NNNNNNNN

Junos® Networking Technologies

THIS WEEK: AN EXPERT PACKET
WALKTHROUGH ON THE
MX SERIES 3D

An amazing deep dive
into the MX Trio chipset.

By David Roy

AN EXPERT PACKET WALKTHROUGH

ON THE MX SERIES 3D

This Week: An Expert Packet Walkthrough on the MX Series 3D provides the curious engineer
with a global view of the short life (a few milliseconds) of packets inside the Juniper Networks
MX Series 3D routers. Though their life inside the router may be short, the packets are pro-
cessed by an amazing ecosystem of next-generation technology.

Written by an independent network troubleshooting expert, this walkthrough is unlike
any other. You'll learn advanced troubleshooting techniques, and how different traffic
flows are managed, not to mention witnessing a Junos CLI performance that will have
you texting yourself various show commands.

This book is a testament to one of the most powerful and versatile machines on the
planet and the many engineers who created it. Sit back and enjoy a network engineering
book as you travel inside the MX Series 3D.

“This book is like a high-tech travel guide into the heart and soul of the MX Series 3D.

David Roy is going where few people have gone and the troubleshooting discoveries
he makes will amaze you. If you use the MX Series 3D, you have to read this book.”

Kannan Kothandaraman, Juniper Networks Vice President

Product Line Management, Junos Software and MX Edge Routing

LEARN SOMETHING NEW ABOUT THE MX SERIES THIS WEEK:

B Understand the life of unicast, host, and multicast packets in the MX Series 3D hardware.
m Carry out advanced troubleshooting of the MX Series 3D Packet Forwarding Engines.

B Master control plane protection.

B Understand how Class of Service is implemented at the hardware level.

ISBN 978-1941441022

52000
Published by Juniper Networks Books
www.juniper.net/books
781941%441022 JUﬂLngsr

This Week: An Expert Packet Walkthrough

on the MX Series 3D
By David Roy
Chapterl: MPC OVEIVIEWt ettt et 7
Chapter 2: Following a UnicastPacketcccvviiiunn.... 5
Chapter 3: Onthe Way toReachtheHostccccvvvu.... 47
Chapter 4: From the Host to the OuterWorld 83
Chapter 5: Replicationin Action.c.cuiiiiiiiiieainn.. 97
Appendices: MPC CoS Scheduling and More on Host Protection 113

JunipPer

NETWORKS

© 2015 by Juniper Networks, Inc. All rights reserved.

Juniper Networks, Junos, Steel-Belted Radius, NetScreen, and
ScreenOS are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. The Juniper Networks
Logo, the Junos logo, and JunosE are trademarks of Juniper
Networks, Inc. All other trademarks, service marks, registered
trademarks, or registered service marks are the property of their
respective owners. Juniper Networks assumes no responsibility
for any inaccuracies in this document. Juniper Networks reserves
the right to change, modify, transfer, or otherwise revise this
publication without notice.

Published by Juniper Networks Books
Author: David Roy

Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
Illustrations: David Roy

J-Net Community Manager: Julie Wider

ISBN: 978-1-941441-02-2 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-03-9 (ebook)

Version History: v1, January 2015
2345678910

This book is available in a variety of formats at:
http://www.juniper.net/dayone.

About the Author

David Roy lives and works in France where seven years ago he
joined the Network Support Team of Orange France. He is
currently responsible for supporting and deploying the IP’MPLS
French Domestic Backbone. David holds a master’s degree in
computer science and started his career in a research and
development team that worked on Digital Video Broadcasting
over Satellite and then started working with IP technologies by
designing IP solutions over Satellite for Globecast (an Orange
Subsidiary). David is a Juniper Networks Expert holding three
JNCIE certifications: SP #703, ENT #3035, and SEC #144.

Author’s Acknowledgments

I would like to thank my wife, Magali, and my two sons, Noan and Timéo, for all
their encouragement and support. A very special thank you to Antonio Sanchez-
Monge from Juniper Networks for helping me during the project and who was also
the main technical reviewer. A great thank you to Josef Buchsteiner, Steven Wong,
and Richard Roberts for their deep technical review and interesting concept discus-
sions. Finally I want to thank Qi-Zhong and Steve Wall from Juniper Networks, and
Erwan Laot from Orange, for their incredibly useful feedback, and to Patrick Ames
for his review and assistance.

Technical Reviewers

David Roy, IPPMPLS NOC Engineer, Orange France
JNCIE x3 (SP #703 ; ENT #305 ; SEC #144)

Antonio “Ato” Sanchez Monge, Network Architect - Telefonica (Advanced
Services, Juniper Networks). I work with MX series (all the way from vMX to
MX2020) in lab and production networks. My main activities are design,
feature testing, and support.

Steven Wong, Principal Escalation Engineer, Juniper Networks. T handle
technical issues and help enhance the MX platform to provide a better user
experience.

Josef Buchsteiner, Principal Escalation Engineer, Juniper Networks. I resolve
technical issues, drive diagnostics, and support capabilities on MX platforms.

Richard Roberts, Network Architect - Orange (Professional Services, Juniper
Networks). I work directly with David supporting him and his team since the
introduction of the first generation of MX960 and now the latest MX2020
routers.

Qi-Zhong Cao, Sr. Staff Engineer, Juniper Networks. My primary focus is
DDOS protection of Juniper MX routers. I develop software components
spanning the entire host path.

Steve Wall, Test Engineer Sr. Staff, Juniper Networks. I do Product Delivery
Testing for the MX and other platforms targeting their deployment into large
service provider and Web 2.0 customer networks.

Babu Singarayan, Sr. Staff Engineer, Juniper Networks. I work on MX-Trio
architecture and development with expertise on MX forwarding and host-
path.

Erwan Laot, IP/MPLS NOC Engineer, Orange France. I’ve been working with
David Roy and MX routers for several years, and both are equally resourceful
and a pleasure to work with when addressing new technical challenges.

Michael Fort, Sr. Staff Engineer, Juniper Networks. PFE/BRAS software
architecture and development with a bias towards automation, performance,
process, and forensics.

\Y

Welcome to This Week

This Week books are an outgrowth of the extremely popular Day One book series
published by Juniper Networks Books. Day One books focus on providing just the
right amount of information that you can execute, or absorb, in a day. This Week
books, on the other hand, explore networking technologies and practices that in a
classroom setting might take several days to absorb or complete. Both libraries are
available to readers in multiple formats:

B Download a free PDF edition at http://www.juniper.net/dayone.

B Get the ebook edition for iPhones and iPads at the iTunes Store>iBooks. Search
for Juniper Networks Books.

B Get the ebook edition for any device that runs the Kindle app (Android, Kindle,
iPad, PC, or Mac) by opening your device’s Kindle app and going to the Kindle
Store. Search for Juniper Networks Books.

B Purchase the paper edition at either Vervante Corporation (www.vervante.
com) or Amazon (www.amazon.com) for prices between $12-$28 U.S.,
depending on page length.

B Note that Nook, iPad, and various Android apps can also view PDF files.

What You Need to Know Before Reading

B You need to be very familiar with the Junos Operating System.

B You need to know basic Class of Service and multicast concepts for the second

half of the book.

After Reading This Book You’ll Be Able To

B Understand the life of unicast, host, and multicast packets in MX Series 3D
hardware

B Carry out advanced troubleshooting of the MX Series 3D hardware
B Master control plane protection

B Understand how class-of-service is implemented at hardware level

MORE? This book is not meant to replace MX Series 3D technical documentation that can be
found at www.juniper.net/documentation, where there are key details, installation
requirements, deployment guides, and network solutions.

Author’s Notes

The MX Series 3D Universal Edge Router is a mouthful. This book uses abbreviated
terms such as MX 3D, and MX Series 3D, to focus on what’s inside the device.

I have included notes and notation within device output and configurations. They are
designated by several “less than” characters in succession followed by a boldface
output font, such as shown here:

NPCO(R2 vty)# test xmchip 0 wo stats default 0 O <<< third 0 means WAN Group 0

http://www.juniper.net/dayone
http://www.juniper.net/documentation

Chapter]l

An Extremely Quick MPC Overview

A Quick Overview Inside the MPC

PFE Numbering

This Book’s Topology

Summary

8 This Week: An Expert Packet Walkthrough on the MX Series 3D

This book provides you with a global view of the short life (a few milliseconds) of
packets inside Juniper Networks MX Series 3D routers. They have a short life inside
the router, but as you will see, the packets are processed by many components.

As a network support engineer, I sometimes face issues that involve many vendors
and their equipment in complex topologies. During these troubleshooting sessions, I
found that one of the most interesting things about the Juniper routers is their rich
troubleshooting toolbox.

The Junos OS is an awesome open platform — nothing is hidden and you can track the
life of each packet inside the router whether it’s a control or transit type of packet. 1
spent a lot of time reverse engineering how packets (control- and data plane-based)
are handled and managed by the Juniper hardware and the Junos software. The result
is this book, which focuses on the life of the packet inside the MX Series 3D hard-
ware.

READY? Ifyou are not familiar with the MX basic architecture, and if terms like MPC, MIC,
PIC, SCB, PFE, etc., don’t sound crystal clear to you, have a look at Chapter 3 of This
Week: A Packet Walkthrough on the M, MX, and T Series, an introductory book that
belongs in the Day Omne library: http://www.juniper.net/us/en/training/jnbooks/
day-one/networking-technologies-series/a-packet-walkthrough/.

MX Series 3D includes components that are based on a common architecture and
network philosophy. The MX 3D term was born with the very first release of the Trio
chipset, and it has been kept throughout the evolution into newer chipset generations.
This book focuses on the line cards that are based on the Trio architecture. All these
line cards are called MPC (Modular PIC Concentrator).

More specifically, the lab for this book uses two MPC models: one 16x10GE MPC
card and one MPC4e card. These particular line card models do not have MIC slots,
so their PICs are integrated (built) into the MPC.

NOTE You can easily port most of the commands and concepts in this book to other MPC
models—even the fabric-less MX models like MX5, MX10, MX80, or MX104,
whose PFE is implemented in a single TFEB or Trio Forwarding Engine Board— if
you need to. Last but not least, the Virtual MX or VMX will also be based on the Trio
architecture.

A Quick Overview Inside the MPC

Let’s introduce the MPC’s Packet Forwarding Engine (PFE) chips (or ASICs). Some of
them are embedded on all types of MPCs while others are optional and are only
available on certain MPC models. For more up-to-date information, please refer to
the Juniper Networks website and technical documentation (http://www.juniper.net/
documentation), which provides a complete feature and component list.

PFEs are made of several ASICs, which may be grouped into four categories:

B Routing ASICs: LU or XL Chips. LU stands for Lookup Unit and XL is a more
powerful (X) version.

B Forwarding ASICs: MQ or XM Chips. MQ stands for Memory and Queuing,
and XM is a more powerful (X) version.

B Enhanced Class of Service (CoS) ASICs: QX or XQ Chips. Again, XQ is a more
powerful version.

http://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/a-packet-walkthrough/
http://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/a-packet-walkthrough/
http://www.juniper.net/documentation
http://www.juniper.net/documentation

NOTE

Chapter1: An Extremely Quick MPC Overview 9

B Interface Adaptation ASICs: IX (only on certain low-speed GE MICs) and XF
(only on MPC3E).

Why two names for each Routing or Forwarding ASIC type? The names on the right
correspond to more powerful components or second generation ASIC so they are
implemented in newer PFE models.

The Enhanced CoS and Interface Adaptation ASICs are optional and are not
included in all MPC/MIC models. Inversely, Routing and Forwarding ASICs are
always present and constitute the core of an MPC’s Packet Forwarding Engine
(PFE).

As of the publication of this book there are three generations of 3D MPCs:

B First generation MPCs, containing the original Trio chipset with LU and MQ
chips. This generation includes MPC types 1 and 2, as well as the MPC
16x10GE.

B Second generation MPCs, whose PFEs have LU and XM chips. This genera-
tion includes MPC3e and MPC4e.

B Third generation MPCs, whose PFEs have XL, XQ, and XM chips. This
generation includes MPC5e and MPCée.

The newer MPC5e and MPCé6e (the MPCé6e is for MX20xx routers) are beyond the
scope of this book. So XL chips are not covered here. The chips fully covered in this
book are the LU, MQ, and XM chips.

IMPORTANT Our selection of the features supported by MX 3D routers is tailored to the needs of

ALERT!

this book.

One of the more useful Packet Forward Engine commands that you are going to use
is the “jspec” shell command which allows you to know which ASICs are present in
the MPC.

This is one of the most important paragraphs in this book! Even though the author
did not encounter any problems while executing the following PFE commands in lab
scenarios, please remember that shell commands are not supported in production
environments, and this book is no exception. In production networks, you should
only execute these commands if you are instructed to do so by JTAC. Moreover, the
shell commands and their output shown in this book are provided for the purpose of
illustration only, and should not be taken as any kind of shell command guide.

Let’s use the jspec command on the R2 MPC 16x10GE and MPC4e cards and see
which ASICs are embeded on each card:

user@?2> request pfe execute command "show jspec client" target fpcll | trim 5

I

oNOoOOuUVh WNREDO

Name

LU chip[0]
MQChip[0]
LU chip[1]
MQChip[1]
LU chip[2]
MQChip[2]
LU chip[3]
MQChip[3]

10 This Week: An Expert Packet Walkthrough on the MX Series 3D

user@R2> request pfe execute command "show jspec client" target fpcO | trim 5
I Name

LU chip[0]
LU chip[4]
XMChip[0]
LU chip[1]
LU chip[5]
XMChip[1]

ook WwN RO

As you can see, both cards are made of MQ or XM chips and LU chips. Let’s step
back from the PFE internals for a bit, and see how the different MPC functional
components (control plane microprocessor, PFE ASICs, etc.) are interconnected.
There are several types of links:

B Ethernet: The linecard’s CPU (a.k.a. pKernel’s CPU) or control plane micropro-
cessor “speaks” with the Routing Engine via two embedded Gigabit Ethernet
interfaces (em0 and em1).

B PCle: The linecard’s CPU is in charge of programming the ASICs, pushing the
forwarding information base (FIB) to the LU chip memory and the basic
scheduling configuration to the MQ/XM chips. This CPU communicates with
ASICs via a PCle Bus.

B 12C: The I12C Bus allows the control components, hosted by the (S)CB, to
monitor and retrieve environmental (power, temperature, status, etc.) informa-
tion from the different MPC’s components.

B HSL2: The PFE’s ASICs communicate with each other and with the fabric chips
via HSL2 (High Speed Link version 2) links. This is how the forwarding plane is
actually implemented: every transit packet spends some time through HSL.2

links.

AWordonHSL2

High Speed Link Version 2 is a physical link technology that makes it possible to
convey high speed data among ASICs in a same PFE but also between PFEs and the
fabric. The data layer protocol over HSL2 allows channelization and supports error
detection via a CRC mechanism. You can retrieve HSL2 links and their statistics by
using the following microkernel shell command:

NPCO(R2 vty)# show hs12 statistics
Cell Received (last) CRC Errors (last)

LU chip(0) channel statistics :

LU chip(0)-chan-rx-0 <= XMChip(0)-chan-tx-135 526216395719869 (139077335) 0 (0)
LU chip(0)-chan-rx-1 <= XMChip(0)-chan-tx-134 526216395719869 (139077335) 0 (0)
[...]

TIP You can interact with the microkernel of a line card by launching the hidden (and
unsupported) command start shell pfe network fpc<slot>. On fabric-less MXs,
fpc<slot> is replaced with tfeb0.

MPC Type

Let’s start with the MPC type 1, which is a modular MPC that can host two MICs.
Some MIC:s (like the 20x1GE MIC) host the specific ASIC called IX. IX manages the

Figure 1.1

Figure 1.2

Chapter1: An Extremely Quick MPC Overview

1

physical interfaces and provides a first level of packet classification. MPC ype 1 only
has one PFE, which is made of two ASICs or chips:

B The MQ chip is in charge of packet memory management, queuing packets,
“cellification,” and interfacing with the fabric planes. It features both fast
on-chip (SRAM) memory and off-chip memory.

The second ASIC is the LU chip. It performs packet lookup, packet firewalling

and policing, packet classification, queue assignment, and packet modifica-
tion (for example, push/swap/push MPLS headers, CoS remarks, etc.). This
chip also relies on combined on-chip/off-chip memory integration. The FIB is
stored in off-chip memory.

From/to the WAN (MIC with 1X)

)

MIC 0
IX Chip

From/To PIC via

hi
e

MPC1

(1 PFE)

B |

From/To

12C

Host/controller

\

From'To
Control Board via GE

all HW components via I2C Bus

and I2C Bus

Linecard

From'To
PFEvia PCl interface

From/to the WAN (MIC without IX)

MPC1 Internal View

MPC Type 2

L

PFE O
MQ Chip

A
HsL2iinks — EF l:
) = =

— = = <
= =/ = <
MIC 1 T From/To LU via HSL2 links
sinns
8)9 ¢
—

CPU

From/To

RE via GE interfaces

From/To Fabric via HSL2 \mks__>

J

The next MPC is the MPC Type 2. In this case, the diagram intentionally shows an
enhanced queuing (EQ) MPC, to briefly present the QX Chip. QX provides rich
queuing and advanced CoS features (like hierarchical per-VLAN queuing). MPC
Type 2 has two PFEs (see “Repeat” notation in Figure 1.2) made of one MQ, one
LU, and one QX chip each. Each PFE manages one MIC (with or without IX chip,
depending on the model).

From/to the WAN (MIC with or

FromTo
Control Board via GE

MPC2-EQ
(2 PFE)
- 12¢
From/To Host/controller
all W via I2C Bus
I PFE 0 Linecard

Heo QX Chip cPU

From/To

IX Chip PFE via PCl interface

From/To PIC via
HSL2 links

without 1X)

MPC2-EQ Internal View

1

and 2C Bus

FromTo

RE via GE interfaces

(*) From'To QX via HSL2 links

rom/To Fabric via HSL2 link:

N

Repeat x1

Repeat

x1

J

12 This Week: An Expert Packet Walkthrough on the MX Series 3D

Figure1.3

MPC 16x10GE

The famous monolithic MPC 16x10GE hosts four PFEs (4x10GE ports per PFE),
each linked to an internal built-in PIC, as shown in Figure 1.3.

MPC 16x10GE
(4 PFE)

12C

B |

FromTo Host/controller From/To
Control Board via GE
Il HW 2C B
al components via [2C Bus and RCBUs
PFE 0 Linecard
From/To cRU From/To
Built-in MQ Chip PFE via PCl interface RE via GE interfaces
PIC 0 CTLEY T
From/to the WAN 4 x 10GE = :V l:<—_From/To Fabric via HSL2 links =—f—-—
ool
l f From/To LU via HSL2 links

\
\
\ Repeat x3 j

MPC 16x10GE Internal View

NOTE

MPC3e

The MPC3e, depicted in Figure 1.4, was the first MPC made with the next version of
the MQ Chip called the XM chip. XM provides the same functionalities as MQ but
with new features and scaling four times more than MQ. XM load balances the
traffic towards four LU chips. The XM chip introduces the concept of WAN Group
which can be considered as a virtual PFE. In case of the MPC3e, the WAN Group 0
manages the MIC 0 and WAN Group 1 manages the MIC 1. The MPC3e’s XM chip
doesn’t directly connect to the fabric planes — actually, one XF ASIC, programmed
in Fabric Offload mode plays the role of gateway between the PFE and the fabric.

This is the same XF ASIC that you’ll find in SCBE cards, although on SCBEs XF is
programed in Standalone mode instead. In the MPC3e, this chip just provides
compatibility with legacy fabric chips of the original SCB model.

MPC4e

The last, but not the least, MPC in this book is the MPC4e. MPC4e is a monolithic
MPC and two models of MPC4e are available: the 32x10GE card and the
8x10GE+2x100GE card. MPC4e is made of two PFEs and you can see in Figure 1.5
that now XM itself is interconnected directly with the fabric planes. Moreover, you
can again see the concept of WAN Group, but in the case of this monolithic card the
WAN Group association is a little bit different than the MPC3e. Indeed. WAN
Groups are assigned differently, depending on the WPC4e model:

B MPC4e 32x10GE: For PFE 0, WAN Group 0 is associated to the first 8x10GE
ports and WAN Group 1 to the next eight ports. For PFE 1 this is the same for
the remaining 16x10GE ports.

B MPC4e 8x10GE+2x100GE: For PFE 0, WAN Group 0 is associated to the first
4x10GE ports and WAN Group 1 to the first 1x100GE port. For PFE 1 this is
the same for the remaining 4x10GE and 1x100GE ports.

From/to the WAN (MIC)

From/to the WAN (MIC)

Chapter1: An Extremely Quick MPC Overview 13

MPC3e
(1 PFE)
12C
FromTo Host/controller FromTo
all HW components via 2C Bus Control Board via GE
and 2C Bus
MIC 0 PFE 0 Linecard
From/To CRU From/To
XM Chip XF Chip PFE via PCl interface REvia GE interfaces

o

= == = < e o —|
Wan Group 1 = H - = From/To Fabric via HSL2 links =e——

L ~-_ = DL
From/To LU via HSL2 links

MIC 1 A e e LELE

T
= = . =
Wan Group 0 =/ = From _'

W

LUChip LUChip LU Chip LU Chip
(*) From/To XF via HSL2 links

Figure1.4 MPC3e Internal View

MPCde
(2 PFE)

12C
-
FromTo Host/controller From/'To
Il HW components via [2C Bus gontielBeardvisioE
o and I2C Bus
PFE O Linecard
Built-in From/To C From/To
PICO XM Chip PFE via PCI interface RE via GE interfaces
sannn
From/to the WAN 8x10GE or 4x10GE £ Wan Group 0 J =
- From/To Fabric via HSL2 links =—f——

From/to the WAN 8x10GE or 1x100GE £ Wan Group1 = =
DL
Built-in
L‘:,if \‘ FromyTo LU via HSL2 links

!
\
Repeat x1 /

Figure 1.5 MPC4e Internal View

PFE Numbering

This book refers to a PFE ID, which makes it sound like there is only one ID associ-
ated with a PFE, but actually, for any given PFE, there are two IDs assigned: the
local ID, which has a meaning at the MPC level, and the global ID that uniquely
identifies a PFE in a chassis.

The local ID depends on the type of MPC. Each MPC has a fixed number of PFEs
between 1 and 4. The local PFE ID always starts at 0 and increments by 1 for the
next PFE of the MPC. For example, the 16x10GE card has four PFEs numbered
from 0 to 3, while the MPC4e has only two PFEs numbered from 0 to 1.

The global PFE ID is computed as follows:

14

GLOBAL_PFE_ID= 4 x MPC_SLOT_NUMBER + LOCAL_PFE_ID

This Week: An Expert Packet Walkthrough on the MX Series 3D

The Junos OS assumes that each slot can have a maximum of four PFEs. If you refer
to Figure 1.6 and focus on R2, the global PFE_IDs of the PFEs in MPC slot O are:
0 and 1 (for this MPC4e, global PFE_IDs 2 and 3 are dummy IDs). The global PFE_

IDs of PFEs in MPC slot 11 are: 44, 45, 46, and 47 (the 16x10GE MPC has 4 PFEs).

This Book’s Topology

MPC4
SLOT 11 SLOT 0
R4 R5
+ o
ae0 6‘77/ Q\Q\q' aet
o % | & o
xe-11/1/0 i/ \ xe-11/0/0 , xe-0/0/0 i/ \ xe-0/2/0
e |
xe-11/1/1 ‘\ / xe-11/0/1 xe-0/0/1 \\ / xe-0/2/1
R1 - R2 ~ R3
Figure 1.6 This Book’s Lab Topology
Summary

This book relies on a very simple topology made of five MX routers. Keep your eyes
on R2 because it will be your Device Under Test. R2 is a MX960 with two MPCs,
one 16x10GE card in slot 11, and one MPC4e (8x10GE+2x100GE) card in slot 0.
The reason behind this choice is that MPC 16x10GE and MPC4e are representatives
of the first and second generation of 3D chipsets, respectively. The R2 router uses
SCBE fabric planes and it runs Junos 14.1R1.10. Figure 1.6 illustrates the physical
topology used in this book’s lab.

MPC 16x10GE

\

J

This was an extremely short history of MPCs. But it quickly reviews what you need
to keep in mind in the lab and for the remainder of this book. For more specifics on
each MPC see the Juniper technical documentation at http://www.juniper.net/

documentation.

Now it’s time to start following packets in the extraordinary MX Series 3D Universal

Edge Router.

http://www.juniper.net/documentation
http://www.juniper.net/documentation

Chapter 2

Following a Unicast Packet

Unicast Network TOROIOBY. et 16
Handling MAC Frames. et e et 7
Pre-classifying the Packets (IngressMQ/XM) 19
Creating the Parcel (IngressMQ/XM). ... 22
Forwarding Lookup (IngressLU) ..o, 24
Packet Classification (INngressLU) ..., 30
Inter-PFE Forwarding (from Ingress MQ/XM to Egress MO/XM) 31
Egress PFE FOrwarding ettt 39

SUMMATY . . o e e e e e e e 45

16 This Week: An Exp

Unicast Network

ert Packet Walkthrough on the MX Series 3D

This chapter reviews in-depth concepts common to every kind of packet and MPC
card. The first part concerns a Unicast transit packet and it will be especially

detailed.

Other types of packets will be covered in subsequent chapters, but this chapter is
where you first step into the water.

This chapter begins with basic functionalities like how a unicast transit packet is
handled by the PFE, how it is forwarded, and how it is modified. Some specific
subsections with more detailed concepts such as the case load balancing and CoS
are included.

Topology

Adding to the previous physical topology depicted in Chapter 1, Figure 2.1 illus-
trates more details regarding IP addresses and flows. IPv4 addresses are used but this
entire analysis could also be applicable to IPv6 traffic as well. There is no dynamic
protocol set in this topology — even LACP is disabled. Only static routes have been
configured to ensure the routing of non-direct subnets.

MPC 16x10GE MPC4e
SLOT 11 SLOT 0

17

\

R4 R5

%.10 14 %
100.0 FLOW1 | FLOW2' 100.0

216.0.1/32 172.16.0.3/32
T 172.16.20.8/30 "y »' 172162012130 T
ael . 9 113 1o ael
acy xe-11/0/2 xe-0/0/2 aet
2 17216.20.0/30 1 5 17216.2014/30 6
P R2| -l » RS3

FLOW 2/\FLOW1 /

FLOW 1 :IPsrc 172.16.20.10 - IPdst 172.16.0.3 - Proto UDP - Src/Dst port 1026 - Size 512Bytes - Precedence =0
FLOW 2 : IPsrc 172.16.20.14 - IPdst 172.16.0.1 - Proto UDP - Src/Dst port 1027 - Size 512Bytes - Precedence =7

Figure 2.1 Unicast Transit Flows

IMPORTANT

You can refer back to Figure 1.6 for the port numbering.

MX PFEs operate in packet mode. The word flow refers to a sequence of packets
with identical properties. Don’t think of it as a stateful flow.

The goal is to track the two UDP flows:

B Flow 1: A 1000 pps UDP stream from R4 to R3 loopback address in transit
through R2 — with an IP precedence field = 0

B Flow 2: A 1000 pps UDP stream from RS to R1 loopback address in transit
through R2 — with an IP precedence field = 7

user@R2> show interfaces ae[0,1] | match "Phy|rate"
Physical interface: aeO, Enabled, Physical Tink is Up

Chapter 2: Following a Unicast Packet 17

Input rate : 0 bps (0 pps)
Output rate : 3953144 bps (1000 pps)
Physical interface: ael, Enabled, Physical Tink is Up
Input rate : 0 bps (0 pps)
Output rate : 3953144 bps (1000 pps)

As you can see from the show command, R2’s aggregated interfaces forward the
1000 pps of each flow.

Okay, it’s time to dive into the Junos 3D hardware of R2 to better understand how
these two flows received from R4 and RS are forwarded to their destination. During
this detailed analysis of the packet life, you will see many functional blocks imple-
mented at several levels of the 3D linecards. For each functional block both CLI
commands and PFE shell commands are provided to help you troubleshoot or better
understand the analysis.

Handling MAC Frames

Let’s start to analyze the two flows arriving to R2 at the interface xe-11/0/2 for Flow
1 (MPC 16x10GE card) and the interface xe-0/0/2 for Flow 2 (MPC4e).

When a packet is received by the router, it is first handled by the MAC controller.
This component provides an interface between the PHY layer and the MAC layer
and delivers Ethernet Frames to the PFE. Figure 2.2 shows you the detailed view.

show mtip-xge summary

show mtip-xge <index> statistics

/ Comments:
For 1GE interfaces use this set of commands

/ 10 GE Ethernet Controllers \ show mtip-ge summary

show mtip-ge <index> statistics
MAC
Innnn
From SFP s RX CONTROL > m -
. 8 - -
Compliant XAUI T,
- -
Interfaces
- -
To SFP «¢ TX CONTROL - -
innnia

\ i,

/ 10/ 100 GE Ethernet Controllers \

show mtip-cge summary

show mtip-cge <index> statistics

MAC

From SFP or CFP

RX CONTROL

FIFO

Compliant XAUI or
CAUI-4 Interfaces

To SFP or CFP «¢

TX CONTROL

\

Figure 2.2 10/100 GE Ethernet Controllers

18 This Week: An Expert Packet Walkthrough on the MX Series 3D

You can retrieve some useful statistics from this controller by using one of the show
commands noted in Figure 2.2. First, you need to identify which controller manages
the interface by using the summary keyword. Then display the statistics with the
second command, here shown with a sample output for interface xe-11/0/2.

NOTE Apart from interacting directly with the line card shell, you can also use the request
pfe execute target fpcX command at the CLI level, allowing you to use | match or
except to filter specific patterns:

user@R2-re0> start shell pfe network fpcll

NPC11(R2 vty)# show mtip-xge summary

ID mtip_xge name FPC PIC 1ifd (ptr)
1 mtip_xge.11.0.16 1 0 548915b8
2 mtip_xge.11.1.17 11 1 54891528
3 mtip_xge.11.2.18 11 2 54891498
4 mtip_xge.11.3.19 11 3 54891408
5 mtip_xge.11.0.0 11 0 xe-11/0/0 548912e8
6 mtip_xge.11.0.1 11 0 xe-11/0/1 548911c8
7 mtip_xge.11.0.2 11 0 xe-11/0/2 54891018 <<<< Our ‘incoming
interface
[...]

NPC11(R2 vty)# show mtip-xge 7 statistics < Index 7 1is the controller of xe-11/0/2
Statistics

aFramesTransmittedOK: 96
aFramesReceivedOK: 2466781
aFrameCheckSequenceErrors: 46365
aAlignmentErrors: 0
aPAUSEMACCtrT1FramesTransmitted: 0
aPAUSEMACCtr1FramesReceived: 0
aFrameToolLongErrors: 0
aInRangelLengthErrors: 0
VLANTransmittedOK: 0
VLANReceivedOK: 0
ifOutOctets: 6144
ifInOctets: 1262991872
ifInUcastPkts: 2466781
ifInMulticastPkts: 0
ifInBroadcastPkts: 0
ifInErrors: 46365
ifOutErrors: 0
ifOutUcastPkts: 0
ifOutMulticastPkts: 0
ifOutBroadcastPkts: 96
etherStatsDropEvents: 0
etherStatsOctets: 1286730752
etherStatsPkts: 2513146
etherStatsJabbers: 0
etherStatsFragments: 0
etherStatsUndersizePkts: 0
etherStatsOversizePkts: 0
etherStatsPkts640ctets: 0
etherStatsPkts65tol270ctets: 0
etherStatsPkts128to2550ctets: 0
etherStatsPkts256to5110ctets: 0
etherStatsPkts512t010230ctets: 2513146 <<<< Some
etherStatsPkts1024tol15180ctets: 0 stats per Packet Size

etherStatsPkts1519toMaxOctets: 0

etherStatsPkts640ctetsTx: 9
etherStatsPkts65t01270ctetsTx:

etherStatsPkts128to2550ctetsTx:

etherStatsPkts256to5110ctetsTx:

etherStatsPkts512t010230ctetsTx:
etherStatsPkts1024to15180ctetsTx:
etherStatsPkts1519toMaxOctetsTx:

Chapter 2: Following a Unicast Packet 19

[=NeNoNoNo oo

This last command is sometimes useful to track specific packet sizes or specific MAC
errors.

Pre-classifying the Packets (Ingress MQ/XM)

NOTE

NOTE

The two flows are then delivered to the MQ (Memory and Queuing) or XM (next-
generation of MQ) chips. These two chips have a pre-classifier engine (also present
in the IX chip of low speed GE MICs), which is able to determine the packet type in
a very simple manner. Two classes are currently used and these two classes actually
correspond to two WAN Internal Streams. A third stream is also available but not
used. These streams are called Physical WAN Input Streams and have a meaning
only within the PFE itself.

B CTRL stream: (control stream, also known as medium stream) conveys
protocol traffic (host-destined or in transit) as well as management traffic (for
example, ping).

At this level the linecard can’t figure out if the packet is for the host or for transit.
This will be determined during the packet lookup, a task performed later by the LU
chip.

B BE stream: (Best Effort stream classified low) conveys all other types of traffic,
not identified by the pre-classifier engine as control.

A third Physical WAN Input Stream is called RT stream (Real Time stream classified
high) and conveys nothing in current Junos implementation for our purposes.

Because they are not control traffic, the two UDP flows are pre-classified to the BE
Physical WAN Input Stream of their incoming interface: xe-11/0/2 for Flow 1, and
xe-0/0/2 for Flow 2. You can retrieve some useful statistics from the pre-classifier
engine by using the set of commands shown in Figure 2.3, which are the same for
MQ- or XM-based cards. They give you only input statistics per physical interface
(IFD, interface device). For each interface you find the three specific Physical WAN
Input Streams.

20 This Week: An Expert Packet Walkthrough on the MX Series 3D
show precl-eng summary
show precl-eng <ID> statistics
FLOW 1 Xe'101/ o 2' Ethemet
FLOW2 . o0 Controller
Figure 2.3 The Pre-classifier Engine

Let’s have another look again at the xe-11/0/2 side in order to check which Physical
WAN Input Streams are associated to this interface and see the statistics of the

pre-classifier:

NPC11(R2 vty)# show precl-eng summary

ID precl_eng name FPC PIC (ptr)

1 MQ_engine.11.0.16 11 0 547cc708 #precl-eng 1 handles our flow 1 (PIC 0)
2 MQ_engine.11.1.17 11 1 547cc5a8

3 MQ_engine.11.2.18 11 2 547cc448

4 MQ_engine.11.3.19 11 3 547cc2e8

NOTE Remember, on 16x10GE MPC cards there are four built-in PICs.

The columns FPC/PIC in the previous command output can help you to identify
which pre-classifier engine manages the incoming physical interface. In the case of
xe-11/0/2, this is the precl-eng ID 1. (Remember the Juniper interface naming is:

xe-fpc_slot/pic_slot/port_num.)

NPC11(R2 vty)# show precl-eng 1 statistics

NPC11(R2 vty)#

show precl-eng 1 statistics

stream Traffic

port ID Class TX pkts RX pkts Dropped pkts

00 1025 RT 0000000000000000 0000000000000000 0000000000000000
00 1026 CTRL 0000000000000000 0000000000000000 0000000000000000
00 1027 BE 0000000000000000 0000000000000000 0000000000000000
01 1029 RT 0000000000000000 0000000000000000 0000000000000000
01 1030 CTRL 0000000000000000 0000000000000000 0000000000000000
01 1031 BE 0000000000000000 0000000000000000 0000000000000000
02 1033 RT 0000000000000000 0000000000000000 0000000000000000
02 1034 CTRL 0000000000000000 0000000000000000 0000000000000000
02 1035 BE 0000000002748277 0000000002748277 0000000000000000

_FLOW 1

03 1037 RT 0000000000000000 0000000000000000 0000000000000000
03 1038 CTRL 0000000000000000 0000000000000000 0000000000000000
03 1039 BE 0000000000000000 0000000000000000 0000000000000000

Chapter 2: Following a Unicast Packet 21

NOTE Each MQ Chip is connected to four 10GE interfaces. That’s why you see 4x3
streams.

