
Junos® Fundamentals Series

Apply the powerful policy tools of

Junos essential to protecting your

device and your whole network with

expert, step-by-step techniques.

By Douglas Hanks Jr.

DAY ONE: SECURING THE ROUTING
ENGINE ON M, MX, AND T SERIES

Juniper Networks Day One books provide just the information you need to know on day one. That’s
because they are written by subject matter experts who specialize in getting networks up and
running. Visit www.juniper.net/dayone to peruse the complete library.

Published by Juniper Networks Books

DAY ONE: SECURING THE ROUTING ENGINE
ON M, MX, AND T SERIES

The routing engine on Junos routers performs many different functions, from processing
routing protocol updates, to driving the command-line interface (CLI). Given that the
routing engine is critical to the operation of the device and its network, you need to pro-
tect the routing engine from unwanted traffic by allowing only essential permitted traf-
fic. Unwanted traffic can come in many different forms: malicious traffic seeking to gain
unauthorized access, unintentional routing protocol updates from neighboring devices,
or even legitimate traffic that exceeds a given bandwidth limit.

This Day One book shows you how to secure the routing engine step-by-step. Learn how,
learn why, then follow along as you build a modular firewall filter and apply it.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

Secure the routing engine with a modular framework of firewall policies and policers.

Understand how firewall filters work and how they are applied to the routing engine.

Create a modular framework by chaining together firewall filters.

Describe how firewall logs are managed and view firewall logs in detail.

Understand how firewall counters work and view firewall counters.

Write detailed firewall policies to permit specific traffic to the routing engine.

Build dynamic prefix-lists based off the Junos configuration using apply-path.

Rate-limit and police certain types of traffic to the routing engine.

Create filter-specific and term-specific policers.

“An indispensable resource for anyone who needs to protect their Internet connected routers.”

Matt Hite, Network Engineer, Zynga

ISBN 978-1-936779-28-4

9 781936 779284

5 2 2 0 0

07500212

Day One: Securing the Routing Engine

on M, MX, and T Series, 2nd Revision

By Douglas Hanks Jr.

Junos® Fundamentals Series

Firewall Filters. . 7

Policers. . 27

Viewing Counters, Logs, and Policers. . 39

Junos Configuration Automation. . 49

Creating a Basic Framework of Firewall Filters . . 59

Applying Security Policies to the Routing Engine. 99

Appendix . . 123

© 2016 by Juniper Networks, Inc. All rights reserved.

Juniper Networks, the Juniper Networks logo, Junos,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. Junose is a trademark of Juniper Networks,
Inc. All other trademarks, service marks, registered
trademarks, or registered service marks are the property
of their respective owners.

Juniper Networks assumes no responsibility for any
inaccuracies in this document. Juniper Networks reserves
the right to change, modify, transfer, or otherwise revise
this publication without notice. Products made or sold by
Juniper Networks or components thereof might be
covered by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S. Patent
Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051,
6,333,650, 6,359,479, 6,406,312, 6,429,706,
6,459,579, 6,493,347, 6,538,518, 6,538,899,
6,552,918, 6,567,902, 6,578,186, and 6,590,785.

Published by Juniper Networks Books
Author: Douglas Hanks Jr.
Technical Reviewers: Zaid Hammoudi, Chris Grunde-
mann, Matt Hite, Richard Fairclough
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
Junos Product Manager: Cathy Gadecki
J-Net Community Manager: Julie Wider

About the Author
Douglas Hanks Jr. is a Sr. Systems Engineer with Juniper
Networks. He is certified in Juniper Networks as
JNCIE-ENT #213 and JNCIE-SP #875. Douglas’
interests are network engineering and architecture for
both Enterprise and Service Provider routing and
switching.

Author’s Acknowledgments
I would like to thank my family for all their love and
encouragement. This book is dedicated to Janice and
Warisara. Thank you Patrick Ames and Cathy Gadecki
for making this book possible. Thanks to Zaid
Hammoudi, Chris Grundemann, Matt Hite, and Richard
Fairclough for their technical review.

ISBN: 978-1-936779-28-4 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-936779-29-1 (ebook)

Version History: v2 June 2016
 3 4 5 6 7 8 9 10 	

This book is available in a variety of formats at: www.
juniper.net/dayone.

	 ii	

www.juniper.net/dayone
www.juniper.net/dayone
mailto:dayone@juniper.net

What You Need to Know Before Reading this Book

�� The reader is expected to have previous hands-on experience
working with the Junos operating system and network devices.
The majority of this book deals with actual Junos configuration.

�� It’s beneficial, though not required, for the reader to hold a
JNCIA-Junos certification from Juniper Networks. Topics in this
book build on the basics found in the JNCIA-Junos material and
extend into the intermediate to expert level of configuration.

�� An understanding of the services and protocols required to operate
your network is necessary. Depending on the function and role of
your router, these services and protocols may change. For exam-
ple, a core router in an enterprise data center may be running
OSPF, BFD, and VRRP, whereas an edge router may be running
OSPF and BGP.

�� A general understanding of Layer 4 protocols such as TCP and
UDP is also important. This book focuses heavily on segment
fields such as source port, destination port, and flags.

After Reading this Book, You’ll Be Able to...

�� Secure the routing engine using a modular framework of firewall
policies and policers.

�� Understand how firewall filters work and how they are applied to
the routing engine.

�� Create a modular framework by chaining together firewall filters.

�� Understand how firewall logs are managed and view them in
detail.

�� Understand how firewall counters work and view them.

�� Write detailed firewall policies to permit specific traffic to the
routing engine.

�� Build dynamic prefix-lists based on the Junos configuration using
the apply-path feature.

�� Omit large sections of the Junos configuration using the apply-
flags feature.

�� Rate-limit and police certain types of traffic to the routing engine.

�� Create filter-specific and term-specific policers.

		 iii

	 iv	

Why Secure the Routing Engine?

The routing engine performs many different functions, from process-
ing routing protocol updates, to driving the command-line interface
(CLI). Given that the routing engine is critical for the operation of the
router and the network, the routing engine needs to be protected from
unwanted traffic and to only allow traffic that it’s going to be interested
in. Unwanted traffic comes in many different forms: malicious traffic
seeking to gain unauthorized access, unintentional routing protocol
updates from neighboring devices, or even legitimate traffic that
exceeds a given bandwidth limit.

Routers are deployed in a variety of different scenarios and it’s com-
mon that no two routers are alike, even within the same network. For
instance, a router could be deployed in any of the following deploy-
ment scenarios:

�� Service Provider core, aggregation, and edge.

�� Internet transit and peering.

�� Enterprise data center and demilitarized zone (DMZ).

�� Inter-data center transport.

Each of these deployment scenarios represents different networking
requirements in terms of security, protocols, and services, making the
creation and maintenance of customized security policies for each
router a daunting task.

Even inside a simple enterprise data center there are several distinct
components: core, distribution, WAN, and Internet edge. Each of these
components will use different networking protocols and services.

Table P.1	 Matrix of Components, Protocols, and Services

Component Protocols Services

Core OSPF, BFD, and BGP RADIUS, SSH, and Web

Distribution Spanning-tree, BFD, OSPF, and VRRP RADIUS, SSH, Web, and NTP.

WAN OSPF, BFP, and BGP RADIUS, SSH, and Web

Internet edge OSPF, BFD, IPsec, and BGP RADIUS and SSH

		 v

Traditionally, many network administrators have tried to maintain a
protect-router ACL / firewall filter template for each type of router,
and this quickly becomes an operational burden because creating a
customized firewall filter for each router is time consuming. The
“protect-router” firewall filter becomes so complex, and so large, that
it makes the management more difficult as the administrator scales the
network, or adds new services. As networking services such as RA-
DIUS servers or BGP peers change over time, the protect-router ACL /
firewall filter needs to be updated to reflect these changes.

It’s possible to create a simple security framework to support a wide
variety of protocols and services by leveraging the power of the Junos
operating system. This book illustrates simple building blocks based
on commonly used protocols and services to make securing the
routing engine an easy task: simply pick and choose what protocols
and services are required for each router. Junos has configuration
automation tools that enable dynamic prefix lists, and as your net-
work scales and changes, the security framework automatically
changes and adjusts without requiring additional input from the
administrator.

Day One: Securing the Routing Engine on M/T/MX Series walks you
through all the components and instructions on how to create a
framework of firewall filters and policies to secure the routing engine,
and in the final chapter you are presented with a final framework and
configuration, which you can then implement on a router.

M/MX/T Routers

This book is geared towards the Juniper M/MX/T family of routers as
they are most often deployed in very demanding environments. The
amount of unwanted ingress traffic from the Internet is unbelievable.
The router is constantly flooded with ICMP fragments, SSH login
requests, file sharing protocols, and much more. In environments
where all traffic must be treated as untrusted, it’s essential that the
routing engine is secured against unwanted traffic.

NOTE	 Juniper has newly released a high-performance, mid-range series of
MX routers: MX5, MX10, and the MX40. While not used in the test
bed for this book, everything in this book applies to the new devices.
For more information about the new line of mid-range Juniper MX
routers see http://www.juniper.net/us/en/products-services/routing/
mx-series/.

	 vi	

Chapter 1

Firewall Filters

Firewall Families . . 8

How Firewall Filters are Evaluated. . 9

Firewall Filter Match Conditions. . 11

Firewall Filter Actions. . 12

Applying Firewall Filters. . 18

Firewall Filters: Data Plane versus Control Plane. 21

Firewall Filter Chaining. . 23

Nested Firewall Filters. . 25

Summary. . 26

	 8	 Day One: Securing the Routing Engine on M, MX, and T Series

The primary method of matching traffic and performing an action is
performed with a firewall filter, and Chapter 1 details what firewall
filters are and how to use them. A firewall filter can be applied to traffic
in two directions: input and output. Input refers to traffic destined for
the routing engine if applied to the control plane, or ingress traffic to a
logical interface if applied to the data plane. Likewise, output refers to
traffic sourced from the routing engine if applied to the control plane,
or egress traffic from a logical interface if applied to the data plane.

This may seem a little confusing now, but once you walk through a few
instances it becomes clear.

Firewall filters are used to match traffic and perform an action on the
traffic matched, very similar to a policy statement. Firewall filters
consist of one or more named terms and each term has a set of match
conditions, and a set of actions or non-terminating actions. If no traffic
is matched by any of the terms there is a hidden implicit-rule that
discards all traffic. Here’s the firewall filter configuration syntax:

[edit firewall family inet]
filter filter-name {
	 term term-name {
		 from {
			 match-conditions;
		 }
		 then {
			 action;
			 nonterminating-actions;
		 }
	 }
	 term implicit-rule {
		 then discard;
	 }
}

Firewall Families

Firewall filters are defined differently for different protocol family
types and filters that are defined for a specific family type can only be
applied to an interface using the same protocol family. For example, a
firewall defined as family inet can only be applied to an interface
under family inet. Table 1.1 lists some of the types of protocol
families for firewall filters.

	 Chapter 1: Firewall Filters	 9

Table 1.1	 Firewall Filter Protocol Family Types

Protocol Family Description

any Protocol-independent filter.

bridge Protocol family bridge.

ccc Protocol family circuit cross-connect.

inet Protocol family IPv4.

inet6 Protocol family IPv6.

mpls Protocol family MultiProtocol Label Switching.

vpls Protocol family Virtual Private LAN Service.

NOTE	 This book focuses strictly on IPv4 or family inet. For more informa-
tion about Junos and IPv6, see the Day One books about IPv6 at
http://www.juniper.net/dayone.

How Firewall Filters are Evaluated

Firewall filters are evaluated from the top-down starting with the first
term within the filter. If no matches are found within a term, the next
term is evaluated until a match is found. If a match isn’t found then the
hidden implicit-rule at the end of the firewall filter discards the traffic.

Single-term Filters

If a firewall filter contains a single term, it is evaluated starting with the
from statement. If there is a match, the action specified in the then
statement is taken. If there is no match, the traffic is discarded. For
example:

[firewall family inet]
filter example-filter {
	 term single-term {
		 from {
			 source-address 10.0.0.0/8;
		 }
		 then {
			 accept;
		 }
	 }
}

You can see in the firewall filter that there is a single term. If the packet
has a source address of 10/8 it is accepted, and if there is no match,
then the hidden implicit-rule discards the packet.

http://www.juniper.net/dayone

	 10	 Day One: Securing the Routing Engine on M, MX, and T Series

Multiple-term Filters

If the firewall filter has more than a single term, the filter is evaluated
from the top-down starting with the first term. It’s common to see term
names in Junos documentation in ascending order such as term 1, term
2, and term 3. However, regardless of the name, the filter is always
evaluated sequentially, top-down, until a match occurs. If there is a
match, the action specified in the then statement is taken. If there is no
match, the next term is evaluated. This process continues until there is
a match or there are no more terms left to evaluate. If a packet passes
all the way through a filter without matching any of the terms, the
hidden implicit-rule at the end of the term discards the packet.

If a packet matches the conditions in the from statement and the term
doesn’t contain a then statement, or doesn’t have an action defined, the
packet is accepted by default. Here’s an example of a filter with several
terms:

 [firewall family inet]
filter example-filter {
	 term 1 {
		 from {
			 source-address 10.0.0.0/8;
		 }
		 then {
			 log;
			 accept;
		 }
	 }
	 term 2 {
		 from {
			 source-address 192.168.0.0/16;
		 }
		 then {
			 accept;
		 }
	 }
	 term 3 {
		 from {
			 source-address 172.16.0.0/12;
		 }
	 term 4 {
		 from {
			 source-address 200.200.0.0/24;
		 }
		 then {
			 log;
		 }
}

	 Chapter 1: Firewall Filters	 11

And in this firewall filter the packet is evaluated as illustrated in Figure
1.1.

Packet
Accept
packet

Discard
packet

YesDoes packet
match term 1?

Accept
packet

Does packet
match term 2?

Accept
packet

Does packet
match term 3?

Does packet
match term 4?

Accept
packet

Yes

Yes

Yes

No

No

No

No

Log packet

Log packet

Log packet

Figure 1.1	 How A Packet is Evaluated in a Firewall Filter

BEST PRACTICE	 It’s strongly recommended that you always configure an explicit action
in the then statement. If there’s no action, or the then statement is
omitted completely, then packets that match the conditions in the from
statement are permitted.

Firewall Filter Match Conditions

Match conditions are simply conditions for which the packet must
match in order to be accepted, such as protocol tcp or source-ad-
dress 10.0.0.0/8. Match conditions are specified in the from state-
ment of the firewall filter. The order in which the match conditions
appear isn’t important, as all match conditions must be met in order

	 12	 Day One: Securing the Routing Engine on M, MX, and T Series

for the then statement to be taken. If there are no match conditions
specified in a term, then all packets are matched.

When a single term has a list of the same match conditions, a match
occurs if any one of the values in the list matches the packet, as shown
here:

[firewall family inet]
filter example-filter {
	 term 1 {
		 from {
			 protocol tcp;
			 source-address 10.0.0.0/8;
			 source-address 192.168.0.0/16;
			 source-address 172.16.0.0/12;
		 }
		 then {
			 accept;
		 }
	 }
}

Here the packet protocol is TCP, and if it has a source address of 10/8,
192.168/16, or 172.16/12 it will be accepted. It’s important to remem-
ber that when a list of match conditions is defined, it requires only a
single value to be matched within the list. In this example there are two
match conditions that have to be met in order for the from statement to
match: protocol tcp and the match list source-address which has
three match conditions, but only one of those three match conditions
has to match for the entire list to be evaluated as true.

ALERT	 Although only a single value must be matched within a list of match
conditions, other match conditions outside of the list must be matched
in addition to the list.

So in the firewall filter example-filter, the packet will be evaluated as
depicted in Figure 1.2.

Firewall Filter Actions

Firewall actions fall into two groups: terminating actions and non-
terminating actions, which are also called action modifiers. When a
match occurs in the from statement, Junos can perform the specified
action and/or non-terminating actions to the packet.

	 Chapter 1: Firewall Filters	 13

Packet

Accept
packet

Discard

packet

YesDoes packet

match SA 10/8?

Accept
packet

Does packet

match SA

192.168/16?

Accept
packet

Does packet

match SA

172.16/12?

Yes

Yes

No

No

No

Is the packet

protocol tcp?

Discard
packet

No

Yes

List of match
conditions

(source-address)

Figure 1.2	 Flowchart of How the Firewall Filter Example is Evaluated

Here is the firewall filter configuration syntax for action and non-termi-
nating actions:

filter filter-name {
	 term term-name {
		 from {
			 match-conditions;
		 }
		 then {
			 action;
			 nonterminating-actions;
		 }
	 }
}

	 14	 Day One: Securing the Routing Engine on M, MX, and T Series

Actions

The action and non-terminating actions are defined within the then
statement of a firewall filter. It’s important to remember that if a match
occurs and there isn’t a defined then statement, the default action is to
accept the packet. Only one action can be defined per term, but
multiple non-terminating actions may be defined per term.

Table 1. 2	 Action Types

Action Type Description

accept terminating The packet is accepted.

discard terminating The packet is silently discarded.

reject message-type terminating The packet is rejected and the corresponding ICMP
message is generated.

routing-instance
routing-instance

terminating Routes the packet using the specified routing-instance.

next term non-terminating Continues to the next term for evaluation.

count counter-name non-terminating Counts the number of packets passing this term. A
counter name is specific to the filter that uses it, so all
interfaces that use the same filter increment the same
counter.

forwarding-class
class-name

non-terminating Classifies the packet to the specified forwarding class.

log non-terminating Logs the packet’s header information in memory on
the packet forwarding engine (PFE). This is a First In
First Out (FIFO) buffer and is limited to about 400
entries.

loss-priority
priority

non-terminating Sets the scheduling priority of the packet.

policer policer-name non-terminating Applies rate limits to the traffic using the named
policer.

sample non-terminating Samples the traffic on the interface. Use this non-
terminating action only when sampling is enabled.

syslog non-terminating Records information in the system logging facility.
This non-terminating action can be used with all
actions except discard.

NOTE	 The action next term cannot be used with a terminating action in the
same filter term, and can only be configured with non-terminating
actions.

	 Chapter 1: Firewall Filters	 15

MORE?	 This book only deals with actions: accept, reject, discard, count, log,
and policer. For more information on the other actions visit http://
www.juniper.net/techpubs/en_US/junos10.4/topics/usage-guidelines/
policy-configuring-actions-in-firewall-filter-terms.html.

The action accept is the most commonly used because the default
action of a firewall filter is to discard all traffic that isn’t matched. If
the objective is to match certain packets and deny them, the most
common action is discard. The discard action silently drops the
packet without generating an ICMP message. This method has security
benefits as the routing engine does not give any clues as to why the
traffic was dropped. In certain situations it makes complete sense to
match a packet and deny it and generate a corresponding ICMP
message. The reject action discards the packet and generates and
sends an ICMP administratively-prohibited message by default, but
there are other ICMP messages than can be specified to override the
default, such as:

�� administratively-prohibited (this is the default)

�� bad-host-tos

�� bad-network-tos

�� fragmentation-needed

�� host-prohibited

�� host-unknown

�� host-unreachable

�� network-prohibited

�� network-unknown

�� network-unreachable

�� port-unreachable

�� precedence-cutoff

�� precedence-violation

�� source-host-isolated

�� source-route-failed

�� tcp-reset (If the original packet was TCP, a TCP reset segment is
generated, and if the original packet wasn’t TCP, no response is
generated.)

http://www.juniper.net/techpubs/en_US/junos10.4/topics/usage-guidelines/policy-configuring-actions-in-firewall-filter-terms.html
http://www.juniper.net/techpubs/en_US/junos10.4/topics/usage-guidelines/policy-configuring-actions-in-firewall-filter-terms.html
http://www.juniper.net/techpubs/en_US/junos10.4/topics/usage-guidelines/policy-configuring-actions-in-firewall-filter-terms.html

	 16	 Day One: Securing the Routing Engine on M, MX, and T Series

Here’s an example firewall filter that matches packets with a RFC1918
source address and rejects the packets with an ICMP message of
network-prohibited:

[firewall family inet]
filter example-filter {
	 term 1 {
		 from {
			 source-address 10.0.0.0/8;
			 source-address 192.168.0.0/16;
			 source-address 172.16.0.0/12;
		 }
		 then {
			 reject network-prohibited;
		 }
	 }

}

Non-terminating Actions

Non-terminating actions are additional processing that the router is
able to perform on a packet. One or more non-terminating actions are
able to be defined per term. The packets are still accepted, discarded,
or rejected as defined by the corresponding action, but the non-termi-
nating actions are also performed.

Counters

Counters are simply a tuple of the counter name, number of bytes
passed, and total number of packets. If traffic matches a term and the
non-terminating action count is called, the counter is incremented.
Don’t be afraid to use counters as they are processed in the packet
forwarding engine (PFE) and operate at line rate without impacting
performance. Here’s an example:

[firewall family inet]
filter example-filter {
	 term 1 {
		 from {
			 source-address 10.0.0.0/8;
			 source-address 192.168.0.0/16;
			 source-address 172.16.0.0/12;
		 }
		 then {
			 count rfc1918;
			 accept;
		 }
	 }

}

	 Chapter 1: Firewall Filters	 17

The example firewall filter illustrates how to define a counter. Use the
non-terminating action count followed by a name for the counter.

NOTE	 Counter names are aggregated by default. If there are multiple firewall
filters using the same counter name, each counter will increment an
aggregated counter name. To change this behavior so that counter
names are aggregated per interface, use the interface-specific knob
within the firewall filter.

NOTE	 There can only be a single counter defined per term.

Counters give instant visibility into how the firewall filter is working
and are often used to detect mistakes in a firewall filter or abnormal
traffic conditions. A common use of counters is to count the number of
bytes and packets that have been discarded at the end of a firewall
filter.

Logging

If you use the non-terminating action log, it records the packet’s
header information and places it into a FIFO buffer on the PFE. This
FIFO holds about 400 entries.

