
Junos® Fundamentals

When it’s time to swap out your Cisco

routers with new Juniper Networks

devices, use this book to optimize the

QoS functionality of your new network.

By Venkatesh Krishnan		

DAY ONE: JUNOS QOS
	 FOR IOS ENGINEERS

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: JUNOS QoS FOR IOS ENGINEERS

Book #9 in the Junos Fundamentals series

QoS has become an integral part of network design given the volume of video and voice
traffic over IP. While both IOS and Junos fundamentally support QoS across their plat-
forms, there are still some differences in how the OSes are implemented and how they
are understood.

Day One: Junos QoS for IOS Engineers addresses the needs of the IOS-trained engineer
by providing side-by-side comparisons of QoS configurations and techniques in both
IOS and Junos. In a few quick steps you can compare what you did yesterday with IOS
to what you can do today with Junos. Along the way you’ll find insights, tips, and no-
nonsense explanations of what is taking place. If you are an engineer who is already fa-
miliar with IOS QoS, get ready to see the ‘Junos way’ in action, whether it’s simply using
a different syntax or a whole hierarachy.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

nn Design and deploy QoS on Junos devices within your network.

nn Troubleshoot basic QoS issues with Junos troubleshooting procedures.

nn Execute QoS specific Junos show commands.

nn Create QoS configuration templates for deployment.

“This Day One book is perfect for the network engineer who would like to add Class-of-

Service to their network, but only has familiarity with IOS. The side-by-side comparison be-

tween IOS and Junos CoS configurations makes it easy to understand and implement CoS

on a Juniper device.”

		 Chris Jones, JNCIE-ENT #272,

Author of Day One: Junos for IOS Engineers

Day One: Junos QoS for IOS Engineers

By Venkatesh Krishnan

Junos® Networking Technologies

Chapter 1 : Introduction. . 5

Chapter 2 : Class of Service Functionality in IOS and Junos 9

Chapter 3 : Comparison of IOS and Junos with Basic Tuple 29

Chapter 4: Policing and Shaping. 33

Chapter 5: Congestion Avoidance. . 43

Chapter 6: Troubleshooting. . 49

© 2012 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, the Juniper Networks logo, Junos,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. Junose is a trademark of Juniper Networks,
Inc. All other trademarks, service marks, registered
trademarks, or registered service marks are the property
of their respective owners.

Juniper Networks assumes no responsibility for any
inaccuracies in this document. Juniper Networks reserves
the right to change, modify, transfer, or otherwise revise
this publication without notice. Products made or sold by
Juniper Networks or components thereof might be
covered by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S. Patent
Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051,
6,333,650, 6,359,479, 6,406,312, 6,429,706,
6,459,579, 6,493,347, 6,538,518, 6,538,899,
6,552,918, 6,567,902, 6,578,186, and 6,590,785.

Published by Juniper Networks Books
Author: Venkatesh Krishnan
Technical Reviewers: Jack Parks
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
J-Net Community Manager: Julie Wider

About the Author
Venkatesh Krishnan is a Network Consultant with the
Professional Services Organization at Juniper Networks
specializing in design and implementation of enterprise
and service provider networks. Prior to joining Juniper
Networks, he has also worked in the Advanced Services
team at Cisco Systems working as a Network Consulting
Engineer in the Service Provider team. He has assisted in
designing QoS solutions for customers both on Cisco and
Juniper devices. He has been in the field of Networking
and Security for over 10 years. He holds a CCIE-R&S
#24243.

Author’s Acknowledgments
There are a lot of people I would like to thank for their
assistance. I would like to thank my family for their
support and patience throughout this process, my
manager, Craig Sirkin, for his encouragement and
guidance and Patrick Ames and the Day One team for
tirelessly working through this. Finally, I would like to
thank my colleague, Jack Parks, whose input, tips, and
advice in reviewing this information helped me convert it
into a book.

ISBN: 978-1-936779-56-7 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-936779-57-4 (ebook)

Version History: v1 December 2012
 2 3 4 5 6 7 8 9 10 	 #7100159-en

This book is available in a variety of formats at: http://
www.juniper.net/dayone. Send your suggestions,
comments, and critiques by email to dayone@juniper.net.

	 ii	

http://www.juniper.net/dayone
http://www.juniper.net/dayone

Welcome to Day One

This book is part of a growing library of Day One books, produced and
published by Juniper Networks Books.

Day One books were conceived to help you get just the information that
you need on day one. The series covers Junos OS and Juniper Networks
networking essentials with straightforward explanations, step-by-step
instructions, and practical examples that are easy to follow.

The Day One library also includes a slightly larger and longer suite of
This Week books, whose concepts and test bed examples are more
similar to a weeklong seminar.

You can obtain either series, in multiple formats:

�� Download a free PDF edition at http://www.juniper.net/dayone.

�� Get the ebook edition for iPhones and iPads from the iTunes Store.
Search for Juniper Networks Books.

�� Get the ebook edition for any device that runs the Kindle app
(Android, Kindle, iPad, PC, or Mac) by opening your device's
Kindle app and going to the Kindle Store. Search for Juniper
Networks Books.

�� Purchase the paper edition at either Vervante Corporation (www.
vervante.com) or Amazon (www.amazon.com) for between
$12-$28, depending on page length.

�� Note that Nook, iPad, and various Android apps can also view
PDF files.

�� If your device or ebook app uses .epub files, but isn't an Apple
product, open iTunes and download the .epub file from the iTunes
Store. You can now drag and drop the file out of iTunes onto your
desktop and sync with your .epub device.

What You Need to Know Before Reading This Book

Before reading this book, you should be familiar with the basic adminis-
trative functions of the Junos operating system, including the ability to
work with operational commands and to read, understand, and change
Junos configurations. There are several books in the Day One library on
exploring and learning Junos, at www.juniper.net/dayone.

This book makes a few assumptions about you, the reader:

�� You are familiar with implementing QoS on IOS devices.

	 	 iii

http://www.juniper.net/dayone
www.vervante.com
www.vervante.com
www.amazon.com

	 iv	

�� You know the basics of troubleshooting a QoS problem on an
IOS device.

�� You have a basic understanding of Junos.

After Reading This Book, You’ll Be Able To:

�� Design and deploy QoS on Junos devices within your network

�� Troubleshoot basic QoS issues with Junos troubleshooting
procedures

�� Execute QoS specific Junos show commands

�� Create QoS configuration templates for deployment

IOS and Junos

Given the volume of video and voice traffic over IP, QoS has become an
integral part of network design. Most customer networks include a
mix of Cisco and Juniper equipment, and while both Cisco and Juniper
fundamentally support QoS across their platforms, there are still some
differences in how they are implemented and understood that the
reader will immediately see.

It can be easy to get lost in a lengthy IOS configuration file while trying
to understand the specific QoS configuration attached to an interface,
but Junos allocates a separate hierarchy to QoS. Junos also follows and
implements a specific order when performing QoS.

In addition, there are some troubleshooting mechanisms that will
provide faster resolution to a QoS problem in Junos, all of which are
highlighted in this book.

This book does not delve deeply into the concepts of QoS or specific
platform related troubleshooting. Instead, it guides you through
building a QoS configuration in Junos based upon your IOS experi-
ence, and then provides a comparison of how the Junos implementa-
tion differs from IOS.

Chapter 1

Introduction

	 6	 Day One: Junos QoS for IOS Engineers

Imagine you are at home, watching high-def Netflix movies on your
laptop while talking on the VoIP phone and browsing the Internet.
Now, imagine everyone in your neighborhood doing the same thing,
then everyone in your city, and so on. Let’s impose the condition that it
must be high quality high-def streaming video, clear voice quality on
the VoIP phone, and no page cannot be displayed alerts while brows-
ing. You’ve got it – when you start placing more and more demands on
the Internet, it becomes essential to effectively identify each packet and
treat it accordingly.

The ability to identify specific packets and to process each packet
based upon its identity is the underlying principle of class of service or
quality of service (QoS). Delay, jitter, packet loss, bandwidth require-
ments, and latency are the inherent parameters that govern traffic
quality. QoS is a tool that helps control and manipulate the flow of
traffic to achieve better performance.

MORE?	 See Day One: Deploying Basic QoS for a succinct explanation of QoS
at http://www.juniper.net/dayone.

Figure 1.1	 Internet Use

A basic QoS function can be broken into these five fundamental steps,
which are used throughout the rest of this Day One book:

http://www.juniper.net/dayone

	 Chapter 1: Introduction	 7

�� Classification – This is where you try to identify the type of
packet. The criteria for identifying the packet can range from
source and destination IP addresses, DSCP, MPLS EXP bits to
layer-4 ports, protocols, etc. Classification provides the ability to
understand the different types of traffic patterns within your
network. By clearly defining and classifying the traffic types you
can exercise better control over how they are handled through
your network.

�� Queuing – Once the packets have been classified you can then
define steps on how to process them. The first step is allocating
the classes to the hardware queues on an interface (the number of
hardware queues will depend upon the specific platform avail-
able).

�� Scheduling and Prioritizing – Once the different classes have
been assigned to defined queues, the next step is to define how
each queue will be serviced and how many packets you need to
take from each queue when sending them over the wire through
the interface. Prioritizing also defines which queue gets serviced
first and in what order they will be serviced.

�� Bandwidth assignment –Bandwidth will be assigned according to
the scheduling mechanism defined for each queue.

�� Marking – Though not always mandatory, you can choose to
acknowledge and pass the traffic with the same marking that it
arrived with, or choose to rewrite the marking of the packet, or
configure a marking on the packet if it has no marking. Marking
will modify the DSCP/802.1Q/IP Precedence or MPLS EXP bit
value. Often it is preferable to define specific marking for packets
to enable the following network devices to honor and process the
packet accordingly.

Most modern networks contain a medley of different vendor equip-
ment including Cisco and Juniper. For IOS engineers the command line
for Junos might seem different from IOS, but you can still configure
Junos devices to perform the same functions. It can be a challenge
sometimes to transition from one command line to another, (albeit an
enjoyable challenge for engineers, nonetheless). This book attempts to
ease that transition by providing a comparative study of how a QoS
configuration is built both in IOS and in Junos.

It shows the IOS configurations first and then follows with the compa-
rable Junos version, which includes tips and highlights for the IOS
engineer.

	 8	 Day One: Junos QoS for IOS Engineers

MORE?	 Day One: Junos for IOS Engineers provides a good reference for
cultivating an understanding of the nuances of Junos. In addition, Day
One: Configuring Junos Basics can help create a launching pad to
build a Junos configuration for any device. These and other Day One
books on Junos can make switching from your IOS background to
Junos much easier. See the complete Day One library at http://www.
juniper.net/dayone.

http://www.juniper.net/dayone
http://www.juniper.net/dayone

Chapter 2

Class of Service Functionality in IOS
and Junos

Class of Service Functionality in Cisco IOS. . 10

Class of Service Functionality in Junos. . 16

Summary. . 27

	 10	 Day One: Junos QoS for IOS Engineers

This chapter compares class of service functionality in the two OSes:
first IOS, and then, in comparison, Junos. To get you started, we
construct a simple QoS configuration and then allow you to build on
your understanding by expanding the scope of the discussion in later
chapters. For most practical purposes, Quality of Service (QoS) in IOS
translates to Class-of-Service (CoS) in Junos, and those terms are used
interchangeably in this book.

NOTE	 CoS in Cisco terminology indicates manipulating bits in Layer-2 only.
Junos, on the other hand, simplifies the task and addresses all changes
under Class-of-Service. This includes layer-2 and layer-3, along with
MPLS EXP bits.

Figure 2.1 is a generic representation of what elements QoS will
address in any network.

Figure 2.1	 QoS in a Network

Class of Service Functionality in Cisco IOS

When you focus on MQC (Modular QoS CLI) there are three basic
steps to configure and deploy QoS on Cisco devices. Let’s follow the
sequence.

