
D
AY

O
N

E:Q
U

A
N

TU
M

-SA
FE

IPSEC
V

PN
s

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/dayone.

DAY ONE: QUANTUM-SAFE IPSEC VPNs

By Melchior Aelmans, Gert Grammel, Siji Joseph, Sabyasachi
Mukhopadhyay, Priyabrata Saha, Ranjan Sinha, Aswin Surendran

DAY ONE: QUANTUM-SAFE IPSEC VPNS
In a classical computing environment, calculating discrete logarithms for sufficiently large prime
numbers is computationally infeasible, which makes the Diffie-Hellman algorithm a secure
method for key exchange. However, quantum computers use a different approach to com-
putation, based on quantum bits or qubits, which allows them to perform certain calculations
much faster than classical computers. One of the computations that quantum computers excel
at is the calculation of discrete logarithms, potentially allowing them to break the security of
the Diffie-Hellman key exchange algorithm.

Welcome to the world of Shor's Algorithm, superposition, entanglement, and Quantum Key
Distribtuion (QKD), as this new Day One documents significant steps toward quantum-resis-
tant cryptography. The book provides a comprehensive understanding of the threats posed
by quantum computing to IPsec, and the role that quantum-secure key exchange algorithms
play in mitigating those threats. The stellar author list includes some the finest engineers and
scientists at Juniper Networks as they convey both new knowledge and the right tools needed
to protect you and your network from quantum attack.

IT’S DAY ONE AND YOU HAVE A JOB TO DO:

n Learn about xxxxxxxxs.

n Explore xxxxxxx.

n Configure xxxxxxxc

n Validate operation xxxxxx

“Quantum technology provides new and innovative tool kits to apply for solutions in multiple fields of
science and engineering, in particular computing, security and networking. For me, it’s a fascinating
discipline that allows you to explore new solutions thinking out of our classical and deterministic box.“

Domenico Di Mola, GVP Optical, Juniper Networks

“xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx

xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx

xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx.”
Raj Yavatkar, Chief Technology Officer, Juniper Networks

IPsec VPNs Enhanced with RFC8784 Quantum Cryptography

https://www.juniper.net/books

D
AY O

N
E: Q

U
A

N
TU

M
-SA

FE IPSEC
 V

PN
s

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/dayone.

DAY ONE: QUANTUM-SAFE IPSEC VPNs

By Melchior Aelmans, Gert Grammel, Siji Joseph, Sabyasachi
Mukhopadhyay, Priyabrata Saha, Ranjan Sinha, Aswin Surendran

DAY ONE: QUANTUM-SAFE IPSEC VPNS
In a classical computing environment, calculating discrete logarithms for sufficiently large prime
numbers is computationally infeasible, which makes the Diffie-Hellman algorithm a secure
method for key exchange. However, quantum computers use a different approach to com-
putation, based on quantum bits or qubits, which allows them to perform certain calculations
much faster than classical computers. One of the computations that quantum computers excel
at is the calculation of discrete logarithms, potentially allowing them to break the security of
the Diffie-Hellman key exchange algorithm.

Welcome to the world of Shor's Algorithm, superposition, entanglement, and Quantum Key
Distribution (QKDs). This book provides a comprehensive understanding of the threats posed
by quantum computing to IPsec. The stellar author list includes some of the finest engineers at
Juniper Networks as they convey both new knowledge and the right tools needed to protect
you and your network from quantum attack.

“Quantum computing promises to herald the next major revolution in computing. Personally, for me, its
application to networking and security is the most practical application in the shorter term. Day One:
Quantum-Safe IPSEC VPNs is a great way to impart solid understanding of applying quantum technol-
ogy to secure communication and safe key exchanges. My thanks to some of our finest leaders who form
the author list for the book. Enjoy!“

Raj Yavatkar, Chief Technology Officer, Juniper Networks

“Feynman, a Nobel Prize winner for his work on QED, said: “I think I can safely say that nobody understands
quantum mechanics.” Einstein called quantum entanglement (crucial to quantum networking) spukhafte
Fernwirkung (spooky action at a distance). Schroedinger spoke of a cat both dead and alive. All this may lead
you to think quantum networking is beyond you and you won’t even try. WAIT! Here is a practical book that
tells you why you need to learn this and it gives you very practical steps on how to get into the technology.
It includes hands-on training on integrating quantum-safe methods into your network and it is explained by
the best in the business. Give it a shot; you won’t regret it.”

Kireeti Kompella, SVP Architecture, Juniper Networks

“Quantum technology provides new and innovative tool kits to apply for solutions in multiple fields of
science and engineering, in particular computing, security and networking. For me, it’s a fascinating
discipline that allows you to explore new solutions thinking out of our classical and deterministic box.“

Domenico Di Mola, GVP Optical, Juniper Networks

IPsec VPNs Enhanced with RFC8784 Quantum Cryptography

https://www.juniper.net/books

Day One: Quantum-safe IPsec VPNS

By Melchior Aelmans, Gert Grammel, Siji Joseph,
Sabyasachi Mukhopadhyay, Priyabrata Saha,
Ranjan Sinha, and Aswin Surendran

Chapter 1: The Big Threat . 8

Chapter 2: Internet Protocol Security (IPsec) . 22

Chapter 3: Quantum-safe Security . 27

Chapter 4: Pulling IPsec Together with QKD or PQC . 36

Appendices . 61

 iv

© 2023 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other countries.
The Juniper Networks Logo and the Junos logo, are trademarks
of Juniper Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper
Networks reserves the right to change, modify, transfer, or
otherwise revise this publication without notice.

Published by Juniper Networks Books
Authors: Melchior Aelmans, Gert Grammel, Siji Joseph,
Sabyasachi Mukhopadhyay, Priyabrata Saha, Ranjan Sinha,
Aswin Surendran
Editor in Chief: Patrick Ames
Version History: v1, April 2023

About the Authors

Melchior Aelmans is a seasoned architect with over 20 years
of experience in various operations, engineering, and
architecture roles in the Cloud- and Service Provider industry.
He is currently a member of the Global Service Provider
architecture team at Juniper Networks, where he collaborates
with Service Providers to design and evolve their networks.
Melchior has a particular interest in the intersection of
quantum technology and network security and is focused on
exploring ways to apply quantum technology in this area since
2018. Aside from his work in quantum technology, Melchior is
passionate about routing protocols standards development,
routing security and network architectures. He is a frequent
presenter and attendee at conferences and meetings, including
active participation in standardization organizations such as
IETF. As a Steering Committee member at MANRS, Melchior
is committed to promoting security, reliability, and stability of
the Internet. He also serves as Internet Society Organization
Member Advisory Council co-chair, member of the NANOG
Program Committee and a board member at the NLNOG
Foundation.

Gert Grammel is a Principal Engineer at Juniper Networks
where he has been working with operators on automation,
optical technology, and evolution of networks. He has 25 years
of experience in various management and engineering positions
working with Cloud, Data Centers, and Service Providers. He
enjoys working on networking technology and control
architecture. Since 2020 Gert is spearheading Juniper’s activities
in exploring the Quantum Internet. He participates in IETF,
OpenROADM, ETSI-QKD and ITU-T, is a regular presenter
at conferences and chairs the Physical Simulation Environment
(PSE) Working Group in www.telecominfraproject.com.

Siji Joseph is a Staff Engineer at Juniper Network working with
the protocol testing team. She has over 15 years of experience
in testing different protocols and VPN implementations.

Sabyasachi Mukhopadhyay has been in the Networking and
Telecommunication Industry for about 25 years, working in
both Development and Test teams on diverse technologies like
ATM, SDH, MPLS-VPN, SDN. He currently leads the AI/ML
team in Juniper CDO org where he Develops AI/ML based
features for Service Provider customers. A graduate in Physics/
Optics and Optoelectronics and Masters in AI, his interests
spans across Quantum Networks, and the application of AI to
quantum. Apart from his work in quantum, Sabyasachi is
passionate about AI, NLP and application of AI and NLP to
solve critical customer issues.

Ranjan Sinha has been working in the security domain for
more than 20 years working on software licensing, encrypted file
systems ,and VPNs. He currently leads the IPsec VPN team at
Juniper Networks.

Aswin Surendran is a Software Engineer at Juniper
Networks. He has been working in the field of Networking and
Telecom-munication for over 8 years. He has experience in
developing 4G and 5G technologies. His current major focus is
on the design and development of Network security using IPsec,
SSL, etc.

Priyabrata Saha is a Software Engineer at Juniper Networks
working in the IPsec VPN team. With an overall experience of
around 3 years, his main area of focus is designing and
developing highly efficient and scalable software products. He
has worked on multiple security products including but not
limited to VPN, IDS, IPS, UTM, etc.

Authors’ Acknowledgments

The authors would like to thank, in random order, the following
people for their ideas, contributions and support: Kireeti
Kompella, Domenico Di Mola, Pavan Kurapati, Raj Yavatkar,
Patrick Ames, Neetu Rathee, Ashwin Kovummal, Mark Denny,
Johan Andersson, Bruno Rijsman, Yasir Nawaz, and many
others who have been of instrumental help.

Melchior Aelmans would like to express his heartfelt apprecia-
tion to Patrick Ames for his unwavering dedication to the Day
One book program and for collaborating with him on numerous
books over the years. After publishing this book, Patrick will be
embarking on a well-deserved retirement. Patrick, you will be
greatly missed. Thank you for everything!

Melchior also wishes to express his gratitude to the RIPE NCC
and QuTech for organizing the Quantum Internet hackathon
back in 2018. This event marked the beginning of his journey
into the world of quantum.

v Welcome to Day One v

Welcome to Day One

This book is part of the Day One library, produced and published by Juniper Networks
Books. Day One books feature Juniper Networks technology with straightforward expla-
nations, step-by-step instructions, and practical examples that are easy to follow.

� Download a free PDF edition at https://www.juniper.net/dayone.

� Purchase the paper edition at Vervante Corporation (www.vervante.com).

Key Quantum Network Resources

The authors highly recommend the following documents if you are interested in read-
ing more about quantum networks.

� Whitepaper - Validation of a Quantum Safe MACsec Implementation
https://www.juniper.net/content/dam/www/assets/white-papers/us/en/2022/
validation-of-quantum-safe-macsec-white-paper.pdf

� IETF draft - Application Scenarios for the Quantum Internet
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/

� Blog - Solving the Quantum Computing Security Problem
https://blogs.juniper.net/en-us/security/solving-the-quantum-computing-securi-
ty-problem

� Blog - Quantums in Computing and Encryption: Are They the Same?
https://blogs.juniper.net/en-us/security/quantums-in-computing-and-encryp-
tion-are-they-the-same

� Presentation - Demystifying Quantum Key Distribution
https://www.youtube.com/watch?v=Mv6ne57-iJU

� Podcast – The Quantum Internet
https://open.spotify.com/episode/0wBd5LsTZ5qTed38sbOcvu

� Presentation - Exploring Quantum Technology for Networking
https://www.youtube.com/watch?v=1aImelcyS9Q

What You Need to Know Before Reading This Book

The authors expect the reader to have some basic knowledge about the working of current
security protocols including IPsec, basic knowledge about quantum computing and quan-
tum effects, and the Junos OS networking operating system.

https://www.juniper.net/dayone
http://www.vervante.com
https://www.juniper.net/content/dam/www/assets/white-papers/us/en/2022/validation-of-quantum-safe-macsec-white-paper.pdf
https://www.juniper.net/content/dam/www/assets/white-papers/us/en/2022/validation-of-quantum-safe-macsec-white-paper.pdf
https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/
https://blogs.juniper.net/en-us/security/solving-the-quantum-computing-security-problem
https://blogs.juniper.net/en-us/security/solving-the-quantum-computing-security-problem
https://blogs.juniper.net/en-us/security/quantums-in-computing-and-encryption-are-they-the-same
https://blogs.juniper.net/en-us/security/quantums-in-computing-and-encryption-are-they-the-same
https://www.youtube.com/watch?v=Mv6ne57-iJU
https://open.spotify.com/episode/0wBd5LsTZ5qTed38sbOcvu
https://www.youtube.com/watch?v=1aImelcyS9Q

 vi What You Need to Know About RFC8784

What You Need to Know About RFC8784

IPsec VPNs rely on the Internet Key Exchange (IKE) protocol for establishing and main-
taining security parameters that protect the data traffic. These parameters include en-
cryption and authentication algorithms as well as associated keys along with the lifetime
of key material after which new keys must be negotiated.

However, security protocols that rely on asymmetric cryptographic algorithms (public-
key cryptography) for establishing keys are susceptible to attacks once quantum comput-
ers become powerful enough to solve the math behind such algorithms by executing
Shor’s algorithm. IKE, specifically version 2, is an example of one such vulnerable proto-
col as it completely relies on Diffie Hellman (DH) or Elliptic Curve Diffie Hellman
(ECDH) operation for generating the shared key material. Note that the symmetric cryp-
tographic algorithms, for example Advanced Encryption Standard (AES), are considered
safe provided that the key length is sufficiently large.

To solve this challenge, RFC8784 introduces a method to add an additional secret (key)
that is present at, or delivered to, both the initiator and the responder side via some strict
out-of-band method (for example Quantum Key Distribution) or post-quantum safe key
distribution method. This secret is, in addition to the authentication method that is al-
ready provided, within IKEv2.

The additional key material provides quantum resistance to any child Security Associa-
tions (SA), therefore, initial negotiated IPsec SA and any subsequent rekeyed IKE and
IPsec SAs. This secret is also mixed with peer authentication key so that both sides can
cleanly detect mismatches. This secret is called Post-quantum Preshared Keys (PPKs).

RFC8784 does not specify how these PPKs are exchanged. In this book we will look at a
few of the options currently available to make IPsec Quantum-safe.

 � https://www.rfc-editor.org/rfc/rfc8784.html

Preface

Quantum computing is a rapidly advancing field that promises to revolutionize the way
we approach complex computational problems, including those related to cryptography
and network security. The potential benefits of quantum computing are vast, but so are
the potential risks. The unique properties of quantum computers, such as the ability to
perform certain calculations exponentially faster than classical computers, also threaten
the security of traditional encryption methods.

One of the most significant threats posed by quantum computing is its ability to break
cryptographic protocols that rely on the hardness of certain mathematical problems.
Shor’s algorithm, a quantum algorithm discovered in 1994, can factor large numbers in
polynomial time, which renders many widely used cryptographic schemes vulnerable to

https://www.rfc-editor.org/rfc/rfc8784.html

 vii Preface

attack. This algorithm represents a significant threat to network security, as it exposes the
thread that quantum computers pose to the integrity of the data transmitted over
networks.

The emergence of quantum computers highlights the importance of developing new
cryptographic protocols and methods that can withstand quantum attacks. One such
method for key distribution is Quantum Key Distribution (QKD), which allows two par-
ties to establish a shared secret key that is impossible to intercept or copy without disturb-
ing the quantum state of the system. This protocol offers an unprecedented level of
security and is particularly relevant for network security protocols such as IPsec.