ALERT!	 The non-terminating action log is completely different from syslog.
Although both log and syslog log the packet’s header, the non-termi-
nating action log operates at line-rate, storing the information in PFE
memory, whereas the non-terminating action syslog sends the packet’s
header to the routing engine to be processed, which is subject to the
internal routing engine policer.

Logging is a great tool to spot-check firewall filters without a loss in
performance. It’s commonly used to log traffic that wasn’t matched in
a firewall filter. Here’s a firewall filter example that defines logging by
using the non-terminating action log:

[firewall family inet]
filter example-filter {
	 term 1 {º
		 from {
			 source-address 10.0.0.0/8;
			 source-address 192.168.0.0/16;
			 source-address 172.16.0.0/12;
		 }
		 then {
			 accept;
		 }
	 }

	 18	 Day One: Securing the Routing Engine on M, MX, and T Series

	 term 2 {
		 then {
			 log;
			 discard;
		 }
	 }
}

If the packet has a RFC1918 source address it will be accepted. All other
packets are discarded and logged to the PFE.

ALERT!	 You should use logging sparingly as all logs are placed into an in-memo-
ry FIFO that only supports about 400 entries. If too much traffic is being
logged, the FIFO rotates the logged traffic out so fast it isn’t useful.

NOTE	 There can only be one log per firewall term.

Logging Information

The packet header is logged along with the exact time the packet was
processed, and additional information such as the ingress interface and
the firewall filter action is also logged. Table 1.3 depicts the types of
logging information and their filter names.

Table 1.3	 Types of Logging Information

Logging Information Description

Time Time that the event occurred.

Filter Name of the filter that matched the traffic.

Act Filter action:

A – Accept

D – Discard

R – Reject

Interface Ingress interface for the packet.

Protocol Packet’s protocol name.

Src address Packet’s source address and port.

Dest address Packet’s destination address and port.

Applying Firewall Filters

After a firewall filter has been created, it needs to be applied to an
interface to become active. Only firewall filters that have been applied to

	 Chapter 1: Firewall Filters	 19

an interface are evaluated, and once applied, the filter is installed into
the PFE and all processing is performed at line rate.

Direction

Firewall filters can be applied in two directions: input and output.
Firewall filters applied with the direction of input match ingress traffic
and firewall filters applied with the direction of output will match
egress traffic.

To apply a firewall filter use the filter statement under the interface’s
protocol family, specify the direction, then the firewall filter name.

Input:

set interfaces lo0.0 family inet filter input example-filter

Output:

set interfaces lo0.0 family inet filter output example-filter

NOTE	 Be careful applying firewall filters to the interface lo0.0. The firewall
filter must account for all management and routing protocols that are
used on the router. It’s recommended to always use the console or the
command commit confirmed when applying firewall filters to the
routing engine in case you accidentally lock yourself out.

How to Create a Firewall Filter

Let’s put all the pieces together and try creating our own firewall filter:

1. Begin by going into configure mode on your router.

dhanks@MX80> configure
Entering configuration mode

2. Now, create and name the firewall filter example-filter with a
single-term of 1 with a non-terminating action of log:

[edit]
dhanks@MX80# set firewall family inet filter example-filter term 1 then log

3. Now create a counter called example-filter.

[edit]
dhanks@MX80# set firewall family inet filter example-filter term 1 then count example-
filter

4. Create a terminating action of accept:

[edit]
dhanks@MX80# set firewall family inet filter example-filter term 1 then accept

	 20	 Day One: Securing the Routing Engine on M, MX, and T Series

5. Double-check the firewall filter for accuracy:

[edit]
dhanks@MX80# show | compare
[edit]
+ firewall {
+ family inet {
+ filter example-filter {
+ term 1 {
+ then {
+ count example-filter;
+ log;
+ accept;
+ }
+ }
+ }
+ }
+ }

6. Apply the firewall filter example-filter to the loopback interface
lo0.0:

[edit]
dhanks@MX80# set interfaces lo0.0 family inet filter input example-filter

7. Review all the changes for accuracy and commit:

dhanks@MX80# show | compare
[edit interfaces lo0 unit 0 family inet]
+ filter {
+ input example-filter;
+ }
[edit]
+ firewall {
+ family inet {
+ filter example-filter {
+ term 1 {
+ then {
+ count example-filter;
+ log;
+ accept;
+ }
+ }
+ }
+ }
+ }

[edit]
dhanks@MX80# commit and-quit
commit complete
Exiting configuration mode

dhanks@MX80>

	 Chapter 1: Firewall Filters	 21

ALERT!	 Always use the commit confirmed 5 command when applying firewall
filters to the control plane via interface lo0.0. This commits the
configuration to the router and if the command commit isn’t applied
again within 5 minutes, the router automatically rollbacks to the
previous configuration. This way if you make a mistake you haven’t
locked yourself out.

Try It Yourself: Create Your Own Filter

Although the firewall filter just completed may not particularly useful, it successfully demon-
strates how to create a firewall filter with a single term and with both terminating and non-
terminating actions. While Chapter 5 dives deep into firewall filters to protect the engine,
including major routing protocols and management tools, try completing a few firewall filters
now, for practice. Use the seven-step process and implement some of the terms, actions, and
non-terminating actions discussed.

Firewall Filters: Data Plane versus Control Plane

Depending on where the firewall filter is applied, it will filter traffic on
the data or control plane. If the firewall filter is applied to the inter-
face lo0.0 it filters all control plane traffic:

interfaces {
	 lo0 {
		 unit 0 {
			 family inet {
				 filter {
input accept-all;
			 }
			 address 127.0.0.1/32;
		 }
	 }
	 ge-0/0/0
		 unit 0 {
			 family inet {
				 address 10.0.0.1/30;
		 }
	 }
}
firewall {
	 family inet {
		 filter accept-all {
			 term 1 {
				 then {
					 count accept-all;
					 log;
					 accept;

	 22	 Day One: Securing the Routing Engine on M, MX, and T Series

				 }
			 }
		 }
	 }
}

In this example, the firewall filter accept-all applied to interface
lo0.0 in the direction of input, counts, logs, and accepts all ingress
traffic destined to the routing engine regardless of the source. For
example, if an OSPF Hello Packet was received from interface ge-
0/0/0.0, it would be accepted by the firewall filter accept-all because
routing protocols such as OSPF require the routing engine to handle the
Hello Packets.

 A good way to think about firewall filters applied to interface lo0.0 is
that any traffic that is destined to, or has originated from, the routing
engine is evaluated as depicted in Figure 1.3.

Control Plane

Data Plane

Traffic destined to the routing engine.

Transit traffic.

lo0

Route

Engine

Port /

VLAN
TX packetRX packet

Port /

VLAN

Figure 1.3	 A Visual Representation of How Transit and Traffic Destined to the Routing Engine
are Handled

Traffic destined to the router is always sent to the routing engine. These
packets are evaluated by firewall filters applied on ingress logical
interfaces first, and if the traffic is accepted it is then evaluated by
firewall filters applied to the interface lo0.0. The reverse is true for
packets sourced from the routing engine, such as a ping or telnet, to a
remote host. This traffic is evaluated by the firewall filters applied on the
interface lo0.0, and if the traffic is accepted it is then evaluated by
firewall filters on the egress logical interface. When traffic is sourced
from the routing engine, care needs to be taken to also allow return
traffic.

Transit traffic that flows through the router doesn’t need to be processed
by the routing engine, therefore it isn’t subject to firewall filters applied
to the interface lo0.0. Transit packets are always evaluated by firewall

	 Chapter 1: Firewall Filters	 23

filters applied on the ingress logical interface first, and if accepted, will
be subject to the applied egress filters.

Firewall Filter Chaining

The Junos operating system evaluates multiple firewall filters applied
to an interface from left-to-right in the order they were configured.
Each firewall filter is evaluated sequentially, top-down, until a match is
found. When a match is found no more firewall filter terms or filters
are evaluated. When Junos reaches the end of the firewall filter without
a match, it moves to the next firewall filter in the list until there are no
more firewall filters. This process is depicted in Figure 1.4.

First filter

Packet

Term

Term

Term

Match

Match

Match

Additional filters

Term

Term

Term

Match

Match

Match

Discard

Figure 1.4	 Visual Representation of How Firewall Chaining is Evaluated

Chaining firewall filters is a very powerful tool as it allows for a
modular framework. Instead of creating a single firewall filter with
numerous terms, it’s possible to create individual firewall filters and
chain them together.

interfaces {
	 lo0 {
		 unit 0 {
			 family inet {
				 filter {

	 24	 Day One: Securing the Routing Engine on M, MX, and T Series

					 input-list [accept-web accept-ssh discard-all];
				 }
				 address 127.0.0.1/32;
			 }
		 }
	 }
}

firewall {
	 family inet {
		 filter accept-web {
			 term 1 {
				 from {
					 port web;
				 }
				 then {
					 accept;
				 }
			 }
		 }
		 filter accept-ssh {
			 term 1 {
				 from {
					 port ssh;
				 }
				 then {
					 accept;
				 }
			 }
		 }
		 filter discard-all {
			 term 1 {
				 then {
					 count discard-all;
					 log;
					 discard;
				 }
			 }
		 }
	 }
}

This example defines three firewall filters accept-web, accept-ssh, and
discard-all. These firewall filters are applied to the interface lo0.0
as an input-list, also known as a chain. The firewall filters will be
evaluated left-to-right in the order they were entered in the input-list:
accept-web, accept-ssh, and discard-all.

ALERT!	 Routing policy processing and firewall filter processing are completely
different.

	 Chapter 1: Firewall Filters	 25

An important distinction when comparing firewall filter and routing
policy processing is when the processing stops. In a routing policy
chain the processing doesn’t stop until a terminating action is met or a
match isn’t found. In a firewall filter chain the processing stops
immediately after a match, even if you omit a terminating action.

ALERT!	 A maximum of 16 firewall filters can be applied as an input-list or
output-list.

No matter how complex the problem, it’s possible to break it down
into simple buildings blocks that are able to be used elsewhere. Creat-
ing modular, individual firewall filters provides the added benefit of
reusing them elsewhere in the configuration, thus allowing the opera-
tor to “do more with less” and not reinvent the wheel.

For a perfect example, take two completely different problems such as
writing a firewall filter for BGP peering traffic to the Internet and
writing a firewall filter to protect the routing engine. At a high level,
the two tasks are not related, but once these items are broken down
into simple buildings blocks, patterns and common tasks appear.
Individually each filter would want to block ICMP fragments and
eventually discard that traffic at the end of the policy, but by creating
common firewall filters to specifically perform these tasks and chaining
them together, they can work together.

TIP	 Common firewall filters should be focused enough to accomplish the
immediate task at hand, but generic enough to work in any scenario.
Then you have a collection of common firewall filters as a bag of
building blocks, and each block can be built on top of others in
different ways for different filtering goals. It’s like network masonry.

Nested Firewall Filters

It’s possible to create a filter that references another filter. The only
limitation is that this can only be done once per term and doesn’t
support recursive firewall filters. Consider the following example:

[edit firewall family inet]
filter accept-web {
	 term 1 {
		 from {
			 port web;
		 }
		 then {
			 accept;
		 }

	 26	 Day One: Securing the Routing Engine on M, MX, and T Series

	 }
}
filter accept-ssh {
	 term 1 {
		 from {
			 port ssh;
		 }
		 then {
			 accept;
		 }
	 }
}

filter accept-web-ssh {
	 term accept-web {
		 filter accept-web;
	 }
	 term accept-ssh {
		 filter accept-ssh;
	 }
}

In this sample firewall filter two regular filters are defined: accept-web
and accept-ssh. Each of these filters looks for packets using the
specified port and accepts the traffic. These two firewall filters can be
combined into a single filter called accept-web-ssh, which allows
traffic from both filters accept-web and accept-ssh.

Because there is a hard limit to the number of firewall filters that can be
applied in a chain, using nested firewall filters is a great tool to com-
bine common filters and have them counted as a single filter.

Summary

Firewall filters are the building blocks used to match and take action
on traffic. It’s critical to understand how firewall filters are evaluated
in order to build a strong line of defense. There are many forms of
firewall filters: single-term, multiple-term and nested filter. This
flexibility gives you the ability to solve complex problems with ease.

Writing firewall filters is a fine balance of science and art. Technically
the filter needs to match traffic and take action. Artistically the filters
need to be written so that each filter can be reused for other tasks.
When the filters are chained together, careful thought needs to be taken
to ensure that the desired result is achieved.

Chapter 2

Policers

Policers Overview. . 28

Token Bucket Algorithm . . 28

Bandwidth-limit. . 30

Burst-size-limit. . 31

Rate-limiting Traffic . . 32

Filter-specific Versus Term-specific . . 34

Summary. . 37

	 28	 Day One: Securing the Routing Engine on M, MX, and T Series

Chapter 2 explains what policers are and shows you how to use them.
Rate limiting is performed via a firewall action that references a policer,
and firewall filters and policers are used together to match traffic and
enforce a rate limit. Let’s start.

Policers Overview

Policing is synonymous with rate limiting. Policers work together with
firewall filters to set bandwidth restrictions on matched traffic and
enforce consequences on traffic exceeding the bandwidth limitation
defined by the policer.

Despite the constant confusion, policers are very simple to configure.
There are three major components that need to be defined: policer
name, if-exceeding parameters, and the action. The policer configura-
tion syntax is as follows:

firewall {
	 policer policer-name {
		 filter-specific;
		 if-exceeding {
				 bandwidth-limit bps;
				 bandwidth-percent number;
				 burst-size-limit bytes;
			 }
		 then {
				 policer-action;
		 }
	 }
}

Token Bucket Algorithm

Junos policers use the token-bucket algorithm to enforce an average
bandwidth limit over time, while allowing for bursts that exceed the
bandwidth limit.

Packets arrive at the policer at the rate at which they were originally
sent and the policer decision process is run for each ingress packet.
There are three parameters that the policer uses to determine if the
packet will be accepted: packet size, bandwidth-limit, and burst-size-
limit. The policer simply subtracts the packet size from the current size

	 Chapter 2: Policers	 29

Enough
tokens?

Policer-action (discard,
forwarding-class or loss-

priority)

Accept packet and subtract
packet size from bucket

Bursty arrivals

Constant-rate token
replenishment
(bandwidth-limit)

Bucket size
(burst-size-limit)

No

Yes

Figure 2.1	 Visual Representation of the Token-bucket Algorithm

of the token bucket – if the result is greater than zero the packet is
accepted. If there aren’t enough tokens in the bucket, then the policer
handles the packet in one of two ways: hard or soft policing.

�� Hard policing: the packet will simply be discarded.

�� Soft policing: the packet can be marked two ways.

�� Set the packet loss priority (PLP).

�� Set the forwarding class.

As packets are accepted they leave the policer at the rate at which they
were originally sent, which is why the token-bucket algorithm is better
suited for bursty traffic.

NOTE	 A good way to think about the token-bucket algorithm versus the
leaky-bucket algorithm is that the token bucket results in bursty
departures and the leaky bucket results in smooth departures.

MORE?	 For more information on the token-bucket algorithm see the book,
QOS-Enabled Networks (by Barreiros & Lundqvist, Wiley & Sons,
2011) at www.juniper.net/books.

http://www.juniper.net/books

	 30	 Day One: Securing the Routing Engine on M, MX, and T Series

Bandwidth-limit

The bandwidth-limit Junos parameter is the knob that adjusts how
many bits (on average) are allowed during a one second interval. This
is referred to as bits per second (bps), but also accepts more human-
readable values such as k (1000), m (1,000,000), and g
(1,000,000,000). Valid ranges are 32 Kbps through 40 Gbps.

For example, to create a bandwidth-limit of 100 megabits per second
(Mbps) use the value 100m, like this:

policer example-policer {
	 if-exceeding {
			 bandwidth-limit 100m;
			 burst-size-limit 625k;
		 }
	 then {
			 discard;
	 }
}

TIP	 The bandwidth-limit knob is calculated in bits per second (bps).

The nature of the token-bucket algorithm allows for small bursts of
traffic above the defined bandwidth-limit, but still enforces an average
bandwidth-limit over the time period of one second. The two graphs in
Figure 2.2 illustrate how the bandwidth-limit is enforced, but still
allow for bursts beyond the actual bandwidth-limit. These illustra-
tions assume the physical interface speed is 100m and the bandwidth-
limit has been set to 50m.

bandwidth-limit

1 second 1 second

Steady stream of traffic Steady stream of bursty traffic

100m

0m

50m

100m

0m

50m

bandwidth-limit

Figure2.2	 Example of Bandwidth-limit and Traffic Bursting

NOTE	 These graphs do not illustrate real-world traffic and are not drawn to
scale, but hopefully they act as a visual aid to help you understand how
traffic is able to burst beyond the bandwidth-limit, even though the

	 Chapter 2: Policers	 31

average bandwidth over a period of 1 second is still equal to the
bandwidth-limit.

In the first graph there is a steady stream of traffic using exactly
50Mbps. In this case the token bucket remains full because as traffic
comes in, the bandwidth-limit replenishes tokens into the bucket at
the exact same rate as the incoming traffic.

The second graph illustrates a steady stream of traffic around 40
Mbps; it has small bursts up to 60 Mbps, but then drops back down to
40 Mbps. The token bucket is nearly depleted after each burst, but the
traffic drops back down to 40 Mbps to allow the tokens to fill up the
bucket so there are enough tokens to burst again.

TIP	 The bandwidth-limit defines how fast the token bucket will be refilled
every clock cycle. If the current traffic is below the bandwidth-limit,
this means a surplus is created in the token bucket, whereas if the
current traffic is above the bandwidth-limit, there is a deficit in the
token bucket, until it’s depleted and begins policing traffic.

Burst-size-limit

The burst-size-limit defines how large the token bucket is. The
token bucket controls the amount of burst permitted before packets
are policed. Since the bandwidth-limit is a constant value used to
enforce an average bandwidth over time, the only variable to adjust
how much burst the policer will allow is burst-size-limit.

There are two common methods for calculating the burst-size-limit.

1.	 If the average packet size is known in advance, set the burst-
size-limit to average packet size * 10. If the packet size is
unknown, the only option is to set the burst-size-limit to the
physical interface’s MTU * 10.

2.	 Set the burst-size-limit to the amount of data the physical
interface can transmit within a 5ms window.

NOTE	 The author finds that setting the burst-size-limit to the amount of
bandwidth the physical interface can transmit in 5ms is the best
method.

Setting a smaller burst-size-limit for real-time traffic is recommend-
ed, but setting the value too low could cause the token bucket to

	 32	 Day One: Securing the Routing Engine on M, MX, and T Series

constantly be empty. Setting a larger burst-size-limit allows for
larger bursts, but traffic would not be policed. The most common and
preferred method is using the physical interface calculation, such as
these common physical interfaces and burst sizes:

Interface burst-size-limit

100Mbps (fe) 62,500 bytes.

1Gbps (ge) 625,000 bytes.

10Gbps (xe) 6,250,000 bytes.

ALERT!	 Be careful. burst-size-limit is calculated in bytes, while bandwidth-
limit is calculated in bits per second.

It’s easy to forget to convert the bits to bytes and miscalculate the
burst-size-limit. Here’s a best practice burst-size-limit formula:

 ((interface bandwidth [bps] / 1000 [ms]) * 5ms) / 8 = burst-
size-limit [bytes]

And an example of the formula for 1Gbps interface:

1,000,000,000 bps / 1000 ms = 1,000,000
1,000,000 * 5ms = 5,000,000
5,000,000 bps / 8 = 625,000 bytes
burst-size-limit = 650,000 bytes

NOTE	 The link between the PFEs and the routing engine is 1Gbps. All
policers defined in this book will have a burst-size-limit of 625,000
bytes.

Rate-limiting Traffic

Firewall filters and policers work together to match traffic and apply
rate limiting, enabling you to have exact control of which traffic
should be rate-limited and which traffic is allowed to pass through
unrestricted. Rate-limiting traffic requires two steps:

�� Create a policer with rate limiting parameters.

�� Create a firewall filter to match the traffic that needs to be policed
and use the policer action-modifier.

How to Rate Limit with Both a Policer and a Firewall Filter

To rate limit only SSH traffic and accept all other traffic to the routing
engine there needs to both a policer and a firewall filter.

	 Chapter 2: Policers	 33

1. Let’s start by creating a policer to rate limit traffic to 10 Mbps:

[edit]
dhanks@MX80# set firewall policer 10m if-exceeding bandwidth-
limit 10m burst-size-limit 625000

[edit]
dhanks@MX80# set firewall policer 10m then discard

2. Now create a firewall filter to match SSH traffic:

[edit]
dhanks@MX80# set firewall family inet filter limit-ssh term 1
from protocol tcp port ssh

3. Reference the policer 10m as the action-modifier and accept:

[edit]
dhanks@MX80# set firewall family inet filter limit-ssh term 1
then policer 10m accept

4. Don’t forget to add a final term to accept all other control plane
traffic, but not do police it:

[edit]
dhanks@MX80# set firewall family inet filter limit-ssh term 2
then accept

5. Apply the limit-ssh firewall filter to the interface lo0 with the
direction of input:

 [edit]
dhanks@MX80# set interfaces lo0.0 family inet filter input
limit-ssh

6. The final step is to double-check the configuration and apply the
new configuration:

dhanks@MX80# show | compare
[edit interfaces lo0 unit 0 family inet]
+ filter {
+ input limit-ssh;
+ }
[edit]
+ firewall {
+ family inet {
+ filter limit-ssh {
+ term 1 {
+ from {
+ protocol tcp;
+ port ssh;
+ }

	 34	 Day One: Securing the Routing Engine on M, MX, and T Series

+ then {
+ policer 10m;
+ accept;
+ }
+ }
+ term 2 {
+ then accept;
+ }
+ }
+ }
+ policer 10m {
+ if-exceeding {
+ bandwidth-limit 10m;
+ burst-size-limit 625k;
+ }
+ then discard;
+ }
+ }

[edit]
dhanks@MX80# commit and-quit
commit complete
Exiting configuration mode

dhanks@MX80>

The first term in the filter specifically matches SSH traffic by looking at
the port and protocol. If a match is found, it will police SSH traffic
using the policer 10m. The second term is there to override the
implicit discard all at the end of the policer. The simple firewall filter
and policer illustrate how it’s possible to only police SSH traffic while
allowing all other traffic to the routing engine.

