
Routing

The new MS-MPC or MS-MIC service

cards for the MX series have advanced

processing that supports dynamic NAT

or advanced NATing features like PAT,

or ALG features such as DPI packet

rewrites. It’s all here for you to check

out and test in your lab.

By Joseph Naughton		

Day One: CGNAT Up and Running
	on the MX SERies

http://www.juniper.net

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: CGNAT UP AND RUNNING ON THE MX SERIES

CGNAT, which is also known as Large Scale NAT, is a buzzword for a highly-scalable NAT
device that sits between the CPE and a core network. If the device being used is an MX
Series, well now, that device is very scalable, and it can take your current Network Ad-
dress Translation usage and truly make it carrier grade. It’s all in how you set up the MX.

What you need is a JTAC engineer to explain the ins and outs of the MX Series, and
that’s what Joe Naughton does in this book. He provides the configurations, the feature
sets, the application layer gateways, and the syslogs you need to make the MX hum.
There’s a troubleshooting chapter written as only a JTAC engineer can, as well as a scal-
able use case that puts some load balancing MX features to the test.

However you define CGNAT it begins with MX.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

nn Understand the hardware needed for your network to go carrier grade.

nn Understand the different NAT configurations of the MX Series and how they

can fit into your network’s needs.

nnMonitor and manage the MX Series when it is configured in a CGNAT solution.

nn Build a working model in your lab for testing and prototyping.

ISBN 978-1-941441-47-3

9 781941 441473

5 1 6 0 0

“This is just the book you need if your current NAT needs are starting to scream at you.

It’s filled full of useful MX Series insights and even includes a service provider Use Case

that puts it all together. This one sits on my desk.”

David Roy, IP/MPLS NOC Engineer, Orange France

blogger: junosandme.net

http://www.juniper.net

Day One: CGNAT Up and Running 	
	 on the MX Series

By Joseph Naughton

Chapter 1: Configuration . . 11

Chapter 2: Additional Features. . 57

Chapter 3: Application Layer Gateways and
User-Defined Application Controls . . 77

Chapter 4: Final Configuration Topics. . 85

Chapter 5: Example Use Case. . 103

Chapter 6 : Troubleshooting. . 119

http://www.juniper.net
http://www.juniper.net

	 iv	

© 2017 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo and the Junos
logo, are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their
respective owners. Juniper Networks assumes no
responsibility for any inaccuracies in this document.
Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without
notice.

Published by Juniper Networks Books
Author: Joseph Naughton
Technical Reviewers: Neeraj Gupta, Prakash Channa-
gouda, Vikramadhithya Karamched, Jacopo Pianigiani
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel
Illustrator: Karen Joice

ISBN: 978-1-941441-47-3 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-48-0 (ebook)

Version History: v1, March 2017
 2 3 4 5 6 7 8 9 10

http://www.juniper.net/dayone

About the Author
Joseph Naughton has seventeen years experience
supporting solutions in the networking industry. He is
the Technical Lead in JTAC at Juniper Networks. Prior to
supporting the best of breed Mobile Packet Core
products, he has supported policy solutions, including
SRC and Steel Belted RADIUS, the BRAS line, and in a
former life, VPNs, firewalls, and Shiva’s Lan Rover
products.

http://www.juniper.net/dayone

		 v

Welcome to Day One

This book is part of the Day One library, produced and published by
Juniper Networks Books.

Day One books were conceived to help you get just the information that
you need on day one. The series covers Junos OS and Juniper Networks
networking essentials with straightforward explanations, step-by-step
instructions, and practical examples that are easy to follow.

The Day One library also includes a slightly more comprehensive and
longer suite of This Week books, whose concepts and test bed examples
are more similar to a weeklong seminar.

You can obtain publications from either series in multiple formats:

�� Download a free PDF edition at http://www.juniper.net/dayone.

�� Get the ebook edition for iPhones and iPads from the iTunes/
iBooks Store. Search for Juniper Networks Books or the title of
this book.

�� Get the ebook edition for any device that runs the Kindle app
(Android, Kindle, iPad, PC, or Mac) by opening your device’s
Kindle app and going to the Kindle Store. Search for Juniper
Networks Books or the title of this book.

�� Purchase the paper edition at either Vervante Corporation (www.
vervante.com) for between $12-$28, depending on page length.

�� Note that most mobile devices can also view PDF files.

http://www.juniper.net/dayone
www.vervante.com
www.vervante.com

	 vi	

What You Need to Know Before Reading This Book

Before reading this book, you need to be familiar with the basic
administrative functions of the Junos operating system, including the
ability to work with operational commands and to read, understand,
and change Junos configurations. There are several books in the Day
One Fundamentals Series on learning the Junos OS, at http://www.
juniper.net/dayone.

This book makes a few assumptions about you, the reader:

�� You are familiar with and versed in using the Junos CLI.

�� You have a basic understanding of IPv4 and IPv6.

�� You have access to a lab with at least one MX Series router, one
Ethernet switch (with port mirroring capability), and one server
or workstation. It is ideal if your MX Series has MS-MPC or MS-
MIC service cards.

What You Will Learn by Reading This Book

After reading this book you will be able to:

�� Understand the hardware needed for your network to go carrier
grade.

�� Understand the different NAT configurations of the MX Series
and how they can fit into your network’s needs.

�� Monitor and manage the MX Series when it is configured in a
CGNAT solution.

�� Build a working model in your lab for testing and prototyping.

MORE?	 It’s highly recommended you go through the technical documentation
and the minimum requirements to get a sense of CGNAT and the
Junos OS before you jump into this book. The Juniper technical
documentation on CGNAT can be found here: https://www.juniper.
net/documentation/en_US/junos14.1/topics/topic-map/nat-junos-cgn-
implementations.html.

http://www.juniper.net/dayone
http://www.juniper.net/dayone
https://www.juniper.net/documentation/en_US/junos14.1/topics/topic-map/nat-junos-cgn-implementations.html
https://www.juniper.net/documentation/en_US/junos14.1/topics/topic-map/nat-junos-cgn-implementations.html
https://www.juniper.net/documentation/en_US/junos14.1/topics/topic-map/nat-junos-cgn-implementations.html

		 vii

Preface

This book is not meant to be a network design book or to serve as
training material for Network Address Translation (NAT), or how
NAT can be generically applied in one’s network – instead you can use
this book to educate yourself on how the MX Series NAT solution and
features can fit your operational NATing needs.

By using an imaginary regional service provider called Massachusetts
Telcom or MassT for short as a model, this book allows you to see how
the MX Series can be used as a very powerful and flexible NATing
solution. You can follow along as MassT sets up several different types
of NAT scenarios using its MX Series to fit its needs.

Most readers of this book will understand the majority of NAT terms
and acronyms, since many of the terms Juniper uses are generic, but
some terms are unique to the Junos OS. Over the next several pages
this book will explain the basics you need to know before you jump
into Chapter 1.

Acronyms used in this Day One book include:

�� PAT: Port Address Translation

�� NAT: Network Address Translation

�� PBA: Port Block Allocation

�� EIM: End Point Independent Mapping

�� EIF: End Point Independent Filtering

�� ALGs: Application Layer Gateways

�� AMS: Aggregated Multi Service

IMPORTANT	 Throughout this book the author uses “MX” as an abbreviation for
the Juniper Networks MX Series 3D Universal Edge Router. Given the
complexity of the text, the author hopes this modest abbreviation will
aid in the book’s readability. View all of Juniper Networks routing
platforms, and the complete MX Series family, at: https://www.juniper.
net/us/en/products-services/routing/mx-series/.

https://www.juniper.net/us/en/products-services/routing/mx-series/
https://www.juniper.net/us/en/products-services/routing/mx-series/

	 viii	

Carrier Grade NAT

So, what is Carrier Grade NAT, aka CGNAT, as opposed to plain
NAT? CGNAT, also known as Large Scale NAT, is just a buzzword for
a highly scalable NAT device that sits between the CPE and a core
network. If the box being used as a NATing box is an MX Series, it is
very scalable, so if you are using NAT on the MX, consider yourself
using CGNAT!

Let’s lay out a list of some of the actual NAT technologies that com-
prise the CGNAT buzzword that will be configured in this book:

�� NAT 44 is IPv4 only. NAT 44 is truly traditional NAT and has
been used to fight off IPv4 starvation until IPv6 is fully adopted
in every facet of the network. NAT44 can be used to hide the
subscriber’s true IP address for security reasons or simply to deal
with getting subscriber traffic from a private network onto a
public network.

�� NAT 66 is IPv6 only. NAT 66 is the IPv6 world’s version of
NAT44.

�� NAT 46 is a one-to-one NAT mapping translating a private IPv4
to an IPv6 address so that an IPv4 host can communicate with an
IPv6 host/server.

�� NAT 64 is used to assign IPv6 IP addresses to the client premise
while allowing the NATing router to handle translation to IPv4
network hosts when a DNS64 server is used.

�� Destination NAT, or dNAT, is used often to hide the real IP
addresses of servers from the public network. DNAT is used to
translate the destination address versus the source address.

Some readers may know these different NAT technology types as
existing in the more generic terms (yet another level of classification)
of Static NAT and Dynamic NAT. So, let’s also clear up what this book
will consider as Static NAT and what it means by Dynamic NAT:

�� Static NAT happens when the private address of the end user
maps to the same NAT’d address every time they have to traverse
the MX as a NATing device. Static NAT requires an equal-sized
NAT pool based on the range of source-IP addresses you define
as being the private host range(s). If the range of potential private
addresses that can be NAT’d is 100, then the NAT pool needs to
be at least 100 in size.

		 ix

�� Dynamic NAT means you will get a random NAT’d address each
time you traverse the NATing device. The NATing device does
not need to define an equal-sized NAT pool in regard to the
number of potential private source IP addresses that will reflect
your client subscriber’s range.

As you read through this book and the different configurations around
these different NAT types, you need to understand that the MX also
has different categories of NAT setup, essentially Inline NAT versus
using the MS-MPC or MS-MIC service cards. Let’s review this right
now before you move on, so it is clear in your mind.

Inline NAT Versus NAT on the Service Cards

Inline NAT on the MX is applied when packets are being serviced for
NAT in the forwarding plane, much like what is done with standard
firewall and policer setups in the Junos OS. With Inline NAT, packets
do not need to be steered to a service-PIC hosted on a MX service card
for advanced processing. Since the MX does not need to steer packets
to the MS-MPC or MS-MIC service cards, the MX can achieve line
rate, low latency NAT translations with Inline NAT. So, performance
wise, Inline NAT is fantastic. But without advance processing by
MS-MPC or MS-MIC service cards, the MX cannot support dynamic
NAT or advanced NATing features like PAT or the ALG features such
as DPI packet rewrites. Service providers will look to use Inline NAT
with such NAT types as basic nat-44, basic nat-66, twice basic nat-44
and dNAT (destination-NAT). Other NAT technologies will require a
service card.

As we dig into what each of the NAT types are on the MX and how to
configure them, this book will also try to point out which setup
requires a service card for processing the NAT type and which setup
requires only MPC line cards for an Inline NAT setup. It’s important to
understand these differences, since doing so will allow you to deter-
mine what type of hardware setup you require to fit your need.

NOTE	 Inline NAT works on the MPC type of line cards. Older cards do not
support Inline NAT. As for any newer cards that Juniper releases, you
do not need to check the data sheets or documentation for Inline NAT
support.

	 x	

Different MX Series Service Cards

There is one more minor, yet important, topic to review – the different
service cards for the MX Series. As of the writing of this book in early
2017, MS-DPC, MS-MPC, and MS-MIC cards are the three options
you have for the MX platform.

The MS-DPC and MS-MPC are the full line card options for your
MX-240, MX-480, and MX-960. These cards take up a whole FPC
slot. The MS-MPC is the newer of the two cards with more processing
power and memory; it has four NPUs versus two NPUs on the MS-
DPC. It also has 32GB of memory per NPU versus the 8GB per NPU
on the MS-DPC. The MS-DPC is the legacy card and some of the
configuration settings for it differ from configuration settings for the
MS-MPC and MS-MIC.

NOTE	 It should be noted this book does not focus on the MS-DPC card.

The MS-MIC, on the other hand, is a service MIC with 16GB that can
fit the MPC-Type1 and MPC-Type2 line cards on the MX-240,
MX-480, and MX-960. In addition, the MS-MIC can even fit into the
MX-80 and MX-104 chassis bringing advanced services to these
platforms and it can be placed into the MX-2010 and MX-2020.

As stated previously, this book will focus on the MS-MPC and MS-
MIC service cards and their configurations. When using the older
MS-DPC service cards please check the Juniper documentation for
differences between using them and the MS-MPC and MS-MIC cards:
https://www.juniper.net/documentation/en_US/junos14.1/topics/
topic-map/nat-junos-cgn-implementations.html.

Let’s get started!

https://www.juniper.net/documentation/en_US/junos14.1/topics/topic-map/nat-junos-cgn-implementations.html
https://www.juniper.net/documentation/en_US/junos14.1/topics/topic-map/nat-junos-cgn-implementations.html

There is more to setting up NAT on the MX Series than one might
imagine. This is because the Junos OS has a very, very flexible range of
options in order to fit most operators’ needs. This first chapter
provides more than basic knowledge of different CLI options – it
attempts to show you what each option can do, and how that option
can be applied in your network. It also provides some insight into
how you can manage the solution, what to look for when analyzing
NAT’d sessions on the box, how to understand what is actually
occurring once the box is in production, and handling paying custom-
ers’ traffic.

In order to explain the various configurations in a manner that can be
understood, this chapter is organized to make understanding the
building blocks of the CGNAT setup easier, since, depending on your
needs, the configuration can be quite advanced. So in this chapter you
will learn how each section plugs into another, since all sections are
truly needed before your setup works in even its most basic form. The
sections in this chapter are:

�� Service Interfaces

�� Services NAT

�� Pools

�� Rules

�� Service Sets

Chapter 1

Configuration

	 12	 Day One: CGNAT Up and Running on the MX Series

The Service Interfaces detail the PICs on the service cards, or the PFEs
on the MPC cards, for Inline NAT. All traffic that needs to be processed
for NATing capabilities passes through these logical interfaces. These
interfaces are then tied to service sets – the component that ties the
NAT-Rules to a defined service interface. That NAT-Rule determines
which traffic will be NAT Translated. If the traffic will be NAT’d the
NAT-Rule calls the NAT-Pool to be used. NAT-Pools are where we are
going to configure our NAT IP address pools, and our port configura-
tion for PAT.

This material may seem confusing right now, but once you’re done
with this first chapter, it will make much more sense and you will be
able to understand what each configuration section really means to the
functionality of your particular setup.

Service Interfaces

Okay, let’s dig in to the configuration and start with the service inter-
faces, which represent the PICs on the MS-MPC/MS-MIC cards, or the
PFEs on the MPC cards, for Inline NAT.

Services interfaces can be either a logical si interface or a logical ms
interface. The sis interfaces are used for inline NAT where the NAT
servicing is handled on the MPC line card itself within the packet
forward engine. The ms interfaces, on the other hand, are used with the
MS-MPC/MS-MIC service cards. These service cards are being
employed because of the card’s support for advanced NAT features.

NOTE	 Remember, the service interface is not tied to a physical interface like
an ATM or Ethernet interface is – it is truly a logical interface used to
process traffic traversing the MX from the ingress or egress physical
interface and manipulating it before it is sent off to its destination.

Let’s look at the Inline NAT setup first. Under the chassis configuration
hierarchy you need to set the inline-services option with a bandwidth
value for the amount of NAT services traffic you want this PFE to
handle. Whenever possible this should be the PFE on the MPC line
card hosting the port that is the egress or ingress point for handling the
data from the private network so that you do not have to jump the
fabric to get to the PFE that will handle the NATing of the packet.
When using interfaces like an AE or IRB this may not always be
possible.

NOTE	 To use the Inline NAT feature you have to use a MPC card. The older
DPC line cards cannot anchor services inline on their PFEs.

	 Chapter 1: Configuration	 13

So, for our example, there is a 16-port, 10G card in FPC slot 3. For each
PFE the MPC card has, you need to set a PIC for the PFE you want to
use for Inline NAT. This PIC will map to an si interface. In our example,
the physical interface being used is hosted on PFE 0 set to PIC 0:

[edit chassis]
fpc 3 {
    pic 0 {
        inline-services {
            bandwidth 10g; 
        }
    }
}

When using the bandwidth option you can define the amount of band-
width in gigabits per second to reserve the bandwidth for tunnel ser-
vices. On MX Series routers, the bandwidth values can be 1g, 10g, 20g,
or 40g.

Now, let’s set up a logical si interface to map to PIC 0 hosted in FPC slot
3. Make sure you set family inet if you want to NAT IPv4 traffic and
inet6 for IPv6:

si-3/0/0 {
    unit 0 {
        family inet;
        }
}

If you were also going to use the second, third, and fourth PFE on that
line card for INLINE NAT you would then use the same steps for
creating si-3/1/0, si-3/2/0, and si-3/3/0.

NOTE	 Check the Juniper documentation for your line cards to check the
number of PFEs they may have, since this varies among line cards.

That’s it for setting up the service interface for Inline NAT! Very simple.
Now it’s time to look at the service interface for when a service card is
being used.

Now, as stated before, and as will be stated again throughout this book,
there are many NAT setups that require the advanced processing that
the service cards bring to the table – think Port Address Translation
(PAT), or ALGs/DPI. If you are thinking along these lines you are going
to be using at least one service card. So let’s see how you get a service-
interface set up for these types of scenarios using the MS-MPC service
card.

Let’s add a MS interface for each service PIC to be used for our CGNAT
solution. Each MS interface can be used for a single service-set or can be

	 14	 Day One: CGNAT Up and Running on the MX Series

used against many different service-sets based on your overall configu-
ration. Below we are adding a MS interface that will represent the first
service PIC on a MS-MPC card in FPC slot 1. It is set up in a very
generic manner to fit both of our different service-set types (and will
make more sense to you very shortly):

[edit interfaces ms-1/0/0]
unit 0 {
    family inet;
}
unit 1 {
    family inet;
    service-domain inside;
}
unit 2 {
    family inet;
    service-domain outside;
}

Now the MS-MPC has four service PICs in total. If you want to use the
other three service PICs, do the same for ms-1/1/0, ms-1/2/0, and
ms-1/3/0.

This is a great place to demonstrate how the MX also allows you to use
load balancing and redundancy when using the MS interfaces with the
MS-MPC card. The AMS interface has a feature that allows one service
PIC to take over for another service PIC when it goes down. Also, the
AMS interface can be used to load balance packets across multiple
service PICs from the same service set. The AMS interface is detailed in
Chapter 4, but for now, let’s show you the basics.

Our example showcases a MS-MPC card in FPC slots 1, 2, and 3. Each
card will only use one of its four service PICS in this AMS bundle, with
ms-1/0/0 and ms-2/0/0 being used to load balance the traffic received.
MS-3/0/0 is the backup service PIC. Let’s configure redundancy in this
example across multiple MS-MPC cards to separate the AMS bundle
across multiple cards to avoid outages due to any physical issues on one
whole card or FPC slot:

[edit interfaces ams0]
load-balancing-options {
    member-interface mams-1/0/0;
    member-interface mams-2/0/0;
    member-interface mams-3/0/0;
    member-failure-options {
        redistribute-all-traffic {
            enable-rejoin;
        }
    }
    high-availability-options {
        many-to-one {
            preferred-backup mams-3/0/0;
        }

	 Chapter 1: Configuration	 15

    }
}
unit 1 {
    family inet;
}
unit 2 {
    family inet;
    service-domain outside;
}

NOTE	 A single ms interface can be a secondary for multiple ms interfaces. This
setup can effectively create N:1 up to 12:1 in version 14.2R5.

The advantage of using the AMS interface is to provide the least
subscriber impact in the event of a service PIC failure. The AMS bundle
also allows for a simple load balancing setup when you have enough
potential NAT traffic that one service PIC alone cannot handle.

NOTE	 One potential pitfall you should be careful about in your setup is to the
possibility of a full MS-MPC blade or FPC slot failing. Assigning the
backup MS interfaces from the same card as all of your active inter-
faces under the same AMS interface is not the best option if other
MS-MPC or MS-MIC service cards are installed in the system.

All right, after configuring the services interface the easiest part of the
configuration is done. Next, let’s dive into the services hierarchy, which
is one of the more detailed and difficult sections to explain. Why? Well,
there is quite a bit of information to cover. But truth be told the services
hierarchy is the real core of the CGNAT setup on the MX Series, so
stay with it, or even read through it a couple of times, and the rest will
be all downhill. Promise.

Services NAT

There is going to be plenty to do under the services hierarchy in this
configuration, so let’s jump in under the services / NAT hierarchy and
go from there. You are going to configure your NAT IP address pools,
your port configuration for when PAT is needed, and look at some
other more unique options you can leverage with your NAT pools.

Pools

The following is an outline of some of the options you can set as you
define your pool. Take a quick look at what’s here and familiarize
yourself with the possibilities. This book tries to explain these options
by giving you a full understanding of what you might need to set up to
make the pool work for your setup’s needs.

	 16	 Day One: CGNAT Up and Running on the MX Series

[edit services nat]
pool nat-pool-name {
    address prefix; 
    address-range low value high value;
    mapping-timeout 300; /* Min 120, Max 86400, default 300 */
    port (automatic | range low minimum-value high maximum-value | random-allocation) { 
        secured-port-block-allocation { 
             block-size 256; /* Min 64, Max 64512, default 128 */
             max-blocks-per-user 8; /* Min 1, Max 512, default 8 */
             active-block-timeout 300; /* 0(default), Min 120secs, Max 86400 */ 
    }
    address-allocation round-robin	
} 

This book’s example starts by creating a pool called nat44 that will be
used for a simple static one-to-one NAT setup where you will be
NATing IPv4 to IPv4 using inline NAT. For the NAT pool you can
specify a single specific address, a prefix, or an address range to be used
for this pool’s NAT’d IP addresses:

[edit services nat]
pool nat-pool-name {
    address prefix; 
    address-range low : high value;
    mapping-timeout 300; /* Min 120, Max 86400, default 300 */
    port (automatic | range low minimum-value high maximum-value | random-allocation) { 
        secured-port-block-allocation { 
             block-size 256; /* Min 64, Max 64512, default 128 */
             max-blocks-per-user 8; /* Min 1, Max 512, default 8 */
             active-block-timeout 300; /* 0(default), Min 120secs, Max 86400 */ 
    }
    address-allocation round-robin;	
} 

So now let’s set up an address prefix for the pool nat44, a pool that will
be used to assign traffic that is to be NAT’d with an address from the
156.100.100.0/24 range:

[edit services nat]
pool nat44 {
    address 156.100.100.0/24;
}

NOTE	 Addresses that are not allowed in to be used in the NAT pool include:
Martian, multicast, and loopback addresses.

