 13 04:31:33 snmpd[0] <<< OID : ifAdminStatus.501
Aug 13 04:31:33 snmpd[0] <<< type : Number
Aug 13 04:31:33 snmpd[0] <<< value: 1
Aug 13 04:31:33 snmpd[0] <<<
Aug 13 04:31:33 snmpd[0] <<< OID : ifOperStatus.501
Aug 13 04:31:33 snmpd[0] <<< type : Number
Aug 13 04:31:33 snmpd[0] <<< value: 2
Aug 13 04:31:33 snmpd[0] <<<
Aug 13 04:31:33 snmpd[0] <<< OID : ifName.501
Aug 13 04:31:33 snmpd[0] <<< type : OctetString
Aug 13 04:31:33 snmpd[0] <<< value: “ge-0/0/0”
Aug 13 04:31:33 snmpd[0] <<< HEX : 67 65 2d 30 2f 30 2f 30
Aug 13 04:31:33 snmpd[0] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

When specifying ASCII strings, the following characters must be escaped with a
backslash (\):

�� Opening and closing brackets: []

�� Comma: ,

�� Equal sign: =

�� Space

�� Backslash: \

The escape character must be present within the actual XML string provided to the
API element, not just in the SLAX script itself, which means that each backslash must
be doubled. To illustrate, the string “\[\]\,” is invalid because the single \ escape

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 99

characters are handled by SLAX itself, and are removed when the script is translated
into XSLT and processed. The correct string would be “\\[\\]\\,” because the pres-
ence of the double-slash within the SLAX code results in a single backslash in the
string when the API element is provided to Junos.

Generating	Custom	SNMP	Traps

Besides spoofing standard traps, Junos scripts can also generate customized jnx-
EventTraps. This trap type was designed specifically for use in Junos scripts and is
defined in the Juniper enterprise specific Event MIB. When generating a jnxEvent-
Trap a script should, at a minimum, include a string value for the jnxEventTrapDe-
scr varbind to describe the purpose of the trap. In addition, multiple attribute/value
pairs can be included by using distinct instances of jnxEventAvAttribute and
jnxEventAvValue.

The following code demonstrates how to generate a jnxEventTrap and include two
attribute/value pairs along with the trap description:

var $rpc = {
 <request-snmp-spoof-trap> {
 <trap> “jnxEventTrap”;
 <variable-bindings> “jnxEventTrapDescr[0]=Example\\ custom\\ trap, jnxEventAvAttribute[1]=a
ttribute1, jnxEventAvValue[1]=value1, jnxEventAvAttribute[2]=attribute2,
jnxEventAvAttribute[2]=value2”;
 }
}

var $results = jcs:invoke($rpc);

This results in the following trap:

Aug 13 04:51:25 snmpd[0] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Aug 13 04:51:25 snmpd[0] <<< V2 Trap
Aug 13 04:51:25 snmpd[0] <<< Source: 10.0.0.10
Aug 13 04:51:25 snmpd[0] <<< Destination: 10.0.0.60
Aug 13 04:51:25 snmpd[0] <<< Version: SNMPv2
Aug 13 04:51:25 snmpd[0] <<< Community: Target
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : sysUpTime.0
Aug 13 04:51:25 snmpd[0] <<< type : TimeTicks
Aug 13 04:51:25 snmpd[0] <<< value: (1620428) 4:30:04.28
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : snmpTrapOID.0
Aug 13 04:51:25 snmpd[0] <<< type : Object
Aug 13 04:51:25 snmpd[0] <<< value: jnxEventTrap
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : jnxEventTrapDescr.0
Aug 13 04:51:25 snmpd[0] <<< type : OctetString
Aug 13 04:51:25 snmpd[0] <<< value: “Example custom trap”
Aug 13 04:51:25 snmpd[0] <<< HEX : 45 78 61 6d 70 6c 65 20
Aug 13 04:51:25 snmpd[0] <<< 63 75 73 74 6f 6d 20 74
Aug 13 04:51:25 snmpd[0] <<< 72 61 70
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : jnxEventAvAttribute.1
Aug 13 04:51:25 snmpd[0] <<< type : OctetString
Aug 13 04:51:25 snmpd[0] <<< value: “attribute1”
Aug 13 04:51:25 snmpd[0] <<< HEX : 61 74 74 72 69 62 75 74
Aug 13 04:51:25 snmpd[0] <<< 65 31
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : jnxEventAvValue.1

	 100	 This	Week:	Mastering	Junos	Automation	Programming	

Aug 13 04:51:25 snmpd[0] <<< type : OctetString
Aug 13 04:51:25 snmpd[0] <<< value: “value1”
Aug 13 04:51:25 snmpd[0] <<< HEX : 76 61 6c 75 65 31
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : jnxEventAvAttribute.2
Aug 13 04:51:25 snmpd[0] <<< type : OctetString
Aug 13 04:51:25 snmpd[0] <<< value: “attribute2”
Aug 13 04:51:25 snmpd[0] <<< HEX : 61 74 74 72 69 62 75 74
Aug 13 04:51:25 snmpd[0] <<< 65 32
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : jnxEventAvAttribute.2
Aug 13 04:51:25 snmpd[0] <<< type : OctetString
Aug 13 04:51:25 snmpd[0] <<< value: “value2”
Aug 13 04:51:25 snmpd[0] <<< HEX : 76 61 6c 75 65 32
Aug 13 04:51:25 snmpd[0] <<<
Aug 13 04:51:25 snmpd[0] <<< OID : snmpTrapEnterprise.0
Aug 13 04:51:25 snmpd[0] <<< type : Object
Aug 13 04:51:25 snmpd[0] <<< value: jnxProductNameSRX210
Aug 13 04:51:25 snmpd[0] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Creating	“Custom	RPCs”	with	Op	Scripts

Typically administrators execute op scripts from the Junos CLI. The underlying
mechanism to execute an op script is via the <op-script> RPC. Therefore you can do
the following:

�� Invoke op scripts from other scripts

�� Invoke op scripts via NETCONF

Let’s looks at a few effective ways for you to use Junos scripting to integrate into
larger OSS applications.

Understanding�the�Op�Script�RPC

The op script RPC is defined in the Junos documentation as follows:

<op-script>
 <script> script-name </script> /* required */
 <detail/> /* optional */
</op-script>

This is fine if your script does not have any parameters ... but what if it does? If you
use the | display xml rpc command you can see the RPC as it is invoked. For
example:

user@junos> op say-hello firstname Jeremy lastname Schulman | display xml rpc

<op-script>
 <script> say-hello </script>
 <argument>
 <name> firstname </name>
 <value> Jeremy </value>
 </argument>
 <argument>
 <name> lastname </name>
 <value> Schulman </value>
 </argument>
</op-script>

This would lead you to believe that you could include op script parameters using the
<argument> block ... but this is actually not the case. The correct way to include

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 101

parameters is to treat the parameter name as an element and the parameter value as
the element-node value, as shown:

<op-script>
 <script> say-hello </script>
 <firstname> Jeremy </firstname>
 <lastname> Schulman </lastname>
</op-script>

NOTE� It is important to understand that the parameter elements can only accept string
values. Simple scalar types can be converted to strings (i.e., numbers, booleans), but
not complex node-sets (i.e., XML data). There is a technique for passing XML
node-sets to op scripts, which will be explained in a later section of this book.

Invoking�Op�Script�from�Another�Script

Let’s examine the first approach of executing an op script from another script. Here
is a simple script called introduction.slax that invokes the say-hello.slax op-
script:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

param $firstname;
param $lastname;

var $arguments = {
 <argument> {
 <name> ‘firstname’;
 <description> ‘The first name’interface to control’;
 }
 <argument> {
 <name> ‘lastname’;
 <description> ‘The last name’[enable | disable], default is disable’;
 }
}

match / {
 <op-script-results> {

 var $rpc = <op-script> {
 <script> ‘say-hello’;
 <firstname> $firstname;
 <lastname> $lastname;
 }

 var $result = jcs:invoke($rpc);

 copy-of $result;
 }
}

The output from invoking the introduction command:

user@junos> op introduction firstname Jeremy lastname Schulman
Hello Jeremy Schulman

Reviewing the XML output of the command:

	 102	 This	Week:	Mastering	Junos	Automation	Programming	

user@junos> op introduction firstname Jeremy lastname Schulman | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/10.4R1/junos”>
 <output>
 Hello Jeremy Schulman
 </output>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Invoking�Op�Script�from�NETCONF

Up until now, this book has been focused on on box automation using Junos scripts.
NETCONF is the protocol used to manage Junos boxes remotely, also known as
network orchestration. You can develop OSS applications to manage Junos devices
using the same Junos XML API as you’ve used for on-box scripting.

MORE? NETCONF is essentially XML over SSH. NETCONF is defined in RFC 4742. For
more information on the NETCONF standard, please refer to: http://tools.ietf.org/
html/rfc4742. Juniper Networks NETCONF support is documented here: http://
www.juniper.net/techpubs/en_US/junos11.1/information-products/topic-collections/
netconf-guide/index.html.

A typical OSS application would make calls directly to the Junos XML API. While
this is a common approach, there are a few disadvantages.

The primary disadvantage is that the OSS application is now tightly coupled to the
Junos XML API. If a change is required to the OSS operation, then the corresponding
Junos specific APIs must be updated as well.

Let’s say that your OSS needs to provision a new service. This service has a few
parameters such as customer-name, vlan-id, and device-interface. The OSS system
would need to create the Junos specific configuration XML definition, and then use
the Junos XML RPCs: lock, load-configuration, commit, and unlock. A different
approach could be to call a Junos op script with the service parameters, have the op
script perform the Junos specific functions, and report back any status results.

Now let’s say that you also want to create some troubleshooting features in your OSS.
The OSS could make the necessary Junos RPCs to perform the specific commands,
parse the results, and perform the necessary logic and so forth, but that sounds a lot
like a good function for an op script. The op script could perform all the necessary
Junos commands and then present the information in a consumable form for the OSS
system.

Creating�Op�Scripts�for�NETCONF

Writing an op script for a NETCONF application is essentially no different than any
other op script. The key difference is the creation of the result tree. Rather than
creating a result tree with a top-level element of <op-script-results>, you need to
create your own top-level element that is specific to your OSS. The reason is that your
op script is no longer communicating with the Junos CLI user.

Let’s modify the say-hello.slax script to be NETCONF friendly:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 103

ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

param $firstname;
param $lastname;

var $arguments = {
 <argument> {
 <name> ‘firstname’;
 <description> ‘Your first name’;
 }
 <argument> {
 <name> ‘lastname’;
 <description> ‘Your last name’;
 }
}

match / {
 <myoss-response> {
 <myoss-say-hello-response> {
 <hello-name> {
 <first-name> $firstname;
 <last-name> $lastname;
 }
 }
 }
}

Here you can see in the main template (match /) that the top-level element is called
<myoss-response> rather than <op-script-results>.

When this op script is invoked on the CLI, nothing really happens:

user@junos> op say-hello firstname Jeremy lastname Schulman

However, if you display the XML output, you will see the result-tree:

user@junos> op say-hello firstname Jeremy lastname Schulman | display xml

<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/10.4R1/junos”>
 <myoss-say-hello-response>
 <hello-name>
 <first-name>
 Jeremy
 </first-name>
 <last-name>
 Schulman
 </last-name>
 </hello-name>
 </myoss-say-hello-response>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

You can see that the top-level element <myoss-response> is consumed by Junos, and
the remaining result-tree elements are returned.