Filter-specific Versus Term-specific

By default, the Junos operating system creates a policer instance per
firewall term. For example, if a firewall contained three terms and two
terms had an action-modifier of policer 10m, there would be two
instances of the policer. This allows each term in a firewall filter to have
its own policer so that it doesn’t have to share a policer with other
terms, such as shown here:

firewall {
 family inet {
 filter limit-ssh-http {
 term 1 {
 from {
 protocol tcp;
 port ssh;

	 Chapter 2: Policers	 35

 }
 then {
 policer 10m;
 accept;
 }
 }
 term 2 {
 from {
 protocol tcp;
 port http;
 }
 then {
 policer 10m;
 accept;
 }
 }
 term 3 {
 then accept;
 }
 }
 }
 policer 10m {
 if-exceeding {
 bandwidth-limit 10m;
 burst-size-limit 625k;
 }
 then discard;
 }
}

In this example, the firewall filter limit-ssh-http has a total of three
terms. Terms 1 and 2 reference the same policer. Although both terms
reference the same policer, each term receives its own instance of the
policer, guaranteeing that SSH and HTTP traffic will be individually
policed at 10 Mbps. Use the show firewall filter command to verify
the number of policer instances, such as shown here:

dhanks@MX80> show firewall filter limit-ssh-http

Filter: limit-ssh-http
Policers:
Name Packets
10m-1 0
10m-2 0

dhanks@MX80>

The firewall filter limit-ssh-http has two policer instances: 10m-1 and
10m-2. The first instance is assigned to the first term referencing the
policer and the second instance is assigned to the second term referenc-

	 36	 Day One: Securing the Routing Engine on M, MX, and T Series

ing the policer.

There may be scenarios when it’s desirable to create a policer that can
be shared across all the terms within a firewall filter. Use the filter-
specific knob inside of the policer to change how Junos calculates the
number of instances to create per filter. When a policer is defined using
the filter-specific knob, only one instance of the policer is created
per firewall filter and traffic is aggregated across the terms.

firewall {
 family inet {
 filter limit-ssh-http {
 term 1 {
 from {
 protocol tcp;
 port ssh;
 }
 then {
 policer 10m;
 accept;
 }
 }
 term 2 {
 from {
 protocol tcp;
 port http;
 }
 then {
 policer 10m;
 accept;
 }
 }
 term 3 {
 then accept;
 }
 }
 }
 policer 10m {
 filter-specific;
 if-exceeding {
 bandwidth-limit 10m;
 burst-size-limit 625k;
 }
 then discard;
 }
}

	 Chapter 2: Policers	 37

Here, the firewall filter limit-ssh-http has three terms, two of which
have an action-modifier of policer 10m. The difference is that the
policer 10m now has the knob filter-specific, so there is only one
policer instance created for the firewall filter limit-ssh-http:

dhanks@MX80> show firewall filter limit-ssh-http

Filter: limit-ssh-http
Policers:
Name Packets
10m 0

dhanks@MX80>

The firewall filter limit-ssh-http now only has a single policer
instance. Both SSH and HTTP traffic will be policed to 10 Mbps as a
whole.

Summary

Historically, policing has been one of the more difficult topics to under-
stand in depth. Stepping back from all of the implementation details
and focusing on the actual token bucket algorithm helps you to
understand how policing actually works. The bandwidth limit and
token bucket size work together to enforce how much traffic is allowed
during a one second interval.

If traffic exceeds the limits defined by the policer, the traffic is either
soft policed or hard policed. Soft policing traffic allows you to set the
PLP or forwarding class of the packet. Hard policing will silently
discard the traffic.

Policers come in two flavors: term-specific and filter-specific. By
default policers are term-specific. A term-specific policer will have an
instance created for every term in a firewall filter for which it’s applied.
On the other hand, if a policer is filter-specific, regardless of the
number of terms to which the policer is applied, only a single instance
of the policer is created.

	 38	 Day One: Securing the Routing Engine on M, MX, and T Series

Chapter 3

Viewing Counters, Logs, and Policers

Viewing Firewall Filter Counters. . 40

Viewing the Firewall Filter Log. . 45

Viewing Firewall Policers . . 47

Summary. . 48

	 40	 Day One: Securing the Routing Engine on M, MX, and T Series

When firewall filters are applied to the routing engine, it’s important
for the administrator to know if the filters are working as expected or
if there is traffic being discarded unintentionally. There are three tools
covered in this chapter that can be used to receive feedback on firewall
filters: counters, logs, and policer counters.

Fire up your router and follow along. Let’s get at it.

Viewing Firewall Filter Counters

Counters are named differently depending on how you apply the
firewall filter and if the firewall filter has the interface-specific knob
enabled. When firewall filters are applied to an interface using filter
input or filter output the counter names will be aggregated.

The following firewall filter accepts TCP and UDP traffic and counts it.

filter accept-tcp-udp {
 apply-flags omit;
 term accept-all-tcp {
 from {
 protocol tcp;
 }
 then {
 count accept-all-tcp;
 accept;
 }
 }
 term accept-all-udp {
 from {
 protocol udp;
 }
 then {
 count accept-all-udp;
 accept;
 }
 }
}

The firewall filter accept-tcp-udp will be applied to two separate
interfaces ge-1/3/9.0 and lo0.0.

ge-1/3/9 {
 unit 0 {
 family inet {
 filter {
 input accept-tcp-udp;

	 Chapter 3: Viewing Counters, Logs, and Policers	 41

 }
 address 1.1.1.1/30;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 filter {
 input accept-tcp-udp;
 }
 address 172.16.2.1/32;
 }
 }
}

Notice although the firewall filter is applied to two separate interfaces,
there is only a single instance of the counter.

dhanks@MX80> show firewall filter accept-tcp-udp

Filter: accept-tcp-udp
Counters:
Name Bytes Packets
accept-all-tcp 222752 3777
accept-all-udp 1088 14

dhanks@MX80>

There are two ways to change this behavior. Enabling the interface-
specific knob on the firewall filter accept-tcp-udp or applying the
filter using a filter input-list.

interface-specific

Let’s take a look at the interface-specific knob and how it changes
the behavior.

dhanks@MX80> configure
Entering configuration mode

dhanks@MX80# set firewall family inet filter accept-tcp-udp interface-specific

[edit]
dhanks@MX80# commit and-quit
commit complete
Exiting configuration mode

dhanks@MX80> show firewall filter accept-tcp-udp-lo0.0-i

	 42	 Day One: Securing the Routing Engine on M, MX, and T Series

Filter: accept-tcp-udp-lo0.0-i
Counters:
Name Bytes Packets
accept-all-tcp-lo0.0-i 12736 243
accept-all-udp-lo0.0-i 0 0

dhanks@MX80> show firewall filter accept-tcp-udp-ge-1/3/9.0-i

Filter: accept-tcp-udp-ge-1/3/9.0-i
Counters:
Name Bytes Packets
accept-all-tcp-ge-1/3/9.0-i 0 0
accept-all-udp-ge-1/3/9.0-i 0 0

dhanks@MX80>

Notice how the counters are named differently. The counter naming
convention when using the interface-specific knob is <counter_
name>-<interface>.<unit>-<direction>. Also note that the firewall
filter name has changed as well.

Firewall Chaining

Now let’s try applying the firewall filter as a chain.

dhanks@MX80> configure
Entering configuration mode

[edit]
dhanks@MX80# delete interfaces lo0.0 family inet filter

[edit]
dhanks@MX80# set interfaces lo0.0 family inet filter input-list accept-tcp-udp

[edit]
dhanks@MX80# delete interfaces ge-1/3/9.0 family inet filter

[edit]
dhanks@MX80# set interfaces ge-1/3/9.0 family inet filter input-list accept-tcp-udp

[edit]
dhanks@MX80# commit and-quit
commit complete
Exiting configuration mode
dhanks@MX80> show firewall filter lo0.0-i

Filter: lo0.0-i
Counters:
Name Bytes Packets
accept-all-tcp-lo0.0-i 8600 150
accept-all-udp-lo0.0-i 0 0

	 Chapter 3: Viewing Counters, Logs, and Policers	 43

dhanks@MX80> show firewall filter ge-1/3/9.0-i

Filter: ge-1/3/9.0-i
Counters:
Name Bytes Packets
accept-all-tcp-ge-1/3/9.0-i 0 0
accept-all-udp-ge-1/3/9.0-i 0 0

dhanks@MX80>

Notice that when using firewall chaining, the counter names are
identical, but the firewall filter name is different than using the inter-
face-specific method. The filter naming convention for firewall
chaining is <interface>.<unit>-<direction>.

Table 3.1	 Filter Naming Convention

Method Counter Naming Convention Filter Naming Convention

Default Counter Name Filter Name

interface-specific <counter_name>-
<interface>.<unit>-
<direction>

<filter_name>-
<interface>.<unit>-<direction>

Firewall Chaining <counter_name>-
<interface>.<unit>-
<direction>

<interface>.<unit>-<direction>

It’s recommended that firewall filters be applied as a chain. The
counter and firewall filter names are easy to read and remember. The
data is also broken out per interface so that there is more information
available during troubleshooting and analysis.

Naming Convention

	 It’s recommended that you have a naming convention when creating
firewall filters, terms, and counters. For purposes of this book, the
convention is to keep the term and counter name the same when
creating filters.

Let’s take a look at a firewall filter that has multiple terms and you can
see how it varies from a firewall filter with a single term. In the next
filter example, the firewall filter accept-icmp has two terms: no-icmp-
fragments and accept-icmp. According to the convention of this book,
each term has a counter with the same name as the term:

firewall {
	 family inet {

	 44	 Day One: Securing the Routing Engine on M, MX, and T Series

		 filter accept-icmp {
			 term no-icmp-fragments {
		 from {
 	 is-fragment;
 	 protocol icmp;
		 }
		 then {
	 count no-icmp-fragments;
	 log;
 	 discard;
 		 }
			 }
			 term accept-icmp {
		 from {
 	 protocol icmp;
 	 icmp-type [echo-reply echo-request time-exceeded
unreachable source-quench router-advertisement parameter-
problem];
	 	}
		 then {
 	 policer management-5m;
 	 º
 	accept;
 		 }
			 }
		 }
	 }
}

You can see that multiple term firewall filters follow the same logic as
single term firewall filters, and you can use the show firewall counter
command using the filter name and counter name as arguments:

dhanks@MX80> show firewall counter no-icmp-fragments-lo0.0-i filter lo0.0-i

Filter: lo0.0-i
Counters:
Name Bytes Packets
no-icmp-fragments-lo0.0-i 13824 12

dhanks@MX80> show firewall counter accept-icmp-lo0.0-i filter lo0.0-i

Filter: lo0.0-i
Counters:
Name Bytes Packets
accept-icmp-lo0.0-i 20312 213

dhanks@MX80>

Keeping the counter names in sync with the firewall filter’s term names
makes it easy to understand where the counter was applied.

	 Chapter 3: Viewing Counters, Logs, and Policers	 45

Viewing the Firewall Filter Log

The second method for receiving feedback from your firewall filters is
viewing the firewall filter log. This is a bit more straightforward than
counters as the logs are located in the PFE memory for all filters, and
since the firewall filters logs are stored in a central place, there’s no
distinction between them and there’s no need to specify filter names or
any other additional command-line arguments. Let’s view an example
firewall filter log by using the show firewall log command:

dhanks@MX80> show firewall log
Log :
Time Filter Action Interface Protocol Src Addr Dest Addr
03:38:36 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:38:36 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:38:36 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:38:36 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:38:31 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:38:31 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11

You can see that the packet header is logged along with the exact time
the packet was processed. Additional information such as the ingress
interface and the firewall filter action is also logged.

Table 3.2	 Firewall Filter Log Detail

Logging Information Description

Time Time that the event occurred.

Filter Name of the filter that matched the traffic.

Act Filter action:

A – Accept

D – Discard

R – Reject

Interface Ingress interface for the packet.

Protocol Packet’s protocol name.

Src address Packet’s source address and port.

Dest address Packet’s destination address and port.

Remember that the firewall log can only contain about 400 entries at
any given time and is kept as a FIFO memory database located in the
PFE. This allows log entries to be written at line-rate, but the draw-
back is that it’s limited in scope.

	 46	 Day One: Securing the Routing Engine on M, MX, and T Series

The best practice calls for only using logging in scenarios where traffic
shouldn’t exist, such as a final discard firewall filter, as shown here:

firewall {
 family inet {
 filter discard-all {
					 term discard-tcp {
 from {
 protocol tcp;
 }
 then {
 count discard-tcp;
 log;
 discard;
 }
 }
 term discard-netbios {
 from {
 protocol udp;
 destination-port 137;
 }
 then {
 count discard-netbios;
 discard;
 }
 }
 term discard-udp {
 from {
 protocol udp;
 }
 then {
 count discard-udp;
 log;
 discard;
 }
 }
 term discard-icmp {
 from {
 protocol icmp;
 }
 then {
 count discard-icmp;
 log;
 discard;
 }
 }
 term discard-unknown {
 then {
 count discard-unknown;
 log;
 discard;

	 Chapter 3: Viewing Counters, Logs, and Policers	 47

 }
 }
 }
 }	
}

When traffic reaches the last firewall filter discard-all, detailed
information is available about that traffic in the firewall log.

To view additional logging detail, use the show firewall log detail
command:

dhanks@MX80> show firewall log detail
Time of Log: 2011-03-27 03:38:36 UTC, Filter: lo0.0-i, Filter action: discard, Name of
interface: fxp0.0
Name of protocol: ICMP, Packet Length: 0, Source address: 172.16.1.100, Destination
address: 172.16.1.11
ICMP type: 0, ICMP code: 0
Time of Log: 2011-03-27 03:38:36 UTC, Filter: lo0.0-i, Filter action: discard, Name of
interface: fxp0.0
Name of protocol: ICMP, Packet Length: 0, Source address: 172.16.1.100, Destination
address: 172.16.1.11
ICMP type: 0, ICMP code: 0

As you can see, additional attributes such as packet length, source and
destination ports, and IGMP types and codes are all available in the
detailed view.

Viewing Firewall Policers

The third method of feedback from firewall filters are policers. When a
policer is referenced in a firewall filter, a counter is automatically
created using the policer name, interface name, unit number, and
direction as you can see here:

interfaces {
 lo0 {
 unit 0 {
 family inet {
 filter {
 input-list [accept-icmp accept-ssh discard-all];
 }
 address 127.0.0.1/32;
 }
 }
 }
}
firewall {
 family inet {

	 48	 Day One: Securing the Routing Engine on M, MX, and T Series

 filter accept-ssh {
 term accept-ssh {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port ssh;
 }
 then {
 policer management-5m;
 count accept-ssh;
 accept;
 }
 }
 }
 }
}

To view the policer statistics, use the same show firewall counter
command referencing the policer name, interface name, unit number,
and direction:

dhanks@MX80> show firewall counter management-5m-lo0.0-i filter lo0.0-i
Filter: lo0.0-i
Policers:
Name Packets
management-5m-lo0.0-i 246

dhanks@MX80>

Summary

Voilá. There you have it. Three excellent ways to view what your
firewall filters are doing. Counters count the number of bytes and
packets that were matched. Policers count the number of bytes and
packets that were policed. And the firewall log provides detailed
information on packets that were matched and logged.

Chapter 4

Junos Configuration Automation

Apply-path. . 51

Apply-flags omit . . 54

Summary. . 57

	 50	 Day One: Securing the Routing Engine on M, MX, and T Series

Firewall filters and prefix lists are so tightly coupled that a single
change can cause ripple effects throughout the entire configuration. As
your configuration grows with new firewall filters and prefix lists, it
poses ongoing operational challenges. Chapter 4 introduces you to
Junos configuration automation, and is well worth the time it takes to
review it.

BGP neighbor changes are a good example of complexity. If prefix lists
are being used, the administrator must ensure that the BGP neighbor
information is replicated into the prefix lists. If prefix lists aren’t being
used, the administrator has to go through each firewall filter and make
sure that the BGP neighbor information is included in the firewall
filter’s from statement as shown below:

filter accept-bgp {
 term accept-bgp {
 from {
 source-address {
 192.0.2.5;
 192.0.2.6;
 192.0.2.7;
 192.0.2.8;
 192.0.2.9;
 192.0.2.10;
 192.0.2.11;
 }
 destination-address {
 10.255.255.5;
 10.255.255.6;
 10.255.255.7;
 10.255.255.8;
 10.255.255.9;
 }
 protocol tcp;
 port bgp;
 }
 then {
 count accept-bgp;
 accept;
 }
 }
}

Several different tools are available to mitigate the complexity and
number of touch points of your Junos configuration. For all the tools
covered in this chapter, the general rule of thumb is to let Junos do all
the repetitive work. You won’t find it in any data sheet but it’s one of
the reasons you choose Junos in the first place, right?

	 Chapter 4: Junos Configuration Automation	 51

Apply-path

As your Junos configuration grows larger you’ll see a lot of redundant
information such as IP addresses and prefix lists. To help fight against
this redundant information clouding up your configuration, there’s a
Junos feature called apply-path. Using keywords to match patterns
inside of the Junos configuration, the apply-path feature applies the
matched results into a dynamic prefix list.

The example below shows an IPv4 interface configuration and the
corresponding static prefix list:

interfaces {
 ge-1/0/8 {
 unit 0 {
 family inet {
 address 10.0.8.6/30;
 }
 }
 }
 ge-1/0/9 {
 unit 0 {
 family inet {
 address 10.0.8.9/30;
 }
 }
 }
 ge-1/1/6 {
 unit 0 {
 family inet {
 address 10.0.2.1/30;
 }
 }
 }
 ge-1/1/7 {
 unit 0 {
 family inet {
 address 10.0.2.9/30;
 }
 }
 }
}
policy-options {
 prefix-list router-manual-ipv4 {
 10.0.2.0/30;
 10.0.2.8/30;
 10.0.8.4/30;
 10.0.8.8/30;
 }
}

	 52	 Day One: Securing the Routing Engine on M, MX, and T Series

You can see that the IPv4 addresses are originally defined on the
interfaces, but to build a prefix list that contains all of the IPv4 address-
es, there is a lot of keying in of redundant information. Creating a
prefix list and manually adding one address at a time is mundane. As
your network grows and changes, these prefix lists need to be updated
as well. Static configuration is a risk as it could lead to the prefix list
update being overlooked during an interface change, which would
cause downtime or additional work to debug and resolve the issue.

Using apply-path allows Junos to do the repetitive work and maintain
an up-to-date prefix list. The feature works by matching keywords
inside the configuration using wildcards, then applying the matching
addresses to create a dynamic prefix list. Let’s try one:

prefix-list router-ipv4 {
 apply-path “interfaces <*> unit <*> family inet address <*>”;
}

You can see in the prefix-list router-ipv4 example that Junos begins
at the interfaces stanza and using the <*> wildcard matches all
interfaces, then matches all unit numbers, then explicitly moves into
family inet address and matches all IPv4 addresses again with the
<*> wildcard.

To see how Junos applied the wildcards to build the dynamic prefix list,
use the display inheritance command when viewing the configura-
tion:

[edit]
dhanks@MX80# show policy-options prefix-list router-ipv4 | display inheritance
##
apply-path was expanded to:
10.0.8.4/30;
10.0.8.8/30;
10.0.2.0/30;
10.0.2.8/30;
##
apply-path “interfaces <*> unit <*> family inet address <*>”;

[edit]
dhanks@MX80#

Now you can see that the prefix list router-ipv4 contains four entries
that match all of the IPv4 addresses on the physical interfaces.

ALERT!	 It’s critical to understand that apply-path automatically fills out the
prefix list using the Direct route instead of the Local route.

A Direct route in Junos is simply the logical interface’s network address

	 Chapter 4: Junos Configuration Automation	 53

plus the network mask. For example, if the logical interface’s IP
address was family inet address 10.0.0.1/30 the network address
would be 10.0.0.0 and the network mask would be 30 bits, resulting in
a Direct route of 10.0.0.0/30.

A Local route in Junos is the logical interface’s IP address combined
with a 32 bit mask. A good way to think of a Local route is as the
actual IP address that resides on the router. For example if the logical
interface IP address was family inet address 10.0.0.1/30 the Local
route would be 10.0.0.1/32.

NOTE	 Using wildcards with apply-path is similar to the way that wildcards
work with Junos configuration groups. For more information about
Junos wildcards and configuration groups visit http://www.juniper.net/
techpubs/en_US/junos10.4/topics/concept/junos-cli-wildcard-charac-
ters-configuration-groups-usage.html

The last match in your apply-path statement must be an IP address.
For example if the last match was not an IP address, Junos would
instantly return with an error on the CLI:

dhanks@MX80# set policy-options prefix-list test apply-path “interfaces <*>”
error: ‘interface_name’ is not IP address type
error: invalid value: interfaces <*>

[edit]
dhanks@MX80#

The apply-path feature can also be used to match IP addresses within
routing protocols and services. Let’s use an example matching all of the
BGP neighbors and creating a prefix list called bgp-neighbors:

 [edit]
dhanks@MX80# show protocols bgp
group AS65000 {
 type external;
 local-as 65000;
 neighbor 10.0.3.3;
 neighbor 10.0.3.4;
}
group AS65001 {
 type internal;
 local-address 10.0.6.1;
 neighbor 10.0.9.6;
 neighbor 10.0.9.7;
}

[edit]
dhanks@MX80#

http://www.juniper.net/techpubs/en_US/junos10.4/topics/concept/junos-cli-wildcard-characters-configuration-groups-usage.html
http://www.juniper.net/techpubs/en_US/junos10.4/topics/concept/junos-cli-wildcard-characters-configuration-groups-usage.html
http://www.juniper.net/techpubs/en_US/junos10.4/topics/concept/junos-cli-wildcard-characters-configuration-groups-usage.html

	 54	 Day One: Securing the Routing Engine on M, MX, and T Series

You can see that there are two BGP groups with two neighbors each,
making a total of four BGP neighbors.