Now, in simple static NAT setups such as this one for pool nat44, the
port configuration section is skipped since it is only needed when PAT
is utilized. At this point, though, let’s create a second pool called
natpat44 so you can get a PAT setup going. Remember, you need a
service card for this NAT type. Run the show chassis hardware com-
mand to verify you have a MS-MPC or MS-MIC card in one of the
slots:

	 Chapter 1: Configuration	 17

user@re0> show chassis hardware 
Hardware inventory:
Item             Version  Part number  Serial number     Description
Chassis                                JN109689EAFA      MX960
Routing Engine 0 REV 07   740-013063   1000743729        RE-S-2000
CB 0             REV 08   710-021523   ABBG0290          MX SCB
FPC 0            REV 13   750-038768   CACP8307          MS-MPC
  CPU                     BUILTIN      BUILTIN           MS-MPC-PMB
  PIC 0                   BUILTIN      BUILTIN           MS-MPC-PIC
  PIC 1                   BUILTIN      BUILTIN           MS-MPC-PIC
  PIC 2                   BUILTIN      BUILTIN           MS-MPC-PIC
  PIC 3                   BUILTIN      BUILTIN           MS-MPC-PIC

Okay, look at the port section under the pool here:

[edit services nat]
pool nat-pool-name {
    address prefix; 
    address-range low value high value;
    mapping-timeout 300; /* Min 120, Max 86400, default 300 */
    port {
        automatic ( sequential | random-allocation) 
        range
        secured-port-block-allocation { 
             block-size 256; /* Min 64, Max 64512, default 128 */
             max-blocks-per-user 8; /* Min 1, Max 512, default 8 */
             active-block-timeout 300; /* 0(default), Min 120secs, Max 86400 */ 
    }
} 

You can see that under the port hierarchy you have an automatic option
which really means “I will not define any specific port ranges for PAT
and I will have the MX automatically use ports 1024 thru 65535.” The
ports that are used by the automatic option for PAT translation are the
‘ephemeral’ or non-default ports (1024 – 65535), so operators will use
the automatic option when they are not concerned about which ports
the MX uses when performing PAT. Under the automatic option there
are two more options you can choose from. These are sequential and
random-allocation.

Using the sequential option means that when the MX is assigning
ports 1024 thru 65535, it starts assigning them from port 1024 and
counts up for each sequential flow. When you set the automatic option
to random-allocation it tells the MX that the starting point for a free
port search is random, and the port for each sequential session is
chosen randomly. Some service providers may apply random-alloca-
tion instead of sequential to make port prediction tougher (the ability
for someone on the public side to predict which port is assigned to a
NAT’d session).

	 18	 Day One: CGNAT Up and Running on the MX Series

As stated for our example of PAT, let’s create the pool called natpat44,
in this example setting a prefix for the IP addresses to be used on the
NAT sessions, and let’s also have the MX assign any free port from
1024 through 65535 in a sequential manner for each new session by
using the automatic setting under port along with sequential:

[edit services nat pool natpat44]
address 100.100.100.0/24;
port {
    automatic {
        sequential;
    }
}

One thing to point out while looking at the PAT section of the pools is
that when you are within the port hierarchy, and if you do not use the
automatic setting to select the port ranges, you have to choose the range
option and define the range of ports you want to be used for PAT:

[edit services nat pool natpat44]
address 100.100.100.0/24;
port {
    range low 8888 high 9999;
}

By default, the ports under the range option are assigned to each
session in order, starting from the lowest value and then counting up
sequentially for each new session. But to fight port predictability for
defined ranges, you can change this to random-allocation as shown here
(if that is your desired behavior):

port {
 range low 8888 high 9999 random-allocation;
}

Let’s change our example pool natpat44, and instead of automatically
assigning ports from 1024 through 65535 in sequential order, let’s
define a port range from 8888 through 9999, and assign these ports
randomly to each new flow as follows:

BEST PRACTICES	 When using any of the dynamic NAT technologies offered by the MX
Series, keep in mind that you need to be aware of the NAT pool size
and if you are using more of those potentially valuable public IP
addresses for your NAT pool than you truly need! When you are not
using the PBA or Deterministic NAT feature, the max pool size should
be a /24 if you are using a single service PIC for your NAT pool. More
IP addresses in the NAT pool than a /24 would not be used on the
service PIC, since it would hit a memory limit. A MS-MPC can
manage fifteen million max sessions per service PIC, and the MS-MIC

	 Chapter 1: Configuration	 19

can manage seven million sessions. That means the total number of
sessions used in a dynamic NAT setup can fit nicely into a /24. (The
math is: 254 x 65535-1024k = 16 million ports.)

Let’s take a step back and take a look at a few operational show com-
mands. First, we’ll let’s go back and set the pool to assign the ports to
automatic with the sequential order:

[edit services nat pool natpat44]
address 100.100.100.0/24;
port {
    automatic {
        sequential;
    }
}

Using one of our operational CLI commands, let’s create an example
showing the NAT mappings when using the natpat44 NAT pool with
the ports set to be automatically assigned in a sequential order. In the
example, you’ll notice there are four sessions originating from the
14.0.0.0/16 network being NAT’d with PAT against each of the four
different private subscriber source IPs. Using the example pool above,
the MX will assign 100.100.100.1:1024 first, and then
100.100.100.2:1024, and then 100.100.100.3:1024, and so on, until it
gets to 100.100.100.255:1024 and then it will wrap around and assign
100.100.100.1:1025. This is how the sequential feature for the port
assignment works:

labroot@MX960# run show services sessions
Service Set: nat44, Session: 100735100, ALG: none, Flags: 0x0600, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.8:22391  ->     197.100.1.8:4000   Forward  I           26772
UDP         197.100.1.8:4000   ->   100.100.100.1:1024   Forward  O               0

Service Set: nat44, Session: 134243880, ALG: none, Flags: 0x0600, IP Action: no, Offload: no,
Asymmetric: no
UDP           14.0.110.45:40021 ->     197.100.1.8:4000   Forward  I           26139
UDP         197.100.1.8:4000    ->   100.100.100.2:1024   Forward  O               0

Service Set: nat44, Session: 100737200, ALG: none, Flags: 0x0600, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.9:41777  ->     197.100.1.8:4000   Forward  I           27559
UDP         197.100.1.8:4000   ->   100.100.100.3:1024   Forward  O               0

Service Set: nat44, Session: 100736499, ALG: none, Flags: 0x0600, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.20.4:56456 ->     197.100.1.8:4000   Forward  I           27630
UDP         197.100.1.8:4000   ->   100.100.100.4:1024   Forward  O               0

To understand the output you have just seen with the show services
sessions command you should understand that 14.0.0.0/16 is the
internal private network, 100.100.100.0/24 is our NAT pool used to

	 20	 Day One: CGNAT Up and Running on the MX Series

NAT the traffic, and 197.100.1.8 is a target on the public side towards
which everyone is sending UDP traffic. The outputs displayed by the
different show commands will be detailed in later, in the troubleshoot-
ing section of this book, so for now let’s use them to show you how
things work.

To help visualize this better, Figure 1.1 shows a simple example
showing the 14.0.0.0/16 network sitting on one side of the MX and
the public server 197.100.1.8 sitting on the other side. You can see
when the 14.0.0.0/16 network sends traffic towards the 197.100.1.8
target through the MX that the 14.0.0.0/16 source addresses are
NAT’d to an address from the 100.100.100.0/24 NAT pool range and
the source port is also changed.

Figure 1.1	 The 14.0.0.0/16 Network and the Public Server 197.100.1.8

When 197.100.1.8 needs to send traffic back it will send it to the
100.100.100.0/24 NAT’d range as the destination, and when this hits
the MX it will get de-NAT’d back to the original private IP address
and port as shown in Figure 1.2.

Figure 1.2	 When 197.100.1.8 Needs to Send Traffic Back

	 Chapter 1: Configuration	 21

NOTE	 The order in which the IP addresses are assigned will be discussed in just
a few more paragraphs.

Next let’s discuss an example showing the NAT/PAT mappings when
using a NAT pool set with the random-allocation option under the port
setting. You will see that the MX assigns 100.100.100.1 with one
random free port to the first session, and then 100.100.100.2 with one
random free port to the next session, and so on, until it gets to
100.100.100.255 and then it will wrap around and assign
100.100.100.1 with another free random port:

[edit services nat pool natpat44]
address 100.100.100.0/24;
port {
 automatic {
 random-allocation;
 }
}

labroot@MX960# run show services sessions

Service Set: nat44, Session: 67108867, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.14:10098 ->     197.100.1.8:4000   Forward  I           18629
UDP         197.100.1.8:4000   ->  100.100.100.1:20857   Forward  O               0

Service Set: nat44, Session: 67108893, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.10.3:60134 ->     197.100.1.8:4000   Forward  I           19729
UDP         197.100.1.8:4000   ->  100.100.100.2:25932   Forward  O               0

Service Set: nat44, Session: 67108901, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.33.25:5532 ->     197.100.1.8:4000   Forward  I           18457
UDP         197.100.1.8:4000   ->  100.100.100.3:37017   Forward  O               0

Service Set: nat44, Session: 67108911, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP           14.0.1.12:56565  ->     197.100.1.8:4000   Forward  I           17219
UDP         197.100.1.8:4000   ->  100.100.100.4:16083   Forward  O               0

Get used to running the show services sessions command when setting
up and testing your NAT setup on the MX, since it is the one command
that will give you a ton of insight into what is happening on the MX
with regard to your NAT settings. It is a great place to start analyzing
the solution, or even troubleshooting. Also, note that the troubleshoot-
ing section of this book goes over quite a few show commands that will
help you manage the MX Series NAT setup.

	 22	 Day One: CGNAT Up and Running on the MX Series

Address Allocation

So, that’s how the ports are assigned when PAT is used, but now let’s
swing back and look at how the IP addresses are assigned. The ad-
dress-allocation feature can be used for your pool to control the order
in which IP addresses from the pool get assigned to translated sessions.
Let’s set a few address ranges under our NAT pool to show an example
that uses more than just a single address prefix that was shown in the
previous example NAT pools created for the pools called nat44 and
natpat44. This new pool will be called CGN-1, it uses three address-
ranges, and it will use the port automatic random-allocation feature to
randomly allocate ports between 1024º and 65535 to new sessions.
Let’s also add our new address-allocation option. Look for lots of
stuff happening under this pool:

[edit services nat]
pool CGN-1 {
    address-range low 10.12.1.100 high 10.12.1.200;
    address-range low 10.12.1.206 high 10.12.1.210;
    address-range low 10.12.1.212 high 10.12.1.216;
    port {
    automatic {
        random-allocation;
        }
    } 
    address-allocation round-robin	
} 

When the address-allocation feature is set to round-robin, the MX
starts assigning the first, or the lowest, address in the NAT pool to the
first session it processes, and based on the port/automatic/random-allo-
cation setting it randomly assigns a source port from the pool.

In this example using the NAT pool CGN-1, when a session needs to
be NAT’d the MX starts by assigning the address NAT IP 10.12.1.100
with one of the free ports for that under 10.121.1.100 being selected
randomly. The next session is then assigned the address 10.12.1.101,
with one of the free ports for that IP address selected randomly. This
logic continues through 10.12.1.216 for each new session received by
the MX that it needs to NAT. At this point you should understand that
even if the first session has been released from the system, and the NAT
IP address 10.12.1.100 and the port used by that first session are now
available to be used as a NAT’d resource again, the MX will not even
try to assign it to a new session until the MX has wrapped through all
of the IP addresses of the NAT pool and assigned each IP address with
one free port to a session. So, only when the MX has assigned all the
IPs to a single NAT session once, would the MX then wrap back
around to use 10.12.1.100 and another free port for that IP.

	 Chapter 1: Configuration	 23

Take a look at the output below from the show services sessions
extensive command; you can see that each sequential session has the
next IP address from the NAT pool assigned to it with a random port
between 1024 and 65535:

user@re0# run show services sessions extensive
ms-1/0/0
Service Set: ss1, Session: 167774734, ALG: none, Flags: 0x2000, IP Action: no, Offload: no,
Asymmetric: no
NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 31.0.0.2:4012 -> 10.12.1.100:1830
UDP 31.0.0.2:4012 -> 33.0.0.2:4000 Forward I 12669
 Byte count: 15445632
 Flow role: Initiator, Timeout: 32
UDP 33.0.0.2:4000 -> 10.12.1.100:1830 Forward O 110
 Byte count: 0
 Flow role: Responder, Timeout: 32
Service Set: ss1, Session: 167772931, ALG: none, Flags: 0x2000, IP Action: no, Offload: no,
Asymmetric: no

NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 31.0.0.2:50222 -> 10.12.1.101:29571
UDP 31.0.0.2:50222 -> 33.0.0.2:4000 Forward I 820553
 Byte count: 15445632
 Flow role: Initiator, Timeout: 32
UDP 33.0.0.2:4000 -> 10.12.1.101:29571 Forward O 0
 Byte count: 0
 Flow role: Responder, Timeout: 32
Service Set: ss1, Session: 167773848, ALG: none, Flags: 0x2000, IP Action: no, Offload: no,
Asymmetric: no

NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 31.0.0.2:33866 -> 10.12.1.102:15971
UDP 31.0.0.2:33866 -> 33.0.0.2:4000 Forward I 12
 Byte count: 15445760
 Flow role: Initiator, Timeout: 32
UDP 33.0.0.2:4000 -> 10.12.1.102:15971 Forward O 892
 Byte count: 0
 Flow role: Responder, Timeout: 32
Service Set: ss1, Session: 167774799, ALG: none, Flags: 0x2000, IP Action: no, Offload: no,
Asymmetric: no

NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 31.0.0.2:5008 -> 10.12.1.103:15971
UDP 31.0.0.2:5008 -> 33.0.0.2:4000 Forward I 542111
 Byte count: 15445760
 Flow role: Initiator, Timeout: 32
UDP 33.0.0.2:4000 -> 10.12.1.103:15971 Forward O 223
 Byte count: 0
 Flow role: Responder, Timeout: 32

	 24	 Day One: CGNAT Up and Running on the MX Series

Service Set: ss1, Session: 167772358, ALG: none, Flags: 0x2000, IP Action: no, Offload: no,
Asymmetric: no

NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 31.0.0.2:22224 -> 10.12.1.104:32538
UDP 31.0.0.2:22224 -> 33.0.0.2:4000 Forward I 420671
 Byte count: 15445760
 Flow role: Initiator, Timeout: 32
UDP 33.0.0.2:4000 -> 10.12.1.104:32538 Forward O 2
 Byte count: 0
 Flow role: Responder, Timeout: 32

You should be aware that without setting the address-allocation
round-robin option, with some of the older service cards used in the
MX and M series product lines, the default behavior was to assign the
first IP addresses in the NAT pool and keep using that IP for all NAT
mappings until that IP had no more unassigned ports to use. So, in our
example the 10.12.1.100 address would see lots of use if address-allo-
cation round-robin was not set in our example pool above when using
these older service cards. Potentially some subscriber’s bad behavior
would cause issues that could block an IP address from using a certain
server for a period of time, and using the same IP address frequently
could then cause other subscribers pain. (Possible bad behavior could
range from someone cheating on a video gaming server to someone
trying to hack a given node on the Internet.) With the MS-MPC and
MS-MIC cards, you only assign IP addresses from the NAT pool using
round-robin so these concerns are not needed any longer.

One other setting under the NAT pool that really needs clarification is
the mapping-timeout setting. This setting can be enabled under the pool
to determine how long the address pooling paired (APP) and Endpoint
Independent Mapping (EIM) remain active (but this setting will not be
important or really make much sense until a later portion of this
chapter). These features are discussed later on in this book, so park this
option and revisit it later. For now, let’s just remember that the map-
ping-timeout can be set here in seconds:

[edit services nat]
pool nat44 {
    address 156.100.100.0/24;
}
mapping-timeout 300

A Few More Features

These are the basic settings needed to get a NAT pool working. There
are a few more items to talk about that you may, or may not, need but
you should at least be armed with the knowledge of what such features
do. So next up are the preserve parity and preserve range options you

	 Chapter 1: Configuration	 25

can enable under the port section. These options allow the operator to
preserve the range or parity of the session’s source port when the MX
is using PAT to allocate a source port for an outbound connection.
Let’s examine:

[edit services nat]
pool nat-pool-name {
    address prefix; 
    address-range low value high value;
    mapping-timeout 300; /* Min 120, Max 86400, default 300 */
    port (automatic | range low minimum-value high maximum-value | preserve-
parity | preserve-range) ;
		 }
   } 

Now, let’s create an example. Say you need to configure the preserve-
parity option because you are implementing some multiple media solu-
tions that use Real-Time Transport Protocol (RTP) or because you
expect your private subscribers to use RTP in some manner. The RTP
protocol, which handles data transport, uses even ports, and its peer
protocol, Real-Time Control Protocol (RTCP), which handles the
control packets, uses odd ports. RTP is used with different streaming
media types such as IP telephony, television services, and video telecon-
ferencing. When preserve-parity is enabled the MX will follow the
logic of finding an odd or an even port to assign to the NAT’d session
so no unexpected issues occur with solutions that use protocols like
RTP and RTCP. But let’s say the MX does not have any available odd
source ports in the NAT pool for the odd source range you need to
NAT/PAT on, since all these ports are currently in use. What the MX
will do is drop the packets/traffic you are trying to NAT, even if you
still have available even ports in the NAT pool. This is how the MX
behaves with the preserve-parity feature enabled for the NAT Pool in
question.

The preserve-range feature is used when an operator needs to make
sure their NAT’d sessions are mapped to either the range of defined/
privileged ports 0-1023 or the ephemeral non-default ports (1024 –
65535), based on the source port received from the client side. If
preserve-range is used and the MX does not have any available source
ports for the source range you need, it will drop the traffic. Therefore,
if preserve-range is enabled and the source port you received from the
client side is 1011, but ports 0 through 1023 for all NAT IP address in
the NAT pool are currently assigned to active NAT translated sessions,
the MX will drop the new packet/traffic even if there are open ports in
the 1024-66535 range that can still be used by the NAT Pool.

When using preserve-range you can expect source ports to be used by
both the 0-1023 and 1024 – 65535 ranges. To deal with this situation

	 26	 Day One: CGNAT Up and Running on the MX Series

you do need to make sure your NAT pool configuration is correct or
else the result will be sessions getting dropped unexpectedly. So you
need to either have a defined range that overlaps both ranges, or else
you need to use the automatic option. In this case the automatic option
allows 0-65535 to be assigned. If you remember a few pages back, the
automatic option normally uses 1024-65535, but when the preserve-
range option is present the functionality changes just a bit.

Either of these two setups would work when the preserve-range is set
since they both offer ports from each port range: the defined/privileged
range and the ephemeral/non-default range:

pool natpat44 {
    address 100.100.100.0/24;
    port {
        range low 500 high 3500;
        preserve-parity;
        preserve-range;
    }
}

pool natpat44 {
    address 100.100.100.0/24;
    port {
        automatic;
        preserve-parity;
        preserve-range;
    }
}

Note that you cannot define two ranges under your port setting, one
for the defined/privileged ports 0-1023 range and one for the ephem-
eral/non-default ports (1024 – 65535). You can only define an overlap-
ping range if you need to define which ports can be used for transla-
tion, or else, as stated previously, you can just use the automatic option
if all ports should be made available.

Let’s use the show services session command to see what the MX is
doing. In this example the MX is using NAPT44 with a pool and port
range setup to be NAT’d like so (the pool is a /30 so you can see the IPs
wrap around in the example output):

pool natpat44 {
    address 100.100.100.0/30;
    port {
        range low 5000 high 8000;
    }

In the following output you can see the MX has mapped a NAT’d IP
and port to each session from the created pool. Starting from port

	 Chapter 1: Configuration	 27

5000, it sequentially uses the next available IP with port 5000 for the
next session. It does not matter what the subscriber source port is:

user@re0# run show services sessions

Service Set: nat44, Session: 167772172, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP           14.0.0.10:56565  ->     197.100.1.8:4000   Forward  I           10764
UDP         197.100.1.8:4000   ->   100.100.100.2:5001   Forward  O               0

Service Set: nat44, Session: 134217760, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.4:56565  ->     197.100.1.8:4000   Forward  I           11580
UDP         197.100.1.8:4000   ->   100.100.100.1:5001   Forward  O               0

Service Set: nat44, Session: 134217754, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.8:56565  ->     197.100.1.8:4000   Forward  I           11060
UDP         197.100.1.8:4000   ->   100.100.100.2:5000   Forward  O               0

Service Set: nat44, Session: 134217733, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.5:56565  ->     197.100.1.8:4000   Forward  I           12010
UDP         197.100.1.8:4000   ->   100.100.100.1:5000   Forward  O               0

Once the preserver-parity and preserve-range options are set, the
behavior is a bit different. You can see the MX is mapping odd ports to
odd ports and even ports to even ports. You should also know that with
this specific NAT Pool configuration the MX will drop any traffic from
ports 0-1023 that needs to be NAT’d through this pool since you have
not set any source ports from this range to NAT/PAT, so you have no
available ports to map now that you are enforcing preserve-range:

pool natpat44 {
        address 100.100.100.0/30;
        port {
            range low 5000 high 8000;
            preserve-parity;
            preserve-range;
        }
    
user@re0# run show services sessions
ms-5/0/0
Service Set: nat44, Session: 201326601, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.7:56565  ->     197.100.1.8:4000   Forward  I           14680
UDP         197.100.1.8:4000   ->   100.100.100.2:5021   Forward  O               0

Service Set: nat44, Session: 100663333, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.3:56565  ->     197.100.1.8:4000   Forward  I           14452
UDP         197.100.1.8:4000   ->   100.100.100.1:5021   Forward  O               0
Service Set: nat44, Session: 201326596, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,

	 28	 Day One: CGNAT Up and Running on the MX Series

Asymmetric: no
UDP            14.0.0.8:50000  ->     197.100.1.8:4000   Forward  I           25782
UDP         197.100.1.8:4000   ->   100.100.100.1:5022   Forward  O               0

Service Set: nat44, Session: 134217765, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
UDP            14.0.0.9:50000  ->     197.100.1.8:4000   Forward  I           27760
UDP         197.100.1.8:4000   ->   100.100.100.2:5022   Forward  O               0    

PBA

You are almost done with the pools configuration hierarchy. As a final
task, let’s take a look at the port block allocation (PBA) feature. This
feature is configured under the secured-port-block-allocation hierar-
chy of your NAT pool. Under this section of the nat pool hierarchy you
can have the MX set blocks of ports that will be assigned to a subscrib-
er’s NAT’d IP address. That is the crux of the PBA feature. Assigning a
port block to a subscriber IP address is beneficial because it cuts back
on the number of syslog messages the MX needs to generate when
mapping or freeing a private source address to a NAT’d address.
Nothing has been said about syslog messages and their use to histori-
cally track which private subscriber was using what NAT’d IP and port
at a given time, but to some operators this is a key part of their busi-
ness practices.