If the say-hello op script was executed by a NETCONF client (OSS application),
the entire RPC reply would look like the following:

<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/10.4R1/junos”>

	 104	 This	Week:	Mastering	Junos	Automation	Programming	

 <myoss-say-hello-response>
 <hello-name>
 <first-name>
 Jeremy
 </first-name>
 <last-name>
 Schulman
 </last-name>
 </hello-name>
 </myoss-say-hello-response>
</rpc-reply>

What is interesting here is that the resulting elements <first-name> and <last-name>
values have leading and trailing space. XML output should normally look like this:

<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/10.4R1/junos”>
 <myoss-say-hello-response>
 <hello-name>
 <first-name>Jeremy</first-name>
 <last-name>Schulman</last-name>
 </hello-name>
 </myoss-say-hello-response>
</rpc-reply>

Due to this extra padding, the OSS application would need to trim the element values
before using them. Here is an example of Java code for invoking the say-hello op
script and displaying the last name.

XML rpc = new XMLBuilder().createNewRPC(“op-script”);
rpc.append(“script”, “say-hello”);
rpc.append(“firstname”, “Jeremy”);
rpc.append(“lastname”, “Schulman”);

XML reply = jdev.execute(rpc);

XPath xpath = XPathFactory.newInstance().newXpath();
String lname = (String) xpath.evaluate(“//last-name”, reply.getOwnerDocument(),
 XPathConstants.STRING);

System.out.println(“Last-name is [“ + lname.trim() + “]”);

Previously, this chapter presented a technique for an op script to return application-
specific XML data. What about passing application specific XML data as the input
parameter? The technique for passing parameters as name/value pairs has been
covered, but what happens when the OSS would prefer to pass XML?

There are two basic approaches to solve this problem. The first is that the OSS could
simply store the XML parameters into a file, transfer the file to the Junos device, and
then have the op-script load that file using the native XSLT document() function.
While this approach is feasible, it does add a series of extra steps to the OSS applica-
tion. The second, and preferred, approach would be to keep the XML data part of the
op script RPC execution.

The Junos <op-script> RPC can only accept string arguments. In order to pass XML
as a string argument, it must be converted into a string (and the approach illustrated
here uses base64 encoding).

The steps are:

1. The OSS application must convert the XML data into an encoded base64 string.

2. The OSS application then calls the op script using the <op-script> RPC and passes
the encoded base64 string in a name/value pair.

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 105

3. The op script must then decode the base64 string. This is done by writing the
data to local file using the <file-put> RPC and set the <encoding> to “base64”.

4. The op script must then load the temporary file into the script using the native
XSLT document() function.

Let’s take a look at a new op script that is used to provision VLAN services. The
OSS application would like to pass the parameters to this script as XML, for
example:

<vlans>
 <vlan name=”Blue” vlan-id=”100” inet-address=”10.29.1.12/24”>
 <interface name=”ge-0/0/0” mode=”access”/>
 <interface name=”ge-0/0/1”/> /* default mode is ‘access’ */
 <interface name=”xe-1/0/1” mode=”trunk”>
 </vlan>
</vlans>

This XML structure represents the OSS application requirements, and is decoupled
from the Junos specific configuration hierarchy.

The op script could take a single parameter; let’s say oss-xmlargs, as illustrated:

var $arguments = {
 <argument> {
 <name> ‘oss-xmlargs;
 <description> ‘OSS params in base64 encoding’;
 }
}

The op script would then do something like the following to store the encoded
parameters to a file and then load them using the XSLT document() function.

/* store the XML data to a temporary local file */

var $rpcFilePut = <file-put> {
 <filename> ‘/var/tmp/vlans.xml’;
 <encoding> ‘base64’;
 <permission> “ug=rw,o=r”;
 <delete-if-exist>;
 <file-contents> $oss-xmlargs;
}

var $rpcRC = jcs:invoke($rpcFilePut);

if($rpcRC//self::xnm:error) {
 for-each($rpcRC//self::xnm:error) {
 <output> message;
 }
}
else {

 /* read the XML data back from the file */

 var $vlans = document(‘/var/tmp/vlans.xml’);
 for-each($vlans//vlan) {
 <output> “vlan “ _ ./@name _ “ is VLAN-ID “ _ ./@vlan-id;
 }

}

The approach of encoding the XML into base64 does remove the extra steps from
the OSS application, and simply transfers them to the Junos platform. While this
approach simplifies the OSS application, it does place an extra step on the op script,

	 106	 This	Week:	Mastering	Junos	Automation	Programming	

namely to write the XML data to a file.

The example also uses a hardcoded filename, but this may not always work. If your
OSS application is making concurrent calls to the same op script, then the XML
parameters could “clobber” each other. If your OSS application has these types of
concurrency “features,” then you would need to take steps to ensure that the file
names are unqiue. Here are two approaches.

The first approach is to have the OSS application generate a random filename (token),
and pass that value as a second op script parameter. One suggestion is to make the
token the MD5 hash value, so the op script gets both a unique filename and can then
use that value to validate the contents of the file using the <get-checksum-informa-
tion> RPC.

The second approach would have the op script generating a random filename. One
suggestion is to use the math:random() function. This function returns a floating-point
number between 0 and 1, which can then be used to generate a random filename. For
example:

var $filename = “/var/tmp/vlanargs” _ math:random() * 10000;

MORE? For more information on the EXSLT math library, please refer to http://www.exslt.
org/math/index.html

Installer	Scripts

Imagine that you have a collection of scripts that you deploy on your devices, and you
are looking for a simple and easy way to load and enable these without too much
hassle. To simplify this process, you can create an op script that packages your
collection of scripts. When this installer script is executed, it will write the packaged
scripts to the Junos file system and then enable the scripts in the Junos configuration.

When you want to deploy your scripts, you can invoke the installer op script using
the op url command. This command enables you to invoke an op script without first
having it enabled in the Junos configuration. For example, if you have an installer
script called ipsec-tools.slax stored on the local device in the /tmp directory you could
invoke the script:

user@junos> op url /tmp/ipsec-tools.slax

Another approach is that if you had the installer script stored on an FTP server, you
could use the FTP URL, as shown.

user@junos> op url ftp://myname:mypassword@myftpserver/ipsec-tools.slax

There are two methods to embed a script within another script. The first is to simply
store it as script text within a single giant string. This has the advantage of allowing
the embedded script to be directly edited by simply editing the installer script, but the
disadvantage is that it places restrictions on the quotations used within the embedded
script, as it is essential that the string content is not broken until the very end of the
script.

An alternative method is to embed the script as a base64 string. This prevents the
embedded script from being directly edited, but it ensures that no punctuation
expressed within the embedded script negatively affects the installer script, and it
provides a clear demarcation between the embedded script and the installer script

http://www.exslt.org/math/index.html
http://www.exslt.org/math/index.html

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 107

code. This later approach is the one typically used.

In both cases, the <file-put> API element is used to write the embedded scripts to
disk, with the only difference being which encoding method is used. If the script is
stored as a large ASCII string, then ASCII encoding should be used. Likewise, a
base64 string should be written using base64 encoding.

As an example, consider this simple op script that displays Hello World! on the
console. The goal is to embed this script into an installer script.

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import “../import/junos.xsl”;
match / {
 <op-script-results> {
 <output> “Hello World!”;
 }
}

This could be embedded within an installer script as an ASCII string by replacing all
“ characters with ‘ characters, and store that into a local variable ($embedded-
script) as demonstrated here:

var $embedded-script =
“version 1.0;
ns junos = ‘http://xml.juniper.net/junos/*/junos’;
ns xnm = ‘http://xml.juniper.net/xnm/1.1/xnm’;
ns jcs = ‘http://xml.juniper.net/junos/commit-scripts/1.0’;
import ‘../import/junos.xsl’;
match / {
 <op-script-results> {
 <output> ‘Hello World!’;
 }
}”;

Next, the <file-put> API element could write the file to disk using ASCII encoding:

var $file-put-rpc = {
 <file-put> {
 <filename> “/var/db/scripts/op/hello-world.slax”;
 <encoding> “ascii”;
 <permission> “644”;
 <file-contents> $embedded-script;
 }
}

The preferred approach, storing the script as a base64 string, is shown:

var $embedded-script=“dmVyc2lvbiAxLjA7DQoNCm5zIGp1bm9zID0gImh0dHA6Ly94bWwuanVuaXBlci5uZXQvanVub-
3Mv9qdW5vcyI7DQpucyB4bm0gPSAiaHR0cDovL3htbC5qdW5pcGVyLm5ldC94bm0vMS4xL3hubSI7DQpucyBqY3MgPSAiaH-
R0cDovL3htbC5qdW5pcGVyLm5ldC9qdW5vcy9jb21taXQtc2NyaXB0cy8xLjAiOw0KDQppbXBvcnQgIi4uL2ltcG9ydC9qd-
W5vcy54c2wiOw0KDQptYXRjaCAvIHsNCiAgICA8b3Atc2NyaXB0LXJlc3VsdHM+IHsNCiAgICAgICAgPG91dHB1dD4gIkhl-
bGxvIFdvcmxkISI7DQogICAgfQ0KfQ0KDQo=”;

And then <file-put> could be used with base64 encoding to write it to disk:

var $file-put-rpc = {
 <file-put> {
 <filename> “/var/db/scripts/op/hello-world.slax”;
 <encoding> “base64”;
 <permission> “644”;
 <file-contents> $embedded-script;
 }
}

	 108	 This	Week:	Mastering	Junos	Automation	Programming	

It is also recommended to verify the checksum once the embedded scripts are written
to disk. This is accomplished by first including the checksum value into the installer
as a separate variable, and then using the <get-checksum-information> RPC on the
stored file and comparing the two values. The default checksum calculation is based
on MD5, but you can also use SHA-256 and SHA1.

Once the embedded script has been stored to file, and the checksum verified, you
could then make the appropriate configuration change to enable the script in the
[system scripts] hierarchy.

Creating	Custom	“Databases”	in	Junos

Junos automation can be used to create a wide range of custom tools, to handle
events, and to ensure that configurations meet your specific business practices. Junos
automation techniques can also be combined to effectively create complete applica-
tion solutions. When one thinks of an application there are generally three basic
building blocks: (1) the user interface, (2) the database, and (3) the application logic
that ties the first two together. Let’s examine how Junos automation can be used to
address each of these building blocks.

The user interface can be implemented though op scripts. Op scripts are often used by
the network operator on the Junos CLI, but as shown in the previous sections of this
chapter, op scripts can also be executed from an OSS/NETCONF. The former
technique is great for box jockies and the later technique is great for OSS systems that
want to front end the user experience with a GUI. In both cases, the op scripts can be
used for provisioning activities as well as for service monitoring and troubleshooting.

The application logic can be implemented through a combination of op scripts and
commit scripts. Commit scripts can examine the candidate configuration changes and
perform additional functions. An op script, for example, could make a basic configu-
ration change, and the commit script can detect that change and apply further
changes. What is needed to effectively tie the two together is a database that enables
the solution to tie together application specific information so that the op scripts and
commit scripts can effectively work together. Let’s take a look at a simple example.

Let’s say that you are trying to build a solution that provisions VLAN based services.
Each customer record would have a name, a VLAN-ID, an interface, and SLA
characteristics. You could say that you have a customer-service database, with
records for each customer. You can represent this in a Junos configuration file using
configuration groups representing the database and apply-macro blocks within the
group, each block representing a database record.