[edit]
dhanks0@MX80# show policy-options prefix-list bgp-neighbors | display inheritance
##
apply-path was expanded to:
10.0.3.3/32;
10.0.3.4/32;
10.0.9.6/32;
10.0.9.7/32;
##
apply-path “protocols bgp group <*> neighbor <*>”;

[edit]
dhanks@MX80#

In this scenario, the apply-path begins at the protocols bgp stanza and
matches all groups and all neighbors using the <*> wildcard. The last
match catches the IP address and automatically fills out the prefix list
bgp-neighbors.

ALERT!	 Using apply-path doesn’t protect a prefix list against misconfiguration.
If you add a bad BGP neighbor address the apply-path will automati-
cally update the prefix list and allow the traffic to be passed though the
firewall filter.

Apply-flags omit

Another method of reducing the Junos visual configuration is a hidden
flag called omit. This option removes all child configuration from view
and replaces it with /* OMITTED */. The omit keyword is useful for
hiding large amounts of information that you won’t use on a daily
basis. Let’s use an example by examining the details of the firewall
filter discard-all:

dhanks@MX80# show firewall family inet filter discard-all term discard-tcp {
 from {
 protocol tcp;
 }
 then {
 count discard-tcp;
 log;
 discard;
 }
}
term discard-netbios {

	 Chapter 4: Junos Configuration Automation	 55

 from {
 protocol udp;
 destination-port 137;
 }
 then {
 count discard-netbios;
 discard;
 }
}
term discard-udp {
 from {
 protocol udp;
 }
 then {
 count discard-udp;
 log;
 discard;
 }
}
term discard-icmp {
 from {
 protocol icmp;
 }
 then {
 count discard-icmp;
 log;
 discard;
 }
}
term discard-unknown {
 then {
 count discard-unknown;
 log;
 discard;
 }
}

[edit]
dhanks@MX80#

This single firewall filter is nearly fifty lines in length and is generic
enough that it is not going to be changed on a regular basis. It’s a
perfect candidate for being omitted while viewing your configuration
using the apply-flags command:

[edit]
dhanks@MX80# set firewall family inet filter discard-all apply-flags omit

[edit]
dhanks@MX80#

	 56	 Day One: Securing the Routing Engine on M, MX, and T Series

Now, when your configuration is viewed with the show command, it is
omitted:

family inet {
 filter discard-all { /* OMITTED */ };

[edit]
dhanks@MX80#

NOTE	 Because omit is a hidden command, you can’t use tab-completion when
configuring apply-flags. You need to type it out completely. It also
will not show up in the inline help menu when you press ?.

NOTE	 Configuration sections with the apply-flags omit are omitted only
when viewed at a higher level. For example typing show firewall
family inet filter discard-all would show the entire filter, whereas
typing show firewall family inet shows it as being omitted.

Using the apply-flags omit has reduced this firewall filter from nearly
fifty lines to a single line. But you should know that when you are
viewing omitted configuration at a higher level, it’s possible to still
view the entire configuration using the command-line option display
omit, as here:

 [edit]
dhanks@MX80# show firewall family inet | display omit
filter discard-all {
 apply-flags omit;
 term discard-tcp {
 from {
 protocol tcp;
 }
 then {
 count discard-tcp;
 log;
 discard;
 }
 }
 term discard-netbios {
 from {
 protocol udp;
 destination-port 137;
 }
 then {
 count discard-netbios;
 discard;
 }

	 Chapter 4: Junos Configuration Automation	 57

 }
 term discard-udp {
 from {
 protocol udp;
 }
 then {
 count discard-udp;
 log;
 discard;
 }
 }
 term discard-icmp {
 from {
 protocol icmp;
 }
 then {
 count discard-icmp;
 log;
 discard;
 }
 }
 term discard-unknown {
 then {
 count discard-unknown;
 log;
 discard;
 }
 }
}

Summary

The apply-path feature creates and maintains a prefix list based on the
Junos configuration. The omit feature is verbose when you want it and
terse when you need it. These simple tools pay big dividends. Let
Junos work for you, not the other way around. Junos was designed to
easily handle scale without creating operational burdens.

	 58	 Day One: Securing the Routing Engine on M, MX, and T Series

Chapter 5

Creating a Basic Framework of Firewall Filters

Overview of a Firewall Filter Framework. . 60

Prefix Lists. . 61

Policers. . 69

Firewall Filters. . 72

Summary. . 98

	 60	 Day One: Securing the Routing Engine on M, MX, and T Series

Chapter 5 shows you how to create a basic framework of firewall filters
using common routing protocols and routing engine services. These
firewall filters will be the building blocks for creating a customized
security profile to the routing engine. As always, it’s recommended that
you follow along on your test bed or device.

Overview of a Firewall Filter Framework

Throughout this chapter you will learn how to build a portable and
customizable framework that can be used to secure the routing engine.
There are three major components to this framework: generic policers,
prefix-lists using apply-path, and firewall filters, as shown in Figure 5.1.

dns ssh radius tacas web

Policers Prefix Lists

icmp rip bgp bfd ldp rsvp

telnet ftp tracer

snmp

ospf

Figure 5.1	 Framework for Securing the Routing Engine

You can see in Figure 5.1 that the policers and prefix lists are the
foundation of the framework, with the firewall filters sitting on top and
enlisting the policers and prefix lists. Each firewall filter is designed to
only allow specific traffic, and the modular building blocks allow the
administrator to cherry-pick firewall filters and apply them to the
router, as shown in Figure 5.2.

ospficmp rip bgp ssh radius ntp tcp-estabpacket

Custom firewall filter chain

discard-all

Figure 5.2	 Example of Firewall Filter Chain Using “filter input-list”

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 61

The overall goal of this framework is that it should be portable enough
to move into the majority of environments and “just work” without
major modification. The prefix lists should be generic enough to
include basic services, protocols, and the router’s IPv4 addresses. The
firewall filters should be written so that each filter focuses on a specific
problem, and when the prefix lists are built using apply-path, modifi-
cation shouldn’t be necessary.

The firewall filters should be designed to be used on the control plane
using the interface lo0.0 in the direction of input. The firewall filters
are modular, so they’re able to be applied with the input-list option
and be chained together to create custom firewall requirements for
your particular router.

In short, this framework applies what was shown in the previous
chapters of this book. You get modularity and customization at the
same time, utilizing a single Junos operating system.

NOTE	 This chapter reviews and comments on a subset of the final framework
configuration. The appendix contains the final working configuration
in its entirety.

TIP	 A special Copy and Paste edition of this book can be downloaded from
this book’s page at www.juniper.net/dayone. Its rich-text format
allows you to copy and paste firewall filter configurations for your
own use.

Prefix Lists

Prefix lists should use apply-path liberally when dealing with services,
routing protocols, and router addresses, so that Junos is doing all of
the redundant work and you can focus on more important things. The
prefix lists can be referenced by the firewall filters without any modifi-
cation as your network grows and changes

Local Addresses

Let’s start by creating prefix lists that define local addresses on the
router. Depending on what type of hardware you are dealing with,
there are different types of virtualization capabilities, so let’s use prefix
lists that use IPv4 addresses defined on the router itself and inside of
logical-systems.

http://www.juniper.net/dayone

	 62	 Day One: Securing the Routing Engine on M, MX, and T Series

Router IPv4 Addresses

Our prefix list router-ipv4 contains all of the IPv4 addresses on the
physical router, and the prefix list router-ipv4-logical-systems
contains all of the IPv4 addresses that exist within any logical-system:

prefix-list router-ipv4 {
 apply-path “interfaces <*> unit <*> family inet address <*>”;
}
prefix-list router-ipv4-logical-systms {
 apply-path “logical-systems <*> interfaces <*> unit <*> family inet address <*>”;
}

NOTE	 The prefix-list router-ipv4 is aggressive and will contain every single
IPv4 address on the physical router, including GRE tunnels, loopback
interfaces, and routing engine management interfaces such as fxp0.

Localhost

The loopback is usually defined as 127.0.0.1/32 in Junos, but the RFC
1700 defines it as 127/8. Let’s create a prefix list called localhost that
matches 127/8:

prefix-list localhost {
 127.0.0.0/8;
}

Protocols

Let’s take the most common routing protocols and their multicast
addresses and create easy to read prefix lists, so the configuration is a
little more human-readable.

OSPF

OSPF uses two well-known multicast addresses to establish adjacency
and send Hello packets:

IPv4 Multicast Address Description

224.0.0.5 OSPF AllSPFRouters

224.0.0.6 OSPF AllDRouters

Let’s create the prefix-list ospf to match both of these well-known
multicast addresses:

prefix-list ospf {
 224.0.0.5/32;
 224.0.0.6/32;
}

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 63

RIP

RIPv2 uses a single well-known multicast address to exchange routing
information, so let’s create the prefix list rip to match this well-known
multicast address:

prefix-list rip {
 224.0.0.9/32;
}

VRRP

Virtual Router Redundancy Protocol (VRRP) uses a single well-known
multicast address that physical routers use to communicate, and our
prefix list vrrp matches the multicast address 224.0.0.18:

prefix-list vrrp {
 224.0.0.18/32;
}

Multicast All Routers

The IPv4 multicast address 224.0.0.2 is reserved for AllRouters within
a network segment. Protocols such as the Label Distribution Protocol
(LDP) use this address to discover Hello packets. So let’s create a prefix
list called multicast-all-routers to match this well-known multicast
address:

prefix-list multicast-all-routers {
 224.0.0.2/32;
}

BGP Neighbors

Let’s use the apply-path feature to walk through the Junos configura-
tion to discover all the BGP neighbors within the configuration.

prefix-list bgp-neighbors {
 apply-path “protocols bgp group <*> neighbor <*>”;
}
prefix-list bgp-neighbors-logical-systems {
 apply-path “logical-systems <*> protocols bgp group <*>
neighbor <*>”;
}

Services

The four most common services on a router are RADIUS, TACAS+,
NTP, and SNMP. Let’s build prefix lists to match the appropriate
sections of the Junos configuration and find the server IP addresses.

	 64	 Day One: Securing the Routing Engine on M, MX, and T Series

RADIUS

Junos allows for multiple RADIUS servers to be defined under the
system radius-server stanza. Let’s create a prefix list to match all of
the RADIUS servers:

system {
 radius-server {
 192.168.0.10 secret “9whYaZ”; ## SECRET-DATA
 192.168.0.11 secret “$9$5Q69”; ## SECRET-DATA
 192.168.0.12 secret “9DMimf”; ## SECRET-DATA
 192.168.0.13 secret “9ItYEre”; ## SECRET-DATA
 }
}

Even though the IP address is located in between radius-server and
secret, you can still use wildcards to match the IP addresses. Let’s
create an apply-path that matches everything to the IP address and
then stops, leaving out the secret:

prefix-list radius-servers {
 apply-path “system radius-server <*>”;
}

This wildcard should match the four IP addresses 192.168.0.10 – 13,
but’s let’s double-check that the apply-path is working as expected, by
using the display inheritance command:

[edit]
dhanks@MX80# show policy-options prefix-list radius-servers | display inheritance
##
apply-path was expanded to:
192.168.0.10;
192.168.0.11;
192.168.0.12;
192.168.0.13;
##
apply-path “system radius-server <*>”;

[edit]
dhanks@MX80#

The double hash marks (##) verify that Junos was able to match the IP
addresses and expand them out in a list.

TACAS+

TACAS+ is very similar to RADIUS in its configuration. Junos supports
multiple TACAS+ servers defined in the system tacplus-servers
stanza, as you can see here:

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 65

system {
 tacplus-server {
 172.16.0.100;
 172.16.0.101;
 172.16.0.102;
 172.16.0.103;
 }
}

Let’s leverage the apply-path from the prefix list radius-servers and
build a similar prefix list for TACAS+:

prefix-list tacas-servers {
 apply-path “system tacplus-server <*>”;
}

Once again it should work, but let’s verify the apply-path using the
display inheritance command:

[edit]
dhanks@MX80 # show policy-options prefix-list tacas-servers | display inheritance
##
apply-path was expanded to:
172.16.0.100/32;
172.16.0.101/32;
172.16.0.102/32;
172.16.0.103/32;
##
apply-path “system tacplus-server <*>”;

[edit]
dhanks@MX80#

You can see the four TACAS+ servers 172.16.0.100-103 and the
double hashes to verify that the apply-path is working as expected.

NTP

The Network Time Protocol (NTP) is defined under the system ntp
stanza, and Junos supports multiple NTP servers:

system {
 ntp {
 server 192.168.33.10;
 server 192.168.33.11;
 server 192.168.33.12;
 server 192.168.33.13;
 }
}

	 66	 Day One: Securing the Routing Engine on M, MX, and T Series

Leveraging our experience with the previous apply-path prefix lists,
let’s apply the same methodology to NTP.

prefix-list ntp-servers {
 apply-path “system ntp server <*>”;
}

And verify with display inheritance:

prefix-list ntp-server {
 ##
 ## apply-path was expanded to:
 ## 192.168.33.10;
 ## 192.168.33.11;
 ## 192.168.33.12;
 ## 192.168.33.13;
 ##
 apply-path “system ntp server <*>”;
}

Here apply-path was able to successfully match the NTP servers and
find the four IP addresses 192.168.33.10-13.

Junos also allows the use of NTP peers, so let’s match those as well:

prefix-list ntp-server-peers {
 apply-path “system ntp peer <*>”;
}

The greatest benefit to using apply-path is that Junos builds and
maintains the dynamic prefix lists for you. As you add additional NTP
servers to the configuration, there’s no need to go back and modify the
prefix list ntp because Junos does this automatically.

SNMP

The Simple Network Management Protocol (SNMP) supports multiple
communities and the ability to define a different set of clients that are
able to access each community. Junos enables the use of the client-
lists keyword, which is similar to prefix lists.

ALERT!	 SNMP client-list and prefix lists cannot share the same name.

Example SNMP configuration:

snmp {
 client-list internal {
 10.0.0.0/8;
 192.168.0.0/16;

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 67

 172.16.0.0/12;
 }
 community public {
 authorization read-only;
 clients {
 172.16.100.0/24;
 }
 }
 community private {
 authorization read-write;
 client-list-name internal;
 }
}

SNMP provides you with multiple levels of configuration and flexibil-
ity when defining which clients are allowed to access communities.
Junos supports SNMP client-list, which acts as a prefix-list that can
be applied to multiple SNMP communities.

To capture all of the SNMP clients, you need to define two prefix lists
using apply-path. The first prefix list captures the statically defined
clients and the other prefix list captures the SNMP client-lists.

prefix-list snmp-client-lists {
 apply-path “snmp client-list <*> <*>”;
}
prefix-list snmp-community-clients {
 apply-path “snmp community <*> clients <*>”;
}

Best practice is to always verify:

[edit]
dhanks@MX80# show policy-options prefix-list snmp-client-lists | display inheritance
##
apply-path was expanded to:
10.0.0.0/8;
192.168.0.0/16;
172.16.0.0/12;
203.0.113.15/32;
203.0.113.16/32;
198.51.100.55/32;
198.51.100.56/32;
##
apply-path “snmp client-list <*> <*>”;

[edit]
dhanks@MX80# show policy-options prefix-list snmp-community-clients | display
inheritance
##

	 68	 Day One: Securing the Routing Engine on M, MX, and T Series

apply-path was expanded to:
172.16.100.0/24;
192.168.100.0/24;
##
apply-path “snmp community <*> clients <*>”;

[edit]
dhanks@MX80#

You can see here that the prefix list snmp-client-lists successfully
aggregated together all of the clients defined in the SNMP client-
lists. The last prefix list snmp-community-clients aggregated all of the
statically defined clients under each SNMP community. By using these
two prefix lists together you’re able to match any type of client combi-
nation within SNMP.

DNS

Junos allows for multiple DNS name servers to be defined under
system name-server:

system {
 name-server {
 172.16.5.40;
 172.16.5.41;
 172.16.5.42;
 172.16.5.43;
 }
}

Let’s create a prefix list to match the name servers defined:

prefix-list dns-servers {
 apply-path “system name-server <*>”;
}

And when verified:

 [edit]
dhanks@MX80# show policy-options prefix-list dns-servers | display inheritance
##
apply-path was expanded to:
172.16.5.40/32;
172.16.5.41/32;
172.16.5.42/32;
172.16.5.43/32;
##
apply-path “system name-server <*>”;

[edit]
dhanks@MX80#

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 69

Policers

Policing traffic on the routing engine is straightforward: define a
bandwidth-limit and make the policer action discard any packets that
exceed the bandwidth-limit. The burst-size-limit is the same across any
policers applied to the routing engine because the link to the routing
engine is 1Gbps, and the amount of bandwidth a 1 Gbps interface is
able to send in 5ms is 625,000 bytes, which is the recommended value
for the burst-size-limit.

Management

Let’s create two generic management policers. These policers are
term-specific so that a policer instance is created for each firewall filter
term, and the policer actions will be to discard any packets that exceed
the bandwidth limit.

The benefit of using two generic policers is that it reduces the size of
the configuration and makes the configuration less complex, while still
maintaining the firewall filter term policing. The alternative to using a
generic policer is to define a policer per firewall filter or term. The
benefit to using a term-specific policer is that when viewing the policer
with the show firewall command, there’s a policer instance for each
firewall filter term. For example, if traffic for both SSH and SNMP had
to be policed, it is possible to see how many packets of each were
policed on a per firewall filter basis.

Previously it was recommended that firewall filter terms match the
filter name and counter if possible. The value in such a naming conven-
tion now becomes apparent when trying to understand how many
packets were policed for a particular firewall filter. Using this method
allows you to create generic policers, but to apply them to specific
firewall filters and maintain full visibility into policing statistics.

It’s easily illustrated by viewing the output of show firewall and
comparing the output between term-specific and filter-specific policers.

Term-specific (default)

Policers are term-specific by default. Each firewall filter term that has
an action modifier of policer will have its own named policer instance.

Each policer is named after the firewall filter term from which it was
applied. Because the firewall filter terms are named based on what we
are filtering, it’s easy to see what’s being policed:

	 70	 Day One: Securing the Routing Engine on M, MX, and T Series

dhanks@MX80> show firewall filter lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-bfd-lo0.3-i 3558932 68441
accept-bgp-lo0.3-i 40883 662
accept-dns-lo0.3-i 0 0
accept-icmp-lo0.3-i 0 0
accept-ldp-lo0.3-i 234426 3889
accept-ntp-lo0.3-i 0 0
accept-ospf-lo0.3-i 73096 1071
accept-rip-lo0.3-i 16640 320
accept-rip-igmp-lo0.3-i 32 1
accept-snmp-lo0.3-i 0 0
accept-ssh-lo0.3-i 0 0
accept-traceroute-lo0.3-i 0 0
accept-web-lo0.3-i 0 0
discard-icmp-lo0.3-i 0 0
discard-netbios-lo0.3-i 0 0
discard-tcp-lo0.3-i 0 0
discard-udp-lo0.3-i 0 0
discard-unknown-lo0.3-i 0 0
no-icmp-fragments-lo0.3-i 0 0
Policers:
Name Packets
management-1m-accept-dns-lo0.3-i 0
management-1m-accept-ntp-lo0.3-i 0
management-1m-accept-traceroute-lo0.3-i 0
management-5m-accept-icmp-lo0.3-i 0
management-5m-accept-snmp-lo0.3-i 0
management-5m-accept-ssh-lo0.3-i 0
management-5m-accept-web-lo0.3-i 0

As you can see, it’s easy to determine how many packets were policed
for DNS, NTP, traceroute, ICMP, and other protocols. Because the
policers are term-specific an instance of the policer is created for each
term in the firewall filter and a counter is created in the naming format
of <policer_name>-<firewall_filter_term_name>-<interface_
name>.<unit>-<direction>.

Filter-specific

When the filter-specific knob is enabled on a policer and a firewall
filter has multiple terms and action modifiers of policer, only a single
policer instance will be created per firewall filter. This causes some loss

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 71

in visibility as to how many packets were policed on a per-filter or
per-term basis. All of the terms within the firewall filter are policed as
an aggregate.

dhanks@MX80> show firewall filter lo0.3-i

Filter: lo0.3-i
Counters:
Name 	 Bytes Packets
accept-bfd-lo0.3-i 3464760 66630
accept-bgp-lo0.3-i 39776 644
accept-dns-lo0.3-i 0 0
accept-icmp-lo0.3-i 0 0
accept-ldp-lo0.3-i 228294 3787
accept-ntp-lo0.3-i 0 0
accept-ospf-lo0.3-i 71032 1041
accept-rip-lo0.3-i 16224 312
accept-rip-igmp-lo0.3-i 32 1
accept-snmp-lo0.3-i 0 0
accept-ssh-lo0.3-i 0 0
accept-traceroute-lo0.3-i 0 0
accept-web-lo0.3-i 0 0
discard-icmp-lo0.3-i 0 0
discard-netbios-lo0.3-i 0 0
discard-tcp-lo0.3-i 0 0
discard-udp-lo0.3-i 0 0
discard-unknown-lo0.3-i 0 0
no-icmp-fragments-lo0.3-i 0 0
Policers:
Name Packets
management-1m-lo0.3-i 0
management-5m-lo0.3-i													 0

It’s impossible to calculate how many packets were policed on a per
filter basis looking at these two policers. When policers are created
with the filter-specific knob, a policer instance is created per
firewall filter if there is an action modifier of policer and a counter is
created. The naming convention is <policer_name>-<interface_
name>.<unit>-<direction>.

BEST PRACTICE	 Use term-specific policers (the default) when you need full visibility
into what types of traffic are being policed in the routing engine.