As network and security engineers, it is our responsibility to stay ahead of the curve and
to anticipate the threats that we may face. This book aims to provide those involved in
networking and security a comprehensive understanding of the threats posed by quan-
tum computing to network security, in particular IPsec, and the role that QKD plays in
combating those threats.

The Internet Engineering Task Force (IETF) has recently standardized an extension of
IKEv2 to allow it to be resistant to a quantum computer; RFC8784 defines strong pre-
shared keys with IPsec, providing a comprehensive framework for the deployment of,
amongst other quantum-safe protocols, QKD in network security. This standard repre-
sents a significant step forward in the development of quantum-resistant cryptography
and its adoption is likely to increase in the coming years.

Our goal with authoring this book is to equip the reader with the knowledge and tools
needed to take, perhaps the first, steps in protecting their networks against quantum at-
tacks. We will provide a basic understanding of the foundations of quantum security and
the practical applications of QKD in network security and in particular IPsec.

We will also explore the limitations and potential drawbacks of QKD and examine alter-
native approaches to quantum-resistant cryptography.

We aim to provide a comprehensive understanding of the threats posed by quantum
computing to IPsec and the role that quantum-secure key exchange algorithms play in
mitigating those threats. We hope that this book will serve as a valuable resource for net-
work engineers and security professionals who wish to stay ahead of the curve and pro-
tect their networks against quantum attacks.

Melchior Aelmans, et al., March 2023

The advent of quantum computing brings many new possibilities for those forecasting
the weather, predicting climate change impact, drug development, financial modeling,
and many more applications a ‘classical computer’ would never be able to do.

Something a Quantum computer can excel in is factoring prime numbers. In fact, it
could do this at magnitudes faster than a classical computer if able to run Shor’s algo-
rithm. When quantum computers become so powerful that they can effectively run this
algorithm it is assumed they will be able to find the prime factors of large numbers very
efficiently and by doing so effectively cracking current Public Key Infrastructure (PKI)
methods.

Store Now, Decrypt Later

The “Store now, decrypt later” threat refers to the risk of intercepted encrypted data be-
ing stored in present time and decrypted in the future by a third party who gains access to
the encryption key used to secure the data. Even if he currently is not able to gain access
to the encryption key.

If an attacker can obtain the encryption key used to encrypt the data, they can use this
key to decrypt the data, potentially gaining access to sensitive information. In some cases,
attackers may also use advanced techniques such as brute-force attacks or side-channel
attacks to try and obtain the encryption key.

Chapter 1

The Big Threat

https://en.wikipedia.org/wiki/Public_key_infrastructure

 9 Shor’s Algorithm

With the development of quantum computing technology, the “Store now, decrypt lat-
er” threat is potentially more significant. Quantum computers are designed to operate
on a fundamentally different level than classical computers, which could make them ca-
pable of breaking many of the encryption algorithms currently used to secure data.

To mitigate the risk of the “Store now, decrypt later” threat, it is essential to implement
strong(er) encryption methods and to ensure that encryption keys are securely managed
and protected. Additionally, it may be necessary to use post-quantum cryptography
methods that are designed to be secure even against the potential future threat of quan-
tum computers.

Shor’s Algorithm

Shor’s algorithm is a quantum algorithm that can factor large integers and find discrete
logarithms efficiently. It was discovered by Peter Shor in 1994 and is considered one of
the most significant quantum algorithms, as it has implications for the security of many
encryption schemes that rely on the difficulty of factoring large numbers. But first let’s
get into some of the basic principles of quantum and then we will discuss how Shor’s
algorithm works.

Basic Principles of Quantum Mechanics

To understand Shor’s algorithm, it is important to understand the basic principles of
quantum mechanics.

Quantum mechanics is a branch of physics that studies the behavior of particles on a
very small scale, such as atoms and subatomic particles. Unlike classical mechanics,
which deals with the behavior of objects on a large scale, quantum mechanics requires a
new set of rules and principles to describe the behavior of particles on a small scale.

In classical mechanics, we can determine the position and velocity of an object with a
high degree of accuracy. However, in quantum mechanics, we cannot simultaneously
determine both the position and velocity of a particle. This is due to the uncertainty
principle, which states that the more precisely we know one property of a particle, the
less precisely we can know the other property.

Another fundamental principle of quantum mechanics is superposition. Superposition
states that a particle can exist in multiple states at the same time. For example, an elec-
tron can exist in multiple energy states simultaneously, and its wave function, which de-
scribes the probability of finding the electron in a particular location, will reflect this
superposition.

Superposition is a key component of quantum computing, as it allows for the creation of
quantum bits or qubits. Unlike classical bits, which can only be in one state (either 0 or
1), qubits can exist in a superposition of states, which allows for exponential speedup in
certain computational task.

 10 Chapter 1: The Big Threat

Entanglement

One of the most counter-intuitive aspects of quantum mechanics is entanglement. En-
tanglement occurs when two or more particles become correlated in such a way that the
state of one particle is dependent on the state of the other particle. This means that mea-
suring the state of one particle instantaneously affects the state of the other particle, even
if they are separated by great distances.

The deep ways that quantum information differs from classical information involve the
properties, implications, and uses of quantum entanglement. Entangled states are inter-
esting because they exhibit correlations that have no classical analog. Though Albert
Einstein colorfully dismissed quantum entanglement—the ability of separated objects to
share a condition or state—as “spooky action at a distance.”

Over the past few decades, however, physicists have demonstrated the reality of spooky
action over ever greater distances—even from Earth to a satellite in space. This holistic
property of compound quantum systems, which involves nonclassical correlations be-
tween subsystems, is a potential for many quantum applications: quantum cryptography,
quantum teleportation and dense coding.

However, it appeared that this new resource is very complex and difficult to detect. Being
usually fragile to environment, it is robust against conceptual and mathematical tools, the
task of which is to decipher its rich structure.

Quantum entanglement is the physical phenomenon that occurs when a group of par-
ticles are generated, interact, or share spatial proximity in a way such that the quantum
state of each particle of the group cannot be described independently of the state of the
others, including when the particles are separated by a large distance. The topic of quan-
tum entanglement is at the heart of the disparity between classical and quantum physics:
entanglement is a primary feature of quantum mechanics not present in classical
mechanics.

Measurements of physical properties such as position, momentum, spin, and polariza-
tion performed on entangled particles can, in some cases, be found to be perfectly cor-
related. For example, if a pair of entangled particles is generated such that their total
spin is known to be zero, and one particle is found to have clockwise spin on a first axis,
then the spin of the other particle, measured on the same axis, is found to be anticlock-
wise. However, this behavior gives rise to seemingly paradoxical effects: any measure-
ment of a particle’s properties results in an irreversible wave function collapse of that
particle and changes the original quantum state. With entangled particles, such measure-
ments affect the entangled system as a whole.

Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky,
and Nathan Rosen and several papers by Erwin Schrödinger shortly thereafter describ-
ing what came to be known as the EPR paradox. Einstein and others considered such
behavior impossible, as it violated the local realism view of causality (Einstein referring to

 11 Shor’s Algorithm

it as “spooky action at a distance”) and argued that the accepted formulation of quan-
tum mechanics must therefore be incomplete.

Later, however, the counter-intuitive predictions of quantum mechanics were verified in
tests where polarization or spin of entangled particles was measured at separate loca-
tions, statistically violating Bell’s inequality. In earlier tests, it could not be ruled out that
the result at one point could have been subtly transmitted to the remote point, affecting
the outcome at the second location. However, so-called “loophole-free” Bell tests have
been performed where the locations were sufficiently separated that communications at
the speed of light would have taken longer—in one case, 10,000 times longer—than the
interval between the measurements.

Quantum entanglement has been demonstrated experimentally with photons, neutrinos,
electrons, molecules as large as buckyballs, and even small diamonds. The utilization of
entanglement in communication, computation and quantum radar is a very active area
of research and development.

Shor’s Algorithm Explained

Shor’s algorithm works by leveraging the power of quantum superposition and entangle-
ment to perform calculations on large numbers. The algorithm has two main steps: the
first step involves finding the period of a function, and the second step involves using the
period to factor the number into its prime factors.

Step 1: Finding the Period of a Function

The first step of Shor’s algorithm involves finding the period of a function f(x) = a^x
mod N, where a is a random number between 1 and N-1, and N is the number to be fac-
tored. The period of the function is defined as the smallest positive integer r such that f(x)
= f(x+r) for all x. Finding the period of the function is difficult for classical computers,
but Shor’s algorithm makes use of quantum mechanics to make this calculation more
efficient.

The algorithm begins by preparing a quantum state that consists of two registers: the
first register contains n qubits that are initially set to 0, and the second register contains
m qubits that are initially set to a superposition of all possible values from 0 to 2^m-1.
The total number of qubits is therefore n+m.

The algorithm then applies the following operations to the quantum state:

 � Apply a Hadamard gate to each qubit in the second register, which puts them into a
superposition of all possible values.

 � Apply a quantum gate that performs the function f(x) = a^x mod N on the second
register.

 12 Chapter 1: The Big Threat

� Apply a quantum Fourier transform to the second register, which transforms the
superposition of all possible values into a superposition of the period of the func-
tion.

After these operations are performed, the quantum state is measured, and the result is a
superposition of all possible values of the period r. However, since the measurement col-
lapses the quantum state, the result is only one value of r, which is the period of the
function.

Step 2: Factoring the Number

The second step of Shor’s algorithm involves using the period r to factor the number N.
The algorithm uses a classical algorithm called the continued fraction algorithm to find a
fraction p/q that approximates r with high precision. Once p and q are known, the fac-
tors of N can be computed as gcd(a^(p/2) - 1, N) and gcd(a^(p/2) + 1, N), where gcd
stands for greatest common divisor.

The efficiency of Shor’s algorithm comes from the fact that the quantum Fourier trans-
form can be performed efficiently on a quantum computer, whereas the classical algo-
rithm for finding the period of a function is much slower.

Limitations of Shor’s Algorithm

Although Shor’s algorithm is highly efficient for factoring large numbers, it has some lim-
itations. One limitation is that it requires a large number of qubits to be implemented on
a quantum computer. The number of logical qubits (as we need error correction, the
number of physical qubits will be higher) required to run Shor's algorithm potentially
grows with the size of the number to be factored.

For example, to factor a 2048-bit number, which is the standard size of Rivest–Shamir–
Adleman (RSA) keys used for encryption, would require approximately 4000 qubits,
which is beyond the current state of the art in quantum computing. However, recently
researchers claimed to have found a way to reduce the number of qubits down to 372.

It is not efficient for factoring prime numbers or finding discrete logarithms in finite
fields, which are also important problems in cryptography.

Despite these limitations, the potential impact of Shor’s algorithm on cryptography can-
not be ignored. Many cryptographic schemes rely on the difficulty of factoring large
numbers, and the discovery of an efficient algorithm for factoring large numbers would
render these schemes insecure. The realization of Shor’s algorithm on a large-scale
quantum computer would therefore have significant implications for the security of
mod-ern communication systems.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://techmonitor.ai/hardware/quantum-encryption-rsa-cryptography

Internet Protocol Security (IPsec) is a suite of protocols that provides secure communica-
tion over an IP network. It was developed to overcome the limitations of the original IP
protocol, which did not provide any security mechanisms. IPsec provides security at the
network layer, which makes it transparent to the applications running on top of the net-
work. IPsec provides authentication, confidentiality, and integrity for IP packets, which
makes it an ideal choice for securing overlay virtual private networks (VPNs).

Fundamentals of IPsec

IPsec has two main protocols: the Authentication Header (AH) and the Encapsulating
Security Payload (ESP). AH provides authentication and integrity, while ESP provides
authentication, integrity, and confidentiality. These two protocols can be used separately
or together to provide different levels of security.

Authentication Header (AH)

The Authentication Header (AH) provides authentication and integrity for IP packets. It
does this by using a hash algorithm to create a message digest of the packet’s header and
payload. The message digest is then inserted into the packet’s header, which allows the
receiver to verify the authenticity of the packet.

The AH protocol is used to protect the packet’s header and payload, but not the data itself.
This means that the data can be read by anyone who intercepts the packet, but the receiv-
er can be sure that the packet has not been modified in transit. AH is mainly used in situa-
tions where confidentiality is not required, but authentication and integrity are important.

Chapter 2

Internet Protocol Security (IPsec)

 14	 IPsec	Security	Associations

Encapsulating Security Payload (ESP)

The Encapsulating Security Payload (ESP) protocol provides authentication, integrity,
and confidentiality for IP packets. It does this by encrypting the packet’s payload and add-
ing a message digest to the packet’s header. The message digest is used to verify the au-
thenticity of the packet, and the encryption provides confidentiality.

ESP can be used with or without authentication, but it is always used with encryption.
When used with authentication, the message digest is created using the packet’s header,
payload, and a secret key. This ensures that the packet has not been modified in transit
and that it was sent by the sender who has the secret key.

IPsec Security Associations

IPsec uses Security Associations (SAs) to provide security for IP packets. A Security As-
sociation is a set of security parameters that are agreed upon by two devices before they
start communicating. The parameters include the security protocol to be used, the encryp-
tion algorithm, the key size, and the lifetime of the SA.

An SA is created when two devices exchange Security Parameter Indexes (SPIs). The SPIs
are used to identify the SA and the devices involved in the communication. The SPIs are
included in the packet’s header, which allows the receiver to match the incoming packet
with the correct SA.

Internet Key Exchange

Internet Key Exchange (IKE) is a protocol used in IPsec to establish and manage Security
Associations (SAs) between two devices. It is responsible for negotiating the security pa-
rameters, exchanging keys, and setting up the encryption and authentication algorithms
that will be used to protect the IP traffic.

IKE is a complex protocol that operates in two phases. During the first phase, IKE estab-
lishes a secure channel between the devices and negotiates the security parameters. Dur-
ing the second phase, IKE uses the agreed-upon parameters to establish the SAs and
configure the IPsec security services.

Phase 1 of IKE involves the following steps:

1. The initiator device sends a proposal to the responder device. The proposal includes
the encryption algorithm, the hash algorithm, and the Diffie-Hellman group that will
be used to generate the shared secret key.

2. The responder device sends a proposal back to the initiator. The proposal includes a
counterproposal with the security parameters that the responder prefers.

 15 Chapter 2: Internet Protocol Security (IPsec)

3. The initiator and responder devices agree on the security parameters and generate
the shared secret key using the Diffie-Hellman key exchange algorithm.

4. The initiator and responder devices authenticate each other using digital certifi-
cates or a pre-shared key.

5. The secure channel between the devices is established, and the devices move to
Phase 2.

Phase 2 of IKE involves the following steps:

1. The initiator device sends a proposal to the responder device, including the security
parameters that will be used for the IPsec SAs.

2. The responder device responds with a proposal, including the security parameters
that it prefers.

3. The initiator and responder devices agree on the security parameters and establish
the IPsec SAs.

4. The devices begin using the IPsec SAs to protect the IP traffic.

IKE is a critical component of IPsec because it provides a secure method for
establishing the SAs that are required for IPsec to provide its security services.