For example, say that you have a database called vlan-services and two customer
records. They could be stored in a Junos configuration file:

user@junosjeremy@srx210# show groups
vlan-services {
 apply-macro customer-BOB {
 name BobCorp;
 description “The Bob Corporation, NY”;
 vlan-id 112;
 interface ge-0/0/11;
 id 10719;
 }
 apply-macro customer-NAMCO {
 name Namco;
 id 772645;

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 109

 description “Namco Plastics, CA”;
 vlan-id 718;
 interface ge-1/0/19;
 }
}

The information stored in the apply-macro blocks is entirely up to you as the
application designer. This information can be used by Junos, though perhaps some
of the information is not used by Junos, but is a relative marker for the OSS applica-
tion (e.g., the id field).

Conceptually, you would then create a commit script that would look for apply-
macro blocks (records) in the vlan-services group (database), and then perform the
actual Junos specific configuration steps necessary to implement the given service.

This simple example illustrates a few key points. The database is a representation of
the application and is decoupled from Junos specifics. Effectively this creates a
database schema for the application. When changes are needed by the application,
such as adding new fields, for example, the OSS application does not become highly
coupled with the implementation specifics of Junos. Let’s say that the OSS applica-
tion needs to add a bandwidth field. This could easily be represented in the apply-
macro block, and the application would not need to know how, exactly, the Junos
device is provisioned to implement that feature.

Now, when you need to create a new customer record, you could do it in one of two
ways. The first way could be to edit the Junos configuration file directly and create a
new apply-macro block, a method that is prone to user errors, and again creates a
coupling between the application goals and the Junos specifics – or having to create
something called an apply-macro block.

A better approach would be to create an op script that either accepts service param-
eters on the command line and/or prompts the user for the service information. The
op script is then responsible for creating the Junos specific configuration – for
example, the apply-macro block. When the op script commits the changes, the
underlying commit script would then use the data in the apply-macro block to
expand the actual Junos configuration to implement the service.

By utilizing this approach, you can create a seamless service experience across many
Juniper products without complicating your OSS. For example, let’s say that you are
trying to create a service that touches EXs, MXs, and SRX devices. The service on
the EX may be a simple VLAN, but the MX might be a VPLS service. In both cases,
the service definitions are the same, but the underlying configurations on each device
would be different.

Once you have this type of database infrastructrure in place, it is relatively easy to
construct monitoring and troubleshooting scripts. The input to these scripts could
be the customer name and/or ID. Since the relevent information is present in the
database record, the op scripts can use this information to perform their tasks. For
example, by just providing the user name, you could check the VLAN status and the
interface status.

Event Script Topics

Changing the configuration based on the success or failure of a RPM (Real-Time
Performance Monitoring) test is a common automation goal as it allows the reach-
ability of a remote device to be considered when determining the appropriate
configuration for the device.

	 110	 This	Week:	Mastering	Junos	Automation	Programming	

Reachability	Based	Configuration	Changes

While RPM tests are capable of generating a number of events that an event script
could be triggered by, when acting on reachability information the two events that are
typically monitored are PING_TEST_FAILED and PING_TEST_COMPLETED, which indicate
the failure or success of a specific RPM test. Both events have identical attributes:
test-owner, the RPM owner of the test; and, test-name, the RPM test name. Both of
these attributes are essential in differentiating between the various RPM tests that
could be running on the Junos device.

Here is a basic attempt at creating RPM reachability triggered event policies. Assume
that a RPM test is defined to a remote destination with an owner name of server-
check and a test name of alpha. The following configuration would cause a separate
event script to be executed any time the RPM test failed or succeeded:

policy test-failed {
 events PING_TEST_FAILED;
 attributes-match {
 ping_test_failed.test-owner matches server-check;
 ping_test_failed.test-name matches alpha;
 }
 then {
 event-script failed-config.slax;
 }
}

policy test-completed {
 events PING_TEST_COMPLETED;
 attributes-match {
 ping_test_completed.test-owner matches server-check;
 ping_test_completed.test-name matches alpha;
 }
 then {
 event-script successful-config.slax;
 }
}

In this example, the failed-config.slax script would make the necessary configura-
tion change following a RPM test failure, and the successful-config.slax script
would make the change needed following a successful RPM test. (These scripts
should consult the current configuration before changing it, in order to ensure that
the change isn’t already in place and thereby preventing an unnecessary commit from
occurring.)

But the above approach is still not optimal for a couple of different reasons. First, it
requires the use of two separate scripts. A better approach is to use a single script that
determines the necessary configuration change based on the trigger event that caused
it to be executed. The trigger event can be learned by processing the <event-script-
input> information provided to the event script when it is invoked. The trigger event
name can be found through this location path: event-script-input/trigger-event/
id. The script could check that value and behave differently if the trigger event is
PING_TEST_FAILED than if it is PING_TEST_COMPLETED.

MORE?� For more details on�<event-script-input>, see Day One: Applying Junos Event
Automation�in the Day One library at www.juniper.net/dayone.

The second, and larger, problem with the above configuration is that it results in an
event script being called after every PING_TEST_COMPLETED or PING_TEST_FAILED event.

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 111

This means that with a 60 second test interval, the event script is triggered every
minute even if the RPM test hasn’t lost a single probe in months, which results in a
lot of unnecessary processing. The reason for this unneeded processing is that the
event policy is reacting to the occurrence of a single event, but a PING_TEST_FAILED
event by itself does not indicate that the configuration must be changed; rather, a
PING_TEST_FAILED event that occurred following a PING_TEST_COMPLETED event does.
So the solution is to change the event policies to only execute their script if the
opposite event has occurred within a certain interval of time. In our example the test
interval is 60 seconds, so to provide some buffer, the opposite event is required
within the past 90 seconds:

policy test-failed {
 events PING_TEST_FAILED;
 within 90 events PING_TEST_COMPLETED;
 attributes-match {
 ping_test_failed.test-owner matches server-check;
 ping_test_failed.test-name matches alpha;
 ping_test_completed.test-owner matches server-check;
 ping_test_completed.test-name matches alpha;
 }
 then {
 event-script check-configuration.slax;
 }
}

policy test-completed {
 events PING_TEST_COMPLETED;
 within 90 events PING_TEST_FAILED;
 attributes-match {
 ping_test_completed.test-owner matches server-check;
 ping_test_completed.test-name matches alpha;
 ping_test_failed.test-owner matches server-check;
 ping_test_failed.test-name matches alpha;
 }
 then {
 event-script check-configuration.slax;
 }
}

In the above configuration, the check-configuration.slax script is only invoked if
the opposite event has occurred within the last 90 seconds. (Note, this means that
one extra script execution could occur at times, depending on the timing of the RPM
test). The same script is used for both success and failure, so it must verify which
event triggered it by consulting the <event-script-input> element in its source tree.

The script example is much improved, but faulty in practice because it can leave the
Junos device with an incorrect configuration. To understand how this could happen,
imagine that a remote destination, which was previously reachable, goes offline
when the Junos device is rebooting. When the device comes back online and begins
sending RPM probes to the offline destination, these will not be returned, resulting
in a failure of the RPM test. But the PING_TEST_FAILED event will not trigger the
event policy, because of the lack of any PING_TEST_COMPLETED events within
the specified window. The result is that the configuration remains as if the device is
online, while the device itself could be offline perpetually.

The solution to this scenario is to also watch for situations where no event history
would be available, so the script should be run based solely on the occurrence of the
event itself. The two events that could cause a lack of event history are system
boot-up and restart of the event-processing daemon. The example below demon-

	 112	 This	Week:	Mastering	Junos	Automation	Programming	

strates how to add these corner cases into the policy to ensure that the policy is
triggered when the configuration might have to change:

policy test-failed {
 events PING_TEST_FAILED;
 within 240 events [PING_TEST_COMPLETED KERNEL SYSTEM];
 attributes-match {
 ping_test_failed.test-owner matches server-check;
 ping_test_failed.test-name matches alpha;
 ping_test_completed.test-owner matches server-check;
 ping_test_completed.test-name matches alpha;
 SYSTEM.message matches “Starting of initial processes complete”;
 KERNEL.message matches “event-processing \(PID.*\)started”;
 }
 then {
 event-script check-configuration.slax;
 }
}

policy test-completed {
 events PING_TEST_COMPLETED;
 within 240 events [PING_TEST_FAILED KERNEL SYSTEM];
 attributes-match {
 ping_test_completed.test-owner matches server-check;
 ping_test_completed.test-name matches alpha;
 ping_test_failed.test-owner matches server-check;
 ping_test_failed.test-name matches alpha;
 SYSTEM.message matches “Starting of initial processes complete”;
 KERNEL.message matches “event-processing \(PID .*\) started”;
 }
 then {
 event-script check-configuration.slax;
 }
}

Neither the reboot nor the event-processing restart are normal events. Instead they
use the generic SYSTEM and KERNEL non-standard event IDs with their message being
matched to identify the specific event of interest. The within timer was increased from
90 to 240 to allow more time for the initial RPM results following system boot-up.
The result is that for four minutes after any of the three events – the opposite RPM
result, system bootup, or event-processing restart – the script will execute, but once
that period has passed, a consistent RPM response will not result in any unnecessary
script processing.

MORE?� For an example of an event script that triggers based on RPM reachability, consult the
Next Hop Watcher script in the Appendix of Day One: Applying Junos Event
Automation at www.juniper.net/dayone.

Time-based	Configuration	Changes

Sometimes it is necessary to automatically alter the configuration at certain times of
day. This might be necessary to alternate between various network uplinks or to
apply different firewall filter rules at different hours of the day. To do so, a time-of-
day generate-event must be configured, and then that event must be applied to an
event policy that executes an event script when triggered.

Here is an example of how this time-of-day generate-event can be applied. The goal
of the example is to have two separate user accounts – day-shift and night-shift –

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 113

which are only activated at the appropriate times. Day-shift will be active from 8:00
am until 8:00 pm, at which time night-shift becomes active until 8:00 in the morn-
ing.

First, the two time-of-day generate events must be created:

generate-event {
 morning time-of-day “08:00:00 +0000”;
 evening time-of-day “16:00:00 +0000”;
}

Next, the event policy must reference these two events as its triggers and include the
event script as the policy action:

policy user-accounts {
 events [morning evening];
 then {
 event-script check-user-accounts.slax;
 }
}

The event script loads the configuration, compares it against the current time, and if
a change to either of the user accounts is warranted then it activates/deactivates the
appropriate accounts and commits:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
ns date = “http://exslt.org/dates-and-times”;
import “../import/junos.xsl”;
match / {
 /* Get current hour of day */
 var $hour = date:hour-in-day();

 var $connection = jcs:open();

 /* Retrieve the configuration */
 var $login-config = jcs:execute($connection, “get-configuration”)/system/login;

 /* Record if active or not */
 var $day-user-active = not(jcs:empty($login-config/user[name == “day-shift”][jcs:empty(@
inactive)]));
 var $night-user-active = not(jcs:empty($login-config/user[name == “night-shift”][jcs:empty(
@inactive)]));

 /* Build the necessary configuration change */
 var $configuration := {
 <configuration> {
 /* Daytime? */
 if($hour >= 8 && $hour < 16) {
 if(not($day-user-active)) {
 <system> {
 <login> {
 <user active=”active”> {
 <name> “day-shift”;
 }
 }
 }
 }
 if($night-user-active) {
 <system> {
 <login> {
 <user inactive=”inactive”> {

	 114	 This	Week:	Mastering	Junos	Automation	Programming	

 <name> “night-shift”;
 }
 }
 }
 }
 }
 /* Nighttime */
 else {
 if($day-user-active) {
 <system> {
 <login> {
 <user inactive=”inactive”> {
 <name> “day-shift”;
 }
 }
 }
 }
 if(not($night-user-active)) {
 <system> {
 <login> {
 <user active=”active”> {
 <name> “night-shift”;
 }
 }
 }
 }
 }
 }
 }

 /* Is there a change present? - then load it */
 if($configuration/configuration/*) {
 var $results := { call jcs:load-configuration($connection, $configuration); }
 /* Report any errors */
 if($results//self::xnm:error) {
 for-each($results//self::xnm:error) {
 expr jcs:syslog(“daemon.error”, “Event script error: “, message);
 }
 }
 }

 expr jcs:close($connection);
}

The above event script and event policy is a decent example of how to change the
configuration based on the time of day; it contains two flaws, however. First, it makes
no attempt to retry the commit if an error prevented the change, and second, it
requires that the current configuration be correct when the event script is applied and
does not account for reboots. Solutions for both of these two deficiencies will be
explored in the following sections.