Defining and Configuring Class-map

Class-maps are used to classify packets with the criterion for classifica-
tion controlled by the match statements. The match command can
match on numerous fields in the packet header, ranging from DSCP,
MPLS EXP bits, source/destination ip addresses, and source/destina-
tion mac-addresses, to input interfaces and protocols.

MORE?	 The following URL gives a complete list of match statements http://
www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfm-
cli2.html. Be sure to check for the latest updates on the Cisco website.

Class-maps have a match-all or a match-any option, with the default
being match-all. The match-all keyword is used when all of the
conditions must be met, while match-any is used when only one out
the many conditions can be met in order for a packet to be placed in

http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfmcli2.html
http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfmcli2.html
http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/qcfmcli2.html

	 Chapter 2: Class of Service Functionality in IOS and Junos	 11

that traffic class.

The match not option is used to specify a match criterion that prevents
a packet from being classified as a member of the class.

Let’s review some samples in the next six examples.

Example 1

Example 1 illustrates how an access-list can be used to create a
class-map for IP addresses:

Router(config)# class-map match-any voice
Router(config-cmap)# match protocol ip
Router(config-cmap)# match access-group 101

Router(config)# access-list 101 permit 10.10.10.0 0.0.0.255
Router(config)# access-list 101 permit 10.10.20.0 0.0.0.255
Router(config)# access-list 101 permit 172.16.31.0 0.0.0.255

Example 2

Example 2 illustrates how a combination of ip addresses and mac-
addresses can be used:

Router(config)# class-map match-any class2
Router(config-cmap)# match protocol ip
Router(config-cmap)# match access-group 2
Router(config-cmap)# exit

Router(config)# class-map match-all class1
Router(config-cmap)# match class-map class2
Router(config-cmap)# match destination-address mac 00.00.00.00.00.00
Router(config-cmap)# exit

Router(config)# access-list 2 permit 10.10.0.0 0.0.255.255
Router(config)# access-list 2 permit 192.168.0.0 0.0.0.255

Example 3

Example 3 highlights the use of the “match not” option:

Router(config)# class-map noip
Router(config-cmap)# match not protocol ip
Router(config-cmap)# exit

Example 4

Examples 4 and 5 illustrate the use of ip precedence, dscp, and rtp
ports in a class-map while Example 6 highlights the use of nested
class-maps:

Router(config)# class-map match-all ex-4
Router(config-cmap)# match ip rtp 16384 16383

	 12	 Day One: Junos QoS for IOS Engineers

Router(config-cmap)# match precedence 5
Router(config-cmap)# exit

Example 5	

Router(config)# class-map match-any ex-5
Router(config-cmap)# match dscp 0
Router(config-cmap)# match dscp 1
Router(config-cmap)# exit

Example 6

Router(config)# class-map match-any class-2
Router(config-cmap)# match ip rtp 16384 16383
Router(config-cmap)# match precedence 5
Router(config-cmap)# exit

Router(config)# class-map match-any class-1
Router(config-cmap)# match class-map class-2
Router(config-cmap)# match cos 5
Router(config-cmap)# exit

Defining and Configuring policy-map

Each policy-map will call several class-maps, and for each class-map
bandwidth, buffer size and priority can be defined. It’s a good practice
to define the last class as “default” and assign it a certain bandwidth
allocating all the traffic that has not been classified to this class. It is
possible to configure nested policies, depending upon code and
platform support. Packet marking is also configured at this stage.

The priority command sets the guaranteed bandwidth for the traffic.
This option can be used with traffic that is sensitive to latency, like
voice or video. The bandwidth command reserves bandwidth for that
class of traffic while the queue limit specifies the maximum number of
packets the queue can hold for that class of traffic. When bandwidth is
specified as a percentage, then the available bandwidth is calculated
based upon the interface bandwidth or as a percentage of the “band-
width” configured under the interface. The following examples
highlight some of the ways in which policy-maps can be created.

NOTE	 Hierarchical scheduling is available in Junos, but is beyond the scope
of this book. See The Juniper MX Series by Douglas Hanks and Harry
Reynolds, published in 2012 by O’Reilly Media for an entire chapter
on H-CoS. http://www.juniper.net/books.

Example 1

Example 1 shows how the dscp values can be set for different classes of
traffic:

	 Chapter 2: Class of Service Functionality in IOS and Junos	 13

Router# show run

policy-map voip
class voip-rtp
set dscp ef
class class-default
set dscp default

Example 2

Example 2 illustrates how the various options can be defined for each
class including bandwidth and queue-limit:

Router(config)# policy-map policy1
Router(config-pmap)# class class1
Router(config-pmap-c)# bandwidth 1000
Router(config-pmap-c)# queue-limit 20
Router(config-pmap)# exit

Router(config-pmap)# class class2
Router(config-pmap-c)# bandwidth 2000
Router(config-pmap)# exit

Example 3

Example 3 illustrates a nested policy along with the use of the priority
option:

Router(config)# policy-map child
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 50

Router(config)# policy-map parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# service-policy child

Configuring the Service Policy

Applying the service policy to the interface is the final step once the
packets have been classified and each class of traffic is allocated the
right bandwidth along with what they will be marked as. In the event
that a “bandwidth” command is specified under the interface, the
value configured here is used to calculate the actual bandwidth for
each class, in case bandwidth-percent is used. The service policy can be
applied in either the input or output direction.

Router(config)# interface g1/0/0
Router(config-if)# service-policy output policy1
Router(config-if)# exit

This example illustrates how a service policy can be deployed.

	 14	 Day One: Junos QoS for IOS Engineers

Queuing and Scheduling

How packets are classified and marked has already been discussed
here, but an explicit description of how the packets will be serviced on
their way out has not. How will the packets that have been marked be
moved out, and how will sensitive packets, like voice and video, be
serviced differently when compared to other packets?

After the packets are processed they are stored in memory until the
outgoing interface is available to transmit them. IOS creates a queue in
order to manage the packets that are waiting to exit the interface. The
basic queuing scheme uses FIFO (first in, first out) scheduling and
services the packets in that order. This method cannot account for
delay, jitter, and latency, and packet loss is a concern, given the finite
storage available to hold the packets. Modifying the length of the
queue will minimize packet loss but it comes at the cost of tampering
with the latency and delay, hence the need to have multiple queues and
a mechanism to determine how to service which queues at any given
moment. IOS offers various queuing and scheduling techniques that
determine how the packets exit the interface as summarized in Table
2.1.

Table 2.1	 IOS Queing and Scheduling Characteristics

Queuing Method Max. number
of queues

Classification capabilities How they are serviced

FIFO 1 Default First packet to arrive is serviced first.

Priority Queuing
(PQ)

4 Access-list Always serves higher priority queues
over lower priority queues.

Custom Queuing
(CQ)

16 Access-list Serves a configured number of bytes
per queue, per round robin pass
through the queues.

Weighted Fair
Queuing (WFQ)

4096 Automatic (based on flows
which are identified by src/dst
address, port numbers, and
protocol).

Queues with low volume and higher
IP precedence get higher service
compared to high volume but low
precedence, with each flow using a
different queue.

Class-Based
Weighted Fair
Queuing (CBWFQ)

64 Access-list/Class maps Certain percentage of bandwidth is
allocated to each queue.

	 Chapter 2: Class of Service Functionality in IOS and Junos	 15

Low Latency
Queuing (LLQ)

N/A Same as CBWFQ Similar to CBWFQ, except some
queues configured as “priority” are
always getting served before other
queues. It polices traffic with a
configured priority bandwidth so as
to not starve other queues.

Modified Deficit
Round Robin
(MDRR)

8 IP Precedence Similar to CQ, but if any queue is
serviced in excess of its configured
value then less data is dequeued the
next time the queue is serviced.

BEST PRACTICE	 Changing the queue depth is not a vendor-specific issue – network
traffic is affected regardless of what device is used. It is therefore
essential to study the network traffic pattern and then assign a queue
depth accordingly.

FIFO and WFQ are the default queuing methods on some router
interfaces. LLQ, MDRR, and PQ are the only techniques that provide
a high priority queue for delay sensitive traffic, while CBWFQ and
LLQ are typically the only techniques configured via MQC. Not all
queuing methods are available with every Cisco platform.

Example 1: FIFO

interface serial0/0
ip address 192.168.10.1 255.255.255.0
no fair-queue
hold-queue 20 out

Example 2: LLQ

access-list 101 permit udp any any range 16384 32767
access-list 102 permit tcp any any eq 23

class-map data
 match access-group 102

class-map voice
 match access-group 101

policy-map llq
 class voice
 priority percent 50
 class data
 bandwidth percent 25
 class class-default
 fair-queue

interface se0/0
 ip address 172.16.18.77 255.255.255.0
 service-policy output llq

	 16	 Day One: Junos QoS for IOS Engineers

The queues described here are created by the software in the router.
When the scheduler or the scheduling algorithm decides which packet
needs to be sent next, it is not directly transmitted out of the interface.
Instead, the packet is moved from the interface software queue to the
transmit queue, which is a small FIFO queue on each interface. This
transmit queue is referred to as the hardware queue, TX queue, or TX
ring. The primary purpose of the hardware queue is to drive the link
utilization to 100 percent when packets are waiting to exit an inter-
face.

NOTE	 Having multiple queuing techniques does not automatically translate
to greater flexibility. This is because every queuing method is not
available on every platform or in every version of code. Multiple
queuing techniques are only an indication of how queuing methods
have evolved over a period of time. Junos uses queue priority and
WRR to service the queues with Strict-High getting the highest privi-
lege. Strict-High, if configured, is similar to LLQ.

IOS Summary

Configuring QoS in IOS involves four broad steps:

�� First, identify the queuing method.

�� Second, define and configure a class-map.

�� Third, define and configure a policy-map.

�� Fourth, apply the service policy to the interface.

Class-maps can use different techniques to classify packets including
access-lists, protocols, dscp values, etc. As most of you know, it is
important to choose the correct queuing method to get optimum
results.

Class of Service Functionality in Junos

First, Junos has a structured command line. If you notice the configura-
tions of any device or in these pages, you will see the built in hierarchy.
There are sections for interfaces, protocols, system configuration,
chassis, etc. and each of these sections has numerous sub-sections.
Quality of Service comes under the main section, Class-of-Service. The
majority of the QoS configuration that needs to be defined and config-
ured is done under this section. You will see that there are a few
exceptions, but ultimately they tie back to Class-of-Service.

	 Chapter 2: Class of Service Functionality in IOS and Junos	 17

MORE?	 See the resources at the end of this book to learn more about Junos.

This section builds on the basic steps set forth in Chapter 1 that are
needed to define and configure QoS. Each section elaborates a neces-
sary step, and then, finally, builds the configuration to classify and
mark the traffic.

Let’s begin these steps to configure class of service on Junos.

Define and Configure Forwarding Classes

Forwarding class is the naming convention followed for each traffic
pattern that we want to define and classify. The main function of a
forwarding class is to determineto which packet the que will be
assigned. Forwarding classes can also be considered as configuration
components that represent the queues.

By default there are four forwarding classes defined. Multiple forward-
ing classes can be defined and assigned to the same queue. It is impor-
tant to note that the number of forwarding classes does not need to
equal the number of queues. The maximum number of queues varies
depending upon the platform.

NOTE	 Since the number of queues and the maximum number of forwarding
classes that are supported varies by platform, it will help to check the
device specifications to see how many are supported.

user@R1> show class-of-service forwarding-class
Forwarding class     ID      Queue  Restricted queue  Fabric priority  
  best-effort                           0       0          0             low                
  expedited-forwarding                  1       1          1             low                
  assured-forwarding                    2       2          2             low                
  network-control                       3       3          3             low                

Configuring Forwarding Classes

In addition to assigning the forwarding class to the queue, the PLP
(Packet Loss Priority) also needs to be defined. PLP defines the packet’s
drop eligibility. While this configuration does not automatically drop
the packet, it provides the user with a mechanism to control what
packets will be dropped in the event of congestion. Packets with a
higher PLP will be dropped first during congestion in the network.