In summary, IKE is a protocol that works alongside IPsec to establish and manage the
SAs required for secure communication over IP networks. IKE negotiates the security
parameters, exchanges keys, and establishes the encryption and authentication algo-
rithms that will be used to protect the IP traffic. Without IKE, IPsec would require a
manual configuration of the security parameters, making it less practical and potentially
more vulnerable to errors.

Diffie-Hellman key exchange algorithm

The Diffie-Hellman (DH) key exchange algorithm is used by IKE to generate a shared
secret key that is used to encrypt and decrypt IPsec traffic. DH is a cryptographic proto-
col used to establish a shared secret between two parties over an insecure communication
channel. It was first introduced by Whitfield Diffie and Martin Hellman in 1976 and is
considered one of the first public-key protocols.

The algorithm works by allowing two parties, Alice and Bob, to generate a shared secret
without ever transmitting the secret over the communication channel. Instead, both par-
ties use a shared public value and their own private values to compute the secret key.
Here is a step-by-step breakdown of the protocol:

 16	 Why	IPsec	Is	Vulnerable	to	a	Quantum	Computer	Attack?

1. Alice and Bob agree on a prime number, p, and a primitive root of p, g. These
values can be publicly known and can be reused for multiple exchanges.

2. Alice chooses a secret integer, a, and calculates A = g^a mod p. She sends A to Bob.

3. Bob chooses a secret integer, b, and calculates B = g^b mod p. He sends B to Alice.

4. Alice computes the shared secret key as S = B^a mod p.

5. Bob computes the shared secret key as S = A^b mod p.

Both Alice and Bob now have the same secret key, S, which can be used to encrypt and
decrypt messages between them using a symmetric encryption algorithm, such as AES.

The security of the Diffie-Hellman key exchange algorithm relies on the difficulty of
computing discrete logarithms in modular arithmetic. Specifically, an attacker who inter-
cepts A and B cannot easily calculate (with a ‘classical’ computer) a or b without solving
the discrete logarithm problem, which is believed to be computationally infeasible for
sufficiently large prime numbers.

However, the Diffie-Hellman key exchange algorithm is vulnerable to a man-in-the-mid-
dle attack, where an attacker intercepts and alters the public values used in the protocol.
To prevent this, Alice and Bob can authenticate each other’s public values using digital
signatures or a trusted third party.

Why IPsec Is Vulnerable to a Quantum Computer Attack?

DH algorithm is based on the difficulty of calculating discrete logarithms. In a classical
computing environment, calculating discrete logarithms for sufficiently large prime num-
bers is computationally infeasible, which makes the Diffie-Hellman algorithm a secure
method for key exchange.

However, quantum computers use a different approach to computation, based on quan-
tum bits or qubits, which allows them to perform certain calculations much faster than
classical computers. One of the computations that quantum computers excel at is the
calculation of discrete logarithms, which could potentially allow them to break the secu-
rity of the Diffie-Hellman key exchange algorithm.

The vulnerability of the Diffie-Hellman key exchange algorithm to quantum computers
is based on Shor’s algorithm, which is a quantum algorithm for factoring large numbers
and calculating discrete logarithms. Shor’s algorithm has been demonstrated on small-
scale quantum computers, and it has been shown that a quantum computer with a suf-
ficient number of qubits could break the security of the Diffie-Hellman key exchange
algorithm.

 17 Chapter 2: Internet Protocol Security (IPsec)

One possible solution to this vulnerability is to use post-quantum cryptography, which is
a form of cryptography that is designed to be secure against attacks by quantum comput-
ers. Post-quantum cryptography uses different mathematical algorithms that are resistant
to quantum computing attacks, and research is currently underway to develop post-
quantum cryptographic systems that can be used in IPsec and other security protocols.

In conclusion, the Diffie-Hellman key exchange algorithm used by IKE in IPsec is vul-
nerable to attacks by quantum computers due to the ability of quantum computers to
perform calculations much faster than classical computers. This vulnerability could be
addressed by using post-quantum cryptography, which is designed to be resistant to
quantum computing attacks.

Advanced Encryption Standard (AES)

AES is a symmetric key encryption algorithm used to protect sensitive information. It was
established in 2001, replacing the older DES (Data Encryption Standard) and 3DES
(Triple DES) encryption algorithms. AES is used in various security protocols, including
SSL/TLS, SSH, and IPsec. The 256-bit key length version, AES256, is one of the most
secure and commonly used encryption standards available today.

AES256 workings

AES256 is a symmetric encryption algorithm, which means that it uses the same key to
both encrypt and decrypt data. The algorithm operates on 128-bit blocks of plaintext,
which are divided into a 4x4 matrix of bytes. The key length for AES256 is 256 bits,
which provides an enormous number of possible key combinations.

The encryption process begins by adding a round key to the plaintext. The round key is
created by performing a key expansion routine on the original key. The plaintext is then
subjected to a series of rounds, each of which consists of four operations: substitution,
transposition, mixing, and adding the round key. These operations are applied repeatedly,
creating multiple rounds that obscure the relationship between the original plaintext and
the encrypted ciphertext.

In the substitution operation, each byte of the plaintext matrix is replaced by another
byte from a fixed lookup table. The lookup table is created by applying a series of math-
ematical operations to the original key. In the transposition operation, the rows and col-
umns of the plaintext matrix are shuffled to further obscure the plaintext. In the mixing
operation, each column of the matrix is multiplied by a fixed matrix to create a new

Chapter 3

Quantum-safe Security

 19 Chapter 3: Quantum-safe Security

column, providing additional diffusion of the plaintext. The final step in each round is to
add the round key, which is created by performing another key expansion operation on
the original key.

This process of repeated rounds continues until the final ciphertext is produced. To de-
crypt the ciphertext, the same process is applied in reverse, using the same key. The de-
cryption process begins by adding the final round key to the ciphertext, then applying the
inverse operations for each round until the original plaintext is obtained.

Security protocols that use AES256

AES256 is used in many security protocols, including SSL/TLS, SSH, and IPsec. In
SSL/TLS, AES256 is often used in conjunction with RSA (Rivest-Shamir-Adleman) or
Elliptic Curve cryptography for key exchange and authentication. In SSH, AES256 is
used to encrypt the data that is transmitted between the client and server. In IPsec,
AES256 is used to encrypt the data that is transmitted between two VPN (Virtual Private
Network) endpoints.

Why AES256 is not vulnerable to Shor’s algorithm

AES256 is a symmetric key encryption algorithm, which means that it uses the same key
for encryption and decryption. This makes it immune to Shor’s algorithm and other at-
tacks that rely on factoring large numbers, as symmetric key algorithms are not based on
mathematical problems that can be solved efficiently by a quantum computer.

Quantum computers work by using quantum bits, or qubits, which can exist in multiple
states simultaneously. This allows quantum computers to perform certain computational
tasks much faster than classical computers. However, quantum computers are still in their
infancy and are currently limited to small numbers of qubits. The largest quantum com-
puter currently available has only 256 qubits, which is not enough to run Shor's
algorithm and therefor currently break AES256 encryption.

Furthermore, even if quantum computers become powerful enough to break AES256
encryption, there are other symmetric key encryption algorithms, such as ChaCha20
and Salsa20, that are designed to be resistant to quantum computing attacks. These
algorithms use a different approach to encryption which are not easily solved by
quantum computers.

In addition to its resistance to quantum computing attacks, AES256 is also designed to be
resistant to other types of attacks, including brute force attacks, side-channel attacks, and
chosen-plaintext attacks. Brute force attacks attempt to break the encryption by trying
every possible key combination, but with 2^256 possible key combinations, AES256 is
effectively immune to brute force attacks.

Side-channel attacks attempt to extract the key by analyzing information leaked through
power consumption or electromagnetic radiation, but AES256 is designed to be resistant

https://en.wikipedia.org/wiki/ChaCha20-Poly1305
https://en.wikipedia.org/wiki/Salsa20

 20	 Quantum	Key	Distribution

to these types of attacks as well. Chosen-plaintext attacks attempt to extract the key by
analyzing the encryption of specially crafted plaintexts, but AES256 is designed to be
secure even in the face of such attacks.

Quantum Key Distribution

Quantum Key Distribution (QKD) is a technology that enables the secure exchange of
cryptographic keys between two parties over a public channel. The security of QKD is
based on the fundamental principles of quantum mechanics, which state that it is impos-
sible to measure or copy the quantum state of a particle without disturbing it. Therefore,
any attempt to eavesdrop on the communication will be detected by the legitimate par-
ties. QKD offers a way to achieve unconditional security that cannot be broken even by
future advances in computing technology.

In this chapter, we will discuss the working principle of QKD, its limitations, the BB84
protocol and MDI-QKD to overcome some of the limitations. We will also talk about the
technology used for photon detection, the difference between fiber and free-space QKD,
and the future prospects of QKD.

Working Principle of Quantum Key Distribution

The main idea behind Quantum Key Distribution (QKD) is to encode information in the
quantum states of photons, which are sent over a public channel to the receiver. The
sender, usually referred to as Alice, chooses a random sequence of quantum states from a
set of orthogonal states, such as polarization or phase, to encode her message. The re-
ceiver, usually referred to as Bob, measures the photons in the same basis to retrieve the
message.

The key idea behind QKD is that the act of measuring a series of photons in a
quantum state disturbs at least the state of one of the photons, making it
impossible for an eavesdropper, usually referred to as Eve, to intercept and copy the
photons without being detected. If Eve measures a single photon in the correct
basis, the state will not be disturbed. The state is only disturbed if Eve measures in
the wrong basis. That is why Alice has to randomly choose the encoding basis. Any
attempt by Eve to measure the photons will introduce errors in the measurement
statistics, which can be detected by Alice and Bob.

The key distribution process begins with Alice generating a random sequence of quan-
tum states, which she sends over the public channel to Bob. Bob measures each received
photon in a randomly chosen basis. Alice and Bob communicate their chosen basises
only after the measurements have been completed. This process is repeated several
times, and Alice and Bob compare a subset of their measurements to detect any errors
that may have been introduced by noise or eavesdropping.

If the error rate is within a tolerable limit, Alice and Bob proceed to the key distillation
phase, in which they use a protocol such as error correction and privacy amplification to
distill a secret key from the shared quantum states. The secret key can then be used by
IPsec to encrypt and decrypt messages sent over a classical channel.

 21 Chapter 3: Quantum-safe Security

BB84 Protocol

One of the most popular QKD protocols is the BB84 protocol, which was proposed by
Charles Bennett and Gilles Brassard in 1984. The BB84 protocol uses two complemen-
tary sets of orthogonal quantum states, usually polarization or phase, to encode the secret
key. The two sets of states are chosen randomly for each transmission, and the receiver is
unaware of which set has been used.

The BB84 protocol has four steps:

1. state preparation

2. random basis selection

3. measurement

4. sifting the results

5. error correction and privacy
amplification.

In the first step, Alice prepares a random sequence of qubits in one of the two orthogonal
bases, either the rectilinear basis (X-basis) or the diagonal basis (Y-basis), and sends them
to Bob over the quantum channel.

In the second step, Bob randomly selects a basis in which to measure each qubit, without
knowing which basis Alice used to encode it.

In the third step, Bob measures each qubit in the selected basis, obtaining either the cor-
rect state or a random one with a certain probability.

In the fourth step, Alice and Bob exchange chosen measurement basis and discard and
measurements for which they chose a different basis.

In the fifth step, Alice and Bob compare a subset of their measurement outcomes to
detect any errors that may have been introduced by noise or eavesdropping.

If the error rate is within a tolerable limit, they proceed to the key distillation phase, in
which they use error correction and privacy amplification to distill a secret key from the
shared quantum states.

The result is that a key is now present at both ends which can be consumed by those in
need for keys while using the ETSI QKD 014 REST API.

Photon Detection Technology

In QKD, photon detection technology is critical to achieving high detection efficiency,
low noise, and high timing resolution. There are several types of photon detectors used in
QKD, including avalanche photodiodes (APDs), superconducting nanowire single-pho-
ton detectors (SNSPDs), and silicon photomultipliers (SiPMs).

APDs are the most commonly used photon detectors in QKD. They are semiconductor
devices that operate in reverse-biased mode, and they can detect single photons with high
efficiency and low noise. However, they have a relatively slow response time, which limits
the maximum clock rate of the QKD system.

 22	 Quantum	Key	Distribution

SNSPDs are another type of photon detector that can detect single photons with high
efficiency and low noise. They are based on superconducting nanowires that are cooled
to cryogenic temperatures, typically below 4 Kelvin. SNSPDs have a faster response time
than APDs, and they can operate at higher clock rates.

SiPMs are a relatively new type of photon detector that has gained attention in recent
years. They are based on arrays of avalanche photodiodes, and they can detect single
photons with high efficiency and low noise. SiPMs have a faster response time than APDs
and can operate at higher clock rates. They are also more robust to environmental factors
such as temperature and humidity.

Fiber vs. Free-space QKD

QKD can be implemented in either a fiber-based or free-space system, depending on the
requirements of the application.

Fiber-based QKD uses standard telecommunication fibers to transmit photons between
Alice and Bob. This technology is well-developed and has been demonstrated over long
distances, up to hundreds of kilometers.

Free-space QKD, on the other hand, uses lasers and telescopes to transmit photons
through the air between Alice and Bob. This technology is less mature than fiber based
QKD and is limited by atmospheric turbulence, scintillation, and other environmental
factors. However, it offers the potential for high-speed, high-bandwidth communication
over long distances, without the need for expensive and cumbersome fiber-optic cables.

Quantum Key Distribution limitations

Despite its promise, QKD is not a panacea for secure communication. There are several
limitations and challenges that must be addressed to make QKD a practical and widely
adopted technology.

One of the biggest challenges is the limited range of QKD systems. While QKD has
been demonstrated over long distances in laboratory settings, practical systems are cur-
rently limited to a few hundred kilometers, due to losses in the transmission channel and
detector inefficiencies.

Another challenge is the fact that QKD requires sophisticated and expensive hardware,
including high-quality photon detectors, precise laser sources, and stable temperature
control. This makes it challenging to nowadays deploy QKD systems at scale.

MDI-QKD

MDI-QKD (measurement-device-independent quantum key distribution) is a variant of
QKD that eliminates the need for trusted measurement devices, making it more resistant
to tampering and hacking. In traditional QKD, the measurement devices used by both

 23 Chapter 3: Quantum-safe Security

parties are trusted, meaning that an attacker could potentially compromise the security
of the system by manipulating the measurement devices. MDI-QKD overcomes this vul-
nerability by using a different approach to generate the secret key.

Figure 3 .1 MDI-QKD

MDI-QKD (measurement-device-independent quantum key distribution) is a variant of
QKD that eliminates the need for a trusted node in the path to overcome distance
limitation. Also as the key itself is not known a the trusted node in MDI-QKD it is more
resistant to tampering and hacking. In traditional QKD, an attacker could potentially
compromise the security of the system by manipulating the measurement device at the
trusted node. MDI-QKD overcomes this vulnerability by using a different approach to
generate the secret key.