Note that the TX and RX columns always show the same values. Inbound streams
and pre-classifier are only used for incoming traffic. So, just have a look at the TX
column (the output of the pre-classifier, in other words, what the pre-classifier
delivers).

Great. As expected, the Flow 1 packets are handled by the BE Physical WAN Input
Stream of the xe-11/0/2 physical interface. A similar analysis for interface xe-0/0/2
would confirm the same behavior for Flow 2.

For PFE troubleshooting you should often know the mapping between the physical
port identifier (or IFD — Interface Device) and their associated Internal Physical
WAN Input Streams. Although the previous command that gave you Pre-classifier
engine statistics may also give you that information, I prefer to use another PFE
command, which helps you to retrieve physical port (IFD) / Physical WAN Input
Stream ID mapping. Note the embedded output explanations.

On the MQ chip, the command is:
NPC11(R2 vty)# show mqchip 0 ifd <<< On MQ Chip both(Input/output) are displayed

Input IFD IFD LU
Stream Index Name Sid TClass
1033 368 xe-11/0/2 66 hi <<<< RT Stream (unused)
1034 368 xe-11/0/2 66 med <<<< CTRL Stream
1035 368 xe-11/0/2 66 1o <<<< BE Stream (Receives our FLOW 1)
[...]
OQutput IFD IFD Base
Stream Index Name Qsys Qnum

1026 368 xe-11/0/2 MQo 512

On XM Chip, the command is:
NPCO(R2 vty)# show xmchip 0 ifd 1ist 0 <<< second 0 means Ingress - 1 Egress

Ingress IFD Tist

IFD name IFD {index PHY stream LU SID Traffic Class

[...]

xe-0/0/2 340 1033 66 0 (High)

xe-0/0/2 340 1034 66 1 (Medium)

xe-0/0/2 340 1035 66 2 (Low) <<<< BE Stream

receives the FLOW 2)
[...]

Luckily, the Physical WAN Input Stream ID has the same value for the ingress ports
of both flows, each in the context of its own MPC. This is a coincidence that
simplifies the next step; just remember the number 1035 for both MPCs.

22 This Week: An Expert Packet Walkthrough on the MX Series 3D

Creating the Parcel (Ingress MQ/XM)

After the pre-classification processing, the packet is handled by a new functional
block of the MQ/XM chip: the WAN Input Block (WI). For each physical interface
attached to the PFE, the W1 Block receives packets from the three Physical WAN
Input Streams (remember only two are used), after the pre-classification. This WI
Block stores the packet for future processing in the packet buffer and generates a
parcel by catching the first part of each packet.

Let’s break for a minute and present the three kinds of data managed internally by the
3D chipsets:

B Parcel: This is actually a chunk (also known as a first segment) of the real
packet. This chunk contains all the packet headers and some other internal
fields. The parcel has a variable length but also a maximum size of 320 bytes.
Actually, if the packet size is less than 320 bytes the entire packet is taken into
the parcel. Otherwise, if the packet size is above 320 bytes, only the first 256
bytes make it to the parcel.

B Additional segments/chunks corresponding to the data that is not in the parcel
are stored in the MQ/XM on-chip and off-chip memories.

B The Cells: When the entire packet needs to move from one PFE to another PFE
through the fabric this packet is split in small cells that have a fixed size (64
bytes).

Let’s analyze statistics of the WI Block and try to retrieve the 1000 pps of each flow.
The “WI” PFE Block doesn’t maintain per stream statistics by default. For trouble-
shooting purposes, you can enable or disable them for a given stream, here the
Physical WAN Input Stream 1035 (BE stream of both interfaces xe-11/0/2 and
xe-0/0/2 at their respective MPCs). There are some differences between the MPC
16x10GE and MPC4e cards, which will be discussed throughout this book when
appropriate.

Let’s activate WI accounting for Physical WAN Input Stream 1035 on the MQ-based
card:

NPC11(R2 vty)# test mqchip 0 counter wi_rx 0 1035 <<<< first 0 is PFE_ID, second 0 is counter O

Then display WI statistics :

NPC11(R2 vty)# show mqchip O counters input stream 1035
WI Counters:
Counter Packets Pkt Rate Bytes Byte Rate

RX Stream 1035 (011) 8402 1000 4285020 <<< FLOW 1
[...]

Great! You can see the 1000 pps of Flow1. Don’t forget to deactivate the W1 account-
ing for the Physical WAN Input Stream on the MQ based card:

NPC11(R2 vty)# test mqchip O counter wi_rx 0 default
Do the same for the XM-based card. Activate WI accounting for Physical WAN Input
Stream 1035:

NPCO(R2 vty)# test xmchip 0 wi stats stream 0 1035 <<< first 0 is PFE_ID, second O is counter 0

Then display W1 statistics. This command gives a lot of information (truncated here),
just have a look at the “Tracked Stream Stat” tab:

Chapter 2: Following a Unicast Packet

NPCO(R2 vty)# show xmchip O phy-stream stats 1035 0 <<< second 0 means Input Direction

WI statistics (WAN Block 0)

[...]
Tracked stream statistics
Track Stream Stream Total Packets Packets Rate Total Bytes
Mask Match (pps)
0 0x7f Oxb 120484 1000 << FLOW 2 61446840
\ <<< Track 0 = Counter 0
[...]

23

You can see the 1000 pps of Flow 2. Don’t forget to deactivate W1 accounting for the

Physical WAN Input Stream on the XM based card:

NPCO(R2 vty)# test xmchip 0 wi stats default 0 0 <<< the second 0 means WAN Group 0 - see Chapter 1

- the third 0 is the counter Index (Track 0 on previous command)

Let’s move on to the life of the two flows. W1 has generated the Parcel so the next step
is packet lookup. The Parcel is sent to the LU (Lookup Unit) chip via the “LO” (LU
Out) functional block of the MQ or XM Chip. Why just the Parcel? Well, the Parcel
contains all the packet headers, and this is enough information to perform route
lookup, advanced packet handling, header modification, etc. There is simply no need
to send the whole original packet up to the LU chip, so just the Parcel is enough.

The MQ or XM chip adds a header to the Parcel called the M2L header (MQ to LU).
This header includes some information collected by the MQ or XM chip, like the
Physical WAN Input Stream value (in this case 1035). The other packet segments
made by WT are pre-buffered in MQ/XM on-chip memory. The MQ/XM off-chip
memory will be used later, during the queuing phase.

The LU chip is split internally in several Packet Processor Engines (PPE). The traffic
inside the LU chip is load balanced between all the PPEs. An LU chip’s PFE-based
commands are quite “tricky,” so for the sake of this example, let’s consider the LU
chip as a Black Box that carries out tasks such as packet lookup, traffic load balanc-
ing, uRPF check, packet classification, packet filtering, packet accounting, packet
policing, and many others that are not covered in this book.

24

Figure 2.4

FLOW 1 xe-11/0/2

FLOW 2 xe-0/0/2

Ethernet
Controller

This Week: An Expert Packet Walkthrough on the MX Series 3D

OffChip Memory

[OnChip Memory }

—

@)

[Packet Management

}\

pre-classifier
Engine

e

From MQ/XM Towards the LU Chip

NOTE
the two LU chips.

Forwarding Lookup (Ingress LU)

or

(BE Seam |

(1)

L)‘ ‘Pa_cket Segments
Wi

?ﬁca
A4
LO /

HSL2

l

N

B[k

(g

MPC4e has two LU chips per XM chip. The XM chip load balances parcels across

The LU chip processes the parcel and then performs several tasks depicted in Figure
2.5 carried out by the LU when it receives the parcels of the two flows.

Once it receives the parcel from the MQ or XM “LO” block, the LU chip first
extracts the Physical WAN Input Stream ID from the M2L header. Then the parcel is
dissected in order to check which protocol conveys the Ethernet frame. In our
example the Ethernet type field is equal to 0x800 = IPv4. During the IPv4 sanity
check the packet total length and the checksum are compared to the values carried
in the IP header. If the sanity check fails, the packet is marked as “to be dropped.”
(Drops will be performed by the MQ or XM chip - see Chapter 3 for more details).

Chapter 2: Following a Unicast Packet 25

From MQ
or XM
Queue
Process BA
—> K . —>| Assignment
PARCEL classification (Wan or Fab)
[[
Ethernet leseps
Parsin ezt
9 balancing
[[
Protocol MF
Sanity Check classification = To MQorXM
I I
Filtering
uRPF check Policing ERERE
Accounting — a:
\ B [N a /

Figure 2.5 LU Next-hop Chaining

The next step is route lookup and the result for each of the example flows is: packet
must be forwarded to another PFE to reach the destination. Indeed, there are several
possible results for a transit packet: the forwarding next hop may be attached to the
same PFE as the incoming interface (intra-PFE forwarding), or to a remote PFE
(inter-PFE forwarding). For the two flows, this second type of forwarding is involved.

NOTE This book does not specifically cover the case of intra-PFE forwarding. Nevertheless
by covering in detail the inter-PFE forwarding you should have all the keys to under-
stand intra-PFE, which is actually a subset of inter-PFE. Forwarding between inter-
faces attached to the same PFE is typically handled locally and does not involve the
fabric.

When the LU chip computes the forwarding next hop, if there is equal-cost multipath
(ECMP), or if the outgoing interface is a LAG (Link Aggregated Group), LU also
performs the hash during route lookup. In this way, LU is responsible for load
balancing traffic across ECMP or LAG’s child links. In this book’s examples there is
no ECMP, but LAG as outgoing interfaces (ae0 for Flow 2 and ael for Flow 1,
respectively). It was not mentioned previously, but the R2 router is configured with a
forwarding table export policy that allows flow-based load balancing at the forward-
ing level:

set policy-options policy-statement load-balancing-policy then load-balance per-packet
set routing-options forwarding-table export load-balancing-policy

MORE? The default hash computation is used in this book. You can further fine-tune it by
configuring it at the forwarding-options/enhanced-hash-key level.

Okay, let’s have a short break in our packet-life analysis and explain a bit more about
the “load balancing” function. It is going to be a lengthy diversion, and then we’ll
return to the MQ/XM chip.

26 This Week: An Expert Packet Walkthrough on the MX Series 3D

Load Balancing (Ingress LU)

Flow load balancing is performed by the LU chip. The LU chip extracts from the
Parcel some fields of the packet: IP source/destination addresses, for example. Then
it computes a hash key based on these fields. The hash is used to select the final and
unique forwarding interface, among the several equal-cost choices, in the case of
ECMP or LAG.

NOTE This book does not cover the recently added Adaptive Load Balancing feature; its
functionality allows dynamic load re-balancing of flows depending on their rate.

With the default static (non adaptive) load-balancing, some fields are mandatory
and always used. For example, for IPv4 packets, IP source/destination addresses
plus the IP protocol fields are included by default in the hash computation and
cannot be removed. Other fields may be added or removed via configuration.

Let’s have a look at R2’s MPC slot 0:

NPCO(R2 vty)# show jnh 1b
Unilist Seed Configured 0x919ae752 System Mac address 00:21:59:a2:e8:00
Hash Key Configuration: 0x0000000100e00000 Oxffffffffffffffff
IIF-V4: No <<< IIF means Incoming Interface index : (the incoming IFL)
SPORT-V4: Yes
DPORT-V4: Yes
TOS: No
GTP-TEID-V4: No
[...]

The fields that are used to compute hash can be retrieved by using the above com-
mand. The output doesn’t display mandatory fields. Only optional fields which may
be added or removed by configuration are displayed.

As you can see, by default for IPv4 traffic, MPC uses only five fields for the hash
computation: IP source and destination addresses, IP protocol, and UDP/TCP
Source and Destination ports.

Let’s move back to our case study: suppose the packet (Parcel) is still in the LU chip
and route lookup, plus hash computation has already been performed and the final
next hop found. The question is now: How to check the result of the hash computa-
tion performed by the ingress LU chip, and more importantly, which output inter-
face among the LAG child links has been selected as the forwarding next hop?

In other words, which physical interface of AEO will the Flow 2 be forwarded on,
and which physical interface of AE1 will the Flow 1 be forwarded on?

At the PFE level you can find a nifty little command that should answer this ques-
tion. Actually, it’s a tool, called jsim. It allows you to craft a Parcel including the
fields used by the hash computation, and once the fake Parcel is created you can then
run a packet lookup simulation which will give you the forwarding next hop. The
jsim tool is a bit tricky because you need to know some information about the
packet as well as the “m21” header in advance. But once you know how to use it,
jsim simulates the complete next hop chain resolution including all the tasks
performed by the LU chip. What a tool!

Chapter 2: Following a Unicast Packet 27

CAUTION Again, jsim is shell-based so it is absolutely not supported. Only use it in a production
network if instructed to do so by JTAC!

Step-by-Step on How to Use jsim
Let’s try to find the forwarding next hop of the Flow 1.

Step 1: Open a shell session to the Incoming MPC — the MPC that connects the incoming interface.
Flow 1 is received by R2 on xe-11/0/2.

user@R2> start shell pfe network fpcll

Step 2: Prepare and collect information regarding Jsim configuration.

Flow 1 is an IPv4 unicast traffic and default load-balancing configuration is in place.
So, the fields used for hash computation are:

B [Pv4 Source address = 172.16.20.10
B [Pv4 Destination address = 172.16.0.3
B IPv4 Protocol = UDP (valueis 17)
B UDP Source Port = 1026
B UDP Destination Port = 1026
And you need to collect some internal information:

B The physical Port number on the PIC which receives the stream. Flow 1 is
received by the xe-11/0/2 interface, so the physical port number is 2.

B The Physical WAN Input Stream which handles the Flow at MQ or XM Level.

You’ve previously seen two commands to retrieve this information. One on the MQ
Chip:

NPC11(R2 vty)# show mqchip 0 ifd
<<< On MQ Chip there 1is no direction - both(Input/output) are displayed
And one on the XM Chip:

NPCO(R2 vty)# show xmchip 0 ifd 1ist O
<<< 2nd 0 means Ingress - 1 Egress

In this case, the xe-11/0/2 is hosted by a MQ-based card and Flow 1 is not control or
management traffic, so it should be handled by the BE Physical WAN Input Stream.
Let’s try to retrieve the stream ID:

NPC11(R2 vrv)# show mqchip 0 ifd
<<< 0 means PFE 0 which hosts the interface

INPUT IFD IFD LU
STREAM INDEX Nave Sip TClass
[...]
1033 490 xe-11/0/2 66 HI
1034 490 xe-11/0/2 66 MED
1035 490 xe-11/0/2 66 1o <<< 1o is the BE stream

[...]

28 This Week: An Expert Packet Walkthrough on the MX Series 3D

So the input physical stream value for the Flow 1 is 1035. Great! You have all that
you need to configure jsim now.

Step 3: Configure the jsim tool.

Now fill in the collected data into the jsim tool:

RESET JsSIM ToOL
NPC11(R2 viv)# jsim reset

Tell jsim that the packet is a udp packet (use ? To see the others choices)
NPC11(r2 vty)# set jsim protocol udp

Fi11 jsim with packet information used by hash computation
NPC11(R2 vty)# set jsim ipsrc 172.16.20.10

NPC11(R2 vty)# set jsim ipdst 172.16.0.3

NPC11(R2 vty)# set jsim ip-protocol 17

NPC11(R2 vty)# set jsim src-port 1026

NPC11(R2 vty)# set jsim dst-port 1026

Fill jsim with PFE internal information (Stream ID and Port Number)
NPC11(R2 vty)# set jsim m21 stream 1035
NPC11(R2 vty)# set jsim m21 i2x port_num 2

Set the my_mac flag. The last bit just tells jsim that the flow was accepted by MAC Tayer.
NPC11(R2 vty)# set jsim m21 i2x my_mac 1

Let’s now verify that jsim is configured as expected:

NPC11(R2 vty)# show jsim fields
Packet Length : 64

Inport: WAN
Parcel_type 0 TailEntry O Stream Fab 0x40b Off 0
IxPreClass 0 IxPort 2 IxMyMac 1
Ucode protocol: (Ethernet)
src_addr: 00:00:00:00:00:00
dst_addr: 00:00:00:00:00:00
type: 800
Ucode protocol: (IPv4)
src_addr: 172.16.20.10
dst_addr: 172.16.0.3
tos: 0O
id: 1
ttl: 32
prot: 17
Ucode protocol: (UDP)
Source Port : 1026
Destination Port: 1026

Step 4: Run jsim tool

It’s time to run the jsim tool. It gives you a lot of information (many pages — don’t
panic). Actually, it simulates the complete next hop chaining which includes, among
others, the one depicted in Figure 2.5.

Let’s just look at the last step. Note that the actual function name and hexadecimal
offset may change across Junos releases. Let’s look for function send_pkt_termi-
nate_if_all_done in the end:

Chapter 2: Following a Unicast Packet = 29

NPC11(R2 vty)# jsim run 0 <<< 0 means PFE O (run Jsim on PFE that hosts the incoming interface)
[...]
13 send_pkt_terminate_if_all_done_2 @ 0x0358
Cond SYNC XTXN REORDER_TERMINATE_SEND(PA 0x864lalc6, 0x00000054)
Packet (h_h 26 @ Ox1c6 h_t 50 @ 0x54):
04bfe00011f00000
0001200001750001
0001000000000000
0378 <<< This is the forwarding next hop ID in Hexadecimal.
450000320001
00001f112f8dacl0
1402ac1000030402
0402001e8b800000
0000000000000000
0000000000000000
00000000

Step 5: Resolve the next hop ID

To finish up you need to resolve the forwarding next hop ID 0x0378. To do this use
this command:

NPC11(R2 vty)# show nhdb id 0x0378
ID Type Interface Next Hop Addr Protocol Encap MTU Flags

888 Unicast xe-0/0/0.0 172.16.20.6 IPv4 Ethernet 8986 0x0000000000000000

Great! You’ve finally found the child interface of AE1 that should convey the Flow 1
stream. Just verify your work by checking the output statistics of the AE1 child
interfaces:

user@R2> show interfaces xe-0/0/[0-1] | match "physical|rate"
Physical interface: xe-0/0/0, Enabled, Physical link is Up

Input rate : 0 bps (0 pps)
Output rate : 3953136 bps (1000 pps)
Physical interface: xe-0/0/1, Enabled, Physical 1link is Up
Input rate : 0 bps (0 pps)
Output rate : 0 bps (0 pps)

As you can see xe-0/0/0 is the forwarding next hop of Flow 1. If you do the same for
Flow 2 you will find interface xe-11/0/1 as the forwarding next hop.

Step 6: Clean up your test

Don’t forget to clean up your test. Indeed, the jsim’s result is saved in the MPC:

First, find the "Idx" of your test. The one called "send_pkt_terminate_if_all_done_2"
NPC11(R2 vty)# show ttrace
Idx PFE ASIC PPE Ctx Zn Pending IDX/Steps/Total FLAG CURR_PC Label
0 O 0o 1 15 23 94/ 93/ 1000 SAVE 0x0358 send_pkt_terminate_if_all_
___ Idx of your test

Delete the test result
NPC11(R2 vty)# bringup ttrace 0 delete <<< 0 1is the Idx of your test.

Call back again show ttrace to check that test has been well deleted.
NPC11(R2 vty)# show ttrace

30 This Week: An Expert Packet Walkthrough on the MX Series 3D

Packet Classification (Ingress LU)

Now that you have found the final forwarding interface by using the jsim tool,
remember the packet is still in the LU chip of the Ingress PFE. So the trip within the
MX hardware still has a long way to go.

As illustrated in Figure 2.5, the LU chip performs many tasks. It has found the final
next hop, and now, the LU chip performs another important task — packet classifica-
tion.

Indeed, the ingress linecard is in charge of classifying the inbound packets and
assigning them to the right forwarding class and drop/loss priority. The LU chip
assigns these values but it does not perform any queuing or scheduling. These tasks
are performed by the MQ/XM chip instead (details to come).

R2’s configuration does not have any explicit CoS BA classifiers applied to the
ingress interfaces, so the packets are classified according to the default IP precedence
classifier, called ipprec-compatibility:

user@2> show class-of-service interface xe-11/0/2.0 | match classifier

Classifier ipprec-compatibility ip <index>
user@2> show class-of-service interface xe-0/0/2.0 | match classifier
Classifier ipprec-compatibility ip <index>

user@R2> show class-of-service classifier name ipprec-compatibility

[...]
00 FCO Tow
[...]
11 FC3 high
[...]

B Flow 1 packets have IP Precedence 0, so they are classified to forwarding class
FCO and loss priority (PLP) low.

B Flow 2 packets have IP Precedence 7, so they are classified to FC3 and PLP high.

MORE? The forwarding class and loss priority concepts are explained in detail in Day One:
Junos QoS for IOS Engineers. See: http://www.juniper.net/us/en/training/jnbooks/
day-one/fundamentals-series/junos-qos/.

The forwarding class assignment determines the egress queue where the packet will
ultimately be placed on the egress PFE. This is only relevant when the packet is
queued towards the egress port facing the outside world, and there is still a long way
to go to get there. Let’s see how forwarding classes and queue numbers are linked
together:
user@R2> show configuration class-of-service
forwarding-classes {
queue 0 FCO priority low;
queue 1 FC1 priority low;
queue 2 FC2 priority low;
queue 3 FC3 priority high;

The low/high values on the right have nothing to do with the drop/loss priority (PLP)
concept mentioned earlier (although they match this time, it’s simply a coincidence).

Instead, they refer to the fabric priority. In this scenario of inter-PFE forwarding, the
LU chip of the ingress linecard not only assigns the packet to the right forwarding

http://www.juniper.net/us/en/training/jnbooks/day-one/fundamentals-series/junos-qos/
http://www.juniper.net/us/en/training/jnbooks/day-one/fundamentals-series/junos-qos/

Chapter 2: Following a Unicast Packet 31

class/drop priority but also to the right fabric gueue depending on the CoS configu-
ration. Let’s wrap up:

B Flow 1 packets are classified to forwarding class FCO and packet loss priority
(PLP) low. If they need to go through the fabric, they will be placed in the low
priority fabric queues. If they need to be sent out of a WAN egress port, they
will be placed on queue 0.

B Flow 2 packets are classified to forwarding class FC3 and packet loss priority
(PLP) high. If they need to go through the fabric, they will be placed in the
high priority fabric queues. If they need to be sent out of a WAN egress port,
they will be placed on queue 3.

NOTE Inthis book, the term WAN refers to the interface/ports facing the outside world.
The fact that these ports are connected to a local or to a wide area network is
irrelevant: they are considered as the WAN.

The LU chip did its job: packet analysis, route-lookup, load balancing, packet
classification, and most recently, fabric queue assignment.

It’s time for the packet, actually the Parcel, to leave the LU chip. The Parcel comes
back to the MQ/XM chip through the LU In Block (LI). The Parcel is “rewritten”
before returning it to MQ/XM chip. Indeed, LU adds additional information into a
Parcel header. In fact, several headers may be added:

B The first header called the L2M header is always present. The LU chip pro-
vides the MQ/XM chip with some information through this L2M header. The
L2M header has a meaning only inside the PFE. It will be removed by the MQ/
XM chip after processing. The L2M header conveys the queue assigned by the
LU. This queue may be the fabric queue in the case of inter-PFE forwarding
(our case); or the WAN Egress Forwarding Queue in case of intra-PFE For-
warding; or, finally, an egress lookup (we’ll see that later).

B The second header called the Fabric Header (FAB) has a meaning inside and
outside the PFE. It allows inter-PFE forwarding. Actually, this header is added
only when the packet should go to another PFE in order to reach its forward-
ing next hop. The Fabric Header conveys, along with other information, the
next hop ID resulting from the packet lookup, the forwarding class, and the
drop priority assigned by the ingress LU chip.

In this book’s example, the forwarding next hop of both Flow 1 and Flow 2 is
outside of the ingress PFE. So L2M and FAB headers are both prepended to the
Parcel. For each flow, the ingress LU chip provides (encoded in the L2M header) to
the ingress MQ/ XM chip the fabric queue ID upon which the packet must be
queued before being forwarded to the destination PFE.

Inter-PFE Forwarding (from Ingress MQ/ XM to Egress MQ/XM)

Once the LU chip does its job, it returns the Parcel back to the MQ/XM chip, more
specifically to the LI (“LU in”) block of the MQ/XM chip. Now the MQ or XM
chip knows that the packet should be forwarded to a remote PFE. It also knows the
destination PFE thanks to the fabric queue number carried in the L2M header.

32 This Week: An Expert Packet Walkthrough on the MX Series 3D

Fabric Queues (Ingress and Egress MQ/XM)

Let’s step back for a moment and explore in depth the fabric queue concept.

Indeed, before moving from one PFE to another the packet is first queued by the
ingress MQ/XM chip awaiting authorization from the remote PFE.

Regarding fabric CoS, Juniper supports two levels of priority: high and low. Actu-
ally there are two queues per destination PFE: a high priority and a low priority
queue. These two levels of priority are used when fabric congestion occurs. In this
situation, scheduling occurs based on 95% for High Priority and 5% for Low
Priority queue (for more information on Trio CoS refer to Appendix A).

To introduce fabric CoS let’s have a look at the following CLI output command. It
shows you the fabric queuing statistics (globally from a MPC to another MPC).
Here are the statistics for traffic from MPC 0 to MPC 11 and the reverse path. This
command consolidates the fabric queue statistics on a per-MPC basis.

user@R2> show class-of-service fabric statistics source 0 destination 11
Destination FPC Index: 11, Source FPC Index: O

Total statistics:

High priority

Low priority

Packets: 67571976 84522585
Bytes 34461578824 43029284328
Pps 1000 0
bps 4080000 384
Tx statistics: High priority Low priority
Packets: 67571976 84522585
Bytes 34461578824 43029284328
Pps 1000 0 <<< FLOW 2
bps 4080000 0
Drop statistics: High priority Low priority
Packets: 0 0
Bytes 0 0
Pps 0 0
bps 0 0

user@R2> show class-of-service fabric statistics source 11 destination 0

Destination FPC Index: 0, Source FPC Index: 11
Total statistics: High priority Low priority
Packets: 283097 161632444
Bytes 144250534 82355300176
Pps 0 1001
bps 0 4080384
Tx statistics: High priority Low priority
Packets: 283097 161632444
Bytes 144250534 82355300176
Pps 0 1001 <<< FLOW 1
bps 0 4080384
Drop statistics: High priority Low priority
Packets: 0 0
Bytes 0 0
Pps 0 0
bps 0 0

Interesting, isn’t it ? You can see that the traffic of Flow 2, coming from MPC 0
toward MPC 11, is handled by the high priority queue, whereas Flow 1 is handled
by low priority queue when it is forwarded through the fabric from MPC 11 to
MPC 0. Why? Well, actually, this behavior has been explicitly configured. Remem-
ber Flow 2 is marked with the IP precedence 7, whereas Flow 1 keeps the default
value of 0. This triggered a different classification at the LU chip, which resulted in
a different fabric priority assignment.

Chapter 2: Following a Unicast Packet 33

By checking R2’s previous configuration you can see that the forwarding class FC3 is
assigned to queue 3 with a fabric priority set to high, whereas FCO mapped to queue
0 has a low priority. These last two points explain why Flow 2 is conveyed within the
fabric queue with the high priority but Flow 1 is not.

In our case, the LU chip of ingress MPC 11 selects the forwarding class FCO (queue 0)
and fabric queue low for Flow 1, and MPC 0 selects the forwarding class FC3 (queue
3) and fabric queue high for Flow 2.

Once the final next hop has been found and the packet classified, the fabric queue can
easily be deduced taking into account the destination MPC slot number and destina-
tion PFE number. Figure 2.6 illustrates the simple rule to find the fabric queue

number assigned by the ingress LU chip and conveyed in the L2M header to the MQ/
XM chip.

/ Slot 0 Slot 11 \

b

o=l .
e
)
m
m
o

PFE 2

\ PFE 1 Fres /

Fabric Queue Low = MPC_SLOT x 4 + PFE_ID
Fabric Queue high = 128 + (MPC_SLOT x 4 + PFE_ID)

b

Figure 2.6 How to Compute the Fabric Queue Number Based on the Destination MPC/PFE

MPC_SLOT_DESTINATION x

Based on this rule you can deduce not only the fabric queue number, also known as
the Output Physical Fabric Stream, where the ingress PFE chip buffers the packet
chunks; but also on which Input Physical Fabric Stream the egress PFE will receive
these chunks. We speak about Fabric Queue on ingress MPC because the traffic is
really queued there before it’s sent through the fabric. On the other hand, the egress
MPC receives the packets on a Fabric Stream where there is no real queuing; the
packet is received and follows its processing.

Let’s do the fabric queue/stream computation as if you were the LU chip. ;)

Let’s start with Flow 1. Its packets are received by the MPC in slot 11 PFE ID 0
(xe-11/0/2) and the destination is MPC slot 0 PFE 0 (xe-0/0/0 or xe-0/0/1 (AE1)).
Remember Flow 1 was classified in forwarding class FCO, which has a fabric priority
set to low by configuration. So Flow 1 will be forwarded to the output fabric queue
low to reach the (MPCO; PFEO) destination. This output fabric queue number will be:

4 +PFELID=0x4+0=0

It means: Flow 1 will be queued by the MQ chip 0 of MPC slot 11 at the output fabric

queuelstream 0, which has low priority and is pointing to the XM chip 0 of MPC slot
0.

34 This Week: An Expert Packet Walkthrough on the MX Series 3D

But Wait! Flow 1, when it later arrives at (MPCO; PFEQ), will be received at its input
fabric stream number 44. Why 44 ¢

You have to do the same computation, but from the egress PFE point of view this low
priority flow is received from (MPC 11; PFE 0), so the input fabric stream number
from the perspective of (MPCO; PFEQ) is:

MPC_SLOT_SOURCE x 4 + PFE_ID = 11 x 4 + 0 = 44

It means: Flow 1 will be received by the XM chip 0 of MPC slot 0 from the fabric at
the input fabric stream 44.

Let’s do the same for Flow 2 as the packets are received by the MPC in slot 0 PFE ID
0 (xe-0/0/2) and the destination is MPC slot 11 PFE 0 (xe-11/0/0 or xe-11/0/1
(AEO)). Flow 2 is classified in forwarding class FC3 with a fabric priority set to high.
So Flow 2 will be handled at (MPCO; PFEO) by the fabric queue high pointing to the
(MPC11 ; PFEQ) destination. This output fabric queue number is 172:

128 + (MPC_SLOT_DESTINATION x 4 + PFE_ID) = 128 + (11 x 4 + 0) = 172

128 + (MPC_SLOT_SOURCE

/Slot 0 Fabric Planes Slot 11\\

It means: Flow 2 will be queued by the XM chip 0 of MPC slot 0 at the output fabric
queue/stream 172, which has bigh priority and is pointing to the MQ chip 0 of MPC
slot 11.

But Wait Again! Flow 2, when it later arrives at (MPC11 ; PFEO) will be received at
its input fabric stream number 128. Why 128? Again, do the computation but from
the egress PFE point of view. This high priority flow is received from (MPC 0; PFE 0),
so the input fabric stream number from the perspective of (MPC11; PFEQ) is 128:

X 4 + PFE_ID) = 128 + (0 x 4 + 0) = 128

It means: Flow 2 will be received by the MQ chip 0 of MPC slot 11 from the fabric at
the input fabric stream 128.

Great job if you followed all this. It’s a little tricky, so look at Figure 2.7 which is a
graphical representation of how flows are conveyed internally in the fabric.

xe-0/0/2 xe-11/0/2

Flow2 — — — — —] 3] Flow 1

Flow 1 | T T T *> Flow 2
xe-0/0/0 xe-11/0/0

=t L =)

Figure 2.7 Fabric Queues for Flow 1and 2

Chapter 2: Following a Unicast Packet 35

Sending Traffic Through the Fabric

As you have seen, the ingress MQ/XM chip knows the fabric queue number where
the packet (Parcel and additional data units) needs to be placed. This is thanks to the
L2M (LU to M) header. Well, the MQ/XM chip strips this L2M header after process-
ing it. Only the fabric header is kept and ultimately forwarded to the remote (egress)
PFE. This fabric header carries useful information like the final next hop ID resulting
from the route lookup, the forwarding class, and the drop priority.

—
=
I
<
=
(2]
2

=
S

©
it

HSL2 |
PARCEL [1L2m [FAB Head. |PARCEIN
>
Q(Iel/ Coo
e '’
v 4 “
°r7> OJ‘*
c c S > c
a 2 2loo "GE) 5‘033 g 4//”/0
S08|c8|Sc| 2 @ ER
ST 232|832 |c8 @ © o 2
ez 2| 2[5 | o &} 5 2
] £ E | o (S
o Q < w 7]
o O o = <

Figure 2.8 From LU back to the “M” Chip

IMPORTANT

REMEMBER

The LI Block at MQ/XM moves the Parcel and the associated segments (previously
stored at on-chip memory) to the off-chip memory. Only the pointer referring to the
real packet is now stored at the MQ or XM on-chip memory. But keep in mind this
pointer refers to the packet.

Only pointers are queued. Real data stays in off-chip memory until it has to be
forwarded towards either a remote PFE through the fabric (inter-PFE) or to a WAN
interface (intra-PFE).

Now packets are queued and packet scheduling takes place. This is the job of the
SCHED block of the MQ or XM chip and it is in charge of providing CoS functions
for packets in transit (for control plane packets see Chapter 3).

The SCHED block is complex and a dedicated tangent is required regarding the CoS
implementation in MQ or XM chips. Check Appendix A of this book to fully enjoy
this tangent.

Each PFE (MQ or XM chip) has two fabric queues (low and high) towards each
possible remote PFE.

The two packet flows are queued into the correct fabric queue or fabric stream by the
SCHED block of the MQ/XM chip, waiting for the approval of the remote PFE
before sending them through the fabric. The new functional block FO (Fabric Out)
part of MQ/XM chip sends the entire packet (actually the Parcel with its FAB header
generated by LU chip, plus the other packet segments) to the right destination.

36

This Week: An Expert Packet Walkthrough on the MX Series 3D

NOTE

NOTE

MORE?

Now the fabric conveys only fixed-size packets called cells. Each cell is a 64-byte
data unit made up of a header and a payload. When a packet needs to be forwarded
to a remote PFE, it is first split in several cells.

The MX fabric is made up of several fabric planes. The cells of a given packet are
load-balanced over these several planes in a round-robin manner. A sequence
number is assigned to each cell, to ensure cell re-ordering on the egress PFE side.

This book does not provide a deep dive of the MX fabric. You can consider each
fabric plane as a switching matrix interconnecting all the PFEs.

The group of cells (of a given packet) does not go directly from a source PFE to a
destination PFE. For every single cell, the source PFE needs to first send a request
through a specific fabric plane to the remote (destination) PFE. In return, the
destination PFE acknowledges the request by sending back a reply over the same
fabric plane. When the reply is received by the source PFE, the data cell can be sent
over the fabric. The request / grant cells implement a flow control mechanism, but
they carry no traffic data themselves.

Actually, request/grant cells are piggy-backed with other data cells but they are
logically independent.