[edit]
user@R1#
class-of-service {
 forwarding-classes {
 class NC6 queue-num 3 priority high;
 class NC7 queue-num 3 priority high;

	 18	 Day One: Junos QoS for IOS Engineers

 class EF queue-num 1 priority high;
 class AF3 queue-num 2 priority low;
 class AF4 queue-num 2 priority low;
 class AF2 queue-num 2 priority low;
 class BE queue-num 0 priority low;
 class SCV queue-num 4 priority low;
 }

Define and Configure Classification of Packets

There are three ways in which classification can be achieved:

�� Fixed Classification – this is the simplest way to classify ingress
packets because a single forwarding class can be assigned to an
interface or VLAN. This method is useful when all the inbound
traffic from a neighbor needs to be assigned to a specific queue.

�� Behavior Aggregate (BA) Classification – when traffic from a
neighbor already has CoS markings, you can use the markings to
classify packets. The CoS markings that can be matched on
include: DSCP, 802.1p, MPLS EXP, IP Precedence, and the
802.1ad drop eligible indicator bit. This method requires less
packet analysis and is more efficient in high traffic volumes,
especially in the network core.

�� Multi-field (MF) Classification – MF classifier offers the most
granular control when classifying packets. It can match on one or
more fields in the packet header. Source/ Destination IP address,
destination port number, protocol are examples of how MF
classification can be done. MF classification is achieved by
defining firewall filters and applying the filter to the interface or
VLAN.

If an interface has a BA classifier and a MF classifier configured, then
the BA classification is performed first. But if both classifiers match
traffic then the MF classifier will override the BA classifier.

NOTE	 Another item to be cautious about is the number of TCAM entries that
will be consumed when multiple ports are defined under the MF
classifier and applying the filter to the interface. Depending upon the
platform, this could trigger inconsistent behavior, as most low end
devices are limited in TCAM space.

Configuring Fixed Classifier

[edit]
user@R1#
class-of-service {

	 Chapter 2: Class of Service Functionality in IOS and Junos	 19

 interfaces {
 ge-0/0/0 {
 unit 0 {
 forwarding-class assured-forwarding;
 }
 }
 }
}

Configuring BA Classifier

When creating a custom classifier, it is useful to use the related default
classifier of the same CoS type, because you only have to change a few
settings. The following snippet lists the code points and what forward-
ing class is associated with the default dscp classifier, as well as the PLP
defined by default.

user@R1> show class-of-service classifier
Classifier: dscp-default, Code point type: dscp, Index: 7
  Code point         Forwarding class                    Loss priority
  000000             best-effort                         low         
  000001             best-effort                         low         
  000010             best-effort                         low         
  000011             best-effort                         low         
  000100             best-effort                         low         
  000101             best-effort                         low         
  000110             best-effort                         low         
  000111             best-effort                         low         
  001000             best-effort                         low         
  001001             best-effort                         low         
  001010             assured-forwarding                  low         
  001011             best-effort                         low         
  001100             assured-forwarding                  high        
  001101             best-effort                         low         
  001110             assured-forwarding                  high        
  001111             best-effort                         low         
  010000             best-effort                         low         
  010001             best-effort                         low         
  010010             best-effort                         low         
  010011             best-effort                         low         
  010100             best-effort                         low         
  010101             best-effort                         low         
  010110             best-effort                         low         
  010111             best-effort                         low         
  011000             best-effort                         low         
  011001             best-effort                         low         
  011010             best-effort                         low         
  011011             best-effort                         low         
  011100             best-effort                         low         
  011101             best-effort                         low         
  011110             best-effort                         low         
  011111             best-effort                         low         

	 20	 Day One: Junos QoS for IOS Engineers

  100000             best-effort                         low         
  100001             best-effort                         low         
  100010             best-effort                         low         
  100011             best-effort                         low         
  100100             best-effort                         low         
  100101             best-effort                         low         
  100110             best-effort                         low         
  100111             best-effort                         low         
  101000             best-effort                         low         
  101001             best-effort                         low         
  101010             best-effort                         low         
  101011             best-effort                         low         
  101100             best-effort                         low         
  101101             best-effort                         low         
  101110             expedited-forwarding                low         
  101111             best-effort                         low         
  110000             network-control                     low         
  110001             best-effort                         low         
  110010             best-effort                         low         
  110011             best-effort                         low         
  110100             best-effort                         low         
  110101             best-effort                         low         
  110110             best-effort                         low         
  110111             best-effort                         low         
  111000             network-control                     low         
  111001             best-effort                         low         
  111010             best-effort                         low         
  111011             best-effort                         low         
  111100             best-effort                         low         
  111101             best-effort                         low         
  111110             best-effort                         low         
  111111             best-effort                         low    
     

The show class-of-service classifier command also provides a list
for 802.1p, ip precedence, and EXP (but the output is not shown here).

So applying this information allows the user to modify only a few
terms and combine them with the default classifier to get a greater
scope for classification. Here the “import default” section is config-
ured:

[edit]
user@R1#
class-of-service {
 classifiers {
 dscp VOICE-BA-CLASSIFIER {
 import default;
 forwarding-class expedited-forwarding {
 loss-priority low code-points [cs5 ef];
 }
 forwarding-class assured-forwarding {
 loss-priority low code-points [cs1 af11 af12 af13 cs2 af21 af22 af23];
 loss-priority high code-points [cs3 af31 af32 af33 cs4 af41 af42 af43];
 }

	 Chapter 2: Class of Service Functionality in IOS and Junos	 21

 forwarding-class best-effort {
 loss-priority low code-points be;
 }
 forwarding-class network-control {
 loss-priority low code-points cs7;
 loss-priority high code-points cs6;
 }
 }
 }
 interfaces {
 ge-0/0/0 {
 unit 0 {
 classifiers {
 dscp VOICE-BA-CLASSIFIER;
 }
 }
 }
}

Configuring MF Classifier

The firewall filter can be configured and applied to a Layer 3 interface
(with an IP address configured), or to a Layer 2 interface (with no IP
address configured):

[edit]
user@R1#
firewall {
 family ethernet-switching {
 filter VOICE-MF-CLASSIFIER-L2 {
 term ACCEPT-VOICE {
 from {
 protocol udp;
 destination-port 10000-65000;
 }
 then {
 accept;
 forwarding-class expedited-forwarding;
 loss-priority low;
 }
 }
 term ACCEPT-VOICE-CONTROL {
 from {
 destination-port [5060 5070-5074 5400-5800 32768-65535];
 }
 then {
 accept;
 forwarding-class assured-forwarding;
 loss-priority low;
 }
 }
 term ACCEPT-ALL-BE {
 then {
 accept;

	 22	 Day One: Junos QoS for IOS Engineers

 forwarding-class best-effort;
 loss-priority low;
 }
 }
 }
 }
}

interfaces {
 ge-0/0/0 {
 unit 0 {
 family ethernet-switching {
		 filter {
		 input VOICE-MF-CLASSIFIER-L2;
			 }
		 }	
 }
 }
}

Define and Configure Scheduling

Once the packets have been classified and assigned to the various
queues, the next step entails:

�� which queue will be serviced first (define priority)

�� how long the queues will be serviced for (define bandwidth)

�� how other queues will be serviced (Weighted Round Robin)

In order to achieve these, you must first configure a scheduler, then
associate the scheduler with a scheduler-map, and finally, apply the
scheduler-map to the interface.

Configuring Scheduler

Specifying the bandwidth and buffer-size is defined under the sched-
uler. Transmit rate is the amount of bandwidth allocated to a queue
while the buffer-size refers to the amount of data that can be stored
during congestion. Weighted Round Robin (WRR) is the algorithm
that defines how each queue is serviced. While the more important
queues are serviced first, the algorithm ensures that lower priority
queues are not starved for bandwidth. This ensures that a balance is
maintained while transporting the packets through the device.

Queue priority indicates the relative importance of the queue when
compared to other queues. Each queue is serviced depending upon the
priority assigned to it. There are five supported priorities, from the
highest to the lowest priorities:

	 Chapter 2: Class of Service Functionality in IOS and Junos	 23

�� Strict-high

�� High

�� Medium-high

�� Medium-low

�� Low

Strict-High has the highest priority and provides for low latency
queuing to be processed first, so it is ideal for voice traffic. But since
Strict-High is a special setting, it has the capability to consume the
bandwidth of the entire interface, and should be used cautiously. Strict-
High and High share an underlying hardware queue that results in
them sharing precedence to transmit packets.

NOTE	 Queue priority and packet loss priority (PLP) are different. Queue
priority dictates the relative importance any queue gets with respect to
other queues, while PLP refers to the probability of any packet being
dropped in the event of any congestion. PLP is used as part of conges-
tion control.

NOTE	 The obvious question that comes to mind is: How do you define
congestion? Congestion can be defined and configured by the operator
for every network, and drop profiles in Chapter 5 will give you a better
understanding of how this is achieved.

There are four packet loss priorities that can be configured:

�� Low

�� Medium-low

�� Medium-high

�� High

Configuring the buffer-size and/or the transmit-rate, along with the
priority, are the key steps in determining which queue is serviced at any
point of time. It also helps in establishing how long a specific queue
will be serviced before moving to the next queue preventing bandwidth
starvation. The example here illustrates how schedulers can be defined
and configured:

[edit]
user@R1#
class-of-service {
 schedulers {
 EF-SCHED {
 buffer-size percent 20;
 priority strict-high;

	 24	 Day One: Junos QoS for IOS Engineers

 }
 VC-SCHED {
 transmit-rate remainder;
 buffer-size remainder;
 priority low;
 }
 NC-SCHED {
 buffer-size percent 10;
 priority high;
 }
 AF-SCHED {
 transmit-rate percent 50;
 buffer-size percent 50;
 priority low;
 }
 }
}

Configuring Scheduler-map

Schedulers are designed to manage traffic for a particular forwarding
class. Scheduler maps provide the link between the schedulers and the
forwarding class.

Figure 2.2	 Forwarding Class, Queuing, and Scheduling

	 Chapter 2: Class of Service Functionality in IOS and Junos	 25

Figure 2.2 depicts how packets arriving at the router are mapped to
their respective forwarding classes based upon their pre-defined
classification criteria. Each forwarding class is associated with a
queue. The scheduler-map associated with the outgoing interface then
transmits the packets accordingly, based upon the criteria defined
under each scheduler.The configuration here illustrates how the
scheduler-map is associated with the schedulers:

[edit]
user@R1#
class-of-service {
 scheduler-maps {
 VOICE-SCHED-MAP {
 forwarding-class best-effort scheduler VC-SCHED;
 forwarding-class network-control scheduler NC-SCHED;
 forwarding-class expedited-forwarding scheduler EF-SCHED;
 forwarding-class assured-forwarding scheduler AF-SCHED;
 }
 }
}

Deploying Scheduler-map

The final step is to apply the scheduler-map to the interface. Scheduler
maps are implicitly applied in the outbound direction on the specific
interface because scheduling occurs at the output of an interface.
Here’s an example:

[edit]
user@R1#
class-of-service {
 interfaces {
 ge-0/0/0 {
 scheduler-map VOICE-SCHED-MAP;
 }
 }
}

Define and Configure Rewrite Rules

The purpose of packet rewrite, or marking, is to efficiently convey the
packet’s CoS profile to the next-hop router to provide a consistent
end-to-end CoS policy for packets traversing the network. DSCP,
MPLS EXP, IP Precedence, 802.1p, or the 802.1ad drop eligibility
indicator bit, are options in packet markings. The import default
serves the same function as under the BA classifier. This snippet shows
the default dscp:

user@R1> show class-of-service rewrite-rule 
Rewrite rule: dscp-default, Code point type: dscp, Index: 31
  Forwarding class                    Loss priority       Code point
  best-effort                         low                 000000

	 26	 Day One: Junos QoS for IOS Engineers

  best-effort                         high                000000
  expedited-forwarding                low                 101110
  expedited-forwarding                high                101110
  assured-forwarding                  low                 001010
  assured-forwarding                  high                001100
  network-control                     low                 110000
  network-control                     high                111000 
     

Configuring Rewrite Rule

The example here illustrates how the rewrite rules can be configured. It
shows how packets assigned to each forwarding-class will be marked
in combination with its PLP value:

[edit]
user@R1#
class-of-service {
 rewrite-rules {
 dscp VOICE-DSCP-REWRITE {
 import default;
 forwarding-class expedited-forwarding {
 loss-priority low code-point ef;
 }
 forwarding-class assured-forwarding {
 loss-priority low code-point cs3;
 loss-priority high code-point cs3;
 }
 forwarding-class network-control {
 loss-priority low code-point cs7;
 loss-priority high code-point cs6;
 }
 forwarding-class best-effort {
 loss-priority low code-point be;
 }
 }
 }
 interfaces {
 ge-0/0/0 {
 unit 0 {
 rewrite-rules {
 dscp VOICE-DSCP-REWRITE;
 }
 }
 }
}

	 Chapter 2: Class of Service Functionality in IOS and Junos	 27

Summary

There are four main steps involved in defining and configuring QoS on
any Junos device:

�� Defining and configuring forwarding classes

�� Defining and configuring schedulers

�� Defining and configuring scheduler maps

�� Defining and configuring rewrite rules

The way that QoS is processed in Junos is illustrated in Figure 2.3.