NOTE	 Logging benefits may mean more to the reader after Chapter 4’s syslog
section. Then you will really see how PBA can help.

Aside from the benefits of logging, some operators also like PBA with
their PAT setup because it limits the number of ports they assign to
each private IP address. There’s a simple setting called max-sessions-
per-subscriber that will be discussed in a bit that limits the number of
sessions each subscriber can use. So do not enable PBA if your only
need is to limit how many sessions a subscriber can use, since we have
a more efficient option with the setting max-sessions-per-subscriber.

Looking at the PBA settings:

[edit services nat]
pool nat-pool-name {
    address prefix; 
    address-range low value high value;
    mapping-timeout 300; /* Min 120, Max 86400, default 300 */ 
    port (automatic | range low minimum-value high maximum-value | random-allocation) { 
        secured-port-block-allocation { 
             block-size 256; /* Min 64, Max 64512, default 128 */
             max-blocks-per-user 8; /* Min 1, Max 512, default 8 */
             active-block-timeout 300; /* 0(default), Min 120secs, Max 86400 */ 
    }
} 

	 Chapter 1: Configuration	 29

�� block-size determines the number of ports per block that will be
assigned to a subscriber’s NAT’d address.

�� max-blocks-per-user dictates the total potential blocks a given
subscriber can be assigned.

�� active-block-timeout is useful when max-blocks-per-user is set
to a value of 2 or higher or if max-blocks-per-user is not set all.
Note that active-block-timeout determines how long the current
block will be used to allocate sessions. This is yet another setting
that can be used to fight port prediction. Since only one active
port block at a time will be used by a given subscriber’s private IP
address, service providers may want a way to kick over to a new
port-block so the same NAT’d source ports are not constantly
being used.

Let’s create a new NAT pool that utilizes the PBA feature for yet
another example of how all this works:

[edit services nat pool pba_pool]
address-range low 217.200.200.80 high 217.200.200.94;
port {
    automatic;
    secured-port-block-allocation block-size 100 max-blocks-per-address 4;
}
address-allocation;

Port blocks are assigned to NAT’d sessions in order, starting from the
lowest value and counting up. Within the MX Series, the process of
searching for an available port is to first scan the currently active
port-block assigned via the NAT pool to the private IP address and
assign free ports in sequential order until the end of the port-block. In
the event that a free port is not found in the current port-block, and the
max-blocks-per-user value has not been exceeded, then the next
available port-block is made active, and the search continues. So using
the setting secured-port-block-allocation block-size with a value of
100, the first subscriber to send traffic through the service PIC to get
NAT’d will get the first possible block assigned to it.

Using our NAT pool example above called pba_pool, that block would
contain ports 1024 through 1123. The next subscriber that needs a
new block to be assigned to NAT their traffic would get 1124 through
1223, then 1224 through 1323, and 1324 through 1423, and so on.
These blocks could all belong to the same private address for the same
subscriber if that subscriber needed the resources before anyone else
sent traffic through the MX to get NAT’d. Remember, based on the
configuration example using the NAT pool called pba_pool each
subscriber’s private IP address can have four blocks assigned to it
before the MX rejects any new packets or traffic for the private IP
address in question.

	 30	 Day One: CGNAT Up and Running on the MX Series

NOTE	 The port / automatic / random-allocation setting has no effect when
PBA is configured. Here is an example so you can remember where the
automatic random-allocation setting is added:

[edit services nat pool natpat44 port]
root@JTAC_setup-re0# show 
automatic {
    random-allocation;
}

One thing about the PBA feature: be very, very, very careful of how
large you configure your port blocks. Make sure you have compared
the peak number of unique private IP subscribers you expect to send
traffic to be NAT’d through the MX at peak hours against the config-
ured port block size compared to the number of IP addresses available
in the pool. For example, if it is expected that during peak hours
10,000 subscribers will access the public network concurrently
through the MX, and that these 10,000 subscribers will have their
traffic NAT’d by the same NAT pool. Now your NAT pool has 10 IP
addresses using a port range of 1024-65535. With these facts at hand
do not set your secured-port-block-allocation block-size to be 100 or
you will run out of port blocks and see lots of sessions getting dropped
at the service PIC.

The finding would be: port 1024 through 65535 means there is 64511
ports available per NAT’d IP and 10 NAT’d IPs in the NAT pool means
you have 645,110 unique ports total to use for PAT. So 10,000 sub-
scribers with a port block size of 100 would require, at a minimum,
1,000,000 ports available for the NAT pool. If you had to go live with
this limitation of having just 10 IP Addresses available for use in your
NAT pool against potentially having 10,000 private subscribers
needing to be NAT’d concurrently during peak hours, set the secured-
port-block-allocation block-size to be at most 64 and set max-blocks-
per-address to 1. In addition, think about making sure your inactive-
session-timeouts and mapping-timeout are low. You will most likely
need to free pool resources very quickly here and not leave any map-
pings around longer than absolutely required. If you need more than
64 active NAT sessions for your subscribers or you need mappings to
hang around longer for features like address-pooling paired and
endpoint independent mappings requirements, you will plain old need
more IP addresses available to be NAT’d.

It should be noted that the show services nat pool detail command is
amazingly useful to discover if you are having port issues with your
PBA setup. If the port block allocation errors counters continue to
climb, you have an issue with the number of active private subscribers
requiring to be NAT’d versus the number of port-blocks available in
the NAT pool. The mapping timeouts, inactive-session-timeouts, the

	 Chapter 1: Configuration	 31

port block size and max-blocks-per-address settings all need to be
looked at:

user@re0> show services nat pool detail
Interface: ms-5/0/0, Service set: nat44
 NAT pool: pba_pool, Translation type: NAPT-44
 Address range: 217.200.200.80-217.200.200.94
 Available addresses: 15
 Configured port range: 1024-65535
 Port range: 1024-65535, Ports in use: 9675, Out of port errors: 0
 Parity port errors: 0, Preserve Range errors: 0
 Max ports used: 9675
 AP-P port allocation errors: 0, AP-P port limit allocation errors: 0
 Memory allocation errors: 0
 Max number of port blocks used: 9675, Current number of port blocks in use: 9675, Port
block allocation errors: 4917
 Port blocks limit exceeded errors: 0
 Unique pool users: 9675
 EIF Inbound session count: 0
 EIF Inbound session Limit exceeded drops: 0

With the PBA feature you should also be aware that you are assigning
what is most likely going to be a lower ceiling in regard to the number
of ports a subscriber can use. Without NAT, a client CPE can have a
total of 65,535 TCP ports and another 65,535 UDP ports. With Static
NAT, or even Dynamic NAT with PAT, but without the PBA feature, a
NAT’d client CPE can use 65,535 ports for both UDP and TCP with
most configurations. But once you enable PBA you are limiting the
overall number of ports a subscriber can use based on the block-size
and max-blocks-per-user settings. So, be aware of your customers’
requirements before you enable this feature since you may not want to
accidently starve your end users of resources.

NOTE	 When an operator has to make a change to the NAT pools PBA
configuration, or tries to remove the PBA configuration or even add
PBA settings to a NAT pool, the sessions on the service PIC will be
removed and re-added, which can cause an issue to any long lived
session traffic like a SIP call or someone accessing HTTP servers like
banking applications. Make these changes during a maintenance
window whenever possible.

Now a few final notes on the NAT pool configuration before moving
on to the NAT rules configuration. There are a few best practices you
should be aware of to make sure you are not wasting valuable routable
IPv4 addresses in your NAT pool, and that you are not setting up the
service-PIC to handle more traffic than it can correctly manage.

	 32	 Day One: CGNAT Up and Running on the MX Series

BEST PRACTICES	 Think about pool size and what you really need to make it work.
When setting a NAT pool up for a dynamic NAT type like napt-44 that
uses port address translation, the number of addresses you can set
under the pool is limited to a maximum of 65,536 addresses, for a
maximum potential of 4,259,775,000 sessions based on your configu-
ration. (The math would be 65,000 addresses multiplied by 65,535
ports.) A dynamic NAT pool with no address port translation can
support up to 16,777,216 addresses. There is no limit on the pool size
for static source NAT outside of the number of possible IPv4 or IPv6
addresses. But the question you should ask when setting up the pools
should not be how large can the pool be but are you as the operator
wasting IP addresses? For example, though a napt-44 pool can have
65,536 address the MX service PIC cannot come anywhere near
handling the number of active NAT’d sessions this would allow. Try to
find the balance of having enough NAT’d IPs in your pool to handle
your peak traffic needs, potentially with some extra to spare for
unexpected growth. Also, monitor the solution checking out the pools
and max sessions from time to time to see if you are outgrowing the
current setup. As an operator’s business grows, additional IP addresses
can be added to a NAT pool as needed until the traffic volume through
the service PIC hits the peak that the CPU can process. At the same if
you set your pools up to be larger than you think you may need them
to be at first, so you can make sure the solution works as required, you
can always remove IP addresses from the pools as needed. By the end
of this book you will be armed with the knowledge of how to look at
the solution so you can make the call if your pool is working for your
setup or not. Cool!

	 Do note that the MX Series system will warn you when you try to
make the pools too big for the configuration being applied:

[edit services nat rule rule_napt-44]
  ‘term t1’
    Number of addresses with port translation are limited to at most 65536

[edit services nat rule rule_dyn_nat44]
  ‘term t1’
    Cannot configure more than 16777216 addresses in pool dyn_nat44 with translation type
dynamic-nat44
error: configuration check-out failed

BEST PRACTICES	 Always remember the MS-MPC card can support up to 30 million
sessions per service PIC and the MS-MIC card can support 15 million.
Do not waste IP addresses in your NAT pool by making the NAT Pool
not only bigger than you what need, but making it bigger than the
service PIC could ever use 100%.

	 Chapter 1: Configuration	 33

NAT Rules

This next section of Chapter 1 jumps into configuring the NAT rules,
another major building block for the MX NAT setup. NAT rules will
tie into the NAT pools just configured, and, as you will see, NAT rules
can determine what traffic actually gets translated, as well as what
NAT translation types the MX uses. Consider the following:

[edit services nat]
rule rule-name {
    match-direction (input | output 
    term term-name {
        from {
            applications [application-names];
            application-sets [set-names];
            destination-address (address | prefix);
	   destination-address-range low value high value 
	   destination-prefix-list prefix-list-name 
            source-address (address | prefix);
	   source-address-range low value high value 
	   source-prefix-list prefix-list-name 
        }
        then {
		 
	   no-translation	 
            translated {
                destination-pool nat-pool-name;
                source-pool nat-pool-name;
                translation-type {
                    napt-44; }
            }
        }
    }
} 

Let’s create our first example NAT rule we will call rule1. NAT rules
operate under the same conditions as the MX firewall-filter matching
condition match-direction, which needs to match the direction the
traffic is flowing across the service PIC. Typically, when using some-
thing called an interface-style service-sets, most NAT setups are
configured to NAT sessions from traffic received on the client-side
facing interface, so traffic ingressing the MX. In this case service-set
you would set match-direction input since that is the direction from
which the subscriber’s traffic is received. If you are setting the interface-
style service-set on the interface facing the public network, where the
traffic egresses the MX, you would set match-direction output. When
using something called a next-hop style-service set you always set
match-direction input.

Here is where you set the match-direction:

	 34	 Day One: CGNAT Up and Running on the MX Series

[edit services nat]
rule rule1 {
 match-direction input

NOTE	 Service sets are something you will learn about in a few more pages, so
don’t’ worry if you are not sure what they are yet.

Next you set up a term under your NAT rule. In this example you will
simply call the term term1. Under this term you can optionally set a
from statement that can make decisions on whether the traffic being
received will get NAT’d by this term or not. The logic you can set is
based on source-addresses, destination-addresses, destination-port,
and applications. Applications are something this book details in
Chapter 3, but in the context of how they are used under the term for
matching it means you can use the applications setting to match on
protocol, source port, and destination port. For our example term1
let’s set some IP prefixes using the stanza source-address and a range of
IP addresses set using the stanza source-address-range. The service PIC
will translate traffic from private CPE nodes that arrive from these
source networks:

[edit services nat rule rule1 term term1]
from {
    source-address {
        10.0.0.0/24;
        11.0.0.0/24;
    }
    source-address-range {
        low 19.0.0.1 high 22.0.0.204;
    }
} 

The translation that happens will be based off of this next setting,
which is the then statement. It is used if the criteria in the from state-
ment is met, meaning traffic from CPEs that are at the defined net-
works.

NOTE	 The from statement is optional for most dynamic translation types like
napt-44 and dynamic-nat44 but is required for static methods like
basic-nat44 and dnat-44.

If the from statement is not set, everything is matched and will use the
then statement’s translation logic. If you have multiple terms under
your NAT rule you will want to set then statements to determine which
traffic needs to use the first term for translation, what needs to the
second term and so on.

As for this term, let’s attach a NAT pool to it so it can actually assign
NAT resources and translate traffic and let’s use our NAT pool CGN1
created earlier. After the NAT pool is attached to the term you can then

	 Chapter 1: Configuration	 35

define the NAT translation type you want to use, in this case, napt-44.
Remember napt-44 is NAT with PAT translating IPv4 private address-
es to IPv4 public addresses:

edit services nat rule rule1 term term1]
then {
    translated {
        source-pool CGN-1;
        translation-type {
            napt-44;
        }
    }
}

Let’s stop with the configuration for a moment and talk about the
translation-type options. It is with this portion of the then section of
the NAT rules that things can get tricky as there are quite a number of
translation-type options to choose from. Once you understand how
each translation-type functions, it’s much simpler to set up the then
section of the NAT rules. Let’s look at some of the translation types:

�� basic-nat-pt: Nat-pt is static source address (IPv6 to IPv4) and
prefix removal for destination address (IPv6 to IPv4) translation.

�� basic-nat44: Static source address (IPv4 to IPv4) translation.

�� basic-nat66: Static source address (IPv6 to IPv6) translation. The
same as basic-nat44 but for the IPv6 address family.

�� deterministic-napt44: Deterministic source napt for IPv4.

�� dnat-44: Static Destination address (IPv4 to IPv4) translation.

�� dynamic-nat44: Dynamic source address only (IPv4 to IPv4)
translation.

�� napt-44: Source address (IPv4 to IPv4) and port translation.

�� napt-66: Source address (IPv6 to IPv6) and port translation [same
as napt-44 but for IPv6 address family].

�� stateful-nat64: Dynamic source address (IPv6 to IPv4) and
prefix removal for destination address (IPv6 to IPv4) translation.

�� twice-basic-nat-44: Source static and destination static transla-
tion for IPv4 address family.

�� twice-dynamic-nat-44: Source dynamic and destination static
translation for IPv4 address family.

�� twice-napt-44: Source napt and destination static translation for
IPv4 address family.

	 36	 Day One: CGNAT Up and Running on the MX Series

That is an exhaustive list! Let’s go a bit deeper and look under the
covers. First thing when setting up a NAT rule is to be aware that the
settings in the NAT pool you are using must match the NAT transla-
tion-type you want to use. Thought must be put into the [services nat
rule] and [service nat pool] sections of the configuration hierarchy or
the two pieces may not fit together.

Take a look at this example of a commit gone wrong and you’ll get the
point:

root@JTAC_setup-re0# commit
[edit services nat rule nat44]
 ‘term other’
 With translation-type basic_nat_44, pool must contain equal or more addresses than the
from clause
error: configuration check-out failed

View this [services nat] configuration that has a NAT pool and a
NAT rule to see why that example commit fails:

nat {
        pool nat44 {
            address-range low 186.0.0.128 high 186.0.0.129;
            port {
                automatic;
            }
        }
        rule nat44 {
            match-direction input;
            term t1 {
                from {
                    source-address {
                        10.100.30.0/24;
                    }
                }
                then {
                    translated {
                        source-pool nat44;
                        translation-type {
                            basic-nat44;
                        }
                    }
                }
            }
        } 

This is a good time to focus in on some of these different translation
types as you need to understand which type you will need for your
particular use case and you need to see how each one may change the
needed configuration that you set on the MX for its use. Let’s start with
the translation types of basic-nat44 and basic-nat66.

	 Chapter 1: Configuration	 37

Basic-nat44 and basic-nat66 are really just old-fashioned NAT, or what
NAT was in the late 1990s to quite a few of us, typically used in the
IPv4 and IPv6 world to hide the host machine’s actual IP address from
the public network. The relationship is a static NAT one-to-one setup,
meaning one public NAT’d IP address will be used for one private IP
address. Basic-nat44 is used only with IPv4 translation and basic-nat66
is used only for IPv6 translation. It should be stated here that these
translation types can be used as inline NAT types. This means they do
not require a service card for the NAT translation. Just set up the si
logical interface and the MPC line card does the work. Remember it has
to be a MPC line card to perform the inline NAT functionality.

NOTE	 Users looking to set up inline NAT ask this type of question often: “But
what if I have a private subnet of /14 but only have a /28 available for
the public pool? What do I do?” The honest answer is you need to move
to using a service card in your MX and then move to a dynamic NAT
translation-type since inline NAT supports just one-to-one translation
mappings.

An example of a NAT rule and NAT pool setup for basic-nat44 trans-
lating a /14 network would be as follows:

[edit services nat]
pool nat44_basic {
    address 156.100.0.0/14;
}
rule rule_basic_NAT {
    match-direction input;
    term t1 {
        from {
            source-address {
                31.0.0.0/14;
            }
        }
        then {
            translated {
                source-pool nat44_basic;
                translation-type {
                    basic-nat44;
                }
            }
        }
    }
}

A good thing to be aware of is that basic-nat44 and basic-nat66 do not
translate the source port. Only the IP address is NAT’d and, as stated
many times now, it is a static one-to-one mapping. So, let’s say you have
a CPE on the private network at 31.0.0.5. Using our preceding example
pool, this CPE will always have 156.0.05 assigned to it as its NAT’d

	 38	 Day One: CGNAT Up and Running on the MX Series

address. When using inline NAT the translation is done in the PFE so
there is no session table to see these translations being done on each
session. But you can set up basic-NAT on the service card that will
allow you to use the show services sessions command. The next output
would be seen when basic-nat44 was set up and used with the service
cards (still using the NAT rule and pool example from before). You can
see that traffic from 31.0.0.5 is always translated to 150.0.0.5, but the
port is not translated since this is a static NAT translation type:

user@re0# run show services sessions extensive
ms-1/0/0
Service Set: nat44, Session: 1140850916, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - BASIC NAT44
    NAT source             31.0.0.5         ->       150.0.0.5
UDP            31.0.0.5:5003   ->     197.100.1.3:6532   Forward  I               4
  Byte count: 512
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.3:6532   ->       150.0.0.5:5003   Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1040188013, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - BASIC NAT44
    NAT source             31.0.0.5         ->       150.0.0.5
UDP            31.0.0.5:5000   ->     197.100.1.3:6532   Forward  I               4
  Byte count: 512                       
  Flow role: Initiator, Timeout: 23
UDP         197.100.1.3:6532   ->       150.0.0.5:5000   Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 23

Service Set: nat44, Session: 1140851046, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - BASIC NAT44
    NAT source             31.0.0.3         ->       150.0.0.3
UDP            31.0.0.3:5000   ->     197.100.1.3:6532   Forward  I               8
  Byte count: 1024
  Flow role: Initiator, Timeout: 26
UDP         197.100.1.3:6532   ->       150.0.0.3:5000   Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 26

After spending so much time looking at the basic-nat44 translation
type, it’s the perfect time to look at dynamic-nat44 next. How does the
translation type dynamic-nat44 differ from basic-nat44? Dynmaic-
nat44 is a one-to-one NAT translation type but it employs the use of
the service card to dynamically allocate IP addresses from the NAT

	 Chapter 1: Configuration	 39

pool. The MX does not have to enforce the fact that your NAT pool
may be smaller than the potential range or ranges of private IP address-
es that you set in the NAT rule that calls the NAT pool. Using our
previous example for basic-nat44, you can change the nat pool from
156.0.0.0/14 to a /30. The following configuration works when using
dynamic-nat44 since it is a dynamic type:

[edit services]
nat {
    pool nat44_basic {
        address 156.0.0.0/30;
    }
    rule rule1 {
        match-direction input;
        term t1 {
            from {
                source-address {
                    33.0.0.0/14;
                }
            }
            then {
                translated {
                    source-pool nat44;
                    translation-type {
                        dynamic-nat44;
                    }
                }
            }
        }
    }
}

WARNING!	 Be careful with this type of setup. Dynamic-nat44 may allow you to
actually configure a smaller NAT pool compared to the private source
address ranges, but this does not mean it would work for you in the
real world. For example, consider the following: you have a /30
available for your NAT’d IP addresses to service a network that is a
/14. What does this mean? You can have two private hosts at a time
that have an actual active NAT mapping on the service PIC. That
means that if you expect three or more private hosts to try and send
data through the MX to be serviced by this NAT pool at the same time,
one of those hosts will see all of their packets dropped since you have
no free IP addresses to map for their NAT’d IP address. When setting
up the dynamic-nat44 translation-type, make sure the NAT pool has
enough IP addresses to assign, based on the number of private hosts
you feel will need to pass data simultaneously through the MX at peak
time. If the number of hosts expected to need NAT servicing simultane-
ously is 30,000, then you need a /17 for your NAT pool. If you do not
have a /17 public range available for your NAT pool you need to look
at using one of the translation types that employ Port Address Transla-
tion, such as napt-44.

	 40	 Day One: CGNAT Up and Running on the MX Series

It’s a fantastic time to talk about static NAT types versus dynamic NAT
types again. Static types like basic-nat44 and basic-nat66 are used in
setups where an operator may require every source address listed under
the rule’s from statements to have a readily available NAT IP address in
the MX. Once again, static NAT is typically used for security reasons,
meaning to hide the private IP address. D-nat44 would be used when
you have a range of potential source addresses but there is little to no
risk that all of them would ever require a NAT’d address at the same
time, or, when you have no choice but to take the risk due to a limited
number of public IP addresses. Dynamic types also require a service
card, a fact that is admittedly drilled home throughout this book.
Dynamic-nat44 can be used to hide the private IP address and it can
also be employed by operators who have a limited number of public
addresses, so they are fighting IPv4 exhaustion but want a full NAT’d
IP address assigned one-to-one to their private IPs versus using a port
address translation type which can come with its own complexities.

Now let’s look at the translation types napt-44 and napt-66. What is
napt? Port Address Translation (PAT), NAT Overload Network
Address Port Translation (NAPT). Call it what you want, this type of
NAT technology translates the source IP and the source port. This
means you can have many private IPs using the same public NAT’d IP
since multiple sessions can be created using the same public NAT’d IP
based on uniquely assigned ports via port address translation. This
translation type is very useful for fighting IPv4 exhaustion and is
dynamic NAT at its essence. These NAT translation types of course do
require a service cardcard.