This mechanism also prevents PFE oversubscription. If the destination PFE is
congested, it silently discards incoming requests. This indirectly puts pressure on the
source PFE, which does not see incoming grants and as a result buffers the packet
chunks for some time. The outcome may be RED or TAIL drops.

Figure 2.9 summarizes the packet life of Flow 1 and Flow 2 within the ingress PFE.

And before moving onto the egress PFE side, let’s do an analysis of the FO block
statistics.

If you follow our CoS tangent in Appendix A, you will learn how to retrieve fabric
queue information details with this command: show cos halp fabric queue-stats
<fabric queue/streams.

Like the WI block, the MQ/XM chip doesn’t maintain statistics for the fabric
queues/streams by default. You have to manually enable statistics for a given fabric
queue/stream. Let’s do it on the two MPCs and try to track Flow 1 on the FO block
of MPC 11 and Flow 2 on the FO block of MPC 0.

Now, let’s enable the FO counter (choose counter number is 0) for the Fabric
Stream O (Flow 1 has been assigned to the low priority queue/stream to reach PFE 0
of the MPC 0):

NPC11(R2 vty)# test mqchip O counter fo 0 0 <<< second 0 is the counter ID,and the third 0 1is the

fabric stream

And now show the stats:

NPC11(R2 vty)# show mqchip O fo stats

FO Counters:

Stream Mask Match Packets Pkt Rate Bytes Byte Rate Cells Cell Rate
FOO Ox1ff 0x000 3906 1001 1990244 510056 FLOW 1>>>> 8001
FOO 0x000 0x000 51776597305 1023 28037921046891 520404 461979582353 8163

Chapter 2: Following a Unicast Packet 37

FO1 0x000 0x000 0 0 0 0 0 0
FO1 0x000 0x000 0 0 0 0 0 0

You can see the 1000 pps of Flow 1 and you can also see the rate in data cells per
second. Remember that cells have a fixed size of 64 bytes and Flow 1 has a packet size
of 512 bytes, so there are eight times more cells than Packets.

Don’t forget to stop FO accounting:

NPC11(R2 vty)# test mgchip O counter fo 0 default

Now let’s do the same on MPC 0 for Flow 2 (fabric stream 172):

NPCO(R2 vty)# test xmchip 0 fo stats stream 0 172 (<<< 0 = counter 0 - 172 the Fabric Stream)
NPCO(R2 vty)# show xmchip 0 fo stats

FO statistics

Counter set 0

Stream number mask 1 Ox3ff

Stream number match : Oxac

Transmitted packets : 6752 (1000 pps) <<< Flow 2
Transmitted bytes : 3443520 (4080000 bps)
Transmitted cells : 54016 (8000 cps) <<< Data Cells

And you can see the 1000 pps rate of Flow 2 and the 8000 cells per second.

Don’t forget to stop FO accounting:
NPCO(R2 vty)# test xmchip 0 fo stats default O

> 5]
& e
&2]
1) R i g
74, 35 3
A\.»%O NNNko 2L 5
Y 40 X
© [owval en] |
T30dvd | TzZw |

This Week: An Expert Packet Walkthrough on the MX Series 3D

38

i ZISH
AR AR S
uﬁ ‘m 10 uq ‘u -
o o (9) 1304Vd
®) ‘pesy gv4
Jajulod 19)oed 1304vd
(o) QaHos 18]10:3U00 2003 5 o4
14 JENIEE| O— | MO14
_ 2/0/LL-9X
weans ge4
(2 sjuswbag joxoed
of |] e | | ®
5 S _ uswiebeue|y 19x0. Kowsy diyou
T ‘ (z1) Wuswbag 19%0ed + 130MVd + PESH GV _ 2 es MeF
3dd ssaub3 S3NVId o1Mav4d (2)
A [@®
fows diyguo

Global View of Packet Life — Ingress PFE

Figure 2.9

Chapter 2: Following a Unicast Packet = 39

Egress PFE Forwarding

In this section, let’s watch the egress PFE which is MPC 0 PFE 0 for Flow 1, and let’s
also watch MPC 11 PFE 0 for Flow 2. The FI block (Fabric Input) of the egress PFE
receives the cells coming from the different fabric planes. FI is in charge of re-order-
ing the cells of a given packet before the packet is sent to off-chip memory. Only the
Parcel, with its FAB header, is sent to the egress LU chip. You can poll the FI block to
retrieve statistics as long as these are enabled for a given input Fabric stream.

Flow 1 is now on the FI block of egress MPC 0 PFE 0, but remember Flow 1 comes
from the MPC 11 PFE 0 and has a low priority set in the cell header. The low
priority Input fabric stream should be: MPC_SOURCE_SLOT x 4 + PFE_
SOURCE_ID = 44.

Let’s enable FI accounting for Fabric Stream 44 on XM chip 0 of MPC 0, and then
show stats:

NPCO(R2 vty)# test xmchip 0 fi stats stream 44

NPCO(R2 vty)# show xmchip 0 fi stats

FI statistics

Stream number mask 0x3ff

Stream number match 0x2c

Counter Name Total Rate

MIF packet received 4692 1001 pps <<< FLOW 1
MIF cells received 37501 7993 cps

MIF packet drops 0 0 pps

MIF cell drops 0 0 cps

Packets sent to PT 4692 1000 pps

Packets with errors sent to PT 0 0 pps

As you can see, Flow 1 has traveled through the fabric. FI statistics show you the cell
rate and packet rate after the cells’ re-ordering. Now let’s disable FI accounting:

NPCO(R2 vty)# test xmchip O fi stats default

For Flow 2, you must have a look at the FI block of egress MPC 11 (remember Flow
2 comes from the MPC 0 PFE 0 and has a high priority set in the cell header). The
high priority Input fabric stream is: 128 + MPC_SOURCE_SLOT x 4 + PFE_
SOURCE_ID =128

Let’s enable FI accounting for Fabric Stream 128 on MQ Chip 0 of MPC 11:

NPC11(R2 vty)# test mqchip O counter fi 128

Now let’s confirm that Flow 2 is received by egress PFE:

NPC11(R2 vty)# show mqchip O fi stats

FI Counters:

40 This Week: An Expert Packet Walkthrough on the MX Series 3D

Stream Mask Match

0x3ff 0x080 Packets Pkt Rate Cells Cell Rate
Received 7640 1000 61120 8000
Dropped 0 0 0 0

Pkts to PT 7640 1000

Errored Pkts to PT 0 0

All’s well here, so let’s disable FI accounting before leaving:

NPC11(R2 vty)# test mqchip O counter fi default

Let’s keep following the packets. The Parcel and its FAB header are sent to the LU
chip of the egress PFE. As you’ve seen previously, the MQ/XM chip adds the M2L
header before. For “egress” lookup the M2L conveys the Input fabric queue number
(also known as the input fabric stream): 44 for Flow 1 and 128 for Flow 2.

The egress LU chip performs several tasks. It first extracts information from the
M2L and FAB headers. Based on the NH ID (Next Hop ID) and some Parcel fields
(like next hop’s IP for ARP resolution) it can deduce the forwarding next hop and
build the Layer 2 header. This includes pushing or popping headers like MPLS,
VLAN, etc., if needed. Moreover, based on the CoS information (forwarding class
and loss priority) it can assign the right WAN Physical Output Queue to use and
also perform CoS packet re-writing. Once the packet (actually the Parcel) has been
re-written, it goes back to the MQ/XM Chip. The FAB Header has been removed
and only the L2M header is now present. This header conveys the WAN Output
Queue number. Figure 2.10 illustrates this walkthrough.

Y
OffChip Memory

-

o N
FABRIC PLANES [

OnChip Memory ’ Packet Management

(2') Packet Segments T

(et an] co

@

OO A

| HSL2

y

(4)| [m2L [FABHead. [PARCEL| (5) [[L2m [PARCEL |
&, M
2, %
\ 4 S /0* pkq'VQ
PPE PPE o o [“og = Yoty
S 2| |9s g g
© | Dl___ _ | €
(= T § 25
I < 22 3 ®
| 2 2
|

Figure 210 Egress PFE — LU Chip Processing

Chapter 2: Following a Unicast Packet

41

Remember the result of the JSIM tool? Flow 1 should finally be forwarded on the
xe-0/0/0 interface and Flow 2 on the xe-11/0/1 interface. Additionally, and based on
the packet classification done by the ingress LU chip (FCO for Flow 1, and FC3 for
Flow 2), the egress LU can finally assign the WAN Output Queue number. For Flow
1, it will be the queue 0 of interface xe-0/0/0 and for Flow 2 it will be the queue 3 of
interface xe-11/0/1. But these queue numbers are relative, they are not absolute
WAN output queue numbers understandable by the MQ/XM chip. For that reason,
the LU chip pushes the absolute queue number (uniquely identifying a queue at a

specific egress port) in the L2M header, not the relative one.

So, what are these queue values for Flow 1 and Flow 2? You can find the answer on
Appendix A, dedicated to WAN CoS: the show cos halp command should help you
to retrieve these queue values. Let’s try it for Flow 1 and Flow 2.

Flow 1 is forwarded on queue 0 of the xe-0/0/0 interface. First of all, find the IFD
index assigned to this interface, then execute the above command on MPCO:

user@R2> show interfaces xe-0/0/0 | match index
Interface index: 469, SNMP ifIndex: 526

NPCO(R2 vty)# show cos halp ifd 469

[...]

Queue State
Index

G
R

uaranteed
ate

Burst
Size

WRED TAIL
Rule Rule

256 Configured
257 Configured
258 Configured
259 Configured
260 Configured
261 Configured
262 Configured
263 Configured

222000000
555000000
555000000
555000000
555000000
555000000
555000000
555000000

2
1
1
0

[eNeNeNe]

22000000
11000000
11000000

4194304
8388608
8388608
8388608
8388608
8388608
8388608
8388608

SO OCOh~PMAMN
=

The absolute base queue (relative queue 0) is 256 for this interface. So, egress LU

chip of MPC 0 will push the value of 256 as the WAN Output Queue into the L2M
header. Let’s do the same for the interface xe-11/0/1 which is the egress forwarding
interface for Flow 2 (the IFD of xe-11/0/1 is 489):

NPC11(R2 vty)# show cos halp ifd 489

[...]
Queue State
Index

256 Configured
257 Configured
258 Configured
259 Configured
260 Configured
261 Configured
262 Configured
263 Configured

222000000
555000000
555000000
555000000
555000000
555000000
555000000
555000000

Guaranteed

rate

222000000
111000000
111000000
Disabled
0

0
0
0

Burst Weight Priorities Drop-Rules
Wred Tail

size

G

E

SCOoOOoOO P~

You can see that the absolute base queue (relative queue 0) is also 256 for this
interface, but here Flow 2 must be placed in queue 3 (Packets classified in FC3). So,
the egress LU chip of MPC 11 will push the value 259 (256 + 3) as the WAN Output

Queue in the L2M header.

The parcel moves back to the MQ/XM chip via the LI block (without the FAB

42 This Week: An Expert Packet Walkthrough on the MX Series 3D

header), then the L2M header is decoded and removed. The MQ/XM knows on
which WAN queue of the SCHED block the packet has to be queued. As mentioned
previously, the real packet stays in memory and the only information queued is data
pointers. Therefore, the MQ/XM pushes the Parcel to off-chip memory, where the
remaining packet segments are already.

When the scheduler for the output physical interface decides that the packet can be
forwarded (or the pointer is de-queued), it sends a notification to the last functional
block WO (WAN Output). This block retrieves packet segments from the off-chip
memory, reassembles the packet, and forwards it to the MAC controller to finally
leave the router.

NOTE For MQ/XM-based queueing (e.g. queuing management not delegated to QX or XQ
chip) the default maximum data buffer value is 100ms. However, the temporal buffer
is higher (in ms) with per-unit-scheduler at low shaping rates.

You can now easily confirm that Flow 1 is forwarded via the Queue 0 of the xe-0/0/0
interface, whereas Flow 2 is forwarded via Queue 3 of the xe-11/0/1 interface. The
classical show interface queue CLI command gives you statistics per queue but this
book is a “deep dive” and we can check global WAN statistics directly on the PFE.
Let’s see how.

Flow 1 is assigned to WAN queue 256 on the XM chip 0 of MPC 0 and Flow 2 to
WAN queue 259 on the MQ Chip of MPC 11. The WAN output queue is a g-node
(see Appendix A for details). Appendix A also explains that Qsys 0 is for Wan
Streams and Qsys 1 is for Fabric Streams. So let’s try to retrieve statistics for g-nodes
256 and 259.

For Flow 1 on MPC 0:

NPCO(R2 vty)# show xmchip 0 g-node stats 0 256 (2nd 0 mean Qsys 0)

Queue statistics (Queue 0256)

Color OQutcome Counter Counter Total Rate
Index Name

ATl Forwarded (No rule) 2592 Packets 0 0 pps

A1l Forwarded (No rule) 2592 Bytes 0 0 bps

ATl Forwarded (Rule) 2593 Packets 960405253 999 pps

ATl Forwarded (Rule) 2593 Bytes 510934784712 4243032 bps

[...]

This output is similar to the classical CLI command:

user@R2> show interfaces queue xe-0/0/0 | match "Queue|packets"
Egress queues: 8 supported, 4 in use
Queue: 0, Forwarding classes: FCO

Queued:
Packets : 964231946 999 pps
Transmitted:
Packets : 960547580 999 pps
Tail-dropped packets : 0 0 pps
RL-dropped packets : 0 0 pps
RED-dropped packets : 0 0 pps

Queue: 1, Forwarding classes: FC1l

[...]

Chapter 2: Following a Unicast Packet 43

For Flow 2 on MPC 11:
NPC11(R2 vty)# show mqchip 0 dstat stats 0 259 (2nd 0 means Qsys 0)

QSYS 0 QUEUE 259 colormap 2 stats index 4452:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRule) 0 0 0 0
Forwarded (Rule) 542036772 1000 288339755496 532000

And this output is similar to the classical CLI command:

user@R2> show interfaces queue xe-11/0/1 | match "Queue|packets"
Egress queues: 8 supported, 4 in use
Queue: 0, Forwarding classes: FCO

[...]
Queue: 1, Forwarding classes: FCl
[...]
Queue: 2, Forwarding classes: FC2
[...]
Queue: 3, Forwarding classes: FC3
Queued:
Packets : 542109540 1000 pps
Transmitted:
Packets : 542109540 1000 pps
Tail-dropped packets : 0 0 pps
RL-dropped packets : 0 0 pps
RED-dropped packets : 0 0 pps

Finally, you can check WO statistics, but WO accounting needs to be enabled for a
specific WAN Output Stream.

For Flow 1, check the WO Block of XM 0 of MPC 0. First retrieve the WAN Output
Stream ID referring to your outgoing interface xe-0/0/0:

NPCO(R2 vty)# show xmchip 0 ifd Tist 1 (<<<< 1 means egress direction)

Egress IFD 1ist

IFD name IFD PHY Scheduler L1 Node Base Number of
Index Stream Queue Queues
xe-0/0/0 469 1024 WAN 32 256 8 <<<< Flow 1 outgoing interface
xe-0/0/1 470 1025 WAN 64 512 8
xe-0/0/2 471 1026 WAN 96 768 8
xe-0/0/3 472 1027 WAN 33 264 8
et-0/1/0 473 1180 WAN 0 0 8

Now let’s enable WO accounting for stream 1024:

NPCO(R2 vty)# test xmchip 0 wo stats stream 0 1024 (2nd 0 means counter 0)

And now let’s retrieve WO statistics:

NPCO(R2 vty)# show xmchip O phy-stream stats 1024 1 (1 means Egress direction)

Aggregated queue statistics

44 This Week: An Expert Packet Walkthrough on the MX Series 3D

Queues: 256..263

Color Outcome Counter Total Rate
Name

ATl Forwarded (No rule) Packets 0 0 pps
A1l Forwarded (No rule) Bytes 0 0 bps
ATl Forwarded (Rule) Packets 1025087991 1000 pps
ATl Forwarded (Rule) Bytes 545304470196 4256000 bps
ATl Force drops Packets 0 0 pps
ATl Force drops Bytes 0 0 bps
ATl Error drops Packets 0 0 pps
ATl Error drops Bytes 0 0 bps
0 WRED drops Packets 3684290 0 pps
0 WRED drops Bytes 1960042280 0 bps
0 TAIL drops Packets 76 0 pps
0 TAIL drops Bytes 40432 0 bps
1 WRED drops Packets 0 0 pps
1 WRED drops Bytes 0 0 bps
1 TAIL drops Packets 0 0 pps
1 TAIL drops Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
2 WRED drops Bytes 0 0 bps
2 TAIL drops Packets 0 0 pps
2 TAIL drops Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
3 WRED drops Bytes 0 0 bps
3 TAIL drops Packets 0 0 pps
3 TAIL drops Bytes 0 0 bps

Byte count : 0
EOP count : 0

WO statistics (WAN block 0)

Counter set 0

Stream number mask : Ox7f

Stream number match : 0x0

Transmitted packets : 216815 (1000 pps) <<<< Flow 1
Transmitted bytes : 110142020 (4064000 bps)
Transmitted cells : 1734520 (8000 cps)

You can see there are two kinds of statistics: first, the aggregated statistics of the eight
queues attached to the stream (interface), and second, the WO packet statistics.
Okay, let’s disable WO accounting:

NPCO(R2 vty)# test xmchip 0 wo stats default 0 0
<<< the second 0 depends on the virtual WAN System - see Chapter 1 - the third 0 is the counter Index

For Flow 2, check the WO Block of MQ 0 of MPC 11. First retrieve the WAN Output

Chapter 2: Following a Unicast Packet 45

Stream ID referring to your outgoing interface xe-11/0/1:

NPC11(R2 vty)# show mqchip 0 ifd

[...]

Output IFD IFD Base

Stream Index Name Qsys Qnum
1024 488 xe-11/0/0 MQO 0

1025 489 xe-11/0/1 MQO 256 <<<< Flow 2 outgoing interface
1026 490 xe-11/0/2 MQO 512
1027 491 xe-11/0/3 MQO 776

Then enable WO accounting for Output Stream 1025:

NPC11(R2 vty)# test mqchip 0 counter wo 0 1025 (2nd 0 means counter 0)

And retrieve the WO statistics:

NPC11(R2 vty)# show mqchip 0 counters output stream 1025
DSTAT phy_stream 1025 Queue Counters:

Aggregated Queue Stats QSYS 0 Qs 256..439 Colors 0..3:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded 17949127027 1000 10398352660362 532000
Dropped 13 0 6916 0

[...]
WO Counters:
Stream Mask Match Packets Pkt Rate Bytes Byte Rate Cells Cell Rate
0x07f 0x001 255246 1000 129664968 508000 2041968 8000
0x070 0x070 8532836 4 575784221 229 16012694 7

Okay, let’s disable WO accounting:

NPC11(R2 vty)# test mqchip 0 counter wo 0 default (<<<< 2nd 0 means counter 0)

Figure 2.11 provides you with an excellent graphical view of the packet life in the
egress PFE and concludes this chapter regarding unicast traffic.

Summary

As you’ve seen, despite the complexity of the MX Series 3D hardware, Junos
implements a powerful toolbox to help you to figure out how unicast transit packets
are handled and manipulated by the MQ, XM, or LU chips. At any time during
packet processing you can have packet and drop statistics, essential tools for
advanced troubleshooting. MPLS traffic processing is quite close to the unicast
packet flow: only packet lookup is rewritten slightly differently.

This Week: An Expert Packet Walkthrough on the MX Series 3D

46

Z MOT4 L/0/LL-8X
L Moty €&©
0/0/0-0%

J19][013u0D

JouLylg

Alumv_omn_l
()

% Z
@

20 3z |82 > |
o|l———| 2 ar—[s0oF-H 3
w = S~ 3= S
o g @ EEN T2 s,

Qeeoe 5 ,of .uq.fo @ 3dd
A
V.\S Q\ﬁ\\t Qma\
[Bouvd| W1 || (5) ["=ouvd[peenava [1w] (1)
_ Z1SH |
\ v
l
(9) 1308vd
(8)
J8uI0d 19398
om e © a3Hos 14
anandD NVM —— ﬁ sjuswbeg j830ed (2)
Juswabeue|y 1930ed Kowsy diypuo
(11) awbas 1930ed + T304Vd
(1) A (1) (€)
-
Kiowsy diyoyo
-

Egress PFE — Global Packet Life

Figure 2.11

Chapter 3

On the Way to the Host

The Host Inbound Path: Five Stages. ...,
Ping to the Host, Stage One: from MQ/XMtolLU
Ping to the Host, Stage Two: Insidethe LUc.couut.
Host Inbound Packet Identification and DDOS Protection

Ping to the Host, Stage Five:atthe Host

48 This Week: An Expert Packet Walkthrough on the MX Series 3D

This chapter focuses on the life of exception packets inside the MX Series 3D lin-
ecards. The concept of an exception packet can be understood many different ways,
so it’s easier to start by explaining the opposite concept first: what is #o¢ an exception
packet?

What is not an exception packet?

B A transit packet that is processed only by the forwarding plane, without any
intervention of the control plane components (linecard CPU or routing engine
CPU). Under normal conditions in real-life production routers, most of the
traffic is composed of this type of packets.

B [Internal control packets between the routing engine CPU and the linecard CPU,
that is, exchanged natively through the internal Ethernet switches for internal
communication (forwarding table, statistics, line card boot image transfer, etc.).
This traffic is not processed by any PFE, only by control plane components.

And what is an exception packet?
B [nput packets that are discarded by the PFEs and do not reach the control plane.
B Host inbound packets that are sent up to the control plane by the ingress PFE.

B Transit packets with an exceptional condition (TTL expired, IP Options, a
reject action triggering ICMP destination unreachable) or a copy of a true
transit packet (firewall log, RE-based sampling).

B Host-inbound control plane packets, like a ping to the host, ARP, LACP,
routing packet sent to the local host or to a locally-bound 224.0.0.x multicast
address.

B Host outbound packets: these packets are generated by the control plane and
sent to the outside of the MX. They can be either crafted by the routing engine
or by the linecard CPU. An example of the latter case is the generation of
distributed keepalives (BFD, LACP) and specific ICMP unreachable packets.

Who Manages Exceptions?

Figure 3.1 provides a macroscopic view of the possible life of an exception packet.
Exceptions can be managed by the LU chip, the linecard’s CPU (also known as the
pKernel’s CPU) or the routing engine’s CPU.

Some exception packets are actually discarded or fully processed by the linecard’s
ASIC, or by the pKernel’s CPU, and hence are not punted to the final CPU at the
routing engine.

NOTE Remember that WAN is basically “the outside.” It can be a LAN or a P2P interface.

Chapter 3: Onthe Way totheHost = 49
/ MPC Linecard \ (" Control Board / Master Routing Engine \
. —
PFE | Llrg:epcsrd D= emalAemik Routing Engine CPU
From/To —
MQ or XM Chip PFE Internal Ethernet
_"' nes Switch _ %
From/To the WAN-————=1" = <all==rFrom/To Fabric==8>
-l Fabric Planes 4 Backup Routing Engine I
ll f LA AN
LA AN} - -
E' IE E' 'E emOlemit Routing Engine CPU
:IIIII: -l.l.l-
LU Chip vives NG J
; 5“5
| innnn
\ x1;x2 ;x4 j XF Chip
Fabric Planes
LA AN
MPC Linecard E“E
innnn
PFE Linecard | | | :"' 'S -
From/To CPU E E
MQ or XM Chip PFE nnnnn
o XF Chip
From/to the WAN—————=1" = ~<a===From/To Fabric==f

J

Fabric Planes

=
5
Q
ER
k=l

Figure 3.1

The Exceptions List

Host Inbound Path for Exception Packets

The full view of exception packets understood by Junos, can be retrieved by the

following CLI command (available in recent releases), which lists all the Input

exceptions:

user@R2-re0> show pfe statistics exceptions fpc <fpc-slot>

Slot 11

LU 0

Reason Type Packets Bytes
Ucode Internal

mcast stack overflow DISC(33) 0 0
sample stack error DISC(35) 0 0
undefined nexthop opcode DISC(36) 0 0
internal ucode error DISC(37) 0 0
invalid fabric hdr version DISC(41) 0 0

50 This Week: An Expert Packet Walkthrough on the MX Series 3D

Tu notification

PFE State Invalid
[...]

SwW error

invalid fabric token
unknown family
unknown vrf

iif down

[...]

Packet Exceptions
[...]

bad 1ipv4 hdr checksum
non-IPv4 layer3 tunnel
GRE unsupported flags
tunnel pkt too short
tunnel hdr too long
bad IPv4 hdr

bad IPv6 hdr

bad IPv4 pkt len

bad IPv6 pkt len

IP options

[...]

Bridging

dmac miss

iif STP Blocked
mlp pkt

[...]

Firewall

[...]

firewall send to host
firewall send to host for NAT
[...]

Routing

[...]

discard route

control pkt punt via nh
host route

[...]
Subscriber
[...]

pppoe padi pkt
pppoe padr pkt
pppoe padt pkt

[...]
Misc
[...]

sample syslog
sample host

[...]

PUNT(17)

DISC(64)
DISC(75)
DISC(73)
DISC(77)
DISC(87)

DISC(C 2)
DISC(4)
DISC(5)
DISC(C 6)
DISC(7)
DISC(11)
DISC(57)
DISC(12)
DISC(58)
PUNT(2)

DISC(15)
DISC(C 3)
PUNT(11)

PUNT(54)
PUNT(59)

DISC(66)
PUNT(34)
PUNT(32)

PUNT (45)
PUNT (46)
PUNT(47)

PUNT(41)
PUNT (42)

cCoo0oo0oOo0o0o0cocoo cocooo

o oo

o oo

o oo

(== B e B = B = I = I = I == B = i) (=== R =)

o oo

o oo

(===

NOTE

CAUTION

bad ipv4 hdr checksum

Chapter 3: Onthe Way to the Host 51

In earlier Junos releases, you can collect the same information using the show jnh
<pfe-instance> exceptions [terse] PFE shell command. Some counters can be
cleared with clear jnh <pfe-instance> exceptions.

This command gives inbound exception statistics per LU instance (or, in other
words, per PFE). The output omits some exceptions since the exception list is quite
long. It can be shortened with the modifier: | except “0”.

Remember that a MPC4e card has two LU chips per PFE (per XM Chip). The set of
LU chips belonging to the same PFE is called an LU instance or LU complex. LU
instance 0 is PFE 0, and its stats are the sum of LU chip 0 and LU chip 4 stats. LU
instance 1 is PFE 1, and its stats are the sum of LU chip 1 and LU chip 3§ stats.

The type column in the output provides two interesting pieces of information:

B The Next-Hop type: Discard or Punt next hop. Discard means silently discard
the packet at PFE level. Punt means that the packet should be managed by the
control plane for further processing.

B The Exception code between (): these exception codes are used internally to
identify the type of exception. Note that only the combination of next hop
type plus the exception code has a meaning. Indeed, the same numerical
exception code can be used for two different next hop types. Here’s an

example:
user@R2-re0> show pfe statistics exceptions fpc 11 | match "(2)"
DISC(2) 0 0
PUNT(2) 0 0

IP options

NOTE

Packets are flagged as exceptions by the LU chip. Once the LU microcode has
identified a packet as an exception, other post identification mechanisms are used to
classify the packet with the right exception next hop. After that, the LU chip can
perform other actions like queue assignment, packet filtering, accounting, or
policing. Finally, the MQ or XM chip will perform queuing functions towards the
host.

Host here means “the path to the host.” In other words, this includes the pKernel’s
CPU and/or the CPU of the routing engine.

In this chapter, you will follow along analyzing three types of exception traffic:

B A Layer 3 packet: A simple ping from R1 ae0 interface’s address to the R2 ae0
interface’s address that covers the host-inbound and host-outbound paths.

B A Layer 2 packet: How MPC handles a simple ARP request.
B A specific Layer 2 control plane packet: How MPC handles LACP packets.

Let’s start with the Layer 3 packet since it covers more shared concepts.

The Host Inbound Path: Five Stages

The baseline example used in this book is quite simple: incoming ICMP echo
requests, targeted to R2’s local IPv4 addresses. Each of these packets follow a
fascinating trip in five stages: from MQ/XM to LU; inside the LU; from LU back to
MQ/XM; from MQ/XM up to the host; and inside the host (control plane) compo-
nents.

52 This Week: An Expert Packet Walkthrough on the MX Series 3D

Ping to the Host, Stage One: from MQ/XM to LU

Figure 3.2

Let’s embellish our simple network diagram that started with Figure 2.1, and add
some IPv4 information regarding the host traffic. In Figure 3.2, you can see that there
are actually two active pings. The first one arrives at the MPC 16x10GE side and the
second one arrives at the MPC4e side. This is to provide the troubleshooting com-
mands for both kinds of card. Even though both cards share a lot of common com-
mands, sometimes the syntax differs from one to another.

MPC 16x10GE
SLOT 11

echo request

ip.src=172.16.20.2 dst=172.16.20.1 'I_I'L=6ﬁ

2N xe-11/0/0

MPC4e
SLOT 0

echo request

E).Src=172.16.2046 dst=172.16.20.5 TTL=64

ael

| 172.16.20.6/30
),

1;
%172.16.202/30 [
|

R1

Y

7\

xe-0/0/0 [

1 1
| 172.16.20.1/30%172.16.20.5/30 '\

/ xe-11/0/1 e-0/0/1 S

\

?\X

R3

P

J

Ping to the Host Interfaces

From R1 the command is:

user@1l-re0> ping 172.16.20.1 source 172.16.20.2 ttl 64 interval 0.1 pattern "4441594f4e4520"

From R3 the command is:

user@R3-re0> ping 172.16.20.5 source 172.16.20.6 tt1 64 interval 0.1 pattern "4441594f4e4520"

TIP

Include a specific pattern to track your packet when it is shown in hexa/ascii mode.
The pattern chosen here is actually DAYONE.

Let’s start to analyze the two pings coming from R1 or R3. The link between routers
R1 and R2, or the link between R2 and R3, are aggregated links (respectively ae0 and
ael). Depending on the load balancing algorithm on R1 and R3, the ping from R1
might arrive on the xe-11/0/0 or the xe-11/0/1 interface of R2; and the ping from R3,
on the xe-0/0/0 or xe-0/0/1 interface. Let’s assume in this example that the ping from
R1 enters R2 through the xe-11/0/0 interface and the one from R3 enters R2 through
the xe-0/0/0 interface.

As you’ve already seen in Chapter 2, when a packet enters the router, it is first
handled by the MAC controller at the PFE level. Our “echo request” packets are then
pre-classified by the MQ or XM chip. As shown next in Figure 3.3, the echo requests
are pre-classified in the CTRL stream associated to the incoming interfaces: xe-11/0/0
for pings coming from R1, and xe-0/0/0 for pings coming from R3.

Chapter 3: Onthe Way to the Host 58

show precl-eng summary
show precl-eng <ID> statistics

/\

pre-classifier Engine
;l:l' CTRL Stream

xe-11/0/0
Ol
xe-0/0/0

Ethemnet
Controller

Echo requests

Figure 3.3 Pre-classification of the Incoming ICMP Echo Requests

Let’s have a look at the xe-11/0/0 side in order to check which are the Physical WAN
Input Streams associated with this interface and see the statistics of the pre-classifier.

NPC11(R2 vty)# show precl-eng summary
ID precl_eng name FPC PIC (ptr)

1 MQ_engine.11.0.16 11 0 547cc708 <<< precl-eng 1 handles the echo requests (PIC 0)
2 MQ_engine.11.1.17 11 1 547cc5a8
3 MQ_engine.11.2.18 11 2 547cc448
4 MQ_engine.11.3.19 11 3 547cc2e8

NOTE Remember that on 16x10GE MPC cards there are four built-in PICs.

The columns FPC/PIC of the following command help you to identify which pre-
classifier engine manages each incoming physical interface. In the case of xe-11/0/0,
this is the precl-eng ID 1. Remember, the Juniper interface naming is: xe-fpc_slot/
pic_slot/port_num.

NPC11(R2 vty)# show precl-eng 1 statistics

stream Traffic

port ID Class TX pkts RX pkts Dropped pkts

00 1025 RT 0000000000000000 0000000000000000 0000000000000000
00 1026 CTRL 0000000000000220 0000000000000220 <<<< pings

00 1027 BE 0000000000000000 0000000000000000 0000000000000000
01 1029 RT 0000000000000000 0000000000000000 0000000000000000
01 1030 CTRL 0000000000000000 0000000000000000 0000000000000000
01 1031 BE 0000000000000000 0000000000000000 0000000000000000
02 1033 RT 0000000000000000 0000000000000000 0000000000000000
02 1034 CTRL 0000000000000000 0000000000000000 0000000000000000
02 1035 BE 0000000000000000 0000000000000000 0000000000000000
03 1037 RT 0000000000000000 0000000000000000 0000000000000000
03 1038 CTRL 0000000000000000 0000000000000000 0000000000000000
03 1039 BE 0000000000000000 0000000000000000 0000000000000000

Great! As expected, you can see that the echo requests are forwarded in the CTRL

(also known as Medium) WAN Input Stream of the xe-11/0/0 physical interface.

54 This Week: An Expert Packet Walkthrough on the MX Series 3D

Now, let’s enter the next functional Block: the WI block. In Chapter 2 the WT (also
known as WAN Input) Block role was explained. It receives traffic from the three
Input streams of each physical interfaces attached to the PFE. The WI block then
stores the packet for future processing in the packet buffer and generates a Parcel by
“catching” the first part of each packet.

Let’s enforce your understanding of the WI block by collecting W1 statistics for the
Physical WAN Input Stream 1026 of interface xe-11/0/0. Why 1026 ? Because the
above command output states that it is the WAN Input stream ID for CTRL traffic
arriving at port xe-11/0/0. Actually, Chapter 2 also provided additional commands to
retrieve this information.

On the MQ chip (use “med” stream = CTRL stream) :

NPC11(R2 vty)# show mgchip 0 ifd <<< on MQ Chip there 1is no direction - both
(Input/output) are displayed

And on the XM chip (use “med” stream = CTRL S=stream)
NPCO(R2 vty)# show xmchip 0 ifd Tist 0 <<< second 0 means Ingress - 1 Egress

Now, enable accounting for this WI Stream on MPC 11:

NPC11(R2 vty)# test mgchip 0 counter wi_rx 0 1026 <<< second 0 is the counter 0 (Wi supports 4

counters max)

And then display the corresponding WI statistics at MPC 11:

NPC11(R2 vty)# show mqchip O counters input stream 1026

WI Counters:

RX Stream
RX Stream
RX Stream
RX Stream

DROP Port
DROP Port
DROP Port

Counter Packets Pkt Rate Bytes Byte Rate
1026 (002) 0 10 <<< our pings
1026 (002) 596381 0 59515056 0
1027 (003) 0 0 0 0
1151 (127) 4252703 1 200068178 34
0 TClass O 0 0 0 0
0 TClass 1 0 0 0 0
0 TClass 2 0 0 0 0
0 TClass 3 0 0 0 0

DROP Port

Now disable WI accounting for this WAN Stream:

NPC11(R2 vty)# test mgchip O counter wi_rx 0 default

Let’s do the same for the MPC in slot 0 (XM based). First activate WI accounting for
the stream (whose number 1026 is identified by one of the aforementioned XM
commands — see details on Chapter 2):

NPCO(R2 vty)# test xmchip O wi stats stream 0 1026

Then display W1 statistics for MPC 0 (this command gives a lot of information and is
truncated here), just have a look to the “Tracked Stream Stat” tab):

NPCO(R2 vty)# show xmchip 0 phy-stream stats 1026 0 <<< second 0 means Input Direction
WI statistics (WAN Block 0)

Chapter 3: Onthe Way to the Host 55

Tracked stream statistics

Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate Total EOPE EOPE
Rate
Mask Match (pps) (bps) (pps)
0 0x7f 0x2 1525 10 <<< Our Pings 152500 8000 0
__ Track 0 = Counter Index 0
1 0x7c Ox4 2147483648 0 137438953472 0 0
2 0x7c 0x8 2354225199 0 161385089118 0 0
[...]