The basic idea behind MDI-QKD is to use a third party, referred to as Charlie, to
measure the state of the photons Alice and Bob send. Charlie then announces the
measurement basises and the measurement values to Alice and Bob, which allows them
to compare their measurement results and detect any discrepancies that may indicate the
presence of an eavesdropper.

The final step in the MDI-QKD process involves distilling a shared secret key from the
measurement results obtained by Alice and Bob. This is done using the same post-
processing algorithms used in traditional QKD, exchanging the measurement base,
lifting thru the results, error correction and privacy amplification to remove any
information that an eavesdropper may have obtained during the transmission.

 24 Post-quantum Cryptography

Post-quantum Cryptography

Post-quantum cryptography (PQC) is designed to be resistant against attacks from quan-
tum computers. Quantum computers have the potential to break many of the current
cryptographic systems that are widely used today, including RSA and ECC (Elliptic
Curve Cryptography). PQC aims to provide an alternative to these cryptographic sys-
tems that is secure against quantum attacks.

Figure 3 .2

Classical Cryptography vs Post-Quantum Cryptography

Classical cryptography is based on mathematical problems that are difficult to solve,
such as factoring large numbers and discrete logarithms. These mathematical problems
are the basis for cryptographic algorithms such as RSA and ECC, which are widely used
today to provide secure communication over the internet.
POC
PQC, on the other hand, is based on mathematical problems that are believed to be dif-
ficult to solve even for quantum computers. These mathematical problems are referred
to as post-quantum encryption, and they include lattice-based problems, code-based
problems, and hash-based problems. By using these post-quantum problems as the basis
for cryptographic algorithms, PQC aims to provide a secure alternative to classical cryp-
tography that is resistant to attacks from quantum computers.

 25 Chapter 3: Quantum-safe Security

Lattice-Based Cryptography

One of the most popular types of PQC is lattice-based cryptography. This approach is
based on the mathematical concept of lattices, which are geometric structures that can
be used to represent complex mathematical problems. In lattice-based cryptography, the
encryption and decryption process involves finding a short vector in a high-dimensional
lattice. The short vector can be used to encode the plaintext message, and the decryption
process involves finding the original message from the encoded vector.

Lattice-based cryptography has several advantages over classical cryptographic systems.
For example, the security of the system is based on the difficulty of finding short vectors
in high-dimensional lattices, which is believed to be a difficult problem even for quantum
computers. Additionally, lattice-based systems can be used to provide homomorphic en-
cryption, which allows computations to be performed on encrypted data without reveal-
ing the plaintext.

Code-Based Cryptography

Another type of PQC is code-based cryptography. This approach is based on error-cor-
recting codes, which are widely used in telecommunications to correct errors in transmit-
ted data.

In code-based cryptography, the encryption and decryption process involves encoding
the plaintext message using an error-correcting code. The encoded message is then
transmitted over the communication channel, and the decryption process involves de-
coding the received message using the same error-correcting code.

Code-based cryptography has several advantages over classical cryptographic systems.
For example, the security of the system is based on the difficulty of decoding the error-
correcting code, which is believed to be a difficult problem even for quantum computers.
Additionally, code-based systems can be implemented using relatively simple hardware,
which makes them well-suited for resource-constrained environments.

Hash-Based Cryptography

A third type of PQC is hash-based cryptography. This approach is based on crypto-
graphic hash functions, which are one-way functions that can be used to generate a
fixed-length digest of an input message.

 In hash-based cryptography the encryption and decryption process involves generating
a shared secret key using a cryptographic hash function. The plaintext message is then
encrypted using the shared secret key, and the decryption process involves decrypting the
received message using the same shared secret key.

Hash-based cryptography has several advantages over classical cryptographic systems.
For example, the security of the system is based on the difficulty of finding collisions in

 26 Post-quantum Cryptography

the hash function, which is believed to be a difficult problem even for quantum comput-
ers. Additionally, hash-based systems have the advantage of being relatively simple to
implement and have low computational requirements.

Key Exchange and Digital Signatures

In addition to encryption and decryption, PQC also provides secure key exchange and
digital signatures. Key exchange is the process of securely exchanging cryptographic keys
between two parties, while digital signatures are used to provide proof of the authenticity
of a message. PQC provides several different methods for key exchange, including the
Diffie-Hellman key exchange, which is widely used in classical cryptography, and the
McEliece key exchange, which is based on code-based cryptography.

Digital signatures in PQC are based on different mathematical problems, including the
hash-based Merkle signature scheme, which is based on the Merkle tree data structure,
and the lattice-based signature scheme, which is based on the short vector problem in
lattices.

Challenges and Limitations

Despite its potential advantages, PQC is still in the research phase, and there are several
challenges and limitations that need to be addressed before it can be widely adopted.

One of the main challenges is the lack of standardization. Unlike classical cryptography,
which has well-established standards and protocols, PQC is still a relatively new field, and
there is a lack of consensus on which algorithms and methods are the most secure and
efficient. Another challenge is the performance overhead of PQC algorithms. Many of
the PQC algorithms are computationally intensive and require significant computational
resources, which can be a limitation in resource-constrained environments.

Finally, there is the challenge of transitioning from classical cryptography to PQC. This
transition will require significant changes to the existing infrastructure and protocols,
and it may take many years before PQC becomes the dominant cryptographic standard.

It is also worth noting that some PQC candidate protocols have been broken very late in
the NIST evaluation process. For example: https://eprint.iacr.org/2022/214.

ETSI QKD 014 specification

The ETSI 014 QKD REST API is a specification developed by the European Telecom-
munications Standards Institute (ETSI) for the management of QKD networks. This
API provides a standardized interface for communication between different QKD net-
work components, such as QKD devices, key servers, and network components such as
routers, switches, and firewalls.

The API is in the context of this book mainly used to manage the distribution of the keys
and key IDs generated by the QKD devices.

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf

Figure	4.1	 Chapter	4's	Implementation

Leveraging the ETSI-QKD-014 API for Key Exchange

The ETSI standards setting organization defined a REST API to exchange keys between
a Key Management Server [KMS] (typically included in the QKD system) and a security
application entity [SAE] such as Juniper SRX. The API itself is secured by TLS which
we know is not Quantum-secure. For that reason, it is only allowed to be operated in a
physically secure compartment as indicated by the dotted boxes. Such compartment can
for example be a rack with locked doors or a locked room. In practice this means that the
QKD system and the secure application device are in proximity to each other and do not
exchange key material over the Internet.

Chapter 4

Pulling IPsec Together with QKD or PQC

https://www.etsi.org/
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf

 28 IKEv2 Post-Quantum Security support

In a typical scenario, each SAE must first identify itself to the local KME to start setting
up a quantum secure IPsec tunnel.

1. The two SAEs need to elect an initiator and a responder. In the Juniper implemen-
tation this tie-breaking is part of the IKEv2 initialization process and based on the
alphabetic order of the SAE names. In the following we assume “SAE-A” in the
initiator role and “SAE-B” as responder.

2. The SAE indicates its preference to use QKD-keys to the IPsec peer

3. If the peer also supports the use of QKD-keys, the Key exchange process gets
scheduled to fetch keys.

4. SAE_A requests a <key> and <key-ID> from its local KME

5. SAE_A receives a <key> and <key-ID>

6. SAE_A communicates the <key-ID> to SAE_B

7. SAE_B requests the key corresponding to the received <key-ID>

8. The local KME delivers the <key> to SAE_B

9. SAE_B confirms having received the <key> corresponding to the <key-ID>

10. Now SAE_A and SAE_B are ready to use the shared key in their communication.

11. After both sides are in possession of their shared keys, those are mixed with the
existing SA key materials to get Quantum safe keys.

IKEv2 Post-Quantum Security support

Until now, the existing IKEv2 protocol infrastructure negotiated non-quantum-safe IKE
and IPSEC SAs. With JUNOS release 22.4R1 selected Juniper SRX models and the vir-
tual vSRX firewall will support RFC8784 that will enable you to create Quantum-safe
IPsec Tunnels with very minimal config. And so, customers who want to use the feature
can upgrade to quantum safe IPsec without any effect on existing tunnels and with mini-
mum hassle.

What 's New in IPsec?

IKE-gateways with a quantum-key-profile

Currently, the existing IKEv2 protocol infrastructure negotiates non-quantum-safe IKE
and IPSEC SAs. This new feature [security ike gateway <gw-name> ppk-profile], as per
RFC8784, will let you create Quantum-safe IPsec Tunnels. So, you can upgrade without
any effect on existing tunnels and with minimum hassle.

 29 Chapter 4: Pulling IPsec Together with QKD or PQC

Support for adding and managing different types of out-of-band mechanisms for
keys via key-profiles

Junos-Key-Manager (JKM) daemon is introduced. This daemon will act as a key store
and as a proxy between the crypto application that requires a quantum-safe-key to estab-
lish an encrypted and authenticated quantum- safe session with peer(s), and the out-of-
band mechanism that lets two peers have a quantum-safe-key.

Different out-of- band mechanisms will have different protocols/methods to communi-
cate and thus the purpose of this daemon is to provide a common uniform API for client
applications to communicate with JKM for any out-of-band-mechanism (key-profiles
type).

For the time being, two types of out-of-band mechanisms for keys (key-profiles configura-
tions) will be supported: static and quantum-key-manager based.

With Static-key based profiles you need to configure a static key-id and a corresponding
key. Thus, if a static-key based profile is used with an IPsec-VPN object, every time when
re-auth for existing IKE SA (control channel) needs to be done, the same key and key-id
will be used.

With QKD-key based profiles you need access to QKD devices in order to gain access to
additional key material. To leverage this profile, you will need to configure all the neces-
sary parameters (see below). Thus, if a QKD-key based profile is used with IPsec, every
time when re-auth is done, a different key and key-id will be used, which is more secure.

As of 22.4R1, the ike-key-management daemon is leveraging the infra provided by the
junos-key-manager daemon to provide quantum safe SAs. However, other internal or
external applications can also use this infra to make their respective services quantum
safe as well without reinventing the wheel from scratch.

Supported Juniper Platforms and Software Releases

IPsec with RFC8784 support is currently available on SRX5k series, SRX4K series,
SRX1500 and vSRX. This might change in the future, for example when new platforms
are added or newer Junos OS releases bring support for existing platforms. Always check
https://apps.juniper.net/feature-explorer/ for latest feature support.

� The first Junos OS version to support RFC8784 is 22.4R1 which is available via
https://support.juniper.net/support/downloads/

� For vSRX make sure to download “vSRX 3.0” versions which can be found here:
https://support.juniper.net/support/downloads/?p=vsrx3

The aim of this chapter is to describe how QKD can be leveraged in IPsec
based on RFC8784. This chapter will provide a detailed overview of the QKD
in IPsec architecture, its components, and its operation.

https://apps.juniper.net/feature-explorer/
https://support.juniper.net/support/downloads/
https://support.juniper.net/support/downloads/?p=vsrx3

 30	 Quantum	safe	IPsec	Configuration	Examples

Quantum safe IPsec Configuration Examples
Let's review all the details and the step-by-step configuration for setting up Quantum safe
IPsec VPN tunnels with different out-of-band key mechanisms listed as below:

� Quantum safe IPsec VPN using static key profile for PPKs

� Quantum safe IPsec VPN using quantum-key-manager key profile for PPKs

Requirement

� An optional package “junos-ike” needs to be installed to use the feature-set.

� To verify whether the “junos-ike” package is already installed or not, run “show
version | grep “JUNOS ike”.

� If the package is not installed, run “request system software add optional://junos-
ike” on the supported platforms to add it.

Configuring Quantum safe IPsec VPN with Static Key Profile
Figure 4.2 shows how to configure IPsec VPN with a static key-profile for PPKs to allow
data to be securely transferred between two sites.

We configure a route-based IPsec VPN on SRX1 and SRX2 with static key-profile con-
figuration for PPKs. A static key profile consists of a configured key ID and a correspond-
ing configured key. Host1 and Host2 use the VPN to send data securely over the Internet
between both hosts. HOST1 and HOST2 can be any device running a simple or robust
operating system. Configuration of these devices as per the requirement but make sure
that each HOST can communicate with its respective SRX devices beforehand.

Figure	4.2	 Topology	for	Quantum	safe	IPsec	VPN	using	static	key-profile	for	PPKs

 31 Chapter 4: Pulling IPsec Together with QKD or PQC

CLI configurations

To quickly configure SRX1
set security key-manager profiles km_profile_1 static key-id ascii-text “test-key-id”
set security key-manager profiles km_profile_1 static key ascii-
text “qjwbdip139u5mcy89m28pcgowerefnkjsdg”
set security ike proposal IKE_PROP authentication-method pre-shared-keys
set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.2
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.1
set security ike gateway IKE_GW version v2-only
set security ike gateway IKE_GW ppk-profile km_profile_1
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec policy IPSEC_POL proposals IPSEC_PROP
set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.90.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN establish-tunnels immediately
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.1/24
set interfaces ge-0/0/1 unit 0 family inet address 192.168.90.1/24
set interfaces st0 unit 1 family inet
set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0
set security zones security-zone vpn interfaces st0.1
set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

Step-by-Step Procedure to Configure SRX1

1. Configure a key profile of type static with a key-id and a corresponding
key:

Configure an ascii encoded key-id string.
set security key-manager profiles km_profile_1 static key-id ascii-text “test-key-id”

 32	 Configuring	Quantum	safe	IPsec	VPN	with	Static	Key	Profile

Configure an ascii encoded key string. The size of the ascii string must be a minimum of
32 characters.

set security key-manager profiles km_profile_1 static key ascii-
text “qjwbdip139u5mcy89m28pcgowerefnkjsdg”

2. Configure the interfaces:

Configure the external interface
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.1/24

Configure the secure tunnel interface
set interfaces st0 unit 1 family inet

Configure the HOST1 facing interface
set interfaces ge-0/0/1 unit 0 family inet address 192.168.90.1/24

3. Configure the security zones

Configure the untrust security zone with limiting the host-inbound system services to just
ike and assign the external interface to the untrust security zone.

set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0

Configure the vpn security zone with assigning the secure tunnel interface and other nec-
essary paramters

set security zones security-zone vpn interfaces st0.1

Configure the trust security zone by limiting the host-inbound system services to just ping
and assign the HOST1 facing interface to the trust security zone.

set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0

4. Configure the security policies

Configure the security policy for the transit traffic flowing from trust zone to vpn zone
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit

Configure the security policy for the transit traffic flowing from vpn zone to trust zone
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

5. Configure the IPsec VPN

 33 Chapter 4: Pulling IPsec Together with QKD or PQC

Configure an ike proposal with the necessary attributes.
set security ike proposal IKE_PROP authentication-method pre-shared-keys
set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600

Configure an ike policy with the configured ike proposal and other necessary attributes
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”