Retrying	a	Configuration	Change	Within	an	Event	Script

Many event scripts that change the configuration are not programmed to handle
configuration errors, which is unfortunate because it is very likely that an event script
that automatically changes the configuration will run into occasional interference,
typically caused by the presence of some other user or script already having locked
the configuration and thereby preventing the event script from doing so.

At a minimum, an event script that is unable to make its programmed changes should
log an error message to the syslog to alert the operators that manual intervention is

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 115

necessary due to the failure. However, rather than requiring a user to login and
make the needed change, the script can be written to handle temporary configura-
tion lock failures by waiting a certain amount of time and then retrying its commit.
In other words, the script can sleep for some number of minutes and then retry to
gain a configuration lock. If it fails again then it could retry once again (up to a
certain number of times), or just log an error and exit, requiring manual interven-
tion to resolve the problem.

When retrying a configuration change, it is important to have the event script
recheck the configuration following its pause, because the needed change might have
already been made while the script was sleeping, or the underlying conditions that
necessitated the change might have altered, meaning that the changes should no
longer be performed.

The check-user-accounts.slax script has been modified to allow it to retry three
times before finally giving up:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
ns date = “http://exslt.org/dates-and-times”;
import “../import/junos.xsl”;

/* Make connection a global variable */
var $connection = jcs:open();

match / {
 /* Call the configuration template */
 call make-change-if-needed();

 expr jcs:close($connection);
}

/* $try defaults to 1, but is allowed to be as high as 3 */

template make-change-if-needed($try = 1) {

 /* Get current hour of day */
 var $hour = date:hour-in-day();

 /* Retrieve the configuration */
 var $login-config = jcs:execute($connection, “get-configuration”)/system/login;

 /* Record if active or not */
 var $day-user-active = not(jcs:empty($login-config/user[name == “day-shift”][jcs:empty(@
inactive)]));
 var $night-user-active = not(jcs:empty($login-config/user[name == “night-shift”][jcs:empty(
@inactive)]));

 /* Build the necessary configuration change */
 var $configuration := {
 <configuration> {
 /* Daytime? */
 if($hour >= 8 && $hour < 16) {
 if(not($day-user-active)) {
 <system> {
 <login> {
 <user active=”active”> {
 <name> “day-shift”;
 }

	 116	 This	Week:	Mastering	Junos	Automation	Programming	

 }
 }
 }
 if($night-user-active) {
 <system> {
 <login> {
 <user inactive=”inactive”> {
 <name> “night-shift”;
 }
 }
 }
 }
 }
 /* Nighttime */
 else {
 if($day-user-active) {
 <system> {
 <login> {
 <user inactive=”inactive”> {
 <name> “day-shift”;
 }
 }
 }
 }
 if(not($night-user-active)) {
 <system> {
 <login> {
 <user active=”active”> {
 <name> “night-shift”;
 }
 }
 }
 }
 }
 }
 }

 /* Is there a change present? - then try to load it */
 if($configuration/configuration/*) {
 var $results := { call jcs:load-configuration($connection, $configuration); }

 /* Report any errors */
 if($results//self::xnm:error) {

 for-each($results//self::xnm:error) {
 expr jcs:syslog(“daemon.error”, “Event script error: “, message,
 “: Try “, $try, “ of 3”);
 }
 if($try < 3) {
 /* Sleep for 2 minutes */
 expr jcs:sleep(120);
 call make-change-if-needed($try = $try + 1);
 }
 else {
 expr jcs:syslog(“daemon.error”, “Event script is exiting.”);
 }
 }
 }
}

A new recursive template was added to the above script: make-change-if-needed.
After determining that a configuration change is required, an attempt is made, and if
an error occurs then, if the maximum number of retries haven’t already been attempt-

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 117

ed, the make-change-if-needed template calls itself, incrementing the value of the
$try parameter as it does so.

Pairing	Commit	Scripts	with	Event	Scripts

Another common problem with event scripts that change the configuration is that
they do not consider the initial state of the configuration when the script is first
configured or when the box boots. Take a look at the current check-user-accounts.
slax event script. Imagine that it is first enabled at noon. Is there any guarantee that
the day-shift account is active and the night-shift account is inactive? No, instead
the configuration could remain in an incorrect state until the next trigger event
occurs at 8:00pm. A similar problem happens at boot-time, because the Junos device
is only configured to check the accounts at the two set times of day, so it might leave
its configuration in a faulty state for hours. And finally, the proper use of the script
relies on an assumption that the day-shift and night-shift accounts are already in the
configuration, already have their class assigned, and already have their authentica-
tion string configured. But what if they are not present? In that case, the configura-
tion change will not be successful because the accounts lack a login class, or the user
will not be able to login because they lack a password.

The ideal solution that covers all of the above scenarios is to include a commit script
pair for the event script. The role of the event script is to react to certain events and
change the configuration accordingly. For example, in the case studied in the past
two sections, the role of the event script is to alter the day-shift and night-shift
accounts as necessary at two distinct times of the day. Now, pair that with a commit
script, which has the role of ensuring that the user accounts are configured correctly
at the time of commit. The result is that when first enabling the event script, or when
the box reboots, the commit script correctly activates/deactivates the accounts, or
adds any missing user account configuration. This catches the above scenarios,
ensuring that the configuration will be set as desired based on the time of day.

The event script and commit script pair must be separate files because they are
stored in different directories on the Junos device, but in many cases it is possible to
share the configuration change code between the two scripts by having the change
built within a designated template, and then importing one of the scripts into the
other. That way both scripts can rely on the exact same template for their configura-
tion changes, and just add the distinct top-level element required for their type of
configuration change (<change> for commit script, <configuration> for event
script).

In this script, however, the configuration change made by the commit script differs
from that of the event script because it also checks that there is a class and password
configured for the user accounts.

The code required for the commit script:

version 1.0;
ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
ns date = “http://exslt.org/dates-and-times”;
import “../import/junos.xsl”;

match configuration {
 /* Get current hour of day */
 var $hour = date:hour-in-day();

	 118	 This	Week:	Mastering	Junos	Automation	Programming	

 /* Retrieve the candidate configuration - so we see the inactive statements */
 var $login-config = jcs:invoke(“get-configuration”)/system/login;

 /* Record if active or not */
 var $day-user-active = not(jcs:empty($login-config/user[name == “day-shift”][jcs:empty(@
inactive)]));

 var $night-user-active = not(jcs:empty($login-config/user[name == “night-shift”][jcs:empty(@
inactive)]));

 var $day-user-inactive = not(jcs:empty($login-config/user[name == “day-shift”][@inactive])
);

 var $night-user-inactive = not(jcs:empty($login-config/user[name == “night-shift”][@inactive
]));

 /* Verify that login class is set */
 if(jcs:empty($login-config/user[name == “day-shift”][class == “super-user”])) {
 <change> {
 <system> {
 <login> {
 <user> {
 <name> “day-shift”;
 <class> “super-user”;
 }
 }
 }
 }
 }
 if(jcs:empty($login-config/user[name == “night-shift”][class == “super-user”])) {
 <change> {
 <system> {
 <login> {
 <user> {
 <name> “night-shift”;
 <class> “super-user”;
 }
 }
 }
 }
 }

 /* Verify that a password is set */
 if(jcs:empty($login-config/user[name == “day-shift”][authentication/encrypted-password])){
 <change> {
 <system> {
 <login> {
 <user> {
 <name> “day-shift”;
 <authentication> {
 <encrypted-password> “1P1k.8T27$291PKVguOvXpbIn2/vV8V.”;
 }
 }
 }
 }
 }
 }
 if(jcs:empty($login-config/user[name == “night-shift”][authentication/encrypted-password])){
 <change> {
 <system> {
 <login> {
 <user> {

	 Chapter	3:	Essential	SLAX	Topics	to	Know	 119

 <name> “night-shift”;
 <authentication> {
 <encrypted-password> “1P1k.8T27$291PKVguOvXpbIn2/vV8V.”;
 }
 }
 }
 }
 }
 }

 /* Build the necessary configuration change - based on the time of day*/
 /* Daytime? */
 if($hour >= 8 && $hour < 16) {
 if(not($day-user-active)) {
 <change> {
 <system> {
 <login> {
 <user active=”active”> {
 <name> “day-shift”;
 }
 }
 }
 }
 }
 if(not($night-user-inactive)) {
 <change> {
 <system> {
 <login> {
 <user inactive=”inactive”> {
 <name> “night-shift”;
 }
 }
 }
 }
 }
 }
 /* Nighttime */
 else {
 if(not($day-user-inactive)) {
 <change> {
 <system> {
 <login> {
 <user inactive=”inactive”> {
 <name> “day-shift”;
 }
 }
 }
 }
 }
 if(not($night-user-active)) {
 <change> {
 <system> {
 <login> {
 <user active=”active”> {
 <name> “night-shift”;
 }
 }
 }
 }
 }
 }
}

	 120	 This	Week:	Mastering	Junos	Automation	Programming	

Beyond verifying that the correct account is active or inactive, the commit script also
checks that the login class is set correctly and a password is present. If neither is the
case, then the script makes the appropriate change. It then checks that the correct
user is marked active and that the correct user is marked inactive. To do this, the
script requests the configuration via <get-configuration>. This is done because the
configuration provided to commit scripts is post-inheritance, so inactive statements
are not present, but by requesting the configuration, the pre-inheritance configuration
can be considered and the appropriate statements added if they are lacking.

NOTE The script assumes that all user configurations are within the main system hierarchy
instead of within a configuration group.

Summary

These are the essential topics to help you refine your scripting capabilities. There are
some great items in the appendix, and there are more books for you in the Day One /
This Week library on Junos Automation at www.juniper.net/dayone.

Hopefully, the many short tutorials and examples in this book have helped you get
the knack of Junos automation scripting with SLAX.