	 72	 Day One: Securing the Routing Engine on M, MX, and T Series

Management 1 Mbps

The management policer management-1m will restrict traffic to 1 Mbps
and discard any packets that exceed this bandwidth limit. This policer
will be applied to protocols such as NTP, traceroute, RADIUS,
TACAS+, and telnet. Traditionally these protocols do not require high
throughput so they are a good candidate for this policer:

policer management-1m {
 apply-flags omit;
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 625k;
 }
 then discard;
}

Management 5 Mbps

The management policer management-5m is identical to the previous
policer, except that traffic will have a bandwidth limit of 5 Mbps.
Protocols such as ICMP, SNMP, HTTP, and SSH require higher
throughput and 5 Mbps is adequate for accessing the router via SSH
and copying configuration files via SCP:

policer management-5m {
 apply-flags omit;
 if-exceeding {
 bandwidth-limit 5m;
 burst-size-limit 625k;
 }
 then discard;
}

ALERT!	 It’s recommended to remove any policer from SSH if you need to copy
any large files to the routing engine such as a Junos firmware image.

Firewall Filters

Now it’s time to begin creating the fundamental building blocks to
securing the routing engine. Each firewall filter is specific to a routing
protocol or service – in other words, no firewall filter restricts traffic
outside of its immediate focus. Examine the framework gathered so far
as illustrated in Figure 5.3.

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 73

accept-icmp accept-ssh
accept-
snmp

accept-ntp
accept-

traceroute
accept-web

accept-common-services

accept-ospf accept-rip

accept-igp

accept-
radius

accept-
tacas

accept-remote-auth

accept-vrrp accep-bgp

accept-bfd discard-allaccept-ldp accept-rsvp accept-ftp

accept-dns

accept-ldp-rsvp

Figure 5.3	 Firewall Filter Framework

You can see that firewall filters are grouped together where it makes
sense. For example, the firewall filter accept-igp includes both accept-
ospf and accept-rip. This kind of grouping helps cut down on the
number of firewall filters in the chain.

The firewall filters are designed to be used as a chain on the interface
lo0.0 to secure the routing engine. The order of the firewall filters in
the chain isn’t important except for the final “catch all” firewall filter
discard-all.

It’s important that the firewall filter discard-all be placed at the end
of the chain for several reasons. Placing any firewall filters after
discard-all causes all traffic to be denied and never evaluated by any
firewall filters after discard-all. The discard-all firewall filter keeps
track of how many packets were discarded, the total number of bytes
discarded, and logs the packet’s header.

Protocols

Let’s now take a deep dive into all of the major protocols and how to
create firewall filters around them. Our goal is to make the firewall
filters specific enough to only allow certain types of traffic through, but
generic enough so they should “just work” in most environments.

RIP

RIP is one of the easier routing protocols for which to write a firewall
filter, because the destination-address is always 224.0.0.9. Let’s use the

	 74	 Day One: Securing the Routing Engine on M, MX, and T Series

prefix list rip that we created earlier. All the packets will be sourced
from other routers, but within a Direct interface on the router. The
prefix list router-ipv4 contains all of the IPv4 addresses on the router
and is used to match the source-address. Note that RIP also uses the
protocol UDP which always uses the destination-port of 520/rip. Let’s
write the filter:

filter accept-rip {
 apply-flags omit;
 term accept-rip {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 rip;
 }
 protocol udp;
 destination-port rip;
 }
 then {
 count accept-rip;
 accept;
 }
 }
 term accept-rip-igmp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 rip;
 }
 protocol igmp;
 }
 then {
 count accept-rip-igmp;
 accept;
 }
 }
}

You can also see a counter was added to each term so you can keep
tabs on how many packets and bytes transferred have been passed
through this filter. Good idea.

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 75

OSPF

OSPF uses two multicast addresses: 224.0.0.5 and 224.0.0.6. The
multicast address 224.0.0.5 is used by OSPF to communicate with
AllSPFRouters, while the address 224.0.0.6 is used to communicate
with OSPF AllDRouters.

NOTE	 OSPF uses IP Protocol number 89/ospf. Since it uses its own protocol,
you don’t have to worry about port numbers or other attributes.

OSPF doesn’t always use the destination-address of 224.0.0.5 or
224.0.0.6. The OSPF database description packets in specific interface
types are sourced and destined between two routers using the interface
IP addresses, so our filter should make sure to include both prefix lists
ospf and router-ipv4 as the destination-address to ensure that all the
OSPF packet types are allowed through to the routing engine:

filter accept-ospf {
 apply-flags omit;
 term accept-ospf {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 ospf;
 router-ipv4-logical-systms;
 }
 protocol ospf;
 }
 then {
 count accept-ospf;
 accept;
 }
 }
}

BGP

BGP is deceptively easy, thanks to prefix lists using the apply-path
feature, as the prefix list bgp-neighbors contains a list of all the BGP
neighbors defined in protocols bgp.

BGP always uses the TCP protocol and either a destination or source
port of 179/bgp. You can use the port bgp match condition to match
either the destination or source port of BGP. The source address is

	 76	 Day One: Securing the Routing Engine on M, MX, and T Series

always the BGP neighbors as defined in protocols bgp so you can use
the prefix list bgp-neighbors. The destination address is always an IP
address on the router so you can use the prefix-list router-ipv4 again:

filter accept-bgp {
 apply-flags omit;
 term accept-bgp {
 from {
 source-prefix-list {
 bgp-neighbors;
 bgp-neighbors-logical-systems;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port bgp;
 }
 then {
 count accept-bgp;
 accept;
 }
 }
}

VRRP

The VRRP protocol is simple. All VRRP packets are always sent to the
multicast address 224.0.0.18. Let’s leverage the prefix list vrrp we
created earlier to make it easier to read.

VRRP uses the IP protocol 112/vrrp for all communication. The caveat
is that if VRRP authentication is enabled, it uses Authentication
Header (AH) which uses IP Protocol 51/ah. So our configuration needs
to allow both protocols in this firewall filter for VRRP to function:

filter accept-vrrp {
 apply-flags omit;
 term accept-vrrp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 vrrp;
 }
 protocol [vrrp ah];
 }
 then {
 count accept-vrrp;

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 77

 accept;
 }
 }
}

The protocol [vrrp ah] is a logical OR operation. Only one of the
protocols in the list needs to match in order for protocol to be evaluated
as true.

LDP

The Label Distribution Protocol (LDP) is straightforward and lends
itself well to a firewall filter. Hellos are exchanged via UDP destined to
the All Routers multicast address of 224.0.0.2 with a destination port
of 646/ldp. Targeted LDP unicasts via UDP during the discovery phase
instead of using multicast. After discovery LDP, it unicasts the peer
directly via TCP destined to 224.0.0.2, with a destination port of 646/
ldp.

This filter needs to create four terms to capture each specific phase:

�� LDP discovery

�� Targeted LDP discovery

�� Unicast LDP

�� IGMP join to 224.0.0.2

Let’s review the filter together:

filter accept-ldp {
 apply-flags omit;
 term accept-ldp-discover {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 multicast-all-routers;
 }
 protocol udp;
 destination-port ldp;
 }
 then {
 count accept-ldp-discover;
 accept;
 }
 }
 term accept-ldp-unicast {

	 78	 Day One: Securing the Routing Engine on M, MX, and T Series

 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port ldp;
 }
 then {
 count accept-ldp-unicast;
 accept;
 }
 }
 term accept-tldp-discover {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ldp;
 }
 then {
 count accept-tldp-discover;
 accept;
 }
 }
 term accept-ldp-igmp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 multicast-all-routers;
 }
 protocol igmp;
 }
 then {
 count accept-ldp-igmp;
 accept;
 }
 }
}

RSVP

The Resource Reservation Protocol (RSVP) is a transport layer
protocol that uses IP protocol number 46. Traffic is always destined to
the router so the filter can use the prefix list router-ipv4:

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 79

filter accept-rsvp {
 apply-flags omit;
 term accept-rsvp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol rsvp;
 }
 then {
 count accept-rsvp;
 accept;
 }
 }
}

BFD

The Bidirectional Forwarding Protocol (BFD) uses UDP to transmit
packets. There’s a very specific range of ports that BFD is allowed to
use for both the source and destination ports: the source ports allowed
are 49152 through 65535 and the destination ports allowed are 3784
through 3785, which you’ll see as part of the filter configuration:

filter accept-bfd {
 apply-flags omit;
 term accept-bfd {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port 49152-65535;
 destination-port 3784-3785;
 }
 then {
 count accept-bfd;
 accept;
 }
 }
}

	 80	 Day One: Securing the Routing Engine on M, MX, and T Series

Common Services

The firewall filter common services groups commonly used protocols
under a single firewall filter so that the input-list on the interface
lo0 doesn’t become terribly long. Figure 5.4 illustrates the common
services grouping concept.

accept-icmp accept-ssh
accept-
snmp

accept-ntp
accept-

traceroute
accept-web

accept-common-services

accept-dns

Figure5.4	 Common Services Concept

The firewall filter accept-common-services is designed to be used as the
first firewall filter in the chain. It’s constructed using the filter knob
to reference another firewall filter, instead of reinventing the wheel and
defining its own from and then statements:

filter accept-common-services {
 apply-flags omit;
 term accept-icmp {
 filter accept-icmp;
 }
 term accept-ssh {
 filter accept-ssh;
 }
 term accept-snmp {
 filter accept-snmp;
 }
 term accept-ntp {
 filter accept-ntp;
 }
 term accept-traceroute {
 filter accept-traceroute;
 }
 term accept-web {
 filter accept-web;
 }
 term accept-dns {
 filter accept-dns;
 }
}

The common services filter is designed so that you can modify it to fit
your environment. Adding and removing filters has become a trivial
task that can be completed with one command, for example, adding
VRRP to accept-common-services:

dhanks@MX80# set firewall family inet filter accept-common-services term accept-vrrp
filter accept-vrrp

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 81

This command adds a term to the end of the accept-common-services
filter called accept-vrrp and references the existing firewall filter
accept-vrrp.

ICMP

The Internet Control Message Protocol (ICMP) is one of the core
protocols in IP to signal errors and query messages. ICMP packets are
very small in nature and there’s no legitimate need to fragment these
packets, so the first step in creating an ICMP filter is to match ICMP
fragments, count and log them, and silently discard the packet.

Which ICMP types to allow into your network is a decision that you
need to make. Some network operators like to be good network
citizens and return meaningful error messages back to the sender, while
other operators may prefer a more secure approach of not responding
to errors or queries, keeping the sender in the dark.

Since ICMP is used primarily for errors and queries, by nature it
shouldn’t consume a lot of resources. Best practice is to rate-limit the
number of ICMP packets that enter the router. Let’s use the generic
management policer of 5 Mbps:

filter accept-icmp {
 apply-flags omit;
 term no-icmp-fragments {
 from {
 is-fragment;
 protocol icmp;
 }
 then {
 count no-icmp-fragments;
 log;
 discard;
 }
 }
 term accept-icmp {
 from {
 protocol icmp;
 icmp-type [echo-reply echo-request time-exceeded
unreachable source-quench router-advertisement parameter-
problem];
 }
 then {
 policer management-5m;
 count accept-icmp;
 accept;
 }
 }
}

http://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

	 82	 Day One: Securing the Routing Engine on M, MX, and T Series

SSH

The best practice to access the router will always be SSH, which uses
port 22/ssh and the TCP protocol. There are a couple of match condi-
tions that need to be verified before applying this filter to a router.

ALERT!	 Double check that the match conditions in the firewall filter accept-
ssh make sense for your environment before applying it to the control
plane. This book’s example assumes that the router will be accessed via
SSH and will be accessed from a RFC1918 source address.

filter accept-ssh {
 apply-flags omit;
 term accept-ssh {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port ssh;
 }
 then {
 policer management-5m;
 count accept-icmp;
 accept;
 }
 }
}

It is best practice to rate limit SSH to a reasonable bandwidth limit,
usually a value of 5 Mbps. This is more than adequate for any CLI
access for multiple users. The only drawback is that it takes about five
or six minutes to SCP a version of Junos to the router. If this is unac-
ceptable during a maintenance window, it’s easy enough to temporarily
deactivate the policer, like so:

[edit]
dhanks@MX80# deactivate firewall family inet filter accept-ssh term accept-ssh then
policer

To activate the policer after the upgrade is complete use the activate
command:

[edit]
dhanks@MX80# activate firewall family inet filter accept-ssh term accept-ssh then
policer

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 83

TIP	 Don’t forget that after activating or deactivating a section of the Junos
configuration, you still need to commit the changes.

SNMP

The SNMP protocol uses the UDP protocol on port 161/snmp. Care
needs to be taken to review the requirements of SNMP. The author has
assumed that network management software accessing the router will
have RFC1918 source addresses.

The bandwidth required for SNMP polling isn’t very high. Best
practice is to apply a policer to SNMP traffic. We’ll use a bandwidth
limit of 5 Mbps.

The source address can be gathered from the Junos configuration of
SNMP via the statically defined community clients or SNMP client-
lists. You can use the prefix list snmp-client-lists and snmp-commu-
nity-clients. The destination address will always be an interface on
the router, so you can use the prefix list router-ipv4, like so:

filter accept-snmp {
 apply-flags omit;
 term accept-snmp {
 from {
 source-prefix-list {
 snmp-client-lists;
 snmp-community-clients;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port snmp;
 }
 then {
 policer management-5m;
 count accept-snmp;
 accept;
 }
 }
}

NTP

The Network Time Protocol (NTP) is able to operate in several
different modes: client, server, and symmetric active (peer) mode. Let’s
break up the NTP firewall filter into three terms so that you’re able to
differentiate the various types of NTP traffic:

	 84	 Day One: Securing the Routing Engine on M, MX, and T Series

filter accept-ntp {
 apply-flags omit;
 term accept-ntp {
 from {
 source-prefix-list {
 ntp-server;
 localhost;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 localhost;
 }
 protocol udp;
 port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp;
 accept;
 }
 }
 term accept-ntp-peer {
 from {
 source-prefix-list {
 ntp-server-peers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp-peer;
 accept;
 }
 }
 term accept-ntp-server {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ntp;
 }

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 85

 then {
 policer management-1m;
 count accept-ntp-server;
 accept;
 }
 }
}

Traceroute

Traceroute is a tool that varies wildly in implementation. Most
networking equipment and UNIX variants default to using UDP with
destination ports between 33435 and 33450. Other versions of
traceroute, such as the one for Windows, use the ICMP protocol
instead. Even when using the ICMP version of traceroute there are
variations in the ICMP type. Newer versions of traceroute, such as
“tcptraceroute”, use TCP and allow the user to specify a destination
port. Tools like this come in handy if there is a firewall in the path of
the traceroute.

Let’s create three terms to identify all of the major variations of
traceroute and account for them.

NOTE	 It may seem like common sense to add a final term to discard all
unknown traceroute traffic, but this is difficult to do. Protocols such as
RSVP, OSPF, and RIP use packets with a time to live (TTL) of 1. Later
in this chapter the final firewall filter “discard-all” is reviewed and this
is a good candidate to catch and discard unknown traceroute traffic.

NOTE	 THIS ADDITIONAL TEXT WAS ADDED IN 2016 TO CORRECT
ISSUES WITH THE TEXT WRITTEN IN 2011. Be aware that some
implementation of traceroute use UDP and TCP and that creating a
firewall filter matching a TTL of 1 and any UDP or TCP packet is a
security risk and advise against it. Therefore, we’ll only allow IGMP
based traceroute packets to be processed.

Here’s the traceroute configuration:

filter accept-traceroute {
 apply-flags omit;
 term discard-traceroute-udp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 ttl 1;
 destination-port 33435-33450;
 }
 then {

	 86	 Day One: Securing the Routing Engine on M, MX, and T Series

 count discard-traceroute-udp;
 discard;
 }
 }
 term accept-traceroute-icmp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol icmp; ttl 1;
 ttl 1;
 icmp-type [echo-request timestamp time-exceeded];
 }
 then {
 count accept-traceroute-icmp;
 accept;
 }
 }
 term discard-traceroute-tcp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp; ttl 1;
 }
 then {
 count discard-traceroute-tcp;
 discard;
 }
 }
}

All traffic identified as traceroute is matched and accounted for. The
traceroute packets are also policed down to 1 Mbps so that the routing
engine isn’t wasting CPU cycles responding to low-priority traffic.

Web

Junos allows for different types of management access. To allow J-Web
with a firewall filter, you just need to match TCP packets that are
destined to ports 80/http or 443/https. Let’s police all J-Web traffic to
5 Mbps, as the service isn’t that bandwidth intensive.

filter accept-web {
 apply-flags omit;
 term accept-web {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 87

 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port [http https];
 }
 then {
 policer management-5m;
 count accept-web;
 accept;
 }
 }
}

DNS

Junos uses the Domain Name System (DNS) to lookup hostnames
from IP addresses. This traffic is initiated from Junos to the external
DNS server, so let’s create a firewall filter to match the return traffic.
The DNS server replies back with a source port of 53/dns. Let’s
leverage the prefix list dns-servers to match the DNS name servers
already defined in the Junos configuration:

filter accept-dns {
 apply-flags omit;
 term accept-dns {
 from {
 source-prefix-list {
 dns-servers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port 53;
 }
 then {
 count accept-dns;
 discard;
 }
 }
}

DNS queries are very small packets and shouldn’t use a lot of band-
width, so install a 1 Mbps policer for all DNS traffic.

Less Common Services

Two of the less common services used are FTP and telnet. These are
insecure protocols as they transmit data in clear text. These services
weren’t included in the firewall filter accept-common-services because
there are better alternatives. Instead of using FTP or telnet, it’s much

	 88	 Day One: Securing the Routing Engine on M, MX, and T Series

easier to use SSH. SSH uses the Diffie-Hellman key exchange and
provides a secure transport for both command-line access and copying
files.

ALERT!	 Do not use the following firewall filters unless absolutely necessary.
FTP and telnet are insecure and pass data in clear text. Please use SSH
and SCP instead.

FTP

The File Transfer Protocol (FTP) has two modes of operation: passive
and active. The primary difference is how the data port is negotiated
and established. With active mode, the FTP client connects from a
random unprivileged port (N) to the FTP server’s command port (21).
The FTP client then listens on data port N+1. The FTP server then
initiates a connection to the FTP client on port N+1.

Creating a stateless firewall filter for active FTP is straightforward.
FTP uses the TCP protocol and the ports are always 20/ftp-data and
21/ftp, depending on whether the router is acting as a FTP server or
client.

Firewall filters are stateless by default. It’s out of the scope of the book
to create a stateful firewall filter.

ALERT!	 This firewall filter isn’t required to allow Junos to be an FTP client.
Later in this chapter, the firewall filter accept-tcp-established will
allow Junos to act as a FTP client.

filter accept-ftp {
 apply-flags omit;
 term accept-ftp {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port [ftp ftp-data];
 }
 then {
 policer management-5m;
 count accept-ftp;
 accept;
 }
 }
}

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 89

Telnet

The author was reluctant to include this filter, but understands there’s
always a case for its use. Telnet uses the TCP protocol and traffic is
always destined to port 23/telnet.

ALERT!	 Don’t use the firewall filter accept-telnet unless you know what
you’re doing.

filter accept-telnet {
 apply-flags omit;
 term accept-telnet {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port telnet;
 }
 then {
 policer management-1m;
 count accept-telnet;
 accept;
 }
 }
}

Telnet isn’t a bandwidth intensive protocol so you should police it
down to 1 Mbps.

Catch All

There is now a large framework of firewall filters, policers, and prefix
lists to allow specified traffic into the routing engine such as OSPF,
BGP, and SSH. Yet there will always be traffic that will ultimately not
match any of the filters applied to the routing engine. So to gain
visibility into the traffic that is destined to the routing engine, but not
explicitly allowed by the framework, there are three catch all firewall
filters that can be applied at the very end of the firewall filter chain:
TCP Established, Discard All, and Accept All.

TCP Established

It’s important to note that these firewall filters have been designed to be
applied to the ingress traffic on the routing engine. Traffic egressing the

	 90	 Day One: Securing the Routing Engine on M, MX, and T Series

routing engine such as SSH, FTP, fetch, and TFTP is assumed to be
trusted.

To match the return traffic that the routing engine initiated, you need
to create a firewall filter that accepts TCP traffic that’s considered
tcp-established, which is synonymous with TCP flags matching ACK
or RST.

You could simply create a firewall filter that allowed any TCP packets
with the ACK or RST in the TCP flags, but it would be better to under-
stand which protocols and services the packets belong to.

To gain visibility into the different protocols, the firewall filter breaks
accept-established into seven terms:

�� SSH: The term accept-tcp-established-ssh will match SSH
return traffic back into the routing engine. The protocol will
always be TCP with a source port of 22.

�� FTP: The term accept-tcp-established-ftp will accept return
traffic from the FTP command port. This will always be the TCP
protocol with a source port of 21/ftp.

�� FTP DATA TCP-INITIAL: Before the file transfer begins, there
needs to be a negotiation of which FTP data port to use. The FTP
server will initiate a connection to the router. This will always use
the TCP protocol with the TCP flags SYN without an ACK. The
synonym for this TCP flag is tcp-initial. The source port will
always be 20/ftp-data.

�� FTP DATA: After the FTP server has opened a data port to the
router, data can be transferred. This traffic will always use the
TCP protocol, have the TCP flags ACK or RST (tcp-established),
and have the source port of 20/ftp-data.

�� TELNET: The telnet protocol always uses TCP and when used
from the command-line to connect to a remote host, the return
traffic will always have the source port of 23/telnet and the
tcp-established TCP flags.

�� FETCH: Junos supports a fetch command in the shell that
allows the administrator to download HTTP or HTTPS content
to the routing engine. Junos also supports CLI options to
remotely download configurations with the load command while
in configuration mode.

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 91

�� The HTTP or HTTPS traffic will always use the TCP protocol,
have a source port of either 80/http or 443/https, and have the
tcp-established TCP flags.