Okay. Let’s disable WI accounting for this WAN Stream on MPC 0:

NPCO(R2 vty)# test xmchip O wi stats default 0 0 <<< the second 0 depends on the virtual WAN System
(see Chapter 1), while the third 0 is the counter Index

Let’s continue to move on with the life of the incoming echo request packet. The
next step is packet lookup. The Parcel is sent to the LU chip via the LO functional
block of the MQ or XM chip, as shown in Figure 3.4. The “M” (MQ/XM) chip
adds a header to the Parcel called the M2L header. This header includes information
like the Wan Input Stream value: in this case, 1026.

I —

OffChip Memory

~ @@

OnChip Memory Jq_ Packet Management

g

) L)
A
(3) | Packet Segments
xe-11/0/0
echo request o Ethernet CTRL Stream () wi

xe-0/0/0 Controller

HSL2 |

o) (L Toreas]

PPE PPE PPE PPE

i y

(g

Figure3.4 From MQ/XM Towards the LU Chip

56 This Week: An Expert Packet Walkthrough on the MX Series 3D

Ping to the Host, Stage Two: Inside the LU

As you’ve seen in Chapter 2, the LU chip processes the Parcel and then performs
several tasks. Once the LU chip has identified the packet as host traffic, some specific
tasks regarding host inbound traffic are triggered.

Figure 3.5 depicts some of the tasks carried out by the LU chip when it receives the
echo request Parcel packet.

From MQ
or XM
/ " \
Process Exception DDOS
—>
PARCEL] Table Policers
[I
Ethemet Al Global Host
Parsing Fellelig Policer
Count
I I
IPV4 Sanity Host Bound _
Check Classification = ToMQorXMm
[I
Route Host Queue
Lookup Assignment . '! -
\ n L] 2 /

Figure 3.5 LU Lookup Chain for Host Traffic

Once it receives the Parcel from the MQ or XM “LO” block, the LU chip first
extracts the Physical WAN Input Stream ID from the M2L header. Then the Parcel is
dissected in order to check which protocol conveys the Ethernet frame. In our
example the Ethernet type field is equal to 0x800 = IPv4. During the IPv4 sanity
check the packet total length and the checksum are compared to the values carried in
the IP header. If the sanity check fails, the packet is marked as “To be Dropped”
(Drops will be performed by MQ or XM chip —more details later in this chapter).

In this case, the route lookup results in the packet targeting the host. The LU chip
tries to match the exception type with its exception table. The ICMP request to the
host is a known exception called host route exception (PUNT 32). Remember this
value (32). You can see the exception counter named host route incrementing via the
following PFE command. Here the jnh instance 0 is checked because both links of
R2’ ae0 are attached to the PFE 0 of MPC 11 .

NPC11(R2 vty)# show jnh 0 exceptions terse

Reason Type Packets Bytes
Routing
host route PUNT(32) 62 5208

For each exception, there is a list of triggered actions, and in this case, the host path
protection is performed. The host path is protected first by the loopback firewall
filter. In this case, there is a very simple “inet” firewall filter configured on R2 that
only rate-limits the ICMP packets to 100Mbits/s and counts them:

Chapter 3: Onthe Way to the Host 57

interfaces {

100 {
unit 0 {
family inet {
filter {
input protect-re;
}
address 172.16.21.2/32 {
primary;
}
}
}
}
}
firewall {
family inet {
filter protect-re {
term ICMP {
from {
protocol -+icmp;
¥
then {
policer ICMP-100M;
count ICMP-CPT;
accept;
}
}
term OTHER {
then accept;
}
}
}
policer ICMP-1M {
if-exceeding {
bandwidth-Timit 100m;
burst-size-Timit 150k;
}
then discard;
¥
}

The ICMP echo-request is counted and policed by the LU chip. At the PFE level you
can easily list the firewall filters available and programed at the ASIC. As you can
see, there are default firewall filters named __ XXX __ that are always applied
depending on the packet’s family. The two other default filters named HOST-
BOUND will be discussed later in this chapter:

NPC11(R2 vty)# show filter
Program Filters:

Index Semantic Name

6 Classic __default_bpdu_filter__

8 C(lassic protect-re
17000 Classic __default_arp_policer__
57008 Classic __cfm_filter_shared_lc__
65280 Classic __auto_policer_template__

65281 C(Classic __auto_policer_template_1__

58 This Week: An Expert Packet Walkthrough on the MX Series 3D

65282 C(lassic __auto_policer_template_2__
65283 C(Classic __auto_policer_template_3__
65284 C(Classic __auto_policer_template_4__
65285 C(lassic __auto_policer_template_5__
65286 Classic __auto_policer_template_6__
65287 C(lassic __auto_policer_template_7__
65288 C(lassic __auto_policer_template_8__

16777216 Classic fnp-filter-Tevel-all
46137345 C(lassic HOSTBOUND_IPv4_FILTER
46137346 Classic HOSTBOUND_IPv6_FILTER
46137353 C(lassic filter-control-subtypes

Each Firewall has a unique index and you can see the protect-re filter has an index of
8. You can use a second PFE command to see how the firewall filter is programed at
the PFE Level:

NPC11(R2 vty)# show filter index 8 program
Filter index = 8
Optimization flag: Oxf7
Filter notify host id = 0
Filter properties: None
Filter state = CONSISTENT
term ICMP
term priority 0
protocol
1
false branch to match action in rule OTHER
then
accept
policer template ICMP-100M
policer ICMP-100M-ICMP
app_type 0
bandwidth-Timit 100000000 bits/sec
burst-size-Timit 150000 bytes
discard
count ICMP-CPT
term OTHER
term priority 0
then
accept

You can see that the policer is correctly associated to the firewall filter as expected.
Now let’s see how the policer ICMP-100M-ICMP works. The following CLI
command gives you passed and dropped packets:

user@R2-re0> show Firewall filter protect-re
Filter: protect-re

Counters:
Name Bytes Packets
ICMP-CPT 31239601 393876
Policers:
Name Bytes Packets
ICMP-100M-ICMP 0 0

A similar PFE command gives you the same results but from the PFE’s point of view
—remember the CLI command aggregates stats from all PFEs. This PFE command
could sometimes be useful to identify which PFE receives or drops packets. The PFE
command takes as input the index of the firewall filter, in this case index 8:

Chapter 3: Onthe Way to the Host 59

NPC11(R2 vty)# show filter index 8 counters
Filter Counters/Policers:

Index

Packets Bytes Name

118134 9923256 ICMP-CPT
0 0 ICMP-100M-ICMP(out of spec)
0 0 ICMP-100M-ICMP(offered)
0 0 ICMP-100M-ICMP(transmitted)

So, our ping traffic is a 10pps stream that easily passes the 100.0 firewall filter without
any issue. Remember that default firewall filters are subsequently applied after the
100.0 firewall filter. These are applied only if the packet matches the family of the
firewall filter.

So what is the next step?

Actually, it depends on the type of exception. Packet identification requests several
tasks. Depending on the type of exception, either more identification tasks or fewer
identification tasks are needed.

As previously mentioned, the LU chip maintains an exceptions table and this table is
called to identify the exception. In the case of an ICMP echo request, the packet has
been flagged as host route exception . The LU chip then tries to find more precisely
which kind of packet is destined to the host. This brings us to a short tangent in the
path of the echo request packet.

Host Inbound Packet Identification and DDOS Protection

NOTE

On MPC line cards, a host path protection called DDOS (Distributed Denial of
Service) protection is enabled by default. Each protocol, identified uniquely by a
Protocol_ID, is assigned to a dedicated policer.

Protocol_ID is not based on the protocol field of IP datagrams.

Each protocol policer has a default value which is configurable. And each protocol is
rate limited by a set of hierarchical policers. This means that the same policer,
assigned to a given Protocol_ID, may be applied at several levels of the host path.
Actually there are three levels: the LU chip, the pKernel’s CPU, and the routing
engine’s CPU. Therefore, to reach a CPU’s process/task, a given exception packet
should pass through several policers.

Once the packet has matched an entry in the exception table, deep packet identifica-
tion is triggered. Depending on the exception, the packet type identification is first
managed by a default firewall filter named HOSTBOUND_IPv4_FILTER (also
known as HBC for HostBound Classification filter). But keep in mind that the HBC
filter is not used for every exception (for example, for non-IP Layer 2 PDUs).

The HBC filter only assigns a ddos-proto ID. This DDOS_ID is later used internally
by the LU chip during the packet identification phase. The final Protocol ID which
results from the complete packet identification process will typically be derived
directly from the DDOS ID.

In some cases, a more granular analysis is performed. The LU chip will try to com-
pare the packet with a list of known packet types associated to this protocol (DDOS_
ID). This depends, once again, on the specifics of the DDOS_ID.

60 This Week: An Expert Packet Walkthrough on the MX Series 3D

Use HBC= NO

Exception Table

Use HBC= YES

DDOS_ID found = NO

HBC
Filtering

DDOS_ID found = YES

For this DDOS_ID
Find Packet_Type
?

Packet_type
Analysis

DDOS
Protocol_ID
Assigned

l

Figure 3.6 Packet Identification Logic

If an exception doesn’t match any terms of the HBC filter or the HBC filter has been
bypassed, the LU chip performs a second analysis to identify the protocol or type of
the packet. Finally, if the LU chip is not able to identify the packet, it will classify it
as unclassified or IPv4-Unclassified — categories which also have a dedicated
hierarchical policer.

Figure 3.6 illustrates the packet type identification logic. In the case of ICMP
packets, the LU chip does not perform subsequent packet identification: just HBC is
enough. In other words, ICMP packets follow the arrow chain on the left of the
diagram.

Let’s continue our tangent from the path of the echo request packet, and analyze, in
detail, the packet identification chain and the DDOS protection feature.

First of all, let’s look at the HBC filter. Call the following PFE command (46137345
is the FWF index previously retrieved for this HBC filter):

NPC11(R2 vty)# show filter index 46137345 program
Filter index = 46137345
Optimization flag: 0x0
Filter notify host id = 0
Filter properties: None
Filter state = CONSISTENT
term HOSTBOUND_IGMP_TERM
term priority 0

payload-protocol

2

Chapter 3: Onthe Way to the Host 61

then
accept
ddos proto 69
term HOSTBOUND_OSPF_TERM
term priority 0
payload-protocol
89
then
accept
ddos proto 70
term HOSTBOUND_RSVP_TERM

[.]
NOTE The preceding output has been truncated.

This firewall filter is just a set of terms that try to match a given IPv4 protocol. When

an entry matches a given protocol, the action then assigns it a ddos proto value (the

DDOS_ID). The following table summarizes all the protocols that the HOST-

BOUND_IPv4_FILTER filter is able to match, as per the Junos release installed in

the DUT (R2).

Table 3.1 The HBC Filter Terms
Ma'tjiggsv4 Match Other Fields Asslijgrr;gdos

HOSTBOUND_IGMP_TERM 2 NA 69
HOSTBOUND_OSPF_TERM 89 NA 70
HOSTBOUND_RSVP_TERM 46 NA 71
HOSTBOUND_PIM_TERM 13 NA 72
HOSTBOUND_DHCP_TERM 17 DST Port 67-68 24
HOSTBOUND_RIP_TERM 17 DST Port 520-521 73
HOSTBOUND_PTP_TERM 17 DST Port 319-320 74
HOSTBOUND_BFD_TERMI1 17 DST Port 3784-3785 75
HOSTBOUND_BFD_TERM2 17 DST Port 4784 75
HOSTBOUND_LMP_TERM 17 DST Port 701 76
HOSTBOUND_ANCP_TERM 6 DST Port 6068 85
HOSTBOUND_LDP_TERMI1 6 DST Port 646 77
HOSTBOUND_LDP_TERM2 6 SRC Port 646 77
HOSTBOUND_LDP_TERM3 17 DST Port 646 77
HOSTBOUND_LDP_TERM4 17 SRC Port 646 77
HOSTBOUND_MSDP_TERMI1 6 DST Port 639 78
HOSTBOUND_MSDP_TERM2 6 SRC Port 639 78
HOSTBOUND_BGP_TERMI 6 DST Port 179 79
HOSTBOUND_BGP_TERM2 6 SRCPort 179 79

62 This Week: An Expert Packet Walkthrough on the MX Series 3D

HOSTBOUND_VRRP_TERM 112 IP DST 224.0.0.18/32 80
HOSTBOUND_TELNET_TERMI 6 DST Port 23 81
HOSTBOUND_TELNET_TERM2 6 SRC Port 23 81
HOSTBOUND_FTP_TERMI 6 DST Port 20-21 82
HOSTBOUND_FTP_TERM2 6 SRC Port 20-21 82
HOSTBOUND_SSH_TERMI 6 DST Port 22 83
HOSTBOUND_SSH_TERM2 6 SRC Port 22 83
HOSTBOUND_SNMP_TERMI 17 DST Port 161 84
HOSTBOUND_SNMP_TERM2 17 SRC Port 161 84
HOSTBOUND_DTCP_TERM 17 DST Port 652 147
HOSTBOUND_RADIUS_TERM_SERVER 17 DST Port 1812 150
HOSTBOUND_RADIUS_TERM_ACCOUNT 17 DST Port 1813 151
HOSTBOUND_RADIUS_TERM_AUTH 17 DST Port 3799 152
HOSTBOUND_NTP_TERM 17 zDZSI.; ‘O’r; 123 & 1P DST 153
HOSTBOUND_TACACS_TERM 17 DST Port 49 154
HOSTBOUND_DNS_TERMI 6 DST Port 53 155
HOSTBOUND_DNS_TERM2 17 DST Port 53 155
HOSTBOUND_DIAMETER_TERMI 6 DST Port 3868 156
HOSTBOUND_DIAMETER_TERM2 132 DST Port 3868 156
HOSTBOUND_L2TP_TERM 17 DST Port 171 161
HOSTBOUND_GRE_TERM 47 NA 162
HOSTBOUND_ICMP_TERM 1 NA 68
OSTBOUND_TCP_FLAGS_TERM_INITIAL 6 Check TCP flags 145
HOSTBOUND_TCP_FLAGS_TERM_ESTAB 6 Check TCP flags 146
HOSTBOUND_TCP_FLAGS_TERM_UNCLS 6 Check TCP flags 144
HOSTBOUND_IP_FRAG_TERM_FIRST 6 S}f‘feszl; TCP flags + Frag 159
HOSTBOUND_IP_FRAG_TERM_TRAIL 6 g}f‘fe;l; eI« e 160
HOSTBOUND_AMT_TERMI 17 DSP Port 2268 196
HOSTBOUND_AMT_TERM2 17 SRC Port 2268 196
HOSTBOUND_IPV4_DEFAULT_TERM ANY NA NA

The ping traffic (IPv4 Protocol field = 1) is assigned to the DDOS_ID type 68, but
remember this DDOS ID is not the final Protocol ID. To see the Protocol ID use the
following PFE command:

Chapter 3: Onthe Way to the Host 63

NPCO(R2 vty)# show ddos asic punt-proto-maps
PUNT exceptions directly mapped to DDOS proto:

code PUNT name group proto idx g# bwidth burst
1 PUNT_TTL tt] aggregate 3c00 5 2000 10000
3 PUNT_REDIRECT redirect aggregate 3e00 O 2000 10000
5 PUNT_FAB_OUT_PROBE_PKT fab-probe aggregate 5700 0 20000 20000
7 PUNT_MAC_FWD_TYPE_HOST mac-host aggregate 4100 2 20000 20000
[...]

PUNT exceptions that go through HBC. See following parsed proto
code PUNT name

2 PUNT_OPTIONS |

4 PUNT_CONTROL |

6 PUNT_HOST_COPY |

11 PUNT_MLP [mmmmmmmm e +

32 PUNT_PROTOCOL | |

34 PUNT_RECEIVE | |

54 PUNT_SEND_TO_HOST_FW | |

I

filter ipv4 icmp aggregate 900 O 500 50

As you can see, exception type 32 (remember PUNT code 32, also known as a host
route exception) triggers HBC lookup and finally the Protocol ID for ICMP proto-
col (DDOS_ID 68) is: 0x900 (the idx column is the Protocol ID).

Now let’s have a look at the DDOS policers. These are fully configurable via the
Junos CLI. A policer refers to a specific protocol (Protocol ID at PFE level) and is
made up of two parameters:

B The Bandwidth in PPS

B The burst size in number of packets

system {
ddos-protection {
protocols {
<proto> {
aggregate {
bandwidth <pps>;
burst <packets>;
}
<packet-type> {
bandwidth <pps>;
burst <packets>;

NOTE Variable parameters are enclosed between < >.

64 This Week: An Expert Packet Walkthrough on the MX Series 3D

Figure 3.7 summarizes the DDOS protection concepts.

MaslerRE other || RPD Routing
Processes | | tasks S
CPU
SP
_emo R
MPC 0 MPC 1
Linecard
CPU
AG)_(SP P W
PFEO 0 PFEO PFE1 o

Physical Ports
Connected to the PFE

Aggregated Policer
Specific Packet Policer

Figure3.7 Hierarchical Anti-DDOS Policers

The main idea behind this model is hierarchical protection. Imagine there is a burst of
incoming control or exception traffic arriving at (MPCO, PFEQ) from one of its
connected ports. The LUO policers limit the amount of control or exception traffic
that is sent up to the linecard CPU. So if there is a small amount of control or excep-
tion traffic arriving at (MPCO, PFE1), it still has a significant chance of being pro-
cessed and not dropped.

Likewise, if there is an incoming storm of control or exception traffic arriving at both
(MPCO, PFEO) and (MPCO0, PFE1), the MPCO CPU policer limits the traffic going up
to the routing engine, thus giving a chance to the legitimate traffic being punted by
MPC1 to be successfully processed by the RE.

These policers are especially effective because they are protocol-specific. For any
given known protocol there is at least one policer, the global policer for the protocol
(for all packet types). It is called the aggregated policer. An instance of this aggregated
policer might be applied to one or more of the three host levels: the LU chip (HW
policer), the pKernel’s CPU (SW Policer), and the RE’s CPU (SW Policer). When you
configure the available bandwidth or burst of a given aggregated policer, the value is
automatically assigned to the three instances of the policer. For some specific proto-
cols, a per-packet-type policer could be available at some levels. Packet type policers
apply to a sub-set of a given protocol. Bandwidth/burst values of a packet type
policer are also automatically assigned to the three instances of the policer.

Chapter 3: Onthe Way to the Host 65

A More Complex Example: DHCP

The atypical example is DHCP. DHCP is a protocol that uses several types of
messages: DISCOVER, REQUEST, OFFER. Each has a dedicated policer, and an
instance of this dedicated policer may be applied at the pKernel and RE’s CPU.
Globally, the DHCP protocol also has a policer: the aggregated one, and this one is
applied to all levels.

There is a strict priority between per-packet-type policers: higher priority will
always be served before a lower one. Figure 3.8 shows where aggregated (AG) and
specific policers (SP) are applied to the DHCP protocol.

E' E Linecard E?\Zti:g
- - Y CPU
DL G o
Eriofibid Priority 1
— Discover — Discover
g2 Priority 2
— Request — Request

®
®

®

From all ports on N - o
" tu | i - w] S W m
@ — Offer @ — Offer @
|
|
From other LUs
on this MPC
- Others ‘— Others

Aggregated Policer
gores From other MPCs

Specific Packet Policer (per-packet-type) in the chassis

b

Figure 3.8 Packet-Type and Aggregated Policers Example: DHCP

Figure 3.8 is the DHCP case and it’s not the same for other protocols. Indeed, for
DHCP there is no SP policer at the LU chip level but for other protocols you might
have one. Depending on the protocol, the AG or SP policer might be available at one
or more levels.

Now the questions of our tangent are: how do you know where an AG policer is
applied for a given protocol, and are there per-packet type policers (SP) available? If
yes, where they are applied? Finally you also want to know what the default config-
ured value is for each of these policers.

The first thing to keep in mind is this; if the AG or SP policers are configured at the
pKernel Level, the same will be done at the RE level. In other words, if one aggre-
gated policer plus two packet type policers are applied for a given protocol at the
pKernel level, you will have the same set of policers at the RE level: meaning one AG
plus two SPs.

In order to answer the questions above you can use CLI and PFE commands. For
example, policer parameters can be retrieved by using the following CLI command.
(Let’s use DHCPv4 for a complex example, and then look at the simpler ICMP
case):

66 This Week: An Expert Packet Walkthrough on the MX Series 3D

user@R2-re0> show ddos-protection protocols dhcpv4 parameters brief
Packet types: 19, Modified: 0
* = User configured value

Protocol Packet Bandwidth Burst Priority Recover Policer Bypass FPC
group type (pps) (pkts) time(sec) enabled aggr. mod
dhcpv4 aggregate 5000 5000 -- 300 yes -- no
dhcpv4 unclass.. 300 150 Low 300 yes no no
dhcpv4 discover 500 500 Low 300 yes no no
dhcpv4 offer 1000 1000 Low 300 yes no no
dhcpv4 request 1000 1000 Medium 300 yes no no
dhcpv4 decline 500 500 Low 300 yes no no
dhcpv4 ack 500 500 Medium 300 yes no no
dhcpv4 nak 500 500 Low 300 yes no no
dhcpv4 release 2000 2000 High 300 yes no no
dhcpv4 inform 500 500 Low 300 yes no no
dhcpv4 renew 2000 2000 High 300 yes no no
dhcpv4 forcerenew 2000 2000 High 300 yes no no
dhcpv4 leasequery 2000 2000 High 300 yes no no
dhcpv4 Teaseuna.. 2000 2000 High 300 yes no no
dhcpv4 leaseunk.. 2000 2000 High 300 yes no no
dhcpv4 Teaseact.. 2000 2000 High 300 yes no no
dhcpv4 bootp 300 300 Low 300 yes no no
dhcpv4 no-msgtype 1000 1000 Low 300 yes no no
dhcpv4 bad-pack.. 0 0 Low 300 yes no no

As you can see, this command gives you the value of the aggregated policer for a given
protocol (DHCP), and, if available, the value of each per-packet type policers. Each
per-packet-type policer also has a priority associated with it. In this DHCP case, for
example, the DHCP discover packets are served after DHCP Request packets.

Back to the Basics: ICMP

Let’s have a look at the DDOS policer configuration for ICMP:

user@R2-re0> show ddos-protection protocols icmp parameters brief
Packet types: 1, Modified: 0
* = User configured value

Protocol Packet Bandwidth Burst Priority Recover Policer Bypass FPC
group type (pps) (pkts) time(sec) enabled aggr. mod
icmp aggregate 20000 20000 -- 300 yes - no

Indeed, you can see it’s much simpler than DHCP. ICMP is managed globally, so there
is no sub-type detection triggered by the LU chip (during packet identification phase)
for ICMP protocol. As you can see, ICMP packets are rate-limited to 20000 pps. But
the second question was, how many instances of this policer do you have and where
are they applied?

To precisely answer this question you can use a PFE command that has a double
advantage — it tells you where a policer is applied and also provides the real time
associated statistics (packets passed / dropped / rate). These statistics are for the MPC
that you executed the command on. Let’s try to use the command on R2 on MPC 11:

NPC11(R2 vty)# show ddos policer +icmp stats terse
DDOS Policer Statistics:
arrival pass # of

idx prot group proto on loc pass drop rate rate flows
68 900 icmp aggregate Y UKERN 283248 0 10 10 0
PFE-0 283248 0 10 10 0
PFE-1 0 0 0 0 0
PFE-2 0 0 0 0 0
PFE-3 0 0 0 0 0

Chapter 3: Onthe Way to the Host 67

You can deduce from this output that the ICMP AG policer is applied at three levels.
The RE level is not shown but it’s implied since the existence of a policer at a low level
(pKernel’s CPU) implies its existence at all the higher levels. Moreover you can see
(again): the DDOS ID of ICMP (which is 68 and is assigned by the HBC filter); and
the Protocol ID associated to the ICMP aggregated policer, which is 0x900. This
Protocol ID will be carried with the Parcel or the packet all the way to reach the Host.
So, you can see:

B The LU chip level (PFE-0): ICMP is rate-limited to 20Kpps, meaning 20Kpps in
total after adding up the incoming ICMP traffic at all the (four in case of the
16x10GE MPC) ports connected to this PFE.

B The pKernel level of MPC in slot 11: ICMP is rate-limited to 20Kpps, meaning
20Kpps in total after adding up the incoming ICMP traffic at all the (four) PFEs
of this MPC (for example, for the sixteen ports of the MPC 16x10GE).

B The RE Level: ICMP is rate-limited to 20Kpps, meaning 20 Kpps in total for all
the MPCs on this chassis altogether. Remember even if it is not explicitly
displayed, the configuration of the pKernel level gives you the configuration of
the RE level (but here you cannot see it, because you are at MPC level).

Indeed, to retrieve global stats at the RE level, you have to use the following CLI
command:

user@R2> show ddos-protection protocols +icmp statistics terse
Packet types: 1, Received traffic: 1, Currently violated: 0

Protocol Packet Received Dropped Rate Violation State
group type (packets) (packets) (pps) counts
icmp aggregate 710382 0 20 0 ok

Why do you see twenty pps at the RE level? Remember there are two pings that target
the R2 router: ten pps from R1 (connected to MPC in slot 11) and ten pps from R3
(connected to MPC in slot 0). Removing the “terse” option of the previous command
shows:

user@R2> show ddos-protection protocols +icmp statistics
Packet types: 1, Received traffic: 1, Currently violated: 0

Protocol Group: ICMP

Packet type: aggregate
System-wide information:
Aggregate bandwidth is never violated
Received: 717710 Arrival rate: 20 pps
Dropped: 0 Max arrival rate: 20 pps
Routing Engine information:
Aggregate policer is never violated
Received: 717884 Arrival rate: 20 pps
Dropped: 0 Max arrival rate: 20 pps
Dropped by individual policers: 0
FPC slot 0 information:
Aggregate policer 1is never violated

Received: 4462 Arrival rate: 10 pps
Dropped: 0 Max arrival rate: 10 pps
Dropped by individual policers: 0
Dropped by flow suppression: 0

FPC slot 11 information:
Aggregate policer 1is never violated
Received: 713248 Arrival rate: 10 pps
Dropped: 0 Max arrival rate: 10 pps
Dropped by individual policers: 0
Dropped by flow suppression: 0

68 This Week: An Expert Packet Walkthrough on the MX Series 3D

The per FPC statistics are actually the pKernel’s statistics for each MPC. You cannot
see per PFE (per LU) statistics via this CLI command. This information is only
available with the previous PFE command: show ddos policer icmp stats terse.

So after this quick overview of ICMP DDoS statistics at the RE level, let’s move back
to the PFE level. Your ICMP echo request is still inside the ingress LU chip. The ten
pps ICMP stream passed without any problem the [00.0 firewall and then the aggre-
gated HW policer of the LU chip. It’s time for the ping to go out of the LU chip but
before that happens, the LU chip must assign a hardware queue number to reach the
pKernel’s CPU.

Queue Assignment

Remember, the LU chip only assigns the queue number and does not perform queuing
and scheduling. These tasks are performed by the MQ chip. The queue assignment
depends on the exception type, and for some exceptions also the packet type and
more. To find a given exception packet’s assigned queue, you can use a PFE command
(used previously).

REMEMBER The ping to host stream is considered as Host Route Exception (remember PUNT(32)
code).
The “g#” column gives you the associated HW queue:

NPCO(R2 vty)# show ddos asic punt-proto-maps
PUNT exceptions directly mapped to DDOS proto:

code PUNT name group proto idx g# bwidth burst
1 PUNT_TTL tt]l aggregate 3c00 5 2000 10000
3 PUNT_REDIRECT redirect aggregate 3e00 0 2000 10000
5 PUNT_FAB_OUT_PROBE_PKT fab-probe aggregate 5700 0 20000 20000
7 PUNT_MAC_FWD_TYPE_HOST mac-host aggregate 4100 2 20000 20000
8 PUNT_TUNNEL_FRAGMENT tun-frag aggregate 4200 O 2000 10000
11 PUNT_MLP mlp packets 3802 2 2000 10000
12 PUNT_IGMP_SNOOP mcast-snoop igmp 4302 4 20000 20000
13 PUNT_VC_TTL_ERROR vchassis vc-ttl-err 805 2 4000 10000
14 PUNT_L2PT_ERROR 12pt aggregate 5a00 2 20000 20000
18 PUNT_PIM_SNOOP mcast-snoop pim 4303 4 20000 20000
35 PUNT_AUTOSENSE dynvlan aggregate 300 2 1000 500
38 PUNT_SERVICES services BSDT 4403 0 20000 20000
39 PUNT_DEMUXAUTOSENSE demuxauto aggregate 4500 O 2000 10000
40 PUNT_REJECT reject aggregate 4600 6 2000 10000
41 PUNT_SAMPLE_SYSLOG sample syslog 5602 7 1000 1000
42 PUNT_SAMPLE_HOST sample host 5603 7 12000 12000
43 PUNT_SAMPLE_PFE sample pfe 5604 7 1000 1000
44 PUNT_SAMPLE_TAP sample tap 5605 7 1000 1000
45 PUNT_PPPOE_PADI pppoe padi 502 2 500 500
46 PUNT_PPPOE_PADR pppoe padr 504 3 500 500
47 PUNT_PPPOE_PADT pppoe padt 506 3 1000 1000
48 PUNT_PPP_LCP ppp Tcp 402 2 12000 12000
49 PUNT_PPP_AUTH ppp auth 403 3 2000 2000
50 PUNT_PPP_IPV4CP ppp ipcp 404 3 2000 2000
51 PUNT_PPP_IPV6CP ppp ipvécp 405 3 2000 2000
52 PUNT_PPP_MPLSCP ppp mplscp 406 3 2000 2000
53 PUNT_PPP_UNCLASSIFIED_CP ppp unclass 401 2 1000 500
55 PUNT_VC_HI vchassis control-hi 802 3 10000 5000
56 PUNT_VC_LO vchassis control-lo 803 2 8000 3000
57 PUNT_PPP_ISIS ppp isis 407 3 2000 2000

PUNT_KEEPALIVE

PUNT_SEND_TO_HOST_FW_INLINE_SVCS inline-svcs aggregate

PUNT_PPP_LCP_ECHO_REQ
PUNT_INLINE_KA
PUNT_PPP_LCP_ECHO_REP
PUNT_MLPPP_LCP
PUNT_MLFR_CONTROL
PUNT_MFR_CONTROL
PUNT_REJECT_V6
PUNT_SEND_TO_HOST_SVCS
PUNT_SAMPLE_SFLOW

keepalive aggregate 5b00 3
ppp echo-req 408 2
inline-ka aggregate 5c00 3
ppp echo-rep 409 2

ppp mlppp-lcp 40a 2
frame-relay frfl5 5e02 2
frame-relay frfl6 5e03 2
rejectvb aggregate 5900 6
services packet 4402 1
sample sflow 5606 7

exceptions that go through HBC. See

PUNT name

PUNT_OPTIONS |
PUNT_CONTROL |
PUNT_HOST_COPY |

PUNT_MLP [[EE—

PUNT_PROTOCOL |
PUNT_RECEIVE |
PUNT_SEND_TO_HOST_FW |

Chapter 3: Onthe Way to the Host

20000

5d00
12000
20000
12000
12000
12000
12000

2000
20000

1000

following parsed proto

20000
2 20000 20000
12000
20000
12000
12000
12000
12000
10000
20000
1000

contr1 LACP
contrl STP
contrl ESMC
contr1l OAM_LFM
contrl EOAM
contrl LLDP
contr1l MVRP
contrl PMVRP
contrl ARP
contrl PVSTP
contrl ISIS
contrl POS
contrl MLP
contrl JFM
contrl ATM
contr1l PFE_ALIVE
filter ipv4
filter ipv6
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv4
filter ipv6

pfe-alive
dhcpv4
dhcpvb
icmp
igmp
ospf
rsvp
pim
rip
ptp
bfd
Tmp
Tdp
msdp
bgp
vrrp
telnet
ftp
ssh
snmp
ancp
igmpv6é

aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
packets

aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate
aggregate

RPRPOOOCORORRRERRPRPRLPRLRHEREPFPOOOWWWNWRWNWWWWWWWW

69

70 This Week: An Expert Packet Walkthrough on the MX Series 3D

filter ipv6 egpv6 aggregate 1cO00 1 20000 20000
filter ipv6 rsvpvé aggregate 1d00 1 20000 20000
filter ipv6 igmpv4v6 aggregate 1e00 1 20000 20000
filter ipv6 ripvé aggregate 1f00 1 20000 20000
filter ipv6 bfdve aggregate 2000 1 20000 20000
filter ipvé Tmpv6 aggregate 2100 1 20000 20000
filter ipv6 1dpv6 aggregate 2200 1 20000 20000
filter ipv6 msdpv6 aggregate 2300 1 20000 20000
filter ipvé bgpv6 aggregate 2400 0 20000 20000
filter ipv6 vrrpvé aggregate 2500 1 20000 20000
filter ipv6 telnetv6 aggregate 2600 0 20000 20000
filter ipv6 ftpv6e aggregate 2700 0 20000 20000
filter ipv6 sshv6 aggregate 2800 0 20000 20000
filter ipv6 snmpv6 aggregate 2900 O 20000 20000
filter ipvé ancpv6 aggregate 2a00 1 20000 20000
filter ipv6 ospfv3vbe aggregate 2b00 1 20000 20000
filter ipv4 tcp-flags unclass.. 4801 0 20000 20000
filter ipv4d tcp-flags initial 4802 0 20000 20000
filter ipv4 tcp-flags establish 4803 0 20000 20000
filter ipv4 dtcp aggregate 4900 O 20000 20000
filter ipv4 radius server 4a02 0 20000 20000
filter ipv4 radius account.. 4a03 0 20000 20000
filter ipv4 radius auth.. 4a04 0 20000 20000
filter ipv4 ntp aggregate 4b00 0 20000 20000
filter ipv4 tacacs aggregate 4c00 0 20000 20000
filter ipv4 dns aggregate 4d00 0 20000 20000
filter ipv4 diameter aggregate 4e00 0O 20000 20000
filter ipv4 ip-frag first-frag 4f02 0 20000 20000
filter ipv4 ip-frag trail-frag 4f03 0 20000 20000
filter ipv4 12tp aggregate 5000 0O 20000 20000
filter ipv4 gre aggregate 5100 0 20000 20000
filter ipv4 ipsec aggregate 5200 0 20000 20000
filter ipv6 pimv6 aggregate 5300 1 8000 16000
filter ipv6 icmpv6 aggregate 5400 0 20000 20000
filter ipv6 ndpv6 aggregate 5500 0 20000 20000
filter ipv4 amtv4 aggregate 5f00 0 20000 20000
filter ipv6 amtv6 aggregate 6000 O 20000 20000
option rt-alert ip-opt rt-alert 3d02 1 20000 20000
option unclass ip-opt unclass.. 3d01 4 10000 10000

PUNT exceptions parsed by their own parsers
code PUNT name

209 PUNT_RESOLVE |

209 PUNT_RESOLVE_V6 |-------=------- +
|

resolve aggregate 100 O 5000 10000

resolve other 101 6 2000 2000

resolve ucast-v4 102 6 3000 5000

resolve mcast-v4 103 6 3000 5000

resolve ucast-v6 104 6 3000 5000

resolve mcast-vé6 105 6 3000 5000

REJECT_FW exception mapped to DHCPv4/6 and filter-act. Only filter-act shown
7 PUNT_REJECT_FW |-—-—mmmmmmmm - +

filter-act aggregate 200 O 5000 10000
filter-act other 201 6 2000 5000
filter-act filter-v4 202 6 2000 5000
filter-act filter-v6 203 6 2000 5000

Chapter 3: Onthe Way to the Host 71

And you can see that the ICMP echo request (Protocol ID 0x900) is assigned to
queue number 0. And this last output ends our tangent on host inbound packet
identification and DDOS protection

Ping to the Host, Stage Three: From LU back to MQ/XM

Figure 3.9

NOTE

Okay, the LU chip has performed packet lookup, packet filtering, packet identifica-
tion, packet ddos rate-limiting, and packet queue assignment. Whew!