Let’s put together a quick configuration for napt-44 that should speak
for itself. The following NAT rule will NAT traffic from any source
that it receives traffic from, using PAT with the 100.12.1.0/24 range:

[edit services]
nat {
    pool CGN-1 {
        address 100.12.1.0/24;
        port {
            automatic {
	        random-allocation;
	    }
       }
}
rule CGN-1 {
        match-direction input;
        term other {
            then {
                translated {
                    source-pool CGN-1;
                    translation-type {
                        napt-44;
                    }

	 Chapter 1: Configuration	 41

One other NAT type discussed in this book but not yet shown in any
detail, is deterministic napt44. Deterministic napt44 is great for when
you need to be able to historically map a subscriber’s private IP address
and port to a NAT’d address and port but do not want to have to use
syslogging to look up the historical mappings of a NAT’d public IP
back to the private IP for a given period of time. With deterministic-
napt44, the MX has an algorithm it uses to assign the NAT’d IP
address and blocks of ports in the NAT pool to the source IP ranges set
under the NAT rules. This makes this NAT translation type very
desirable to some operators since it allows the operator to tell who
used what NAT’d IP address and port without needing a syslog server
and a storage device for the logs themselves, since a private subscriber
will always use the same NAT’d address and port block.

Configuring deterministic NAT is quite simple. Like the PBA settings
looked at earlier under the NAT pool section, deterministic-napt44 is a
port block type, so under your NAT pool you define the pool as being a
deterministic port block allocation type and then you set the block--
size. Note if you do not define a block-size, 512 is the default. Under
the NAT rule make sure you add a source-address range. With deter-
minstic-napt44 you must define the private range or ranges this block
will be mapped to:

nat {
    pool nat44 {
        address 156.100.100.0/23;
        port {
            automatic;
            deterministic-port-block-allocation block-size 512;
        }
    }
    rule rule1 {
        match-direction input;
        term t1 {
            from {
                source-address {
                    33.33.0.0/20;
                }
            }
            then {
                translated {
                    source-pool nat44;
                    translation-type {
                        deterministic-napt44;
                    }
                }
            }
        }
    }
}

	 42	 Day One: CGNAT Up and Running on the MX Series

So, using our current example, traffic would be seen from the
33.33.0.0/20 private range mapped to an IP address from
156.100.100.0/23 with a port block of 512 ports.

Time to run a show command. In this case the show services nat
deterministic-nat nat-port-block command and look at a couple of
subscribers’ NAT’d IP addresses. This way you can see that there is a
NAT’d address assigned and a block of 512 source ports that the MX
will assign to sessions for this subscriber:

user@re0# run show services nat deterministic-nat nat-port-block 33.33.1.1
Interface: ms-1/0/0
NAT pool: detnat
Internal Host: 33.33.1.1, NAT IP Address: 156.100.100.3, NAT Port Start: 3072, NAT Port End:
3583

{master}[edit services nat rule detnat]
user@re0# run show services nat deterministic-nat nat-port-block 33.33.1.2
Interface: ms-1/0/0
NAT pool: detnat
Internal Host: 33.33.1.2, NAT IP Address: 156.100.100.3, NAT Port Start: 3584, NAT Port End:
4095

If you look closely at the two subscribers’ addresses in the output, you
will see that incremental private IP addresses and port blocks are
NAT’d incrementally, one after the other:

You can also run the show services nat pool detail command for a
view of the pool in general:

user@re0# run show services nat pool detail
Interface: ms-1/0/0, Service set: detnat
 NAT pool: detnat, Translation type: DETERMINISTIC NAPT44
 Address range: 156.100.100.1-156.100.101.254
 Available addresses: 510
 Configured port range: 1024-65535
 Port range: 1024-65535, Ports in use: 0, Out of port errors: 0, Max ports used: 0
 AP-P port allocation errors: 0
 Memory allocation errors: 0
 Max number of port blocks used: 0, Current number of port blocks in use: 0, Port block
allocation errors: 0
 DetNAT subscriber exceeded port limits: 0
 Unique pool users: 0

And, you can also change the port block size that is assigned by the
deterministic port block. As noted before, 512 is the default block size
but you can assign anything from 1 to 65535 ports. It should be noted,
however, that not every port in the range can, or will, be used since
deterministic NAT will never use privileged ports that are ports 0
through 1023. If you look back at the output from the show services
nat pool detail command you will see Configured port range: 1024-
65535.

	 Chapter 1: Configuration	 43

Let’s go back under the [services nat pool nat44 port] configuration
hierarchy so we can change the block-size to 10:

nat {
    pool nat44 {
        address 156.0.0.0/14;
        port {
            automatic;
            deterministic-port-block-allocation block-size 10;
        }
    }

As with the PBA feature, when making changes to the deterministic
port block size you should restart the service PIC for it to take effect.

You can run the show services nat deterministic-nat nat-port-block
command again to see that the port block now only contains ten ports:

user@re0# run show services nat deterministic-nat nat-port-block 33.33.1.2
Interface: ms-1/0/0
NAT pool: detnat
Internal Host: 33.33.1.2, NAT IP Address: 156.100.100.1, NAT Port Start: 3594, NAT Port End:
3603

Also, when running the show service nat pool command you can see
the block size for your determinsitic-napt44 pool. This is a good
example of when the detailed version of a command does not show
you a counter that the standard run of a command does:

user@re0# run show services nat pool 
Interface: ms-1/0/0, Service set: detnat
NAT pool          Type    Address                         Port        Ports used
detnat            DETERMINISTIC NAPT44 156.100.100.1-156.100.101.254 1024-65535 0
Port block type: Deterministic port block, Port block size: 10

So why doesn’t everyone just use deterministic NAT for their transla-
tion type so they have a way to always map the traffic sent by private
clients to the NAT’d traffic seen on the public network? The answer is
that you may have too large of a source range of private IP addresses
that need to be serviced by the NAT pool. Unlike napt44, deterministic
napt44 has boundaries around the number of potential source address-
es versus the NAT pool address range and port ranges. Simply stated, if
the pool and port ranges do not cover the whole of the private source
range your commit will fail. This boundary, which is necessary for the
logic of deterministic NAT to work, can cause some scenarios to
require napt44 as the translation type instead.

Here is what would happen if you tried to commit a configuration that
had deterministic NAT configured with a NAT pool that cannot cover
the potential range of private IP addresses even when setting an
unrealistically small block size of 5 ports for each subscriber:

	 44	 Day One: CGNAT Up and Running on the MX Series

user@re0# commit
[edit services nat rule rule1]
 ‘term t1’
 Number of addresses and port blocks combination in the NAT pool is less than number of
addresses in ‘from’ clause
error: configuration check-out failed

[edit services nat pool nat44]
address-range low 156.100.5.1 high 156.100.5.10;
port {
 range low 1025 high 65535;
 deterministic-port-block-allocation block-size 5;
}
[edit services nat rule rule1 term t1]
user@re0# show
from {
 source-address {
 192.168.0.0/13;
 }
}
then {
 translated {
 source-pool nat44;
 translation-type {
 deterministic-napt44;
 }
 }
}

To make this configuration work when you are only trying to assign
five ports to each private IP address, you have to look at the fact you
have a /13 range of private IP addresses, or 524,286 private hosts total.
There are ten IP addresses available in the NAT pool and you have
64511 ports per IP. That is a total of 645,110 ports divided by the five
ports you are using for the deterministic-port-block-allocation
block-size. That would mean this setup could handle a boundary of at
most 129,022 private source addresses, which is far below the 524,286
you need to handle for this configuration, where each private subscrib-
er would only have five ports. For five total sessions to work you
would need to increase the number of IP addresses available in your
NAT pool to at least 41 addresses. And even if you had 41 public
addresses you could assign to the NAT pool, you still have a block size
of five ports which is not going to fit many real world use cases. So in
reality you would need to find even more available public IP addresses
and you would want to increase the block size considerably. Make
sense? Deterministic-NAT like any NAT setup needs to be thought
through the design to make sure you do not starve your end users from
being able to have their traffic NAT’d.

	 Chapter 1: Configuration	 45

Okay, the next NAT translation type up is dnat-44, otherwise known
as destination NAT. Destination NAT is when traffic originated from
the public network is sent towards a NAT’d address and this is then
translated to the private address. A big use case for destination NAT is
when nodes on the public side need to reach certain defined targets or
networks on the private side but the public nodes are using a virtual IP,
or a NAT’d IP, to reach the targets. This keeps the private IP addresses
hidden from the public world. The MX in this case, using destination
NAT, will translate the destination address to the correct internal
private address. Dnat-44 is a static NAT type that does not require a
service card.

Let’s show an example destination NAT setup where traffic received by
the MX Series, destined to 120.100.0.100 through 120.100.0.200,
using destination port 8888, would then be de-NAT’d to
140.100.0.100 through 140.100.0.200. So, if traffic was sent to
120.100.0.120 on port 8888 it would be translated to 140.100.0.120:

[edit services nat]

pool internal-servers {
    address-range low 140.100.0.100 high 140.100.0.200;
}

rule dnat_rule {
    match-direction input
    term t1 {
        from {
            destination-port {
                range low 8888 high 8888;
            }
            destination-address-range {
                low 120.100.0.100 high 120.100.0.200;
            }
        }
        then {
            translated {
                destination-pool internal-servers;
                translation-type {
                    dnat-44;
                }
            }
        }
    }
}

NOTE	 If you only need to use the destination NAT rule with traffic destined
to TCP port 8888, versus both TCP and UDP as the above logic would
use, you would use the applications setting under the from statement
versus using the destination-port. (The applications settings are
discussed in detail in Chapter 3.)

	 46	 Day One: CGNAT Up and Running on the MX Series

You can also use the port-forwarding feature when using the dnat-44
translation type, allowing you to also hide your actual destination port
from the public network. Set your port mappings under the services /
nat hierarchy. In this example a map called map1 is set with two port
translations:

[edit services nat]
port-forwarding map1 {
 destined-port 8888 translated-port 2000;
}

Then add this port forward mapping to the dnat-44 rule you are using.
Now, any traffic destined to the addresses 120.100.0.100 through
120.100.0.200 and to destination port 8888 will also have the destina-
tion port translated, in this case to 2000. If you do not use the port
forwarding feature the MX will NAT the destination IP address but
forward the original destination port sent by the source. Look below
to see where port-forward-mapping is added to the NAT rule:

[edit services nat]
rule dnat_rule {
    match-direction input
    term t1 {
        from {
            destination-port {
                range low 8888 high 8888;
            }
            destination-address-range {
                low 120.100.0.100 high 120.100.0.200;
            }
        }
        then {
            port-forwarding-mappings map1;
            translated {
                destination-pool natpat44;
                translation-type {
                    dnat-44;
                }
            }
        }
    }
}

It is now time to talk about the translation type twice NAT, which is
the practice of NATing both the source and the destination address.
This translation type is used when you need to NAT the source traffic
but at the same time the source NAT’d traffic is destined to a target that
requires destination NAT to occur at the MX Series. Junos allows you
to set up static mapping with twice-basic-nat-44, dynamic mapping
with twice-dynamic-nat-44 and dynamic PAT mappings with twice-
napt-44.

	 Chapter 1: Configuration	 47

However, do note that twice-basic-nat-44 can be used as an inline
NAT type, whereas twice-dynamic-nat-44 and twice-napt-44 require a
service card.

Here is an example using twice-napt-44. Like any dynamic NAT type it
is only optional to configure the source address field, but for the
destination you must define the destination address or addresses with
the destination-address option and the destination pool must have an
equal number of NAT’d IP addresses to map to the addresses added to
the destination-address option:

[edit services nat]

pool dest_pool {
    address 77.76.75.73/32;
}
pool src_pool {
    address 100.100.0.0/25;
    port {
        automatic;
    }
}

rule twice-nat {
		 match-direction input;
		 term my-term1 {
				 from {
						 destination-address {
								 75.76.75.73/32;
							 }
				 }
			 then {
					 translated {
							 source-pool src_pool;
							 destination-pool dst_pool;
							 translation-type {
									 twice-napt-44;
							 }
					 }
			 }
	  }
}

Stateful nat64 is the last translation type option to explore. Stateful
nat64 is an IPv6 transition method, translating incoming IPv6 packets
from the private network into IPv4 and then performing the opposite
task when IPv4 traffic is destined to the IPv6 private address. When
stateful nat64 is used in conjunction with a DNS64 server, no changes
are usually required on the IPv6 client side or the IPv4 target when the
CPE tries to access resources via name.

	 48	 Day One: CGNAT Up and Running on the MX Series

NOTE	 DNS64 is just a DNS server that can take requests for AAAA records
(IPv6) from the A records (IPv4). The first part of the synthesized IPv6
address points to an IPv6/IPv4 translator (the MX Series) and the
second part embeds the IPv4 address from the A record:

rule rule-NAT64 {
    match-direction input;
    term term1 {
        from {
            destination-address {       
                64:ff9b::/96;
            }
        }
        then {
            translated {
                source-pool client_nat;
                destination-prefix 64:ff9b::/96;
                translation-type {
                    stateful-nat64;
                }
            }

In this example you can see for the destination-address and destina-
tion-prefix 64:ff9b::/96 was used. The well-known prefix
64:ff9b::/96 is used in an algorithmic mapping between IPv6 to IPv4
addresses. It is defined out of the 0000::/8 address block, per
RFC6052.

NOTE	 Starting with Junos 12.1, only IPv6 /96 prefixes for this translation
pool are supported. So you can use the well-known prefix
(64:FF9B::/96) or any arbitrary /96 prefixes. And really, this is based
on how the DNS64 server is set up.

If name resolution is not used, the client software, or the end user, will
manually have to enter the IPv6 address to be translated. So in our
example, to reach IPv4 node 10.12.1.10 you would have to use this IP
on the client side as the destination - 64:ff9b::10.12.1.10:

user@re0> show services nat pool    
Interface: ms-1/0/0, Service set: sset-nat64
NAT pool          Type    Address                         Port        Ports used
client_nat        dynamic 50.1.1.1-50.1.1.254             512-65535   1         
Port block type: Unknown port block, Port block size: 0
NAT pool          Type    Address                         Port        Ports used
_jpool_rule-NAT64_term1_ static 64:ff9b::-64:ff9a:ffff:ffff:ffff:ffff:ffff:ffff
Port block type: Unknown port block, Port block size: 0

user@re0> show services sessions    
Interface: ms-1/0/0, Service set: sset-nat64
Flow  State    Dir       Frm count

https://tools.ietf.org/html/rfc6052

	 Chapter 1: Configuration	 49

ICMP        10.12.1.10       ->       50.1.1.1       Watch    O               0
    NAT source      10.12.1.10         -> 64:ff9b::a0c:10a
    NAT dest          50.1.1.1         ->         2001::2
ICMPV6         2001::2       ->64:ff9b::a0c:10a      Watch    I              20
    NAT source         2001::2         ->        50.1.1.1
    NAT dest   64:ff9b::a0c:10a        ->      10.12.1.10

NOTE	 One thing to note is that the MX Series does not support using the port
block allocation feature with nat64.

Service Sets

By now you should understand the NAT pools and NAT rules configu-
ration and how to set them up. Now it’s time to look at service sets, the
place where the NAT pool and NAT rule configurations are tied
together to the point that you can apply your NAT configuration on the
MX Series and actually do address translation to the traffic flowing
through it. Without the service set nothing will work when it comes to
NAT.

Once again, like everything in the amazingly configurable MX Series,
there are options here, and plenty of them. The MX really does offer
maximum flexibility. As you start to look at the service set settings
understand that there are two different methods, or styles, you can use
to apply your service sets based on your needs and preferences: namely
interface-style and next-hop style. In a nutshell, what they really do is
determine what data packets will be steered towards your service card’s
service PIC for CGNAT processing.

Let’s look at the difference between these two service set methods and
some sample configurations, so you can determine what method you
need.

Interface Style

Interface style service sets are generally faster to configure and deploy
than next hop style. They are directly applied to the media interfaces
and appear as a “bump-in-the-wire” between the media interface and
the PFE.

All traffic entering the interface and exiting the interface may traverse
the service PIC due to the interface-style service-set applied to the
interface, as shown in Figure 1.3.

	 50	 Day One: CGNAT Up and Running on the MX Series

Figure 1.3	 Illustration Showing Interface Style Service Set

Next Hop Style

With next hop style service sets you use the routing table to steer traffic
destined to specific prefixes to the service PIC. So only traffic that is
destined for a specific next hop is serviced by the next hop style service
set, as shown in Figure 1.4. In general, the next hop style can provide
more flexibility than interface style.

NOTE	 Only one next hop style service set per MS interface sub unit is allowed.

Figure 1.4	 Illustration Showing Next Hop Style Service Set

Now let’s look at the interface style service-set configuration and get in
there and compare it to the next hop style. For a typical source NAT
setup using interface style you actually edit the actual physical inter-
faces that handle the traffic sourced from the private client network or
the physical interfaces that this traffic egresses to get to the public
network. It is under these interface(s) you will connect to the service-
set.

	 Chapter 1: Configuration	 51

Within the [services] hierarchy you simply add a service-set. For a
basic configuration this service-set will call one of our NAT rules, then
you will set the interface-service configuration setting to use a service
interface you have on your box. This interface-service setting simply
points to your si, ms, or ams interfaces that you want to use based on
whether you are using inline static NAT, dynamic NAT, or dynamic
NAT with load balancing or redundant PICs. Let’s start with this
example using the ms interface of ms-2/0/0 which you now know means
you have a service card in FPC slot 2:

[edit services]
service-set nat44 {
    nat-rules rule2;
    interface-service {
        service-interface ms-2/0/0;
    }
}

Then, under the physical interfaces unit, you add the options service /
input and service / output to the family inet/inet6 that is handling the
data traffic and you tie your service-set called nat44 to here. With this
configuration this simply means that all traffic processed by this
interface will be passed to the service-interface ms-2/0/0 attached to
the service-set nat44 for NAT servicing based on the NAT configura-
tion set under the NAT rule rule2:

[edit interfaces xe-3/3/0]
description “direct to subscriber CPE”;
unit 0 {
    family inet {
        service {
            input {
                service-set nat44;
            }
            output {
                service-set nat44;
            }
        }
        address 139.97.68.42/30;
    }

As you can see this is a really simple configuration, but the simplicity
also means that every packet this physical interface receives gets
serviced by the service PIC, even if the NAT rule is configured to only
NAT packets received based on source IP, destination IP, application,
etc. So, based on the NAT rules you have attached to the service-set,
even if a packet gets steered to the service PIC it may not get NAT’d and
then just gets passed right back to the interface to proceed along to its
destination target based on the MX’s routing table. Chapter 4 discusses
the service-filters feature and will show you how using these filters

	 52	 Day One: CGNAT Up and Running on the MX Series

can determine what traffic you do not want to have steered to the
service PIC. This feature will be useful for saving CPU processing on
the service PIC by not sending traffic to the service PIC that does not
need to be NAT’d.

It can be argued that the next hop style can be slightly more compli-
cated to set up but it can offer some control over what packets gets
processed by the service PIC since you route traffic to the service PIC
to have it serviced. Let’s create the next hop style service set and go
from there. As you will see the service set is configured very similarly
to the interface style– just remove the interface-service parameter
and add the next-hop-service option. Under the next-hop-service
option there is an inside-service-interface and an outside-service-
interface option, each pointing to a different logical unit set up under
the si, ms, or ams interface that you want to steer traffic to for NAT
processing:

[edit services]
service-set nat44 {
    }
    nat-rules rule2;
    next-hop-service {
        inside-service-interface ms-1/0/0.1;
        outside-service-interface ms-1/0/0.2;
    }

Then, under the service interface hierarchy, you create your two
logical units – the inside interface is the one that handles ingress traffic
from the private network that needs to get NAT’d, which then egresses
post-NAT to the public network through the outside interface. Traffic
from the public network destined to the NAT’d addresses ingresses
through the outside interface, gets de-NAT’d and then egresses
towards the private network through the inside interface:

[edit interfaces ms-2/0/0]
unit 1 {
    family inet;
    service-domain inside;
}
unit 2 {
    family inet;
    service-domain outside;
}

Now you can add static routes that are used to steer the desired
destination traffic to the inside service interface for CGNAT process-
ing:

	 Chapter 1: Configuration	 53

[edit]
routing-options {
    static {
        route 197.100.1.0/24 next-hop ms-2/0/0.1;
        route 189.1.1.0/24 next-hop ms-2/0/0.1;
    }
}

Let’s look at a simple example showing the inside service interface and
outside interface sitting in different VRs. Both the physical interface
that is used to reach the private network, and the service interface
ms-2/0/0.1 that has been configured to handle the inside service-do-
main, is tied into our first virtual router:

[edit routing-instances VR1]
instance-type virtual-router;
interface xe-3/3/0.0;
interface ms-2/0/0.1;
routing-options {
    static {
        route 197.100.1.0/24 next-hop ms-2/0/0.1;
        route 189.1.1.0/24 next-hop ms-2/0/0.1;
    }
}

Then you set up the virtual router that handles the traffic destined to the
public network. This is done by adding the interface that faces the
public network, along with adding the service interface unit that you
tied to the outside service domain, that interface being ms-2/0/0.2:

[edit routing-instances VR2]
root@JTAC_setup-re0# show
instance-type virtual-router;
interface xe-3/0/2.0;
interface ms-2/0/0.2;

At this point, after you have your service set configured and committed,
if you look at the routes on the box you should see the desired traffic
destinations to be NAT’d will get sent to the inside service interface:

VR1.inet.0: 18 destinations, 19 routes (17 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
197.100.1.0/24     *[Static51] 04:03:20
                      > via ms-2/0/0.1
189.1.1.0/24     *[Static51] 04:03:20
                      > via ms-2/0/0.1

The NAT setup automatically injects dynamic routes into the routing
table to steer traffic destined to the NAT’d address towards the service
set for interface style setups and towards the outside service interface
for next hop style setups.

	 54	 Day One: CGNAT Up and Running on the MX Series

Using this example, let’s say that the NAT pool being used in the next
hop style setup is employing the NAT prefix 100.100.100.0/25. Then
the return route for the client traffic is injected into the VR2 routing
instance where the outside service interface exists allowing the return
traffic to the private clients to get steered back to the service PIC to get
de-NAT’d:

user@re0# run show route 100.100.100.0                                   

VR2.inet.0: 68 destinations, 68 routes (68 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

100.100.100.0/25     *[Static/1] 00:15:14
                    > via ms-1/0/0.2

With solutions like dnat and twice NAT where destination NAT is
used, you can see a dynamically injected route added to the routing
instance that hosts the inside interface for a next hop style setup to
have any traffic sent to the destination address get steered into the
inside service interface to get de-NAT’d:

user@re0# run show route 77.76.75.73 

client.inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

77.76.75.73/32     *[Static/1] 00:14:53
                    > via ms-1/0/0.1

Now, let’s look quickly at a couple of additional features you can set
under the service-set configuration.