�� EPHEMERAL: Protocols such as the Trivial File Transfer Proto-
col (TFTP) will use UDP with a destination port of 69/tftp. An
important note is that the server and client will negotiate ephem-
eral ports to be used for the data transfer. IANA suggests ports
49152 through 65535 to be used as dynamic and/or private ports.

ALERT!	 The author has found that the ephemeral port range of 49152-65535
works well for TFTP, but operating systems such as Linux and Windows
can use different ranges of ephemeral ports. If you need to support
additional protocols or operating systems that support a different range
of ephemeral ports, you need to change the values in the term accept-
ephemeral.

And here’s the filter configuration:

filter accept-established {
 term accept-established-tcp-ssh {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ssh;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ssh;
 accept;
 }
 }
 term accept-established-tcp-ftp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp;
 accept;
 }

	 92	 Day One: Securing the Routing Engine on M, MX, and T Series

 }
 term accept-established-tcp-ftp-data-syn {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp-data;
 tcp-initial;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp-data-syn;
 accept;
 }
 }
 term accept-established-tcp-ftp-data {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp-data;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp-data;
 accept;
 }
 }
 term accept-established-tcp-telnet {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port telnet;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-telnet;
 accept;
 }
 }
 term accept-established-tcp-fetch {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 93

 source-port [http https];
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-fetch;
 accept;
 }
 }
 term accept-established-udp-ephemeral {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port 49152-65535;
 }
 then {
 policer management-5m;
 count accept-established-udp-ephemeral;
 accept;
 }
 }
}

It may seem easier to create a filter that simply accepts all TCP traffic
with the tcp-established flag. The drawback to this method is that
all return traffic would be aggregated and the network operator
wouldn’t be able to gain visibility into the traffic.

Discard All

The last firewall filter of the catch all is discard-all. The purpose of
this filter is to simply partition packets into protocol categories that
the routing engine isn’t interested in and discard the packets silently.

The firewall filter discard-all should be the very last filter in the
firewall filter chain applied to the input-list on the loopback inter-
face.

ALERT!	 If the firewall filter discard-all isn’t applied at the very end of the
input-list chain, you will inadvertently drop all traffic destined to
the routing engine without visibility.

The filter discard-all is the last line of defense to the routing engine.
It’s important that this filter arm the administrator with detailed
statistics regarding what packets were denied.

	 94	 Day One: Securing the Routing Engine on M, MX, and T Series

The filter breaks discard-all into seven terms: discard-ip-options;
discard-TTL_1-unknown; discard-tcp; discard-netbios; discard-udp;
discard-icmp; and finally discard-unknown. Each term has a counter
named after the term so that you know how many bytes and packets
have been discarded. The packet header will also be logged twice. The
first log is the PFE, allowing you to quickly check and see detailed
packet header information with the show firewall log command. The
second log is exported to the syslog servers defined in system syslog
host, allowing storage and archival of the offending traffic that can be
analyzed and reported on by tools such as Juniper’s Security Threat
Response Manager (STRM).

MORE?	 For more information about Juniper STRM see http://www.juniper.
net/us/en/products-services/security/strm-series/ .

And here is the discard-all filter’s configuration:

filter discard-all {
 apply-flags omit;
 term discard-ip-options {
 from {
 ip-options any;
 }
 then {
 count discard-ip-options;
 log;
 syslog;
 discard;
 }
 }
 term discard-TTL_1-unknown {
 from {
 ttl 1;
 }
 then {
 count discard-all-TTL_1-unknown;
 log;
 syslog;
 discard;
 }
 }
 term discard-tcp {
 from {
 protocol tcp;
 }
 then {
 count discard-tcp;
 log;
 syslog;
 discard;
 }
 }
 term discard-netbios {

http://www.juniper.net/us/en/products-services/security/strm-series/
http://www.juniper.net/us/en/products-services/security/strm-series/

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 95

 from {
 protocol udp;
 destination-port 137;
 }
 then {
 count discard-netbios;
 log;
 syslog;
 discard;
 }
 }
 term discard-udp {
 from {
 protocol udp;
 }
 then {
 count discard-udp;
 log;
 syslog;
 discard;
 }
 }
 term discard-icmp {
 from {
 protocol icmp;
 }
 then {
 count discard-icmp;
 log;
 syslog;
 discard;
 }
 }
 term discard-unknown {
 then {
 count discard-unknown;
 log;
 syslog;
 discard;
 }
 }
}

To demonstrate the power of the discard-all firewall filter, let’s send
some traffic to the routing engine that will be discarded, and then view
how many packets and bytes were discarded, as well as any detailed
packet header information.

Let’s use a web browser and point it at the router via the URL
http://172.16.1.11:666. Since there’s no firewall filter allowing TCP
traffic destined to port 666, it should be caught by the catch all firewall
filter discard-all.

Since the term discard-tcp in the filter has an action modifier of
syslog, let’s take a look at the remote syslog server and view the packet

	 96	 Day One: Securing the Routing Engine on M, MX, and T Series

header information:

Apr 02 22:43:13 172.16.1.11 Apr 3 05:42:49 /kernel: FW: fxp0.0 D tcp 172.16.1.100
172.16.1.11 53232 666
Apr 02 22:43:17 172.16.1.11 Apr 3 05:42:52 /kernel: FW: fxp0.0 D tcp 172.16.1.100
172.16.1.11 53232 666
Apr 02 22:43:24 172.16.1.11 Apr 3 05:42:58 /kernel: FW: fxp0.0 D tcp 172.16.1.100
172.16.1.11 53232 666

You could also confirm the same information by viewing the firewall
log:

dhanks@MX80> show firewall log
Log :
Time Filter Action Interface Protocol Src Addr Dest Addr
05:42:58 lo0.0-i D fxp0.0 TCP 172.16.1.100 172.16.1.11
05:42:52 lo0.0-i D fxp0.0 TCP 172.16.1.100 172.16.1.11
05:42:49 lo0.0-i D fxp0.0 TCP 172.16.1.100 172.16.1.11

You can also see the three packets were found by the counter discard-
tcp-lo0.0-i:

dhanks@MX80> show firewall filter lo0.0-i counter discard-tcp-lo0.0-i

Filter: lo0.0-i
Counters:
Name Bytes Packets
discard-tcp-lo0.0-i 152 3

dhanks@MX80>

Accept All

The firewall filter accept-all is the exact opposite of discard-all. It
exists as an alternative to discard-all if the administrator is in a
production environment and needs to err on the side of caution when
applying firewall filters to the routing engine. Use the filter accept-all
in place of discard-all at the very end of the firewall filter chain.

NOTE	 The firewall filter accept-all is a safe alternative to discard-all as it
will accept, log, and count all traffic. Only use accept-all if you’re in a
production environment and need to verify that the previous firewall
filters in the chain are working as expected. The filter accept-all exists
so that the administrator can see any traffic that was not explicitly
accepted by previous filters in the chain and make corrections if
necessary.

The filter is broken down by protocols and has an unknown catch-all
at the very end to ensure that all traffic is accepted.

http://172.16.1.11:666

	 Chapter 5: Creating a Basic Framework of Firewall Filters	 97

ALERT!	 Once you verify that all traffic is being matched by firewall filters
before the accept-all, it’s recommended to immediately remove
accept-all and replace it with discard-all since the entire point is to
secure the routing engine.

And here is the accept-all configuration:

filter accept-all {
 apply-flags omit;
 term accept-all-tcp {
 from {
 protocol tcp;
 }
 then {
 count accept-all-tcp;
 log;
 syslog;
 accept;
 }
 }
 term accept-all-udp {
 from {
 protocol udp;
 }
 then {
 count accept-all-udp;
 log;
 syslog;
 accept;
 }
 }
 term accept-all-igmp {
 from {
 protocol igmp;
 }
 then {
 count accept-all-igmp;
 log;
 syslog;
 accept;
 }
 }
 term accept-icmp {
 from {
 protocol icmp;
 }
 then {
 count accept-all-icmp;
 log;
 syslog;
 accept;

	 98	 Day One: Securing the Routing Engine on M, MX, and T Series

 }
 }
 term accept-all-unknown {
 then {
 count accept-all-unknown;
 log;
 syslog;
 accept;
 }
 }
}

Each type of protocol is separated into different terms and counters.
All traffic is logged to both the PFE and syslog for analysis. Any traffic
that can’t be identified will be accepted by the last term accept-all-
unknown.

Summary

This chapter has demonstrated how to create a framework of firewall
filters that can be used to secure various types of routers. The filters
have been designed to be used in a firewall filter chain. The next-to-
last filter should be the filter accept-established. When traffic is
sourced from the routing engine, return traffic needs to be let back in.
The last filter in the chain should be one of the two “catch all” filters:
accept-all or discard-all.

Chapter 6

Applying Security Policies to the Routing
Engine

Before You Begin. . 101

Load Configuration. . 101

Your First Security Policy. . 103

Advanced Security Policy. . 110

Summary. . 121

	 100	 Day One: Securing the Routing Engine on M, MX, and T Series

Building a framework to secure the routing engine that’s portable,
simple, yet customized to meet the requirements of the majority of
networks has required the integration of a lot of moving parts. Here’s a
quick summary of what you’ve accomplished so far:

�� Chapter 1: Firewall Filters: This chapter explained firewall filters
in detail – how they match traffic, perform actions, and how
they’re evaluated. You also reviewed intermediate to expert level
topics such as nested firewall filter, and firewall chaining.

�� Chapter 2: Policers: This chapter introduced policers and how
they rate limit traffic. You reviewed the Token Bucket algorithm
in detail so that we could configure bandwidth-limit and burst-
size-limit with confidence. You closed the chapter with how
policer instances are created and how to influence the number of
policers per firewall filter.

�� Chapter 3: Viewing Counters, Logs, and Policers: This chapter
demonstrated how to view counters, logs, and policers. You
reviewed the Junos counter and policer naming convention.

�� Chapter 4: Junos Configuration Automation: This chapter
introduced a powerful Junos configuration automation tool
called apply-path. You created example configuration and
generated dynamic prefix lists based on the content of the Junos
configuration.

�� Chapter 5: Creating a Basic Framework of Firewall Filters: This
chapter built upon the previous chapters and introduced the
concept of a framework that’s capable of providing building
blocks that can be used in any combination to provide custom
security to the routing engine. Each firewall filter within the
framework was reviewed in detail.

Now let’s take all of the material you’ve learned in Chapters 1 through
5 and apply a security policy to our router.

This book includes a complete example configuration located in the
appendix, and you’ll start by taking this configuration and loading it
into your router. Then you will test a very simple security framework
on a single router and gradually move up to a multiple router environ-
ment running multiple protocols and services.

TIP	 If you are following along on your router, a special Copy and Paste
edition of this book can be downloaded from this book’s page at www.

http://www.juniper.net/dayone

	 Chapter 6: Applying Security Policies to the Routing Engine	 101

juniper.net/dayone. Its rich-text format allows you to copy and paste
the firewall filter configurations without having to key them in again.

Before You Begin

Adding firewall filters to the routing engine shouldn’t be taken lightly.
Any mistake could leave your router isolated and possibly require a
connection to the console port to remove the offending firewall filter.
This book calls out these specific pitfalls and warnings along the way.

Applying the configuration for the first time, however, needs to be
done on a lab router, as this book has advocated all along. This way, if
there are any mistakes they will be isolated to the laboratory equip-
ment and not impact your production network.

Load Configuration

Let’s start off by loading the framework configuration.

Please reference the configuration listed in the Appendix: Framework
Configuration. The configuration includes prefix lists, firewall filters,
and policers.

To Load the Configuration

1. Log in to the router and enter configuration mode.

dhanks@MX80> configure
Entering configuration mode

[edit]
dhanks@MX80#

2. Copy (CTRL-C) the entire configuration as shown in the Appendix,
Framework Configuration. Use the load merge relative terminal
command to import the configuration into your router.

dhanks@MX80# load merge relative terminal
[Type ̂ D at a new line to end input]

3. Paste (CTRL-V) the configuration into the terminal. Press enter a
couple of times after the entire configuration has been pasted into the
terminal. Now type CTRL-D to end the load command.

<paste framework configuration>
CTRL-D
load complete

http://www.juniper.net/dayone

	 102	 Day One: Securing the Routing Engine on M, MX, and T Series

[edit]
dhanks@MX80#

4. Use the show firewall command to verify that the configuration has
been imported correctly. The firewall filters should appear exactly as
below with the apply-flags omit.

[edit]
dhanks@MX80# show firewall
family inet {
 filter accept-bgp { /* OMITTED */ };
 filter accept-ospf { /* OMITTED */ };
 filter accept-rip { /* OMITTED */ };
 filter accept-vrrp { /* OMITTED */ };
 filter accept-icmp { /* OMITTED */ };
 filter accept-ssh { /* OMITTED */ };
 filter accept-snmp { /* OMITTED */ };
 filter accept-ntp { /* OMITTED */ };
 filter accept-web { /* OMITTED */ };
 filter discard-all { /* OMITTED */ };
 filter accept-traceroute { /* OMITTED */ };
 filter accept-igp { /* OMITTED */ };
 filter accept-common-services { /* OMITTED */ };
 filter accept-bfd { /* OMITTED */ };
 filter accept-ldp { /* OMITTED */ };
 filter accept-ftp { /* OMITTED */ };
 filter accept-rsvp { /* OMITTED */ };
 filter accept-radius { /* OMITTED */ };
 filter accept-tacas { /* OMITTED */ };
 filter accept-remote-auth { /* OMITTED */ };
 filter accept-telnet { /* OMITTED */ };
 filter accept-dns { /* OMITTED */ };
 filter accept-ldp-rsvp { /* OMITTED */ };
 filter accept-established { /* OMITTED */ };
}
policer management-1m { /* OMITTED */ };
policer management-5m { /* OMITTED */ };

[edit]
dhanks@MX80#

5. Delete any existing firewall filters from your lo0.0 interface.

[edit]
dhanks@MX80# delete interfaces lo0.0 family inet filter

6. Use the commit check command to ensure that the new
configuration is syntactically correct and there are no errors.

dhanks@MX80# commit check
configuration check succeeds

	 Chapter 6: Applying Security Policies to the Routing Engine	 103

7.Commit the configuration now that it has cleared the check.

dhanks@MX80# commit
commit complete
[edit]
dhanks@MX80#

NOTE	 If there were any errors during the load command, make sure that you
correctly copied the entire configuration and pasted the entire configu-
ration into your terminal.

TIP	 If there are still load errors, it may be because there are existing prefix
lists, firewalls, or policers that are causing a naming conflict.

At this point your router should have a fully working framework for
applying security to the routing engine. At the moment nothing is
being secured because we deleted any existing filters applied to the
interface lo0.0.

Your First Security Policy

Our first security policy will be very simple and only deal with one
router. You’ll apply the firewall filter accept-common-services and also
include both “catch all” filters accept-established and discard-all.

The first filter includes the following services: ICMP, traceroute, SSH,
SNMP, NTP, web, and DNS.

To Build the First Security Policy

1. Apply the firewall filter accept-common-services as the first filter in
the input-list chain on the interface lo0.0.

[edit]
dhanks@MX80# set interfaces lo0.0 family inet filter input-list accept-common-services

2. Apply the first catch all firewall filter accept-established.

[edit]
dhanks@MX80# set interfaces lo0.0 family inet filter input-list accept-established

3. Apply the second catch all firewall filter discard-all.

[edit]
dhanks@MX80# set interfaces lo0.0 family inet filter input-list discard-all

4. Verify the changes with show compare.

dhanks@MX80# show | compare

	 104	 Day One: Securing the Routing Engine on M, MX, and T Series

[edit interfaces lo0 unit 0 family inet]
+ filter {
+ input-list [accept-common-services accept-established discard-all];
+ }

[edit]
dhanks@MX80#

5. Commit the changes using the confirmed feature. If there are any
problems after the commit, the configuration will automatically
rollback after 5 minutes.

dhanks@MX80# commit confirmed 5
commit confirmed will be automatically rolled back in 5 minutes unless confirmed
commit complete

commit confirmed will be rolled back in 5 minutes
[edit]
dhanks@MX80#

6. After verifying that you still have connectivity to the router, issue
the commit command again to confirm the configuration.

[edit]
dhanks@MX80# commit
commit complete

You have now applied your first security framework to the router. Let’s
take a look and see what’s happening under the hood. What traffic is
being allowed? Is there any traffic being denied? Take what you
learned in Chapter 3 and begin reviewing the firewall counters,
policers, and logs.

Let’s take a look at the firewall filters applied to the routing engine by
using the show firewall filter command:

dhanks@MX80> show firewall filter lo0.0-i

Filter: lo0.0-i
Counters:
Name	 Bytes	 Packets
accept-established-tcp-fetch-lo0.0-i	 0 	 0
accept-established-tcp-ftp-lo0.0-i	 0 	 0
accept-established-tcp-ftp-data-lo0.0-i	 0 	 0
accept-established-tcp-ftp-data-syn-lo0.0-i	 0 	 0
accept-established-tcp-ssh-lo0.0-i	 0 	 0
accept-established-tcp-telnet-lo0.0-i	 0 	 0
accept-established-udp-ephemeral-lo0.0-i	 0 	 0
accept-icmp-lo0.0-i	 0	 0
accept-ntp-lo0.0-i	 0 	 0
accept-ntp-server-lo0.0-i	 0 	 0
accept-snmp-lo0.0-i	 0	 0
accept-ssh-lo0.0-i	 3848 	 52

	 Chapter 6: Applying Security Policies to the Routing Engine	 105

accept-traceroute-icmp-lo0.0-i	 0 	 0
discard-traceroute-tcp-lo0.0-i	 0 	 0
discard-traceroute-udp-lo0.0-i	 0 	 0
accept-web-lo0.0-i	 0 	 0
discard-all-TTL_1-unknown-lo0.0-i	 0 	 0
discard-icmp-lo0.0-i	 0 	 0	
discard-netbios-lo0.0-i	 234 	 3
discard-tcp-lo0.0-i	 0 	 0
discard-udp-lo0.0-i	 0 	 0
discard-unknown-lo0.0-i	 0 	 0
no-icmp-fragments-lo0.0-i	 0 	 0
Policers:
Name		 Packets
management-1m-accept-ntp-lo0.0-i		 0
management-1m-accept-ntp-server-lo0.0-i		 0
management-1m-accept-traceroute-icmp-lo0.0-i 		 0
management-1m-discard-traceroute-tcp-lo0.0-i		 0
management-1m-discard-traceroute-udp-lo0.0-i		 0
management-5m-accept-established-tcp-fetch-lo0.0-I		 0
management-5m-accept-established-tcp-ftp-lo0.0-i		 0
management-5m-accept-established-tcp-ftp-data-lo0.0-i	 0
management-5m-accept-established-tcp-ftp-data-syn-lo0.0-i 	 0
management-5m-accept-established-tcp-ssh-lo0.0-i 	 0
management-5m-accept-established-tcp-telnet-lo0.0-i 	 0
management-5m-accept-established-udp-ephemeral-lo0.0-i	 0
management-5m-accept-icmp-lo0.0-i 	 0
management-5m-accept-snmp-lo0.0-i 	 0
management-5m-accept-ssh-lo0.0-i 	 0
management-5m-accept-web-lo0.0-i 	 0

dhanks@MX80>

There’s not too much going on here in this example of output. You can
see that it’s already counting the number of bytes and packets for SSH
by the author being logged into the router via SSH.

NOTE	 If you happen to be savvy, the author’s PC is on the same network as
the routing engine causing some NetBIOS traffic to be discarded.

Let’s try generating some traffic so you can see the counters and
policers kick in. Try some of the following on your lab router:

�� Using your PC or another router, use the traceroute command to
the router.

�� Using your PC or another router, use the SCP command and copy
a file to the router.

�� Using your PC or another router, use the ping command to the
router.

	 106	 Day One: Securing the Routing Engine on M, MX, and T Series

�� Using your PC or another router, use the ping command, but
change the packet size to 9000. This will cause ICMP to fragment
the packet (assuming your PC isn’t using Jumbo frames).

�� Using the router, telnet to another router or device.

�� Using the router, FTP to another router or device and copy a file.

This should generate some interesting traffic and increase the counters,
causing some traffic to be policed and some discarded in the process.
Let’s take a look at the counters and see what has changed and how the
router responded to the traffic. Your lab router will be slightly differ-
ent, of course. Use the show firewall filter command to view the
counters and policers on interface lo0.0:

dhanks@MX80> show firewall filter lo0.0-i

Filter: lo0.0-i
Name	 Bytes 	 Packets
accept-established-tcp-fetch-lo0.0-i	 0	 0
accept-established-tcp-ftp-lo0.0-i	 1044	 12
accept-established-tcp-ftp-data-lo0.0-i	 256	 4
accept-established-tcp-ftp-data-syn-lo0.0-i	 1966	 24
accept-established-tcp-ssh-lo0.0-i	 0	 0
accept-established-tcp-telnet-lo0.0-i	 1068	 24
accept-established-udp-ephemeral-lo0.0-i	 0	 0
accept-icmp-lo0.0-i	 7072	 16
accept-ntp-lo0.0-i	 0	 0
accept-ntp-server-lo0.0-i	 76	 1
accept-snmp-lo0.0-i	 0	 0
accept-ssh-lo0.0-i	 8773646 	 11310
accept-traceroute-icmp-lo0.0-i	 276	 3
discard-traceroute-tcp-lo0.0-i	 0	 0
discard-traceroute-udp-lo0.0-i	 0	 0
accept-web-lo0.0-i	 0	 0
discard-all-TTL_1-unknown-lo0.0-i	 0	 0
discard-icmp-lo0.0-i	 0	 0
discard-netbios-lo0.0-i	 2730	 35
discard-tcp-lo0.0-i	 0	 0
discard-udp-lo0.0-i	 0	 0
discard-unknown-lo0.0-i	 0	 0
no-icmp-fragments-lo0.0-i	 30592	 24
Policers:
Name	 Packets
management-1m-accept-ntp-lo0.0-i	 0
management-1m-accept-ntp-server-lo0.0-i 	 0
management-1m-accept-traceroute-icmp-lo0.0-i 	 0
management-1m-discard-traceroute-tcp-lo0.0-i 	 0
management-1m-discard-traceroute-udp-lo0.0-i 	 0
management-5m-accept-established-tcp-fetch-lo0.0-i 	 0
management-5m-accept-established-tcp-ftp-lo0.0-i	 0

	 Chapter 6: Applying Security Policies to the Routing Engine	 107

management-5m-accept-established-tcp-ftp-data-lo0.0-i 	 0
management-5m-accept-established-tcp-ftp-data-syn-lo0.0-i 	 0
management-5m-accept-established-tcp-ssh-lo0.0-i 	 0
management-5m-accept-established-tcp-telnet-lo0.0-i 	 0
management-5m-accept-established-udp-ephemeral-lo0.0-i 	 0
management-5m-accept-icmp-lo0.0-i 	 0
management-5m-accept-snmp-lo0.0-i 	 0
management-5m-accept-ssh-lo0.0-i 	 102
management-5m-accept-web-lo0.0-i	 0

dhanks@MX80>

A lot of things changed now that there’s traffic being sent to and from
the routing engine. Let’s take a look at the changes task by task.