It’s time for the Parcel to go back to the MQ/XM chip via the LU In block (LI). The
Parcel is “rewritten” before moving back to the MQ/XM chip. Indeed, the LU chip
adds some additional information in a Parcel header. The Parcel header includes the
IFL index (incoming logical interface), the packet type (used by DDOS protection at
the pKernel — the Protocol ID, which for ICMP is 0x900) and some other informa-

tion.

This additional information is hidden from the MQ/XM chip - only the next L2M
header will be understood by the MQ/XM chip.

After modifying the Parcel headers, the LU chip provides the MQ/XM chip with
some information through an additional (L2M) header that gets prepended to the
Parcel header. The L2M header conveys, among other things, the fact thatitisa
host-inbound packet, and the Host Queue Assigned by the LU (L2M conveys the
absolute queue number that corresponds to the relative queue 0 - see below).

The MQ/XM chip reads the L2M header and learns that the packet is an exception
packet for the host. The L2M header is then removed.

Then the MQ/XM chip internally conveys host traffic in a dedicated stream: the

Host Stream always has the value 1151.

—
=
®
9]
=
n
o
1]
o]
=
-
w
<
=

HSL2 |

[L2m [PeL Head. IPARCELI\

Q, S
“euq 0 [&S

PPE PPE 3/ e
2N o= =
S c
v |e =]
ol SASH S > | 55 wg
g |23 |22 |FR|Q5|Q
| | 2 |98 |ge|wo|l0o(3 ¢
| | 3 %‘q‘, %8 I=Z|SE|I25 |25
- = (_)E OD_ @]
snnnal | g DtE follys mg @
o (of, 1 <

From LU

Back to MQ/XM Chip - the L2ZM Header

72 This Week: An Expert Packet Walkthrough on the MX Series 3D

Ping to the Host, Stage Four: from MQ/XM to the Host

Host HW queues are managed by the MQ/XM chip as WAN queues (see the Appen-
dix WAN CoS tangent). The host interface, as a WAN interface between the MQ or
XM chip and the pKernel’s CPU, has eight HW queues available.

NOTE The MQ/XM chip accesses the pKernel’s CPU via DMA through a PCle interface.

Since the host interface (stream 1151) is managed by the SCHED block has a WAN
interface:

B The Q system 0 of the MQ or XM chip manages the delivery of host packets.
B There are eight queues (eight Q nodes) to carry traffic destined to the host.

B These queues are not configurable and each queue has a priority but not a
guaranteed bandwidth. Table 3.2 lists the main role of each host queue:

Table 3.2 The Host Inbound Queues

Queue Number Main Role / Priority

Queue 0 Layer 3 packets / low priority
Queue 1 Layer 3 packets / high priority
Queue 2 Layer 2 packets / low priority
Queue 3 Layer 2 packets / high priority
Queue 4 Queue for IP Options packets
Queue 5 Queue for TTL packets
Queue 6 Queue for Error Notification
Queue 7 Queue for Sample / Syslog

Host packets are delivered from the MQ or XM chip to the pKernel’s CPU via the
Trinity Offload Engine (TOE). TOE is an embedded component of the M chip that
handles DMA to/from the pKernel’s CPU. To notify the SCHED block that a specific
queue of pKernel is overloaded, TOE sends a backpressure message to SCHED Block.
Later we will see a case of congestion on one queue.

The host interface is not a real interface and you can’t use the same commands to
retrieve L1/L2/Q node information associated to the host interface. Nevertheless,
another command is available to display the host interface information (Host Stream
1151).

NOTE This is the same command for both MQ and XM based cards.

NPC11(R2 vty)# show cos halp queue-resource-map 0 <<<< 0 means PFE_ID = 0
Platform type 3 (3

FPC ID : 0x997 (0x997)
Resource init 01
cChip type 1

Rich Q Chip present: 0
Special stream count: 5

stream-id Ll-node L2-node base-Q-Node

1151 127 254 1016 <<<< Host Stream Base queue (Q) node
1119 95 190 760

Chapter 3: Onthe Way to the Host 73

1120 96 192 768
1117 93 186 744
1118 94 188 752

For the MPC in slot 11 you can see that the CoS of the host interface is managed by
the L1 node index 127 /L2 node index 254 and the eight Q nodes (1016 [the base
Queue relative to queue 0] to 1023).

Calling the same command on the MPC in slot 0 gives you other values (this is an
MPC4e card): the L1 node index 126, L2 node index 252, and the eight Q nodes
(1008 [the base Queue] to 1015).

NPCO(R2 vty)# show cos halp queue-resource-map 0 <<<< 0 means PFE_ID = 0

Platform type 13 (3

FPC ID : Oxb4e (Oxb4e)
Resource init 1

cChip type 12

Rich Q Chip present:
Special stream count: 13

stream-id Ll-node L2-node base-Q-Node

1151 126 252 1008 <<<< HOST STREAM base queue (Q) node

Figure 3.10 illustrates the host stream CoS for MPC 0 and MPC 11.

M MPC4e in Slot 0

MPC 16x10GE in Slot 11

STREAM 1151 STREAM 1151
SCHED SCHED
Block Block

Qsys=0

Qnode Index 1008 1009 1010 1011 1012 1013 1014 1015 Qnode Index 1016 1017 1018 1019 1020 1021 1022 1023
Toward the HOST Toward the HOST
(WO block) (WO block)

Figure310 TheHost Stream CoS Tree

The fact that the g-node numbers from one MPC to another are consecutive is
simply a coincidence. The g-node numbers (which represent the absolute queue
number) only have a local significance to each MPC.

The aim of the next PFE command sequence is to check the statistics of the host
interface queues. Remember the ping packet has been assigned to the relative Queue
0 (Absolute Q node 1016).

REMEMBER MQ/XM chip has learned from the LU chip (L2M header) this information: Qsys-
tem and Queue Number.

74 This Week: An Expert Packet Walkthrough on the MX Series 3D

For MPC in slot 11, use this command:

NPC11(R2 vty)# show mqchip 0 dstat stats 0 1016 (<<<< 2nd 0 means Qsys 0)
QSYS 0 QUEUE 1016 colormap 2 stats index O:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRule) 0 0 0 0
Forwarded (Rule) 447264 10 55013472 1230
Color O Dropped (WRED) 0 0 0 0
Color O Dropped (TAIL) 0 0 0 0
Color 1 Dropped (WRED) 0 0 0 0
Color 1 Dropped (TAIL) 0 0 0 0
Color 2 Dropped (WRED) 0 0 0 0
Color 2 Dropped (TAIL) 0 0 0 0
Color 3 Dropped (WRED) 0 0 0 0
Color 3 Dropped (TAIL) 0 0 0 0
Dropped (Force) 0 0 0 0
Dropped (Error) 0 0 0 0
Queue 1inst depth : 0
Queue avg len (taql): O
And for MPC in slot 0:

NPCO(R2 vty)# show xmchip 0 g-node stats 0 1008 (<<<< 2nd 0 means Qsys 0)
Queue statistics (Queue 1008)

Color OQutcome Counter Counter Total Rate
Index Name

ATl Forwarded (No rule) 384 Packets 0 0 pps
ATl Forwarded (No rule) 384 Bytes 0 0 bps
All Forwarded (Rule) 385 Packets 44160 10 pps
ATl Forwarded (Rule) 385 Bytes 5431680 9888 bps
ATl Force drops 388 Packets 0 0 pps
ATl Force drops 388 Bytes 0 0 bps
ATl Error drops 389 Packets 0 0 pps
ATl Error drops 389 Bytes 0 0 bps
0 WRED drops 386 Packets 0 0 pps
0 WRED drops 386 Bytes 0 0 bps
0 TAIL drops 387 Packets 0 0 pps
0 TAIL drops 387 Bytes 0 0 bps
1 WRED drops 390 Packets 0 0 pps
1 WRED drops 390 Bytes 0 0 bps
1 TAIL drops 391 Packets 0 0 pps
1 TAIL drops 391 Bytes 0 0 bps
2 WRED drops 392 Packets 0 0 pps
2 WRED drops 392 Bytes 0 0 bps
2 TAIL drops 393 Packets 0 0 pps
2 TAIL drops 393 Bytes 0 0 bps
3 WRED drops 394 Packets 0 0 pps
3 WRED drops 394 Bytes 0 0 bps
3 TAIL drops 395 Packets 0 0 pps
3 TAIL drops 395 Bytes 0 0 bps

dcfg_taql : O0x0 (Mantissa: 0, Shift: 0, Value: 0)
dcfg_instantaneous_depth : 0

Chapter 3: Onthe Way to the Host 75

You can see that MQ/XM sends the ICMP echo requests without any drops to the
pKernel’s CPU via the queue 0. Before they reach pKernel the packets still have to
cross a last functional block of the MQ/XM chip: the Wan Output (WO) block. As
mentioned, host interface is managed as a WAN interface. Therefore, the WO, in
charge of managing WAN Output Streams, handles host packets of the Host Stream
1151 as well.

WO retrieves the entire echo request packet (with the specific Parcel header) from
the packet buffer, reassembles the data units, and sends it to the pKernel’s CPU via
the TOE. If you need to check WO statistics you must configure Stream Accounting
in advance. Indeed, as with the WI block, the PFE doesn’t maintain per WAN
Output Stream Statistics by default.

When it comes to activating WO statistics for a given stream, in this case the host
stream 1151, there are some differences between the two models of MPCs and both
are covered.

Let’s first activate WO accounting for host stream on MPC in slot 11:
NPC11(R2 vty)# test mqchip O counter wo 0 1151 <<<< the second 0 is the counter 0 (WO supports 2
counters max)

Then display the WO statistics for MPC in slot 11:

NPC11(R2 vty)# show mqchip 0 counters output stream 1151
DSTAT phy_stream 1151 Queue Counters:
Aggregated Queue Stats QSYS 0 Qs 1016..1023 Colors 0..3:

Counter Packets Pkt Rate Bytes Byte Rate

Forwarded 3658102 11 164530142 1264 <<< Aggregated Stat of the 8 queues
Dropped 0 0 0 0

WO Counters:

Stream Mask Match Packets Pkt Rate Bytes Byte Rate Cells

0x07f 0x07f << Counter 0 128 10 14676 1202 20

Let’s deactivate WO accounting for the host stream on the MPC in slot 11:
NPC11(R2 vty)# test mgchip O counter wo 0 default

Do the same for MPC in slot 0. Activate WO accounting for host stream:

NPCO(R2 vty)# test xmchip O wo stats stream 0 1151 <<<< the second 0 is the counter 0

And then display WO statistics for MPC in slot 0 :
NPCO(R2 vty)# show xmchip 0 phy-stream stats 1151 1 <<< 1 means Out Direction

Aggregated queue statistics

Color Outcome Counter Total Rate
Name
All Forwarded (No rule) Packets 0 0 pps
ATl Forwarded (No rule) Bytes 0 0 bps
ATl Forwarded (Rule) Packets 3475669 11 pps<<<< Aggregated Stat of the 8 queues
ATl Forwarded (Rule) Bytes 126869375 10256 bps

76 This Week: An Expert Packet Walkthrough on the MX Series 3D

WO statistics (WAN Block 0)

Counter set 0

Stream number mask : Ox7f

Stream number match : Ox7f

Transmitted packets : 352 (10 pps) <<<< stats counter 0
Transmitted bytes : 40448 (10008 bps)

Transmitted cells 1 672 (20 cps)

Counter set 1

Stream number mask : 0x0

Stream number match : 0x0

Transmitted packets : 10402752 (22 pps)
Transmitted bytes 1 373341245 (18312 bps)
Transmitted cells : 10672505 (42 cps)

Let’s deactivate WO accounting for Host Stream on MPC in slot 0 to end our trouble-
shooting example:

NPCO(R2 vty)# test xmchip 0 wo stats default 0 0 <<< third 0 means WAN Group 0

Figure 3.11 depicts the entire path of the echo request to reach the pKernel’s CPU.

77

Chapter 3: Onthe Way to the Host

ndo
pJeosur

JuswaublIssy
ananp
1901104

soaa
uoljeyuepl

Y

Q

S

=T

gD
= O

=

=l

(0]

%d =h
53|83| &
Q| 2@ (=]
=0 e a
TilaT| 6
ogdlead
/AWS - @

S,
B, %
4

05,
7,
K

>

(2]

add

Z1SH

PCI

Aeri (3senbai oy2s) ja¥oed .unmr:on; q

—
w

ouvd || (2)

.

sjuswabag 1930ed (€)

(1)

0

A

weais 1410

_ Juswabeuel 1@30ed

7304Vd + spuswbes jexoed (1 1)

(€)
Iv
Kowspy diyguo

V) A |

() 7\

Kiowsy diyoyo

19][013u0D)
Jowsy13

0/0/0-8%
Ommm S}SONbBI OYO3
0/0/L1-8%

Global View of Incoming Ping Echo Request Inside the PFE

Figure 3.11

78 This Week: An Expert Packet Walkthrough on the MX Series 3D

Ping to the Host, Stage Five: at the Host

Inthe Line Card CPU (microkernel)

The packet with its Parcel header (built by the LU chip) is received by the Line Card’s
CPU via DMA. The pKernel handles packets in software. It has its own micro
operating system with several processes (threads), and we’ll only highlight some of
the threads that run on top of the pKernel CPU:

NPC11(R2 vty)# show threads

PID PR State

2 L running
36 H asleep
37 H asleep
96 L asleep
[...]

Name Stack Use Time (Last/Max/Total) cpu
Idle 320/2056 0/0/3331235606 ms 93%
TTP Receive 840/4096 0/0/13412 ms 0%

TTP Transmit 1136/4104 0/0/135540 ms 0%

DDOS Policers 1976/4096 2/3/11302265 ms 0%

At this level the incoming ICMP echo request is managed by software queues (four
queues —a merger of the eight HW queues coming from the MQ/XM chip). You
should remember from our tangential discussion that DDOS policers are in charge of
managing AG and SP DDOS policers. And the packet type (Protocol_ID) identified
by the LU chip has followed the packet in the Parcel header. So the pKernel doesn’t
need to identify the type of exception. And the traffic stream is low enough for the
DDOS protection at the pKernel to pass all packets, as you can check with the
following CLI command (here the statistics are for MPC 11):

user@R2> show ddos-protection protocols icmp statistics | find "FPC slot 11"
FPC slot 11 information:
Aggregate policer is never violated
945181 Arrival rate: 10 pps

Received:
Dropped:

0

Max arrival rate: 10 pps

Dropped by individual policers: 0
Dropped by flow suppression: 0

TIP

This CLI command shows you statistics on a per-MPC basis. Remember the Host
Queues that lie between MQ/XM chip and the pKernel. Since there may be drops on
these queues, not all the host/exception packets that pass out of the LU policers
actually reach the pKernel.

Check out this line card shell command: show ddos policer stats icmp.

To the Routing Engine CPU

All’s well here. Now, it’s time to punt the packet to the RE via the internal Gigabit
Ethernet interface (em0 on the MX). Again the packet is not passed directly to the
RE. The pKernel and the RE use a proprietary protocol called Trivial Tunneling
Protocol (TTP) to exchange external control traffic (see Figure 3.12). With external
control traffic, we mean packets that are received from (or sent out to) the outside
world. On the other hand, native control traffic (forwarding table, boot image
statistics, etc.) are not encapsulated in TTP.

TTP allows some additional information to be conveyed in its header that may be
used by some processes of the RE. TTP is a proprietary protocol that runs over IP in
modern Junos releases.

Chapter 3: Onthe Way to the Host 79

NOTE Not all the control/exception packet types go up to the routing engine’s CPU. Some
are fully processed by the line card’s CPU.

ICMP echo
IPR1>R2
TTP
Linecard IP MPC11 > RE
CPU Eth MPC11 > RE
SLOT 11
em0| re cpu
Linecard
CPU
SLOT 0
Router
R2

Figure 3.12 TTP Encapsulation Between the pKernel and the RE

Global TTP’s statistics for a given MPC can be displayed by using this PFE com-
mand:

NPC11(R2 vty)# show ttp statistics
TTP Statistics:

[...]
TTP Transmit Statistics:
Queue 0 Queue 1 Queue 2 Queue 3
L2 Packets 6100386 0 0 0
L3 Packets 0 0 0 0
TTP Receive Statistics:
Control High Medium Low Discard
L2 Packets 0 0 0 0 0
L3 Packets 0 0 72630191 0 0
Drops 0 0 0 0 0
Queue Drops 0 0 0 0 0
Unknown 0 0 0 0 0
Coalesce 0 0 0 0 0
Coalesce Fail 0 0 0 0 0
[...]

Note that this command’s output is quite ambiguous. Indeed, TTP Transmit
Statistics means traffic received from the RE, then transmitted to the WAN. Receive
Statistics means traffic received from the MQ/XM chip then transmitted to the RE.
As you can see, the ICMP echo request is handled by the medium queue of the
pKernel before it is sent to the RE. In this case, only the Layer 3 of the packet is sent.
(The Layer 2 has been removed by the ingress LU chip.)

NOTE On the other hand, the host outbound packets sent by the RE are received by the
microkernel CPU with the Layer 2 header (see Chapter 4) and put in queue 0 before
they are sent to the MQ/XM chip.

80

This Week: An Expert Packet Walkthrough on the MX Series 3D

Let’s move on! An easy way to see the punted packet is to use the monitor traffic
interface command on the em0 interface. If you try to use this command without
any filter you will have some surprises. Indeed, a lot of native packets are exchanged
between the RE and the MPCs. To limit the capture to a packet coming from a
specific MPC, you must use the method explained next.

Each management interface of each MPC has a dedicated MAC and IP address. To
retrieve the MPC MAC address you can use this hidden CLI command:

user@R2> show tnp addresses

Name
master
master
re0Q
rel
rel
backup
fpcO
fpcll
bcast
bcast

OxFFffffff ff:ff:ff:ff:ff:ff em0 1500
OxFfffffff ff:ff:ff:ff:ff:ff eml 1500

TNPaddr MAC address IF MTU
0x1 02:01:00:00:00:05 emO 1500
Ox1 02:01:01:00:00:05 eml 1500
0x4 02:00:00:00:00:04 eml 1500
0x5 02:01:00:00:00:05 emO 1500
0x5 02:01:01:00:00:05 eml 1500
0x6 02:00:00:00:00:04 eml 1500

0x10 02:00:00:00:00:10 em0 1500
0x1lb 02:00:00:00:00:1b em0 1500

oowvupsNNOONOOM
RPOOOOROORrRrOIT
WWWwwWwwwwwwwx

In this way, you can view the MAC address of the management interface of each
non-passive component of the chassis. The IP address of each of them can be deduced
from the last byte of the MAC address. Indeed, MPC’s IP address starts with the
prefix: 128.0.0/24. The last byte of the IP address is the same as the last byte of MAC
address. So for MPC 11, the IP address is 128.0.0.27 (0x1b). For more information,

execute the command show arp vpn__juniper_privatel _ .

Now, let’s start to monitor the emO interface and apply a filter to only capture traffic
coming from the source MAC address 02:00:00:00:00:1b. The MPC11’s MAC TTP
protocol is not dissected by the Junos tcpdump. Only some information is displayed
but using print-hex print-ascii can help you retrieve some other interesting
information:

user@R2> monitor traffic interface em0 no-resolve layer2-headers matching "ether src host
02:00:00:00:00:1b" print-hex print-ascii size 1500
18:14:43.126104 In 02:00:00:00:00:1b > 02:01:00:00:00:05, ethertype IPv4 (0x0800), length 146:

128.0.0.27 > 128.0.0.1: TTP, type

0x0000 0201 0000 0005 0200 0000
0x0010 0084 d8aa 0000 ff54 e25e
0x0020 0001 0303 0200 0000 0145
0x0030 0207 0000 8010 0004 0004
0x0040 0054 a62a 0000 4001 545b
0x0050 1401 0800 209c ccd0O 00dd
0x0060 8e62 4441 594f 4e45 2044
0x0070 4441 594f 4e45 2044 4159
0x0080 594f 4e45 2044 4159 4f4e
0x0090 4e45

L3-rx (3), ifl_input 325, pri medium (3), length 92

001b 0800 4500 E.
8000 001b 8000 T AL
005c 0000 0000 E.\....
0900 0000 4500 <<< 0x0900 1is there
acl0 1402 acl0 T @ T
538d 9646 0004 S..F..
4159 4f4e 4520 .bDAYONE . DAYONE .
4f4e 4520 4441 DAYONE .DAYONE . DA
4520 4441 594f YONE.DAYONE .DAYO
NE

First of all you can see the incoming IFL (Interface Logical), which received the
packet. IFL 325 is indeed the IFL allocated to the ae0.0 interface as shown here:

user@2> show interfaces ae0.0 | match Index

Logical interface ae0.0 (Index

325) (SNMP ifIndex 1019)

Chapter 3: Onthe Way to the Host 81

Next, if you deeply analyze the output, the packet you can retrieve in Hex-Mode is
the DDOS Protocol_ID assigned by the LU chip. For ICMP’s case, it is 0x900.

One more time, software policers handle host incoming packets at the RE level, and
these policers are programmed by the jddosd process:

user@?2> show system processes | match jddos
81740 77 I 7:24.67 /usr/sbin/jddosd -N
And the following command can be used to see the RE’s DDOS protection statistics:

user@R2> show ddos-protection protocols +icmp statistics terse
Packet types: 1, Received traffic: 1, Currently violated: 0

Protocol Packet Received Dropped Rate Violation State
group type (packets) (packets) (pps) counts
icmp aggregate 1283280 0 20 0 ok

Remember, this CLI command gives you global statistics, meaning statistics with the
RE point of view (the entire chassis). This is why the rate is 20 pps — it counts the
two pings coming from MPC 11 and from MPC 0 (R1 and R3).

Finally, use the next CLI command to check traffic statistics and drops between the
pKernel and the RE (except for the last line HW input drops, which counts drops
between MQ/XM chip and pKernel):

user@2> show pfe statistics traffic fpc 11
Packet Forwarding Engine traffic statistics:

Input packets: 40 10 pps

Output packets: 40 10 pps
Packet Forwarding Engine Tocal traffic statistics:

Local packets input ;40

Local packets output 1 40

<< Drop uKernel to RE

<< Drop uKernel to RE

<< Drop uKernel to RE

<< Drop uKernel to RE

<< Drop uKernel to PFE Stream 1151

<< Drop Stream 1151 of all PFE of the
<< MPC to pKernel

Software input control plane drops
Software input high drops

Software input medium drops
Software input low drops

Software output drops

Hardware input drops

[eNeoNoNoNeNo]

MORE? Execute show system statistics ttp to retrieve TTP global statistics from the RE
perspective.

And let’s check the global ICMP statistics:

user@R2> show system statistics icmp | match "Histo|echo"
Output Histogram
685755 echo reply
676811 echo
Input Histogram
615372 echo reply
685755 echo

Great! Our simple echo request has reached its destination: the host , without any
issue!

This last command ends the host-inbound packet walkthrough. You witnessed a lot
of concepts that will be taken for granted in the next sections of the book.

82 This Week: An Expert Packet Walkthrough on the MX Series 3D

AND NOW? Technically, the deep dive of the host inbound path ends here. You can expand your
knowledge about the host protection feature set in Appendix B. Or if you wish, just
move on to Chapter 4 for a deep dive in the host outbound path. And don’t forget to
take a break if necessary!

Chapter 4

From the Host to the Outer World

Host-Outbound Path: Packets Generated by the Routing Engine 84

Host-Outbound Path: Packets Generated by the MPC Line Card....... 93

84 This Week: An Expert Packet Walkthrough on the MX Series 3D

Chapter 3 focused on the packet walkthough of incoming control traffic. This
chapter examines the return path using two examples: ICMP packets generated by
the Routing Engine, and LACP packets generated by the line card.

The host outbound path is quite different from the host inbound path. You will see
details in this chapter that were not covered in Chapter 3.

Host-Outbound Path: Packets Generated by the Routing Engine

Here, the same ping commands are executed from R1 and R3, but this time we focus
on the outbound ICMP echo replies instead. As you can see in Figure 4.1, the R2’s
routing engine answers the previous 10pps of echo requests coming from routers R1

and R3.
MPC 16x10GE MPC4e
SLOT 11 SLOTO
echo reply echo reply
ip.src=172.16.20.1 dst=172.16.20.2 TTL=64 | ip.src=172.16.20.5 dst=172.16.20.6 TTL=64
D I R >
ael ae1
Ve
U Xe11/0/0 gt X€-0/0/0 g
T \ \
%172.16.20.2/30 l\ | 17216.20.1/30€}172A16A20A5/30 I\ | 172.16.20.6/30 %
7 . . 1
R1 \ xe-11/0/1 Ro| X€ 0/0/1 N R3

\ AN J

Figure 4.1 Outbound ICMP packets from R2

First of all, you have to realize that when the RE generates packets (like the ICMP
echo replies in this example), it performs many tasks, including:

B Building the Layer 2 header of the packet. The RE builds itself the Layer 2
Ethernet header of the host outbound packets. This includes VLAN encapsula-
tion.

B Outbound queue assignment. The RE sets two types of queue infomation in
the packet. First, the TTP queue for the trip from RE to MPC. Second, the
forwarding class, which later determines the relative (0-7) queue where the
packet will be put before being sent out of the PFE.

B Forwarding next hop assignment. This means the IFD index on which the
packet should be forwarded.

In the case of ECMP, the Routing Engine sends packets in a round-robin manner
over the equal cost paths. In the LAG interface scenario, the Routing Engine will
choose the lowest IFD index between child links. If you take the case of AEO and
AE1, which have two child links: xe-11/0/0 and xe-11/0/1, and xe-0/0/0 and
xe-0/0/1, respectively, you can easily deduce on which interface the ICMP echo
replies will be sent using these commands:

Chapter 4: From the Host to the Outer World 85

user@R2> show interfaces xe-11/0/[0-1] | match Index
Interface index: 590, SNMP ifIndex: 773
Interface index: 591, SNMP ifIndex: 727

user@R2> show interfaces xe-0/0/[0-1] | match Index
Interface index: 571, SNMP ifIndex: 526
Interface index: 572, SNMP ifIndex: 1079

Here, the lowest IFD index for AEO member links is 590, which is the xe-11/0/0
interface. Similarly, the lowest IFD index for AE1 is found to be xe-0/0/0. This
means that the RE notifies the pKernel of MPC 11 to send the ICMP reply to R1 via
xe-11/0/0, and notifies MPC 0 to send the ICMP reply to R3 via xe-0/0/0. This
information is also included in the TTP header.

Host-Outbound Class of Service

Table 4.1 lists the default host-outbound queue assigned by RE/pKernel to common
protocols. This default assignment may be altered by configuration, as explained
later in this chapter.

NOTE The full table is kept up to date and is publicly available on the Juniper TechLibrary
(go to www.juniper.net/documentation and search for Default Queue Assignments
for Routing Engine Sourced Traffic to get the most current table).

Table 4.1 Default Outbound Queue Assigned for Each Protocol
Host Protocol Default Queue Assignment
Address Resolution Protocol (ARP) Queue 0
Bidirectional Forwarding Detection (BFD) Protocol Queue 3
BGP Queue 0
BGP TCP Retransmission Queue 3
Cisco HDLC and PPP Queue 3
Ethernet Operation, Administration, and Maintenance (OAM) Queue 3
SSH/Telnet/FTP Queue 0
IS-IS Queue 3
Internet Control Message Protocol (ICMP) Queue 0
LDP User Datagram Protocol (UDP) hello Queue 3
LDP keepalive and Session data Queue 0
LDP TCP Retransmission Queue 3
Link Aggregation Control Protocol (LACP) Queue 3
NETCONF Queue 0
NetFlow Queue 0
OSPF Queue 3
RSVP Queue 3
Routing Information Protocol (RIP) Queue 3
SNMP Queue 0
Virtual Router Redundancy Protocol (VRRP) Queue 3

http://www.juniper.net/documentation

86 This Week: An Expert Packet Walkthrough on the MX Series 3D

As mentioned above, the default queue assignment may be overridden by configura-
tion:

set class-of-service host-outbound-traffic forwarding-class FC3
set class-of-service host-outbound-traffic dscp-code-point ef

NOTE This is the only method by which to modify queue assignment for non-IP and non-
MPLS protocols like ISIS. Moreover, this method does not work for protocols
managed by the MPC (delegated protocols).

These CLI knobs map the host-outbound traffic for all protocols to a given relative
queue (actually forwarding class) and define the DSCP value to re-mark these host
packets generated by the RE.

This job is all done by the RE. Indeed, the RE generates its packets with the right
DSCP value (here EF) and then notifies, via an additional TLV inserted in the TTP
header, which relative (0-7) HW queue of the MQ/XM WAN stream the packets
should be put on.

Sometimes you want to classify some host protocols into a high priority queue and
others to a best effort queue. To complete this selective per-protocol queue assign-
ment you need to configure a specific firewall filter and apply it on the loopback
interface in the output direction.

Here is a sample firewall filter configuration:

interfaces {

100 {
unit 0 {
family inet {
filter {
output HOST-OUTBOUND-REMARK;
L R
firewall {

family inet {
filter HOST-OUTBOUND-REMARK {
term ACPT-BGP {

from {
protocol tcp;
port bgp;
then {
forwarding-class FC3;
dscp cs6;
}
}
term ACPT-TELNET-SSH {
from {
protocol tcp;
port [telnet ssh];
}
then {
forwarding-class FC1;
dscp af42;
}
3

term ACCEPT-ALL {
then accept;

P}y or i

NOTE

Chapter 4: From the Host to the Outer World 87

In this example, only BGP and SSH/telnet protocols are reassigned to specific queues.
This reclassification is also performed by the RE kernel. For the other protocols that
only match the last “term,” the RE uses the default queue assignment rules or the
queue assigned by the global host-outbound-traffic knob.

In our case let’s keep the default queue assignment (so the ICMP reply will be queued
in the queue 0).

From the RE Down to the MPC

Figure 4.2

CAUTION

The RE has built a L2 packet by adding a L2 header to the ICMP echo reply. The RE
kernel already did all the work and it is not necessary to perform route lookup on the
egress PFE. However, it still goes through the LU chip, in particular, to update
counters and assign the absolute WAN output queue (based on the relative one
previously set by the RE). For this reason, the RE flags the packet to bypass the route
lookup on its way out.

Okay, once the packet is ready to send, the RE kernel sends it to the right MPC (
the MPC that hosts the output interface) via the RE’s em0 interface as shown in
Figure 4.2.

The actual interface depends on the MX model, and even on the RE model. Check
Chapter 3 of This Week: A Packet Walthrough of M, MX and T Series to see the
method to determine the right interface to look at: http://www.juniper.net/us/en/
training/jnbooks/day-one/networking-technologies-series/a-packet-walkthrough/ .

The Ethernet frame is encapsulated in a TTP header and then sent unicast to the
pKernel of the egress MPC. The TTP header contains an additional TLV with WAN
COS information (forwarding class).

ICMP reply
IPR2 > R1
Eth R2 > R1 Output Interface (IFD)
TP Queue number
Linecard IP RE> MPC11
CPU Eth RE > MPC11
SLOT 11
em0 Re cpu
Linecard
CPU
SLOT 0
Router
R2

Host Outbound Packet Sent Over TTP

http://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/a-packet-walkthrough/
http://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/a-packet-walkthrough/

88 This Week: An Expert Packet Walkthrough on the MX Series 3D

From the MPC to the Outer World

The MPC microkernel decapsulates the original L2 Ethernet frame from TTP. The
result is the original ICMP echo reply with its Ethernet header. The COS information
that was present in the removed TTP header is then added (in a disposable header) to
the L2 frame before sending it to the PFE.

Packets are then received in the pKernel’s software queues before sending them to the
PFE. The next command shows you that the echo reply packets received from RE
(Layer 2 packets) are all in queue 0:

NPC11(R2 vty)# show ttp statistics
TTP Statistics:

[...]
TTP Transmit Statistics:
Queue 0 Queue 1 Queue 2 Queue 3
L2 Packets 6100386 0 0 0
L3 Packets 0 0 0 0

[...]
You can view host outbound packets caught by a specific MPC with this PFE com-
mand (from pKernel’s point of view):

NPC11(R2 vty)# show pfe host-outbound packets

ifl dinput: O

if1 output: 131075

ifd output: 590

Proto: 0 Hint:0x1 Qid:0 Cos:0

00 00 01 75 80 00 00 21 - 59 a2 ef c2 00 21 59 a2 e lYL LY.
ef cO 08 00 45 00 00 54 - 6d 90 00 00 40 01 4b 07E..Tm...@.K.
ac 10 14 01 02 00 00 01 - 08 00 68 8e a3 dO 01 47 h....G
53 8d 95 de 00 03 6f 6f - 44 41 59 4f 4e 45 20 44 S..... 00DAYONE D
00 00 00 00 00 01 00 00 - 00 00 00 00 00 00 00 02 evuvnnnn..
00 03 02 4e 00 00 01 75 - 80 00 00 21 59 a2 ef c2 R T R D
00 21 59 a2 ef cO 08 00 - 45 00 00 54 6d 9a 00 00 Yoo E..Tm...
40 01 4a fd ac 10 14 01 - 02 00 00 01 08 00 de 18 @.J.....itt.
@J.......iutt

The pKernel of the MPC passes the packet to the MQ/XM chip (without TOE). As
mentioned previously, the host path is viewed as a WAN interface and therefore from
the perspective of MQ/XM the packet coming from this pseudo-WAN interface is
handled by the WAN Input functional block (as many other physical interfaces).

Also remember, the pKernel has PCI interfaces to the MQ/XM chip. In this case, the
pKernel sends the packet to the WI functional block via PCle DMA. WI puts host
packets in a specific WAN stream: actually the host stream (ID 1151) already seen in
the host inbound path (stream 1151 is bidirectional).

But how does the pKernel choose the right MQ/XM chip?