Figure 2.3	 QoS Processing in Junos

To process QoS in Junos, it's important to first lay out the require-
ments, then to discuss and decide on the forwarding classes, define the
schedulers before allocating bandwidth to them, and finally to associ-
ate the scheduler maps with the forwarding classes and define how you
want to rewrite the packets.

Once you have a plan laid out it’s just a matter of translating that plan
onto the device and configuring it. This methodology provides a
workable structure around the rather amorphous concept of QoS.

For the IOS engineer, working in Junos highlights these apparent
differences:

�� As most configuration is localized to the Class-of-Service hierar-
chy in Junos, you do not need to scroll through the whole
configuration to locate specific access-lists or another class-map.
Although this might not aid you while you’re configuring QoS,
you will appreciate Junos when you try to put together and
understand the QoS deployed on an interface.

	 28	 Day One: Junos QoS for IOS Engineers

�� If a configuration is not supported, then that configuration will
not be accepted when you build it. This provides a certain degree
of freedom while configuring with preemptive troubleshooting.

�� The indentation and structured outlook enhances readability of
any configuration because you can see the heirarchical structure
of Junos.

�� The ability to monitor real-time traffic on interfaces makes it
easier to identify and troubleshoot any issues you may have.

Chapter 3

Comparison of IOS and Junos with
Basic Tuple

In IOS. . 30

In Junos . . 30

Translating IOS to Junos. . 31

Summary. . 32

	 30	 Day One: Junos QoS for IOS Engineers

Chapter 1 listed the five basic steps that are essential to designing QoS
in any network. Now let’s use those steps and see how they fit within
IOS and Junos.

In IOS

Classification is achieved in the first step by defining class-maps.
Queuing, scheduling, and prioritizing are achieved in the next step by
defining the queuing algorithm, while bandwidth allocation and
marking are achieved in the final step along with attaching the policy
to the interface.

Classification Configure class-maps

Queuing For most purposes Class Based Weighted Fair Queuing (CBWFQ) or Low
Latency Queuing (LLQ) is used. The specific queuing method also highlights how
scheduling is done.

Scheduling & Prioritizing

Bandwidth Assignment Configure policy-map

For each class of traffic define bandwidth

For each class of traffic define what the packet marking should be

Apply the policy-map to the interface

Marking

In Junos

Classification and Queuing are achieved in the first step while defining
forwarding classes and using BA Classifier/MF Classifier. Scheduling,
prioritizing, and Bandwidth Assignment are achieved in the next step
while defining the schedulers and the scheduler-map and assigning it to
the interface. Finally, marking is achieved by defining the rewrite rules
and applying them to the interface.

Classification Configure forwarding class under class-of-service

Configure BA classifier and apply it to the interface under class-of-service or
configure MF classifier firewall filter and apply it to the physical interfaceQueuing

Scheduling & Prioritizing Configure schedulers under class-of-service

Configure scheduler-map under class-of-service

Assign a scheduler-map to the interface under class-of-service
Bandwidth Assignment

Marking Configure rewrite rule under class-of-service and apply it to the interface under
class-of-service

	 Chapter 3: Comparison of IOS and Junos with Basic Tuple	 31

Translating IOS to Junos

Now that we understand how the Junos and Cisco CLI relate to the
basic tuple, the next question that arises is how to translate the Cisco
configuration to Junos. The table below summarizes how this is done.

Cisco IOS Junos

Classification Option under “class-map” – access-list,
protocols, etc.

The first step, which is a preparation
defining the forwarding classes. The
next step is classification, which can
be achieved either by BA classifier
under Class-of-service | classifiers or
MF classifier under Firewall.

Queuing and Scheduling Depending upon the platform and code
FIFO, LLQ, CBWFQ, CQ, etc. are
available.

Defining a scheduler under Class-of-
service | schedulers and then a
scheduler-map under Class-of-
service | scheduler-map.

Prioritizing LLQ is specified using “priority”
bandwidth, while the priority of other
queues varies depending upon the
algorithm like FIFO, CBWFQ, WFQ etc.

The queue priority can be specified
under Class-of-service | schedulers.

Bandwidth Assignment Defining the bandwidth or bandwidth
percent under policy-map.

Defining a scheduler under Class-of-
service | schedulers and then a
scheduler-map under Class-of-
service | scheduler-map and applying
it to the interface under Class-of-
service | interfaces.

Marking “Set” command under policy-map. Option under Class-of-service |
rewrite.

Where is it applied Defining a service policy under the
interface in inbound or outbound
direction.

Option under Class-of-service |
interfaces for BA classifier or under
Interfaces for MF Classifier.

	 32	 Day One: Junos QoS for IOS Engineers

Summary

Junos provides a structured and more granular way to define and
configure QoS. By being able to elaborately specify the scheduling,
queuing, and prioritizing techniques used, the user can exercise greater
control over how they would like the packets to be handled. Function-
ally Junos will be able to achieve the same configuration of any Cisco
IOS device.

Chapter 4

Policing and Shaping

Policer. . 34

Shaper. . 39

Summary. . 42

	 34	 Day One: Junos QoS for IOS Engineers

Traffic conditioning is an important step in managing congestion in the
network. Policing and shaping are two methods that will help reduce
congestion by continuously measuring the rate at which data is sent or
received. Policing discards excess packets while not imposing any delay
to the conforming traffic, thus enforcing service level agreements.
Shaping, on the other hand, buffers excess traffic and releases it based
on the shaping rate.

Policer

Policing applies a hard limit to the rate at which traffic arrives or leaves
an interface. Packets are either dropped (hard policing) or re-classified
(soft policing) if they do not conform to the constraints. Policing is
helpful under certain conditions where the neighboring network could
send more traffic than the contract specification. Policing will then
enforce the contract, thus protecting the network from being overrun
with too much traffic. Policer can be applied in an inbound or out-
bound direction.

Figure 4.1	 Before Traffic Policing

An example of traffic policing would be a customer who had pur-
chased services for 4 Mbps from the carrier, and the customer’s
contract with the carrier says they will not exceed traffic beyond 4
Mbps. In the event traffic exceeds 4 Mbps, then the carrier will not
honor the traffic and will cap it to remain at 4 Mbps. This will prevent
the carrier’s network from being overloaded with excess traffic.

	 Chapter 4: Policing and Shaping	 35

Figure 4.2	 After Traffic Policing - Out-of-Profile

In IOS

Policing on Cisco IOS can be achieved in two ways:

�� Committed Access Rate (CAR)

�� Class Based Policing

NOTE	 Please refer to the platform type and specific version of IOS code for
support of CAR.

Example 1 illustrates the use of Class based policing, while Example 2
highlights the use of CAR.

Example 1: Class Based Policing

Router(config)# policy-map police
Router(config-pmap)# class c2
Router(config-pmap-c)# police 8000 2000 4000 conform-action transmit exceed-action
set-qos-transmit 4 violate-action drop
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface fastethernet 0/0
Router(config-if)# service-policy input police

Example 2: CAR

Router# show run

interface Hssi0/0/0
 rate-limit input 15000000 2812500 2812500 conform-action transmit exceed-action drop
 ip address 192.168.24.1 255.255.255.252
 rate-limit output 15000000 2812500 2812500 conform-action transmit exceed-action drop

	 36	 Day One: Junos QoS for IOS Engineers

In Junos

There are three modes in which policing can operate in Junos:

1. Single rate two color – consisting of one rate threshold (CIR)
and one burst size (CBS)

2. Single rate tricolor marking – consisting of one rate threshold
(CIR) and two burst sizes (CBS & PBS)

3. Two rate tricolor marking – consisting of two rate thresholds
(CIR & PIR) and two burst sizes (CBS & PBS)

Policing can either be conducted:

�� Directly on an interface, or

�� Configured through a firewall filter and then applied to an
interface.

For tricolor marking, Junos has two modes of operation:

�� Color-blind – where the policer does not consider any previous
marking of packets and rewrites the packet’s marking with a PLP
value based on the policer’s settings.

�� Color-aware- where the policer considers any existing coloring
on a packet and the PLP values will be based on the combination
of the previous value and the result of passing through the given
policer.

In addition, there are two possible variations you can use when
policing using a firewall filter:

�� Aggregate policer for two color marking – when multiple terms
are defined under the firewall and each term calls upon the
policer, then the default behavior is to associate the bandwidth-
limit and burst size for every specific term. But if you need to
summarize and have all terms comply to the same policer and be
associated with total bandwidth-limit, then specify the “filter-
specific” keyword under the policer.

�� Aggregate policer for two color or tricolor marking – when there
are multiple protocol families and multiple units under an
interface, and each of them has the firewall filter with the policer
configured, then it is preferable to aggregate them together in
order to have the same bandwidth constraint imposed on the
physical interface rather than at the logical (per unit or per proto-
col family) level. This is achieved by specifying the “physical-
interface-policer” keyword under the policer.

A two-color policer being applied directly to the interface can also be

	 Chapter 4: Policing and Shaping	 37

aggregated when applied to multiple protocol families under the same
interface. This is achieved by specifying the keyword “logical-inter-
face-policer” under the policer.

Interface policers and firewall filter policers can both exist under the
interface at the same time. They will be processed in the following
order:

Inbound Outbound

Interface Policer

Firewall Filter

Firewall filter

Interface Policer

Configuring a Policer

The examples below illustrate the different methods for configuring a
policer – using a firewall filter, applying it directly on an interface, or
applying single rate tri-color marking. Example 1 demonstrates how
the policer is applied directly to the interface. It specifies that if the
traffic exceeds the defined rate then all traffic will be dropped. Example
2 illustrates how a firewall filter is applied to an interface while
restricting the amount of DNS and ICMP (router advertisement and
redirect) traffic to that interface. Example 3 illustrates the use of a
single rate tri-color marking.