Configure an Ike gateway with the defined ike policy and other necessary attributes.
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.2
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.1
set security ike gateway IKE_GW version v2-only

Configure the previously defined static key-profile to the ike gateway to be used as ppk-
profile for PPKs. ppk-profile can only be configured if the ike gateway is configured with
[version v2-only].

set security ike gateway IKE_GW ppk-profile km_profile_1

Configure an ipsec proposal with the necessary attributes.
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec proposal IPSEC_PROP lifetime-seconds 2400

Configure an ipsec policy with the configured proposal
set security ipsec policy IPSEC_POL proposals IPSEC_PROP

Configure an IPsec vpn with the previously configured secure tunnel interface, ike gate-
way, ipsec policy and any other necessary parameters. A Traffic selector is configured to
ensure only HOST1 subnet to HOST2 subnet communication is secured using the nego-
tiated IPsec tunnel.

set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.90.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN establish-tunnels immediately

To quickly configure SRX2
set security key-manager profiles km_profile_1 static key-id ascii-text “test-key-id”
set security key-manager profiles km_profile_1 static key ascii-
text “qjwbdip139u5mcy89m28pcgowerefnkjsdg”
set security ike proposal IKE_PROP authentication-method pre-shared-keys

 34	 Configuring	Quantum	safe	IPsec	VPN	with	Static	Key	Profile

set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.1
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.2
set security ike gateway IKE_GW version v2-only
set security ike gateway IKE_GW ppk-profile km_profile_1
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec policy IPSEC_POL proposals IPSEC_PROP
set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.90.0/24
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.2/24
set interfaces ge-0/0/1 unit 0 family inet address 192.168.80.1/24
set interfaces st0 unit 1 family inet
set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0
set security zones security-zone vpn interfaces st0.1
set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

Step-by-Step Procedure to configure SRX2

1. Configure a key profile of type static with a key-id and a corresponding key

Configure an ascii encoded key-id string.
set security key-manager profiles km_profile_1 static key-id ascii-text “test-key-id”

Configure an ascii encoded key string. The size of the ascii string must be a minimum of
32 characters.

set security key-manager profiles km_profile_1 static key ascii-
text “qjwbdip139u5mcy89m28pcgowerefnkjsdg”

2. Configure the interfaces

Configure the external interface
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.2/24

 35 Chapter 4: Pulling IPsec Together with QKD or PQC

Configure the secure tunnel interface
set interfaces st0 unit 1 family inet

Configure the HOST2 facing interface
set interfaces ge-0/0/1 unit 0 family inet address 192.168.80.1/24

3. Configure the security zones

Configure the untrust security zone with limiting the host-inbound system services to just
ike and assign the external interface to the untrust security zone.

set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0

Configure the vpn security zone with assigning the secure tunnel interface and other nec-
essary paramters

set security zones security-zone vpn interfaces st0.1

Configure the trust security zone by limiting the host-inbound system services to just ping
and assign the HOST1 facing interface to the trust security zone.

set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0

4. Configure the security policies

Configure the security policy for the transit traffic flowing from trust zone to vpn zone
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit

Configure the security policy for the transit traffic flowing from vpn zone to trust zone
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

5. Configure the IPsec VPN

Configure an ike proposal with the necessary attributes.
set security ike proposal IKE_PROP authentication-method pre-shared-keys
set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600

Configure an ike policy with the configured ike proposal and other necessary attributes
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”

 36	 Configuring	Quantum	safe	IPsec	VPN	with	Static	Key	Profile

Configure an Ike gateway with the defined ike policy and other necessary attributes.
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.1
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.2
set security ike gateway IKE_GW version v2-only

Configure the previously defined static key-profile to the ike gateway to be used as ppk-
profile for PPKs. ppk-profile can only be configured if the ike gateway is configured with
[version v2-only].

set security ike gateway IKE_GW ppk-profile km_profile_1

Configure an ipsec proposal with the necessary attributes.
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec proposal IPSEC_PROP lifetime-seconds 2400

Configure an ipsec policy with the configured proposal.
set security ipsec policy IPSEC_POL proposals IPSEC_PROP

Configure an IPsec vpn with the previously configured secure tunnel interface, ike gate-
way, ipsec policy and any other necessary parameters. A Traffic selector is configured to
ensure only HOST2 subnet to HOST1 subnet communication is secured using the nego-
tiated IPsec tunnel.

set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.90.0/24

To quickly configure HOST1 and HOST2

Exact steps to configure the HOSTs is out of scope as it will vary from device to device,
but on a generic note, HOST1 must be configured with any IP in the subnet
192.168.90.0/24, other than 192.169.90.1, on its interface connected to SRX1 and
HOST2 must be configured with any IP in the subnet 192.168.80.0/24, other than
192.169.00.1, on its interface connected to SRX2.

Verification and Troubleshooting

1. Verify the traffic flow

Ping from HOST1 to HOST2 or vice versa
user@HOST1# ping 192.168.80.20 source 192.168.90.20 count 4
PING 192.168.80.20 (192.168.80.20): 56 data bytes

 37 Chapter 4: Pulling IPsec Together with QKD or PQC

64 bytes from 192.168.80.1: icmp_seq=0 ttl=64 time=2.151 ms
64 bytes from 192.168.80.1: icmp_seq=1 ttl=64 time=1.710 ms
64 bytes from 192.168.80.1: icmp_seq=2 ttl=64 time=1.349 ms
64 bytes from 192.168.80.1: icmp_seq=3 ttl=64 time=1.597 ms
--- 192.168.80.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.349/1.702/2.151/0.290 ms

Data traffic is successfully flowing between the HOSTs

2. Verify ike security associations status

From operational mode, enter the “show security ike security-associations detail”
command.

user@SRX1> show security ike security-associations detail
IKE peer 172.18.10.2, Index 1, Gateway Name: IKE_GW
 Role: Initiator, State: UP
 Initiator cookie: dee592254e808a2b, Responder cookie: 51f6b1d4a8618332
 Exchange type: IKEv2, Authentication method: Pre-shared-keys
 Local gateway interface: ge-0/0/2.0
 Routing instance: default
 Local: 172.18.10.1:500, Remote: 172.18.10.2:500
 Lifetime: Expires in 1286 seconds
 Reauth Lifetime: Disabled
 IKE Fragmentation: Enabled, Size: 576
 SRG ID: 0
 Remote Access Client Info: Unknown Client
 Peer ike-id: 172.18.10.2
 AAA assigned IP: 0.0.0.0
 PPK-profile: km_profile_1
 Optional: No
 State : Used
 Algorithms:
 Authentication : hmac-sha256-128
 Encryption : aes256-cbc
 Pseudo random function: hmac-sha256
 Diffie-Hellman group : DH-group-14
 Traffic statistics:
 Input bytes : 1058
 Output bytes : 1074
 Input packets: 4
 Output packets: 4
 Input fragmented packets: 0
 Output fragmented packets: 0
 IPSec security associations: 4 created, 1 deleted
 Phase 2 negotiations in progress: 1
 IPSec Tunnel IDs: 500002
 Negotiation type: Quick mode, Role: Initiator, Message ID: 0
 Local: 172.18.10.1:500, Remote: 172.18.10.2:500
 Local identity: 172.18.10.1
 Remote identity: 172.18.10.2
 Flags: IKE SA is created
 IPsec SA Rekey CREATE_CHILD_SA exchange stats:
 Initiator stats: Responder stats:
 Request Out : 0 Request In : 1
 Response In : 0 Response Out : 1
 No Proposal Chosen In : 0 No Proposal Chosen Out : 0

 38	 Configuring	Quantum	safe	IPsec	VPN	with	Static	Key	Profile

 Invalid KE In : 0 Invalid KE Out : 0
 TS Unacceptable In : 0 TS Unacceptable Out : 0
 Res DH Compute Key Fail : 0 Res DH Compute Key Fail: 0
 Res Verify SA Fail : 0
 Res Verify DH Group Fail: 0
 Res Verify TS Fail : 0

The IKE SA is established with configured attributes. Under the “PPK-profile” output
tag, name of the key-profile used for PPKs is displayed. Additionally, it mentions the op-
tional attribute as “No” which means that using PPKs for the establishment of this IKE
SA and corresponding IPsec SAs is mandatory and the State attribute displayed “Used”
which means PPKs from this key-profile has been used and the IKE SA and correspond-
ing IPSEC SAs are Quantum safe.

3. Verify ipsec security associations status

From operational mode, enter the “show security ipsec security-associations detail”
command

user@SRX1> show security ipsec security-associations detail

ID: 500002 Virtual-system: root, VPN Name: IPSEC_VPN
 Local Gateway: 172.18.10.1, Remote Gateway: 172.18.10.2
 Traffic Selector Name: ts1
 Local Identity: ipv4(192.168.90.0-192.168.90.255)
 Remote Identity: ipv4(192.168.80.0-192.168.80.255)
 TS Type: traffic-selector
 Version: IKEv2
 Quantum Secured: Yes
 PFS group: N/A
 SRG ID: 0
 DF-bit: clear, Copy-Outer-DSCP Disabled, Bind-interface: st0.1, Policy-name: IPSEC_POL
 Port: 500, Nego#: 0, Fail#: 0, Def-Del#: 0 Flag: 0
 Multi-sa, Configured SAs# 0, Negotiated SAs#: 0
 Tunnel events:
 Thu Mar 30 2023 23:43:42: IPsec SA negotiation succeeds (1 times)
 Location: FPC 0, PIC 0, KMD-Instance 0
 Anchorship: Thread 1
 Distribution-Profile: default-profile
 Direction: inbound, SPI: 0x983a0221, AUX-SPI: 0

, VPN Monitoring: -
 Hard lifetime: Expires in 1330 seconds
 Lifesize Remaining: Unlimited
 Soft lifetime: Expires in 662 seconds
 Mode: Tunnel(0 0), Type: dynamic, State: installed
 Protocol: ESP, Authentication: hmac-sha256-128, Encryption: aes-cbc (256 bits)
 Anti-replay service: counter-based enabled, Replay window size: 64
 Extended-Sequence-Number: Disabled
 tunnel-establishment: establish-tunnels-immediately
 IKE SA Index: 1
 Direction: outbound, SPI: 0x4112746b, AUX-SPI: 0

, VPN Monitoring: -
 Hard lifetime: Expires in 1330 seconds
 Lifesize Remaining: Unlimited
 Soft lifetime: Expires in 662 seconds
 Mode: Tunnel(0 0), Type: dynamic, State: installed

 39 Chapter 4: Pulling IPsec Together with QKD or PQC

 Protocol: ESP, Authentication: hmac-sha256-128, Encryption: aes-cbc (256 bits)
 Anti-replay service: counter-based enabled, Replay window size: 64
 Extended-Sequence-Number: Disabled
 tunnel-establishment: establish-tunnels-immediately
 IKE SA Index: 1

The IPsec SA is established with configured attributes. Under the “Quantum Secured”
output tag, it is mentioned as yes which means the IPsec SA is quantum safe.

4. Verify IPsec SA encryption/decryption statistics

From operational mode, enter the “show security ipsec statistics” command
user@SRX1> show security ipsec statistics
ESP Statistics:
 Encrypted bytes: 624
 Decrypted bytes: 624
 Encrypted packets: 4
 Decrypted packets: 4
AH Statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
Errors:
 AH authentication failures: 0, Replay errors: 0
 ESP authentication failures: 0, ESP decryption failures: 0
 Bad headers: 0, Bad trailers: 0
 Invalid SPI: 0, TS check fail: 0
 Exceeds tunnel MTU: 0
 Discarded: 0

For the 4 ping packets that were sent from HOST1 to HOST2, the count matches the
encrypted packets and decrypted packets statistics.

5. Verify key-profile status

From operational mode, enter the “show security key-manager profiles detail” command
user@SRX1> show security key-manager profiles detail
Name: km_profile_1, Index: 1, Type: Static
 Configured-at: 30.03.23 (23:22:43)
 Time-elapsed: 1 hrs 16 mins 3 secs
 Request stats:
 Received: 1
 In-progress: 0
 Success: 1
 Failed: 0

For the key profile that was used for the establishment of the IKE/IPsec SAs, it displays
the number of times a request for corresponding PPK has been made, and it shows the
“Received” and “Success” output tag values as 1.

 40	 Configuring	Quantum-safe	IPsec	VPNs	with	quantum-key-manager	key-profile

Configuring Quantum-safe IPsec VPNs with
quantum-key-manager key-profile

This example shows how to configure IPsec VPN with quantum-key-manager key-profile
for PPKs to allow data to be securely transferred between two sites.

We configure a route-based IPsec VPN on SRX1 and SRX2 with static key-profile con-
figuration used for PPKs. A quantum-key-manager key profile consists of parameters
which would be required to communicate with a KME/QKD device as per ETSI GS
QKD 014 specification. The profile must be configured with an https url to access the
server and local-sae-id, but as a recommendation for having the maximum security on
the communication, local-certificate and trusted-cas should also be configured for mutual
TLS authentication. HOST1 and HOST2 use the VPN to send data securely over the
Internet between both hosts.

Figure	4.3	 Topology	for	Quantum-safe	IPsec	VPN	Using	Quantum-key-manager	key-profile	for	
PPKs

CLI Configurations

To quickly configure SRX1
set security pki ca-profile ROOT_CA_CERT ca-identity RootCA
set security key-manager profiles km_profile_1 quantum-key-manager url https://www.kme_a-qkd-server.
net
set security key-manager profiles km_profile_1 quantum-key-manager local-sae-id SAE_A
set security key-manager profiles km_profile_1 quantum-key-manager local-certificate-id SAE_A_CERT
set security key-manager profiles km_profile_1 quantum-key-manager trusted-cas ROOT_CA_CERT
set security ike proposal IKE_PROP authentication-method pre-shared-keys

 41 Chapter 4: Pulling IPsec Together with QKD or PQC

set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.2
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.1
set security ike gateway IKE_GW version v2-only
set security ike gateway IKE_GW ppk-profile km_profile_1
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec policy IPSEC_POL proposals IPSEC_PROP
set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.90.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN establish-tunnels immediately
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.1/24
set interfaces ge-0/0/1 unit 0 family inet address 192.168.90.1/24
set interfaces st0 unit 1 family inet
set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0
set security zones security-zone vpn interfaces st0.1
set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

Step-by-Step Procedure to configure SRX1

1. Configure a key profile of type quantum-key-manager with the must or
recommended parameters.

Define the CA certificate. Different parameters for the CA certificate can be configured
as per requirement. The corresponding CA certificate should be loaded using “request
security pki ca-certificate <enroll | load>” as per requirement.

set security pki ca-profile ROOT_CA_CERT ca-identity RootCA

Configure the url of the KME server. The url must be IP resolvable. The hostname por-
tion of the url (format:https://[hostname][:port]) can either be a fqdn or an IP address.
Irrespective of the type of the hostname, the exact hostname string must be present in
the server certificate, either as a Common Name or as one of Subject Alternative Names.