Indeed, a single MPC hosts several PFEs. The RE sends some useful information via
the TTP header to the MPC and some of it is the Output Interface (the output IFD).
The pKernel performs a kind of IFD lookup to find to which ASICs the packet has to
be sent. You can use the PFE command to retrieve this information for the xe-11/0/0
and xe-0/0/0 interfaces:

user@R2> request pfe execute target fpcll command "show ifd 590" | match PFE | trim 5
PFE: Local, PIC: Local, FPC Slot: 11, Global PFE: 44, Chassis ID: 0

Chapter 4: From the Host to the Outer World 89

user@R2> request pfe execute target fpcO command "show ifd 571" | match PFE | trim 5
PIC: Local, FPC Slot: 0, Global PFE: 0, Chassis ID: 0O

PFE: Local,

As previously mentioned, the W1 functional block manages these host packets as
WAN input packets. Because it knows the packet is coming from the host it puts it
on Host Stream 1151. One counter of the W1 block is by default programmed to
count packets in Host Stream 1151. Let’s check on the W1 statistics of the Host
Stream. On the MQ chip:

NPC11(R2 vty)# show mqchip 0 wi stats

WI Counters:

RX Stream
RX Stream
RX Stream
RX Stream

DROP Port
DROP Port
DROP Port
DROP Port

Counter Packets Pkt Rate Bytes Byte Rate
1025 (001) 0 0 0 0
1026 (002) 630787 9 62935934 950
1027 (003) 0 0 0 0
1151 (127) 10161965 10 817609234 1117
0 TClass 0O 0 0 0 0
0 TClass 1 0 0 0 0
0 TClass 2 0 0 0 0
0 TClass 3 0 0 0 0

And on the XM chip:

NPCO(R2 vty)#

show xmchip 0 wi stats 0 <<< second 0 means WAN Input Block O

WI statistics (WAN Block 0)

Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate
Mask Match (pps) (bps)

0 0x7c 0x0 4688 10 449268 8000

1 0x7c 0Ox4 2147483648 0 137438953472 0

2 0x7c 0x8 5341224839 0 454111053838 0

3 0x7c Oxc 2147483648 0 137438953472 0

4 0x0 0x0 3212591566 23 317782816860 17936

6 0x0 0x0 3212591566 23 317782816860 17936

7 0x0 0x0 3212591566 23 317782816860 17936

8 0x0 0x0 3212591566 23 317782816860 17936

9 0x0 0x0 3212591566 23 317782816860 17936

10 0x7f Ox7f 10053356 10 798303776 9392

11 0x70 0x60 O 0 0 0

The host-outbound L2 packets generated by the RE (in our case, the ICMP echo
reply packet with its L2 header) carry a flag to bypass the route lookup phase in LU
chip.

As you’ve seen in the last section of Chapter 2 (covering egress PFE forwarding), the
W1 takes a chunk of this packet and gives the parcel to the LO functional block
which finally passes the parcel to the LU chip. The parcel has the “bypass lookup”
flag so the LU chip just does a very simple task. LU selects the right physical WAN
Output Stream based on the output IFD (or IFL) and the forwarding class previously
set by the RE. Then the LU returns the parcel to the LI functional block of MQ or
XM, embedding the WAN Output Queue (The Absolute Queue number) in the

L2M header.

90 This Week: An Expert Packet Walkthrough on the MX Series 3D

On the MQ Chip:
NPC11(R2 vty)# show mqchip 0 ifd
[.]
Output IFD IFD Base
Stream Index Name Qsys Qnum
1024 590 xe-11/0/0 MQO 0 <<<< The IFD 590 is assigned to WO STREAM 1024
1025 591 xe-11/0/1 MQO 8
1026 592 xe-11/0/2 MQO 16
1027 593 xe-11/0/3 MQO 24
And on the XM Chip:

NPCO(R2 vty)# show xmchip 0 ifd 1ist 1 <<<< 1 means Egress direction

Egress IFD Tist

IFD name IFD PHY Scheduler L1 Node Base Number of
Index Stream Queue Queues

xe-0/0/0 571 1024 WAN 0 0 8 <<<< The IFD 571 = WO STREAM 1024 (the
same value as on MQ: pure coincidence)

xe-0/0/1 572 1025 WAN 1 8 8

xe-0/0/2 573 1026 WAN 2 16 8

xe-0/0/3 574 1027 WAN 3 24 8

et-0/1/0 575 1180 WAN 4 32 8

MQ/XM handles the parcel via the LI block, then strips the L2M header, stores the
parcel, and then gives the packet’s pointer to the SCHED block. The scheduler
associated to the IFD does its job. You can retrieve L1/L2/Q node information by
using one of the already used commands (see Appendix A for more information).

Here’s an example of retrieving that information for interface xe-11/0/0 (IFD 590):

NPC11(R2 vty)# show cos halp ifd 590 1 <<< 1 means egress direction

IFD name: xe-11/0/0 (Index 590)
MQ Chip id: O
MQ Chip Scheduler: 0
MQ Chip L1 index: 0
MQ Chip dummy L2 index: O
MQ Chip base Q index: 0
Number of queues: 8
Rich queuing support: 0 (ifl queued:0)

Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
0 Configured 222000000 277500000 32767 62 GL EL 4 145
1 Configured 555000000 111000000 32767 25 GL EL 4 124
2 Configured 555000000 111000000 32767 25 GL EL 4 124
3 Configured 555000000 Disabled 32767 12 GH EH 4 78
4 Configured 555000000 0 32767 1 GL EL 0 255
5 Configured 555000000 0 32767 1 GL EL 0 255
6 Configured 555000000 0 32767 1 GL EL 0 255
7 Configured 555000000 0 32767 1 GL EL 0 255

Chapter 4: From the Host to the Outer World 9]

Remember that our ping echo reply is sent to Queue 0 (by default). You can even use

the following PFE commands to retrieve Q node information respectively for the
MQ and XM chips:

show mqchip 0 dstat stats 0 O
show xmchip 0 gq-node stats 0 O

Let’s check the interface queue statistics, using the CLI:

user@R2>

Physical interface: xe-11/0/0, Enabled, Physical link 1is Up
Interface index: 590, SNMP ifIndex: 773
Description: LAB_DAV_R2

Forwarding classes: 16 supported, 4 in use

Egress queues: 8 supported, 4 in use

Queue: 0, Forwarding classes: FCO

Queued:
Packets : 5650682 10 pps
Bytes : 678761824 9664 bps
Transmitted:
Packets : 5650682 10 pps
Bytes : 678761824 9664 bps
Tail-dropped packets : 0 0 pps

All looks well. Great! Before leaving the router, the WO functional block reassem-
bles the packets, sends it to the MAC controller, and the packet finally leaves the
router. As you have seen previously you can use PFE commands to check WO
statistics for a given WAN stream and also check the MAC controller output statis-
tics. Hereafter, just a quick reminder of these PFE commands without their output.
We take as example the interfaces xe-11/0/0 (WAN Stream 1024) and xe-0/0/0
(WAN Stream 1024).

For xe-11/0/0:

test mgchip 0 counter wo 0 1024 <<< 0 1024 means activate counter 0 for Stream 1024
show mqchip O counters output stream 1024

test mgchip 0 counter wo 0 default

show mtip-xge summary

show mtip-xge 5 statistics <<< 5 is the index of xe-11/0/0 retrieved by the previous command

And for xe-0/0/0:

test xmchip 0 wo stats stream 0 1024 <<< 0 1024 means activate counter 0 for Stream 1024
show xmchip 0 phy-stream stats 1024 1 <<< 1 means Output direction

test xmchip 0 wo stats default 0 O

show mtip-cge summary

show mtip-cge 5 statistics <<< 5 is the index of xe-0/0/0 retrieved by the previous command

Figure 4.3 illustrates this PFE host outbound path.

This Week: An Expert Packet Walkthrough on the MX Series 3D

92

Aida1 oyoa

0/0/0-8%
44—
0/0/11-8X

19]j0u0y

JERIE |

yuswubissy
ansnd

4 9,
s,
)

[Eouva[wea] (o)

Jos si

(7g) dnjooq

ssedAg

weans
INO UBAA pulq

»
P

[owval] | ()

3dd

Z1SH

m

1

(D)szwed[\ [130uvd] (9)

a4l ey o
WEBL}S UBAA

1GLL
wesns 1soH

_ suswabasg 19)oed (g)

juawabeuey 19xoed

130UVd + sjuswbag j9xoed (01)

J
(6) (9)] (©

A

Aows diyoyo

4

PCI

Nndo
pseoaur]

Host Outbound Path at the PFE Level

Figure 4.3

Chapter 4: From the Host to the Outer World 93

While this first host packet walkthrough analysis was long almost all the functional
blocks were covered and that same analysis procedure can easily be done for any
other Layer 3 or Layer 2 host packets such as BGP, LDP, ISIS, and so on.

Now let’s see a specific scenario where the packets are not generated by the Routing
Engine, but by the Line Card itself.

Host-Outbound Path: Packets Generated by the MPC Line Card

This last section extends our topic of Host traffic to focus on a short case study on
distributed control plane protocols. What does that mean?

For some protocols, the Routing Engine delegates their management to the MPC’s
pKernel CPU. Therefore, the protocol’s state machine is managed by the pKernel,
which only sends feedback to the RE when the state changes and for certain proto-
col’s statistics (via Inter Process Communication, or IPC, which is transported as
TCP/IP in the internal Ethernet network).

NOTE There are other cases where the MPC’s pKernel CPU generate their own host-out-
bound packets, for example, ICMP Unreachables sent as a response to incoming
exceptional (like TTL=1) transit traffic. This stateless example is not covered here,
but the internals are the same.

For this case study, let’s activate LACP (fast timer and active mode) on AE1 between
the R2 and R3 routers and then follow how LACP is managed. Other protocols like
BFD, Ethernet OAM or VRRPv3 can also be delegated in this manner.

Incoming LACP goes through a similar path as ICMP or ARP packets. It’s an excep-
tion packet for the LU chip that is identified as a Control packet (PUNT 34 code):

NPCO(R2 vty)# show jnh 0 exceptions terse
[...]
Routing

control pkt punt via nh PUNT(34) 24 2640

However, LACP’s protocol data units (PDUs) are not sent to the Routing Engine but
they are fully processed by the pKernel itself. To confirm this point, let’s try to
monitor non-IP traffic on AE1. You should see nothing:

user@R2> monitor traffic interface ael no-resolve matching "not ip"

verbose output suppressed, use <detail> or <extensive> for full protocol decode
Address resolution is OFF.

Listening on ael, capture size 96 bytes

0 packets received by filter

The protocol delegation depends on the version of Junos and the type of hardware
you are using, but to know which protocol is distributed on a linecard you can
execute the following command, this time on MPC in slot 0 (remember the Junos
release is 14.1):

NPCO(R2 vty)# show ppm info

Status: Connected to ppmd

Protocol: OSPF2 Support: A1l Status: Ready
Refresh time: 15000 do_not_refresh = 0
Protocol: OSPF3 Support: All Status: Not-ready
Refresh time: 15000 do_not_refresh = 0

94

This Week: An Expert Packet Walkthrough on the MX Series 3D

Protocol: ISIS Support: All Status: Ready
Refresh time: 15000 do_not_refresh = 0
Protocol: BFD Support: ATl Status: Ready
Refresh time: 15000 do_not_refresh = 8
Protocol: LDP Support: A1l Status: Ready
Refresh time: 15000 do_not_refresh = 0
Protocol: STP Support: All Status: Ready
Refresh time: 15000 do_not_refresh = 0
Protocol: LFM Support: ATl Status: Ready
Refresh time: 15000 do_not_refresh = 0
Protocol: CFM Support: A1l Status: Ready
Refresh time: 15000 do_not_refresh = 0

Protocol: LACP Support: All Status: Ready
Refresh time: 15000 do_not_refresh = 0
Protocol: VRRP Support: ATl Status: Not-ready
Refresh time: 15000 do_not_refresh = 0
Protocol: RPM Support: A1l Status: Ready
Refresh time: 15000 do_not_refresh = 0

Now, let’s check DDOS LACP’s policer statistics on MPC 0:

NPCO(R2 vty)# show ddos policer lacp stats
DDOS Policer Statistics:

arrival pass # of

idx prot group proto on loc pass drop rate rate flows
111 2c00 Tacp aggregate Y UKERN 174 0 2 2 0
PFE-0 174 0 2 2 0

PFE-1 0 0 0 0 0

Why 2pps of LACP while LACP with fast time sends one LACP PDU per second?

Remember that AE1 has two child links. This is why PFE 0 of MPC 0, which
connects the two child links of AE1, sees 2pps and delivers these two packets to the
pKernel every second.

Before moving on to the analysis of the distributed protocol management, let’s
quickly practice by retrieving the two LACP packets per second queued at the XM
chip level (AE1 has child links connected to MPC4e card).

First of all, you need to find the queue assigned to LACP packets by the LU chip:

NPCO(R2 vty)# show ddos asic punt-proto-maps
[...]

contr1 LACP

Tacp aggregate

2c00 3 20000 20000

You can see that Queue 3 is used for LACP. Now retrieve the base Queue Node ID
of the Host stream (remember = 1151):

NPCO(R2 vty)# show cos halp queue-resource-map 0 <<<< 0 means PFE_ID = 0
[...]

stream-id Ll-node L2-node base-Q-Node

Chapter 4: From the Host to the Outer World 95

Finally, collect the statistics of g-node 1011 (base queue plus 3), the queue that the
LU chip assigns LACP packets to:

NPCO(R2 vty)# show xmchip 0 g-node stats 0 1011 <<<<2nd 0 is QSys 0 and 1011 = 1008+3

Queue statistics (Queue 1011)

Color Outcome Counter Counter Total Rate
Index Name
ATl Forwarded (No rule) 228 Packets 0 0 pps
All Forwarded (No rule) 228 Bytes 0 0 bps
ATl Forwarded (Rule) 229 Packets 5623 2 pps <<< The 2pps LACP
ATl Forwarded (Rule) 229 Bytes 838236 2384 bps
All Force drops 232 Packets 0 0 pps
A1l Force drops 232 Bytes 0 0 bps
ATl Error drops 233 Packets 0 0 pps
All Error drops 233 Bytes 0 0 bps
[...]

And you can see the 2pps. Okay, let’s have a look at who manages the distributed
protocols.

The PPMd (Point to Point Management Daemon) process on the Routing Engine is in
charge of managing the periodic “messages” of many protocols (such as Keepalives,
Hello PDUs, etc.). It sends back to the routing daemon (RPD) information when
there is a state change of a protocol.

PPMd in the RE peers with a pKernel thread in the line card, called ppman, where
man stands for manager. This thread handles the periodic messages of distributed
protocols, and notifies the Routing Engine when there is a change in the state of an

adjacency.
NPCO(R2 vty)# show thread
PID PR State Name Stack Use Time (Last/Max/Total) cpu
[...]
53 M asleep PPM Manager 4256/8200 0/0/19 ms 0%
54 M asleep PPM Data thread 1584/8200 0/0/375 ms 0%
[...]

For a given MPC, and a given distributed protocol, you can check how many adja-
cencies are handled by the pKernel in real time. Let’s try an example on MPC 0:

NPCO(R2 vty)# show ppm adjacencies protocol Tacp

PPM Adjacency Information for LACP Protocol

IFL Index Holdtime PPM handle
(msec)

360 3000 11

363 3000 15

Total adjacencies: 2

The above output shows you that MPC 0 has two LACP adjacencies (AE1 is made of
two links). The IFL column helps you to retrieve the mapping between the PPM
handle and the interface:

96 This Week: An Expert Packet Walkthrough on the MX Series 3D

user@R2> show interfaces xe-0/0/%.0 | match "index"
Logical interface xe-0/0/0.0 (Index 360) (SNMP 1ifIndex 1022)
Logical interface xe-0/0/1.0 (Index 363) (SNMP ifIndex 1123)

Finally, you can call another command to collect statistics of a given distributed
protocol:

NPCO(R2 vty)# show ppm statistics protocol Tlacp

LACP Transmit Statistics

Packets Transmitted : 186
Packets Failed to Xmit: O

LACP Receive Statistics

Total Packets Received : 150
Packets enqued to rx Q : 150
Packets dequeued by Tacp : 150
Packets Send to RE : 10 <- Notif. Sent to RE (8 + 2)
No (pfe) interface found : O
Conn not ready : 0
No (conn) 1interface found : 0
No adjacency found : 2 <- Notif. Sent to RE
Packet content change : 8 <- Notif. Sent to RE
Packets Absorbed ;140
Packets Dropped(Invalid) : 0

Interface name xe-0/0/0.0, Pkt tx: 54, Tx errors: 0, Pkt rx: 54,
Pkt absorbed: 54, No Adj: 0, Pkt change: 0

Interface name xe-0/0/1.0, Pkt tx: 57, Tx errors: 0, Pkt rx: 21,
Pkt absorbed: 16, No Adj: 1, Pkt change: 4

You can see that distributing protocols in a MPC can reduce a lot of control plane
traffic toward the RE, allowing you to scale more in terms of LACP, or BFD, OAM
CFM/LFM, VRRPv3, etc. adjacencies.

This ends Chapter 4’s packet walkthrough that involved the host outbound path. The
next chapter focuses on the multicast traffic.

Chapter 5

Replicationin Action

Multicast Network TOROIOSY
IPMulticast ControlPlaneo,
IP Multicast Forwarding Planeouiuiieeeeiinaninnn.
Building a Multicast Forwarding Entry
Multicast Replication i

Kernel ResolUtioN e e

98

This Week: An Expert Packet Walkthrough on the MX Series 3D

NOTE

This last chapter of This Week: An Expert Packet Walkthrough on the MX Series 3D
focuses on a complex topic: multicast. It only covers the case of IPv4 SSM (Single
Source Multicast) replication in an effort for you to understand how the multicast
replication tree is built and updated in the MX Series 3D.

Let’s assume that R2 is configured with the enhanced-1ip feature set at the chassis/
network-services level. This mode allows us to use all the optimizations and robust-
ness features that apply to multicast forwarding, at what has become the familiar PFE
level.

Fabric-less routers like MX5, MX10, MX80, or MX104, and also MX2010 and
MX2020, have enhanced-IP active regardless of the knob configuration.

Multicast Network Topology

Figure 5.1

First, our base topology includes some changes to account for the multi-PFE replica-
tion scenario. The R4 router has moved to another interface of R2 (now xe-11/3/0),
and the topology has added a directly-attached receiver onto the xe-11/1/0 interface
of R2. Figure 5.1 shows you the topology.

MPC 16x10GE MPC4e
SLOT 11 SLOT 0
SENDER
192.168.1.1/32 Q
Mcast 232.1.1.1 T Receiver
=R RE o
Receiver vt a Receiver Q
o\ QY .
A L | S ’ N
' ae0d N |[7 ¢ aet '
N\ xe-11/0/0* - xe-0/0/0 7\ \
[T xe11/0/1 . - xe0/01 []
RI T se-- T ' Sl re R3
¥
\ Receiver /\ j
Multicast Topology

You can see in Figure 5.1 that R2 receives the multicast stream
(232.1.1.1/192.168.1.1) on its xe-11/3/0 interface and replicates the stream four
times in order to reach the four receivers.

IP Multicast Control Plane

Protocol Independent Multicast (PIM) sparse mode is the protocol that makes it
possible to build the multicast distribution tree in IPv4 or in IPv6. The distribution
tree spans from the source of a stream to a set of multicast subscribers or receivers.

A multicast stream is uniquely identified by a couple of addresses named (S,G) -

(source,group):

B The source IP address: is a unicast IPv4 or IPv6 address.

Chapter 5: Replicationin Action 99

B The destination IP address is a multicast group: an IP4 address in the range
224/4, or an IPv6 address in the range FF00::/8.

Usually, final subscribers don’t know the source(s) of a given multicast stream, they
only know the group address. They use a protocol like IGMPv2 or MLDv1 that
simply provides messages to join or leave a given multicast group G.

NOTE Enhanced protocols like IGMPv3 or MLDv2 provide the ability to also convey the
associated source S of a given group G (but is not within the scope of this book).

Therefore, IGMPv2 or MLDv1 protocols convey ASM information (Any Source
Multicast). Its notation is (*,G) and refers to any source that sends traffic to the
multicast G address. In contrast, SSM information (Source Specific Multicast) refers
to a specific stream (S,G).

The last-hop PIM router receives group information from subscribers and translates
it into upstream ASM or SSM PIM messages:

B IGMP Report/ MLD Listener Report messages are translated into PIM Join/
Prune messages with details in its join list. These are typically called PIM Join
messages.

B IGMP Leave / MLD Listener Done messages are translated into a PIM Join/
Prune message with details in its prune list. These are typically called PIM
Prune messages.

Our topology focuses on SSM. Consider that border routers directly attached to
multicast receivers have a static mapping between the multicast group 232.1.1.1 and
the multicast source 192.168.1.1/32 (this is a SSM-map entry). Thus a router which
receives an IGMPv2 report for 232.1.1.1 can directly send a PIM SSM Join for
(232.1.1.1; 192.168.1.1) along the Source Path Tree (SPT).

IP Multicast Forwarding Plane

When a multicast stream is received by a router, the device first checks that the
packets are being received on the interface used to reach the source. This mechanism
is called a RPF check (Reverse Path Forwarding). If the multicast packet fails the
RPF check it is silently dropped (and interface mismatch statistics are increased).

If it passes the check point, the router replicates and forwards the packet copies.
Hop-by-hop the multicast stream follows the multicast tree replication to reach all
its receivers.

The previous network image can be ported to the MX router replication model.
Let’s view the MX as a network where the nodes are the PFEs and the network links
are actually the fabric links.

Now, we can identify two types of replication within a chassis:

B Intra-PFE replication: a PFE replicates the packet to a set of multicast OIFs
(outgoing interfaces) that are local to the PFE itself.

B Inter-PFE replication: a PFE needs to send one copy of the packet to one or
more remote PFEs that contain multicast OIFs for the packet.

In the case of Intra-PFE replication the LU chip generates a Parcel per local OIF, in
order for the MQ to craft the outgoing packet by appending each OIF Parcel and the
remaining buffered data — should the packet be greater than 320 bytes — (see figure
5.5, PFE 0).

100 This Week: An Expert Packet Walkthrough on the MX Series 3D

Figure 5.2

chassis {

NOTE

Inter-PFE replication is slightly more complex: in this case the ingress PFE computes
the dynamic tree, based on information received from the RE. When the ingress PFE
forwards packets to the remote PFEs, the internal tree is embedded with each packet
(in the FAB header). This allows on-the-fly tree updates and no need to syncrhonize
PFEs.

Note that between one given (source PFE, destination PFE) pair, only one copy of
each packet is sent: further replication is handled by the destination PFE (to local
OIFs and/or to subsequent PFEs). Said that, there are two methods to internally
replicate multicast among PFEs. The replication method used depends on the MPC
model and also on the configuration of the chassis network-services mode (let’s
assume enhanced-IP). These two methods can co-exist.

The two ways to replicate multicast are:

B Binary Tree Replication (the only mode supported by MPC1 and MPC2): Each
PFE can replicate packets towards one or two other PFEs.

B Unary Tree Replication: Each PFE can only forward multicast to another PFE.
This method saves fabric link bandwidth and is the one used in high-capacity
MPCs (from MPC 16x10GE onwards).

Without enhanced-IP mode all boards do binary replication. On-the-fly is supported
for both replication methods.

Figure 5.2 illustrates these two methodologies using the topology of Figure 5.1 as the
base.

Binary Tree Unary Tree

Ingress
PFE
47

[Fabric]

local
replications local
ael + xe-0/0/2 replication
xe-11/1/0

Fabric

local
replication
ae0

local
replication
xe-11/1/0

local
replication
ael

local
replications
ael + xe-0/0/2

Multicast Replication Methods

As you can see binary tree replication consumes more fabric bandwidth (between PFE
and the Fabric) than the unary tree replication, which saves more bandwidth and
scales more.

MPC1 and MPC2 support only binary tree replication, but the other MPCs support
both methods. Nevertheless, unary tree replication requires the enhanced-ip knob to
be explicitly configured:

network-services enhanced-ip;

}

Chapter 5: Replicationin Action = 101

For the following section on building a multicast entry, let’s assume that R2 is
configured with this knob and only the case of unary tree replication will be covered.

Building a Multicast Forwarding Entry

Let’s start by checking the multicast entry creation at the RIB and FIB level on R2
router and let’s assume that the multicast source has started a 20Kpps stream and all
the receivers have joined the stream.

Now, if you check the PIM Join state of R2, you should see that the stream
(232.1.1.1;192.168.1.1) is replicated four times:

user@2> show pim join extensive
[...]
Group: 232.1.1.1
Source: 192.168.1.1
Flags: sparse,spt
Upstream interface: xe-11/3/0.0 <<<< Incoming Interface (RPF Check)
Upstream neighbor: 172.16.20.10
Upstream state: Join to Source
Keepalive timeout: 0
Uptime: 00:07:53
Downstream neighbors:
Interface: ae0.0 <<<<<<<< 1 replication - to Rl
172.16.20.2 State: Join Flags: S Timeout: 156
Uptime: 00:07:53 Time since last Join: 00:00:53
Interface: ael.0 <<<<<<<< 1 replication - to R2
172.16.20.6 State: Join Flags: S Timeout: 205
Uptime: 00:01:04 Time since Tast Join: 00:00:04
Interface: xe-0/0/2.0 <<<<<< 1 replication - to R5
172.16.20.14 State: Join Flags: S Timeout: 164
Uptime: 00:00:12 Time since last Join: 00:00:12
Interface: xe-11/1/0.0 <<<<<< Replication to local receiver
172.16.20.254 State: Join Flags: S Timeout: Infinity
Uptime: 00:40:56 Time since Tast Join: 00:40:56
Number of downstream interfaces: 4

That looks good. Now let’s check the forwarding cache entry:

user@R2> show multicast route extensive
Group: 232.1.1.1
Source: 192.168.1.1/32
Upstream interface: xe-11/3/0.0 <<< RPF Check
Downstream interface Tist:
ae0.0 ael.0 xe-0/0/2.0 xe-11/1/0.0 <<< Outgoing Interface List (OIL)
Number of outgoing interfaces: 4
Session description: Source specific multicast
Statistics: 10380 kBps, 20000 pps, 6829154686 packets
Next-hop ID: 1048586 <<< Indirect NH
Upstream protocol: PIM
Route state: Active
Forwarding state: Forwarding
Cache 1ifetime/timeout: forever <<< infinite for SSM route
Wrong incoming interface notifications: 0 <<< number of RPFs that failed
Uptime: 00:16:28

You can again see the RPF interface, the OIL (Outgoing Interface List). This entry is
kept in the RIB and FIB (as long as PIM Joins are maintained): this is because the
stream is an SSM one. For ASM entries, data plane (real traffic) must be present to
keep a forwarding entry alive.

102 This Week: An Expert Packet Walkthrough on the MX Series 3D

Now, let’s have a look at the next hop ID. What does it mean?

Actually, this is an indirect-next hop which refers to the Outgoing Interface List (OIL)
— the next hop hierarchy is covered in detail later. Each OIL has a dedicated indirect
next hop (the entry point of the multicast replication tree).

You can check the next hop list with the following command and you’ll find back the
next hop referring to the OIL:

user@R2> show multicast next hops
Family: INET

D Refcount KRefcount Downstream interface
1048586 2 1 ae0.0
ael.0
xe-0/0/2.0
xe-11/1/0.0

How to interpret these different entries? Actually, these different outputs present
almost the same thing: information regarding an IPv4 multicast route. For Junos, an
IPv4 multicast route is a /64 prefix made of the group address and the source address.
IPv4 Multicast routes are stored on inet.1 routing table:

user@2> show route table inet.l detail
[...]
232.1.1.1, 192.168.1.1/64 (1 entry, 1 announced)
*PIM Preference: 105
Next hop type: Multicast (IPv4) Composite, Next hop index: 1048586

Let’s now check how this multicast route is “programmed” in the FIB. First execute
the following CLI command:

user@R2> show route forwarding-table multicast destination 232.1.1.1 extensive
[...]
Destination: 232.1.1.1.192.168.1.1/64
Route type: user
Route reference: 0 Route interface-index: 378
Multicast RPF nh index: 0
Flags: cached, check incoming interface , accounting, sent to PFE, rt nh decoupled

Next-hop type: indirect Index: 1048586 Reference: 2
Nexthop:

Next-hop type: composite Index: 862 Reference: 1
Next-hop type: unicast Index: 1048579 Reference: 2
Next-hop interface: ae0.0

Next-hop type: unicast Index: 1048580 Reference: 2
Next-hop interface: ael.0

Next-hop type: unicast Index: 1048583 Reference: 2
Next-hop interface: xe-0/0/2.0

Next-hop type: unicast Index: 1048585 Reference: 2

Next-hop interface: xe-11/1/0.0

A multicast route in the FIB is made of several things:

B The RPF interface information used for the RPF check. This is the route inter-
face-index (IFL 378 which is interface xe-11/3/0.0):

user@2> show interfaces xe-11/3/0.0 | match +index
Logical interface xe-11/3/0.0 (Index 378) (SNMP ifIndex 856)

B The next hop chain whose entry point is the indirect-next hop — 1048586 points
to a composite next hop 862, which is a list of unicast next hops (OIL) : the four
outgoing interfaces.

Let’s move on with the PFE point of view (MPC in slot 11) and check back the
multicast FIB entry:

Chapter 5: Replicationin Action = 103

NPC11(R2 vty)# show route long_ip prefix 232.1.1.1.192.168.1.1/64

Destination

NH IP Addr Type NH ID Interface

232.1.1.1.192.168.1.1/64 Indirect 1048586 RT-if1 378

Nexthop details:

1048586 (Indirect, IPv4, if1:0:-, pfe-id:0, i-if1:0:-)
862(Compst, IPv4, if1:0:-, pfe-id:0, comp-fn:multicast)
1048579(Aggreg., IPv4, if1:341:a2e0.0, pfe-id:0)

755(Unicast, IPv4, if1:367:xe-11/0/0.0, pfe-id:44)
756 (Unicast, IPv4, if1:368:xe-11/0/1.0, pfe-id:44)
1048580(Aggreg., IPv4, if1:342:ael.0, pfe-id:0)
757(Unicast, IPv4, if1:372:xe-0/0/0.0, pfe-id:0)
758(Unicast, IPv4, if1:373:xe-0/0/1.0, pfe-id:0)
1048583 (Unicast, IPv4, if1:374:xe-0/0/2.0, pfe-id:0)
1048585(Unicast, IPv4, if1:380:xe-11/1/0.0, pfe-id:45)

As you can see the chain is a bit longer. Why?

Actually, LAG interfaces are not a real unicast next hop. They are an aggregate next
hop made of a list of unicast next hops (one per child link) that could be spread over
several PFEs (this not the case here).

But the multicast traffic is not replicated across all the child links: only one link is
chosen, and there is load balancing. Forwarding over LAG outgoing interfaces is
managed like unicast traffic. The same fields are taken into account to compute hash
keys in order to load balance multicast over child links of a LAG interface.

Multicast Replication

REMEMBER

Now, let’s move on with the multicast replication. Multicast lookup is performed by
the ingress LU chip in several steps:

B Step 1: RPF Check — remember the multicast route in the FIB includes the RT
IFL information.

B Step 2: Extract the OIL (this is the composite next hop associated with the
multicast route G.S/64)

B Step 3: If some outgoing interfaces are a LAG, trigger hash key computation to
select one link among the child links of the LAG interface. Repeat this step for
each outgoing LAG interface in the outgoing interface list.

B Step 4: Build the distribution mask to indicate which PFE is interested to
receive the data: in other words, the list of PFEs that should receive a copy of
the multicast stream.

The PFE list is a PFE bit mask of 32 or 64 bits. Each bit represents the global PFE
ID: Bit 0 = PFE_ID 0 ; bit 1 = PFE_ID 1, and so on. Let’s use our example where OIL
includes PFE_ID: 44, 45, 0, which are the global PFE IDs for (MPC 11, PFE 0),
(MPC 11, PFE 1), and (MPC 0, PFE 0). In this case the PFE mask will be a word of
64 bits because there are PFE_IDs above 31. Figure 5.3 shows you the PFE Mask
that should generate the ingress PFE 47 (attached to incoming interface xe-11/3/0):

In Junos you assume, at most, four PFE per slots and MX960 is a 12-slot chassis. So
the highest PFE ID is 47 (12x4 - 1). For MX2020, which has 20 slots, Junos adds an
extended mask (longer than the default 32- or 64-bit mask) to accomodate the
number of PFEs.

104 This Week: An Expert Packet Walkthrough on the MX Series 3D

Figure 5.3

PFE_ID 47
E' !E FO fab_stream 45 >
n [N] 2 m
o
xe-11/3/0— [T | L2m | Fab. head. [PARCEL | o
=
/éb @ 3
(] S
= = %, 7
- - qS g * c
- = Wy,
nnnns hp
N
4&\,

PFEID 0

M v
PFE MASK 00000000 00000000 00010000 00000000 00000000 00000000 00000000 00000001 ‘

PFEID 44 Composite NH = 862

PFE Mask Computation

Something is strange, isn’t it? Why is the bit 45 not set (PFE ID 45)? Actually PFE_ID
45 is the highest PFE ID in the PFE list, so this PFE will be the first PFE to receive the
multicast copy from the ingress PFE. Remember, when a PFE has to send traffic to
another PFE the L2M header includes the fabric Stream ID (the Fabric Queue) of the
destination PFE. So the LU chip of the ingress PFE (PFE 47) tells, via the L2M header,
the MQ/XM chip to forward traffic to PFE 45. Then the PFE mask that is embedded
in the fabric header will tell PFE 45 to forward the stream to 44. Before that, PFE 45
will reset bit 44 in the PFE mask and so on. Don’t forget that each PFE also replicates
traffic for its local interfaces with downstream multicast receivers.

Figure 5.4 summarizes the multicast forwarding path in the topology shown at the
start of this chapter in Figure 5.1.

To finish our analysis let’s use a previous command to check the fabric streams
hop-by-hop (PFE by PFE) to retrieve the above multicast path.

PFE 47,45, and 44 are located on the same MPC (in slot 11). Respectively, these PFEs
on MPC 11 have a local PFE ID: 3, 1, and 0.

First check on the ingress PFE ID 3 on MPC 11 (global PFE ID 47), the statistics of
fabric queue 45 (the low priority queue to reach PFE 45):

NPC11(R2 vty)# show cos halp fabric queue-stats 45

...]

Queued
Packets
Bytes

Transmitted
Packets
Bytes

Tail-dropped pkts :
Tail-dropped bytes:

[...]

PFE index: 3 CCHIP O Low prio Queue: 45 <<< From PFE 47 (local ID 3) to PFE 45

404706332 20007 pps

219755538276 10864096 Bps
404706332 20007 pps <<< copy sent

219755538276 10864096 Bps

0 0 pps

0 0 Bps

Chapter 5: Replicationin Action = 105

Great! Ingress PFE 47 sends a copy to PFE 45. Now let’s execute the same command
on the same MPC but change the destination PFE to 44 and from the point of view
of source local PFE ID 1 (equal to the global PFE ID 45):

NPC11(R2 vty)# show cos halp fabric queue-stats 44

[...]

Queued
Packets
Bytes

Transmitted
Packets
Bytes

...

Tail-dropped pkts :

PFE 1index: 1 CCHIP O Low prio Queue: 44 <<< From PFE 45 (local ID 1) to PFE 44

410381036 20000 pps
221195378404 10780176 Bps

410381036 20000 pps <<< copy sent
221195378404 10780176 Bps
0 0 pps

PFE 45, which receives a copy from PFE 47, also sends a copy to PFE 44. Now call
the same command on the same MPC but change the destination PFE to 0, and have
a look at local PFE ID 0 (equal to the global PFE ID 44):

NPC11(R2 vty)# show cos halp fabric queue-stats 0

[...]
PFE 1index: 0 CCHIP O
Queued
Packets
Bytes
Transmitted
Packets
Bytes

Tail-dropped pkts :
Tail-dropped bytes:

...]

Low prio Queue: 0 <<< From PFE 44 (local ID 0) to PFE 0

672182703 20000 pps

359386529951 10700048 Bps
672182703 20000 pps <<< copy sent

359386529951 10700048 Bps

0 0 pps

0 0 Bps

The PFE 44, which receives a copy from PFE 43, also sends a copy to PFE 0, which
is the last PFE in the PFE List. Great, you have followed the unary tree replication
tree.