Using Your PC or Another Router, Use the traceroute Command to the Router

This task sent traffic towards the routing engine using the traceroute
command and the author’s implementation of traceroute used ICMP.
You can see that the counter accept-traceroute-icmp-lo0.0-i found
three packets. This makes sense as traceroute sends three packets by
default:

accept-traceroute-icmp-lo0.0-i 276 3

Using Your PC or Another Router, Use the SCP Command and Copy a File to the Router

This task is two-fold: it would increment the counter accept-ssh-
lo0.0-i, but also invoke the policer that’s installed in the firewall filter
accept-ssh, which is set to police traffic exceeding a bandwidth limit
of 5 Mbps:

Counters:
accept-ssh-lo0.0-i 8773646 11310
Policers:
management-5m-accept-ssh-lo0.0-i 102

Using Your PC or Another Router, Use the Ping Command to the Router

The ping command incremented the counter accept-icmp-lo0.0-i. No
surprise there:

accept-icmp-lo0.0-i 7072 16

Using Your PC or Another Router, Use the Ping Command, but Change the Packet
Size to 9000

This is an interesting task because the ping command is used in such a
way that it would fragment the ICMP traffic. The firewall filter accept-

	 108	 Day One: Securing the Routing Engine on M, MX, and T Series

icmp and the first term no-icmp-fragments found these packets,
incremented the counter, and discarded them:

no-icmp-fragments-lo0.0-i 30592 24

Use the show firewall log to See the Packet Headers of the Discarded Packets

dhanks@MX80> show firewall log
Log :
Time Filter Action Interface Protocol Src Addr Dest Addr
03:43:11 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:43:11 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:43:11 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11
03:43:11 lo0.0-i D fxp0.0 ICMP 172.16.1.100 172.16.1.11

To get more detailed information, use the show firewall log detail
command:

dhanks@MX80> show firewall log detail
Time of Log: 2011-04-03 03:43:11 UTC, Filter: lo0.0-i, Filter action: discard, Name of
interface: fxp0.0
Name of protocol: ICMP, Packet Length: 48288, Source address: 172.16.1.100, Destination
address: 172.16.1.11
ICMP type: 0, ICMP code: 0
Time of Log: 2011-04-03 03:43:11 UTC, Filter: lo0.0-i, Filter action: discard, Name of
interface: fxp0.0
Name of protocol: ICMP, Packet Length: 48288, Source address: 172.16.1.100, Destination
address: 172.16.1.11
ICMP type: 0, ICMP code: 0
Time of Log: 2011-04-03 03:43:11 UTC, Filter: lo0.0-i, Filter action: discard, Name of
interface: fxp0.0
Name of protocol: ICMP, Packet Length: 48288, Source address: 172.16.1.100, Destination
address: 172.16.1.11
ICMP type: 0, ICMP code: 0
Time of Log: 2011-04-03 03:43:11 UTC, Filter: lo0.0-i, Filter action: discard, Name of
interface: fxp0.0
Name of protocol: ICMP, Packet Length: 48288, Source address: 172.16.1.100, Destination
address: 172.16.1.11
ICMP type: 0, ICMP code: 0

Using the Router, telnet to Another Router or Device

This task was a bit different, because the router itself was used to
generate traffic. The return telnet traffic was caught by the firewall
filter accept-established term accept-established-tcp-telnet-
lo0.0-i:

accept-established-tcp-telnet-lo0.0-i 1068 24

	 Chapter 6: Applying Security Policies to the Routing Engine	 109

Using the Router, FTP to Another Router or Device and Copy a File

Again, traffic was generated from the router itself, but this time using
FTP. This is a unique task because the firewall filter accept-estab-
lished has three separate terms to match the return traffic:

�� accept-established-tcp-ftp: matches the FTP CMD port return
traffic.

�� accept-established-tcp-ftp-data-syn: matches the first SYN
packet initiated by the FTP server back to Junos.

�� accept-established-tcp-ftp-data: matches the return data used
by the FTP data port.

accept-established-tcp-ftp-lo0.0-i 1044 12
accept-established-tcp-ftp-data-lo0.0-i 256 4
accept-established-tcp-ftp-data-syn-lo0.0-i 1966 24

Summary

With this simple framework it’s easy to see that the router only accepts
traffic that it’s interested in. We also gain visibility into the routing
engine and understand what type of traffic has been accepted, discard-
ed, and policed.

Advanced Security Policy

Now it’s time to introduce more routers and protocols to the mix.
We’ll create a firewall framework to support the following protocols:

�� OSPF

�� RIP

�� BGP

�� BFD

�� LDP

�� RSVP

This should be more than enough to demonstrate the power and
flexibility of the Junos security framework.

For those of you who are following along on your lab router, this book
is using a Juniper MX80 router, which supports a router virtualization
feature called logical systems. R3 and R4 are logical systems defined
within the same physical MX80 as shown in Figure 6.1.

	 110	 Day One: Securing the Routing Engine on M, MX, and T Series

NOTE	 It’s possible to follow along using two physical routers, just make sure
that each router has the firewall framework loaded.

ge-1/0/5 ge-1/1/5

R3 R4

Figure 6.1	 Topology Used for the Advanced Security Policyºº

Quick Look at the Protocol Configuration

R3 and R4 are running quite a number of protocols. Let’s take a quick
look at how they’re configured. You can just look at R3’s protocol
stanza, because R4 has an identical configuration, minus the interface
names:

 [edit]
dhanks@MX80:R3# show protocols
rsvp {
 interface ge-1/0/5.0;
}
mpls {
 label-switched-path R3-to-R4 {
 to 10.0.3.4;
 }
 interface ge-1/0/5.0;
}
bgp {
 export rip-export;
 group 1 {
 type internal;
 local-address 10.0.3.3;
 local-as 65000;
 neighbor 10.0.3.4;
 }
}
ospf {
 area 0.0.0.0 {
 interface ge-1/0/5.0 {
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }

	 Chapter 6: Applying Security Policies to the Routing Engine	 111

 interface lo0.3 {
 passive;
 }
 }
}
ldp {
 interface lo0.3;
 neighbor 10.0.3.4;
}
rip {
 group 1 {
 export rip-export;
 neighbor ge-1/0/5.0;
 }
}

Verify the Protocols

Before applying the security policy, you should verify that all of the
protocols are configured correctly, adjacencies are up, and things are
working as expected.

OSPF

dhanks@MX80:R3> show ospf neighbor
Address Interface State ID Pri Dead
10.0.2.6 ge-1/0/5.0 Full 10.0.3.4 128 37

dhanks@MX80:R3>

OSPF neighbor is up with the FULL state. Looks good.

RIP

dhanks@MX80:R3> show rip neighbor
 Source Destination Send Receive In
Neighbor State Address Address Mode Mode Met
-------- ----- ------- ----------- ---- ------- ---
ge-1/0/5.0 Up 10.0.2.5 224.0.0.9 mcast both 1

dhanks@MX80:R3>

RIP is up and running.

BGP

dhanks@MX80:R3> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending

	 112	 Day One: Securing the Routing Engine on M, MX, and T Series

inet.0 1 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
10.0.3.4 65000 1073 1071 0 0 8:01:42 0/1/1/0
0/0/0/0

dhanks@MX80:R3>

BGP is up and in the ESTABLISHED state.

BFD

dhanks@MX80:R3> show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.0.2.6 Up ge-1/0/5.0 0.450 0.150 3

1 sessions, 1 clients
Cumulative transmit rate 6.7 pps, cumulative receive rate 6.7 pps

dhanks@MX80:R3>

BFD is up and transmitting and receiving packets every 150ms.

LDP

dhanks@MX80:R3> show ldp neighbor
Address Interface Label space ID Hold time
10.0.3.4 lo0.3 10.0.3.4:0 36

dhanks@MX80:R3> show ldp session
 Address State Connection Hold time
10.0.3.4 Operational Open 26

dhanks@MX80:R3>

You can see the LDP neighbor and the session is open and operational.

RSVP

dhanks@MX80:R3> show rsvp neighbor
RSVP neighbor: 1 learned
Address Idle Up/Dn LastChange HelloInt HelloTx/Rx MsgRcvd
10.0.2.6 5 1/0 8:04:38 9 3216/3216 1316

dhanks@MX80:R3> º
Ingress RSVP: 1 sessions
To From State Rt Style Labelin Labelout LSPname
10.0.3.4 10.0.3.3 Up 0 1 FF - 3 R3-to-R4
Total 1 displayed, Up 1, Down 0

Egress RSVP: 1 sessions

	 Chapter 6: Applying Security Policies to the Routing Engine	 113

To From State Rt Style Labelin Labelout LSPname
10.0.3.3 10.0.3.4 Up 0 1 FF 3 - R4-to-R3
Total 1 displayed, Up 1, Down 0

Transit RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0

dhanks@MX80:R3>

The RSVP neighbor is up and passing traffic. You can also see that
there are ingress and egress sessions that are up.

Apply Security Policy

Now that all the protocols are configured and working as expected,
let’s move on to applying the firewall filters to the loopbacks of routers
R3 and R4.

R3

Although R3 is running a lot of protocols, the firewall filter chain is
very simple. We’ll use the following firewall filters:

�� accept-common-services

�� accept-ospf

�� accept-rip

�� accept-bfd

�� accept-bgp

�� accept-ldp

�� accept-rsvp

�� accept-established

�� discard-all

Maintaining the firewall order above, apply them to R3’s routing
engine on interface lo0.3 like so:

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-common-
services

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-ospf

	 114	 Day One: Securing the Routing Engine on M, MX, and T Series

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-rip

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-bfd

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-bgp

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-ldp

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-rsvp

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list accept-established

[edit]
dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list discard-all

[edit]
dhanks@MX80:R3# commit

R4

Using the same firewall filters and order, apply them to R4’s routing
engine on interface lo0.4 like this:

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-common-
services

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-ospf

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-rip

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-bfd

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-bgp

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-ldp

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-rsvp

	 Chapter 6: Applying Security Policies to the Routing Engine	 115

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list accept-established

[edit]
dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list discard-all

[edit]
dhanks@MX80:R4# commit

Verify R3 and R4

Now that R3 and R4 have a security framework applied to the routing
engine, let’s double check that all the protocols are working as expect-
ed again.

dhanks@MX80:R3> show ospf neighbor
Address Interface State ID Pri Dead
10.0.2.6 ge-1/0/5.0 Full 10.0.3.4 128 37

dhanks@MX80:R3>

dhanks@MX80:R3> show rip neighbor
 Source Destination Send Receive In
Neighbor State Address Address Mode Mode Met
-------- ----- ------- ----------- ---- ------- ---
ge-1/0/5.0 Up 10.0.2.5 224.0.0.9 mcast both 1

dhanks@MX80:R3>

dhanks@MX80:R3> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 1 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
10.0.3.4 65000 1125 1124 0 0 8:25:24 0/1/1/0
0/0/0/0

dhanks@MX80:R3>

dhanks@MX80:R3> show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.0.2.6 Up ge-1/0/5.0 0.450 0.150 3

1 sessions, 1 clients
Cumulative transmit rate 6.7 pps, cumulative receive rate 6.7 pps

dhanks@MX80:R3>

dhanks@MX80:R3> show ldp neighbor

	 116	 Day One: Securing the Routing Engine on M, MX, and T Series

Address Interface Label space ID Hold time
10.0.3.4 lo0.3 10.0.3.4:0 36

dhanks@MX80:R3> show ldp session
 Address State Connection Hold time
10.0.3.4 Operational Open 26

dhanks@MX80:R3>

dhanks@MX80:R3> show rsvp neighbor
RSVP neighbor: 1 learned
Address Idle Up/Dn LastChange HelloInt HelloTx/Rx MsgRcvd
10.0.2.6 0 1/0 8:26:51 9 3363/3363 1378

dhanks@MX80:R3> show rsvp session
Ingress RSVP: 1 sessions
To From State Rt Style Labelin Labelout LSPname
10.0.3.4 10.0.3.3 Up 0 1 FF - 3 R3-to-R4
Total 1 displayed, Up 1, Down 0

Egress RSVP: 1 sessions
To From State Rt Style Labelin Labelout LSPname
10.0.3.3 10.0.3.4 Up 0 1 FF 3 - R4-to-R3
Total 1 displayed, Up 1, Down 0

Transit RSVP: 0 sessions
Total 0 displayed, Up 0, Down 0

dhanks@MX80:R3>

Everything is up and running as expected. It looks like the security
framework applied to R3 and R4 is working properly.

Viewing Counters, Logs, and Policers

Let’s take a look at the counters, logs, and policers on R3. You should
expect to see the counters matching protocol traffic being incremented.

NOTE	 The author is using a virtualization feature called logical systems. All
show firewall commands must be performed from the physical router
and must then reference the specific logical system filter. The filter
lo0.3-i refers to the logical-system R3.

dhanks@MX80> show firewall filter lo0.3-i

Filter: lo0.3-i
Counters:

	 Chapter 6: Applying Security Policies to the Routing Engine	 117

Name Bytes Packets
accept-bfd-lo0.3-i 11764012 226231
accept-bgp-lo0.3-i 139108 2259
accept-established-tcp-fetch-lo0.3-i 0 0
accept-established-tcp-ftp-lo0.3-i 0 0
accept-established-tcp-ftp-data-lo0.3-i 0 0
accept-established-tcp-ftp-data-syn-lo0.3-i 0 0
accept-established-tcp-ssh-lo0.3-i 0 0
accept-established-tcp-telnet-lo0.3-i 0 0
accept-established-udp-ephemeral-lo0.3-i 0 0
accept-icmp-lo0.3-i 84168 1002
accept-ldp-discover-lo0.3-i 0 0
accept-ldp-igmp-lo0.3-i 0 0
accept-ldp-unicast-lo0.3-i 357312 5810
accept-ntp-lo0.3-i 0 0
accept-ntp-server-lo0.3-i 0 0
accept-ospf-lo0.3-i 247044 3621
accept-rip-lo0.3-i 55952 1076
accept-rip-igmp-lo0.3-i 32 1
accept-rsvp-lo0.3-i 428488 4764
accept-snmp-lo0.3-i 0 0
accept-ssh-lo0.3-i 64 1
accept-tldp-discover-lo0.3-i 164150 2345
accept-traceroute-icmp-lo0.3-i 0 0
discard-traceroute-tcp-lo0.3-i 0 0
discard-traceroute-udp-lo0.3-i 960 24
accept-web-lo0.3-i 0 0
discard-all-TTL_1-unknown-lo0.3-i 0 0
discard-icmp-lo0.3-i 0 0
discard-netbios-lo0.3-i 0 0
discard-tcp-lo0.3-i 0 0
discard-udp-lo0.3-i 0 0
discard-unknown-lo0.3-i 0 0
no-icmp-fragments-lo0.3-i 0 0
Policers:
Name Packets
management-1m-accept-ntp-lo0.3-i 0
management-1m-accept-ntp-server-lo0.3-i 0
management-1m-accept-traceroute-icmp-lo0.3-i 0
management-1m-discard-traceroute-tcp-lo0.3-i 0
management-1m-discard-traceroute-udp-lo0.3-i 0
management-5m-accept-established-tcp-fetch-lo0.3-i 0
management-5m-accept-established-tcp-ftp-lo0.3-i 0
management-5m-accept-established-tcp-ftp-data-lo0.3-i 0
management-5m-accept-established-tcp-ftp-data-syn-lo0.3-i 0
management-5m-accept-established-tcp-ssh-lo0.3-i 0
management-5m-accept-established-tcp-telnet-lo0.3-i 0
management-5m-accept-established-udp-ephemeral-lo0.3-i 0
management-5m-accept-icmp-lo0.3-i 0
management-5m-accept-snmp-lo0.3-i 0
management-5m-accept-ssh-lo0.3-i 0

	 118	 Day One: Securing the Routing Engine on M, MX, and T Series

management-5m-accept-web-lo0.3-i 0

dhanks@MX80>

OSPF

The firewall filter accept-ospf is matching all of the OSPF traffic and
incrementing the counter accept-ospf-lo0.3-i. You can see that the
number of packets is incremented for every OSPF Hello packet:

dhanks@MX80> show firewall filter lo0.3-i counter accept-ospf-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-ospf-lo0.3-i 250320 3669

Wait a few moments for an OSPF Hello Packet ...

dhanks@MX80> show firewall filter lo0.3-i counter accept-ospf-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-ospf-lo0.3-i 250388 3670

dhanks@MX80>

Notice how the first command shows a total of 3669 packets have
been counted. A few seconds later the same command was executed
and the packets have increased to 3670.

RIP

RIP is being matched by the firewall filter accept-rip and the counter
accept-rip-lo0.3-i is being incremented with every RIP update:

dhanks@MX80> show firewall filter lo0.3-i counter accept-rip-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-rip-lo0.3-i 56784 1092

Wait a few moments for a RIP update ...

dhanks@MX80> show firewall filter lo0.3-i counter accept-rip-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-rip-lo0.3-i 56836 1093

dhanks@MX80>

	 Chapter 6: Applying Security Policies to the Routing Engine	 119

RIP started out with 1092 packets and after a moment the packets
have increased to 1093.

BGP

The firewall filter accept-bgp is matching all of the BGP traffic being
sent to R3. The counter accept-bgp-lo0.3-i is also being incremented
with every BGP packet:

dhanks@MX80> show firewall filter lo0.3-i counter accept-bgp-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-bgp-lo0.3-i 141814 2303

Wait a few moments ...

dhanks@MX80> show firewall filter lo0.3-i counter accept-bgp-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-bgp-lo0.3-i 141885 2304

dhanks@MX80>

BFD

BFD is a light-weight protocol, but it sends packets at a high-rate. The
firewall filter accept-bfd is matching all of the BFD traffic and the
counter accept-bfd-lo0.3-i is being incremented with every BFD echo:

dhanks@MX80> show firewall filter lo0.3-i counter accept-bfd-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-bfd-lo0.3-i 12037272 231486

Wait a few moments for some BFD echo packets ...

dhanks@MX80> show firewall filter lo0.3-i counter accept-bfd-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-bfd-lo0.3-i 12038832 231516

dhanks@MX80>

	 120	 Day One: Securing the Routing Engine on M, MX, and T Series

LDP

The firewall filter accept-ldp has multiple terms to match LDP depend-
ing on how it’s configured. Here, a targeted LDP is used in the configu-
ration to demonstrate how the discover packets are separated from the
unicast traffic. The counter accept-tldp-discover-lo0.3-i is incremented
for every targeted LDP discovery packet. The counter accept-ldp-uni-
cast-lo0.3-i is incremented for every LDP session packet:

dhanks@MX80> show firewall filter lo0.3-i counter accept-ldp-unicast-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-ldp-unicast-lo0.3-i 365720 5944

Wait a few moments for a LDP Hello packet ...

dhanks@MX80> show firewall filter lo0.3-i counter accept-ldp-unicast-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-ldp-unicast-lo0.3-i 365842 5946

Now let’s check out targeted LDP:

dhanks@MX80> show firewall filter lo0.3-i counter accept-tldp-discover-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-tldp-discover-lo0.3-i 168910 2413

Wait a few moments for an LDP discover packet.

dhanks@MX80> show firewall filter lo0.3-i counter accept-tldp-discover-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-tldp-discover-lo0.3-i 168980 2414

dhanks@MX80>

	 Chapter 6: Applying Security Policies to the Routing Engine	 121

RSVP

RSVP is being matched by the firewall filter accept-rsvp. The counter
accept-rsvp-lo0.3-i is also being incremented with every packet:

dhanks@MX80> show firewall filter lo0.3-i counter accept-rsvp-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-rsvp-lo0.3-i 443084 4928

Wait a few moments for a RSVP hello packet ...

dhanks@MX80> show firewall filter lo0.3-i counter accept-rsvp-lo0.3-i

Filter: lo0.3-i
Counters:
Name Bytes Packets
accept-rsvp-lo0.3-i 443308 4929

dhanks@MX80>

Summary

Although our topology only contained two routers, you could see the
number of protocols increased the complexity. Applying the custom-
ized firewall filters literally takes only one command per router:

dhanks@MX80:R3# set interfaces lo0.3 family inet filter input-list [accept-common-
services accept-ospf accept-rip accept-bfd accept-bgp accept-ldp accept-rsvp accept-
established discard-all]

dhanks@MX80:R4# set interfaces lo0.4 family inet filter input-list [accept-common-
services accept-ospf accept-rip accept-bfd accept-bgp accept-ldp accept-rsvp accept-
established discard-all]

Each router was able to fully function using a wide variety of proto-
cols, while at the same time blocking any traffic that wasn’t explicitly
configured or that exceeded a policer’s bandwidth limit.

No matter how complex the problem, it can always be broken down
into simple building blocks. It’s much easier to pick and choose firewall
filters from a framework than trying to build and maintain large

	 122	 Day One: Securing the Routing Engine on M, MX, and T Series

“protect-re” firewall filters that have to be customized for every router.
Maintaining such a large “protect-re” requires too much work for
every change in the network, because terms have to be copied into the
configuration and moved around to ensure proper evaluation.