First, if you are seeing lots of simultaneous drop flows when viewing
the show services sessions output command, the drops being due to
port scans and the like, you can set max-flows-drop under the service-
set to limit the number of drop flows held in memory. You can set this
for both egress and/or ingress directions, as shown here:

[edit services]
service-set nat44 {
    max-drop-flows ingress 100 egress 500;
    nat-rules rule2;
    next-hop-service {
             inside-service-interface ms-2/0/0.1;
             outside-service-interface ms-2/0/0.2;
    }

Next, when using the napt-44 translation type, if the PBA feature is not
used, there is nothing to stop any one internal private IP address from
taking up a whole boatload of ports unless you set the max-sessions-
per-subscriber option. This feature is great for when a handful of

	 Chapter 1: Configuration	 55

subscribers starve the rest from being able to get any ports to NAT. It
does this by limiting the number of sessions any one private IP address
can use at a given moment in time. You can set the value for max-ses-
sions-per-subscriber from 1 up until 32000. Note that a session is
both an ingress and egress flow through the session table that maintains
the NAT’d session:

[edit services]
service-set nat44 {
    max-drop-flows ingress 100 egress 500;
    nat-rules rule2;
    nat-options {
    	 max-sessions-per-subscriber 10000;
     }
    next-hop-service {
              inside-service-interface ms-2/0/0.1;
              outside-service-interface ms-2/0/0.2;
    }

You can also limit the maximum number of sessions a service set will
allow at any given time by employing the max-flows configuration
option. It’s very useful if you have multiple service sets being used by the
same service PIC and you want to make sure one service set does not use
up all of the memory on the service PIC. Here’s an example:

[edit services]
service-set nat44 {
   max-flows 1000000;
   max-drop-flows ingress 10 egress 5;
    nat-rules rule2;
    nat-options {
    	 max-sessions-per-subscriber 10000;
     }
    next-hop-service {
              inside-service-interface ms-2/0/0.1;
              outside-service-interface ms-2/0/0.2;
    }

Summary

At this point in the book, you have gone over the basics of the CGNAT
setup on the MX Series. Armed with the configuration knowledge you
now have, you can get a good NAT setup going that will fit many
scenarios. But you are not done yet, not even close. Chapter 2 covers
advanced options you can apply that may fit your individual needs.

Let’s go over what you have done so far, and if need be, you should
re-read any section before moving on:

	 56	 Day One: CGNAT Up and Running on the MX Series

�� Configured a service interface service, either si for inline, or a ms
or ams for use with a service card.

�� Configured a services NAT pool to assign translated IP address-
es, and optionally, ports to the sessions you want to NAT.

�� Configured a service NAT rule where you assigned the NAT
translation type and optionally defined the specific private IP
address ranges that should be NAT’d. From here you also tied in
the services NAT pool to use for the sessions that hit this NAT
rule.

�� Configured the services service set which ties in the service NAT
rule and the service interface that the rule will use to process the
NAT logic.

�� Tied the services service set to your physical interface using the
interface-style setup, or, or you tied the services service set to
your service interface, which then gets used based on static
routes when using a next hop style setup.

Wow, after all that was covered in Chapter One, there’s more? Yes, yes,
there are still more features and options that can be applied to your
setup. Remember the MX Series can fit all sorts of different NATing
environments because of its very deep and rich feature set. Let’s get
started.

Address Pooling Paired

Address Pooling Paired (APP) is a feature that allows the MX Series to
assign the same NAT’d external address for all sessions originating
from the same internal private host. The mapping is triggered when the
first packet is received from the internal private host and this mapping
will stay for a period of time as explained below.

Why use this feature? Because it solves problems that can occur when
client-to-server communication opens multiple connections. Some
examples being:

�� There are many HTTP based applications, like banking software,
that require the client to open multiple sources to destination
sessions and each one of these sessions needs to be seen from the
same IP address.

�� Any P2P protocol assuming address stability benefits from
address pooling paired being used, so the NAT’d IP address is the
same for all sessions from a private host.

Chapter 2

Additional Features

	 58	 Day One: CGNAT Up and Running on the MX Series

Remember, if you are a private host sending dozens of different UDP
and TCP sessions through the MX and you are using a dynamic NAT
translation type without this feature enabled, you may be seen on the
public facing side by many different NAT’d IP addresses. Based on the
application needs of your end user, this may not be a good thing.

NOTE	 It should be noted that the address-pooling paired feature is only
needed, and only works with, NAT translation types that use service
cards.

Enable the feature under the [services nat rule], as shown here:

[services nat]
rule rule1 {
    match-direction input;
    term t1 {
        from {
            source-address {
                33.0.0.0/14;
            }
        }
        then {
            translated {
                source-pool natpat44;
                translation-type {
                    napt-44;
                }
                address-pooling paired;
            }
        }
    }
}

When configuring the address-pooling paired feature it is very strongly
recommended that you configure your NAT pool to use the address-
allocation feature set as round-robin. If not, the MX Series will
allocate ports from the NAT pool in the default mode, which, based on
the traffic profile through the MX, could, and most likely will, result in
many internal private IPs being mapped to the same, single, public-
facing NAT’d IP. This will eventually cause source port exhaustion of
this NAT’d IP address, when there are still other available IPs in the
NAT pool that still do not have any ports tied up.

Port exhaustion for a single NAT’d IP address in a pool with many
available NAT’d IP addresses when address pooling paired is being
used is bad, because the MX will drop traffic for the private IP address-
es mapped to the NAT’d IP address in question once the ports are
exhausted. When address pooling paired is not used, port exhaustion
for a single NAT’d IP address in a pool of many available NAT’d IP
addresses is not a big deal since any additional subscriber sessions that

	 Chapter 2: Additional Features	 59

come in would just start to use the next available IP address and any
related ports in the NAT pool that are available. But to drive this point
home, if the address pooling paired feature maps the private IP to the
same public IP for all its sessions, the MX will not move onto the next
available IP. Instead, it will drop any new sessions until the private IP
address it is mapped to has a free port, which could take some time,
based on the session timeout settings you may have configured and on
the length of activity for the actual traffic from the client to its target
and back.

Let’s look at this process step-by-step.

Remember address-allocation with round-robin chooses the first
available IP address from the NAT pool for a unique private IP address
that sends traffic through the MX to get NAT’d. With the address-
pooling paired feature and address-allocation with round-robin, the
next unique private IP address that sends traffic will be mapped to the
next IP address in the NAT pool. Based on the number of private IP
addresses and the size of the NAT Pool, multiple private IP addresses
can, and may, end up being mapped to the same public NAT IP
address.

The example shown here uses napt-44 as the translation type, so let’s
set the pool size to a /25 to show how the resources are assigned:

[edit services nat]
pool natpat44 {	
    address 100.100.0.0/25;
    port {
        automatic {
            random-allocation;
        }
    }
    address-allocation round-robin;
    mapping-timeout 120;
}

To start, look at the effects of address-allocation with round-robin
without the address-pooling paired feature being enabled. In the run
show services sessions extensive output below it can be seen where
each session will have a different NAT translated IP and port assigned
to it, even though the traffic all originates from the same private source
address. In this example the private client at 31.0.0.2 is sending TCP
and UDP traffic to a public server at 197.100.1.2 destination port
6532. For each unique session, you can see that a different NAT’d IP
address is used since the NAT’d IP addresses are assigned sequentially
due to the configuration used:

user@re0# run show services sessions extensive
ms-1/0/0

	 60	 Day One: CGNAT Up and Running on the MX Series

Service Set: nat44, Session: 1275068568, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:17488   ->   100.100.0.1:34059  
UDP            31.0.0.2:17488  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->   100.100.0.1:34059  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1241514401, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:27989   ->   100.100.0.2:6122   
TCP            31.0.0.2:27989  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
TCP         197.100.1.2:6532   ->   100.100.0.2:6122   Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1308623554, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:30776   ->   100.100.0.3:31043  
UDP            31.0.0.2:30776  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->   100.100.0.3:31043  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1275069075, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:11729   ->   100.100.0.4:15314  
UDP            31.0.0.2:11729  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->   100.100.0.4:15314  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1275068755, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:1093    ->   100.100.0.5:29645  
UDP            31.0.0.2:1093   ->     197.100.1.2:6532   Forward  I               1

	 Chapter 2: Additional Features	 61

  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->   100.100.0.5:29645  Forward  O               0
  Byte count: 0
 Flow role: Responder, Timeout: 30

Now, let’s add the address-pooling paired feature, which, as stated just
a moment earlier, is set under the [service nat rule] section:

pool natpat44 {
    address 100.100.0.0/25;
    port {
        automatic {
            random-allocation;
        }
    }
    address-allocation round-robin;
}
rule rule1 {
    match-direction input;
    term t1 {
        from {
            source-address {
                33.0.0.0/14;
            }
        }
        then {
            translated {
                source-pool natpat44;
                translation-type {
                    napt-44;
                }
                address-pooling paired;
            }
        }
    }
}

With this feature you can see that the same NAT’d IP address is being
mapped to all of the sessions originated from the private IP address
31.0.0.2. It is now a dynamic one-to-one mapping, unlike before,
when address-pooling paired was not used and any free NAT’d IP
could be mapped to any session:

user@re0# run show services sessions extensive
ms-1/0/0
Service Set: nat44, Session: 1577058893, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:30332   ->     100.100.0.1:43590  
UDP            31.0.0.2:30332  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->     100.100.0.1:43590  Forward  O               0

	 62	 Day One: CGNAT Up and Running on the MX Series

  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1543504245, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:7288    ->     100.100.0.1:50119  
UDP            31.0.0.2:7288   ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->     100.100.0.1:50119  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1577058858, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:63941   ->     100.100.0.1:35276  
UDP            31.0.0.2:63941  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->     100.100.0.1:35276  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Service Set: nat44, Session: 1375732136, ALG: none, Flags: 0x0000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             31.0.0.2:29816   ->     100.100.0.1:25017  
UDP            31.0.0.2:29816  ->     197.100.1.2:6532   Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 30
UDP         197.100.1.2:6532   ->     100.100.0.1:25017  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 30

Figure 2.1 illustrates this show command example.

Figure 2.1 	 Dynamic One-to-One Mapping

	 Chapter 2: Additional Features	 63

The paragraph above stated, “It is now a one-to-one mapping” and,
yes, that is true; any session originating from 31.0.0.2 will have
100.100.0.1 assigned to it for the lifetime of the mapping. But this is
not a true one-to-one mapping in the sense that 100.100.0.1 will be the
only private IP ever mapped to 31.0.0.2. The example is using a NAT
pool with a /25 for the NAT’d IP address range for this pool. If you just
brought the MX Series online and you now have 127 private hosts
start to send traffic to be NAT’d at the same time, you will find two
private IP addresses now using free ports under the 100.100.0.1 to
NAT their traffic IP. If you ran the same test but had 253 private hosts
start to send traffic to be NAT’d at the same time, you would have
three private addresses now using any free port under 100.100.0.1.

One thing that is important to understand when talking about the
address-pooling paired feature is the mapping of a private IP address
to a NAT’d IP address and how long that mapping stays in memory.
Remember that when the private subscriber stops sending or receiving
traffic for a single session, the session will timeout after the inactivity
timeout has been met, which by default is 30 seconds. But what about
the address pooling paired mapping?

When all of the sessions for a given subscriber timeout the MX will
keep the address pooling paired mapping in memory for five minutes
by default. If the subscriber again sends any data from the same private
IP address it has used before, the MX will once again map the private
IP address to the exact same NAT address. Using the example where
any traffic from 31.0.0.2 will see 100.100.0.1 used as the NAT’d IP
address, if all of the NAT'd sessions from 31.0.0.2 are inactive for 30
seconds, no traffic is sent from the client or received from the public
side. If five minutes have passed the address pooling paired mapping
will be released from memory. When they start to send traffic again the
MX Series will use the standard logic-based settings like address-allo-
cation round-robin on what NAT’d IP address from the NAT pool to
map to address pooling pair mapping. Your end users may very well
have different NAT’d address many times a day if they sporadically
send data.

You can change how long the MX Series stores the address-pooling
paired mapping-timeout value by changing the mapping-timeout value
under the NAT Pool configuration. The value can be set from any-
where between 120 to 86400 seconds based on your needs:

[edit services nat]
pool natpat44 {	
    address 100.100.0.0/25;
    port {
        automatic {
            random-allocation;

	 64	 Day One: CGNAT Up and Running on the MX Series

        }
    }
    address-allocation round-robin;
    mapping-timeout 1200;
}

Since the inactivity timeout for sessions has been mentioned several
times, let’s quickly look at how you can change the inactivity timeout
from its default of 30 seconds to a different value, which can be
between 4 and 129600 seconds. This value can be set under the service
interface, which affects all the sessions anchored on this interface. You
configure one setting inactivity-tcp-timeout for TCP, and the other
inactivity-non-tcp-timeout for every other protocol, thus UDP, ICMP,
ESP, etc.:

[edit interfaces ms-1/0/0 services-options]
inactivity-tcp-timeout 60;
inactivity-non-tcp-timeout 60;

With any NAT feature that affects how NAT resources are assigned,
best practice deems that thought needs to go into this. For example, do
not apply address-pooling paired to a NAT term that handles proxy
traffic like DNS from a server that sits on the private network. Proxy
servers, especially ones that forward DNS traffic, but use the source IP
of the proxy server itself, can send hundreds of thousands of requests a
second. When NAT is needed and the address-pooling paired feature is
enabled for the NAT term used to handle this type of traffic, you need
to be aware that you are now limited to only 65535 possible sessions at
one time since the proxy servers private IP addresses are mapped to a
single NAT’d IP address. That can affect the service to your end users,
and you should consider not using address-pooling paired for this type
of traffic.

Endpoint Independent Mapping (EIM)

Another useful feature on the MX Series for NAT solutions is Endpoint
Independent Mapping (EIM), which is used to assign the same external
address and port for a specific session from a given private host. If
other sessions from the same private host come in from a different
source port, the MX assigns a different external address and port for
these NAT’d sessions. With EIM a host can send traffic to ten different
targets on the public side, and if these ten sessions all use the same
source private IP address and source port, the ten targets on the public
facing side will all see the same NAT’d IP address and port. If that same
host sends traffic to those same ten targets but uses a different internal
source port for each session, the MX will choose any free IP address
and port combo to assign to the ten NAT’d sessions that will each get
added to a new EIM mapping.

	 Chapter 2: Additional Features	 65

NOTE	 It should be noted that EIM is only needed and only works with NAT
translation types that use a service card.

The EIM feature is enabled by setting mapping-type with the endpoint-
independent option under the NAT rule, like so:

[edit services nat rule rule2]
match-direction input;
term t1 {
    from {
        source-address {
            100.100.0.0/16;
        }
    }
    then {
        translated {
            source-pool natpat44;
            translation-type {
                napt-44;
            }
            mapping-type endpoint-independent;
        }
    }
}

As a point of comparison, address-pooling paired is required for
assigning the same external NAT IP address for all sessions from an
internal private IP for a period of time, while EIM means you have the
same external NAT IP address and port mapped to an internal IP
address and a port for a period of time.

EIM, like address-pooling paired, also has a period of time where the
mapping is held even after all sessions have timed out. Once the session
is dropped on the MX, when data is not sent or received for the
duration of the inactivity timeout, which by now you should know is a
default 30 seconds, the MX will hold the End Point Mapping in
memory for five minutes, the default EIM mapping timeout period.
Within this five-minute period, if the session is re-initiated by the
private subscriber (meaning the subscriber will still be using the same
internal IP address and port), the MX will still use the same NAT’d
external IP address and port assigned to this session. And if five
minutes have passed before the session is re-initiated by the private
subscriber, the MX will then assign a new NAT’d IP and port to the
session.

Also, like the address-pooling paired feature, the mapping timeout
default of five minutes can be changed by editing the same mapping-
timeout value, set in seconds, under the NAT pool settings. Note that
this is the exact same setting changed for the address-pooling paired
mapping timeout, meaning that the address-pooling paired and EIM

	 66	 Day One: CGNAT Up and Running on the MX Series

mapping timeouts are tied to the same value when they use the same
pool, but you can use the ei-mapping-timeout setting if you need to
define the EIM mapping to use a separate value than the address-pool-
ing paired value:

[edit services nat]
pool natpat44 {	
    address 100.100.0.0/25;
    port {
        automatic {
            random-allocation;
        }
   }
    address-allocation round-robin;
    mapping-timeout 1700;
    ei-mapping-timeout 500;
}

If your NAT rule is set up to use both the address-pooling paired
feature and the endpoint independent mapping feature (as in the
example that follows) there are a few things to be aware of about how
the mapping-timeout works when both are used. First, due to the
address-pooling paired option, the MX Series will always use the same
NAT’d address for the subscriber’s source IP address. Due to the EIM
option, the MX will use the same unique NAT’d port for each unique
source port – a useful combination.

When the individual traffic sessions expire due to inactivity, the MX
will timeout the EIM first. Once all the sessions for the subscribers’
private source IP addresses are removed and all of the EIM are expired,
then, and only then, does it start the countdown to expire the address-
pooling paired mapping. As long as one session is active or one EIM
has not timed-out, the MX will not start to count down the address-
pooling paired mapping timeout:

[edit services nat rule rule2]
match-direction input;
term t1 {
    from {
        source-address {
            31.0.0.0/14;
        }
    }
    then {
        translated {
            source-pool natpat44;
            translation-type {
                napt-44;
            }
            mapping-type endpoint-independent;

	 Chapter 2: Additional Features	 67

            filtering-type {
                endpoint-independent {
                    prefix-list {
                        0.0.0.0/0;
                    }
                }
            }
            address-pooling paired;
        }
    }
}

Endpoint Independent Filtering (EIF)

Configuring only the EIM feature will solve any outbound stability
requirements a service provider may have where a target host on the
Internet always needs to see the same NAT’d IP address and port for a
duration of time, but it will not allow inbound stability to be met.

So let’s introduce our next feature, Endpoint Independent Filtering
(EIF). In order to allow inbound connections from any public node or a
defined range of public nodes after the outbound connection has been
established, EIF needs to be configured in conjunction with EIM. What
this means is when the subscriber’s private IP and port are used to create
a NAT’d session to a target, the target, and even other public nodes, can
later send traffic inbound to the NAT’d address as long as they are
sending the traffic destined to the NAT’d IP and source port the sub-
scriber session was created with. This technology is typically called full
cone when using vendor agnostic terms.

EIM with EIF with APP is required for gaming solutions like X-Box and
PlayStation, certain VoIP solutions, and IM solutions. The need arises
because of how private end users register with a server on the public
network, then through this registration other public clients know how
to reach the private client based on the NAT’d IP and port the private
client registered with. When EIF is used, these different public clients
can now initiate connections with the private client. If EIF is not used
when these public clients try to initiate a connection to the private
clients through the NAT’d IP address and port, the MX will drop the
traffic since the pinhole is not open.

To set up an EIF example, under our NAT rule we add a filtering-type
of endpoint-independent and optionally, a prefix-list. The prefix list
defines which public nodes are allowed to establish inbound connec-
tions back through the session table using the EIM mapping. This
actually allows you to control what public sources can use the EIM/EIF
pinholes for inbound connections versus just allowing all of them,
which could be unwanted based on the operator’s needs.

	 68	 Day One: CGNAT Up and Running on the MX Series

NOTE	 If you do not add a prefix list any public node can reach back in
through the pinhole, so it would act like a prefix list of 0.0.0.0/0.

Here’s the EIF example:

[edit services nat]
    rule rule2 {
        match-direction input;
        term t1 {
            from {
                source-address {
                    31.0.0.0/16;
                }
            }
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
                    mapping-type endpoint-independent;
                    filtering-type {
                        endpoint-independent {
                            prefix-list {
                                access_list_A;
                            }
                        }
                    }
                    address-pooling paired;
                }
            }
        }
    }
}

The prefix list itself is defined under the policy options hierarchy by
adding a prefix list for the individual public hosts or public subnets
you want the MX to allow traffic to be received through the EIF/EIM
mapping and forwarded on to the private clients:

[edit policy-options]
  prefix-list access_list_A {
    197.100.1.0/24;
    198.100.100.100/32	
}

BEST PRACTICE	 The EIM and address-pooling paired features use a small portion of
memory for each mapping. So only use EIM and/or address-pooling
paired for applications that actually reuse the source ports and/or
require the NATing device to maintain the address or port mappings
for the needed traffic, such as applications that use UNSAF processes.
Read RFC 3424 for more information.

https://tools.ietf.org/html/rfc3424

	 Chapter 2: Additional Features	 69

WARNING!	 Be careful and thoughtful when setting up EIF. You are allowing public
nodes to reach back in through the MX. This setting could and does
potentially allow public nodes to be able to create a large number of
sessions, possibly exhausting all the memory in the service PIC. An
external node can send a nearly unlimited number of sessions through
the same EIF pinhole by changing its source IP address/port. This could
be a DoS attack on the private IP address or a DoS attack against the
service PIC, since it consumes memory through each flow.

To help protect the MX Series, and the subscribers that sit on the
private network, the MX has a setting called eif-flow- limit. To limit
the number of inbound connections on an EIM/EIF mapping, include
the eif-flow-limit number of flows statement at the [edit services
nat / rule rule-name term term-name, then translated secure-nat-map-

ping] hierarchy level, like so:

[edit services nat]
    rule rule2 {
        match-direction input;
        term t1 {
            from {
                source-address {
                    31.0.0.0/16;
                }
            }
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
	                   secure-nat-mapping {
                           eif-flow-limit 1000;
            }
                    mapping-type endpoint-independent;
                    filtering-type {
                        endpoint-independent {
                            prefix-list {
                                access_list_A;
                            }
                        }
                    }
                    address-pooling paired;
                }
            }
        }
    }
}

In the next example you can see you the output of the show services
nat mappings endpoint-independent command to look at our current
EIM mappings. In this case the private address at 31.0.0.33 with a

	 70	 Day One: CGNAT Up and Running on the MX Series

source port of 44444 has an EIM mapping of 156.100.0.11 with the
port 61824:

user@re0> show services nat mappings endpoint-independent    
Interface: ms-1/0/0, Service set: SS1

NAT pool: nat44
Mapping          : 31.0.0.33     :44444  --> 156.100.0.11    :61824 
Session Count    :     6 
Mapping State    : Active    

Using this NAT’d IP and a source port of 156.100.0.11, port 61824
the private client at 31.0.0.33 is sending UDP traffic to a public target
at 90.0.0.11 port 389. As stated, when using EIM/EIF, other nodes on
the public side can now reach back into 31.0.0.33 by sending traffic to
that NAT IP and port, which in this example is 156.100.0.11:61824.
As mentioned earlier, with EIF you can configure it to only allow
certain ranges/targets to be able to reach back in, but in this example it
was left wide open.