TIP Look for a Copy and Paste Edition of this book and the other Junos Automation
books at each book’s detailed page at www.juniper.net/dayone. Its rich text format
can allow you to easily copy and paste the script

http://www.juniper.net/dayone
http://www.juniper.net/dayone

Appendix

Using the Op Script on Target Debugger . 122

Using the <libxslt:debug> Debug Element . 131

Using the slaxproc Utility . 133

“Man page” for jcs:printf() . 134

 “Man Page” for jcs:regex() . 138

What to Do Next & Where to Go . 146

	 122	 This	Week:	Mastering	Junos	Automation	Programming	

Using the Op Script on Target Debugger

An op script debugger, providing greater debugging options for both XSLT and SLAX
op scripts, was introduced in Junos 10.4. This debugger is capable of processing the
script line-by-line, displaying the script’s variable values at a given point in the script
operation, and showing the template back trace at a particular location. The com-
mand to invoke the debugger is currently hidden, so the debugger is not officially
supported and is not appropriate for production use, but it is still a valuable tool to use
during script development on test devices.

To invoke the debugger, add invoke-debugger to the command-line while executing an
op script, followed by the selection of either CLI or remote debugging:

user@junos> op test invoke-debugger ?
Possible completions:
 cli Invoke debugger in cli
 remote Invoke debugger for remote client to attach

NOTE� Only CLI based debugging is covered in this appendix.

NOTE� Because the command is hidden, invoke-debugger must be typed in completely
without relying on command auto-completion.

ALERT!� The debugger cannot be used with op scripts that are executed via op url.

Once started, the debugger identifies and displays the first script line to be processed.
Execution is halted at that point and the CLI user is given a debug prompt, waiting for
instructions on what to do next. The first line of the script that is processed is either the
first global variable to be initialized, or it is the match / template if no global variables
are present.

NOTE� The global variables are not always initialized in document order. In particular, if one
global variable’s value depends on the value of another global variable, then the latter
variable is initialized first, even if it appears on a later line in the script file.

As of Junos 10.4R2, a global variable has been added into the junos.xsl import file
named $junos-context, and the initialization of this variable is often, but not always,
the first line executed by the debugger anytime the junos.xsl file is being imported. For
example:

user@junos> op test invoke-debugger cli
Welcome to Script Debugger
Type ‘help’ for help

junos.xsl:31 event-script-input/junos-context”/>
sdbg>

As shown above, the first line that the debugger executes comes from the junos.xsl
import file. This can be determined because the script file’s name is included in the
description of the current code line (above the debugger prompt), along with its line
number within that script file (31 in this example) and the actual code line itself.

In the preceding example, this initial line might appear strange because it is expressed
in XSLT and only shows a portion of the code line, but the reason for this can be seen
by examining the junos.xsl import file:

	 Appendix	 123

 <xsl:variable name=”junos-context”
 select=”op-script-input/junos-context |
 commit-script-input/junos-context |
 event-script-input/junos-context”/>

As can be seen in the above code snippet from junos.xsl, the initial line that is
displayed within the debugger is actually the third line of a multi-line variable
declaration for $junos-context, and it is expressed in XSLT because the junos.xsl
import file is written in XSLT.

If junos.xsl is not imported, and there are no global variables, then the initial starting
point is match / within the op script itself:

user@junos> op test invoke-debugger cli
Welcome to Script Debugger
Type ‘help’ for help

test.slax:8 match / {
sdbg>

Once the debugger has started, it provides a prompt: “sdbg>”, which stands for
script debugger. Entering the command help displays all of the available commands
that can be entered at the prompt:

junos.xsl:31 event-script-input/junos-context”/>
sdbg> help
Supported commands ...
break [line] [file:line] [template] -> Put a breakpoint at certain point
continue -> Continue running the script
delete [num] -> Delete breakpoints
help -> Print this help message
next -> Execute the next line
print <var-name> -> Print the current value of a variable
where -> Print the backtrace of template calls
quit -> Quit debugger

Break�Command

The break command is used to establish a breakpoint at a certain line or template. A
script writer can set a breakpoint where they wish to investigate the code operation
and then allow the script to run up until that point by entering the continue com-
mand. Breakpoints can be set in four ways:

1. Specifying the current line:

test.slax:15 var $reply = jcs:get-input(“Interface-name: “);
sdbg> break
Breakpoint 1 at file /var/db/scripts/op/test.slax, line 15

2. Specifying a line in the current script:

hello-world.slax:9 match / {
sdbg> break 10
Breakpoint 1 at file /var/db/scripts/op/hello-world.slax, line 10

3. Specifying a line within a specific script file, which must be either the invoked op
script or one of its import files:

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break hello-world.slax:10
Breakpoint 1 at file /var/db/scripts/op/hello-world.slax, line 10

	 124	 This	Week:	Mastering	Junos	Automation	Programming	

4. Specifying a template’s name, to cause a breakpoint to be set for whenever the
template is invoked. If the template has a preceding namespace prefix then the prefix
must not be included. For example, rather than saying jcs:load-configuration say
load-configuration:

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break to-upper
Breakpoint 1 at file /var/db/scripts/op/test.slax, line 17

Breakpoints can only be added to lines that have script instructions, meaning that
they cannot be set to blank lines or lines that contain just comments or strings.

NOTE� When the debugger first starts, it is often executing the $junos-context global variable
within the junos.xsl import file, so any breakpoints within the op script file itself must
be set using the file:line method until the script execution has moved from the junos.
xsl script file into the op script’s file.

Continue�Command

The continue command executes the script until the next breakpoint is reached or
until the script terminates. It is typically used in conjunction with the break command
as breakpoints are set first, and then the continue command causes the script to
execute until reaching them:

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break test.slax:11
Breakpoint 2 at file /var/db/scripts/op/test.slax, line 11

junos.xsl:31 event-script-input/junos-context”/>
sdbg> continue
Reached breakpoint 2, at /var/db/scripts/op/test.slax:11

test.slax:11 var $config = jcs:invoke(“get-configuration”);
sdbg>

Delete�Command

If entered by itself, the delete command deletes all of the current breakpoints; other-
wise, a specific breakpoint number to delete can be entered:

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break test.slax:11
Breakpoint 1 at file /var/db/scripts/op/test.slax, line 11

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break test.slax:15
Breakpoint 2 at file /var/db/scripts/op/test.slax, line 15

junos.xsl:31 event-script-input/junos-context”/>
sdbg> delete 2
Deleted breakpoint ‘2’

junos.xsl:31 event-script-input/junos-context”/>
sdbg> delete
Delete all breakpoints? (yes/no) yes
Deleted all breakpoints

	 Appendix	 125

Next�Command

The next command executes the following script statement, which is generally on
the next line, but at times multiple next commands must be entered to move past a
single line. This command can be used to step through a script’s processing line-by-
line:

jnpr@srx210> op test invoke-debugger cli
Welcome to Script Debugger
Type ‘help’ for help

junos.xsl:31 event-script-input/junos-context”/>
sdbg> next

test.slax:9 match / {
sdbg> next

test.slax:9 match / {
sdbg> next

test.slax:10 <op-script-results> {
sdbg> next

test.slax:11 var $config = jcs:invoke(“get-configuration”);
sdbg>

Print�Command

The value of a variable or parameter can be displayed through the print command,
which displays the data type, whether it is global or local, and the variable’s content.

test.slax:19 <output> $results;
sdbg> print $rpc
(Local) rpc => (RTF)
<get-configuration>
 <configuration>
 <interfaces/>
 </configuration>
</get-configuration>

test.slax:19 <output> $results;
sdbg> print $interface-name
(Local) interface-name => ge-0/0/0 (String)

test.slax:19 <output> $results;
sdbg> print $user
(Global) user => jnpr (String)

test.slax:19 <output> $results;
sdbg> print $junos-context
(Global) junos-context => (Nodeset)
<junos-context>
<hostname>srx210</hostname>
<product>srx210h</product>
<localtime>Fri Apr 22 10:11:25 2011</localtime>
<localtime-iso>2011-04-22 10:11:25 UTC</localtime-iso>
<script-type>op</script-type>
<pid>2664</pid>
<tty>/dev/ttyp1</tty>
<chassis>others</chassis>
<routing-engine-name>re0</routing-engine-name>
<re-master/>

	 126	 This	Week:	Mastering	Junos	Automation	Programming	

<user-context>
<user>jnpr</user>
<class-name>j-super-user</class-name>
<uid>2001</uid>
<login-name>jnpr</login-name>
</user-context>
<op-context>
</op-context>
</junos-context>

If a global variable or parameter is overridden by a local one, then only the local is
displayed.

Where�Command

A backtrace of the current template can be displayed through the where command.
Both match templates and named templates are included, but custom functions,
created using the <func:function> extension element, are not reported within the
backtrace.

junos.xsl:255 <xsl:template name=”jcs:load-configuration”>
sdbg> where
#0 load-configuration() from test.slax:21
#1 change-configuration() from test.slax:11
#2 /

The backtrace shows the current template first, followed by the calling templates in
reverse order. The script file and line number where the template was invoked is
included on each line as well.

Quit�Command

The quit command halts the debugger. It does not terminate the script but rather
causes script operation to continue uninterrupted from the current code line.

Shortcuts

Pressing the enter key, without any input, causes the prior command to be executed
again:

user@junos> op test invoke-debugger cli
Welcome to Script Debugger
Type ‘help’ for help

junos.xsl:31 event-script-input/junos-context”/>
sdbg> next

test.slax:9 match / {
sdbg>

test.slax:9 match / {
sdbg>

test.slax:10 <op-script-results> {
sdbg>

test.slax:11 call change-configuration();
sdbg>

test.slax:15 template change-configuration() {

	 Appendix	 127

sdbg>

test.slax:15 template change-configuration() {
sdbg>

test.slax:16 var $config = {
sdbg>

test.slax:17 <configuration> {
sdbg>

The full commands shown above do not have to be entered – instead, just the initial
character is required:

�� b – break

�� c – continue

�� d – delete

�� h – help

�� n – next

�� p – print

�� w – where

�� q - quit

junos.xsl:31 event-script-input/junos-context”/>
sdbg> b test.slax:11
Breakpoint 1 at file /var/db/scripts/op/test.slax, line 11

junos.xsl:31 event-script-input/junos-context”/>
sdbg> c
Reached breakpoint 1, at /var/db/scripts/op/test.slax:11

test.slax:11 var $ns := { <node>; }
sdbg> n

test.slax:11 var $ns := { <node>; }
sdbg> n

test.slax:11 var $ns := { <node>; }
sdbg> n

test.slax:12 apply-templates $ns/node;
sdbg> p $ns
(Local) ns => (Nodeset)
<node/>

Debugging�Example

The script change-host-name.slax will here be used to demonstrate a debugging
session. Line numbers are included in the code example to highlight the breakpoints
that are added:

 1: version 1.0;
 2:
 3: ns junos = “http://xml.juniper.net/junos/*/junos”;
 4: ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
 5: ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

	 128	 This	Week:	Mastering	Junos	Automation	Programming	

 6:
 7: import “../import/junos.xsl”;
 8:
 9: match / {
10:
11: <op-script-results> {
12:
13: var $host-name = jcs:get-input(“Enter new host-name: “);
14:
15: var $configuration = {
16: <configuration> {
17: <system> {
18: <host-name> $host-name;
19: }
20: }
21: }
22:
23: var $connection = jcs:open();
24: var $results := { call jcs:load-configuration($connection, $configuration); }
25: copy-of $results;
26: expr jcs:close($connection);
27: }
28: }

The debugger is first started, and breakpoints are added, for line 24 of change-host-
name.slax as well as for the jcs:load-configuration template.

user@junos> op change-host-name invoke-debugger cli
Welcome to Script Debugger
Type ‘help’ for help