 42	 Configuring	Quantum-safe	IPsec	VPNs	with	quantum-key-manager	key-profile

Also, the server should be reachable via the default routing instance.
set security key-manager profiles km_profile_1 quantum-key-manager url https://www.kme_a-qkd-server.
net

Configure the SAE-ID to be used by the local end. This configuration is not used for
communicating wth the KME server but gets used by client applications (in this case IP-
sec vpn).

set security key-manager profiles km_profile_1 quantum-key-manager local-sae-id SAE_A

Configure the corresponding certificate for the local SAE-ID. The local certificate should
be loaded beforehand using “request security pki local-certificate <enroll | load>” as per
requirement. This certificate will be used and sent for client authentication on the server
side. The Common Name/Subject Alternative Name used in the certificate must match
the string configured for “local-sae-id” as the KME server uses the value from the Com-
mon Name or one of the Subject Alternative Names from the certificate to know what
the local end SAE-ID, as per implementation of the KME.

set security key-manager profiles km_profile_1 quantum-key-manager local-certificate-id SAE_A_CERT

Configure the previously defined CA certificate. More than one CA certificate can also
be configured as per requirement. The CA certificates must be configured under [secu-
rity pki ca-profile] and all the required CA certificates should be loaded beforehand using
“request security pki ca-certificate <enroll | load>” as per requirement. The CA
certificate(s) will be used during server certificate authentication on the local end. The
server certificate must be signed using the CAs configured.

set security key-manager profiles km_profile_1 quantum-key-manager trusted-cas ROOT_CA_CERT

2. Configure the interfaces

Configure the external interface
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.1/24

Configure the secure tunnel interface
set interfaces st0 unit 1 family inet

Configure the HOST1 facing interface
set interfaces ge-0/0/1 unit 0 family inet address 192.168.90.1/24

3. Configure the security zones

Configure the untrust security zone with limiting the host-inbound system services to just
ike and assign the external interface to the untrust security zone.

set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0

 43 Chapter 4: Pulling IPsec Together with QKD or PQC

Configure the vpn security zone with assigning the secure tunnel interface and other nec-
essary paramters

set security zones security-zone vpn interfaces st0.1

Configure the trust security zone by limiting the host-inbound system services to just ping
and assign the HOST1 facing interface to the trust security zone.

set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0

4. Configure the security policies

Configure the security policy for the transit traffic flowing from trust zone to vpn zone
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit

Configure the security policy for the transit traffic flowing from vpn zone to trust zone
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

5. Configure the IPsec VPN

Configure an ike proposal with the necessary attributes.
set security ike proposal IKE_PROP authentication-method pre-shared-keys
set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600

Configure an ike policy with the configured ike proposal and other necessary attributes
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”

Configure an Ike gateway with the defined ike policy and other necessary attributes.
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.2
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.1
set security ike gateway IKE_GW version v2-only

Configure the previously defined static key-profile to the ike gateway to be used as ppk-
profile for PPKs. ppk-profile can only be configured if the ike gateway is configured with
[version v2-only].

set security ike gateway IKE_GW ppk-profile km_profile_1

 44	 Configuring	Quantum-safe	IPsec	VPNs	with	quantum-key-manager	key-profile

Configure an ipsec proposal with the necessary attributes
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec proposal IPSEC_PROP lifetime-seconds 2400

Configure an ipsec policy with the configured proposal
set security ipsec policy IPSEC_POL proposals IPSEC_PROP

Configure an IPsec vpn with the previously configured secure tunnel interface, ike gate-
way, ipsec policy and any other necessary parameters. A Traffic selector is configured to
ensure only HOST1 subnet to HOST2 subnet communication is secured using the nego-
tiated IPsec tunnel.

set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.90.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN establish-tunnels immediately

To quickly configure SRX2:
set security pki ca-profile ROOT_CA_CERT ca-identity RootCA
set security key-manager profiles km_profile_1 quantum-key-manager url https://www.kme_b-qkd-server.
net
set security key-manager profiles km_profile_1 quantum-key-manager local-sae-id SAE_B
set security key-manager profiles km_profile_1 quantum-key-manager local-certificate-id SAE_B_CERT
set security key-manager profiles km_profile_1 quantum-key-manager trusted-cas ROOT_CA_CERT
set security ike proposal IKE_PROP authentication-method pre-shared-keys
set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.1
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.2
set security ike gateway IKE_GW version v2-only
set security ike gateway IKE_GW ppk-profile km_profile_1
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec policy IPSEC_POL proposals IPSEC_PROP
set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.90.0/24
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.2/24
set interfaces ge-0/0/1 unit 0 family inet address 192.168.80.1/24

 45 Chapter 4: Pulling IPsec Together with QKD or PQC

set interfaces st0 unit 1 family inet
set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0
set security zones security-zone vpn interfaces st0.1
set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

Step-by-Step Procedure to configure SRX2

1. Configure a key profile of type quantum-key-manager with the must or
recommended parameters

Define the CA certificate. Different parameters for the CA certificate can be configured
as per requirement. The corresponding CA certificate should be loaded using “request
security pki ca-certificate <enroll | load>” as per requirement.

set security pki ca-profile ROOT_CA_CERT ca-identity RootCA

Configure the url of the KME server. The url must be IP resolvable. The hostname por-
tion of the url (format:https://[hostname][:port]) can either be a fqdn or an IP address.
Irrespective of the type of the hostname, the exact hostname string must be present in
the server certificate, either as a Common Name or as one of Subject Alternative Names.
Also, the server should be reachable via the default routing instance.

set security key-manager profiles km_profile_1 quantum-key-manager url https://www.kme_b-qkd-server.
net

Configure the SAE-ID to be used by the local end. This configuration is not used for
communicating wth the KME server but gets used by client applications (in this case IP-
sec vpn).

set security key-manager profiles km_profile_1 quantum-key-manager local-sae-id SAE_B

Configure the corresponding certificate for the local SAE-ID. The local certificate should
be loaded beforehand using “request security pki local-certificate <enroll | load>” as per
requirement. This certificate will be used and sent for client authentication on the server
side. The Common Name/Subject Alternative Name used in the certificate must match
the string configured for “local-sae-id” as the KME server uses the value from the Com-
mon Name or one of the Subject Alternative Names from the certificate to know what
the local end SAE-ID, as per implementation of the KME.

set security key-manager profiles km_profile_1 quantum-key-manager local-certificate-id SAE_B_CERT

 46	 Configuring	Quantum-safe	IPsec	VPNs	with	quantum-key-manager	key-profile

Configure the previously defined CA certificate. More than one CA certificate can also
be configured as per requirement. The CA certificates must be configured under [secu-
rity pki ca-profile] and all the required CA certificates should be loaded beforehand using
“request security pki ca-certificate <enroll | load>” as per requirement. The CA
certificate(s) will be used during server certificate authentication on the local end. The
server certificate must be signed using the CAs configured.

set security key-manager profiles km_profile_1 quantum-key-manager trusted-cas ROOT_CA_CERT

2. Configure the interfaces

Configure the external interface
set interfaces ge-0/0/0 unit 0 family inet address 172.18.10.2/24

Configure the secure tunnel interface
set interfaces st0 unit 1 family inet

Configure the HOST facing interface
set interfaces ge-0/0/1 unit 0 family inet address 192.168.80.1/24

3. Configure the security zones

Configure the untrust security zone with limiting the host-inbound system services to just
ike and assign the external interface to the untrust security zone.

set security zones security-zone untrust host-inbound-traffic system-services ike
set security zones security-zone untrust interfaces ge-0/0/0.0

Configure the vpn security zone with assigning the secure tunnel interface and other nec-
essary parameters

set security zones security-zone vpn interfaces st0.1

Configure the trust security zone by limiting the host-inbound system services to just ping
and assign the HOST1 facing interface to the trust security zone.

set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust interfaces ge-0/0/1.0

4. Configure the security policies

Configure the security policy for the transit traffic flowing from trust zone to vpn zone
set security policies from-zone trust to-zone vpn policy vpn_out match source-address any
set security policies from-zone trust to-zone vpn policy vpn_out match destination-address any
set security policies from-zone trust to-zone vpn policy vpn_out match application any
set security policies from-zone trust to-zone vpn policy vpn_out then permit

Configure the security policy for the transit traffic flowing from vpn zone to trust zone
set security policies from-zone vpn to-zone trust policy vpn_in match source-address any
set security policies from-zone vpn to-zone trust policy vpn_in match destination-address any
set security policies from-zone vpn to-zone trust policy vpn_in match application any
set security policies from-zone vpn to-zone trust policy vpn_in then permit

 47 Chapter 4: Pulling IPsec Together with QKD or PQC

5. Configure the IPsec VPN

Configure an ike proposal with the necessary attributes.
set security ike proposal IKE_PROP authentication-method pre-shared-keys
set security ike proposal IKE_PROP dh-group group14
set security ike proposal IKE_PROP authentication-algorithm sha-256
set security ike proposal IKE_PROP encryption-algorithm aes-256-cbc
set security ike proposal IKE_PROP lifetime-seconds 3600

Configure an ike policy with the configured ike proposal and other necessary attributes
set security ike policy IKE_POL proposals IKE_PROP
set security ike policy IKE_POL pre-shared-key ascii-text “ipsec-test”

Configure an Ike gateway with the defined ike policy and other necessary attributes.
set security ike gateway IKE_GW ike-policy IKE_POL
set security ike gateway IKE_GW address 172.18.10.1
set security ike gateway IKE_GW external-interface ge-0/0/0.0
set security ike gateway IKE_GW local-address 172.18.10.2
set security ike gateway IKE_GW version v2-only

Configure the previously defined static key-profile to the ike gateway to be used as ppk-
profile for PPKs. ppk-profile can only be configured if the ike gateway is configured with
[version v2-only].

set security ike gateway IKE_GW ppk-profile km_profile_1

Configure an ipsec proposal with the necessary attributes.
set security ipsec proposal IPSEC_PROP protocol esp
set security ipsec proposal IPSEC_PROP authentication-algorithm hmac-sha-256-128
set security ipsec proposal IPSEC_PROP encryption-algorithm aes-256-cbc
set security ipsec proposal IPSEC_PROP lifetime-seconds 2400

Configure an ipsec policy with the configured proposal.
set security ipsec policy IPSEC_POL proposals IPSEC_PROP

Configure an IPsec vpn with the previously configured secure tunnel interface, ike gate-
way, ipsec policy and any other necessary parameters. A Traffic selector is configured to
ensure only HOST2 subnet to HOST1 subnet communication is secured using the nego-
tiated IPsec tunnel.

set security ipsec vpn IPSEC_VPN bind-interface st0.1
set security ipsec vpn IPSEC_VPN ike gateway IKE_GW
set security ipsec vpn IPSEC_VPN ike ipsec-policy IPSEC_POL
set security ipsec vpn IPSEC_VPN traffic-selector ts1 local-ip 192.168.80.0/24
set security ipsec vpn IPSEC_VPN traffic-selector ts1 remote-ip 192.168.90.0/24

To quickly configure HOST1 and HOST2

Exact steps to configure the HOSTs is out of scope as it will vary from device to device,
but on a generic note, HOST1 must be configured with any IP in the subnet

 48	 Configuring	Quantum-safe	IPsec	VPNs	with	quantum-key-manager	key-profile

192.168.90.0/24, other than 192.169.90.1, on its interface connected to SRX1 and
HOST2 must be configured with any IP in the subnet 192.168.80.0/24, other than
192.169.00.1, on its interface connected to SRX2.

Verification and Troubleshooting

Verify the traffic flow

Ping from HOST1 to HOST2 or vice versa.
user@HOST1# ping 192.168.80.20 source 192.168.90.20 count 5
PING 192.168.80.20 (192.168.80.20): 56 data bytes count 5
64 bytes from 192.168.80.1: icmp_seq=0 ttl=64 time=0.998 ms
64 bytes from 192.168.80.1: icmp_seq=1 ttl=64 time=1.594 ms
64 bytes from 192.168.80.1: icmp_seq=2 ttl=64 time=1.395 ms
64 bytes from 192.168.80.1: icmp_seq=3 ttl=64 time=1.536 ms
64 bytes from 192.168.80.1: icmp_seq=4 ttl=64 time=1.838 ms

--- 192.168.80.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.998/1.472/1.838/0.277 ms

Data traffic is successfully flowing between the HOSTs

2. Verify ike security associations status

From operational mode, enter the “show security ike security-associations detail”
command.

user@SRX1> show security ike security-associations detail
IKE peer 172.18.10.2, Index 21, Gateway Name: IKE_GW
 Role: Initiator, State: UP
 Initiator cookie: 5a417d46cef3207d, Responder cookie: 57b9a17516bee31b
 Exchange type: IKEv2, Authentication method: Pre-shared-keys
 Local gateway interface: ge-0/0/2.0
 Routing instance: default
 Local: 172.18.10.1:500, Remote: 172.18.10.2:500
 Lifetime: Expires in 3445 seconds
 Reauth Lifetime: Disabled
 IKE Fragmentation: Enabled, Size: 576
 SRG ID: 0
 Remote Access Client Info: Unknown Client
 Peer ike-id: 172.18.10.2
 AAA assigned IP: 0.0.0.0
 PPK-profile: km_profile_1
 Optional: No
 State : Used
 Algorithms:
 Authentication : hmac-sha256-128
 Encryption : aes256-cbc
 Pseudo random function: hmac-sha256
 Diffie-Hellman group : DH-group-14
 Traffic statistics:
 Input bytes : 783
 Output bytes : 831

 49 Chapter 4: Pulling IPsec Together with QKD or PQC

 Input packets: 2
 Output packets: 2
 Input fragmented packets: 0
 Output fragmented packets: 0
 IPSec security associations: 2 created, 0 deleted
 Phase 2 negotiations in progress: 1
 IPSec Tunnel IDs: 500003
 Negotiation type: Quick mode, Role: Initiator, Message ID: 0
 Local: 172.18.10.1:500, Remote: 172.18.10.2:500
 Local identity: 172.18.10.1
 Remote identity: 172.18.10.2
 Flags: IKE SA is created
 IPsec SA Rekey CREATE_CHILD_SA exchange stats:
 Initiator stats: Responder stats:
 Request Out : 0 Request In : 0
 Response In : 0 Response Out : 0
 No Proposal Chosen In : 0 No Proposal Chosen Out : 0
 Invalid KE In : 0 Invalid KE Out : 0
 TS Unacceptable In : 0 TS Unacceptable Out : 0
 Res DH Compute Key Fail : 0 Res DH Compute Key Fail: 0
 Res Verify SA Fail : 0
 Res Verify DH Group Fail: 0
 Res Verify TS Fail : 0

The IKE SA is established with configured attributes. Under the “Ppk-profile” output
tag, name of the key-profile used for PPKs is displayed. Additionally, it mentions the op-
tional attribute as “No” which means that using PPKs for the establishment of this IKE
SA and corresponding IPsec SAs is mandatory and the State attribute displayed “Used”
which means PPKs from this key-profile has been used and the IKE SA and correspond-
ing IPSEC SAs are Quantum safe.