Example 1: Directly on an Interface

 [edit]
user@R1#
firewall {
 policer my-2color-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 2k;
 }
 then discard;
 }
}

interfaces {
 ge-1/0/0 {
 unit 0 {
 family inet {
 policer {
 input my-2color-policer;
 }
 address 172.22.54.2/24;
 }
 }
 }
}

	 38	 Day One: Junos QoS for IOS Engineers

Example 2: Within a Firewall Filter

 [edit]
user@R1#
firewall {
 policer RATE-LIMIT-PROTECT {
 filter-specific;
 if-exceeding {
 bandwidth-limit 2m;
 burst-size-limit 500k;
 }
 then discard;
 }
 filter ROUTER-PROTECT {
 term DNS {
 from {
 protocol udp;
 source-port 53;
 }
 then {
 policer RATE-LIMIT-PROTECT;
 accept;
 }
 }
 term ICMP {
 from {
 protocol icmp;
 icmp-type-except [router-advertisement redirect];
 }
 then {
 policer RATE-LIMIT-PROTECT;
 accept;
 }
 }
}

interfaces {
 ge-1/0/0 {
 unit 0 {
 family inet {
 filter {
 input ROUTER-PROTECT;
 }
 address 172.22.54.1/24;
 }
 }
 }
}

Example 3: Single-rate Tricolor marking

 [edit]
user@R1#
firewall {

	 Chapter 4: Policing and Shaping	 39

 three-color-policer my-srTCM-policer {
 single-rate {
 color-aware;
 committed-information-rate 1m;
 committed-burst-size 5k;
 excess-burst-size 10k;
 }
 }
 filter ROUTER-PROTECT {
 term A {
 then {
 three-color-policer {
 single-rate my-srTCM-policer;
 }
 }
 }
}

interfaces {
 ge-1/0/0 {
 unit 0 {
 family inet {
 filter {
 input ROUTER-PROTECT;
 }
 address 172.22.54.3/24;
 }
 }
 }
}

class-of-service {
 tri-color;
}

Shaper

Shaping also defines a limit to the rate at which traffic can be transmit-
ted, but unlike policing, it acts on traffic that has already been granted
access to a queue and is awaiting access to transmission resources.
Shaping is useful when the neighboring network is policing or is slower
in accepting traffic. Under such conditions a shaper can delay traffic,
thus preventing it from getting dropped. Therefore, shaping can be less
aggressive than policing and can have fewer of the negative side effects.
As shaping refers to buffering packets, it applies to outbound traffic
only. It is important to note that since shaping delays packets from
being transmitted in the event of congestion, it has a negative effect on
real time traffic like voice, which is sensitive to delay.

	 40	 Day One: Junos QoS for IOS Engineers

Figure 4.3	 Traffic Pattern Before Shaping

Figure 4.4	 Traffic Pattern After Shaping

In IOS

Cisco IOS supports four different shaping tools, but the most widely
used are Class Based Shaping and FRTS.

Shaping Tool What Queue does it support

Generic Traffic Shaping (GTS) WFQ

Class Based (CB) Traffic Shaping FIFO, WFQ, CBWFQ, LLQ

Distributed Traffic Shaping (DTS) FIFO, WFQ, CBWFQ, LLQ

Frame Relay Traffic Shaping (FRTS) FIFO, WFQ, CBWFQ, LLQ, PQ, CQ

	 Chapter 4: Policing and Shaping	 41

NOTE	 Please refer to the platform specifications on which shaping tools are
supported for each platform.

Example 1 illustrates the use of class-based shaping while Example 2
demonstrates the use of generic traffic shaping.

Example 1: CB Traffic Shaping
Router(config)# policy-map shape
Router(config-pmap)# class test
Router(config-pmap-c)# shape average 384000 15440
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface Serial 0/0
Router(config-if)# service output shape

Example 2: GTS
Router# show run

access-list 101 permit udp any any
interface FastEthernet0/0
 traffic-shape group 101 1000000 125000 125000
!
interface FastEthernet0/1
 traffic-shape rate 5000000 625000 625000

In Junos

Shaping can be configured in the following ways:

�� By defining traffic-control-profiles under the class-of-service or under
the class-of-service schedulers.

�� Under the class-of-service| interfaces for any specific interfaces.

The shaper permits traffic to be transmitted until the configured PIR
(shaping rate). But once the PIR is exceeded then the packets are not
transmitted until the traffic rate falls below the PIR. They are stored in a
buffer. Out of the three options, defining shaping under traffic control
profiles not only gives you more control but also has the additional option
of specifying the guaranteed rate (CIR).

Example 1 illustrates the use of traffic-control-profiles, Example 2 class-
of-service|schedulers, and Example 3 class-of-service| interfaces.

Example 1

[edit]
user@R1#
class-of-service {
 traffic-control-profiles {
 my-L1-profile {
 shaping-rate 500m;
 }
 my-L2-profile {
 shaping-rate 200m;
 guaranteed-rate 100m;
 }

	 42	 Day One: Junos QoS for IOS Engineers

 my-L3-profile {
 scheduler-map my-sched-map;
 shaping-rate 80m;
 guaranteed-rate 50m;
 }
 }
 interfaces {
 interface-set my-interface-set {
 output-traffic-control-profile my-L2-profile;
 }
 ge-1/0/4 {
 output-traffic-control-profile my-L1-profile;
 unit 0 {
 output-traffic-control-profile my-L3-profile;
 }
 unit 1 {
 output-traffic-control-profile my-L3-profile;
 }
 }
 }
}

Example 2

[edit]
user@R1# show class-of-service
schedulers {
 test {
 shaping-rate 32k;
 }
}

Example 3

[edit]
user@R1# show class-of-service
interfaces {
 ge-0/0/1 {
 shaping-rate 16k;
 }
}

Summary

Traffic shaping and policing are available techniques to help manage
congestion in any network. Each technique is useful, has its own
advantages and disadvantages, and has been deployed in customer
environments.

Policing Shaping

Ingress Can be configured As it stores the packet before forwarding, it is
not applicable in Ingress mode.

Egress Can be configured Can be configured

Chapter 5

Congestion Avoidance

In IOS. . 44

In Junos. . 45

Summary. . 48

	 44	 Day One: Junos QoS for IOS Engineers

The possibility of a large amount of traffic arriving at a router will
likely lead to congestion. In the event of congestion, the queues will fill
up quickly, and, with no buffer available, the packets will begin to get
dropped. This mechanism, referred to as tail drop, offers no control
over which packets will be dropped. Random Early Detection (RED) is
a mechanism that helps determine actions at the onset of congestion by
selectively dropping packets as the buffers fill.

In IOS

Weighted Random Early Detection (WRED) on a Cisco IOS device is
achieved by defining a minimum threshold, a maximum threshold, and
configuring the drop probability denominator. When congestion is
below the minimum threshold no packets are dropped, while all
packets are dropped when congestion is more than the maximum
threshold defined. But when congestion is between the minimum and
maximum thresholds defined, packets are dropped at the rate of one
every drop probability denominator number of packets. Packets can be
treated differently by using a different WRED profile for each IP
Precedence/DSCP value. The examples below illustrate a few scenarios
for deploying WRED.

Example 1

Router# show run

interface se0/0
 ip address 10.200.14.250 255.255.255.252
 random-detect
 random-detect precedence 0 32 256 100
 random-detect precedence 1 64 256 100
 random-detect precedence 2 96 256 100
 random-detect precedence 3 120 256 100

Example 2

Router# show run

interface se0/0
 ip address 10.200.13.250 255.255.255.252
 random-detect
 random-detect dscp-based
 random-detect dscp af21 24 40
 random-detect dscp af23 24 40

Example 3

Router# show run

	 Chapter 5: Congestion Avoidance	 45

policy-map Express
class Enterprise
bandwidth percent 25
random-detect dscp-based
random-detect dscp af21 24 40 10
random-detect dscp af22 28 40 10
random-detect dscp af23 30 40 10

class Business
bandwidth percent 30
random-detect dscp-based
random-detect dscp af11 22 38 10
random-detect dscp af12 24 38 10
random-detect dscp af13 28 38 10

class Data
bandwidth percent 30
random-detect dscp-based
random-detect dscp af31 26 34 10
random-detect dscp af32 28 34 10
random-detect dscp af33 30 34 10

class default
fair-queue
random-detect dscp-based

Example 4

Router# show run

interface Serial1/0
 random-detect
 random-detect flow
 random-detect flow average-depth-factor 8
 random-detect flow count 16

MORE?	 Flow-based WRED is also available. Flow-based WRED is a feature
that forces WRED to afford greater fairness to all flows on an interface
in regard to how packets are dropped. For more detail, please refer to
http://www.cisco.com/en/US/docs/ios/12_2/qos/configuration/guide/
qcfconav_ps1835_TSD_Products_Configuration_Guide_Chapter.
html#wp1005869 .

In Junos

Drop profiles perform RED/WRED by specifying the parameters for
dropping traffic when congestion occurs. Multiple drop profiles can be
configured and then applied to each queue.

There are two ways in which drop profiles can be configured:

	 46	 Day One: Junos QoS for IOS Engineers

�� Segmented – In this method the drop probability percentage
increases in steps when the buffer fills to the configured level.

�� Interpolated – In this method the drop probability percentage
increases proportionately between configured values as the
buffer fills to the configured level.

Figure 5.1	 Drop Profiles

Drop profiles are created and associated with schedulers. A single
scheduler can be configured to have multiple drop profiles for different
traffic flows. The flexibility of specifying the packet loss priority (PLP)
and the protocol is available while associating the drop profiles with
the schedulers.

Configuring Segmented Drop Profile

[edit]
user@R1#
class-of-service {
 drop-profiles {
 HIGH {
 fill-level 25 drop-probability 25;
 fill-level 50 drop-probability 50;
 fill-level 75 drop-probability 75;
 fill-level 95 drop-probability 100;
 }
 LOW {
 fill-level 70 drop-probability 100;
 }
 }
 schedulers {
 AF-SCHED {
 transmit-rate percent 20;
 excess-rate percent 35;
 buffer-size temporal 15k;
 priority low;
 excess-priority high;

	 Chapter 5: Congestion Avoidance	 47

 drop-profile-map loss-priority high protocol any drop-profile HIGH;
 }
 BE-SCHED {
 transmit-rate remainder;
 excess-rate percent 30;
 buffer-size remainder;
 priority low;
 excess-priority low;
 drop-profile-map loss-priority low protocol any drop-profile LOW;
 }
 GENERAL-SCHED {
 priority low;
 drop-profile-map loss-priority any protocol any drop-profile LOW;
 }
 }
}

Configuring Interpolated Drop Profile

[edit]
user@R1#
class-of-service {
 drop-profiles {
 HIGH {
 interpolate {
 fill-level [0 10 15];
 drop-probability [0 90 100];
 }
 }
 MED-HIGH {
 interpolate {
 fill-level [15 20 25];
 drop-probability [0 90 100];
 }
 }
 MED-LOW {
 interpolate {
 fill-level [50 70];
 drop-probability [1 100];
 }
 }
 LOW {
 interpolate {
 fill-level [70 100];
 drop-probability [1 100];
 }
 }
 }
 schedulers {
 AF-SCHED {
 transmit-rate percent 20;
 excess-rate percent 35;
 buffer-size temporal 15k;
 priority low;

	 48	 Day One: Junos QoS for IOS Engineers

 excess-priority high;
 drop-profile-map loss-priority high protocol any drop-profile HIGH;
 drop-profile-map loss-priority medium-high protocol any drop-profile MED-HIGH;
 drop-profile-map loss-priority medium-low protocol any drop-profile MED-LOW;
 drop-profile-map loss-priority low protocol any drop-profile LOW;
 }
 BE-SCHED {
 transmit-rate remainder;
 excess-rate percent 30;
 buffer-size remainder;
 priority low;
 excess-priority low;
 drop-profile-map loss-priority high protocol any drop-profile HIGH;
 drop-profile-map loss-priority medium-high protocol any drop-profile MED-HIGH;
 drop-profile-map loss-priority medium-low protocol any drop-profile MED-LOW;
 drop-profile-map loss-priority low protocol any drop-profile LOW;
 }
 GENERAL-SCHED {
 priority low;
 drop-profile-map loss-priority any protocol any drop-profile LOW;
 }
 }
}

Summary

Congestion in any network is a reality that cannot be denied. While
adding bandwidth is one option, it is always the more expensive one.
Once there is congestion in any network then packets will be dropped.
Congestion avoidance illustrates techniques which will allow us greater
control over which specific packets can be dropped. The user can
configure the network devices to drop higher loss priority packets when
the network hits a certain threshold. Random Early Detection (RED)
and/or Weighted Random Early Detection (WRED) are the techniques
used to achieve this.