Remember: At each “PFE lookup” (of course, performed by LU) the PFE list is
updated and the analysis of the composite next-host also conveyed in the fabric
header helps each PFE to know if there are local replications to do.

Now let’s suppose the multicast distribution tree is updated; for example, the
interface xe-11/1/0 leaves the tree because the directly attached receiver sends an
IGMP leave. The routing protocol daemon assigns a new multicast indirect next hop
referring to a new OIL combination (plus a new composite next hop) and then
updates the ingress PFE. This one recomputes on-the-fly the new PFE Mask used in
the fabric header and switches on-the-fly to the new unary tree. All these tasks are
carried out in a “make before break” way.

A similar mechanism is applied when the multicast distribution tree changes due to
the power failure of a MPC that is in the middle of the replication tree. The PFE
Liveness mechanism (also enabled with the enhanced-ip mode) allows fast PFE
failure detection, as well as PFE-initiated replication tree recovery.

106 This Week: An Expert Packet Walkthrough on the MX Series 3D

a ‘u>w3m3|z<>>,.:::

A

=) A weansom
= X weans om

[130uvd | ‘peeu qed | Tzn |

v

() vv weansTge 4

0d 34d

\,\@vs/ 298 = HN 8ysodwo)
/W//\Q % (NN
('\w\\e\ - -
%) (98 = -
TN "ﬂ s"
\,w.@n»% vav (L L]

[130dvd| ‘peey qed [Wzl |

0/L/LL-9X <

X weals OM

Sy Al 34d

Adws = 1s1| 34d
\.\a/v\\v/
Jy, % «Now = HN @)isodwo)
3
PR %\%Q 4 Dg
= X
= @C@m b~
- % 9%
*eel [13ouvd| peey-aed| Wzl | K]
o .)| S
0| 130uvd] ‘peoy qed | Tem | X enenb z<§.§ =
- a— 3
2 0 Weaus qe} O —
2 ——
2 () X weans om [spd [pesuged]
s
A i
b QI 34d [sve]
(Lio/L1-9x
olqe
lqe4 7 10 0/0/L1-2X) go€
0 =18 34d
¥sy, /k
W % 298 = HN 8ysodwo)
°4
*%\;\% PEEEN
O, bs - -
B, S, - -
74 7,
x@rbo 6~ - -
Wy % o
3 [130uvd| peeu qes | wz1 | [F30uvd] Pesu-qes | Ten | e
2l xenenb iy [THouva] We1 | =
w AN N
s — =
() vv weens qey 04 L Weans qe} |4

——0/g/LL-3%X~

G weans qe} 04

JAACIEEE

———2/0/0-3X

L » (Lo/e-ax
10 0/0/¢-3%) o€

L1'Leee Iseon

[]

The Unary Tree Example

Figure 5.4

Chapter 5: Replicationin Action = 107

Kernel Resolution

This is the last point to cover regarding multicast replication. Multicast kernel
resolution means that the first multicast packets of a flow are punted to the RE
because there is no state at the FIB level. The Routing daemon (RPD) then performs
a multicast lookup (based on PIM join states) to reallocate a multicast indirect next
hop and update the FIB.

Multicast Kernel Resolution is quite complex and is triggered in several cases:

B ASM mode. ASM multicast forwarding entries must be refreshed with the data
plane. If a multicast stream stops but multicast control plane is still up (PIM
joins) the multicast forwarding entry is removed from the RIB and FIB after
360 seconds. The next packet of the flow would need to be resolved by the
RE’s kernel.

B Sometimes when the incoming interface changes the multicast will be received
from a new RPF neighbor.

B Multicast attack, exotic multicast configurations or simply misconfiguration.

Let’s have a look at the default multicast routes in inet.1 table:

user@2> show route table inet.1l

inet.1l: 3 destinations, 3 routes (3 active, 0 holddown, O hidden)

+ = Active Route, - = Last Active, * = Both

224.0.0.0/4 *[Multicast/180] 5d 23:41:36
MultiResolve

232.0.0.0/8 *[Multicast/180] 5d 23:41:36

MultiResolve

As you can see, when there is no specific FIB entry for a given multicast stream, one
of the default multicast routes (the ASM or SSM default route) is matched and the
next hop associated is “Multicast Resolve.”

To illustrate the kernel resolution mechanism let’s take back the multicast topology,

but stop the multicast receivers and the sender as well. Now, there are no more PIM
states on R2:

user@?2> show pim join
Instance: PIM.master Family: INET
R = Rendezvous Point Tree, S = Sparse, W = Wildcard

Now, move to MPC 11 and display the route for the multicast stream
(232.1.1.1;192.168.1.1):

NPC11(R2 vty)# show route long_ip prefix 232.1.1.1.192.168.1.1
IPv4 Route Table 6, R2/default.6, 0xO:

Destination NH IP Addr Type NH ID Interface

232/8 Resolve 851 RT-if1 0 .Tocal..6 if1 332

The route lookup gives the “resolve” next hop as result. It means that the ingress LU
chip that would receive this stream should “mark” the packet as exception and punt
it to the RE for a kernel lookup (kernel resolution).

108 This Week: An Expert Packet Walkthrough on the MX Series 3D

Only the first packets of each flow are sent up to the MPC microkernel CPU, which
generates a resolve request and punts it to the RE in order to trigger the FIB update.
Once the FIB update is pushed down to the LU chip, the packets of the stream are no
longer punted. As mentioned, a Kernel Resolution is a type of exception. You can
see the statistics of this exception by calling the following command. Here you see
the statistics for PFE 3 of MPC 11, which hosts xe-11/3/0, the interface connected to
the sender. Initially, before the source starts:

NPC11(R2 vty)# show jnh 3 exceptions

Reason Type Packets Bytes
[...]

Routing

resolve route PUNT(33) 0 0

As with any other exception, multicast resolution is rate-limited by DDoS-protec-
tion and queued to the Host Stream 1151 (in queue 6):

NPC11(R2 vty)# show ddos policer resolve configuration
DDOS Policer Configuration:

UKERN-Config PFE-Config

jdx prot group proto on Pri rate burst rate burst
1 100 resolve aggregate Y Md 5000 10000 5000 10000
2 101 resolve other Y Lo 2000 2000 2000 2000
3 102 resolve ucast-v4 Y Lo 3000 5000 3000 5000
4 103 resolve mcast-v4 Y Lo 3000 5000 3000 5000
5 104 resolve ucast-v6 Y Lo 3000 5000 3000 5000
6 105 resolve mcast-v6 Y Lo 3000 5000 3000 5000

NPC11(R2 vty)# show ddos asic punt-proto-maps
PUNT exceptions directly mapped to DDOS proto:

code PUNT name group proto idx g# bwidth burst
[...]

resolve mcast-v4 103 6 3000 5000
[...]

But you will see later that for the specific case of multicast resolution there is another
specific default rate-limiter applied at the microkernel level (later in the exception
path).

You can also retrieve the kernel resolve statistics, per incoming interface, via the CLI
command:

user@2> show multicast statistics
Interface: xe-11/3/0.0
Routing protocol: PIM Mismatch error:

0
Mismatch: 0 Mismatch no route: 0
Kernel resolve: 0 Routing notify: 0
Resolve no route: 0 Resolve error: 0
Resolve filtered: 0 Notify filtered: 0
In kbytes: 0 In packets: 0
Out kbytes: 0 Out packets: 0

Interface: xe-11/1/0.0
[...]

Chapter 5: Replicationin Action = 109

Now let’s start the sender but keep the receivers down and check if there is a kernel
resolution exception:

NPC11(R2 vty)# show jnh 3 exceptions terse

Reason Type Packets Bytes
Routing
resolve route PUNT(33) 450 233550

[...]

As you can see there are 450 packets that have been punted to the microkernel (which
in turn punts a resolve request to the RE). This is due to the high rate of the multicast
flow (20Kpps). Indeed, the kernel resolution may take some milliseconds.

Let’s check back on multicast statistics at the RE level. You see only one kernel
resolve for xe-11/3/0 interface. Actually the linecard CPU “forwards” only one
resolve packet to the RE’s kernel. This is all it needs to trigger a FIB update.

user@R2> show multicast statistics

[...]
Interface: xe-11/3/0.0
Routing protocol: PIM Mismatch error: 0
Mismatch: 0 Mismatch no route: 0
Kernel resolve: 1 Routing notify: 0
Resolve no route: 0 Resolve error: 0
Resolve filtered: 0 Notify filtered: 0
In kbytes: 3543 In packets: 5
0

Out kbytes:

0 Out packets:

In scaled multicast networks, kernel resolution might request higher RE CPU and
internal bandwidth consumption. To avoid that, Junos throttles multicast resolution
requests at the microkernel level. Each linecard is limited to 66 resolutions per second
(this is not the DDoS-protection policer). The following line card shell command
gives you this information:

NPC11(R2 vty)# show nhdb mcast resolve
Nexthop Info:

ID

858
859

Type
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve
Resolve

Protocol Resolve-Rate
IPv4 66
IPv6 66
IPv4 66
IPv6 66
IPv4 66
IPv6 66
IPv4 66
IPv4 66 <<<< multiresolve NH of 232/8 route
IPv6 66
IPv4 66
IPv4 66
IPv6 66
IPv4 66

NPC11(R2 vty)# show route long_ip prefix 232/8
IPv4 Route Table 6, R2/default.6, 0x0:
Destination

NH IP Addr Type NH ID Interface

Resolve 851 RT-if1 0 .Tocal..6 ifl 332

110 This Week: An Expert Packet Walkthrough on the MX Series 3D

Now let’s have a look at the multicast forwarding cache:

user@R2> show multicast route extensive
Group: 232.1.1.1
Source: 192.168.1.1/32
Upstream interface: xe-11/3/0.0
Number of outgoing interfaces: 0
Session description: Source specific multicast
Statistics: 10380 kBps, 20000 pps, 2198494 packets
Next-hop ID: 0
Upstream protocol: PIM
Route state: Active
Forwarding state: Pruned
Cache Tifetime/timeout: 360 seconds
Wrong incoming interface notifications: 0
Uptime: 00:01:50

Interesting, as there is no PIM Join state for this (S,G), and the router has triggered a
PIM Prune message toward the source to stop multicast traffic. The upstream router
has been configured not to take into account the PIM Prunes messages in order to
force the traffic down (with static IGMP at the downstream interface). This is why
you still see packet statistics incrementing. If you have a look at the next hop part you
can see that there is no indirect next hop associated. Indeed, as there is no PIM Join
entry for this (S,G) the OIL is empty. But does it mean that the RE is continuously
flooded by a multicast stream? No. Just look at PFE level on the forwarding table for
the 232.1.1.1.192.168.1.1 route:

NPC11(R2 vty)# show route long_ip prefix 232.1.1.1.192.168.1.1
Destination NH IP Addr Type NH ID Interface

232.1.1.1.192.168.1.1/64 mdiscard 686 RT-ifl 378 .local..6 ifl 332

Kernel resolution triggered a FIB update and associated the multicast route entry to a
specific next hop: multicast discard. Indeed, as there is no PIM join state available for
this (S,G) the Kernel first prunes the stream and secures the control plane with a
multicast FIB entry, which is a kind of black hole for this specific (S,G). Now, the
multicast stream is silently discarded at the PFE level. Check PFE statistics (these
drops are counted as normal discards):

user@R2> show pfe statistics traffic fpc 11 | match "normal"
Normal discard : 10051828983

The last question is: can I do a DOS (Denial Of Service) to the RE’s Kernel if I try to
play with the multicast kernel resolution? In other words, if I send packets with
random (S,G) fields will they match the default multicast route at any time?

Of course, the answer is 70.

You’ve seen previously that multicast kernel resolution is rate-limited to 66 resolu-
tions per second. This limit is a pKernel limit. It means that each MPC can request a
maximum of 66 multicast kernel resolutions per second, and these must be for
different (S, G) since only one resolve request per (S, G) is sent up to the RE.

To illustrate this behavior, let’s connect a traffic generator to xe-11/3/0 and send
random multicast packets at SKpps. Let’s keep source address equal to 192.168.1.1
and only the multicast group changes randomly at each packet. In this case, you can
expect that each packet needs kernel resolution.

Chapter 5: Replicationin Action m

Remember, kernel resolution is an exception. The LU chip DDOS rate-limiter
should work first. Let’s have a look at statistics for the “resolve” exception:

NPC11(R2 vty)# show ddos policer resolve stats terse
DDOS Policer Statistics:

arrival pass # of

idx prot group proto on loc pass drop rate rate flows
1 100 resolve aggregate Y UKERN 43138 0 3001 3001 0
PFE-0 0 0 0 0 0

PFE-1 0 0 0 0 0

PFE-2 0 0 0 0 0

PFE-3 43138 0 5000 3001 0

4 103 resolve mcast-v4 Y UKERN 43138 0 3001 3001 0
PFE-0 0 0 0 0 0

PFE-1 0 0 0 0 0

PFE-2 0 0 0 0 0

5 0

PFE-3 43138 2546 5000 3001

As you can see, the PFE 3 of MPC 11 triggers 5000 pps of multicast resolutions, but
this flow of exceptions is rate-limited at 3000 pps by the LU chip’s DDOS-protection
policer. To confirm that PFE 3 delivers these 3Kpps to pKernel, you can check
Queue 6 of the host stream. (Base queue for Stream 1151 is equal to 1016 of MPC
16x10GE):

NPC11(R2 vty)# show mqchip 3 dstat stats 0 1022 (0 means Qsys 0 - 1022=1016+6)

QSYS 0 QUEUE 1022 colormap 2 stats index 72:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRule) 0 0 0 0
Forwarded (Rule) 967709 3001 539908122 1674837

Great! Finally, to validate that only 66 Kernel resolutions per second reach the
routing engine, call the following command twice:

user@2> show multicast statistics | match "interface|Kernel"
Sep 10 11:45:17

Interface: xe-11/3/0.0
Kernel resolve: 13660 Routing notify: 0

user@2> show multicast statistics | match "interface|Kernel"
Sep 10 11:45:28

Interface: xe-11/3/0.0
Kernel resolve: 14389 Routing notify: 0

So, in 11 seconds the routing engine performed 729 kernel resolutions (14389-
13660), or 66 kernel resolution per second.

And so this ends the multicast chapter.

112 This Week: An Expert Packet Walkthrough on the MX Series 3D

Appendices

AppendixA:MPCCoSSchedulingcuuiiiiiiino...

Appendix B: More on Host Protection

114 This Week: An Expert Packet Walkthrough on the MX Series 3D

Appendix A : MPC CoS Scheduling

MPC CoS Overview

The MQ or XM chip manages two kinds of hardware queues and performs classical
CoS (classical meaning non-hierarchical CoS — without the QX chip). Enhanced
Queueing MPCs (with QX or XQ chip) are not covered here.

WAN queue : Eight hardware queues per physical interface by default.

Fabric queue: Two fabric queues per destination PFE (even if eight queues are
pre-provisioned by destination PFE — currently only two are used).

The SCHED block of the MQ and XM chip supports two levels of CoS, and each
level is made of nodes. A leaf node is finally connected to the hardware queues. The
terminology is the following:

L1 node (first level): The L1 node represents a physical entity, in this case, a
physical interface (for WAN CoS, interface means IFD) or a destination PFE
(for fabric CoS). This is the scheduler of the physical interface.

L2 node (second level): The L2 node represents a logical entity of the physical
interface (unit or IFL). It is attached to an L1 node. The default CoS configura-
tion (that means without per-unit scheduling) L2 node, although attached to an
L1 node, won’t be used. You can say that the L2 node is a dummy node.

Q node: The Q node is actually a physical queue attached to L2 node. By
default each L2 node has eight child Q nodes.

Moreover, the MQ or XM SCHED block hosts several queuing systems (Qsys).
You have to keep in mind that two Qsys are used on MPCs 16x10GE and
MPC4e:

Qsys 0 manages the L1/L2/Q nodes for the Physical WAN Output Stream (and
the host — See Chapter 3).

Qsys 1 manages the L1/L2/Q nodes for the fabric queues/streams.

Figure A.1 provides a graphical representation of the nodes’ hierarchy.

SCHED
Block

WAN SIDE Fabric SIDE

Qsys=0 Qsys=1

2

T L e G

6 ©

O D
© 9@

G0

WAN QUEUE vs Fabric QUEUE
x8 x8 x8 x8

TO WAN (Physical Interfaces TO FABRIC (Other

or HOST) PFEs)

Figure A.l The Scheduler Block of the MQ or XM Chip

Appendices 115

Let’s have a look at the entire CoS configuration on R2. The CoS configuration is
quite atypical but it is only for troubleshooting and demonstration purposes. Four
queues have been configured. For each, the priority, transmit-rate, and buffer-size
are explicitly set. As you’ll notice, the physical links are shaped to 555Mbits/s and
one of the queues, the number 0, is further shaped at 222Mbits/s. Remember that a
default inet-precedence BA classifier is used and only queue 3 has a fabric priority
set to high:

user@?2> show configuration class-of-service
forwarding-classes {

queue 0 FCO priority Tow;

queue 1 FC1 priority Tow;

queue 2 FC2 priority Tow;

queue 3 FC3 priority high;

}
interfaces {
ae0 {
scheduler-map my-sched;
shaping-rate 555m;
member-Tink-scheduler replicate;
}
ael {
scheduler-map my-sched;
shaping-rate 555m;
member-Tink-scheduler replicate;
}
h
scheduler-maps {
my-sched {
forwarding-class FCO scheduler FCO-sched;
forwarding-class FC1l scheduler FCl-sched;
forwarding-class FC2 scheduler FC2-sched;
forwarding-class FC3 scheduler FC3-sched;
}
}
schedulers {
FCO-sched {
transmit-rate percent 50;
shaping-rate 222m;
buffer-size percent 50;
priority low;
}
FCl-sched {
transmit-rate percent 20;
buffer-size percent 20;
priority Tow;
}
FC2-sched {
transmit-rate percent 20;
buffer-size percent 20;
priority low;
}
FC3-sched {
transmit-rate percent 10;
buffer-size percent 10;
priority strict-high;
}
}

With this configuration, the first four Forwarding Classes reserve the whole band-
width, and nothing is left for the higher-numbered queues. Let’s review how this
CoS configuration is programed at the PFEs on the MPC.

116 This Week: An Expert Packet Walkthrough on the MX Series 3D

WAN CoS

To start the analysis on the WAN side, first, you need to find the associated L1 node /
L2 node / Q nodes for a given physical interface (IFD). Let’s arbitrarily choose one
child link of AEQ: the xe-11/0/1 interface (the forwarding next hop of Flow 2).

A single PFE command, available for both types of cards, is very useful to check CoS
configuration at the PFE level and retrieve some of the SCHED block’s information.
To do that you need to find the IFD (interface device) index of your physical interface
with this CLI command:

user@R2> show interfaces xe-11/0/1 | match "interface index"
Interface index: 489, SNMP ifIndex: 727

Then use this PFE command on the MPC that hosts the IFD:

NPC11(R2 vty)# show cos halp ifd 489 1 <<< 1 means Egress direction

IFD name: xe-11/0/1
MQ Chip id: 0

(Index 489)

MQ Chip Scheduler: 0 <<<<< Qsys index

MQ Chip L1 index: 32 <<<<< Our L1 node Index

MQ Chip dummy L2 index: 64 <<<<< L2 node index is Dummy
MQ Chip base Q index: 256 <<<<< Our Base Q node number
Number of queues: 8

Rich queuing support: 1 (ifl queued:0)

Queue State
Index

256 Configured
257 Configured
258 Configured
259 Configured
260 Configured
261 Configured
262 Configured
263 Configured

NOTE

Max Guaranteed Burst Weight Priorities Drop-Rules
rate rate size G E Wred Tail
222000000 222000000 32767 62 GL EL 4 145
555000000 111000000 32767 25 GL EL 4 124
555000000 111000000 32767 25 GL EL 4 124
555000000 Disabled 32767 12 GH EH 4 78
555000000 0 32767 1 GL EL 0 7
555000000 0 32767 1 GL EL 0 7
555000000 0 32767 1 GL EL 0 7
555000000 0 32767 1 GL EL 0 7

You can see that in the CoS configuration at the PFE level, the Max rate column is
actually the configured shaping-rate. Queue 0 shaping-rate configuration preempts
the physical interface shaping-rate, this is why you see 222M as Max rate for Queue
0 instead of 555M. The Guaranteed rate is the per queue “reserved” bandwidth of
the physical link. Since there is a shaping-rate at IFD level, the reference bandwidth is
555M and no longer 10G.

The calculated guaranteed rate is equal to (Transmit-rate % x physical link band-
width /100).

Figure A.2 gives you a graphical view of the nodes’ hierarchy for the xe-11/0/1
interface.

In Figure A.2, the WAN CoS is managed by Qsys 0; the L1 node 32 is the scheduler
of the physical interface with IFD 489 and finally the eight q nodes (from 256, the
base queue, to 263) represent the physical hardware queues (each mapped from a
forwarding class). L2 node is a dummy node.

To better understand the concepts of the SCHED block, let’s try to analyze the
hierarchy node-by-node and their configuration.

Appendices

show configuration class-of-services

forwarding-classes {

queue 0 FCO priority low; SCHED
foool Block
}
interfaces ({ sts=0
ael {
scheduler-map my-sched; Q Index 32

shaping-rate 555m;

member-link-scheduler replicate;

}
schedulers ({

FCO-sched {

256 257 258 259 260 261 262 263

transmit-rate percent 50;

shaping-rate 222m;
Toward xe-11/0/1
buffer-size percent 50;

priority low;

Qnode Index

Figure A.2 The Scheduler Nodes Hierarchy for xe-11/0/1

17

NOTE The following is another method to check how CoS is programmed at the PFE level.
If you prefer, use the previous PFE command (show cos halp) to globally retrieve

CoS and SCHED block parameters.

First, let’s try to find the L1 node assigned to xe-11/0/1 using two commands.

Retrieve the Output Stream number of the xe-11/0/1 interface:
NPC11(R2 vty)# show mqchip 0 1ifd

[...]

Output IFD IFD Base

Stream Index Name Qsys Qnum
1024 488 xe-11/0/0 MQO 0

1025 489 xe-11/0/1 MQO 256 <<<< 1025 1is the Wan Output Stream
1026 490 xe-11/0/2 MQO 512
1027 491 xe-11/0/3 MQO 776

And then call the second command to get the L1 node of xe-11/0/1 (Output Stream

number 1025):
NPC11(R2 vty)# show mqchip O sched 0 11-Tist

L1 nodes 1ist for scheduler 0

0 1024
32 1025 <<<< L1 Node of xe-11/0/1 (Output Stream 1025)
64 1026

118 This Week: An Expert Packet Walkthrough on the MX Series 3D

96 1120
97 1027
127 1151

tNOTE For XM-based cards like MPC4e, only one command is needed to get the L1 node of
a given interface: show xmchip <PFE-ID> ifd Tist 1 (the 1 means egress direction).

Okay, you’ve found that interface xe-11/0/1 is managed by L1 node 32 on the MQ
Chip 0 of the MPC in slot 11. Let’s see the L1 node #32 parameters and especially the
configured physical shaping rate.

NPC11(R2 vty)# show mqchip 0 sched 0 11 32

L1 node 32:
allocated 1 true
child node start : 64
child node end : 86
rate enable i1
m rate : 555000000 bps <<<< The physical shaping rate
m credits 1 2220
[...]

The sched 0 means Qsys 0, which is the queueing sytem that manages the WAN. L1
#32 is the L1 node index 32.

NOTE For XM-based cards like MPC4e a similar command is: show xmchip <pfe-id>
11-node 0 <L1-Index> (the first 0 means Qsys 0 and <L1-index> means L1 node
index).

Now, let’s see the child (L2 nodes) of L1 node #32:
NPC11(R2 vty)# show mqchip 0 sched 0 11-children 32

Children for L1 scheduler node 32

64 32 1025
65 32 1025
66 32 1025
67 32 1025
68 32 1025
69 32 1025
[...]

NOTE For XM-based card likes MPC4e a similar command is: show xmchip <PFE-ID>
11-node children 0 <L1-Index>.

As you can see, L1 node #32 has many children which are in the L2 nodes index.
Remember, L2 node 64 (attached to IFD 489 — WAN Output Stream 1025) is a
dummy node. Let’s find out which Q nodes are attached to the L2 node:

NPC11(R2 vty)# show mqchip O sched 0 12-children 64

Children for L2 scheduler node 64

256 64 32 1025 << Queue 0 1in CoS configuration (FCO)
257 64 32 1025 << Queue 1 in CoS configuration (FC1l)

258 64

259 64

260 64

261 64

262 64

263 64
NOTE

Appendices 119

32 1025 << Queue 2 in CoS configuration (FC2)
32 1025 << Queue 3 in CoS configuration (FC3)
32 1025
32 1025
32 1025
32 1025

You can see that L2 node #64 is connected to 8 Q nodes. Each of them is actually one
physical hardware queue mapped sequentially to the queues and forwarding classes
configured on the routers.

For XM-based cards like MPC4e a similar command is: show xmchip <PFE-ID>
12-node children 0 <L2-Index> (the first 0 means Qsys 0 and <.2-Index> is L2 node
index).

Finally, let’s do a final check of the Q node #256 configuration (which is actually the
Queue 0 of the xe-11/0/1 interface), checking on the shaping rate assigned to this
specific queue by our CoS configuration:

NPC11(R2 vty)# show mqchip 0 sched 0 q 256

Q node 256:
allocated
parent node
guarantee prio
excess prio
rate enable

m rate

m credits
guarantee enable

g rate

g credits

[...]
NOTE

: true

: 64

1 3 GL

: 2 EL

1

: 222000000 bps <<<<< Our Queue shaping rate 1is good. programmed
: 888

1

1 222000000 bps

: 888

For XM-based cards like MPC4e a similar command is: show xmchip <PFE-ID> g-node
0 <Q-Index> (the first 0 means Qsys 0 and <Q-Index> means Q node index).

You can then retrieve statistics of a given Q node. The result is similar to the show
interface queue CLI command, which shows all the statistics for all the queues
assigned to a given interface. Here you just want to check the statistics of g-node
#259, which is actually the Queue #3 of interface xe-11/0/1. Remember Flow 2 is
classified into FC3:

NPC11(R2 vty)# show mqchip O dstat stats 0 259 (<<<< 0 259 means <Qsys> <Q-node>)

QSYS 0 QUEUE 259 colormap 2 stats index 4452:

Forwarded (NoRule)
Forwarded (Rule)

Color O Dropped

Color O Dropped
Color 1 Dropped
Color 1 Dropped
Color 2 Dropped
Color 2 Dropped
Color 3 Dropped

Color 3 Dropped
Dropped (Force)
Dropped (Error)

Counter Packets Pkt Rate Bytes Byte Rate
0 0 0 0
345483936 1000 183773646744 532266
(WRED) 0 0 0 0
(TAIL) 0 0 0 0
(WRED) 0 0 0 0
(TAIL) 0 0 0 0
(WRED) 0 0 0 0
(TAIL) 0 0 0 0
(WRED) 0 0 0 0
(TAIL) 0 0 0 0
0 0 0 0
0 0 0 0

: 0

Queue 1inst depth

Queue avg len (taq]):-O

120 This Week: An Expert Packet Walkthrough on the MX Series 3D

NOTE

Fabric CoS

xe-0/0/2 'SILT

xe-0/0/0 .

As you can see, the 1000 pps of Flow 2 are queued in g-node 259 of (MPC 11, MQ
chip 0), which is actually the Queue 3 of xe-11/0/1 interface.

For XM-based cards like MPC4e, a similar command is: show xmchip <PFE-ID>
g-node stats 0 <Q-node> (the first 0 means Qsys 0 and <Q-node> means q-node
index).

You’ve already seen that fabric CoS is quite simple. Each PFE maintains two queues
per destination PFE. One conveys low priority traffic and other high priority traffic.
In the case of fabric congestion, it means: when a PFE receives more traffic than the
fabric bandwidth available between the PFE and the fabric planes, the low priority
traffic will be dropped before the high priority traffic (on source PFEs). On the other
hand, when the congestion point is the egress (destination) PFE, fabric drops occur
via a back-pressure mechanism. In fact, when a destination PFE is oversubscribed, it
does not allocate “credits” to a source PFE which tries to send packets to it, triggering
packet buffering on the source PFE and ultimately drops when some packets reach
the tail of the fabric queues.

Let’s bring back Figure 2.6 from Chapter 2 that shows the Fabric Stream mapping of
our case study :

/Slot 0 Fabric Planes Slot 11\
[]

high
Fab Queue 172 G

Fab Stream 44 .

xe-11/0/2
Flow 1

I e - Flow 2
xe-11/0/0

I‘IIIII
\ /

]
E

T=
m
O
=
Q
2

\ﬂ LUU

Figure A.3 Fabric Queues mapping for Flow 1and 2

Even if the CLI command show class-of-service fabric statistics can give you
fabric statistics per (source, destination) MPC pair, sometimes you may need to have
a more granular view and retrieve per (source, destination) PFE pair traffic statistics.
Again, a nice PFE command can help you. The command takes as argument the
global destination PFE number (= MPC_Destination_Slot * 4 + PFE_ID):

NPC11(R2 vty)# show cos halp fabric queue-stats 0 (<< 0 means The PFE 0 in slot 0)
PFE index: 0 CChip O Low prio Queue: 0

Queued
Packets
Bytes

Transmitted
Packets
Bytes

Tail-dropped pkts :
Tail-dropped bytes:

RED-dropped pkts

: 29724223195 1001 pps
: 16110235432270 510064 Bps
: 29724223195 1001 pps
: 16110235432270 510064 Bps
0 0 pps
0 0 Bps

Low

Medium-Tow
Medium-high

High :
RED-dropped bytes :
Low :
Medium-Tow
Medium-high
High
RL-dropped pkts
RL-dropped bytes
PFE index: 0 CChip
Queued
Packets
Bytes
[...]
PFE index: 1 CChip
[...]
PFE index: 1 CChip
[...]
PFE index: 2 CChip
[...]
PFE index: 2 CChip
[...]
PFE index: 3 CChip
[...]
PFE index: 3 CChip
[...]

Appendices = 121

pps
pps
pps
pps

[eoNeoNoNe]
[eNeoNoNe]

Bps
Bps
Bps
Bps
pps
Bps

[eolololoNeNe)
[eoNoloNoNeNe)

High prio Queue: 128

283097 0 pps
144250534 0 Bps

Low prio Queue: 0
High prio Queue: 128
Low prio Queue: 0
High prio Queue: 128
Low prio Queue: 0

High prio Queue: 128

How to interpret this output? This command gives you the fabric statistics of two
(low, high) fabric queue/streams towards a given destination PFE (the argument of
the command), from each source PFE attached to the MPC on which the command is
executed. Here, you are attached to MPC in slot 11, which receives Flow 1 and
forwards it to the MPC in slot 0 PFE_ID 0. And this is why you check the fabric
statistics for the global PFE_ID 0. Following the configuration, Flow 1 is received on
xe-11/0/2 attached to PFE 0, and is marked as low priority traffic. PFE 0 of MPC slot
11 has two fabric queues for Destination PFE 0 of MPC 0: Fabric queue (Stream) O
for low priority traffic; and Fabric queue (Stream) 128 for high priority traffic. Here,
you have only packets queued on fabric queue number 0 (Low Priority).

Let’s use the same command on MPC 0 for global destination PFE 44 (PFE 0 of MPC
11):

NPCO(R2 vty)# show cos halp fabric queue-stats 44

PFE index: 0 CChip O Low prio Queue: 44

[...]

PFE index:

Queued
Packets
Bytes

Transmitted

Packets
Bytes

Tail-dropped pkts :
Tail-dropped bytes:

0 CChip 0 High prio Queue: 172

RED-dropped pkts

Low

Medium-Tow
Medium-high

High

RED-dropped bytes :

672109500 1000 pps
342775716064 509328 Bps
672109500 1000 pps
342775716064 509328 Bps
0 0 pps

0 0 Bps

0 0 pps

0 0 pps

0 0 pps

0 0 pps

122 This Week: An Expert Packet Walkthrough on the MX Series 3D

Low 0 0 Bps
Medium-Tow 0 0 Bps
Medium-high 0 0 Bps
High 0 0 Bps
RL-dropped pkts 0 0 pps
RL-dropped bytes 0 0 Bps

PFE index: 1 CChip 0 Low prio Queue: 44

[...]
PFE index: 1 CChip O High prio Queue: 172
[...]

Here you can see that Flow 2 of (MPC 0, PFE 0) is queued into fabric queue 172 of
the XM chip 0. This queue is the fabric queue that handles high priority traffic that
wants to reach the PFE 0 of MPC 11 (Global PFE_ID 44).

With line card shell CoS commands, you can retrieve these statistics by directly
calling the g-node dedicated to a given fabric queue.

Let’s quickly work through an example to cement your understanding of MQ/XM
CoS. Remember, fabric CoS is managed by the Qsystem 1 of MQ or XM chip.

For example, on MPC slot 11, let’s retrieve the statistics of g-node 0 (Qsys 1):
NPC11(R2 vty)# show mqchip 0 dstat stats 1 0 <<<< 1 0 means <Qsys> <g-node>

QSYS 1 QUEUE 0 colormap 2 stats index 288:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRule) 0 0 0 0
Forwarded (Rule) 29725737468 1000 16111006996450 510311

NOTE Fabric g-node is exactly the same value as fabric queue or fabric stream, so you can
use the same rules explained in Figure 2.6.

And an example on MPC slot 0, would be to retrieve the statistics of g-node 172
(Qsys 1), mapped to the high priority stream that points to (MPC 11, PFE 0):

NPCO(R2 vty)# show xmchip 0 g-node stats 1 172 <<<< 1 172 means <Qsys> <q-node>
Queue statistics (Queue 0172)

Color Outcome Counter Counter Total Rate
Index Name
All Forwarded (No rule) 2160 Packets 0 0 pps
ATl Forwarded (No rule) 2160 Bytes 0 0 bps
ATl Forwarded (Rule) 2161 Packets 672871637 1000 pps
All Forwarded (Rule) 2161 Bytes 343164405934 4080000 bps

This last command ends the CoS sub-discussion, a delightful tangent from our
packet life analysis of the mighty MX Series 3D Router, where we were talking
about the SCHED block.

Appendices = 123

Appendix B: More on Host Protection

This appendix provides more insight on the host protection feature set. First, the
DDoS protection built-in feature (already outlined in Chapter 3) is demonstrated
with a case study based on ICMP.

Next, the ARP (Address Resolution Protocol) specific case is explained more in
detail. ARP storms are a classical symptom of layer 2 loops, and the host protection
logic in these particular cases involves more mechanisms, apart from DDoS protec-
tion.

In both case studies (ICMP and ARP), you will see that some additional protocol-
specific policers are in place, and these policers do not belong to the DDOS Protec-
tion feature. The latter is a relatively recent feature, while the ICMP and ARP specific
policers were implemented much earlier in Junos. Host protection is always a good
thing, so all these security measures (older and newer) are left in place, and they are
cascaded in a specific order.

CAUTION During the following two case studies, sometimes policers are removed or relaxed.
This is shown for lab demonstration purposes only and it is definitely a bad practice
in production networks.

DDQOS Protection Case Study

In order to see DDoS protection in action, let’s see what happens when R2 receives
more ICMP echo request packets that are allowed by the system. This should be a
good practice to review some previous commands and can help you to troubleshoot
the MX when it experiences DDOS attacks. The following case study will also help
you to understand how drops are managed by the MPC.