3. Verify ipsec security associations status.

From operational mode, enter the “show security ipsec security-associations detail”
command

user@SRX1> show security ipsec security-associations detail

ID: 500003 Virtual-system: root, VPN Name: IPSEC_VPN
 Local Gateway: 172.18.10.1, Remote Gateway: 172.18.10.2
 Traffic Selector Name: ts1
 Local Identity: ipv4(192.168.90.0-192.168.90.255)
 Remote Identity: ipv4(192.168.80.0-192.168.80.255)
 TS Type: traffic-selector
 Version: IKEv2
 Quantum Secured: Yes
 PFS group: N/A
 SRG ID: 0
 DF-bit: clear, Copy-Outer-DSCP Disabled, Bind-interface: st0.1, Policy-name: IPSEC_POL
 Port: 500, Nego#: 0, Fail#: 0, Def-Del#: 0 Flag: 0
 Multi-sa, Configured SAs# 0, Negotiated SAs#: 0
 Tunnel events:
 Fri Mar 31 2023 01:41:52: IPsec SA negotiation succeeds (1 times)
 Location: FPC 0, PIC 0, KMD-Instance 0
 Anchorship: Thread 1

 50	 Configuring	Quantum-safe	IPsec	VPNs	with	quantum-key-manager	key-profile

 Distribution-Profile: default-profile
 Direction: inbound, SPI: 0xd1e1549c, AUX-SPI: 0

, VPN Monitoring: -
 Hard lifetime: Expires in 1916 seconds
 Lifesize Remaining: Unlimited
 Soft lifetime: Expires in 1349 seconds
 Mode: Tunnel(0 0), Type: dynamic, State: installed
 Protocol: ESP, Authentication: hmac-sha256-128, Encryption: aes-cbc (256 bits)
 Anti-replay service: counter-based enabled, Replay window size: 64
 Extended-Sequence-Number: Disabled
 tunnel-establishment: establish-tunnels-immediately
 IKE SA Index: 21
 Direction: outbound, SPI: 0xb5883167, AUX-SPI: 0

, VPN Monitoring: -
 Hard lifetime: Expires in 1916 seconds
 Lifesize Remaining: Unlimited
 Soft lifetime: Expires in 1349 seconds
 Mode: Tunnel(0 0), Type: dynamic, State: installed
 Protocol: ESP, Authentication: hmac-sha256-128, Encryption: aes-cbc (256 bits)
 Anti-replay service: counter-based enabled, Replay window size: 64
 Extended-Sequence-Number: Disabled
 tunnel-establishment: establish-tunnels-immediately
 IKE SA Index: 21

The IPsec SA is established with configured attributes. Under the “Quantum Secured”
output tag, it is mentioned as yes which means the IPsec SA is quantum safe.

4. Verify IPsec SA encryption/decryption statistics.

From operational mode, enter the “show security ipsec statistics” command
user@SRX1> show security ipsec statistics
ESP Statistics:
 Encrypted bytes: 780
 Decrypted bytes: 780
 Encrypted packets: 5
 Decrypted packets: 5
AH Statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
Errors:
 AH authentication failures: 0, Replay errors: 0
 ESP authentication failures: 0, ESP decryption failures: 0
 Bad headers: 0, Bad trailers: 0
 Invalid SPI: 0, TS check fail: 0
 Exceeds tunnel MTU: 0
 Discarded: 0

For the 5 ping packets that were sent from HOST1 to HOST2, the count matches the
encrypted packets and decrypted packets statistics.

5. Verify key-profile status.

From operational mode, enter the “show security key-manager profiles detail”
command:

 51 Chapter 4: Pulling IPsec Together with QKD or PQC

user@SRX1> show security key-manager profiles detail
Name: km_profile_1, Index: 3, Type: Quantum-key-manager
 Configured-at: 31.03.23 (01:40:50)
 Time-elapsed: 0 hrs 11 mins 30 secs
 Url: https://www.kme_a-qkd-server.net
 Local-sae-id: SAE_A
 Local-certificate-id: SAE_A_CERT
 Trusted-cas: [ROOT_CA_CERT]
 Peer-sae-ids: N/A
 Default-key-size: N/A
 Request stats:
 Received: 1
 In-progress: 0
 Success: 1
 Failed: 0

For the key profile that was used for the establishment of the IKE/IPsec SAs, it displays
the number of times a request for corresponding PPK has been made, and it shows the
“Received” and “Success” output tag values as 1.

IPsec VPN PPK-profile Additional Use Cases

An optional flag can be configured under [security ike gateway <gw-name> ppk-profile
<key-profile-name>]

Example:
set security ike gateway IKE_GW ppk-profile km_profile_1 optional

RFC 8784 mentions “implementations have a configurable flag that determines whether
this PPK is mandatory”. The idea behind having this optional flag is for inter-operability
with VPN gateways (can be from other vendors) which do not support RFC 8784 and to
establish at least non-quantum safe SAs if quantum safe SAs can’t be established.

By default, when ppk-profile is configured, it indicates the negotiated IKE and IPSEC
SAs need to be quantum-safe or else abort the negotiation. However, setting the Optional
flag at both the endpoints would mean that during negotiation of IKE/IPsec SAs, if due
to some reason quantum safe SAs cannot be established, then at least the peers will not
abort the ongoing negotiation and rather fallback into negotiating normal IKE/IPSEC
SAs.

All the decision making occurs during runtime in a single key exchange session, without
first aborting the quantum-safe SA creation session and then initiating a new non-quan-
tum safe SA creation session, thus significantly reducing key-exchange overhead.

Here is a list of scenarios related to the optional ppk-profile feature:

Scenario 1: If Initiator is configured with PPK but with optional flag and Responder is
not configured with PPK (maybe it doesn’t support RFC 8784), it would result in Normal

Appendices

 53 Appendices

IKE and IPSEC SAs getting negotiated.

Scenario 2: If Initiator is configured with PPK without optional flag and Responder is
not configured with PPK (maybe it doesn’t support RFC 8784), it would result in the ne-
gotiation getting aborted.

Scenario 3: When Initiator is not configured with PPK (maybe it doesn’t support RFC
8784) and Responder with PPK without optional flag, it would result in Responder abort-
ing the negotiation.

Scenario 4: When Initiator and Responder both are configured with PPK with optional
flag, it would result in quantum-safe IKE and IPSEC SAs using the PPK if no error was
encountered. PPK will always be used when both the endpoints are configured with
PPK-profile (with/without optional flag) and no issue was encountered.

Important Notes for PPK-profile Usage

1. A PPK profile can only be used for IKEv2 based IPsec VPN solutions.

2. In case using IKEv1 is necessary, then configuring IKEv1 with pre-shared
key is quantum safe.

3. As of 22.4R1, the feature set is only supported with Site-to-Site IPsec VPN
and Auto-VPN configurations.

4. The ike-key-management process will fetch PPK, as per the configured
ppk-profile, from the junos-key-manager daemon only during Initial IKEv2
negotiation (to comply with RFC 8784). To have maximum security, it is rec-
ommended to perform REAUTH (performing the Initial IKEv2 negotiation
rather than IKE rekey) at regular intervals. Reauth frequency can be set via
[security ike policy <policy-name> reauth-frequency <number>].

Junos Key Manager Configuration Statements

The Junos Key Manager daemon manages the configuration under [security key-manag-
er]. The key-manager config is structured around configuring key profiles. As of 22.4R1,
two types of key profiles are supported – static and quantum-key-manager.

Configuration statements

Profiles

Syntax:
 profiles {

 54	 Junos	Key	Manager	Configuration	Statements

 profile-name {
quantum-key-manager {

url url-value;
local-sae-id local-sae-id-value;
local-certificate-id local-certificate-id-value;
peer-sae-ids list-of-peer-sae-ids;
default-key-size key-size-value;
trusted-cas list-of-ca-profile-ids;

}
static {

key-id [ascii-text | hexadecimal] key-id-value;
key [ascii-text | hexadecimal] key-value;

}
 }
}

Hierarchy level:

[edit security key-manager]

Description: Configure a key profile for out-of-band key retrieval and usage.

Options:

profile-name Specify name of the key profile.

key-id
Specify the ascii-encoded or hexadecimal-encoded string representing a key-id. This
parameter can only be configured for static key profiles.

key
Specify the ascii-encoded or hexadecimal-encoded string representing a secret key for the
corresponding key-id. This parameter can only be configured for static key profiles.

url

Specify the url of the KME server. The url must be IP resolvable. The hostname portion of
the url (format:https://[hostname][:port]) casleswayball@juniper.netn either be a fqdn or
an IP address. Irrespective of the type of the hostname, the exact hostname string must be
present in the server certificate, either as a Common Name or as one of Subject Alternative
Names. Also, the server should be reachable via the default routing instance. This
parameter can only be configured for quantum-key-manager key profiles.

local-sae-id

Specify the SAE-ID to be used by the local end. This configuration is not used for
communicating wth the KME server but gets used by client applications. This parameter
can only be configured for quantum-key-manager key profiles.

peer-sae-ids

Specify the SAE-IDs for the remote applications that the KME server needs, to generate
and send QKD key(s). It is used, in conjunction with loca-sae-id, as identifier(s) by the KME
server as to whom to send the generated keys. This parameter can only be configured for
quantum-key-manager key profiles and is an optional parameter. If no peer-sae-ids are
configured, then the application requesting the keys needs to supply the peer-sae-ids, or else
key-request will fail. Note when using quantum-key-manager key-profiles for VPN, no need
to configure this parameter.

 55 Appendices

local-certificate-id

Specify the certificate for the local SAE-ID. The local certificate should be loaded
beforehand using “request security pki local-certificate <enroll | load>” as per
requirement. This certificate will be used and sent for client authentication on the server
side. The Common Name/Subject Alternative Name used in the certificate must match the
string configured for “local-sae-id” as the KME server uses the value from the Common
Name or one of the Subject Alternative Names from the certificate to know what the local
end SAE-ID, as per implementation of the KME. This parameter can only be configured
for quantum-key-manager key profiles and is an optional parameter. If local-certificate-id is
not configured, then the corresponding certificate won’t be sent to the KME server for
client authentication.

trusted-cas

Specify one or more CA certificate(s). The CA certificates must be configured under
[security pki ca-profile] and all the required CA certificates should be loaded beforehand
using “request security pki ca-certificate <enroll | load>” as per requirement. The CA
certificate(s) will be used during server certificate authentication on the local end. The
server certificate must be signed using the CAs configured. This parameter can only be
configured for quantum-key-manager key profiles and is an optional parameter. If
trusted-cas is not configured, then server certificate authentication won’t be performed.

default-key-size

Specify the default key size that will be used when KME server is requested for QKD key(s).
This parameter can only be configured for quantum-key-manager key profiles and is an
optional parameter. If default-key-size is not explicitly configured, then the default key size
will be 256 bits.

Traceoptions

Syntax:
traceoptions {
 file {

filename;
size max-file-size;
files number-of-files;
match regular-expression;
[no-world-readable | world-readable];

 }
 level (critical | error | terse | warning | detail | extensive);
 no-remote-trace;
}

Hierarchy level:
[edit security key-manager]

Description:

Configure junos-key-manager tracing options to aid in troubleshooting the key-manager
issues. This allows the user to view the detailed application logs for all the operations

 56	 Junos	Key	Manager	Configuration	Statements

performed on a key profile. Key-manager tracing is enabled by default. By default, the
application logs are written in /var/log/jkm.

Option:

File–Configure the trace file options.

filename–Name of the file to receive the output of the tracing operation. Enclose the
name within quotation marks. All files are placed in the directory /var/log.

Default: jkm

files number–Maximum number of trace files. When a trace file named trace-file reaches
its maximum size, it is renamed to trace-file.0, then trace-file.1, and so on, until the maxi-
mum number of trace files is reached. The oldest archived file is overwritten.

If you specify a maximum number of files, you also must specify a maximum file size with
the size option and a filename.

Range: 2 through 1000 files

Default: 10 files

� match regular-expression–Refine the output to include lines that contain the regular
expression.

� size maximum-file-size–Maximum size of each trace file, in kilobytes (KB), mega-
bytes (MB), or gigabytes (GB). When a trace file named trace-file reaches this size, it
is renamed trace-file.0. When the trace-file again reaches its maximum size, trace-
file.0 is renamed trace-file.1 and trace-file is renamed trace-file.0. This renaming
scheme continues until the maximum number of trace files is reached. Then the
oldest trace file is overwritten.

If you specify a maximum file size, you also must specify a maximum number of trace
files with the files option and filename.

Syntax: x k to specify KB, x m to specify MB, or x g to specify GB

Range: 10 KB through 1 GB

Default: 1024 KB

world-readable | no-world-readable–By default, log files can be accessed only by the user
who configures the tracing operation. The world-readable option enables any user to
read the file. To explicitly set the default behavior, use the no-world-readable option.

level–Specify the log levels

critical–Log single point failures which needs your immediate attention

error–Log fatal application errors

 57 Appendices

terse–Log syslog messages

warning–Log recoverable errors

detail–Log all operational information

extensive–Log everything.

no-remote-trace–Set remote tracing as disabled.

Junos Key Manager Operational Commands

Show security key-manager clients

Syntax:
show security key-manager clients <index index> <brief | detail>

Description:

Display client applications/services currently connected to junos-key-manager and re-
lated runtime information.

Options:

� none–Display standard information of all client applications/services, including
index numbers.

� index client-index–(Optional) Display information for a particular client applica-
tion/service for a given index number of the client.

� brief–(Optional) Display standard information about all the client applications/
services connected to junos-key-manager. (Default)

� detail–(Optional) Display detailed information about all the client applications/
services connected to junos-key-manager .

Output fields:

Index: Index of the client application which is currently connected to JKM.

Name: Name of the client application which is currently connected to JKM.

Pid: Process ID of the client application which is currently connected to JKM.

Connected at: Time at which the client application connected.

Time elapsed: Duration of time since the client application is connected.

Request stats: Statistics related to requests received from the client

Received: Number of requests received from the client

 58	 Junos	Key	Manager	Operational	Commands

In-progress: Number of requests currently being processed

Success: Number of requests that were successfully processed

Failed: Number of requests that were unsuccessful

Sample output:
user@SRX> show security key-manager clients

 Index Name Pid Received In-progress Success Failed

 7 ikemd 66111 3 0 3 0
 8 iked 66055 8 0 3 5
user@SRX> show security key-manager clients detail

Name: ikemd, Index: 7, Pid: 66111
 Connected at: 30.03.23 (23:33:51)
 Time elapsed: 68 hrs 58 mins 12 secs
 Request stats:
 Received: 3
 In-progress: 0
 Success: 3
 Failed: 0

Name: iked, Index: 8, Pid: 66055
 Connected at: 30.03.23 (23:33:51)
 Time elapsed: 68 hrs 58 mins 12 secs
 Request stats:
 Received: 8
 In-progress: 0
 Success: 3
 Failed: 5

Show security key-manager profiles

Sytax:
show security key-manager profiles <index index> <brief | detail>

Description:

Display key profiles currently configured/managed by junos-key-manager and related
runtime information.