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break change-host-name.slax:24
Breakpoint 1 at file /var/db/scripts/op/change-host-name.slax, line 24

junos.xsl:31 event-script-input/junos-context”/>
sdbg> break load-configuration
Breakpoint 2 at file /var/db/scripts/import/junos.xsl, line 255

The script processing is then allowed to continue, causing the input prompt from the
jcs:get-input() function to be displayed. Once the new hostname is entered, the script
continues on to the first breakpoint:

junos.xsl:31 event-script-input/junos-context”/>
sdbg> continue
Enter new host-name: lab-srx
Reached breakpoint 1, at /var/db/scripts/op/change-host-name.slax:24

change-host-name.slax:24 var $results := { call jcs:load-configuration($connection,
$configuration); }
sdbg>

At this point, the following variables might be of interest: $host-name, $configura-
tion, and $connection, so they are each displayed by using the print command:

change-host-name.slax:24 var $results := { call jcs:load-configuration($connection,
$configuration); }
sdbg> print $host-name
(Local) host-name => lab-srx (String)

change-host-name.slax:24 var $results := { call jcs:load-configuration($connection,
$configuration); }
sdbg> print $configuration
(Local) configuration => (RTF)

	 Appendix	 129

<configuration>
 <system>
 <host-name>lab-srx</host-name>
 </system>
</configuration>

change-host-name.slax:24 var $results := { call jcs:load-configuration($connection,
$configuration); }
sdbg> print $connection
(Local) connection => (Nodeset)
<cookie></cookie>

The script is then allowed to continue until it reaches the jcs:load-configuration
breakpoint. At that point, the code is stepped through the template’s processing, and
the $load-config variable, which is defined within the jcs:load-configuration tem-
plate, is checked:

change-host-name.slax:24 var $results := { call jcs:load-configuration($connection,
$configuration); }
sdbg> continue
Reached breakpoint 2, at /var/db/scripts/import/junos.xsl:255

junos.xsl:255 <xsl:template name=”jcs:load-configuration”>
sdbg> next
Reached breakpoint 2, at /var/db/scripts/import/junos.xsl:255

junos.xsl:255 <xsl:template name=”jcs:load-configuration”>
sdbg> next

junos.xsl:261 <xsl:choose>
sdbg> next

junos.xsl:262 <xsl:when test=”not($connection) or not($configuration)”>
sdbg> next

junos.xsl:267 <xsl:otherwise>
sdbg> next

junos.xsl:268 <xsl:variable name=”options-temp-1”>
sdbg> next

junos.xsl:269 <xsl:copy-of select=”$commit-options”/>
sdbg> next

junos.xsl:271 <xsl:variable name=”options” select=”ext:node-set($options-temp-1)”/>
sdbg> next

junos.xsl:272 <xsl:variable name=”commit-options-error-temp-2”>
sdbg> next

junos.xsl:273 <xsl:choose>
sdbg> next

junos.xsl:274 <xsl:when test=”$options/commit-options”>
sdbg> next

junos.xsl:287 <xsl:otherwise>
sdbg> next

junos.xsl:288 <xsl:if test=”$commit-options”>
sdbg> next

junos.xsl:296 <xsl:variable name=”commit-options-error” select=”ext:node-set($commit-
options-error-temp-2)”/>

	 130	 This	Week:	Mastering	Junos	Automation	Programming	

sdbg> next

junos.xsl:297 <xsl:choose>
sdbg> next

junos.xsl:298 <xsl:when test=”jcs:empty($commit-options-error/*)”>
sdbg> next

junos.xsl:299 <xsl:variable name=”lock-result” select=”jcs:execute($connection, ‘lock-
configuration’)”/>
sdbg> next

junos.xsl:301 <xsl:copy-of select=”$lock-result/..//xnm:warning”/>
sdbg> next

junos.xsl:303 <xsl:choose>
sdbg> next

junos.xsl:304 <xsl:when test=”$lock-result/..//xnm:error”>
sdbg> next

junos.xsl:307 <xsl:otherwise>
sdbg> next

junos.xsl:309 <xsl:variable name=”load-config”>
sdbg> next

junos.xsl:310 <load-configuration format=”xml” action=”{$action}”>
sdbg> next

junos.xsl:311 <xsl:copy-of select=”$configuration”/>
sdbg> next

junos.xsl:314 <xsl:variable name=”load-result” select=”jcs:execute($connection,
$load-config)”/>
sdbg> print $load-config
(Local) load-config => (RTF)
<load-configuration format=”xml” action=””>
 <configuration>
 <system>
 <host-name>lab-srx</host-name>
 </system>
 </configuration>
</load-configuration>

junos.xsl:314 <xsl:variable name=”load-result” select=”jcs:execute($connection,
$load-config)”/>
sdbg>

Now, rather than continuing to step through the jcs:load-configuration template, an
additional breakpoint is added in the change-host-name.slax file, so that the results of
the template can be analyzed. The script processing is then allowed to continue until
that point and the $results variable are displayed:

junos.xsl:314 <xsl:variable name=”load-result” select=”jcs:execute($connection,
$load-config)”/>
sdbg> break change-host-name.slax:25
Breakpoint 3 at file /var/db/scripts/op/change-host-name.slax, line 25

junos.xsl:314 <xsl:variable name=”load-result” select=”jcs:execute($connection,
$load-config)”/>
sdbg> continue
Reached breakpoint 3, at /var/db/scripts/op/change-host-name.slax:25

	 Appendix	 131

change-host-name.slax:25 copy-of $results;
sdbg> print $results
(Local) results => (Nodeset)
<commit-configuration/>

No specific success message is provided from jcs:load-configuration; rather, the
absence of <xnm:error> elements indicates that the commit was successful.

NOTE The inclusion of the <commit-configuration> Junos API element within the results
from jcs:load-configuration is a bug in the current code and can be ignored.

The debugging session can now be closed by using the quit command, allowing the
script to finish processing normally.

change-host-name.slax:25 copy-of $results;
sdbg> quit

user@junos>

Using the <libxslt:debug> Debug Element

The op script debugger provides good debugging capabilities to op scripts, but is not
supported for commit scripts or event scripts; however, another option exists to
provide some minimal debugging capability to these other script types: the
<libxslt:debug> extension element, which lacks much of the debugging capability
of the op script debugger but is capable of displaying the template backtrace at a
particular point in the script’s code.

Before using the <libxslt:debug> extension element, the libxslt namespace must
first be defined as an extension namespace:

ns libxslt extension = “http://xmlsoft.org/XSLT/namespace”;

Next, the element is simply added wherever the debug output is desired.

var $ns := {
 <node> “one”;
 <node> “two”;
 <node> “three”;
}
<libxslt:debug>;
apply-templates $ns/node;

When the script processor reaches the <libxslt:debug> element within the script, it
realizes that it should be treated as an extension element rather than XML data
(because the libxslt namespace was defined as an extension namespace), so it
executes the operation associated with that element, causing the template backtrace
at that current point in the script’s code to be displayed to the CLI user as an error
message, and also to be logged to the script’s trace file.

NOTE Event scripts have to configure an output file in order to see the results of
<libxslt:debug> (other than within the trace file), and if the output file is in XML
format then the results will be included as <xnm:error> messages.

This is an example of an op script that is configured to use the <libxslt:debug>
element, and the results that are displayed to the user:

	 132	 This	Week:	Mastering	Junos	Automation	Programming	

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
ns libxslt extension = “http://xmlsoft.org/XSLT/namespace”;

import “../import/junos.xsl”;

match / {
 call template-1();
}

template template-1() {
 call template-2();
}

template template-2() {
 call template-3();
}

template template-3() {
 call template-4();
}

template template-4() {
 call template-5();
}

template template-5() {
 <libxslt:debug>;
}

jnpr@srx210> op libxslt_debug
error: Templates:
error: #0
error: name template-5
error: #1
error: name template-4
error: #2
error: name template-3
error: #3
error: name template-2
error: #4
error: name template-1
error: #5
error: name /
error: Variables:

ALERT!� The output from <libxslt:debug> is interpreted as a commit error by commit scripts,
causing the commit operation to fail, so it should only be included while trouble-
shooting as it will always cause the commit process to halt.

Any variables or parameters that are defined within the current template are dis-
played as well, though their values are not included in the output, making this section
less important than the template backtrace:

user@junos> op test
error: Templates:
error: #0
error: name /
error: Variables:

	 Appendix	 133

error: #0
error: var
error: ns

Although the information provided by <libxslt:debug> is minimal, it might be a
useful debugging tool for script writers who wish to better understand the template
calling order in their commit script-or event script-because neither of those script
types supports the normal script debugger. But, when working with op scripts in
Junos 10.4 or later, the op script debugger would be the better debugging option.

Using the slaxproc Utility

The slaxproc utility is available for developers to use on their host computers (Unix/
Mac/Windows). It provides a number of features and capabilities including debug-
ging SLAX code, converting between XSLT and SLAX, and performing syntax
checking. Figure A.1 shows the slaxproc utility with its output from the help option.

TIP� To download the slaxproc utility and its complete feature set go to http://code.
google.com/p/libslax/downloads/detail?name=libslax-0.2.2.tar.gz.

Figure�A.1� The�slaxproc�Utility�in�Action

One of the more common dev-cycle activities for using the slaxproc utility is
debugging SLAX syntax errors. Common errors in creating automation scripts are
forgetting a curly-brace or a semi-colon. Rather than copying the script to a Junos
device and attempting to run the script only to discover syntax errors, you can use
slaxproc to check for syntax errors prior to copying the script to the device. It can
save significant amounts of time. For now, let’s turn to Hello, World:

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;
import «../import/junos.xsl»;

match / {
 <op-script-results> {
 <output> "Hello World!";

http://code.google.com/p/libslax/downloads/detail?name=libslax-0.2.2.tar.gz
http://code.google.com/p/libslax/downloads/detail?name=libslax-0.2.2.tar.gz

	 134	 This	Week:	Mastering	Junos	Automation	Programming	

 /* ERROR: missing } to terminate <op-script-results> */
}

Notice that there should be a right-curly (}) on line nine, but it is missing. Running
this file through slaxproc using the --check option results in the following:

admin@myPC$ slaxproc --check hello-world.slax
hello-world.slax:13: error: hello-world.slax:12: syntax error, unexpected $end(null)
hello-world.slax:13: error: hello-world.slax: 1 error detected during parsing
slaxproc cannot parse: ‘hello-world.slax’

Correcting the mistake on line nine results in a successful result:

admin@myPC$ slaxproc --check hello-world.slax
script check succeeds

You will also need to convert XSLT code into SLAX code, a common use-case being
when adapting an XSLT cookbook recipe that you’ve found, or were given, into
SLAX.

The following XSLT cookbook recipe defines a template that is used to find the index
of a substring within a string:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template name=”string-index-of”>
 <xsl:param name=”input”/>
 <xsl:param name=”substr”/>
<xsl:choose>
 <xsl:when test=”contains($input, $substr)”>
 <xsl:value-of select=”string-length(substring-before($input, $substr))+1”/>
 </xsl:when>
 <xsl:otherwise>0</xsl:otherwise>
</xsl:choose>
</xsl:template>

</xsl:sytlesheet>

…and the slaxproc utility can quickly convert this to SLAX using the “-s” and “-p”
flags as illustrated here:

template string-index-of ($input, $substr) {
 if (contains($input, $substr)) {
 expr string-length(substring-before($input, $substr)) + 1;

 } else {
 expr “0”;
 }
}

NOTE� This could also be done on the CLI through the request system scripts convert
command.