If you look at the traffic being sent from the Internet towards the
NAT’d address and port via the show services sessions command, so
the traffic is in the Forward O direction, you can see that traffic sourced
from different Internet peers is passing back in through the EIF pinhole
to get de-NAT’d and then sent to the private IP at 31.0.0.33. Figure
2.2 illustrates what’s happening:

UDP           90.0.0.11:389  ->    156.100.0.11:61824  Forward  O         2314777
    NAT dest      156.100.0.11:61824   ->     31.0.0.33:44444   
  Byte count: 79623716
  Flow role: Master, Timeout: 32
UDP           90.0.0.10:6679  ->    156.100.0.11:61824  Forward  O         2373098
    NAT dest      156.100.0.11:61824   ->     31.0.0.33:44444   
  Byte count: 82128564
  Flow role: Master, Timeout: 29
UDP           231.10.110.89:46345  ->    156.100.0.11:61824  Forward  O          665341
    NAT dest      156.100.0.11:61824   ->     31.0.0.33:44444   
  Byte count: 22880266
  Flow role: Master, Timeout: 28
UDP           130.0.0.88:32255  ->    156.100.0.11:61824  Forward  O          690824
    NAT dest      156.100.0.11:61824   ->     31.0.0.33:44444   
  Byte count: 23855794
  Flow role: Master, Timeout: 32

	 Chapter 2: Additional Features	 71

Figure 2.2 	 Traffic Sourced From Different Internet Peers

If these same public nodes try to reach into this NAT’d address on any
other source ports that have not been mapped by the private addresses
to an EIM/EIF mapping, the traffic will be dropped and not forwarded
on to 31.0.0.33. Figure 2.3 illustrates this traffic path:

UDP           90.0.0.11:389    ->    156.100.0.11:9000   Drop     O           97730
  Byte count: 3346280
  Flow role: Initiator, Timeout: 4
UDP           90.0.0.10:6679  ->    156.100.0.11:9000   Drop     O          105284
  Byte count: 3597302
  Flow role: Initiator, Timeout: 4
UDP           231.10.110.89:46345  ->    156.100.0.11:6165   Drop     O           21157
  Byte count: 725900
  Flow role: Initiator, Timeout: 4
UDP           130.0.0.88:32255  ->    156.100.0.11:6165   Drop     O           23302
  Byte count: 796722
  Flow role: Initiator, Timeout: 4

Figure 2.3 	 Traffic Being Dropped

WARNING!	 Wait, another warning! This EIF feature can be dangerous and you
need to make sure you are aware of the pitfalls and configure to avoid
them if necessary. With the EIF feature enabled on the MX Series, be
aware that nodes on the public side could continue to send traffic to
the private address for an unlimited amount of time. Even if the private

	 72	 Day One: CGNAT Up and Running on the MX Series

client has powered off, traffic can keep coming. This could mean
sessions still showing as active on the MX, tying up resources. There is
another setting you can use that can be applied under the service NAT
rule itself called mapping-refresh. If you set this to a value of outbound
only, traffic sent from the private side towards the public side is what
the MX calculates to see if a session is inactive or not. Once an out-
bound session from the private network to the public is timed out, the
inbound flow from the public network will also be removed, even if the
pubic host is still sending data to the private host:

[edit services nat]
    rule rule_1 {
        match-direction input;
        term t1 {
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
	        secure-nat-mapping {
eif-flow-limit 1000;
mapping-refresh outbound;
                    }
                    mapping-type endpoint-independent;
                    filtering-type {
                        endpoint-independent {
                            prefix-list {
                                access_list_A;
                            }
                        }
                    }
                    address-pooling paired;
                }
            }
        }
    }
}

Best Practices with EIF	

At this point a best practices design can be useful to protect the service
PICs CPU even when EIF is not used, but in fact, it should be thought
about when employing EIF. The truth is – watch out when using the
EIF feature with the next hop style of service sets, since you can cause
unexpected traffic on the service PIC or even potentially a traffic loop
if you are not careful. An example of this occurs when using anything
from a basic virtual router with a single interface facing a private
network to a VRF hosting an L3 VPN. You need to be aware that
traffic ingressing the routing instance will, as expected, use the route
that steers the traffic towards the inside service interface to get pro-

	 Chapter 2: Additional Features	 73

cessed by the NAT engine. If the NAT rules process the request, you
now have an open pinhole. If EIF is used you now have the potential
for any public node to reach back into the open pinhole. A problem
occurs when traffic from the public network destined to a NAT’d
address hits the routing instance called client and does not have a route
back out the physical interface facing the private network for the
de-NAT’d private IP address. This traffic from the public side reaches
back in through the pinhole and gets routed right back through the
service interface to get NAT’d again causing issues.

In this best practices example, there is a single physical interface, facing
the private network, the 31.0.0.0/16 network:

[interfaces xe-3/0/2]  
description “to client network”;
unit 0 {
    family inet {
        address 31.0.0.1/16;
    }
}

This interface has been added to a routing instance called client along
with the inside service interface for the next hop style service set. There
is a single static route added to this routing instance to route all
destination traffic into the inside service interface to get NAT’d. This is
a typical setup where the private network needs all of its traffic that
ingresses the MX to be NAT’d:

[edit routing-instances client]
instance-type virtual-router;
interface ms-1/0/0.1;
interface xe-3/0/2.0;
routing-options {
    static {
        route 0.0.0.0/0 next-hop ms-1/0/0.1;
    }
}

Now, in the routing instance client route traffic destined to 31.0.0.0/16
back out the xe-3/0/2 interface:

user@re0# run show route 31.0.0.0/16    

client.inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0          *[Static/5] 02:59:34
                    > via ms-1/0/0.1
31.0.0.0/16        *[Direct/0] 19:50:46
                    > via xe-3/0/2.0
31.0.0.1/32        *[Local/0] 19:50:55
                      Local via xe-3/0/2.0

	 74	 Day One: CGNAT Up and Running on the MX Series

The problem with this setup is if any traffic enters the MX through
ge-3/0/2 from a source address other than an expected IP in the
31.0.0.0/16 range, it could possibly get NAT’d based on how the NAT
rule is configured. This means when a public node replies to the NAT’d
IP address and port and gets de-translated back to a non-31.0.0.0/16
private IP address, the 0.0.0.0/0 will pick this traffic up and send it
back through to get NAT’d again creating a new session. Right here,
even without EIF, you are sending packets back through the service PIC
to get NAT processed, which can eat up CPU cycles on the service PIC.
If EIM/EIF was used you could see many public nodes sending traffic to
this private client, which also opens up yet another session/pinhole.

For example, if traffic sourced from 44.0.0.2 and destined to
197.100.1.2 hit this routing instance and was NAT’d, and you were
using EIF, you are now potentially at risk for many new NAT’d sessions
opening up. Here the session sourced from 44.0.0.2 is created:

Service Set: nat44, Session: 134274463, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source             44.0.0.2:17951   ->     100.100.0.4:6332   
UDP            44.0.0.2:17951  ->     197.100.1.2:12229  Forward  I               1
  Byte count: 128
  Flow role: Initiator, Timeout: 420
UDP         197.100.1.2:12229  ->     100.100.0.4:6332   Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 420

Here traffic from another node on the public side reaches back into this
NAT’d address 100.100.0.4:6332, which will happen since EIM/EIF is
used. Remember, it gets steered back through the service PIC because
the route in the client routing-instance tells it to:

0.0.0.0/0 *[Static/5] 02:59:34
 > via ms-1/0/0.1

Service Set: nat44, Session: 100724789, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44 (EIF)
    NAT source             44.0.0.2:17951   ->     100.100.0.4:6332   
UDP        197.100.1.88:6532   ->     100.100.0.4:6332   Forward  O            8170
  Byte count: 1045760
  Flow role: Initiator, Timeout: 420
UDP            44.0.0.2:17951  ->    197.100.1.88:6532   Forward  I               0
  Byte count: 0
  Flow role: Responder, Timeout: 420

Let’s create a new session for the traffic destined to 44.0.0.2, since the
route in the routing instance points back into the service PIC. Now the

	 Chapter 2: Additional Features	 75

Internet host 197.100.1.88 is coming from the inside and taking up a
NAT’d resource:

user@re0# run show services sessions source-prefix 44.0.0.2 source-port 17951 extensive
ms-1/0/0
Service Set: nat44, Session: 100724847, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source         197.100.1.88:6532    ->     100.100.0.5:43165  
UDP        197.100.1.88:6532   ->        44.0.0.2:17951  Forward  I            8170
  Byte count: 1045760
  Flow role: Initiator, Timeout: 420
UDP            44.0.0.2:17951  ->     100.100.0.5:43165  Forward  O               0
  Byte count: 0
  Flow role: Responder, Timeout: 420

When you can, one thing you can do to protect your setup is to make
sure you always define the source address range under the NAT rules so
that other unexpected source traffic does not get NAT’d that creates a
pinhole, or in the case of EIF, potentially many pinholes. Let’s define the
source address:

[edit services nat]
    rule rule_1 {
        match-direction input;
        term t1 {
    from {
        source-address {
            31.0.0.0/16;
        }
    }           
 then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
            }
                    mapping-type endpoint-independent;
                    filtering-type {
                        endpoint-independent {
                        }
                    }
                    address-pooling paired;
                }
            }
        }
    }

You could also apply a filter to your physical interfaces to drop traffic
from unexpected networks, or if you are using a VRF with Layer 3
VPN, you can apply the filter to the service interface itself to address
this potential design flaw:

	 76	 Day One: CGNAT Up and Running on the MX Series

[edit firewall filter drop]
term 1 {
    from {
        address {
            31.0.0.0/16;
        }
    }
    then accept;
}
term 2 {
    then {
        discard;
    }
}

[edit interfaces ms-1/0/0]           
unit 1 {
    family inet {
        filter {
            input drop;
        }
}	
    service-domain inside;
}
unit 2 {
    family inet;
    service-domain outside;
}

[edit interfaces ge-3/0/2]
user@re0# show 
unit 0 {
    family inet {
        filter {
            input drop;
        }
        address 31.0.0.1/16;
    }
}

JTAC has seen incidents where end users on the private network are
assigned an IP that is part of the NAT pool by accident, so when traffic
sourced from these users comes into the routing instance from the
private network, it will get NAT’d. An IP that exists in the NAT pool is
now NAT’d. If any traffic from the Internet reaches back through this
pinhole it will see the NAT address get de-NAT’d, hit the routing
instance and then route back through the NAT engine to get NAT’d
again. Since its route is destined to a NAT address whose routes points
right back through the outside interface to get de-NAT’d, and then
NAT’d all over again, this causes a routing loop and eats up CPU
cycles on the service PIC.

Best practice is to set the source address range under the NAT rules.

Application Layer Gateways (ALGs) get their own chapter, which
looks at the five-tuple application matching users can define and use
with the NAT rules. This chapter also dives into the ALGs a bit so you
can understand what is going on under the hood when it comes to the
MX Series helping your NAT applications that may not be NAT
friendly after all.

The ALG code allows the MX Series CGNAT features to work with
certain applications that need to have some of their characteristics
changed to work in a NATing environment. It is one of the strongest
functionalities that the service cards bring to the table.

This chapter also includes application definitions that are not ALGs,
but are methods an operator can use to decide what to do NAT-wise
with traffic matching the definitions of a certain application, which are
port and protocol.

Below is a limited list of just a few ALGs supported in the MX Series
using the service cards:

�� FTP

�� TFTP

�� RTSP

�� PPTP

�� MSRPC

Chapter 3

Application Layer Gateways and User-
Defined Application Controls

	 78	 Day One: CGNAT Up and Running on the MX Series

�� SUNRPC

�� TALK

�� RSH

�� SQL-NET

�� SIP

�� ICMP

�� H232

�� IKE/ESP

This chapter could include dozens of pages discussing the functionality
of each ALG but since this is a Day One book, it briefly covers a few of
the ALGs and shows you how to configure them. Use the documenta-
tion for details and incidentals.

MORE?	 ALGs are well covered in the technical documentation for Junos.
Search http://www.juniper.net/documentation for ALG.

Okay, let’s first look at how you generically enable ALGs using the
ICMP ALG. This will help you to understand the ALG configuration.
Why have an ICMP ALG in the MX code? Because without the ICMP
ALG there is no way the MX could cleanly handle certain ICMP events
when NAT is used. For example, within the ICMP portion of the
packet the MX needs the NAT’d IP address to be rewritten for events
like the ICMP type destination unreachable. This is needed because
when the ICMP event occurs, the ICMP packet is sent back to the MX
from a public host with the source address in the ICMP/IP payload set
to the NAT’d address. The MX then needs to have the service PIC
rewrite the packet so that this source address is translated back to the
subscriber’s private address. This magic of rewriting the application
layer and not just the standard IP header is performed by the ICMP
ALG!

You add the ALGs to a NAT rule under a defined term. This term will
be used only for the applications you apply to this term, as in this
example where the ICMP ALG is added:

[edit services nat rule rule2 term t1]
from {
    source-address {
        33.33.0.0/16;
    }
    applications junos-icmp-all;
}

http://www.juniper.net/documentation

	 Chapter 3: Application Layer Gateways and User-Defined Application Controls	 79

There are many predefined ALGs and applications you can select from
under the applications hierarchy, but in this example the predefined ap-
plication definition junos-icmp-all was used, which is the ICMP ALG.

Here is what your session looks like when you have the ICMP ALG
application configured and attached to your rule:

user@re0# run show services sessions extensive
ms-1/0/0
Service Set: nat44, Session: 1342177285, ALG: icmp, Flags: 0x2000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source   212.27.42.153:51806   ->   150.100.100.4:55916   
ICMP     212.27.42.153       ->     188.0.0.10       Forward  I              28
  Byte count: 2352
  Flow role: Initiator, Timeout: 32
ICMP        188.0.0.10       ->  150.100.100.4       Forward  O               28
  Byte count: 0
  Flow role: Responder, Timeout: 32
Service Set: ss1, Session: 33554447, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no

And here is what it looks like when you do not:

user@re0# run show services sessions extensive
ms-1/0/0
Service Set: nat44, Session: 1342177285, ALG: icmp, Flags: 0x2000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
  NAT Action:   Translation Type - NAPT-44
    NAT source   212.27.42.153:51806   ->   150.100.100.4:55916   
ICMP     212.27.42.153       ->     188.0.0.10       Forward  I              28
  Byte count: 2352
  Flow role: Initiator, Timeout: 32
ICMP        188.0.0.10       ->  150.100.100.4       Forward  O               28
  Byte count: 0
  Flow role: Responder, Timeout: 32
Service Set: ss1, Session: 33554447, ALG: none, Flags: 0x0000, IP Action: no, Offload: no,
Asymmetric: no

They are identical! It should be stated here that unlike all of the other
ALGs the ICMP ALG is in use by default. You actually do not need to
define the ICMP ALG under your NAT rule.

NOTE	 Do not let the ICMP ALGs being used by default confuse you. All other
ALGs must be enabled by you as the operator or they will not be used,
but this example is good since it informs you, as the operator, that the
ICMP ALG is in play by default.

	 80	 Day One: CGNAT Up and Running on the MX Series

Let’s dig a bit deeper into ICMP ALGs since there are options you can
configure to give you further control over when to NAT an ICMP
packet under your NAT rule. By going to the [applications] hierarchy
you can actually define your own ICMP applications.

In the example the ICMP-type option echo-request is added to a user
created ICMP application that we will create and call ICMP_USER_
ALG. Based on the match direction of the NAT rule, you now have a
setup where only ICMP echo requests or pings from the subscriber’s
private IP addresses, will be NAT’d by the NAT term using this
user-defined application. All other ICMP packets will just be sent to
the next term under the NAT rule. If this was the only NAT term you
defined in your NAT rule, any other ICMP types that were sent
through this configuration would be forwarded without being NAT’d.

To make this work, add the application created under the NAT rule to
have the logic take effect:

[edit applications application ICMP_USER_ALG]
application-protocol icmp;
protocol icmp;
icmp-type echo-request;

edit services nat rule rule1]
match-direction input;
term 2 {
    from {
        applications ICMP_USER_ALG;
    }
    then {
        translated {
            source-pool pool1;
            translation-type {
                napt-44;
            }
        }
    }
}

TIP	 There are many more ICMP codes and ICMP type options you can set
under the ICMP ALG. See the Juniper TechLibrary: https://www.
juniper.net/techpubs/en_US/junos15.1/topics/concept/alg-support-for-
ms-mic-ms-mpc.html.

The purpose of all of this was to show you how the configuration
works and how you can use ICMP ALG to control your setup. But the
truth is, most operators will never likely need to configure the ICMP
ALG. The default behavior is fine in most use cases. With that said,
let’s’ take a look at how we can create a user-defined application to

https://www.juniper.net/techpubs/en_US/junos15.1/topics/concept/alg-support-for-ms-mic-ms-mpc.html
https://www.juniper.net/techpubs/en_US/junos15.1/topics/concept/alg-support-for-ms-mic-ms-mpc.html
https://www.juniper.net/techpubs/en_US/junos15.1/topics/concept/alg-support-for-ms-mic-ms-mpc.html

	 Chapter 3: Application Layer Gateways and User-Defined Application Controls	 81

change the session behavior for just DNS traffic, leaving all other
application traffic to use the default settings. Since the MX does not do
anything special to DNS traffic you do not have a DNS ALG. This just
means with DNS traffic being NAT’d you do not have to analyze or
rewrite the layer seven portion of the packet like you do with SIP or
certain ICMP packets, nor do you have to open special pin holes as
done for PPTP.

But for this example, let’s have the MX aggressively timeout DNS
sessions. In many networks DNS traffic can be quite heavy at times,
but normally they are very short-lived UDP sessions, DNS being just a
query and a response. Having all of these DNS NAT sessions sit in
memory for 30 seconds, which is, remember, the default inactivity
timeout, can actually tie up quite a bit of memory and NAT’d resources
since there can be a ton of DNS passing through the service PIC in
many mobile and fixed-line operators’ setups.

The question you might have is why tie up a session or NAT’d resourc-
es for a protocol like DNS for 30 seconds if DNS resolves in under a
second on our network? This example will show you that you can set
up a user-defined DNS application and then set a lower or even higher
inactivity timeout to help efficiently clean up these sessions, or leave
them active for longer if need be. Here is an example that defines the
user-created DNS application under the [edit applications] hierarchy.
Note that in the example you want to set a NAT term that calls the
DNS application under the NAT rule before the generic catch-all rule
that was added to handle all other traffic types:

[edit applications]
application user_defined-dns-udp {
    protocol udp;
    destination-port 53;
    inactivity-timeout 5;
}

[edit services nat rule rule1]
match-direction input;
term t1 {
    from {
        applications user_defined-dns-udp;
    }
    then {
        translated {
            source-pool nat44;
            translation-type {
                napt-44;
            }
        }
    }
}

	 82	 Day One: CGNAT Up and Running on the MX Series

term t2 {
    from {
    }
    then {
        translated {
            source-pool nat44;
            translation-type {
                napt-44;
            }
        }
    }
}

By now you should have some basics down: how to configure and
define further if needed for an ALG and how to create a user-defined
application. It’s time to dig down a bit deeper again. This time let’s
look at the FTP ALG which should give you an even deeper under-
standing of how ALGs work and how to use them when needed.

When using FTP in active mode, the FTP server actively connects to the
FTP client. To set up active mode, the client sends a PORT command
to the server, specifying the IP address and port number the client is
listening on. When a data connection is required, the server initiates a
connection to the client at this address and port. When using NAT, the
IP address in the PORT command needs to be rewritten with the
NAT’d IP address used for the connection and this is what the FTP
ALG does when Active FTP is used.

NOTE	 When using napt44 the port under the PORT command also needs to
be rewritten.

When using FTP in passive mode, the client sends a PASV command to
the server. This tells the server to listen for a connection attempt from
the client, hence the server is passively waiting. The server replies to
PASV with the host and port address that the server is listening on. The
client deciphers this reply and when a data connection is required,
attempts to initiate the connection to the server at this address.

But what if the FTP server is on the private network, as it is when it is
used in a destination NAT scenario? Then the passive IP and port will
not be translated by the FTP ALG because the FTP ALG was not
designed to re-write this packet during the exchange. So be aware that
the FTP ALG works with passive mode when the client is the source
address being NAT’d, but not when the private client is actually the
FTP server.

In order to flag the FTP ALG that the FTP commands are encrypted,
you need to let encrypted packets go through the service PIC without
inspecting them. The MX’s FTP ALG looks for the AUTH TLS or the
legacy AUTH SSL string as a pattern match. It has been seen that there

	 Chapter 3: Application Layer Gateways and User-Defined Application Controls	 83

are some old FTP clients that are still using the AUTH SSL command
when they negotiate encryption with the FTP server (explicit SSL).

If the FTP server responds back that it supports the encryption type the
MX will consider the FTP packets for these sessions are now encrypt-
ed. If the server rejects the encryption or ignores the request and the
client does not enforce encryption being used, the MX will treat the
FTP traffic as if it is in the clear.

Let’s take a look at the PPTP ALG since it is a great example for
showing you how the ALG code can be used to open pinholes to allow
expected traffic from the public side toward the private side when the
public side is initiating a new session.

PPTP used TCP destination port 1723 as a simple control channel
whose sole purpose is to bring up a Microsoft-specific secondary GRE
IP protocol 47 tunnel. This GRE tunnel contains encapsulated PPP
frames and is used for negotiating authentication, encryption, and
passing actual data.

The negation is as follows, a TCP three-way handshake followed by
PPTP Start Control-Connection-Request and Reply, then outgoing
Call Request and Reply, and then, following the last reply from the
PPTP public server, the server should send a PPP-LCO GRE encapsu-
lated request to the private client. It is here that the pinhole gate needs
to be opened by the PPTP ALG so this first packet for the GRE tunnel
initiated from the PPTP server on the public side can actually get
de-NAT’d and sent to the private client. Without the PPTP ALG
enabled this GRE initiated session from the PPTP server would get
dropped by the session table.

As stated at the beginning of this chapter, there are many functional-
ities of of ALGs. This book is not a comprehensive dive into each one,
but here are a few last words on the ALGs. It is not advisable to enable
every ALG. Traffic being processed by an ALG is more expensive
CPU-wise than standard TCP and UDP traffic, for example. If you use
a NAT-friendly technology like STUN for SIP traffic, do not waste CPU
cycles by enabling the SIP ALG since it is not needed.