Options:

� none–Display standard information of all key profiles, including index numbers.

� index profile-index - (Optional) Display information for a particular key profile for a
given index number.

� brief–(Optional) Display standard information about all the key profiles managed by
junos-key-manager. (Default)

� detail–(Optional) Display detailed information about all the key profiles managed by
junos-key-manager.

 59

Output fields:

Index: Index of the key profile which is currently configured.

Name: Name of the key profile which is currently configured

Type: Type of the configured key profile

Configured at: Time at which the key profile was configured

Time elapsed: Duration of time since the key profile was configured

Url: URL for KME (KME management entity) server

Local sae id: The SAE (Secure Application entity) ID for the local application which the
KME server needs to generate and send QKD key(s).

Local cert id: The certificate id for the corresponding certificate when client authentica-
tion needs to be done with the KME server

Peer sae ids: The SAE IDs for the remote applications that the KME server needs, to gen-
erate and send QKD key(s)

Trusted cas: CA(s) that will be considered as valid when server certification verification is
performed.

Default key size: The default key size that will be used when KME server is requested for
QKD key(s)

Request stats: Statistics related to requests received for the key profile

Received: Number of requests received for the key profile

In-progress: Number of requests currently being processed

Success: Number of requests that were successfully processed

Failed: Number of requests that were unsuccessful

Sample output:
 user@SRX> show security key-manager profiles

 Index Name Received In-progress Success Failed

 3 km_profile_1 3 0 3 0

user@SRX> show security key-manager profiles detail

Name: km_profile_1, Index: 3, Type: Quantum-key-manager
 Configured-at: 31.03.23 (01:40:50)
 Time-elapsed: 67 hrs 1 mins 35 secs

Url: https://www.kme_a-qkd-server.net:5000
 Local-sae-id: SAE_A
 Local-certificate-id: SAE_A_CERT

https://www.kme_a-qkd-server.net:5000

 60	 Junos	Key	Manager	Operational	
Commands

 Trusted-cas: [ROOT_CA_CERT]
 Peer-sae-ids: N/A
 Default-key-size: N/A
 Request stats: Received: 3
 In-progress: 0
 Success: 3
 Failed: 0

Show security key-manager statistics

Syntax:

show security key-manager statistics <brief>

Description:

Display global statistics information for junos-key-manager.

Options:

� none –Display standard statistics information.

� brief–(Optional) Display standard statistics information for junos-key-manager.
(Default)

Output fields:

Statistics based on profile type: Stats categorized based profile type

Profile type: Type of configured profile

Config-count: Number of configured profiles for a type

Received: Number of requests received for a profile type

In-progress: Number of requests currently being processed.

Success: Number of requests that were successfully processed

Failed: Number of requests that were unsuccessful

Statistics based on operation type: Stats categorized based request type

Request type: Type of request supported.

Received: Number of requests received for a profile type.

In-progress: Number of requests currently being processed.

Success: Number of requests that were successfully processed.

Failed: Number of requests that were unsuccessful.

 61 Appendices

Request Error Stats: Stats for various request status codes

Failed: Display count of all requests that failed due to unknown/generic error.

Invalid operation type: Display count of all requests that failed due to Invalid operation
type.

Profile not found: Display count of all requests that failed due to Profile not found.

Invalid argument(s) for profile type: Display count of all requests that failed due to some
invalid argument provided as part of the request. Invalid argument means an argument
that is not supported for the request/operation type.

External key resource request failed: Display count of all requests that failed due to some
issue during preparing/making the request to the external key source.

External key resource response failed: Display count of all requests that failed due to
some issue with the response from the external key source.

Aborted by profile change: Display count of all requests that failed due to ongoing re-
quests getting aborted due to change/delete of key profile.

Aborted by client: Display count of all requests that failed due to client application/ser-
vice aborting ongoing requests.

Timed out: Display count of all requests that failed due to no response and the request
getting timed out.

Sample output:
user@SRX> show security key-manager statistics

 Statistics based on profile type:

 Key-profile-type Config-count Received In-progress Success Failed

 Static 0 4 0 4 0
 Quantum-key-manager 1 11 0 4 7

 Statistics based on request type:

 Request-type Received In-progress Success Failed

 Get-profile-config 4 0 4 0
 Get-profile-status 0 0 0 0
 Get-profile-keys 11 0 4 7
 Get-profile-keys-with-id 0 0 0 0

 Request Error Stats:

 Failed : 0
 Invalid operation type : 0
 Profile not found : 0

 62	 Junos	Key	Manager	Operational	Commands

 Invalid argument(s) for profile type : 0
 External key resource request failed : 0
 External key resource response failed : 7
 Aborted by profile change : 0
 Aborted by client : 0
 Timed out : 0

Clear security key-manager clients

Syntax:
clear security key-manager clients <index index> <statistics>

Description:

Clear runtime state of client applications/services including aborting all in-progress re-
quests, clear statistics information and disconnecting from client.

Options:

� none–Clear runtime state of all clients

� index client-index–(Optional) Clear runtime state of a particular client application/
service for a given index number.

� statistics–(Optional) Clear only the statistics information of client application(s)/
service(s).

Output fields: This command produces no output.

Clear security key-manager profiles

Syntax:

Clear security key-manager profiles <index index> <statistics>

Description:
Clear runtime state (if applicable as per profile type) of key profiles including aborting all
in-progress requests, clear statistics information. For Quantum-key-manager profile-type,
clearing the runtime state will mean closing any existing sessions with the KME server.

Options:

� none–Clear runtime state of all key profiles

� index profile-index–(Optional) Clear runtime state of a particular key profile for a
given index number.

 � statistics–(Optional) Clear only the statistics information of client key profile(s).

Output fields: This command produces no output.

 63 Appendices

Clear security key-manager statistics

Syntax:
clear security key-manager statistics

Description:

Clear global statistics information for junos-key-manager.

Options:

 � none–Clear all statistics

Output fields: This command produces no output.

Request security key-manager profiles get profile-config

Syntax:
request security key-manager profiles get profile-config <name profile-name>

Description:

Get the config of a key profile.

Options:

 � name –Name of the key profile

Output fields:

When you enter this command, you are provided feedback on the status of your request.
Output fields will differ based on the key profile type.

Sample output:
user@SRX> request security key-manager profiles get profile-config name km_profile_1

- Response:
- Status: SUCCESS
- Name: km_profile_1
- Type: Static

user@SRX> request security key-manager profiles get profile-config name km_profile_1

- Response:
- Status: SUCCESS
- Name: km_profile_1
- Type: Quantum-key-manager
- Url: https://www.kme_a-qkd-server.net
- Local-sae-id: SAE_A
- Local-certificate-id: SAE_A_CERT
- Trusted-cas: [ROOT_CA_CERT]
- Peer-sae-ids: N/A

https://www.kme_a-qkd-server.net

 64	 Junos	Key	Manager	Operational	Commands

- Default-key-size: N/A

In case of failure:
user@SRX> request security key-manager profiles get profile-config name km_profile_2

- Response:
- Status: FAILED

Request security key-manager profiles get profile-status

Syntax:
request security key-manager profiles get profile-status <name profile-name> <peer-sae-id peer-sae-
id-value>

Description:

Get the status of a key profile

Options:

� name profile-name –Name of the key profile

� peer-sae-id peer-sae-id-value – SAE-ID of the remote end application. This is only
applicable for quantum-key-manager profile type. If peer-sae-ids field is configured
for the given key profile, then this parameter can be skipped. If more than one
peer-sae-ids in configured in the key-profile config, then the first peer-sae-id in the
list will be used to run the command.

Output fields:

When you enter this command, you are provided feedback on the status of your request.
Output fields will differ based on the key profile type.

Sample output:
user@SRX> request security key-manager profiles get profile-status name km_profile_1

- Response:
- Status: SUCCESS
- Name: km_profile_1
- Type: Static
- Configured-at: 01.12.21 09:11:30
- Time-elapsed: 3 hrs 10 mins 20 secs
- Key-size: 512 bits

user@SRX> request security key-manager profiles get profile-status name km_profile_1 peer-sae-
id SAE_B

- Response:
- Status: SUCCESS

 65 Appendices

- Name: km_profile_1
- Type: Quantum-key-manager
- Configured-at: 31.03.23 (01:40:50)
- Time-elapsed: 68 hrs 5 mins 26 secs
- Key-size: 256 bits
- Source-KME-ID: kme-1
- Target-KME-ID: kme-2
- Master-SAE_ID: SAE_A
- Slave-SAE_ID: SAE_B
- Stored-key-count: 25000
- Max-key-count: 100000
- Max-key-per-request: 128
- Max-key-size: 1024 bits
- Min-key-size: 64 bits
- Max-SAE-ID-count: 0

In case of failure:
user@SRX> request security key-manager profiles get profile-status name km_profile_2

- Response:
- Status: FAILED

Request security key-manager profiles get profile-keys

Syntax:
request security key-manager profiles get profile-keys <name profile-name> <peer-sae-id peer-sae-id-
value> <key-count key-count-value> <key-size key-size-value>

Description:

Get the key(s) for a key profile.

Options:

� name profile-name–Name of the key profile

� peer-sae-id peer-sae-id-value – SAE-ID of the remote end application. This
parameter can be specified more than once to provide multiple peer-sae-ids. This is
only applicable for quantum-key-manager profile type. If peer-sae-ids field is
configured for the given key profile, then this parameter can be skipped. If more
than one peer-sae-ids in configured in the key-profile config, then the command will
be run using all the peer-sae-ids in the list.

� key-size key-size-value - Specify the size of key(s) in bits. This is only applicable for
quantum-key-manager profile type. The specified key size must be a multiple of 8.
256 bits is the minimum key size that can be specified which is the default key size
(unless it is changed via default-key-size configuration) used if the parameter is not
specified.

 66	 Junos	Key	Manager	Operational	Commands

� key-count key-count-value - Specify the number of keys. This is only applicable for
quantum-key-manager profile type. The default key count is 1 if the parameter is
not specified.

Output fields:

When you enter this command, you are provided feedback on the status of your request.
Key-ids will be in ascii format and Keys will be in hexadecimal format.

Sample output:
user@SRX> request security key-manager profiles get profile-keys name km_profile_1

- Response:
- Status: SUCCESS
- Name: km_profile_1
- Type: Static
- Key-size: 256 bits
- Key-count: 1
- Key-ids:

- test-key-id
- Keys:

- abcd01e289dea1258fe37bbd8ccae26f

user@SRX> request security key-manager profiles get profile-keys name km_profile_1 peer-sae-id SAE_B

- Response:
- Status: SUCCESS
- Name: km_profile_2
- Type: Quantum-key-manager
- Key-size: 256 bits
- Key-count: 1
- Key-ids:

- 5f11a71d-ef23-4902-ac6a-14c1c289fae7
- Keys:

- f3dc9f10a80e82820a91f2c8dc1946fe33649eb0a40cd64bfb0e6edac7bbaac0

In case of failure:
user@SRX> request security key-manager profiles get profile-keys name km_profile_1 peer-sae-id SAE_C

- Response:
- Status: FAILED

 Request security key-manager profiles get profile-keys-with-id

Syntax:
request security key-manager profiles get profile-keys-with-id <name profile-name> <peer-sae-
id peer-sae-id-value> <key-id key-id-value>

 67 Appendices

Description:

Get the key(s) for given key id(s) for a key profile.

Options:

� Name profile-name - Name of the key profile

� peer-sae-id peer-sae-id-value – SAE-ID of the remote end application. This
parameter can be specified more than once to provide multiple peer-sae-ids. This is
only applicable for quantum-key-manager profile type. If peer-sae-ids field is
configured for the given key profile, then this parameter can be skipped. If more
than one peer-sae-ids in configured in the key-profile config, then the first peer-sae-
id in the list will be used to run the command.

� key-id key-id-value - Specify key-id. This parameter can be specified more than once
to provide multiple key-ids.

Output fields:

When you enter this command, you are provided feedback on the status of your request.
Key-ids will be in ascii format and Keys will be in hexadecimal format.

Sample output:
user@SRX> request security key-manager profiles get profile-keys-with-id name km_profile_1 key-
id “test-key-id”

- Response:
- Status: SUCCESS
- Name: km_profile_1
- Type: Static
- Key-size: 256 bits
- Key-count: 1
- Key-ids:
- test-key-id

- Keys:
- abcd01e289dea1258fe37bbd8ccae26f

user@SRX> request security key-manager profiles get profile-keys-with-id peer-sae-id SAE_A name km_
profile_1 key-id 5f11a71d-ef23-4902-ac6a-14c1c289fae7

- Response:
- Status: SUCCESS
- Name: km_profile_1
- Type: Quantum-key-manager
- Key-size: 256 bits
- Key-count: 1
- Key-ids:
- 5f11a71d-ef23-4902-ac6a-14c1c289fae7

- Keys:
- f3dc9f10a80e82820a91f2c8dc1946fe33649eb0a40cd64bfb0e6edac7bbaac0

In case of failure:
user@SRX> request security key-manager profiles get profile-keys name km_

 68	 Junos	Key	Manager	Operational	Commands

profile_1 peer-sae-id SAE_B key-id 5f11a71d-ef23-4902-ac6a-14c123wr”

- Response:
- Status: FAILED

Restart key-manager

Syntax:
restart key-manager <gracefully | immediately | soft>

Description:

Restart or reinitialize the junos-key-manager daemon.

Options:

� none–Restarts the daemon

� gracefully – Gracefully restart (SIGTERM) the process.

� Immediately - Immediately restart (SIGKILL) the process

� soft - Soft reset (SIGHUP) the process

Output fields:

This command produces no output.

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Authors
	Welcome to Day One
	Key Quantum Network Resources
	What You Need to Know Before Reading This Book
	What You Need to Know About RFC8784
	Preface
	Chapter 1: The Big Threat
	Store Now, Decrypt Later
	Shor’s Algorithm

	Chapter 2: Internet Protocol Security (IPsec)
	Fundamentals of IPsec
	IPsec Security Associations
	Internet Key Exchange
	Why IPsec Is Vulnerable to a Quantum Computer Attack?

	Chapter 3: Quantum-safe Security
	Advanced Encryption Standard (AES)
	Quantum Key Distribution
	Post-quantum Cryptography

	Chapter 4: Pulling IPsec Together with QKD or PQC
	Leveraging the ETSI-QKD-014 API for Key Exchange
	IKEv2 Post-Quantum Security support
	What 's New in IPsec?
	Quantum safe IPsec Configuration Examples
	Configuring Quantum safe IPsec VPN with Static Key Profile
	Configuring Quantum-safe IPsec VPNs withquantum-key-manager key-profile

	Appendices
	IPsec VPN PPK-profile Additional Use Cases
	Important Notes for PPK-profile Usage
	Junos Key Manager Configuration Statements