“Man page” for jcs:printf()

Source: Junos
Namespace: http://xml.juniper.net/junos/commit-scripts/1.0
Common Prefix: jcs
Minimum Version: Junos 8.2

http://xml.juniper.net/junos/commit-scripts/1.0

	 Appendix	 135

Syntax

string jcs:printf(string [format])

string jcs:printf(string [format], string* [arguments])

Description

The jcs:printf() function returns a formatted string that is created by inserting string
arguments into a format string. The returned string can then be displayed through a
standard output function such as jcs:output(), because jcs:printf() only creates the
formatted string; it does not display it.

The first argument is the format string, followed by a variable number of string
arguments, which are inserted into the format string according to its included
format specifications. The format string consists of plain text as well as format
specifications. Plain text is copied directly from the format string to the returned
formatted string. Format specifications begin with ‘%’ and end with ‘s’ and are used
to insert string arguments into the returned string.

Function�call

jcs:printf(“First: %s Second: %s”, “1st”, “2nd”)

Returned�string

“First: 1st Second: 2nd”

To include a ‘%’ character in the formatted text, include ‘%%’ in the format string.

Function�call

jcs:printf(“%s%%”, “50”)

Returned�string

“50%”

Format specifications consist of optional flags, width, and precision, and are
terminated by a mandatory conversion specifier, which should be set to ‘s’ because
only string arguments are supported, but any of the following characters will
terminate the format specification as well: d, e, E, f, g, G, i, o, u, x. These alternate
characters are handled the same as ‘s’, however, because only strings are supported,
so it is best to always terminate format specifications with ‘s’ to prevent confusion
with script writers that are accustomed to the printf function in other programming
languages.

Each format specification corresponds to a string argument, so there must be at least
as many string arguments as there are format specifications (the below sections on
width and precision include scenarios where there will be more arguments than
format specifications), and the arguments are inserted in the order that the format
specifications appear in the format string.

Multiple flags can be used within the same format specification. These are the
supported flags:

�� The minus sign flag ‘-’ causes the string to be left-aligned. Alignment deter-
mines whether padding is appended or prepended to the string. A right-aligned
string, which is the default, has padding prepended, but a left-aligned string,
which is indicated by using the ‘-’ flag, has padding appended.

	 136	 This	Week:	Mastering	Junos	Automation	Programming	

�� Alignment has no effect on string truncation. Right truncation is always
performed when a specified precision forces the string to be truncated.

Function�call

jcs:printf(“|%-10s|”, “Left”)

Returned�string

“|Left |”

A zero flag ‘0’ causes the string to be padded by zeros rather than spaces, but it is only
valid for right-aligned strings and is ignored if the ‘-’ flag is present.

Function�call

jcs:printf(“%08s”, “5”)

Returned�string

“00000005”

The j1 flag ‘j1’ is used to indicate that a string argument should not be inserted if the
preceding call to jcs:printf() used the same format string, and the string argument’s
value has not changed. This flag is useful if a duplicate column value should not be
displayed in subsequent rows.

Function�call

jcs:printf(“%j1-10s %s”, “xe-0/0/0”, “inet”)
jcs:printf(“%j1-10s %s”, “xe-0/0/0”, “inet6”)
jcs:printf(“%j1-10s %s”, “xe-1/0/0”, “inet”)

Returned�string

“xe-0/0/0 inet”
“ inet6”
“xe-1/0/0 inet”

The jc flag ‘jc’ causes the first letter of the string argument to be capitalized.

�� The first character of the string is capitalized, following minimum width padding
but prior to tag prepending, so capitalization will not work for right-aligned
strings that have spaces or zeros prepended due to their minimum width.

Function�call

jcs:printf(“%jcs”, “example”)

Returned�string

“Example”

The jt{TAG} flag is used to prepend a tag string to the inserted argument string if the
argument string is not blank. The tag string consists of all the characters inside the { }
curly brackets within the flag.

�� A ‘}’ cannot be included within the tag string, because it terminates the tag string.

�� If the argument is a node-set or a result tree fragment that has element nodes but
no text content, then it will be converted into a blank string, so the tag string will
not be added.

�� The tag is prepended after the string argument has been formatted to the correct
width and precision, which could cause columns to not align correctly, so this

	 Appendix	 137

flag should only be used within the last format specification of a row if column
alignment must be maintained over multiple rows.

Function�call

jcs:printf(“%-10s %jt{>>}12s”, “10.0.0.1”, “192.168.1.1”)
jcs:printf(“%-10s %jt{>>}12s”, “10.0.0.1”, ““)

Returned�string

“10.0.0.1 >> 192.168.1.1”
“10.0.0.1 “

The minimum width to which a string will be padded, if necessary, can be indicated
by including a numeric value within the format specification, or a * can be included,
indicating that the width should be taken from the argument list rather than from
the format specification; this causes the next argument in the argument list to be
converted into an integer, which is used as the width, and the following argument is
used as the string argument that is inserted into the string.

Function�call

jcs:printf(“|%10s|%-10s|”, “Right”, “Left”)
jcs:printf(“|%*s|%-*s|”, 5, “1”, 3, “2”)

Returned�string

“| Right|Left |”
“| 1|2 |”

The precision of the string, or the maximum length, is indicated by including a
period followed by a numeric value within the format specification. If the string
argument is longer than the indicated precision, then the string will be right-truncat-
ed. A * can be included, instead of a number, to indicate that the precision should be
taken from the argument list rather than from the format specification. This causes
the next argument in the argument list to be converted into an integer, which is used
as the precision, and then the following field is used as the string argument that is
inserted into the string.

Function�call

jcs:printf(“|%5.5s|%.4s|”, “1234567890”, “abcdefg”)
jcs:printf(“|%*.*s|”, 5, 1, “12345”)

Returned�string

“|12345|abcd|”
“| 1|”

The following escape characters can be used:

�� \n – Newline

�� \r – Carriage Return

�� \t - Tab

�� \\ - Backslash (As of Junos 10.2)

�� \” – Double-quote (As of Junos 10.1R2)

�� \’ – Single-quote

	 138	 This	Week:	Mastering	Junos	Automation	Programming	

Example

This op script demonstrates how to create formatted output with the jcs:printf()
function.

Code

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* Display the parameters */
 expr jcs:output(jcs:printf(“%15s %-10s”, “Parameter”, “Value”));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$user”, $user));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$hostname”, $hostname));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$product”, $product));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$script”, $script));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$localtime”, $localtime));
 expr jcs:output(jcs:printf(“%15s %-10s”, “$localtime-iso”, $localtime-iso));

 /* Retrieve string to display */
 var $string = jcs:get-input(“Enter string: “);

 /* Retrieve width */
 var $width = jcs:get-input(“Enter width: “);

 /* Retrieve precision */
 var $precision = jcs:get-input(“Enter precision: “);

 expr jcs:output(jcs:printf(“|%*.*s|”, $width, $precision, $string));
 }
}

Output

 Parameter Value
 $user jnpr
 $hostname srx210
 $product srx210h
 $script jcs_printf.slax
 $localtime Tue Jun 21 09:56:27 2011
 $localtime-iso 2011-06-21 09:56:27 UTC
Enter string: 1234567890
Enter width: 5
Enter precision: 3
| 123|

 “Man Page” for jcs:regex()

Source: Junos
Namespace: http://xml.juniper.net/junos/commit-scripts/1.0
Common Prefix: jcs
Minimum Version: Junos 8.2

	 Appendix	 139

Syntax

node-set [matches] jcs:regex(string [pattern], string [target])

Description

The jcs:regex() function is used to match strings based on a regular expression. The
first string argument is the regular expression pattern in POSIX extended regular
expression format, and the second string argument is the target string that is
searched for a match. A node-set is returned, which contains the string that matches
the entire regular expression, as well as up to eight included sub-expressions.

Supported�Regular�Expression�Operators

Match any character - “.” – Matches any character, including newlines.

Function�call

jcs:regex(“srx2.0”, “srx210”)

Returned�node-set

<match> “srx210”

Match zero or more – “*” – Matches the prior character or subexpression zero or
more times.

Function�call

jcs:regex(“srx.*”, “srx210”)

Returned�node-set

<match> “srx210”

Match one or more – “+” – Matches the prior character or subexpression one or
more times.

Function�call

jcs:regex(“s+rx210”, “srx210”)

Returned�node-set

<match> “srx210”

Match zero or one times – “?” – Matches the prior character or subexpression either
zero or one times.

Function�call

jcs:regex(“srx21?0”, “srx210”)

Returned�node-set

<match> “srx210”

Matching interval – “{ ... }” – Comes in three forms:

�� Match exactly N times: {N}

�� Match N times or more: {N,}

�� Match between N1 and N2 times: {N1,N2}

	 140	 This	Week:	Mastering	Junos	Automation	Programming	

�� N/N1/N2 must be 255 or less

Function�call

jcs:regex(“srx[0-9]{3}”, “srx210”)

Returned�node-set

<match> “srx210”

Alternation – “|” – Matches one or the other regular expressions. The longer left-
most match is preferred.

Function�call

jcs:regex(“20|2011”, “2011-02-22”)

Returned�node-set

<match> “2011”

Matching list – “[...]” – Matches one character from within the list.

�� Ranges are expressed by using the hyphen:

Function�call

jcs:regex(“srx[0-9]*”, “srx210”)

Returned�node-set

 <match> “srx210”

�� Most special characters within a list are treated as normal characters (*, +, ?,
etc) and do not require escaping.

�� To include a hyphen “-” as a normal character, include it as the first or last
character.

�� To include a closing bracket “]” as a normal character, include it as the first
character.

Non-matching list – “[^ ...]” – Matches any character that is not included in the list.
The syntax rules are the same as a matching list.

Function�call

jcs:regex(“[^ 0-9]*”, “JUNOS 10.4R1.9”)

Returned�node-set

 <match> “JUNOS”

Grouping – “(...)” – Creates a group or subexpression, allowing operators to be
applied to groups rather than characters, and returns the matching value as part of
the returned node-set.

Function�call

jcs:regex(“([0-9.]*).([0-9.]*)”, “10.4R1.9”)

Returned�node-set

<match> “10.4R1.9”;

	 Appendix	 141

<match> “10.4”;

<match> “1.9”;

Supported regular expression anchors:

Start of string – “^” – Anchors the regular expression to the start of the string.

Function�call

jcs:regex(“^[^]*”, “JUNOS Software Release [10.4R1.9]”)

Returned�node-set

<match> “JUNOS”

End of string – “$” – Anchors the regular expression to the end of the string.

Function�call

jcs:regex(“[^]*$”, “JUNOS Software Release [10.4R1.9]”)

Returned�node-set

<match> “[10.4R1.9]”

Start of word –”[[:<:]]” – Anchors the regular expression to the start of a word,
where a word is a sequence of alphanumeric characters or underscores.

Function�call

jcs:regex(“[[:<:]]S[^]*”, “JUNOS Software Release [10.4R1.9]”)

Returned�node-set

<match> “Software”

End of word –”[[:>:]]” – Anchors the regular expression to the end of a word, where
a word is a sequence of alphanumeric characters or underscores.

Function�call

jcs:regex(“.*S[[:>:]]”, “JUNOS Software Release [10.4R1.9]”)

Returned�node-set

<match> “JUNOS”

Escaping

Most standard escape characters are expressed in the normal fashion: \n \t \r \” \’

�� Exception is \\ which must be expressed as \\\\ within a regular expression,
except within a list. This is necessary because the escape must be present both
for the SLAX to XSLT conversion as well as for the jcs:regex() processing. In
other words, the SLAX to XSLT conversion translates “\\\\” to “\\”, which
jcs:regex() treats correctly as an escaped backslash.