Congestion avoidance can be configured by configuring random detect
for specific user traffic under the interfaces on IOS, while on Junos it can
be achieved by specifying:

�� Segmented Drop Profile

�� Interpolated Drop Profile

Each method has its own advantages.

Chapter 6

Troubleshooting

IOS Troubleshooting Commands. . 50

Junos Troubleshooting Commands. . 51

Summary. . 68

What to Do Next & Where to Go. . 70

	 50	 Day One: Junos QoS for IOS Engineers

If you run into some problems with class-of-service then how do you
find out what went wrong? When a problem has been detected then
here are some basic steps to follow in order to narrow down the
potential cause of the issue.

IOS Troubleshooting Commands

Most IOS engineers follow this general procedure to troubleshoot QoS
issues. Troubleshooting commands for IOS are listed in Table 6.1.

1. Identify the primary interfaces that are involved in carrying the
traffic that has been affected.

2. Check the interface configuration to see if there is any service policy
applied to the interface, and check to see if they are applied in the
inbound or outbound direction.

3. Check the policy-map and the appropriate class-map configurations.

4. Check the interface counters to see if packet counts are increasing.
This can be done by looking at the counters.

5. Check the policy-map interface command to see which queue is
being serviced after the policy map has been attached to the interface.

6. Check the interface queue counters to see if the packets are going
into the correct queue on egress and are in alignment with what is to be
expected. This will help determine if packet classification or rewriting
is an issue.

7. If the packet counters are incrementing as expected, and the packets
are going to the appropriate queue but they are still causing
performance issues, then it could be a hardware problem. Trace the
path of the packet to determine any internal ASIC that could lead to
this issue. At this stage involve Cisco TAC to resolve.

Table 6.1	 IOS Troubleshooting Commands

Cisco IOS Commands How will it help

Show run interface <interface-type> This command will help to identify what service policy has been
applied to the interface and whether it is inbound or outbound.

Show policy-map interface <interface-type> This command will provide information about the various
classes of traffic under this interface, along with the packets that
are matched and packets that are marked, shaped, or policed.
This command will also give information regarding the queuing
method for every class.

Show interface<interface-type> This command will provide information about packets sent/
received along with the queuing type on the interface (FIFO
etc.) along with whether WRED is enabled.

	 Chapter 6: Troubleshooting	 51

Show queue “serial 0/0” This command highlights the queuing method along with
information on buffer drops, input and output queue, available
bandwidth, etc.

Clear interface counters This command will clear the interface statistics for all the
counters on all the interfaces.

Show controllers “serial 0/0” This command will list the size of the TX ring. The “tx_limited”
keyword will tell how many packets are being held by the TX
ring.

Show queuing interface “serial 0/0” This command gives information about packets that are waiting
in a queue on the interface, queuing strategy, the tail drops per
dscp value, and WRED information.

Junos Troubleshooting Commands

A similar procedure can be adopted to troubleshoot QoS related issues
on Junos (most of the configuration appears under the class-of-service
section).

1. Identify what are the primary interfaces that are involved in
carrying the traffic that has been affected.

2. Check the interface configuration to see if there are any firewall
filters, MF Classifiers, or policers applied to the interface.

3. Check the interface under the class-of-service configuration to see if
there are any BA classifiers, rewrite-rules, or scheduler-maps
configured.

4. Check the interface counters to see if packet counts are increasing in
both directions. This can be done by either looking at the counters
repeatedly or by monitoring the interface traffic in real time.

5. Check the interface queue counters to see if the packets are going
into the correct queue on egress and if it is in alignment with what is to
be expected. This will help determine if packet classification or
rewriting is an issue.

6. In case there is a firewall filter or MF Classifier applied to the
interface, then check firewall logs to see if any counters have
incremented. If packet counting has been enabled then the firewall
logs will reveal which counter is being incremented.

7. If all this does not help then sometimes the issue could be on the
forwarding table, PFE, or the DPC. At this stage involve JTAC to
resolve the issue.

Instead of listing the show commands in a table, we’ll review the show
commands that are helpful in Junos troubleshooting so you can isolate
problems pertaining to class of service/quality of service. Each of the

	 52	 Day One: Junos QoS for IOS Engineers

necessary show commands are detailed in the rest of this chapter:

�� monitor interface traffic

�� show interfaces <interface-type> extensive

�� show interfaces <interface-type> extensive | find "queue coun-
ters"

�� show class-of-service forwarding class

�� show configuration class-of-service

�� show interfaces queue <interface-type>

�� clear interfaces statistics all

�� show firewall

�� show configuration interface <interface-type>

�� show configuration class-of-service interface

monitor interface traffic

This command will help you monitor the input and output packets
going through any interface on a device running Junos. The command
can be monitored for real time traffic as the counters increase as
packets go through the interface:

user@R1> monitor interface traffic
Bytes=b, Clear=c, Delta=d, Packets=p, Quit=q or ESC, Rate=r, Up=^U, Down=^D
R1                           Seconds: 27                  Time: 19:11:19
Interface    Link  Input packets        (pps)     Output packets        (pps)
 lc-0/0/0      Up              0                             0
 pfh-0/0/0     Up              0                             0
 xe-0/0/0    Down              0          (0)                0          (0)
 xe-0/0/1    Down              0          (0)                0          (0)
 xe-0/0/2    Down              0          (0)                0          (0)
 xe-0/0/3    Down              0          (0)                0          (0)
 ge-1/0/0      Up       35761707         (11)         35312140         (11)
 ge-1/0/1      Up          77976          (0)           737191          (0)
 ge-1/0/2      Up              8          (0)           442317          (0)
 ge-1/0/3    Down              0          (0)                0          (0)
 ge-1/0/4    Down              0          (0)                0          (0)
 ge-1/0/5    Down              0          (0)                0          (0)
 ge-1/0/6      Up         238472          (0)           238440          (0)
 ge-1/0/7    Down              0          (0)                0          (0)
 ge-1/0/8      Up         238440          (0)           238472          (0)
 ge-1/0/9    Down              0          (0)                0          (0)
 ge-1/0/10     Up              0          (0)                0          (0)
 ge-1/0/11   Down              0          (0)                0          (0)
 ge-1/1/0      Up              0          (0)                0          (0)
 ge-1/1/1    Down              0          (0)                0          (0)
 ge-1/1/2    Down              0          (0)                0          (0)

	 Chapter 6: Troubleshooting	 53

 ge-1/1/3    Down              0          (0)                0          (0)
 ge-1/1/4    Down              0          (0)                0          (0)
 ge-1/1/5    Down              0          (0)                0          (0)
 ge-1/1/6    Down              0          (0)                0          (0)
 ge-1/1/7    Down              0          (0)                0          (0)
 ge-1/1/8    Down              0          (0)                0          (0)
 ge-1/1/9    Down              0          (0)                0          (0)
 ge-1/1/10   Down              0          (0)                0          (0)
 ge-1/1/11   Down              0          (0)                0          (0)

Bytes=b, Clear=c, Delta=d, Packets=p, Quit=q or ESC, Rate=r, Up=^U, Down=^D

show interfaces <interface-type> extensive

This command is useful to find out the input/output packets:

user@R1> show interfaces ge-1/0/0 extensive
Physical interface: ge-1/0/0, Enabled, Physical link is Up
 Interface index: 144, SNMP ifIndex: 512, Generation: 147
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, BPDU Error: None, MAC-REWRITE
Error: None, Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online, Speed-negotiation: Disabled, Auto-
MDIX: Enabled
 Device flags : Present Running
  Interface flags: SNMP-Traps Internal: 0x0
  Link flags     : None
  CoS queues     : 8 supported, 8 maximum usable queues
  Hold-times     : Up 0 ms, Down 0 ms
  Current address: 5c:5e:ab:00:cd:60, Hardware address: 5c:5e:ab:00:cd:60
  Last flapped   : 2012-09-05 19:47:21 UTC (1w4d 23:26 ago)
  Statistics last cleared: Never
  Traffic statistics:
   Input  bytes  :           1865678156                 4600 bps
   Output bytes  :           1849565880                 4392 bps
   Input  packets:             35763065                   11 pps
   Output packets:             35313479                   10 pps
   IPv6 transit statistics:
    Input  bytes  :                   0 
    Output bytes  :                   0
    Input  packets:                   0
    Output packets:                   0
  Dropped traffic statistics due to STP State:
   Input  bytes  :                    0
   Output bytes  :                    0
   Input  packets:                    0
   Output packets:                    0
  Input errors:
    Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3
incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource
errors: 0
 Output errors:
 Carrier transitions: 3, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO

	 54	 Day One: Junos QoS for IOS Engineers

errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
 Egress queues: 8 supported, 4 in use
  Queue counters:       Queued packets  Transmitted packets      Dropped packets
    0 best-effort                 2906                 2906                    0
    1 expedited-fo                   0                    0                    0
    2 assured-forw                   0                    0                    0
    3 network-cont            35310568             35310568                    0
  Queue number:         Mapped forwarding classes
    0                   best-effort 
    1                   expedited-forwarding
    2                   assured-forwarding
    3                   network-control
  Active alarms  : None
  Active defects : None
  MAC statistics:                      Receive         Transmit
    Total octets                    2509372810       2477853994
    Total packets                     35763067         35313481
    Unicast packets                   35394125         34944569
    Broadcast packets                     1434             1470
    Multicast packets                   367508           367442
    CRC/Align errors                         0                0
    FIFO errors                              0                0
    MAC control frames                       0                0
    MAC pause frames                         0                0
    Oversized frames                         0
    Jabber frames                            0
    Fragment frames                          0
    VLAN tagged frames                       0
    Code violations                          0
  Filter statistics:
    Input packet count                35763055
    Input packet rejects                     0
    Input DA rejects                         0
    Input SA rejects                         0
    Output packet count                                35313470
    Output packet pad count                                   0
    Output packet error count                                 0
    CAM destination filters: 0, CAM source filters: 0
  Autonegotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: Symmetric/Asymmetric, Remote fault: OK
 Local resolution:
 Flow control: Symmetric, Remote fault: Link OK
 Packet Forwarding Engine configuration:
 Destination slot: 1
 CoS information:
   Direction : Output 
    CoS transmit queue               Bandwidth               Buffer Priority   Limit
                              %            bps     %           usec
    0 best-effort            95      950000000    95              0      low    none
    3 network-control         5       50000000     5              0      low    none
  Interface transmit statistics: Disabled

	 Chapter 6: Troubleshooting	 55

  Logical interface ge-1/0/0.0 (Index 330) (SNMP ifIndex 561) (Generation 139)
    Flags: SNMP-Traps 0x0 Encapsulation: ENET2
    Traffic statistics:
     Input  bytes  :           1865678156
     Output bytes  :           1847343804
     Input  packets:             35763065
     Output packets:             35313479
    Local statistics:
     Input  bytes  :             25260720
     Output bytes  :             30300888
     Input  packets:               370422
     Output packets:               370346
    Transit statistics:
     Input  bytes  :           1840417436                 4600 bps
     Output bytes  :           1817042916                 4392 bps
     Input  packets:             35392643                   11 pps
     Output packets:             34943133                   10 pps
    Protocol inet, MTU: 1500, Generation: 160, Route table: 0
      Flags: Sendbcast-pkt-to-re
      Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.254.254.0/30, Local: 10.254.254.1, Broadcast: 10.254.254.3,
Generation: 142
 Protocol multiservice, MTU: Unlimited, Generation: 161, Route table: 0
 Flags: Is-Primary
 Policer: Input: __default_arp_policer__

show interfaces <interface-type> extensive | find "queue counters"