As your network changes, modifying the firewall framework is a trivial
task. Because all of the building blocks are already preloaded on the
router, it’s just a matter of applying them to the loopback interface.

The framework itself can and should be modified to meet the require-
ments of your network. Try it yourself.

Appendix

Lessons Learned. . 124

Framework Configuration. . 125

R3 Configuration . . 143

R4 Configuration . . 145

	 124	 Day One: Securing the Routing Engine on M, MX, and T Series

If you’ve followed along with this book on a router, you know that
creating a framework of firewall filters designed to secure the routing
engine is hard work. Each protocol and service has their own little
nuances, sometimes making a stateless firewall filter near impossible.
It’s difficult to gauge how secure versus how broad to make each filter.
There’s a tradeoff between portability and security. In this book, it was
decided to err on the side of caution and chose portability over security
in this book’s examples. Feel free to tighten the filters up to best secure
your own environment.

Lessons Learned

Hopefully this book has showed you that maintaining a simple filter
input-list is more natural than maintaining a single, gigantic “pro-
tect-re” that’s over 800 lines long. The simplicity becomes more
apparent as this solution is scaled across multiple routers.

Junos configuration automation using apply-path feature is a very
powerful tool. Each firewall filter used a prefix list leveraging apply-
path where possible. Using apply-path pushes the grunt work of
updating changes into prefix lists off the shoulders of the administrator
and onto Junos. When administrators perform scheduled maintenance
at 3am to add twenty BGP neighbors, and turn up four new interfaces,
the last thing the administrator needs to worry about modifying are the
firewall filters responsible for securing the routing engine.

You should have also noticed that firewall filters that break down the
incoming traffic by protocol, function, and role, provide better analysis
and detailed statistics for the administrator to troubleshoot problems.
There’s no such thing as too much data when it’s properly sorted and
categorized.

The rest of this appendix contains the framework configuration for
your inspection and use. First a few words of caution.

�� Care should always be taken when applying firewall filters to the
routing engine.

�� Always double check your work.

�� Use the show | compare command liberally, to fully understand
what’s being changed.

�� In production environments use the final firewall filter accept-
all instead of the discard-all command, which allows you to

	 Appendix	 125

spend time making sure that all your previous firewall filters in
the chain are working as expected.

�� The router should be verified to work properly without incre-
menting counters in the filter accept-all. After the verification is
complete, it’s recommended to immediately remove the filter
accept-all and replace it with discard-all to ensure the routing
engine is secure.

But if you’ve read this book you know all this. Congratulations on
securing your Junos routing engine!

TIP	 If you visit www.juniper.net/dayone, and then follow the path to this
book’s download page, you’ll find a free Copy and Paste edition of this
book. Its rich-text format allows the file to be opened in various text
editors for easy copying and pasting of the book’s configurations, such
as the one that follows in this appendix.

Framework Configuration

policy-options {
 prefix-list router-ipv4 {
 apply-path “interfaces <*> unit <*> family inet address <*>”;
 }
 prefix-list bgp-neighbors {
 apply-path “protocols bgp group <*> neighbor <*>”;
 }
 prefix-list ospf {
 224.0.0.5/32;
 224.0.0.6/32;
 }
 prefix-list rfc1918 {
 10.0.0.0/8;
 172.16.0.0/12;
 192.168.0.0/16;
 }
 prefix-list rip {
 224.0.0.9/32;
 }
 prefix-list vrrp {
 224.0.0.18/32;
 }
 prefix-list multicast-all-routers {
 224.0.0.2/32;
 }
 prefix-list router-ipv4-logical-systms {
 apply-path “logical-systems <*> interfaces <*> unit <*> family inet address

	 126	 Day One: Securing the Routing Engine on M, MX, and T Series

<*>”;
 }
 prefix-list bgp-neighbors-logical-systems {
 apply-path “logical-systems <*> protocols bgp group <*> neighbor <*>”;
 }
 prefix-list radius-servers {
 apply-path “system radius-server <*>”;
 }
 prefix-list tacas-servers {
 apply-path “system tacplus-server <*>”;
 }
 prefix-list ntp-server {
 apply-path “system ntp server <*>”;
 }
 prefix-list snmp-client-lists {
 apply-path “snmp client-list <*> <*>”;
 }
 prefix-list snmp-community-clients {
 apply-path “snmp community <*> clients <*>”;
 }
 prefix-list localhost {
 127.0.0.1/32;
 }
 prefix-list ntp-server-peers {
 apply-path “system ntp peer <*>”;
 }
 prefix-list dns-servers {
 apply-path “system name-server <*>”;
 }
}
firewall {
 family inet {
 prefix-action management-police-set {
 apply-flags omit;
 policer management-1m;
 count;
 filter-specific;
 subnet-prefix-length 24;
 destination-prefix-length 32;
 }
 prefix-action management-high-police-set {
 apply-flags omit;
 policer management-5m;
 count;
 filter-specific;
 subnet-prefix-length 24;
 destination-prefix-length 32;
 }
 filter accept-bgp {
 apply-flags omit;
 term accept-bgp {
 from {

	 Appendix	 127

 source-prefix-list {
 bgp-neighbors;
 bgp-neighbors-logical-systems;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port bgp;
 }
 then {
 count accept-bgp;
 accept;
 }
 }
 }
 filter accept-ospf {
 apply-flags omit;
 term accept-ospf {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 ospf;
 router-ipv4-logical-systms;
 }
 protocol ospf;
 }
 then {
 count accept-ospf;
 accept;
 }
 }
 }
 filter accept-rip {
 apply-flags omit;
 term accept-rip {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 rip;
 }
 protocol udp;
 destination-port rip;

	 128	 Day One: Securing the Routing Engine on M, MX, and T Series

 }
 then {
 count accept-rip;
 accept;
 }
 }
 term accept-rip-igmp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 rip;
 }
 protocol igmp;
 }
 then {
 count accept-rip-igmp;
 accept;
 }
 }
 }
 filter accept-vrrp {
 apply-flags omit;
 term accept-vrrp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 vrrp;
 }
 protocol [vrrp ah];
 }
 then {
 count accept-vrrp;
 accept;
 }
 }
 }
 filter accept-icmp {
 apply-flags omit;
 term no-icmp-fragments {
 from {
 is-fragment;
 protocol icmp;
 }
 then {
 count no-icmp-fragments;

	 Appendix	 129

 log;
 discard;
 }
 }
 term accept-icmp {
 from {
 protocol icmp;
 ttl-except 1;
 icmp-type [echo-reply echo-request time-exceeded unreachable source-
quench router-advertisement parameter-problem];
 }
 then {
 policer management-5m;
 count accept-icmp;
 accept;
 }
 }
 }
 filter accept-ssh {
 apply-flags omit;
 term accept-ssh {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port ssh;
 }
 then {
 policer management-5m;
 count accept-ssh;
 accept;
 }
 }
 }
 filter accept-snmp {
 apply-flags omit;
 term accept-snmp {
 from {
 source-prefix-list {
 snmp-client-lists;
 snmp-community-clients;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }

	 130	 Day One: Securing the Routing Engine on M, MX, and T Series

 protocol udp;
 destination-port snmp;
 }
 then {
 policer management-5m;
 count accept-snmp;
 accept;
 }
 }
 }
 filter accept-ntp {
 apply-flags omit;
 term accept-ntp {
 from {
 source-prefix-list {
 ntp-server;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp;
 accept;
 }
 }
 term accept-ntp-peer {
 from {
 source-prefix-list {
 ntp-server-peers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp-peer;
 accept;
 }
 }
 term accept-ntp-server {
 from {
 source-prefix-list {

	 Appendix	 131

 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp-server;
 accept;
 }
 }
 }
 filter accept-web {
 apply-flags omit;
 term accept-web {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port [http https];
 }
 then {
 policer management-5m;
 count accept-web;
 accept;
 }
 }
 }
 filter discard-all {
 apply-flags omit;
 term discard-ip-options {
 from {
 ip-options any;
 }
 then {
 count discard-ip-options;
 log;
 syslog;
 discard;
 }
 }
 term discard-TTL_1-unknown {

	 132	 Day One: Securing the Routing Engine on M, MX, and T Series

 from {
 ttl 1;
 }
 then {
 count discard-all-TTL_1-unknown;
 log;
 syslog;
 discard;
 }
 }
 term discard-tcp {
 from {
 protocol tcp;
 }
 then {
 count discard-tcp;
 log;
 syslog;
 discard;
 }
 }
 term discard-netbios {
 from {
 protocol udp;
 destination-port 137;
 }
 then {
 count discard-netbios;
 log;
 syslog;
 discard;
 }
 }
 term discard-udp {
 from {
 protocol udp;
 }
 then {
 count discard-udp;
 log;
 syslog;
 discard;
 }
 }
 term discard-icmp {
 from {
 protocol icmp;
 }
 then {
 count discard-icmp;
 log;

	 Appendix	 133

 syslog;
 discard;
 }
 }
 term discard-unknown {
 then {
 count discard-unknown;
 log;
 syslog;
 discard;
 }
 }
 }
 filter accept-traceroute {
 apply-flags omit;
 term discard-traceroute-udp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 ttl 1;
 destination-port 33435-33450;
 }
 then {
 count discard-traceroute-udp;
 discard;
 }
 }
 term accept-traceroute-icmp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol icmp; ttl 1;
 icmp-type [echo-request timestamp time-exceeded];
 }
 then {
 count accept-traceroute-icmp;
 accept;
 }
 }
 term discard-traceroute-tcp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp; ttl 1;

	 134	 Day One: Securing the Routing Engine on M, MX, and T Series

 }
 then {
 count discard-traceroute-tcp;
 discard;
 }
 }
 }
 filter accept-igp {
 apply-flags omit;
 term accept-ospf {
 filter accept-ospf;
 }
 term accept-rip {
 filter accept-rip;
 }
 }
 filter accept-common-services {
 apply-flags omit;
 term accept-icmp {
 filter accept-icmp;
 }
 term accept-traceroute {
 filter accept-traceroute;
 }
 term accept-ssh {
 filter accept-ssh;
 }
 term accept-snmp {
 filter accept-snmp;
 }
 term accept-ntp {
 filter accept-ntp;
 }
 term accept-web {
 filter accept-web;
 }
 term accept-dns {
 filter accept-dns;
 }
 }
 filter accept-bfd {
 apply-flags omit;
 term accept-bfd {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }

	 Appendix	 135

 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port 49152-65535;
 destination-port 3784-3785;
 }
 then {
 count accept-bfd;
 accept;
 }
 }
 }
 filter accept-ldp {
 apply-flags omit;
 term accept-ldp-discover {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 multicast-all-routers;
 }
 protocol udp;
 destination-port ldp;
 }
 then {
 count accept-ldp-discover;
 accept;
 }
 }
 term accept-ldp-unicast {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port ldp;
 }
 then {
 count accept-ldp-unicast;
 accept;

	 136	 Day One: Securing the Routing Engine on M, MX, and T Series

 }
 }
 term accept-tldp-discover {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ldp;
 }
 then {
 count accept-tldp-discover;
 accept;
 }
 }
 term accept-ldp-igmp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 multicast-all-routers;
 }
 protocol igmp;
 }
 then {
 count accept-ldp-igmp;
 accept;
 }
 }
 }
 filter accept-ftp {
 apply-flags omit;
 term accept-ftp {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port [ftp ftp-data];
 }
 then {
 policer management-5m;

	 Appendix	 137

 count accept-ftp;
 accept;
 }
 }
 }
 filter accept-rsvp {
 apply-flags omit;
 term accept-rsvp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol rsvp;
 }
 then {
 count accept-rsvp;
 accept;
 }
 }
 }
 filter accept-radius {
 apply-flags omit;
 term accept-radius {
 from {
 source-prefix-list {
 radius-servers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port [radacct radius];
 tcp-established;
 }
 then {
 policer management-1m;
 count accept-radius;
 accept;
 }
 }
 }
 filter accept-tacas {
 apply-flags omit;
 term accept-tacas {
 from {
 source-prefix-list {
 tacas-servers;
 }
 destination-prefix-list {

	 138	 Day One: Securing the Routing Engine on M, MX, and T Series

 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol [tcp udp];
 source-port [tacacs tacacs-ds];
 tcp-established;
 }
 then {
 policer management-1m;
 count accept-tacas;
 accept;
 }
 }
 }
 filter accept-remote-auth {
 apply-flags omit;
 term accept-radius {
 filter accept-radius;
 }
 term accept-tacas {
 filter accept-tacas;
 }
 }
 filter accept-telnet {
 apply-flags omit;
 term accept-telnet {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port telnet;
 }
 then {
 policer management-1m;
 count accept-telnet;
 accept;
 }
 }
 }
 filter accept-dns {
 apply-flags omit;
 term accept-dns {
 from {
 source-prefix-list {
 dns-servers;
 }

	 Appendix	 139

 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port 53;
 }
 then {
 policer management-1m;
 count accept-dns;
 accept;
 }
 }
 }
 filter accept-ldp-rsvp {
 apply-flags omit;
 term accept-ldp {
 filter accept-ldp;
 }
 term accept-rsvp {
 filter accept-rsvp;
 }
 }
 filter accept-established {
 apply-flags omit;
 term accept-established-tcp-ssh {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ssh;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ssh;
 accept;
 }
 }
 term accept-established-tcp-ftp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp;

	 140	 Day One: Securing the Routing Engine on M, MX, and T Series

 accept;
 }
 }
 term accept-established-tcp-ftp-data-syn {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp-data;
 tcp-initial;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp-data-syn;
 accept;
 }
 }
 term accept-established-tcp-ftp-data {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp-data;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp-data;
 accept;
 }
 }
 term accept-established-tcp-telnet {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port telnet;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-telnet;
 accept;
 }
 }
 term accept-established-tcp-fetch {
 from {
 destination-prefix-list {

	 Appendix	 141

 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port [http https];
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-fetch;
 accept;
 }
 }
 term accept-established-udp-ephemeral {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port 49152-65535;
 }
 then {
 policer management-5m;
 count accept-established-udp-ephemeral;
 accept;
 }
 }
 }
 filter accept-all {
 apply-flags omit;
 term accept-all-tcp {
 from {
 protocol tcp;
 }
 then {
 count accept-all-tcp;
 log;
 syslog;
 accept;
 }
 }
 term accept-all-udp {
 from {
 protocol udp;
 }
 then {
 count accept-all-udp;
 log;
 syslog;
 accept;
 }
 }

	 142	 Day One: Securing the Routing Engine on M, MX, and T Series

 term accept-all-igmp {
 from {
 protocol igmp;
 }
 then {
 count accept-all-igmp;
 log;
 syslog;
 accept;
 }
 }
 term accept-icmp {
 from {
 protocol icmp;
 }
 then {
 count accept-all-icmp;
 log;
 syslog;
 accept;
 }
 }
 term accept-all-unknown {
 then {
 count accept-all-unknown;
 log;
 syslog;
 accept;
 }
 }
 }
 }
 policer management-1m {
 apply-flags omit;
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 625k;
 }
 then discard;
 }
 policer management-5m {
 apply-flags omit;
 if-exceeding {
 bandwidth-limit 5m;
 burst-size-limit 625k;
 }
 then discard;
 }
}

	 Appendix	 143

R3 Configuration

logical-systems {
 R3 {
 interfaces {
 ge-1/0/5 {
 unit 0 {
 family inet {
 address 10.0.2.5/30;
 }
 family iso;
 family mpls;
 }
 }
 lo0 {
 unit 3 {
 family inet {
 filter {
 input-list [accept-common-services accept-ospf accept-rip
accept-bfd accept-bgp accept-ldp accept-rsvp discard-all];
 }
 address 10.0.3.3/32;
 }
 family iso {
 address 49.0002.0100.0000.3003.00;
 }
 }
 }
 }
 protocols {
 rsvp {
 interface ge-1/0/5.0;
 interface all;
 }
 mpls {
 label-switched-path R3-to-R4 {
 to 10.0.3.4;
 }
 interface ge-1/0/5.0;
 }
 bgp {
 export rip-export;
 group 1 {
 type internal;
 local-address 10.0.3.3;
 local-as 65000;
 neighbor 10.0.3.4;
 }
 }
 isis {

	 144	 Day One: Securing the Routing Engine on M, MX, and T Series

 export isis-export;
 reference-bandwidth 1g;
 lsp-lifetime 3600;
 traffic-engineering {
 family inet {
 shortcuts;
 }
 }
 level 2 {
 authentication-key “9vBy8xdDjq.5F”; ## SECRET-DATA
 authentication-type simple;
 }
 level 1 wide-metrics-only;
 interface all {
 level 1 disable;
 level 2 {
 hello-authentication-key “$9$0ylC1EydVY2aU”; ## SECRET-DATA
 hello-authentication-type md5;
 }
 }
 }
 ospf {
 area 0.0.0.0 {
 interface ge-1/0/5.0 {
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 interface lo0.3 {
 passive;
 }
 }
 }
 ldp {
 interface lo0.3;
 neighbor 10.0.3.4;
 }
 rip {
 group 1 {
 export rip-export;
 neighbor ge-1/0/5.0;
 }
 }
 }
 policy-options {
 policy-statement isis-export {
 term 1 {
 from {
 route-filter 10.0.5.0/24 exact;

	 Appendix	 145

 route-filter 10.0.4.0/22 exact;
 }
 to level 2;
 then accept;
 }
 term 2 {
 from {
 route-filter 10.0.4.0/22 longer;
 }
 to level 2;
 then reject;
 }
 }
 policy-statement rip-export {
 term 1 {
 from protocol aggregate;
 then accept;
 }
 }
 }
 routing-options {
 static {
 route 5.1.1.1/32 receive;
 }
 aggregate {
 route 10.0.4.0/22;
 route 5.0.0.0/8;
 }
 }
 }
}

R4 Configuration

logical-systems {
 R4 {
 interfaces {
 ge-1/1/5 {
 unit 0 {
 family inet {
 address 10.0.2.6/30;
 }
 family iso;
 family mpls;
 }
 }
 lo0 {
 unit 4 {

	 146	 Day One: Securing the Routing Engine on M, MX, and T Series

 family inet {
 filter {
 input-list [accept-common-services accept-ospf accept-rip
accept-bfd accept-bgp accept-ldp accept-rsvp discard-all];
 }
 address 10.0.3.4/32;
 }
 family iso {
 address 49.0002.0100.0000.3004.00;
 }
 }
 }
 }
 protocols {
 rsvp {
 interface ge-1/1/5.0;
 interface all;
 }
 mpls {
 label-switched-path R4-to-R3 {
 to 10.0.3.3;
 }
 interface ge-1/1/5.0;
 }
 bgp {
 export ee;
 group 1 {
 type internal;
 local-address 10.0.3.4;
 local-as 65000;
 neighbor 10.0.3.3;
 }
 }
 isis {
 export isis-export;
 reference-bandwidth 1g;
 lsp-lifetime 3600;
 traffic-engineering {
 family inet {
 shortcuts;
 }
 }
 level 2 {
 authentication-key “9oEZDk9Cu0Ic”; ## SECRET-DATA
 authentication-type simple;
 }
 level 1 wide-metrics-only;
 interface all {
 level 1 disable;
 level 2 {
 hello-authentication-key “9hT7yeWg4ZGi.”; ## SECRET-DATA

	 Appendix	 147

 hello-authentication-type md5;
 }
 }
 }
 ospf {
 export ee;
 area 0.0.0.0 {
 interface ge-1/1/5.0 {
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 }
 }
 ldp {
 interface lo0.4;
 neighbor 10.0.3.3;
 }
 rip {
 group 1 {
 export ee;
 neighbor ge-1/1/5.0;
 }
 }
 }
 policy-options {
 policy-statement ee {
 term 1 {
 from protocol aggregate;
 then accept;
 }
 }
 policy-statement isis-export {
 term 1 {
 from {
 route-filter 10.0.5.0/24 exact;
 route-filter 10.0.4.0/22 exact;
 }
 to level 2;
 then accept;
 }
 term 2 {
 from {
 route-filter 10.0.4.0/22 longer;
 }
 to level 2;
 then reject;
 }
 }
 }

	 148	 Day One: Securing the Routing Engine on M, MX, and T Series

 routing-options {
 static {
 route 2.2.2.2/32 receive;
 }
 aggregate {
 route 10.0.4.0/22;
 route 2.0.0.0/8;
 }
 }
 }
}

	Front Cover
	Back Cover
	Title Page
	Copyright and About the Author
	What You Need to Know Before Reading this Book
	After Reading this Book, You’ll Be Able to...
	Why Secure the Routing Engine?
	M/MX/T Routers
	Chapter 1: Firewall Filters
	Firewall Families
	How Firewall Filters are Evaluated
	Firewall Filter Match Conditions
	Firewall Filter Actions
	
Applying Firewall Filters
	Firewall Filters: Data Plane versus Control Plane
	Firewall Filter Chaining
	Nested Firewall Filters
	Summary

	Chapter 2: Policers
	Policers Overview
	Token Bucket Algorithm
	Bandwidth-limit
	Burst-size-limit
	Rate-limiting Traffic
	Filter-specific Versus Term-specific
	Summary

	Chapter 3: Viewing Counters, Logs, and Policers
	Viewing Firewall Filter Counters
	Viewing the Firewall Filter Log
	Viewing Firewall Policers
	Summary

	Chapter 4: Junos Configuration Automation
	Apply-path
	Apply-flags omit
	Summary

	Chapter 5: Creating a Basic Framework of Firewall Filters
	Overview of a Firewall Filter Framework
	Prefix Lists
	Policers
	Firewall Filters
	Summary

	Chapter 6: Applying Security Policies to the Routing Engine
	Before You Begin
	Load Configuration
	Your First Security Policy
	Advanced Security Policy
	Summary

	Appendix
	Lessons Learned
	Framework Configuration
	R3 Configuration
	R4 Configuration