Function�call

jcs:regex(“1\\\\2”, “1\\2”)

Returned�node-set

<match> “1\2”

�� Double-quote escape \” is supported as of Junos 10.1R2.

	 142	 This	Week:	Mastering	Junos	Automation	Programming	

Regular expression special characters (operators and anchors) must be escaped with
two backslashes, because the SLAX to XSLT conversion will remove one of them.

Function�call

jcs:regex(“\\.\\^\\$*\\+\\(\\)\\[\\]\\{\\}\\|\\?”, “.^$*+()[]{}|?”)

Returned�node-set

<match> “.^$*+()[]{}|?”

Character classes can be used within a list to indicate a class of characters that should
be included instead of specifying the individual characters. The following character
classes are supported by jcs:regex():

�� [:alnum:] – Alphanumeric characters: A-Z, a-z, and 0-9

�� [:alpha:] – Alpha characters: A-Z, and a-z

�� [:blank:] – Blank characters: space and tab

�� [:cntrl:] – Control characters: ASCII values 0x0-0x19 and 0x7F

�� [:digit:] – Numeric characters: 0-9

�� [:graph:] – Printable characters, except for space: ASCII values 0x21-0x7E

�� [:lower:] – Lowercase letters: a-z

�� [:print:] – Printable characters: ASCII values 0x20-0x7E

�� [:punct:] – Punctuation: ! “ # $ % & ‘ () * + , - . / : ; < = > ? @ [\] ̂ _ ̀ { | } ~

�� [:space:] – Whitespace: space, tab, newline, carriage return, vertical tab, form
feed

�� [:upper:] – Uppercase letters: A-Z

�� [:xdigit:] – Hexadecimal digit characters: A-F, a-f, 0-9

Function�call

jcs:regex(“[[:alnum:][:punct:]]*”, “*[Direct/0] 05:08:47”)

Returned�node-set

<match> “*[Direct/0]”

While no multi-character collating sequences are supported by jcs:regex(), single
character collating elements can be used within lists and could be used to represent
special characters or to indicate a specific control character. Collating elements for each
non-null ASCII character can be created by enclosing the character within “[.” and
“.]”. For example, to match a “]” within a list, the collating sequence “[.].]” could be
used:

Function�call

jcs:regex(“[[[:digit:][.].]]*”, “[10]”)

Returned�node-set

<match> “[10]”

In addition, the following collating sequences are defined:

	 Appendix	 143

Sequence ASCII� Sequence ASCII� Sequence ASCII

[.SOH.] 0x01 [.SUB.] 0x1A [.three.]
0x33

“3”

[.STX.] 0x02 [.ESC.] 0x1B [.four.]
0x34

“4”

[.ETX.] 0x03
[.IS4.]

[.FS.]
0x1C [.five.]

0x35

“5”

[.EOT.] 0x04
[.IS3.]

[.GS.]
0x1D [.six.]

0x36

“6”

[.ENQ.] 0x05
[.IS2.]

[.RS.]
0x1E [.seven.]

0x37

“7”

[.ACK.] 0x06
[.IS1.]

[.US.]
0x1F [.eight.]

0x38

“8”

[.BEL.]

[.alert.]
0x07 [.space.]

0x20

“ “
[.nine.]

0x39

“9”

[.BS.]

[.backspace.]
0x08 [.exclamation-mark.]

0x21

“!”
[.colon.]

0x3A

“:”

[.HT.]

[.tab.]
0x09 [.quotation-mark.]

0x22

 “
[.semicolon.]

0x3B

“;”

[.LF.]

[.newline.]
0x0A [.number-sign.]

0x23

“#”
[.less-than-sign.]

0x3C

“<”

[.VT.]

[.vertical-tab.]
0x0B [.dollar-sign.]

0x24

“$”
[.equals-sign.]

0x3D

“=”

[.FF.]

[.form-feed.]
0x0C [.percent-sign.]

0x25

“%”
[.greater-than-sign.]

0x3E

“>”

[.CR.]

[.carriage-return.]
0x0D [.ampersand.]

0x26

“&”
[.question-mark.]

0x3F

“?”

[.SO.] 0x0E [.apostrophe.]
0x27

 ‘
[.commercial-at.]

0x40

“@”

[.SI.] 0x0F [.left-parenthesis.]
0x28

“(“
[.left-square-bracket.]

0x5B

“[“

[.DLE.] 0x10 [.right-parenthesis.]
0x29

“)”

[.backslash.]

[.reverse-solidus.]

0x5C

“\”

[.DC1.] 0x11 [.asterisk.]
0x2A

“*”
[.right-square-bracket.]

0x5D

“]”

[.DC2.] 0x12 [.plus-sign.]
0x2B

“+”

[.circumflex.]

[.circumflex-accent.]

0x5E

“^”

[.DC3.] 0x13 [.comma.]
0x2C

“,”

[.underscore.]

[.low-line.]

0x5F

“_”

[.DC4.] 0x14
[.hyphen.]

[.hyphen-minus.]

0x2D

“-”
[.grave-accent.]

0x60

“`”

[.NAK.] 0x15
[.period.]

[.full-stop.]

0x2E

“.”

[.left-brace.]

[.left-curly-bracket.]

0x7B

“{“

	 144	 This	Week:	Mastering	Junos	Automation	Programming	

[.SYN.] 0x16
[.slash.]

[.solidus.]

0x2F

“/”
[.vertical-line.]

0x7C

“|”

[.ETB.] 0x17 [.zero.]
0x30

“0”

[.right-brace.]

[.right-curly-bracket.]

0x7D

“}”

[.CAN.] 0x18 [.one.]
0x31

“1”
[.tilde.]

0x7E

“~”

[.EM.] 0x19 [.two.]
0x32

“2”
[.DEL.] 0x7F

Function�call

jcs:regex(“[[:digit:][.period.]]*”, “10.4R1.9”)

Returned�node-set

<match> “10.4”

There are no defined character equivalence classes so enclosing collating elements in
“[=” and “=]” has the same effect as enclosing them in “[.” and “.]”.

The node-set returned by jcs:regex() consists of <match> element nodes with the
appropriate match assigned as the text content. If no match is found then an empty
node-set is returned. If there is an error with the regular expression then an error
message is displayed and an empty node-set is returned. The order of the nodes within
the returned node-set is deterministic, so the node-set can be treated similar to an
array in other programming languages, meaning that the nodes can be retrieved
based on their numerical order. Node number 1 is always the match of the entire
regular expression, and nodes 2 through 9 contain subexpression matches, if appro-
priate. The subexpression nodes occur within the node-set in the same order as they
appear in the regular expression pattern, but they are only included if they have a
match, or if they do not have a match but a latter subexpression has a match, in
which case they are included with an empty string as their text contents. Examples of
returned node-sets follow.

Function�call

jcs:regex(“123*”, “other”)

Returned�node-set

Empty

Function�call

jcs:regex(“[A-Z]*”, “JUNOS 10.4R1.9”)

Returned�node-set

<match> “JUNOS”

Function�call

jcs:regex(“([0-9]{4})-([0-9]{2})-([0-9]{2})”, “2010-12-04”)

Returned�node-set

<match> “2010-12-04”
<match> “2010”
<match> “12”
<match> “04”

	 Appendix	 145

Function�call

jcs:regex(“(1?)(2?)(3?)(4?)(5)(6)(7)(8)(9)”, “56789”)

Returned�node-set

<match> “56789”
<match> ““
<match> ““
<match> ““
<match> ““
<match> “5”
<match> “6”
<match> “7”
<match> “8”

Regular expression features not discussed above should be considered unsupported,
in particular the following are either not supported or do not work at the time of
this writing: backreferences, shorthand character classes, buffer operators, look-
around, non-capturing groups, and non-greedy (lazy) repetition.

Example

This op script demonstrates how to use jcs:regex() to extract specific substrings from
within a larger string.

Code

version 1.0;

ns junos = “http://xml.juniper.net/junos/*/junos”;
ns xnm = “http://xml.juniper.net/xnm/1.1/xnm”;
ns jcs = “http://xml.juniper.net/junos/commit-scripts/1.0”;

import “../import/junos.xsl”;

match / {
 <op-script-results> {

 /* parse the $localtime-iso parameter */
 var $regex =
 “([[:digit:]]*)-0?([[:digit:]]*)-0?([[:digit:]]*) 0?([0-9]*):0?([0-9]*):0?([0-9]*).*”;
 var $result = jcs:regex($regex, $localtime-iso);

 /* Display the complete match */
 <output> “Time: “ _ $result[1];

 /* Display all the captured subexpressions */
 <output> “Year: “ _ $result[2];
 <output> “Month: “ _ $result[3];
 <output> “Day: “ _ $result[4];
 <output> “Hour: “ _ $result[5];
 <output> “Minute: “ _ $result[6];
 <output> “Second: “ _ $result[7];
 }
}

Output

Time: 2011-02-23 16:14:06 UTC
Year: 2011
Month: 2
Day: 23
Hour: 16
Minute: 14
Second: 6

	 146	 		

What to Do Next & Where to Go

http://www .juniper .net/dayone

Get all the Day One books and new This Week titles, too. All from Juniper Networks
Books. Check for new automation books as they get published.

http://www .juniper .net/automation

The Junos Automation home page, where plenty of useful resources are available
including training classes, recommended reading, and a script library - an online
repository of scripts that can be used on Junos devices.

http://forums .juniper .net/jnet

The Juniper-sponsored J-Net Communities forum is dedicated to sharing informa-
tion, best practices, and questions about Juniper products, technologies, and solu-
tions. Register to participate at this free forum.

http://www .juniper .net/techpubs/en_US/junos/information-products/topic-collections/ config-guide-
automation/frameset .html

All Juniper-developed product documentation is freely accessible at this site, includ-
ing the Junos API and Scripting Documentation.

http://www .juniper .net/us/en/products-services/technical-services/j-care/

Building on the Junos automation toolset, Juniper Networks Advanced Insight
Solutions (AIS) introduces intelligent self-analysis capabilities directly into platforms
run by Junos. AIS provides a comprehensive set of tools and technologies designed to
enable Juniper Networks Technical Services with the automated delivery of tailored,
proactive network intelligence and support services.

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright Page, About the Authors
	Welcome to This Week
	What You Need to Know Before Reading
	Assumptions
	After Reading This Book You’ll Be Able To
	Additional Resources

	Chapter 1: Getting Started with Junos Automation Scripting
	Introducing Junos Automation
	The Junos Script Programming Model
	Getting Started
	Hello, World Step-by-Step
	Summary

	Chapter 2: SLAX Fundamentals
	Fundamentals
	SLAX Script File Structure
	Variables
	Control Statements
	Code Modularity
	Using Junos Remote Procedure Calls (RPC)
	Console Input / Output
	Storage Input / Output
	Summary

	Chapter 3: Essential SLAX Topics to Know
	Fundamental Topics
	File and Storage Topics
	OSS Integration Topics
	Event Script Topics
	Summary

	Appendix
	Using the Op Script on Target Debugger
	Using the <libxslt:debug> Debug Element
	Using the slaxproc Utility
	“Man page” for jcs:printf()
	 “Man Page” for jcs:regex()

	What to Do Next & Where to Go