This command helps you find whether the packets are in the right
queue in the egress:

user@R1> show interfaces ge-1/0/0 extensive | find "queue counters"
  Queue counters:       Queued packets  Transmitted packets      Dropped packets
    0 best-effort                 2906                 2906                    0
    1 expedited-fo                   0                    0                    0
    2 assured-forw                   0                    0                    0
    3 network-cont            35311240             35311240                    0
  Queue number:         Mapped forwarding classes
    0                   best-effort 
    1                   expedited-forwarding
    2                   assured-forwarding
    3                   network-control
  Active alarms  : None
  Active defects : None
  MAC statistics:                      Receive         Transmit
    Total octets                    2509420312       2477900586
    Total packets                     35763744         35314145
    Unicast packets                   35394795         34945226
    Broadcast packets                     1434             1470
    Multicast packets                   367515           367449
    CRC/Align errors                         0                0
    FIFO errors                              0                0
    MAC control frames                       0                0

	 56	 Day One: Junos QoS for IOS Engineers

    MAC pause frames                         0                0
    Oversized frames                         0
    Jabber frames                            0
    Fragment frames                          0
    VLAN tagged frames                       0
    Code violations                          0
  Filter statistics:
    Input packet count                35763732
    Input packet rejects                     0
    Input DA rejects                         0
    Input SA rejects                         0
    Output packet count                                35314134
    Output packet pad count                                   0
    Output packet error count                                 0
    CAM destination filters: 0, CAM source filters: 0
  Autonegotiation information:
    Negotiation status: Complete
    Link partner:
      Link mode: Full-duplex, Flow control: Symmetric/Asymmetric, Remote fault: OK
    Local resolution:
        Flow control: Symmetric, Remote fault: Link OK
  Packet Forwarding Engine configuration:
    Destination slot: 1
  CoS information:
    Direction : Output 
    CoS transmit queue               Bandwidth               Buffer Priority   Limit
                              %            bps     %           usec
    0 best-effort            95      950000000    95              0      low    none
    3 network-control         5       50000000     5              0      low    none
  Interface transmit statistics: Disabled

  Logical interface ge-1/0/0.0 (Index 330) (SNMP ifIndex 561) (Generation 139)
    Flags: SNMP-Traps 0x0 Encapsulation: ENET2
    Traffic statistics:
     Input  bytes  :           1865713264
     Output bytes  :           1847378386

 Input packets: 35763738

show class-of-service forwarding class

This command provides information on all the forwarding classes
available (default and user defined):

user@R1> show class-of-service forwarding-class 
Forwarding class ID    Queue  Restricted queue  Fabric priority  Policing priority
  best-effort     0       0          0                low                normal 
  expedited-
  forwarding      1       1          1                low                normal 
  assured-
  forwarding      2       2          2                low                normal 
  network-

	 Chapter 6: Troubleshooting	 57

  control         3       3          3                low                normal

show configuration class-of-service –

This command shows the entire class of service configuration on the
device. Individual sections can also be observed by specifying the
keyword after class-of-service. For example, classifiers, rewrite-rules,
etc.:

user@R1> show configuration class-of-service               
classifiers {
    dscp VOICE-BA-CLASSIFIER {
        import default;
        forwarding-class VOICE-EF-CLASS {
            loss-priority low code-points [ cs5 ef ];
        }
        forwarding-class assured-forwarding {
            loss-priority low code-points [ cs1 af11 af12 af13 cs2 af21 af22 af23 ];
            loss-priority high code-points [ cs3 af31 af32 af33 cs4 af41 af42 af43 ];
        }
        forwarding-class best-effort {
            loss-priority low code-points be;
        }
        forwarding-class network-control {
            loss-priority low code-points cs7;
            loss-priority high code-points cs6;
        }
    }
}
forwarding-classes {
    queue 5 VOICE-EF-CLASS;
}
interfaces {
    ge-* {
        scheduler-map VOICE-SCHED-MAP;
        unit 0 {
            classifiers {
                dscp VOICE-BA-CLASSIFIER;
            }
            rewrite-rules {
                dscp VOICE-DSCP-REWRITE;
            }
        }
    }
}
rewrite-rules {
    dscp VOICE-DSCP-REWRITE {
        import default;
        forwarding-class VOICE-EF-CLASS {
            loss-priority low code-point ef;
        }
        forwarding-class assured-forwarding {
            loss-priority low code-point cs3;

	 58	 Day One: Junos QoS for IOS Engineers

            loss-priority high code-point cs3;
        }
        forwarding-class network-control {
            loss-priority low code-point cs7;
            loss-priority high code-point cs6;
        }
        forwarding-class best-effort {
            loss-priority low code-point be;
        }
    }
}
scheduler-maps {
    VOICE-SCHED-MAP {                   
        forwarding-class best-effort scheduler CONTROL;
        forwarding-class network-control scheduler NC;
        forwarding-class VOICE-EF-CLASS scheduler EF;
        forwarding-class assured-forwarding scheduler AF;
    }
}
schedulers {
    EF {
        buffer-size percent 20;
        priority strict-high;
    }
    CONTROL {
        transmit-rate remainder;
        buffer-size {
            remainder;
        }
        priority low;
    }
    NC {
        buffer-size percent 15;
        priority high;
    }
    AF {
        transmit-rate percent 40;
        buffer-size percent 40;
        priority low;
    }

}

show interfaces queue <interface-type>

This command details the specific queues associated with the interface
– how many packets and bytes are queued and transmitted together
with the RED dropped packets:

user@R1> show interfaces queue ge-1/0/0
Physical interface: ge-1/0/0, Enabled, Physical link is Up

	 Chapter 6: Troubleshooting	 59

  Interface index: 144, SNMP ifIndex: 512
Forwarding classes: 16 supported, 4 in use
Egress queues: 8 supported, 4 in use
Queue: 0, Forwarding classes: best-effort 
  Queued:
    Packets              :                  2906                     0 pps
    Bytes                :                191844                     0 bps
  Transmitted:
    Packets              :                  2906                     0 pps
    Bytes                :                191844                     0 bps
    Tail-dropped packets :                     0                     0 pps
    RED-dropped packets  :                     0                     0 pps
     Low                 :                     0                     0 pps
     Medium-low          :                     0                     0 pps
     Medium-high         :                     0                     0 pps
     High                :                     0                     0 pps
    RED-dropped bytes    :                     0                     0 bps
     Low                 :                     0                     0 bps
     Medium-low          :                     0                     0 bps
     Medium-high         :                     0                     0 bps
     High                :                     0                     0 bps
Queue: 1, Forwarding classes: expedited-forwarding 
  Queued:
    Packets              :                     0                     0 pps
    Bytes                :                     0                     0 bps
  Transmitted:
    Packets              :                     0                     0 pps
    Bytes                :                     0                     0 bps
    Tail-dropped packets :                     0                     0 pps
    RED-dropped packets  :                     0                     0 pps
     Low                 :                     0                     0 pps
     Medium-low          :                     0                     0 pps
     Medium-high         :                     0                     0 pps
     High                :                     0                     0 pps
    RED-dropped bytes    :                     0                     0 bps
     Low                 :                     0                     0 bps
     Medium-low          :                     0                     0 bps
     Medium-high         :                     0                     0 bps
     High                :                     0                     0 bps
Queue: 2, Forwarding classes: assured-forwarding 
  Queued:
    Packets              :                     0                     0 pps
    Bytes                :                     0                     0 bps
  Transmitted:
    Packets              :                     0                     0 pps
    Bytes                :                     0                     0 bps
    Tail-dropped packets :                     0                     0 pps
    RED-dropped packets  :                     0                     0 pps
     Low                 :                     0                     0 pps
     Medium-low          :                     0                     0 pps
     Medium-high         :                     0                     0 pps
     High                :                     0                     0 pps
    RED-dropped bytes    :                     0                     0 bps
     Low                 :                     0                     0 bps

	 60	 Day One: Junos QoS for IOS Engineers

     Medium-low          :                     0                     0 bps
     Medium-high         :                     0                     0 bps
     High                :                     0                     0 bps
Queue: 3, Forwarding classes: network-control 
  Queued:
    Packets              :              35312968                    11 pps
    Bytes                :            3184095280                  8216 bps
  Transmitted:
    Packets              :              35312968                     11 pps
    Bytes                :            3184095280                  8216 bps
    Tail-dropped packets :                     0                     0 pps
    RED-dropped packets  :                     0                     0 pps
     Low                 :                     0                     0 pps
     Medium-low          :                     0                     0 pps
     Medium-high         :                     0                     0 pps
     High                :                     0                     0 pps
    RED-dropped bytes    :                     0                     0 bps
     Low                 :                     0                     0 bps
     Medium-low          :                     0                     0 bps
     Medium-high         :                     0                     0 bps
     High                :                     0                     0 bps

show firewall

In Junos, if the firewall filter has terms with “count” turned on, then
those counters will be indicated, and if the firewall includes policers
with the count keyword then all the policer counters will be enabled
and displayed under show firewall. Here are samples:

Firewall filter configuration example

 filter CoS-count--ge-1/1/4_inbound {
            term 00 {
                from {
                    dscp 000000;
                }
                then count dscp-00;
            }
            term 01 {
                from {
                    dscp 000001;
                }
                then count dscp-01;
            }
            term 02 {
                from {
                    dscp 000002;
                }
                then count dscp-02;
            }
            term 03 {

	 Chapter 6: Troubleshooting	 61

                from {
                    dscp 000003;
                }
                then count dscp-03;
            }
            term 04 {
                from {
                    dscp 000004;
                }
                then count dscp-04;
            }
            term 05 {
                from {
                    dscp 000005;
                }
                then count dscp-05;
            }
            term else-accept {
                then accept;
            }
        }

Output

user@R1> show firewall

Filter: __default_bpdu_filter__                                

Filter: CoS-count--ge-1/1/4_inbound                            
Counters:
Name  Bytes              Packets
dscp-00   14000                  100
dscp-01   0                    0
dscp-02   0                    0
dscp-03   0                    0
dscp-04   0                    0
dscp-05   0                    0

Filter: TCM_PLP-count--ge-1/0/4_outbound                       
Counters:
Name  Bytes              Packets
PLP-high  0                    0
PLP-low   15180                  114
PLP-med-high  0                    0

Filter: FC_PLP-count--ge-1/0/4_outbound                        
Counters:
Name  Bytes              Packets
BE-data-high  0                    0
BE-data-low   0                    0
Pri-data-high   0                    0
Pri-data-low  0                    0
Voice-high  0                    0

	 62	 Day One: Junos QoS for IOS Engineers

Voice-low   0                    0

Filter: my_MF_filter-ge-1/0/0.0-i                              
Counters:
Name  Bytes              Packets
tcp-count-ge-1/0/0.0-i                                  0                    0
tcp80-count-ge-1/0/0.0-i                            14000                  100
udp-count-ge-1/0/0.0-i                                  0                    0
Policers:
Name  Packets 
my-2color-policer-tcp-ge-1/0/0.0-i                      0

show configuration interface <interface-type>

This command shows what firewall filter, MF Classifier, or policer is
configured under the specific interface:

user@R1>show configuration interface ge-1/0/0
{
 unit 0 {
 family inet {
 filter {
 input RTP-INPUT-FILTER;
 }
 address 10.254.20.1/30;
 }
 }
}

show configuration class-of-service interfaces

This command will help you find out what BA classifier, rewrite rules,
or scheduler-maps are applied to the interface:

user@R1> show configuration class-of-service interfaces
ge-1/0/6 {
 scheduler-map scheduler-map-core;
 unit 0 {
 classifiers {
 dscp DSCP-BA;
 exp EXP-BA;
 }
 rewrite-rules {
 dscp DSCP-BA;
 exp EXP-BA;
 }
 }
}