BEST PRACTICE	 If application traffic tied to an ALG requires nodes on the public side
to reach back in through pinholes, the EIM/EIF features are not
required because the ALG code will open the pinholes itself, in the
same way as the PPTP ALG works. There is no predefined ALG that
requires EIM/EIF.

A recommended NAT configuration for operators that do require EIM/
EIF for their solution would be to define the Junos ALGs required
(under the [edit applications] hierarchy using an application-set):

	 84	 Day One: CGNAT Up and Running on the MX Series

[edit applications]
application-set accept-alg {
    application junos-sip;
    application junos-h323;
    application junos-pptp;
    application junos-rtsp;
    application junos-ftp;
}

Then you can define a rule that matches this application set that does
not use EIM/EIF, and a second rule that matches all other application
traffic that does use EIM/EIF:

[edit services nat]
    rule rule1 {
        match-direction input;
         term ALG {
            from {
                }
                application-sets accept-alg;
            }
            then {
                translated {
                    source-pool nat44;
                    translation-type {
                        napt-44;
                    }
                }
            }
        }
        term non_ALG {
            from {
            }
            then {
                translated {            
                    source-pool nat44;
                    translation-type {
                        napt-44;
                    }
                    mapping-type endpoint-independent;
                    filtering-type {
                        endpoint-independent;
                    }
                }
            }
        }
    }

The topics covered in this final chapter on configuration could have
been included anywhere in this book. They have synergy with the
content of other chapters, but in trying to keep things streamlined
along the way we have moved them to this chapter. Let’s dive into
Chapter 4, and remember you are almost at the end!

Syslog

Syslogging is a very important activity for many service providers who
need to track which subscriber used which public address and port via
their private address and port combos, and at what time they used the
NAT resource. Without syslogging, the service provider has no means
to make this historical match. Syslogging can also be used to log
messages concerning issues that may be occurring in regard to the
CGNAT resources or the health of the service PICs.

The MX Series can write logs pointing to an external syslog server or
logging locally to the Routing Engine (RE) by writing the messages in
the /var/log directory. It is recommended that you write to an external
syslog server instead of the RE due to the limited space on the RE and
the fact that it will now have to process each NAT-based syslog
message sent to it from the service PICs, which, based on the setup,
could be a high volume. In fact, as you go through this chapter, keep in
mind that syslogging puts extra strain on service PIC CPU processing
and that you only should enable syslogging when you feel you need it.
This is one reason many service providers deploy PBA, or the deter-
ministic NAT translation type, since PBA can cut back on the number

Chapter 4

Final Configuration Topics

	 86	 Day One: CGNAT Up and Running on the MX Series

of syslog messages written and deterministic NAT can outright
eliminate needing any syslog messages in regard to NAT sessions being
created and deleted.

Now, onto our syslog setup. There are three key control points set in
the Junos OS hierarchy where the MXs service cards can capture data
to write to syslog:

�� interfaces / service-interface

�� services / service-set

�� services / nat / rule /term

The service-interface is the highest point in the Junos hierarchy that
you can enable the syslog functionality for CGNAT, but this control
point is used for syslogging infrastructure information around the
service interface. This setting will not enable logging of information
pertaining to the creation and deletion of NAT’d sessions.

It should be noted that the syslog messages created under the interfaces
hierarchy can be used to notify you that general issues occurred with
your CGNAT setup. For example, when flow/session limits have been
exceeded, the following would be a syslog message you receive when
syslogging is enabled under the service-interface:

Apr 7 18:01:01 JTAC_setup-re0 (FPC Slot 1, PIC Slot 0) ms10 mspmand[190]: Service set
nat44, flows 750, reached high water mark 75 for maximum flows 1000
Apr 7 18:05:36 JTAC_setup-re0 (FPC Slot 1, PIC Slot 0) ms10 mspmand[190]: Service set
nat44, flows 0, reached low water mark 1 for maximum flows 1000

Remember flow/session limits and SNMP thresholds are set under the
service-set hierarchy:

{master}[edit services service-set nat44]
user@re0# show 
max-flows 1k;
snmp-trap-thresholds {
    flow low 1 high 75;
}

If you enable the syslog under the service interface, the syslog messages
will be enabled across all service sets that use this service interface.
The syslog setting under service-interface allows you to apply filters
on the service to filter out the severity of the events you want to see
written to the syslog. Let’s set the syslog to write to the local host only
for critical issues:

[edit interfaces ms-2/0/0]
services-options {
    syslog {
        host local {
            services critical;
 

	 Chapter 4: Final Configuration Topics	 87

You could have chosen any one of these levels to decide what gets
written:

user@re0# set services ?
Possible completions:
  <[Enter]>            Execute this command
  alert                Conditions that should be corrected immediately
  any                   All levels
  critical             Critical conditions
  emergency            Panic conditions
  error                Error conditions
  info                 Informational messages
  none                 No messages
  notice               Conditions that should be handled specially
  warning              Warning messages

Also under the syslog settings of the service interface you can add a
log-prefix, which prepends the syslog message with the entered string
name, in this case PIC0. This can be useful if you have lots of service
interfaces or many nodes on the network writing to the syslog server,
allowing you to distinguish messages created by certain service inter-
faces if you need to:

[edit interfaces ms-2/0/0]
services-options {
    syslog {
        host local {
            services any;
            log-prefix PIC0;
        }
    }

One key setting you can apply to the service interface that will affect
syslogging from this service PIC is the message-rate-limit feature,
which allows you to scale back the number of syslog messages sent per
second if the services PIC is hitting performance issues. Many service
providers would rather drop syslog messages in order to process NAT
sessions:

[edit interfaces ms-2/0/0 services-options syslog]
user@re0# set ?
 message-rate-limit Maximum syslog messages per second allowed from this interface
(messages per second)

Next, let’s look at the syslogging, which can be enabled at the individu-
al service sets and here is where many operators will look to enable
syslogging with the CGNAT solution since they can actually send
messages here that pertain to the NAT’d sessions. Here you can apply
the log prefix and services filter, but you can also set a class filter which
unlocks the CGNAT specific syslog message.

	 88	 Day One: CGNAT Up and Running on the MX Series

NOTE	 You have to have the services setting be at least at the info level to get
the class messages to write.

Here are the classes you can filter on when using CGANT:

�� nat-logs: Log Network Address Translation events

�� session-logs: Log session open and close events

And here is the filter:

[edit services service-set nat44]
 syslog {
    host local {
        services info;
        class {
            session-logs;
            nat-logs;
        }
    }
}

Note that the other classes that can be set under the service set are not
supported with the CGNAT solution on the MS-MIC or MS-MPC:

user@re0# commit 
re0: 
 [edit services service-set nat44 syslog host local]
  ‘class’
    alg-logs are not supported on ms-interface.

Setting the session logs class will write the messages shown next. You
can see a UDP session being created and then closed out a few minutes
later. Session logs are what you want to employ if you are using
napt44, for example, without PBA and need to log the sessions to see
which private IP address used which pubic IP address and port at a
specific historical time:

Apr 7 17:01:27 JTAC_setup-re0 (FPC Slot 2, PIC Slot 0) 2016-04-07 21:01:26: {nat44}
JSERVICES_SESSION_OPEN: application:none, ge-3/0/2.0 31.0.20.197:55568
[100.100.0.122:62282] -> 197.100.1.149:6332 (UDP)

Apr 7 17:03:37 JTAC_setup-re0 (FPC Slot 2, PIC Slot 0) 2016-04-07 21:03:36: {nat44}
JSERVICES_SESSION_CLOSE: application:none, ge-3/0/2.0 31.0.20.197:55568
[100.100.0.122:62282] -> 197.100.1.149:6332 (UDP)

You should set the NAT logs when you need to track PBA blocks.
Since the PBA feature allocates a block of ports to a private address,
the MX does not need to log the creation and deletion of every session.
So to cut back dramatically on the possible number of syslog messages
created and sent you may remove the class type session logs when the
PBA feature is being used, but make sure you set the class type
nat-logs, though, so you can see the port blocks being allocated when

	 Chapter 4: Final Configuration Topics	 89

assigned to a private subscriber and then released when all of the
sessions and mappings have timed out for the block. Below is an
example of what will be written to the syslog when PBA is being used
and the NAT-log class is set:

Apr 7 17:23:46 JTAC_setup-re0 (FPC Slot 2, PIC Slot 0) 2016-04-07 21:23:45: {nat44}
[jservices-nat]: JSERVICES_NAT_PORT_BLOCK_ALLOC: 31.0.18.96 -> 100.100.0.7:24224-24323
0x5706cfe2

Apr 7 17:28:35 JTAC_setup-re0 (FPC Slot 2, PIC Slot 0) 2016-04-07 21:28:35: {nat44}
[jservices-nat]: JSERVICES_NAT_PORT_BLOCK_RELEASE: 31.0.18.96 -> 100.100.0.7:24224-24323
0x5706cfe2
]:

Now there are several other syslog messages that are written when
using the NAT class outside of the JSERVICES_NAT_PORT_BLOCK_ALLOC and
JSERVICES_NAT_PORT_BLOCK_RELEASE messages that can be used to
historically see what occurred with the NAT solution when viewing the
syslog records.

When the PBA feature is not used, but the nat-logs class is set under
the syslog hierarchy, the MX will create a syslog message when each
port is freed:

Apr 7 15:47:37 archer-MX960-re0 (FPC Slot 1, PIC Slot 0) 2016-09-01 19:47:37: {ss1}
[jservices-nat]: JSERVICES_NAT_POOL_RELEASE: natpool release 100.100.0.7:44429[1]

When using any NAT translation type that employs port address
translation, you will log when a pool is out of ports, meaning the pool
in question is at 100% capacity when the nat-logs class is set under
the syslog hierarchy:

Apr 7 16:55:21 beans (FPC Slot 3, PIC Slot 2) 2015-01-17 00:55:21: {ss5}[jservices-nat]:
JSERVICES_NAT_OUTOF_PORTS: natpool nat_pool5 is out of ports

When using the dynamic nat44 translation type, which, if you remem-
ber, does not use port address translation, log when a pool is out of IP
addresses, meaning the pool in question is at 100% capacity when the
nat-logsnatl class is set under the syslog hierarchy:

Apr 7 16:00:06 beans (FPC Slot 3, PIC Slot 2) 2015-01-17 00:00:05: {ss5}[jservices-nat]:
JSERVICES_NAT_OUTOF_ADDRESSES: natpool nat_pool5 is out of addresses

The last place you can also set syslogging is at the [services nat rule]
level where you can tell the system to log additional NAT log messages
when a given term is hit under a NAT rule. This can be useful for initial
setup or even analysis when you need to know which NAT terms are
actually being used and how often, but it can also create a large
number of syslog messages that may not have much historical rel-
evance. This is why this NAT class syslog message is enabled in this

	 90	 Day One: CGNAT Up and Running on the MX Series

special way. This special syslog message will only get written if syslog-
ging is enabled under the service set configured to use this NAT rule
and if the NAT class is being used for syslog under the service set:

{master}[edit services nat rule rule_1]
user@re0# show 
match-direction input;
term 1 {
    then {
        translated {
            source-pool pool_1;
            translation-type {
                napt-44;
            }
            mapping-type endpoint-independent;
            filtering-type {
                endpoint-independent;
            }
            address-pooling paired;
        }
        syslog;
    }

JSERVICES_NAT_RULE_MATCH: proto 17 (UDP) application: any, ge-3/0/2.0:31.0.21.233:43018 ->
197.100.1.103:6332, Match NAT rule-set: (null), rule: rule_1, term: 1

To verify that the service PIC is writing syslog messages, run the show
services service-sets statistics syslog command:

[edit services service-set nat44]
user@re0# run show services service-sets statistics syslog 
Interface: ms-2/0/0
  Rate limit: 10000
  Sent: 0
  Dropped: 0
  Service-set: nat44
    Sent: 1014530
    Dropped: 0

If you do not set the syslog stanza under services / nat / rule and
services / service-set hierarchy, and only set it at the service interface
level, you will see that it is the functional point where these events are
created:

[edit services service-set nat44]
user@re0# run show services service-sets statistics syslog    
Interface: ms-2/0/0
  Rate limit: 10000
  Sent: 750
  Dropped: 0

	 Chapter 4: Final Configuration Topics	 91

NOTE	 When using deterministic NAT you should not need to set the NAT log
or session log classes. As stated several times in this book, that is where
deterministic NAT shines. You know which private IP address and port
map to which NAT’d public IP address and port. It makes syslogging
practically unnecessary.

Service Filters and Other Filtering Options

So far we have not looked at any ways to control what traffic gets
NAT’d or what really gets steered into the service PICs outside of using
next hop style service sets where you can define what destination
networks are steered to the service PIC. There are some good options
to show you that it can be really helpful, especially for interface style
service sets, since so far the configuration used for interface style drives
all traffic entering or exiting the interface to get serviced based on the
NAT rules direction.

To start, let’s use the example of an operator who doesn’t want you to
NAT ICMP packets. There are three options you can use.

First, if you employ interface style service sets you can create what is
called a service filter and attach it to the physical interfaces so the
ICMP traffic never even goes to the service PIC when ICMP packets
from the private network are received. Note this does not drop the
packet like a firewall filter, it just tells the packet that its next hop is not
the service PIC and it continues along to the egress point without ever
touching the service PIC:

[edit firewall family inet service-filter ICMP]
term t1 {
    from {
        protocol icmp;
    }
    then skip;
}

[edit interfaces xe-0/3/0]
unit 0 {
    family inet {
        filter {
            input counter;
        }
        service {
            input {
                service-set SSET101 service-filter ICMP

The service-filter configuration has a flexible list of match condi-
tions, from source and destination addresses, to protocol, to ports,
to even more granular settings like ICMP options and if a packet is

	 92	 Day One: CGNAT Up and Running on the MX Series

fragmented. The list is quite extensive, making it a very flexible and
powerful feature for choosing what type of traffic you want to get
serviced when using the interface style service set.

Now the second option you can employ to control what traffic gets
serviced is something similar to a service filter but at the service PIC
itself. As you know, you can configure a NAT term under the NAT rule
to not translate traffic based on the source and destination address and
ports. You can also match on the user-define application definitions,
such as ICMP or a set of TCP and or UDP ports. The packets still pass
through the service PIC when using this method, so when using an
interface style service set it is best to employ the service filter at the
interface layer to not cause the service PICs CPU to have to process
packets you are not going to service. Once again, like the service filter,
this method does not drop the packet and it is sent through the MX to
the public network:

[edit applications application ICMP]
protocol icmp;

[edit services nat rule test_rule term t1]
from {
    applications ICMP;
}
then {
    no-translation;
}

These first two types of filtering options may be considered undesirable
to certain operator’s setups because they can show the public world the
private IP address, since NAT has been removed from processing the
ICMP packets but the original un-NAT’d packet still passes through
the MX. The third option is to use the stateful firewall on the service
PIC. By using the stateful firewall you can configure the setup to drop
only traffic from the private network, and only ICMP or even certain
defined ICMP types, if required:

[edit applications application ICMP]
protocol icmp;

[edit services stateful-firewall]
rule SFW_Rule {
    match-direction input-output;
    term t1 {
        from {
            source-address {
                10.0.0.0/8;
            }
            applications ICMP;
        }
        then {

	 Chapter 4: Final Configuration Topics	 93

            discard;
        }
    }
    term t2 {
        then {
            accept;
        }
    }
}

And you attach the stateful-firewall-rule, the one termed SFW-Rule
right under the service--set you are using:

[edit services service-set nat44]
max-flows 7500000;
stateful-firewall-rules SFW_Rule;
nat-rules rule2;
interface-service {
    service-interface ms-2/0/0;
}

This third option of using the stateful firewall does have the packet
land on the service PIC, but since the stateful firewall application runs
on the service PIC just like the NAT engine does, it still takes up CPU
cycles, although it does allow you to discard the traffic and not for-
ward it.

Setting Up Load Balancing

Load balancing is used when you have the potential for more data or
packets per second to be passed through a service PIC than a single
service PIC alone can handle. Enabling load balancing allows you to
spread the sessions to be NAT’d among multiple service PICs using a
hash (#) to steer the data based on the private source IP address being
sent from the CPE. This leads to a pretty even distribution among
service PICs setup in the load-balanced scenario.

The load balancing setup can also be used as a form of redundancy
when you need to make sure your traffic is able to flow to a service PIC
if one of the other service PICs in your system goes down for some
unexpected reason. It should be noted that load balancing does not
offer a shared state scenario, meaning if a service PIC does go down the
sessions need to be recreated on the other service PICs using a different
NAT pool. That’s because the NAT’d IP, and potentially also the port
traffic, will take a momentary hit as the applications on the client end
establish new sessions to the public servers with the new NAT’d IP and
port information. Still this scenario should be preferred to having all
sessions stop, while going through the MX until the offending service
PIC is recovered.

	 94	 Day One: CGNAT Up and Running on the MX Series

There are two ways to achieve this, starting first with the AMS (aggre-
gate multi-service) interface. This whole book has been about setting
up CGNAT service sets to use a single MS interface. But what if you
want to load balance the traffic across many MS interfaces? What if
you want to have redundancy so if a service PIC encounters an issue its
traffic can be picked up by another healthy service PIC? These are
functions the AMS interface performs.

Let’s start by looking at a simple load--balancing scenario. Assume you
have a single service set configured on your MX and you have a single
MS-MPC card in slot 2. That card has four service PICs so let’s employ
all four. Add the MS interfaces to the AMS bundle by calling out the
MS interfaces as a MAMS (member aggregate multi-service) interface.
Your standalone MS interface MS-2/0/0, which is service PIC number
0 in the MS-MPC card that you have been using throughout this book
and will be known as mams-2/0/0 in the AMS bundle. The service PIC in
slot 1 of that MS-MPC card will be known as mams-2/1/0 and so on. So
here is what the AMS bundle will look like when configured for
load-balancing in a next hop style service set:

{master}[edit interfaces ams0]
load-balancing-options {
    member-interface mams-2/0/0;
    member-interface mams-2/1/0;
    member-interface mams-2/2/0;
    member-interface mams-2/3/0;
}
unit 1 {
    family inet;
    service-domain inside;
}
unit 2 {
    family inet;
    service-domain outside;
}

NOTE	 When enabling the AMS interface, the AMS MAMS cannot have the
same unit configured as their parent MS interface. So if you enable unit
1 and unit 2 under your AMS bundle containing a MAMS, that is also
configured as a standalone MS interface, and make sure that the MS
interface does not have unit 1 and/or a 2 also enabled, or else you will
get a commit error. Here’s an error example:

{master}[edit]
user@re0# commit 
re0: 
[edit interfaces ams0]
  ‘unit’
    ams0 and ms-2/0/0 can’t share  unit(1)
error: configuration check-out failed 

	 Chapter 4: Final Configuration Topics	 95

Setting up the AMS on an interface style service set is a bit different.
You have to define the hashing used here for load balancing the traffic.
When using a next hop style, the ECMP logic used on the PFE will load
balance traffic passed into the AMS bundle.

Under the service-set for interface style you must set the load-balanc-
ing-option with a hash of ingress-key source-ip for source NAT’d
traffic and egress-key destination-ip for NAT destination traffic. There
are other options you can configure and use in regard to the AMS
interface and what it should key off of for load balancing. But for the
CGNAT use case you want to use only the ingress-key source-ip and
egress-key destination-ip to make sure that all the traffic from a given
private IP address is always sent to the same MAMS interface to make
sure features like certain ALGS and settings like address-pooling paired
work as expected by using the same NAT’d IP address for all traffic
originated from that private client:

[edit services service-set nat44]
nat-rules rule_1;
interface-service {
    service-interface ams0.1;
    load-balancing-options {
        hash-keys {
            ingress-key source-ip;
            egress-key destination-ip;
        }
    }
} 

NOTE	 If you do not set these options when using an AMS interface with an
interface style service set you will get this commit error:

[edit services]
  ‘service-set nat44’
    service-set policies inconsistent for ams-interface
error: configuration check-out failed 

NOTE	 The AMS interface for an interface style service set must use a sub-unit
and this cannot be unit 0. So configure any free unit under the AMS and
set family inet against the unit. In the preceding configuration example
unit 1 was used, as shown with service-interface ams0.1.

Along with load balancing, you could also set up redundancy to try and
make traffic loss as minimal and as least disruptive as possible if a
service PIC goes offline. What will happen on the MX with the next
example when traffic is load balanced across mams-2/0/0, mams-2/1/0,
and mams-2/2/0? If one of these service PICs has an issue and goes
offline mams-2/3/0 will handle all of the traffic that was being steered
through the mams interface that just went down. This was done by

	 96	 Day One: CGNAT Up and Running on the MX Series

calling out mams-2/3/0 as the preferred-backup under the high-avail-
ability-options and many-to-one hierarchy:

[edit interfaces ams0]
user@re0# show 
load-balancing-options {
    member-interface mams-2/0/0;
    member-interface mams-2/1/0;
    member-interface mams-2/2/0;
    member-interface mams-2/3/0;
    high-availability-options {
        many-to-one {
            preferred-backup mams-2/3/0;
        }
    }
}

You can verify the current status of the AMS bundle with the follow-
ing command:

user@re0# run show interfaces load-balancing ams0 detail    
Load-balancing interfaces detail
Interface        : ams0       
  State          : Up               
  Last change    : 00:01:48     
  Member count   : 4            
  HA Model       : Many-to-One  
  Members        :
      Interface    Weight   State
      mams-2/0/0   10       Active 
      mams-2/1/0   10       Active 
      mams-2/2/0   10       Active 
      mams-2/3/0   10       Backup

Let’s’ show you how this works. Here is the NAT pool being used by
the NAT rule attached to our service set using the AMS bundle:

user@re0# run show configuration services nat pool pool_1 
address 100.100.0.0/25;
port {
    automatic {
        random-allocation;
    }
}

There are three MAMS interfaces active as primary and one as back-
up. The NAT pool will be split between the three primary MAMS
interfaces. You can see below how the pool is broken into individual
segments and each segment will be assigned to one MAMS interface:

user@re0# run show services nat pool detail 
Interface: mams-4/0/0 (ams0), Service set: nat44
  NAT pool: pool_1, Translation type: NAPT-44
    Address range: 100.100.0.1-100.100.0.42
    Configured port range: 0-0
    Port range: 1024-65535, Ports in use: 0, Out of port errors: 0, Max ports used: 0

	 Chapter 4: Final Configuration Topics	 97

    AP-P port allocation errors: 0
    Memory allocation errors: 0

Interface: mams-4/1/0 (ams0), Service set: nat44
  NAT pool: pool_1, Translation type: NAPT-44
    Address range: 100.100.0.43-100.100.0.84
    Configured port range: 0-0
    Port range: 1024-65535, Ports in use: 0, Out of port errors: 0, Max ports used: 0
    AP-P port allocation errors: 0
    Memory allocation errors: 0

Interface: mams-4/2/0 (ams0), Service set: nat44
  NAT pool: pool_1, Translation type: NAPT-44
    Address range: 100.100.0.85-100.100.0.126
    Configured port range: 0-0
    Port range: 1024-65535, Ports in use: 0, Out of port errors: 0, Max ports used: 0
    AP-P port allocation errors: 0
    Memory allocation errors: 0

Now if one service PIC goes offline for any unexpected reason, the
backup MAMS interface will take over management of that pool.
There is no traffic redistribution performed on the existing healthy
service PICs – their sessions remained unchanged – although traffic on
the service PIC that went down needs to be freshly installed on the
backup service PIC that has now taken over. The backup member
replaces the failed active member. In terms of traffic takeover, the
backup is like a freshly-booted PIC, so all sessions that are now
dropped from the previous primary MAMs interface that went down
are now steered to the backup MAMS. These sessions have to re-estab-
lish, so traffic may be NAT’d’ differently, meaning long lived flow and
open pinholes will no longer be present and new NAT’d IPs and ports
will be assigned to each session. Your SIP and XBOX registration needs
to be recreated by the private client end and any long-lived HTTP
connections, for example, to banking websites, will be interrupted.
Redundancy still has traffic interrupting since the AMS bundle is not
stateful redundancy.