Let’s start by sending 200Kpps of ICMP echo requests from R4 towards R2, and the
same rate of ICMP sent by RS towards R2. The attacks are received by two interfaces
on R2 not in LAG. Figure B.1 shows you the simple new topology to simulate our

attack.
MPC4e \
SLOT 0

echo request 200Kpps echo request 200Kpps
ip.src=172.16.20.10 dst=172.16.20.9 100bytes | ip.src=172.16.20.14 dst=172.16.20.13 100bytes

/ MPC 16x10GE
SLOT 11

.................................... > 4....................................
% xe-11/0/2m xe-0/0/2 m
W w

R4 R2) R5

\ J

Figure B.1 Topology to Simulate a DDOS Attack

Remember, there are two mechanisms to protect the R2 router from this ICMP
attack:

124 This Week: An Expert Packet Walkthrough on the MX Series 3D

B The ICMP policer applied the input 100.0 firewall filter. This policer acts in a
per-PFE level basis and it deals with the host-inbound traffic arriving from all
the interfaces at that PFE. Since each flow is arriving at a different PFE, the
policer rate-limits each ICMP traffic flow to 100Mbits/s independently:

user@R2> show configuration
interfaces {

To0 {
unit 0 {
family inet {
filter {
input protect-re;
}
address 172.16.21.2/32 {
primary;
}
}
}
}
}
firewall {
family inet {
filter protect-re {
term ICMP {
from {
protocol {icmp;
}
then {
policer ICMP-100M;
count ICMP-CPT;
accept;
}
}
term OTHER {
then accept;
}
}
}
policer ICMP-1M {
if-exceeding {
bandwidth-Timit 100m;
burst-size-Timit 150k;
}
then discard;
}
}

B The ICMP DDOS protection has been explicitly configured at [edit system
ddos-protection] for a maximum of 500pps (the default value is overridden).
This enforces an input ICMP rate limit at three levels: the LU chip, the pKernel
and the RE:

user@R2> show configuration
system {
ddos-protection {
protocols {
icmp {
aggregate {

bandwidth 500;
burst 500;

Appendices = 125

It’s time to start the DDOS attack coming from R1 and R3. First you can check the
incoming rate on the xe-11/0/2 and xe-0/0/2 interfaces and confirm that R2 receives
both attacks:

user@R2> show interfaces xe-*/0/2 | match "Physical|rate"
Physical interface: xe-0/0/2, Enabled, Physical 1ink 1is Up

Input rate
Qutput rate

: 131201448 bps (200002 pps)
: 0 bps (0 pps)

Physical interface: xe-11/0/2, Enabled, Physical Tink is Up

Input rate
Qutput rate

user@R2> request

: 131199536 bps (199999 pps)
: 0 bps (0 pps)

The first rate limiting is done by the ICMP policer of our 100.0 input firewall filter.
This is done at the LU chip level. One could expect that the WI blocks of the (MPC
11, MQ chip 0) and (MPC 0, XM chip 0) still sees the 200K pps, because W1 is before
LU.

Let’s try to check this fact. First step, you need to retrieve the Physical Wan Input
Stream associated to interfaces xe-11/0/2 and xe-0/0/2. Remember, ICMP traffic is
conveyed in the CTRL Stream (or, the medium stream):

pfe execute target fpcll command "show mqchip 0 ifd" | match xe-11/0/2 | trim 5

1033 592 xe-11/0/2 66 hi
1034 592 xe-11/0/2 66 med <<<< CTRL WAN Input Stream is 1034
1035 592 xe-11/0/2 66 To
1040 592 xe-11/0/2 66 drop
1026 592 xe-11/0/2 MQO 16
user@R2> request pfe execute target fpcO command "show xmchip 0 ifd Tist 0" | match xe-
0/0/2 | trim 5
xe-0/0/2 573 1033 66 0 (High)
xe-0/0/2 573 1034 66 1 (Medium) <<<< CTRL WAN
Input Stream 1is 1034
xe-0/0/2 573 1035 66 2 (Low)
xe-0/0/2 573 1072 66 3 (Drop)

Then, enable WI accounting for this specific incoming WAN stream on both cards:

user@R2> request pfe execute target fpcll command "test mqchip 0 counter wi_rx 0 1034"
user@R2> request pfe execute target fpcO command " test xmchip 0 wi stats stream 0 1034"

user@

And let’s collect the statistics:

R2> request pfe execute target fpcll command "show mqchip O counters input stream 1034" | trim 5

WI Counters:

L]

Counter Packets Pkt Rate Bytes Byte Rate

RX Stream 1034 (010) 102815359 200029 <<<< At WI Tevel we still see 200Kpps

user@R2> request pfe execute target fpcO command "show xmchip 0 phy-
stream stats 1034 0" | find "Tracked stream" | trim 5

Tracked stream statistics

26081598 199998 <<<< At WI Tevel we still see 200Kpps

126 This Week: An Expert Packet Walkthrough on the MX Series 3D

So at the WT level there are still 200Kpps. Let’s check the 100.0 ICMP policer, but
first, don’t forget to disable the WI accounting configuration:

user@R?2> request pfe execute target fpcll command "test mqchip 0 counter wi_rx 0 default"
user@R2> request pfe execute target fpcO command " test xmchip 0 wi stats default 0 0"

ICMP Policer at 100.0 Input Filter

Now you can check that the 100.0 ICMP policer works well (at the RE level) and on
each PFE:

user@2> show firewall filter protect-re

Filter: protect-re

Counters:
Name Bytes Packets
ICMP-CPT 65777268022 802161589
Policers:
Name Bytes Packets
ICMP-100M-ICMP 20505314130 250064781

NPC11(R2 vty)# show filter
Term Filters:

8 C(lassic protect-re

NPC11(R2 vty)# show filter index 8 counters <<<< ON MPC 11
Filter Counters/Policers:

Index Packets Bytes Name
8 416615343 34162464430 ICMP-CPT
8 129984451 10658727070 ICMP-100M-ICMP(out of spec)
8 0 0 ICMP-100M-ICMP(offered)
8 0 0 ICMP-100M-ICMP(transmitted)

NPCO(R2 vty)# show filter index 8 counters <<<< And on MPC 0
Filter Counters/Policers:

Index Packets Bytes Name
8 432288418 35447719532 ICMP-CPT
8 134644664 11040862448 ICMP-100M-ICMP(out of spec)
8 0 0 ICMP-100M-ICMP(offered)
8 0 0 ICMP-100M-ICMP(transmitted)

DDOS Protection at the LU level

This attack is not entirely absorbed by the firewall filter ICMP Policer (100Mbits/s
are allowed). This is the job of the DDOS protection feature. Let’s have a look at the
DDOS violation logs:

user@R2> show ddos-protection protocols violations
Packet types: 198, Currently violated: 1

Protocol Packet Bandwidth Arrival Peak Policer bandwidth
group type (pps) rate(pps) rate(pps) violation detected at
icmp aggregate 500 305355 305355 2014-05-28 10:20:55 CEST

Detected on: RE, FPC-0, 11

Appendices = 127

Why don’t we see 400K pps at arrival rate but rather 305Kpps in the show output?
This is due to the ICMP policer of the lo0 that was discarded before a part of this
attack (between 100Kpps — S0Kpps per attack).

Now, let’s have a look at the DDOS statistics on the RE and on each MPC:

user@R2> show ddos-protection protocols icmp statistics
Packet types: 1, Received traffic: 1, Currently violated: 1
Protocol Group: ICMP

[.-]

Routing Engine information:
Aggregate policer is currently being violated!
Violation first detected at: 2014-05-28 10:20:55 CEST

Violation last seen at: 2014-05-28 10:33:26 CEST

Duration of violation: 00:12:31 Number of violations: 3
Received: 4813886 Arrival rate: 1000 pps
Dropped: 1725094 Max arrival rate: 1002 pps

Dropped by individual policers: 0
Dropped by aggregate policer: 1725094

FPC slot O information:
Aggregate policer is currently being violated!
Violation first detected at: 2014-05-28 10:20:55 CEST

Violation last seen at: 2014-05-28 10:33:26 CEST
Duration of violation: 00:12:31 Number of violations: 3
Received: 522942303 Arrival rate: 152520 pps
Dropped: 520899678 Max arrival rate: 200409 pps

Dropped by individual policers: 0
Dropped by aggregate policer: 520899678
Dropped by flow suppression: 0

FPC slot 11 information:
Aggregate policer is currently being violated!
Violation first detected at: 2014-05-28 10:20:57 CEST

Violation last seen at: 2014-05-28 10:33:26 CEST
Duration of violation: 00:12:29 Number of violations: 3
Received: 527482854 Arrival rate: 152772 pps
Dropped: 524714954 Max arrival rate: 200409 pps

Dropped by individual policers: 0
Dropped by aggregate policer: 524714954
Dropped by flow suppression: 0

You can see that that on each MPC, the DDOS ICMP AG policer receives 150Kpps.
The limit is configured explicitly to 500pps. So the LU chip will deliver only 500pps
to the pKernel. As the attack is distributed over two MPCs, each MPC will deliver
500pps to the RE. This is why you can see 1000pps at the RE level. And again, the RE
AG policer that also has a threshold of 500pps, only delivers 500pps to the system.

Let’s drill down with PFE commands to get a more detailed view. This example is on
MPC 11:

user@R2> request pfe execute target fpcll command "show ddos policer icmp stats" | trim 5
DDOS Policer Statistics:
arrival pass # of

idx prot group proto on Toc pass drop rate rate flows
68 900 icmp aggregate Y UKERN 3272837 0 499 499 0
PFE-0 2745901 677333644 152442 499 0
PFE-1 0 0 0 0 0
PFE-2 0 0 0 0 0
PFE-3 0 0 0 0 0

128 This Week: An Expert Packet Walkthrough on the MX Series 3D

And you can see the rate in the output. Finally, in order to be sure that the HOST

Stream (1151) conveys only the 499pps packets, you can use this set of commands

that look at HOST Stream Queues:

user@R2> request pfe execute target fpcll command "show cos halp queue-resource-
map 0" | match "stream-id|1151" | trim 5 <<< 0 means PFE_ID 0
stream-id Ll-node L2-node base-Q-Node

1151 127 254 1016 <<< 1016 is the base queue (queue 0)

user@R2> request pfe execute target fpcll command "show mqchip 0 dstat stats 0 1016" | trim 5

QSYS 0 QUEUE 1016 colormap 2 stats index O:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRuTe) 0 0 0 0
Forwarded (Rule) 4894829 499 598458981 60379
Color O Dropped (WRED) 0 0 0 0
Color O Dropped (TAIL) 0 0 0 0
Color 1 Dropped (WRED) 0 0 0 0
Color 1 Dropped (TAIL) 0 0 0 0
Color 2 Dropped (WRED) 0 0 0 0
Color 2 Dropped (TAIL) 0 0 0 0
Color 3 Dropped (WRED) 0 0 0 0
Color 3 Dropped (TAIL) 0 0 0 0
Dropped (Force) 0 0 0 0
Dropped (Error) 0 0 0 0

One last important thing to notice regarding drops is that the discards triggered by
the firewall filter policer or by the DDOS policers are detected by the LU chip, but
the drops are really taking place at the MQ/XM chip level. Indeed, when the LU
chip detects that a packet (Parcel) is out of spec, it sends the Parcel back with a
notification in the L2M header that the packet has to be dropped. These PFE drops
are counted as normal discards:

user@R2> show pfe statistics traffic fpc 11 | match "Discard|drop"
Software input control plane drops
Software input high drops
Software input medium drops
Software input low drops
Software output drops :
Hardware input drops :
Packet Forwarding Engine hardware discard statistics:

[eNeoNoNoNeNo]

Timeout : 0

Normal discard
Extended discard
Info cell drops
Fabric drops

1786267748
0
0
0

The above command shows that there is no congestion on the Host inbound path
and the control plane is well protected. Indeed, there are no hardware input drops
(aggregated drop stats of the eight hardware queues of the stream 1151) and no
software input drops (drop stats of the pKernel queue — towards the RE).

The FreeBSD ICMP Policer

In order to observe congestion drops (just for fun), you can disable in the lab the
ICMP DDOS protection and keep only the 100.0 firewall filter. Let’s try it:

user@R2# set system ddos-protection protocols icmp aggregate disable-fpc
user@R2# set system ddos-protection protocols icmp aggregate disable-routing-engine

user@R2> show pfe statistics traffic fpc 11 | match "Discard|drop"

New check for PFE Drops on one MPC:

Appendices

129

Software input control plane drops 0

Software input high drops 0

Software input medium drops 0

Software input low drops 0

Software output drops 0

Hardware input drops : 51935961
Packet Forwarding Engine hardware discard statistics:

Timeout : 0

Normal discard : 1876852127

Extended discard : 0

Info cell drops : 0

You can now see hardware input drops, which means that the hardware queue(s) of
the Host stream managed by the MQ/XM chip are congested. This can be confirmed
by using the following command:

user@R2> request pfe execute target fpcll command "show mqchip 0 dstat stats 0 1016" | trim 5

QSYS 0 QUEUE 1016 colormap 2 stats index O:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRule) 0 0 0 0
Forwarded (Rule) 689014 15765 83370694 1907625
Color 0 Dropped (WRED) 5926034 136629 717050114 16532169
Color O Dropped (TAIL) 404 0 48884 0
Color 1 Dropped (WRED) 0 0 0 0
Color 1 Dropped (TAIL) 0 0 0 0
Color 2 Dropped (WRED) 0 0 0 0
Color 2 Dropped (TAIL) 0 0 0 0
Color 3 Dropped (WRED) 0 0 0 0
Color 3 Dropped (TAIL) 0 0 0 0
Dropped (Force) 0 0 0 0
Dropped (Error) 0 0 0 0

Indeed, Queue 0 (Absolute queue 1016 of Qsys 0) of the Host stream experienced
RED and TAIL drops (remember this is due to back pressure from TOE). In this case
the MPC 11 delivers “only” 15765pps to the pKernel. pKernel seems to accept these
15Kpps without any issue and this is why there are no Software Input drops with the
show pfe statistics traffic fpc 11 command. You can also call the show ttp
statistics command on MPC 11 to double-check for software drops.

Nevertheless, 15kpps of ICMP per MPC doesn’t mean that the RE will answer all the
30Kpps echo requests. Actually, the FreeBSD system itself has its own ICMP rate-
limiter, which acts as yet another level of protection:

user@R2> start shell
% sysctl -a | grep icmp.token
net.inet.icmp.tokenrate: 1000

NOTE

The FreeBSD ICMP policer that can be configured at [edit system internet-options
icmpv4-rate-limit] hierarchy level. This policer has a default 1000pps value, and that
is the reason why the ICMP DDOS policer was previously set to 500pps: the goal was
to see DDOS Protection in action, and not the FreeBSD ICMP kernel policer.

OK, this is why you only see 500pps of ICMP echo replies per MPC and why you can
notice a lot of rate-limited ICMP packets at the system Level:

130

user@R2> show pfe statistics traffic fpc 0

Packet Forwarding Engine traffic statistics:

31895070
79641

Input packets:
Output packets:

user@R2> show pfe statistics traffic fpc 11

Packet Forwarding Engine traffic statistics:

53421523
132774

Input packets:
Output packets:

user@2> show system statistics icmp | match

100338743 drops due to rate limit

This Week: An Expert Packet Walkthrough on the MX Series 3D

19

19

"rate Timit"

9345 pps
500 pps

9337 pps
500 pps

Let’s configure back DDOS protection and stop the ICMP DDOS attack, take a
break if necessary, and then let’s move on to how ARP packets are handled by MX
3D router. It should be a very interesting walkthrough.

Handling Inbound ARP Packets

This section of Appendix B covers some specific processing done for ARP (Address
Resolution Protocol) packets. ARP packets are received and handled by the host,
but here the focus is only on the input direction.

To illustrate ARP requests, let’s go back to the same topology and force R1 and R3
to send an ARP request toward R2 every second, as shown in Figure B.2.

MPC 16x10GE
SLOT 11

/

\

MPC4e
SLOTO

4 3

\

ARP ARP
Who has 172.16.20.1 2 Who has 172.16.20.5?
____________________________________ > 4._._._.__._._._._._________._._._.__
ael ael
7
i xe-11/0/0 o xe-0/0/0 A
T \ \
%172.16.20.2/30 | | 172.16.20.1/30%172.16.20.5/30 I\ | 172.16.20.6/30 %
\ L
/ . N 7
- Ny xe-T1/071 ot xe-0/071 Ny =

J

Figure B.2 The ARP Request Case

An ARP packet is a Layer 2 packet carried directly over Ethernet with the EtherType
equal to 0x0806. As you’ve previously seen, packets coming into the MX MPC are
first pre-classified and then handled by the MQ or XM chip. In the case of ARP
packets, they are conveyed in the CRTL stream at the W1 functional block level. The
WI turns the ARP request into a Parcel (because the entire ARP packet is lower than
320 bytes) and sends it to the LU chip.

Figure B.3 illustrates the life of an ARP packet inside the PFE.

Appendices 131

OffChip Memory

|

OnChip Memory ’ [Packet Management

pre-classifier

xe-11/0/0 i
ARP Ethernet Engine CTRL Stream |) Wi
requests /9 Controller @ A)
— PARCEL
@ | (actually the ARP
v packet)
annnn (AR RN
0 S - ©
\-lllll- -lllll- N—
[HSL2 |
-~ (91§ (2L JparceL] \

EEEED

ol Y

Figure B.3 How the MX 3D Handles ARP Requests

The LU chip then performs several tasks. First it performs an Ethernet frame analy-
sis. By checking the EtherType the LU chip deduces that the packet is an ARP packet,
so it flags it as an exception, more specifically, as a control packet (PUNT 34 excep-
tion code).

If you execute the PFE commands several times on MPC 11 or MPC 0, you will see
the counter incrementing by one per second - the rate of the ARP streams from R1
or R3.

NPC11(R2 vty)# show jnh 0 exceptions terse

Reason

Type Packets Bytes

control pkt punt via nh PUNT(34) 150 6962

NOTE

Remember that in this topology there is no protocol enabled (not even LACP), this is
why you only see 1pps on this counter.

As the ARP packet is a pure Layer 2 packet it will not be processed by the 100.0 input
firewall filter or by the HBC firewall filter, which are both Layer 3 family-based.
Nevertheless, ARP can be policed by three types of policers:

B Default per-PFE ARP policer
B Configurable per-IFL (Interface Logical) ARP policer
B ARP DDOS (hierarchical) policer

132 This Week: An Expert Packet Walkthrough on the MX Series 3D

These three policers are managed by the LU chip (and the DDOS policer is also
applied at higher levels), but as dicussed previously, the real discard of packets that
exceed the policer rate is performed by the the MQ/XM chip. The LU chip just sends
back the information to the MQ/XM chip that the packet must be discarded.

The Default per-PFE ARP Policer

The first policer is a non-configurable policer which is applied by default on ethernet
interfaces as an input policer. This is a per-PFE ARP policer named __default_arp_
policer__. To check if a given IFD has this policer applied, just call the following CLI

command:

user@2> show interfaces policers ae[0,1].0
Interface Admin Link Proto Input Policer Output Policer
ae0.0 up up

inet

multiservice __default_arp_policer__
Interface Admin Link Proto Input Policer Output Policer
ael.0 up up

inet

multiservice __default_arp_policer__

NOTE You can disable the default per-PFE ARP policer (set interfaces <*> unit <*> family
inet policer disable-arp-policer).

As you can see, both AEO and AE1 have it enabled. But what is the value of this
default ARP policer? To find out let’s move back to the PFE and check the policer
program:

NPC11(R2 vty)# show filter
Program Filters:

Index Semantic Name
6 Classic __default_bpdu_filter__
8 C(lassic protect-re
17000 Classic __default_arp_policer__
57008 Classic __cfm_filter_shared_lc__
[...]

NPC11(R2 vty)# show filter index 17000 program
Filter index = 17000

Optimization flag: 0x0

Filter notify host id = 0

Filter properties: None

Filter state = CONSISTENT

term default

term priority 0

then

accept

policer template __default_arp_policer__

policer __default_arp_policer__
app_type 0
bandwidth-1imit 150000 bits/sec
burst-size-1imit 15000 bytes
discard

Appendices 133

Great! Now you know that the value of this default policer is 150Kbits/s max with a
burst size of 15K bytes. Remember that this is a per-PFE policer, so it applies to all
the ports attached to the PFE as an aggregate. To check the counters associated to this
policer you can either call the global CLI command that will give you the sum of all
PFE ARP policer instances (on all PFEs of the chassis) or call the PFE command that
will give you the MPC point of view (the sum of only the ARP policer instance of the
MPC). In both cases, the counter shows you the packets dropped and not the trans-
mitted ones. In normal conditions the counters should be equal to 0 or stable.

The CLI command that gives you the global “policed” ARP packets is:

user@R2> show policer __default_arp_policer__

Policers:
Name Bytes Packets
__default_arp_policer__ 0 0

And the same result, but at the PFE level for a given MPC:

NPC11(R2 vty)# show filter index 17000 counters <<< 17000 1is the filter Index
Filter Counters/Policers:

Index Packets Bytes Name
17000 0 0 __default_arp_policer__(out of spec)
17000 0 0 __default_arp_policer__(offered)
17000 0 0 __default_arp_policer__(transmitted)

As mentioned, the counters only give you packet drops, which is why you don’t see
the 1pps ARP request flow. To illustrate the default policer in action let’s replace the
R1 router with a traffic generator and send a high rate of ARP requests. That should
show you how the default ARP policer works:

user@R2> show policer __default_arp_policer__

Policers:
Name Bytes Packets
__default_arp_policer__ 141333400 286100

NPC11(R2 vty)# show filter index 17000 counters
FiTter Counters/Policers:

Index Packets Bytes Name

17000 286100 141333400 __default_arp_policer__(out of spec)
17000 0 0 __default_arp_policer__(offered)
17000 0 0 __default_arp_policer__(transmitted)

As you can see, the PFE and CLI commands give you the same result. Indeed, the ARP
storm is not distributed over several MPCs, a good explanation of why PFE and CLI
results are the same.

A Custom per-IFL ARP Policer

With specific configuration you can override the default ARP policer on per-IFL
(Interface Logical) basis, simply by configuring a policer and applying it on a specific
IFL. This is the second of the three types of policers. And in this case a 100Mb/s ARP
policer is configured on the ae0.0 interface:

user@R2> show configuration firewall policer my_arp_policer
if-exceeding {

bandwidth-Timit 100m;

burst-size-1limit 15k;

134 This Week: An Expert Packet Walkthrough on the MX Series 3D

then discard;

user@R2> show configuration interfaces ae0
unit 0 {
family inet {
policer {
arp my_arp_policer;
}
address 172.16.20.1/30;

Now let’s call back the following command to check which policers are applied on
LAG?’s interfaces:

user@R2> show 1interfaces policers ae[0,1].0

Interface Admin Link Proto Input Policer Output PoTlicer
ae0.0 up up

inet

multiservice my_arp_policer-ae0.0-1inet-arp
Interface Admin Link Proto Input Policer Output Policer
ael.0 up up

inet

multiservice __default_arp_policer__

As you can see, the ARP packets received on the ael.0 interface still pass through the
default ARP policer, while the ARP packets received on the ae0.0 interface are now
rate-limited by the specific instance of the reconfigured policer. Let’s replace R1 with
a traffic generator again and send, one more time, the ARP storm on the ae0 inter-
face. Recall the CLI command that shows you ARP drops:

user@R2> show policer | match arp

__default_arp_policer__ 0 0
my_arp_policer-ae0.0-inet-arp 6099232750 12346625

As expected, the default ARP policer doesn’t work anymore on ae0.0: it is the
specific ARP policer that takes place.

LU DDoS Protection ARP Policer

The third type of ARP policer is managed by the DDOS protection feature that
provides hierarchical policing. First of all, you can check where the DDOS ARP
policer is applied and its default value. To do that, use the following PFE command:

user@R2> request pfe execute target fpcll command "show ddos policer arp configuration" | trim 5
DDOS Policer Configuration:

UKERN-Config PFE-Config
idx prot group proto on Pri rate burst rate burst

111 3400 arp aggregate Y Lo 20000 20000 20000 20000

Notice that the ARP packets (protocol_ID 3400) are policed as an aggregate, in
other words, independently of the kind of ARP messages, at three levels: the LU
chip, the pKernel, and the RE. In other words, at each level the ARP traffic will be
rate-limited to 20kpps.

With this default configuration, the DDOS policer instance at the LU chip or the
pKernel level should never drop ARP packets. Indeed, the default per-PFE ARP
policer, seen previously, should rate-limit the ARP flow since it is more aggressive.

Appendices = 135

NOTE 150Kbits/s, which is the default PFE ARP policer, is equal to around 400pps (for
standard ARP request messages).

With the default per-PFE ARP policer, you could experience some ARP DDOS protec-
tion drops but only at the RE level and in very rare conditions: for example, an ARP
storm on every PFE on the chassis. Nevertheless, if you override the default per-PFE
ARP policer with a less aggressive one, or if you disable it, DDOS protection could
help you to protect the control plane against a massive ARP storm. Or, better, if you
lower the DDOS protection ARP policer and make it more aggressive than the default
per-PFE policer. The latter is actually a good practice, because as you are about to see
the default 20kpps DDOS ARP policer settings are not very effective at the lower
(PFE and microkernel) DDOS Protection levels.

CAUTION ARP entries need to be refreshed every 20 minutes. So if the PFE ARP policer or the
DDOS ARP policer are set too aggressively, then the ARP replies needed for the ARP
re-fresh may get dropped as well. Check the last paragraph of this Appendix for more
information on how to address this (in a more sophisticated and scalable manner).
Also, in big ethernet domains it is advisable to increase the ARP timeout value.

Aggregate Microkernel Exception Traffic Throttling

For the sake of demonstration only, let’s leave the default DDOS ARP configuration,
and configure a custom per-IFL ARP policer at 100Mbit/s that overrides the default
per-PFE ARP policer on ae0.0. Then, send 1 Gbit/s ARP storm on ae0.0.

As you’ve seen previously, the default per-PFE ARP policer on ae0.0 is no longer used,
but the new 100Mbits/s per-IFL ARP policer rate limits the storm to 100Mbits/s.

Let’s have a look at the DDOS violation notification:

user@R2> show ddos-protection protocols violations
Packet types: 198, Currently violated: 1

Protocol Packet Bandwidth Arrival Peak Policer bandwidth
group type (pps) rate(pps) rate(pps) violation detected at
arp aggregate 20000 23396 1972248890 2014-06-17 10:18:12 CEST

Detected on: FPC-11

As expected, 100Mbits/s is too much — representing around 23Kpps. The DDOS
protection is triggered at the LU chip level. This first level of protection is rate-limit-
ing the ARP to 20Kpps.

The LU chip delivers 20Kpps of not-to-be-discarded ARP request to the MQ/XM
chip. These ARP requests are now conveyed within the Host stream 1151. Remem-
ber, the LU also assigns a Host hardware queue number. Let’s check which HW queue
is assigned for the ARP traffic (DDOS Proto ID 3400):

user@R2> request pfe execute target fpcll command "sh ddos asic punt-proto-
maps" | match "arp" | trim 5

contrl ARP arp aggregate 3400 2 20000 20000
The ARP traffic is conveyed in the Hardware queue 2. The base queue number of the

Host stream on the MQ Chip is 1016 (= Queue 0):

NPC11(R2 vty)# show cos halp queue-resource-map 0 <<<< 0 means PFE_ID = 0
Platform type 13 (3
FPC ID 1 0x997 (0x997)

136 This Week: An Expert Packet Walkthrough on the MX Series 3D

Resource 1init 1

cChip type 1

Rich Q Chip present: 0
Special stream count: 5

stream-id Ll-node L2-node base-Q-Node

Let’s have a look at the statistics of the Host Hardware Queue 1018 (1016 + 2), that

the ARP traffic is assigned to, and check how many ARP packets are really sent to the
pKernel. The ARP storm is being received on AEQ, so you can use the MPC 16x10GE
PFE-related command to retrieve this information:

NPC11(R2 vty)# show mqchip O dstat stats 0 1018 <<<< second 0 means QSys 0

QSYS 0 QUEUE 1018 colormap 2 stats index 24:

Counter Packets Pkt Rate Bytes Byte Rate
Forwarded (NoRule) 0 0 0 0
Forwarded (Rule) 188881107 9892 100667786767 5272436
Color O Dropped (WRED) 6131890 1294 3268297370 689702
Color O Dropped (TAIL) 40805679 8816 21749426459 4698928

[.]
Interesting! As you can see, a significant fraction of the 20kpps stream didn’t reach the
pKernel. The MQ/XM TOE conveys back presure in order to avoid pKernel conges-
tion, and these drops are counted as Hardware input drops, as shown here:

user@R2> show pfe statistics traffic

[...]
Packet Forwarding Engine Tocal traffic statistics:
Local packets input : 72044
Local packets output : 71330
Software input control plane drops : 0
Software input high drops : 0
Software input medium drops : 0
Software input low drops : 0
Software output drops : 0
Hardware input drops : 36944 <<< sum of drops of the 8 queues of stream 1151

This is a proof that the default DDOS ARP policer has a too high value, and it is a
good practice to make it more aggressive.

NOTE Early Junos implementation applies a 10kpps aggregate rate limit at the microkernel.
This behavior is evolving from a hardcoded value to a dynamic assignment based on
the microkernel’s load.

The surviving 10kpps are queued in the medium software queue of the pKernel before
their delivery to the RE. Call the following command to confirm this:

NPC11(R2 vty)# show ttp statistics

[...]
TTP Receive Statistics:
Control High Medium Low Discard
L2 Packets 0 0 100000 0 0
L3 Packets 0 0 0 0 0
Drops 0 0 0 0 0
Queue Drops 0 0 0 0 0

Unknown
Coalesce
Coalesce Fail

[...]

Appendices = 137

[ecNoNe)
[eNoNe]
[oNeNe]
[oNeNe]
[eNeNe]

And this confirmation is correct. You can use the tcpdump trace on the em0 interface
again to confirm that this control packet is sent via the TTP protocol. Observe the
DDOS Protocol_ID 0x3400 assigned by the LU chip and used by the jddosd process:

user@R2> monitor traffic interface em0 no-resolve layer2-headers matching "ether src host
02:00:00:00:00:1b" print-hex print-ascii size 1500
In 02:00:00:00:00:1b > 02:01:00:00:00:05, ethertype IPv4 (0x0800), Tength 122: (tos 0x0, ttl1 255, 1id
40969, offset 0, flags [none], proto: unknown (84), length: 108) 128.0.0.27 > 128.0.0.1: TTP, type
L2-rx (1), ifl_input 325, pri medium (3), length 68

proto unkwn (0), hint(s) [none] (0x00008010), queue O

ifd_mediatype Unspecfied (0), ifl_encaps unspecified (0), cookie-Ten 0, payload unknown

(0x00)

————— payload packet-----
unknown TTP payload

0x0000:
0x000f:
0x001f:
0x002f:
0x003f:

0004 0004 3400 0000 ffff ffff ffff 0021
59a2 efc2 0806 0001 0800 0604 0001 0021
59a2 efc2 c0a8 0102 0000 0000 0000 cOa8
0103 0000 0000 0000 0000 0000 0000 0000
0000 0000

RE DDoS Protection ARP Policer

When the ARP traffic reaches the RE, it is also rate-limited by the RE’s ARP DDOS
policer instance (the jddosd process). In this case, it did no trigger drops because the
RE receives “only” 10Kpps (remember the default configuration of the ARP DDOS
policer is equal to 20Kpps):

user@R2> show ddos-protection protocols arp statistics | find routing
Routing Engine information:
Aggregate policer is never violated

Received:
Dropped:

382746792 Arrival rate: 9894 pps
0 Max arrival rate: 9914 pps

Dropped by individual policers: 0

[...]

After passing through the DDOS policer, the ARP requests are “enqueued” by the
system of the RE. Then the system schedules ARP “dequeue” to perform ARP request
analysis, and finally generate the ARP reply if needed. Sometimes, and this the case in
our storm’s scenario, the arrival rate in the ARP system queue is too high and the
system itself drops ARP requests. You can check system queue drop (interrupt drops)
by calling this CLI command:

user@R2> show system queues | match "input|arp"

input interface

arpintrq

bytes max packets max drops
0 3000 0 50 144480486 < drops

NOTE Usually, you shouldn’t observe any ARP interrupt drops if you keep the default

per-PFE ARP policer, or set a low DDoS Protection rate for ARP — the example was
just to show you that the Juniper MX Series router has several levels of protection.

138 This Week: An Expert Packet Walkthrough on the MX Series 3D

System’s drops and other ARP statistics can be collected by this other CLI command:

show system statistics arp

Finally, you can see ae0 interface statistics to check how many ARP replies are sent by
R2:

user@R2> show interfaces ae0 | match rate
1 954910752 bps (234968 pps)
: 1667520 bps (4342 pps) <<<< ARP replies

Input rate
OQutput rate

MORE?

In conclusion, R2 received an ARP storm of 230 Kpps (1Gbits/s) but your custom
per-IFL ARP policer of 100Mbits/s has reduced the attack to 23Kpps. The DDOS
policer instance of the LU chip has rate-limited the attack to 20Kpps. Then only
10kpps are really delivered from the MQ/XM chip to the pKernel due to the back
pressure coming from the TOE. Finally, the RE operating system rate-limits itself the
10Kpps ARP. It handles “only” around 4.2Kpps.

Default (per-PFE, DDOS, etc.) ARP policers are stateless and can drop some valid
ARP packets. Also, custom policers are cumbersome to use and if set too aggressively
they can drop legitimate ARP replies. One solution is to turn on Suspicious Control
Flow Detection (SCFD). The SCFD feature allows control traffic to be rate-limited in
a per-interface basis. It is a powerful extension of the DDoS protection feature, and it
is not covered in this book. Check out Juniper’s tech docs at http://www.juniper.net/
documentation.

http://www.juniper.net/documentation
http://www.juniper.net/documentation

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Author
	Author’s Acknowledgments
	Technical Reviewers
	What You Need to Know Before Reading
	After Reading This Book You’ll Be Able To
	Author’s Notes

	Chapter 1: An Extremely Quick MPC Overview
	A Quick Overview Inside the MPC
	PFE Numbering
	This Book’s Topology
	Summary

	Chapter 2: Following a Unicast Packet
	Unicast Network Topology
	Handling MAC Frames
	Pre-classifying the Packets (Ingress MQ/XM)
	Creating the Parcel (Ingress MQ/XM)
	Forwarding Lookup (Ingress LU)
	Packet Classification (Ingress LU)
	Inter-PFE Forwarding (from Ingress MQ/XM to Egress MQ/XM)
	Egress PFE Forwarding
	Summary

	Chapter 3: On the Way to the Host
	The Host Inbound Path: Five Stages
	Ping to the Host, Stage One: from MQ/XM to LU
	Ping to the Host, Stage Two: Inside the LU
	Host Inbound Packet Identification and DDOS Protection
	Ping to the Host, Stage Five: at the Host

	Chapter 4: From the Host to the Outer World
	Host-Outbound Path: Packets Generated by the Routing Engine
	Host-Outbound Path: Packets Generated by the MPC Line Card

	Chapter 5: Replication in Action
	Multicast Network Topology
	IP Multicast Control Plane
	IP Multicast Forwarding Plane
	Building a Multicast Forwarding Entry
	Multicast Replication
	Kernel Resolution

	Appendices
	Appendix A: MPC CoS Scheduling
	Appendix B: More on Host Protection