	 Chapter 6: Troubleshooting	 63

clear interfaces statistics all

This command clears all the interface counters before taking any
reading:

user@R1> show interfaces ge-2/0/0 extensive
Physical interface: ge-2/0/0, Enabled, Physical link is Up
 Interface index: 134, SNMP ifIndex: 1730, Generation: 137
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, BPDU Error: None, MAC-REWRITE
Error: None, Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:1d:b5:49:b3:fc, Hardware address: 00:1d:b5:49:b3:fc
 Last flapped : 2010-07-07 07:44:37 PDT (4w6d 11:28 ago)
 Statistics last cleared: 2010-08-10 19:10:48 PDT (00:02:24 ago)
 Traffic statistics:
   Input  bytes  :               112972                 7408 bps
   Output bytes  :               114162                 6848 bps
   Input  packets:                 1610                   13 pps
   Output packets:                 1627                   12 pps
   IPv6 total statistics:
    Input  bytes  :                   0 
    Output bytes  :                   0
    Input  packets:                   0
    Output packets:                   0
  Ingress traffic statistics at Packet Forwarding Engine:
   Input  bytes  :               113198                 7104 bps
   Input  packets:                 1613                   12 pps
   Drop   bytes  :                    0                    0 bps
   Drop   packets:                    0                    0 pps
  Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3
incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource
errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO
errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
  Ingress queues: 8 supported, 4 in use
  Queue counters:       Queued packets  Transmitted packets      Dropped packets
    0 best-effort                    0                    0                    0
    1 expedited-fo                   0                    0                    0
    2 assured-forw                   0                    0                    0
    3 network-cont                1613                 1613                    0
  Egress queues: 8 supported, 4 in use
  Queue counters:       Queued packets  Transmitted packets      Dropped packets
    0 best-effort                    0                    0                    0
    1 expedited-fo                   0                    0                    0
    2 assured-forw                   0                    0                    0
    3 network-cont                1615                 1615                    0
  Queue number:         Mapped forwarding classes

	 64	 Day One: Junos QoS for IOS Engineers

 0 best-effort
    1                   expedited-forwarding
    2                   assured-forwarding
    3                   network-control
  Active alarms  : None
  Active defects : None
  MAC statistics:                      Receive         Transmit
    Total octets                        112972           114162
    Total packets                         1610             1627
    Unicast packets                       1593             1610
    Broadcast packets                        0                0
    Multicast packets                       17               17
    CRC/Align errors                         0                0
    FIFO errors                              0                0
    MAC control frames                       0                0
    MAC pause frames                         0                0
    Oversized frames                         0
    Jabber frames                            0
    Fragment frames                          0
    VLAN tagged frames                       0
    Code violations                          0
  Filter statistics:
    Input packet count                    1610
    Input packet rejects                     0
    Input DA rejects                         0
    Input SA rejects                         0
    Output packet count                                    1627
    Output packet pad count                                   0
    Output packet error count                                 0
    CAM destination filters: 0, CAM source filters: 0
  Autonegotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: Symmetric/Asymmetric, Remote fault: OK
 Local resolution:
 Flow control: Symmetric, Remote fault: Link OK
 Packet Forwarding Engine configuration:
 Destination slot: 2
  CoS information:
    Direction : Output 
    CoS transmit queue               Bandwidth               Buffer Priority   Limit
                              %            bps     %           usec
    0 best-effort            95      950000000    95              0      low    none
    3 network-control         5       50000000     5              0      low    none
    Direction : Input 
    CoS transmit queue               Bandwidth               Buffer Priority   Limit
                              %            bps     %           usec
    0 best-effort            95      950000000    95              0      low    none
    3 network-control         5       50000000     5              0      low    none

 Logical interface ge-2/0/0.0 (Index 69) (SNMP ifIndex 1733) (Generation 134)
 Flags: SNMP-Traps Encapsulation: ENET2
   Traffic statistics:
     Input  bytes  :               112904

	 Chapter 6: Troubleshooting	 65

     Output bytes  :               114024
     Input  packets:                 1610
     Output packets:                 1626
    Local statistics:
     Input  bytes  :                 1156
     Output bytes  :                 1394
     Input  packets:                   17
     Output packets:                   17
    Transit statistics:
     Input  bytes  :               111748                 7408 bps
     Output bytes  :               112630                 6848 bps
     Input  packets:                 1593                   13 pps
     Output packets:                 1609                   12 pps
 Protocol inet, MTU: 1500, Generation: 145, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.254.254.0/30, Local: 10.254.254.2, Broadcast: 10.254.254.3,
Generation: 144
 Protocol multiservice, MTU: Unlimited, Generation: 146, Route table: 0
 Flags: Is-Primary
 Policer: Input: __default_arp_policer__

{master}

user@R1> clear interfaces statistics all

{master}
user@R1> show interfaces ge-2/0/0 extensive
Physical interface: ge-2/0/0, Enabled, Physical link is Up
 Interface index: 134, SNMP ifIndex: 1730, Generation: 137
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, BPDU Error: None, MAC-REWRITE
Error: None, Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:1d:b5:49:b3:fc, Hardware address: 00:1d:b5:49:b3:fc
 Last flapped : 2010-07-07 07:44:37 PDT (4w6d 11:29 ago)
 Statistics last cleared: 2010-08-10 19:13:54 PDT (00:00:02 ago)
 Traffic statistics:
   Input  bytes  :                 1540                 6160 bps
   Output bytes  :                 1540                 6720 bps
   Input  packets:                   22                   11 pps
   Output packets:                   22                   12 pps
   IPv6 total statistics:
    Input  bytes  :                   0 
    Output bytes  :                   0
    Input  packets:                   0
    Output packets:                   0

	 66	 Day One: Junos QoS for IOS Engineers

  Ingress traffic statistics at Packet Forwarding Engine:
   Input  bytes  :                 1906                 6064 bps
   Input  packets:                   27                   10 pps
   Drop   bytes  :                    0                    0 bps
   Drop   packets:                    0                    0 pps
  Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3
incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0, Resource
errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0, FIFO
errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
 Ingress queues: 8 supported, 4 in use
  Queue counters:       Queued packets  Transmitted packets      Dropped packets
    0 best-effort                    0                    0                    0
    1 expedited-fo                   0                    0                    0
    2 assured-forw                   0                    0                    0
    3 network-cont                  27                   27                    0
  Egress queues: 8 supported, 4 in use
  Queue counters:       Queued packets  Transmitted packets      Dropped packets
    0 best-effort                    0                    0                    0
    1 expedited-fo                   0                    0                    0
    2 assured-forw                   0                    0                    0
    3 network-cont                  14                   14                    0
 Queue number: Mapped forwarding classes
 0 best-effort
 1 expedited-forwarding
 2 assured-forwarding
 3 network-control
 Active alarms  : None
  Active defects : None
  MAC statistics:                      Receive         Transmit
    Total octets                          1540             1540
    Total packets                           22               22
    Unicast packets                         22               22
    Broadcast packets                        0                0
    Multicast packets                        0                0
    CRC/Align errors                         0                0
    FIFO errors                              0                0
    MAC control frames                       0                0
    MAC pause frames                         0                0
    Oversized frames                         0
    Jabber frames                            0
    Fragment frames                          0
    VLAN tagged frames                       0
    Code violations                          0
  Filter statistics:
    Input packet count                      22
    Input packet rejects                     0
    Input DA rejects                         0
    Input SA rejects                         0
    Output packet count                                      22
    Output packet pad count                                   0
    Output packet error count                                 0

	 Chapter 6: Troubleshooting	 67

    CAM destination filters: 0, CAM source filters: 0
  Autonegotiation information:
    Negotiation status: Complete
    Link partner:
        Link mode: Full-duplex, Flow control: Symmetric/Asymmetric, Remote fault: OK
    Local resolution:
        Flow control: Symmetric, Remote fault: Link OK
  Packet Forwarding Engine configuration:
    Destination slot: 2
  CoS information:
    Direction : Output 
    CoS transmit queue               Bandwidth               Buffer Priority   Limit
                              %            bps     %           usec
    0 best-effort            95      950000000    95              0      low    none
    3 network-control         5       50000000     5              0      low    none
    Direction : Input 
    CoS transmit queue               Bandwidth               Buffer Priority   Limit
                              %            bps     %           usec
    0 best-effort            95      950000000    95              0      low    none
    3 network-control         5       50000000     5              0      low    none

 Logical interface ge-2/0/0.0 (Index 69) (SNMP ifIndex 1733) (Generation 134)
   Flags: SNMP-Traps Encapsulation: ENET2
    Traffic statistics:
     Input  bytes  :                 1540
     Output bytes  :                 1540
     Input  packets:                   22
     Output packets:                   22
    Local statistics:
     Input  bytes  :                    0
     Output bytes  :                    0
     Input  packets:                    0
     Output packets:                    0
    Transit statistics:
     Input  bytes  :                 1540                 6096 bps
     Output bytes  :                 1540                 6648 bps
     Input  packets:                   22                   10 pps
     Output packets:                   22                   11 pps
    Protocol inet, MTU: 1500, Generation: 145, Route table: 0
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.254.254.0/30, Local: 10.254.254.2, Broadcast: 10.254.254.3,
Generation: 144
 Protocol multiservice, MTU: Unlimited, Generation: 146, Route table: 0
 Flags: Is-Primary
 Policer: Input: __default_arp_policer__

	 68	 Day One: Junos QoS for IOS Engineers

Summary

Careful planning is essential when designing QoS for any network.
Once you have gathered all of the requirements then it is only a matter
of translating them on the device. The steps illustrated in the previous
chapters are symbolic and can be used on any Junos platform including
EX, M, MX, and SRX series devices. Also, there are a lot of powerful
tools available for troubleshooting, which should aid you in deploying
QoS in the network. Finally, Junos CLI is different from the Cisco CLI,
but the configuration can be tuned to achieve similar results for QoS.

	 Chapter 6: Troubleshooting	 69

	 70	 Day One: Junos QoS for IOS Engineers

What to Do Next & Where to Go

http://www.juniper.net/dayone

The Day One book series is available for free download in PDF
format. Select titles also feature a Copy and Paste edition for direct
placement of Junos configurations. (The library is available in eBook
format for iPads and iPhones from the Apple iBookstore, or download
to Kindles, Androids, Blackberrys, Macs and PCs by visiting the Kindle
Store. In addition, print copies are available for sale at Amazon or
www.vervante.com.)	

http://www.juniper.net/books

QoS Enabled Networks: Tools and Foundations, by Peter Lundqvist
and Miguel Barreiros. This book, by two experts from Juniper Net-
works, provides an in-depth treatment of the subject from a more
theoretical level all the way through to an understanding of the tools
available to influence the behaviors, and finally through to the applica-
tion of those tools.

http://forums.juniper.net/jnet	

The Juniper-sponsored J-Net Communities forum is dedicated to
sharing information, best practices, and questions about Juniper
products, technologies, and solutions. Register to participate in this
free forum.

www.juniper.net/techpubs/

Juniper Networks technical documentation includes everything you
need to understand and configure all aspects of Junos, including
MPLS. The documentation set is both comprehensive and thoroughly
reviewed by Juniper engineering.

www.juniper.net/training/fasttrack

Take courses online, on location, or at one of the partner training
centers around the world. The Juniper Network Technical Certifica-
tion Program (JNTCP) allows you to earn certifications by demon-
strating competence in configuration and troubleshooting of Juniper
products. If you want the fast track to earning your certifications in
enterprise routing, switching, or security use the available online
courses, student guides, and lab guides.

	Front Cover
	Back Cover
	Title Page
	Copyright and About the Author
	Welcome to Day One
	What You Need to Know Before Reading This Book
	After Reading This Book, You’ll Be Able To:
	IOS and Junos

	Chapter 1: Introduction
	Chapter 2: Class of Service Functionality in IOS and Junos
	Class of Service Functionality in Cisco IOS
	Class of Service Functionality in Junos
	Summary

	Chapter 3: Comparison of IOS and Junos with Basic Tuple
	In IOS
	In Junos
	Translating IOS to Junos
	Summary

	Chapter 4: Policing and Shaping
	Policer
	Shaper
	Summary

	Chapter 5: Congestion Avoidance
	In IOS
	In Junos
	Summary

	Chapter 6: Troubleshooting
	IOS Troubleshooting Commands
	Junos Troubleshooting Commands
	Summary

	What to Do Next & Where to Go