But what happens when you are just using the AMS bundle for load-
balancing, not redundancy, and a service PIC goes offline? By default,
for 120 seconds, all traffic is dropped that is being steered to that PIC
just in case it comes back online quickly. Then it will redistribute the
traffic to the other PICs that are still up. The IP addresses in the NAT
pool being used by the interface that went offline will not be redistrib-
uted, just the sessions will. When the service PIC recovers the operator
needs to manually tell the system to put that service PIC back into the
AMS bundle, like this example that shows re-adding mams-4/1/0 after
it went down:

user@re0# run request interface load-balancing revert mams-4/1/0 
request succeeded

	 98	 Day One: CGNAT Up and Running on the MX Series

If you want the MAMS interface to be able to rejoin right away after it
recovers, set the member-failure-options drop-member-traffic enable-
rejoin, but note this is not the default option, and you must set this as
the desired behavior:

[edit interfaces ams0]
user@re0# show 
load-balancing-options {
    member-interface mams-4/0/0;
    member-interface mams-4/1/0;
    member-interface mams-4/2/0;
    member-interface mams-4/3/0;
    member-failure-options {
        drop-member-traffic {
            enable-rejoin;
        }
    }
}

You can also have the sessions be redistributed instantly to the existing
MAMS interfaces that are still up once the service PIC in question is
seen as being down by enabling the member-failure-options redistrib-
ute-all-traffic enable-rejoin. This changes the default behavior of
waiting 120 seconds before redistribution, in case the service PIC
recovers quickly, to the traffic being redistributed instantly:

{master}[edit interfaces ams0]
user@re0# show 
load-balancing-options {
    member-interface mams-4/0/0;
    member-interface mams-4/1/0;
    member-interface mams-4/2/0;
    member-interface mams-4/3/0;
    member-failure-options {
        redistribute-all-traffic {
            enable-rejoin;
        }
    }
}

NOTE	 When using redundancy versus just load balancing, always remember
the default behavior is to instantly redistribute the session to the
backup MAMS interface. The default behavior acts like this setting:

member-failure-options {
redistribute-all-traffic

Let’s say a second MS-MPC card has been added in FPC slot 4. So let’s
set up two AMS interfaces and use two service PICs from each MS-
MPC card in each AMS bundle. This will allow us to load balance traf-
fic across three of the MAMs interfaces while leaving the fourth as a
redundant backup. Each AMS bundle can be added to its own unique
service set:

	 Chapter 4: Final Configuration Topics	 99

[edit interfaces ams0]
user@re0# show 
load-balancing-options {
    member-interface mams-2/0/0;
    member-interface mams-2/1/0;
    member-interface mams-4/0/0;
    member-interface mams-4/1/0;
    member-failure-options {
        drop-member-traffic;
    }
    high-availability-options {
        many-to-one {
            preferred-backup ms-4/1/0;
        }
    }
}

[edit interfaces ams1]
user@re0# show 
load-balancing-options {
    member-interface mams-2/2/0;
    member-interface mams-2/3/0;
    member-interface mams-4/2/0;
    member-interface mams-4/3/0;
    member-failure-options {
        drop-member-traffic;
    }
    high-availability-options {
        many-to-one {
            preferred-backup ms-4/3/0;
        }
    }
}

In general, one final note about using the AMS interfaces is that the
number of NAT’d IP addresses must be greater or equal to the number
of MAMS interfaces that you have added to the AMS bundle for load
balancing. The NAT pools are split among the MAMS members of the
AMS bundle but they are split by IP address, meaning each MAMS will
have one or more NAT IP addresses from the NAT pool that it is
responsible for. The solution does not split a single IP up against
multiple MAMS interfaces via a port range or anything else along
those lines. You will receive a commit if you try something like setting
a NAT pool with only three addresses against four load-balanced
MAMS interfaces:

user@re0# commit 
re1: 
error: AMS-NAT constraint check failed for pool pool1 service-set nat44 interface ams0
size of the pool should be >=  AMS configured active member count
[edit services]
  ‘service-set nat44’
    service-set policies inconsistent for ams-interface
error: configuration check-out failed

	 100	 Day One: CGNAT Up and Running on the MX Series

Beyond the AMS interface and what it brings to your table, you can
also load balance traffic to several individual next hop style service sets
that are configured to use MS interfaces. First you need to set up the
forwarding-option hierarchy that allows you to load balance based on
the source-address:

[edit forwarding-options]
enhanced-hash-key {
    services-loadbalancing {
        family inet {
            layer-3-services {
                source-address;
            }
        }
    }
}

Then you need to set up the policy that will load balance per session.
Do not worry that the key word is per-packet this will actually work
per session:

[edit policy-options policy-statement lb]
term t1 {
    then {
        load-balance per-packet;
    }
}

Then in the default routing instance you need to add this just-created
policy to the forwarding table:

[edit routing-options]
forwarding-table {
    export lb;

Using the next hop style (not interface style) for the service sets, let’s
add our inside service interfaces and the private client-facing ingress
interfaces that will receive data to our virtual router called client.
Here you add a static route for the destination traffic you want to get
NAT’d, and the next hop will be the service interfaces you want added
to the load balance pool to be chosen from:

[edit routing-instances client]
instance-type virtual-router;
interface xe-3/1/0.0;
interface xe-4/2/1.0;
interface ms-2/0/0.1;
interface ms-2/1/0.1;
routing-options {
    static {
        route 70.100.0.0/24 next-hop [ ms-2/0/0.1 ms-2/1/0.1 ];
    }
}

	 Chapter 4: Final Configuration Topics	 101

Looking at our services setup for this example, you now have two
service-sets, each calling a different NAT Rule:

[edit services]
service-set nat44_a {
    nat-rules rule1;
    next-hop-service {
        inside-service-interface ms-2/0/0.1;
        outside-service-interface ms-2/0/0/0.1;
    }
}
service-set nat44_b {
    nat-rules rule2;
    next-hop-service {
        inside-service-interface ms-2/0/0.1;
        outside-service-interface ms-2/0/0.1;
    }
}

Let’s also break out the NAT pool into two pools. Each with half of the
public IP addresses used:

[edit services]
nat {
    pool nat44_a {
        address-range low 156.100.0.1 high 156.100.0.10;
        port {
            automatic {
                random-allocation;
            }
    }

    pool nat44_b {
        address-range low 156.100.0.11 high 156.100.0.20;
        port {
            automatic {
                random-allocation;
            }
    }

Now create our two NAT rules so that each one calls one of our NAT
pools:

    rule rule1 { 
        match-direction input;
        term t1 {
            from {
                source-address {
                    10.0.0.0/8;
                }
            }
            then {
                translated {
                    source-pool nat44_a;
                    translation-type {
                        napt-44;
                    }

	 102	 Day One: CGNAT Up and Running on the MX Series

                }
            }
        }
    }

    rule rule2 {
        match-direction input;
        term t1 {
            from {
                source-address {
                    10.0.0.0/8;
                }
            }
            then {
                translated {
                    source-pool nat44_b;
                    translation-type {
                        napt-44;
                    }
                }
            }
        }
    }

This setup should work for most scenarios, but one of the main
weaknesses is whether you have limited public IP addresses that you
can add to your NAT pool, and an issue may arise when redundancy
has kicked in. Spreading your IP pool out to two pools for load balanc-
ing should not be an issue since you are evenly distributing the sessions
across the service PICs. But if one service PIC goes down, you are now
using only half of all the available IP addresses for your NAT’d sessions
until that service PIC recovers, which could mean certain sessions
cannot get an available NAT’d IP address if the pool becomes exhaust-
ed. Still, this should be preferred to no sessions passing through the
box.

When setting up load balancing it will probably be the preferred option
to use one service set employing the AMS interface, but you have
options here, and the operator can make the right choices for your
network needs.

Massachusetts Telecom will be our sample use case as they too have
read this book and will decide how they are going to configure their
MX to fit their NAT needs.

Massachusetts Telecom (MassT) is a mobile and wire line provider that
has been very successful. Too successful, in fact, and they are now
hitting an IPv4 exhaustion point. They need a NAT solution to help
utilize their limited IPv4 resources. But they have other NAT needs.
They also host some servers in their network that the owners want to
keep secure and hidden from the public. On top of that they also have
a DMZ design where traffic routed from a specific network and
destined to a cloud data center (managed by MassT) will be NAT’d.

NAT the Data Center

The first NAT setup requirement is for the data center where their
partner has requested IP traffic from 100.0.0.0/16 to get NAT’d to
156.0.0.0, due to business requirements for hosting the cloud data
center. The IP addresses that will be used in the NAT pool are not part
of MassT’s routable block: the data center itself sits on a private
network. Also, the clients that need to access the data center are from a
known defined IP range. So MassT can use a one-to-one NAT setup.
This will be a simple case of inline NAT, so a MPC line card will be
used, but no service card will be needed. MassT has a MPC card in slot
3 that has four PFEs, so they are good to move forward. The interface
xe-3/3/0 is the ingress point where the traffic from 100.0.0.0/16,
destined to the data center, will ingress the MX Series.

Chapter 5

Example Use Case

	 104	 Day One: CGNAT Up and Running on the MX Series

First enable the inline services for FPC3, PIC 3, and create a si inter-
face to use to tie the service-set to this PFE:

[edit chassis]
fpc 3 {
    pic 3 {
        inline-services {
            bandwidth 10g;
        }
    }

}

[edit interfaces si-3/3/0]
unit 0 {
    family inet;
}

Next, create a service-set (called static_nat), and attach the si-3/3/0
interface to this service set, creating a NAT rule name called static_
rule:

[edit services]
service-set static_nat {
    }
    nat-rules static_rule;
    interface-service {
        service-interface si-3/3/0.0;
    }
}

After the service set is created, define the NAT rule static_rule. Note
that the plan is to attach this service set to the interface facing the client
network 100.0.0./16, whose ingress traffic requires NATing, so set the
match-direction as input.

This rule must define the private network under the source-address
field since it is used for basic-nat44, a one-to-one static NAT type.
Then create the NAT pool static_nat44 and attach it to the NAT rule
static_rule:

nat {
    pool static_nat44 {
        address 156.0.0.0/16;
    }
    rule static_rule {
        match-direction input;
        term t1 {
            from {
                source-address {
                    100.100.0.0/16;
                }
            }
            then {
                translated {
                    source-pool static_nat44;

	 Chapter 5: Example Use Case	 105

                    translation-type {
                        basic-nat44;
                    }
                }
            }
        }
    }
}

The final task is to attach the service set to the physical interface facing
the private clients:

[edit interfaces xe-3/3/0]
description “direct to subscriber CPE”;
unit 0 {
    family inet {
        service {
            input {
                service-set static_nat;
            }
            output {
                service-set static_nat;
            }
        }
        address 139.97.68.42/30;
    }
}

Part of this configuration could have gone a different way. The NAT
rule could have been configured to be match-direction output and
attached the interface style service-set to the interface facing the cloud
data center, where this traffic will egress the MX, instead of using the
interface facing the private clients whose ingress traffic needs to access
the data center through the MX. For example, it could have been done
this way:

[edit interfaces xe-3/3/1]
description “direct to data center”;
unit 0 {
    family inet {
        service {
            input {
                service-set static_nat;
            }
            output {
                service-set static_nat;
            }
        }
        address 220.220.220.1/24;
    }
}
nat {
    }
    rule static_rule {
        match-direction output;

	 106	 Day One: CGNAT Up and Running on the MX Series

IPv4 Address Exhaustion

The next item up is to address MassT’s IPv4 address exhaustion issue.
MassT will implement an interface style service set using a dynamic
NAT type with PAT, and set this against their AE0.1 interface, which
contains the physical interfaces facing their private network where
their paying customers sit and where their traffic ingresses the MX
when destined to the Internet. A dynamic NAT with PAT setup
requires they use a service card and MassT has purchased two MS-
MPC cards for their MX-960. For this setup, MassT will use MS-MPC
cards in slot 10 and 11 under a load-balanced AMS interface.

First things first; they set up their AMS bundle and attach the second
service PIC from FPC 10 and 11:

{master}[edit interfaces ams0]
load-balancing-options {
    member-interface mams-10/1/0;
    member-interface mams-11/1/0;
    member-failure-options {
        redistribute-all-traffic {
            enable-rejoin;
        }
    }
}
unit 1 {
    family inet;
}

Next up, they attach a service-set called napt44 under AE0 unit 1,
which is where all of their private clients’ traffic ingresses the MX:

[edit interfaces ae0]
description “direct to subscriber CPEs”;
unit 1 {
    family inet {
        service {
            input {
                service-set napt44;
            }
            output {
                service-set napt44;
            }
        }
        address 139.97.68.42/30;
    }

Now create the service-set called napt44, and attach a NAT rule called
internet_rule and then attach the ams.1 interface. Remember, with
the AMS bundles, unlike the MS interfaces or the SI interfaces, you
have to add the load balancing logic here in the service set. Add the
logic to hash off of source IP for the ingress-key since this is a source
NAT type:

	 Chapter 5: Example Use Case	 107

[edit services]
service-set nat44 {
    nat-rules internet_rule;
     interface-service {
        service-interface ams.1;
        load-balancing-options {
            hash-keys {
                 ingress-key source-ip;
                 egress-key destination-ip;
             }
         }
     }

Moving on, let’s create that NAT rule called internet_rule. Simply add
the translation-type of natp44 for dynamic NAT with PAT, and then
create a NAT Pool that will attach to this NAT rule. In this case the
NAT pool will be called natpat44. Assign the NAT’d IP addresses in a
round-robin fashion and the ports will be allocated randomly:

nat {
    pool natpat44 {
        address 180.100.100.0/25;
        port {
            automatic {
                random-allocation;
            }
        address-allocation round-robin;
    }

    rule internet_rule {
        match-direction input;
        term t1 {
            }
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
                }
            }
        }
    }

Creating a Service Filter

Once the interface style service set has been deployed, MassT sees
some potential issues with using the interface style for their consumer-
facing interfaces. That’s because some of their consumers still have
public addresses assigned to them, so the private IPv4 scheme of
10.10.0.0/16 being rolled out is not yet out to 100% of its consumers.
In addition, there is a service complex within MassT’s network that sits

	 108	 Day One: CGNAT Up and Running on the MX Series

on a private range of 172.100.100.0/24 that the consumers may need
to access. Traffic destined to 172.100.100.0/24 does not need to be
NAT’d.

So MassT creates a service-filter they can apply to the AE0.1
interface. It skips servicing any traffic destined to the
172.100.100.0/24 network first, since MassT sees no reason to take up
any cycles on the service PICs with this traffic that does not need to be
NAT’d. The next thing the filter does is make sure any traffic coming
from 10.10.0.0/16 that has not hit the first term (being destined to
172.100.100.0/24) gets NAT’d. The third and final term then makes
sure all other traffic does not get NAT’d, so this should be the traffic
generated from the consumers that are still using public addresses:

[edit firewall family inet service-filter private_network]
term 1 {
    from {
        destination-address {
            170.100.100.0/24;
        }
    }
    then skip;
}
term 2 {
    from {
        source-address {
            10.10.0.0/16;
        }
    }
    then service;
}
term 3 {
    then skip;
}

Then attach this service-filter to the AE0.1 interface:

[edit interfaces ae0]
description “direct to subscriber CPEs”;
unit 1 {
    family inet {
        service {
            input {
                service-set napt44 private_network;
            }
            output {
                service-set napt44 
            }
        }
        address 139.97.68.42/30;
    }

	 Chapter 5: Example Use Case	 109

Changing to Next Hop Style Service Sets

The current setup is working just fine now, but let’s say MassT decides
to make a drastic change to their configuration and move to the next
hop style service sets, allowing them to control which traffic based on
destination route actually goes to the service PICs. Though they will
lose the ability to use service filters to steer traffic based on the source
address (so the Internet routable clients’ traffic will get steered to the
service PIC even though the MX will not NAT their traffic), MassT
makes the trade-off. Why? Because they will add two separate routing
instances to help manage and visualize their setup, one routing in-
stance will face the private networks, the other will face the data
center, the service complex, and the Internet. First, under their AMS
and SI interfaces they create a service-domain inside and service-do-
main outside unit:

{master}[edit interfaces ams0]
unit 1 {
    family inet;
    service-domain inside;
}
unit 2 {
    family inet;
    service-domain outside;
}

[edit interfaces si-3/0/0]
unit 1 {
    family inet;
    service-domain inside;
}
unit 2 {
    family inet;
    service-domain outside;
}

Next they remove the interface style service sets from the interfaces
they were attached to:

[edit interfaces ae0.1]
unit 0 {
    family inet {
        address 139.97.68.42/30;
    }
}

[edit interfaces xe-3/3/0]
description “direct to subscriber CPE”;
unit 0 {
    family inet {
        address 139.97.68.42/30;
    }
}

	 110	 Day One: CGNAT Up and Running on the MX Series

Then they convert the service sets to next hop style service sets by
attaching inside-service interface and outside-service interfaceser-
vice:	

[edit services]
service-set static_nat {
  nat-rules static_rule;
  next-hop-service {
        inside-service-interface si-3/0/0.1;
        outside-service-interface si-3/0/0.2;
    }
}
service-set nat44 {
    }
    nat-rules internet_rule;
    next-hop-service {
        inside-service-interface ams0.1;
        outside-service-interface ams0.2;
    }
}

Finally, they change to the dynamic NAT rule to make sure they don’t
NAT traffic from anything but the private network of 10.10.0.0/16,
adding the from/source-address stanza to the NAT rule created earlier
called internet_rule:

    rule internet_rule {
        match-direction input;
        term t1 {
            from {
                source-address {
                    10.10.0.0/16;
                }
            }
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
                }
            }
        }
    }
}

To finish off the configuration they create two routing-instances, one
called Client, which will host the client-facing interfaces and the inside
service domain service interfaces, and a second, called Public, that will
host the Internet-facing interfaces and the outside service domain
interfaces:

	 Chapter 5: Example Use Case	 111

[edit routing-instances Client]
instance-type virtual-router;
interface ae0.1
interface xe-3/3/0.0;
interface ams0.1
interface si-3/0/0.1;
routing-options {
    static {
        route 110.100.100.0/24 next-hop si-3/0/0.1;
        route 0.0.0.0/0 next-hop ams0.1;
    }
}

[edit routing-instances Public]
user@re0# show 
instance-type virtual-router;
interface xe-3/0/0.0;
interface xe-3/0/2.0;
interface xe-3/1/0.0;
interface ams0.2
interface si-3/0/0.2;

Enabling EIM With EIF

Now MassT can finish off their general router configuration and add
their routing protocols to VR2 or whatever configuration they feel may
be needed. And MassT is in business with their MX960 NATing the
desired traffic.

But they are getting complaints from their subscribers that they cannot
send data to one another via applications like Apple FaceTime, XBOX
live, Skype Torrents, PlayStation peering, and other applications that
were previously working fine for MassT’s clientele until the move to
NAT was done.

MassT realizes that they need to enable EIM with EIF for their NAT
rule that is being used to handle traffic destined to the Internet. They
need to allow nodes sitting on the outside to reach back into the
private side and contact a private CPE based on their NAT’d IP
address, which is very important for registration like services and
applications as seen in the list of failing solutions. The private client
will register itself with a register server using its NAT’d IP address, but
the public clients who find out how to reach this private client through
its NAT’d address cannot initiate a traffic session to the private client
through its NAT’d address since there is not an open pinhole for them
to use. By default, the only pinhole open will be the one to the registra-
tion server since that is the destination the private client connected to.

	 112	 Day One: CGNAT Up and Running on the MX Series

So MassT adds Endpoint Independent Mapping and Endpoint Inde-
pendent Filtering to their rule, like this:

      rule internet_rule {
        match-direction input;
        term t1 {
            from {
                source-address {
                    100.100.0.0/16;
                }
            }
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
                   mapping-type endpoint-independent;
                   filtering-type {
                        endpoint-independent;
                    }
                }
            }
        }

Adding ALG

MassT is still not servicing their private end users’ needs. They also
have consumers who use applications like SIP, RTSP, FTP, and PPTP
which are not NAT-friendly. The good folks at MassT have to take
these applications into consideration through their MX Series NATing
device. The traffic from these protocols requires ALG logic to rewrite
the application layer portion of the packet, or to open the needed
pinholes.

So MassT sets a rule that NAT’s the defined ALG traffic first, and a
more generic rule that uses EIM secondly, since EIM is not needed by
the ALGs to function because the ALG handles the EIM logic on its
own. And MassT will not configure EIM for their ALGs.

First they define an application-set called ALG underneath the applica-
tions hierarchy:

[applications]
        application-set ALG {
            application junos-ftp;
            application junos-pptp;
            application junos-sip;
            application junos-rtsp;
        
    }
    

	 Chapter 5: Example Use Case	 113

Then they create a new NAT term under the NAT rule called alg and
add the application-set under the from stanza. This term needs to go
before the more generic term called t1 that’s been used, so make sure
the term alg is first in order:

[nat services nat]
     rule internet_rule {
        match-direction input;
					 term alg {
						 from {
              source-address {
                  100.100.0.0/16;
              }
							 application-sets ALG;
						 }
						 then {
							 translated {
								 source-pool napt-44;
translation-type {
	 napt-44;
}
	
         term t1 {
            from {
                source-address {
                    100.100.0.0/16;
                }
            }
            then {
                translated {
                    source-pool natpat44;
                    translation-type {
                        napt-44;
                    }
                   mapping-type endpoint-independent;
                   filtering-type {
                        endpoint-independent;
                    }
                }
            }
        }

Using the Port Block Allocation Feature

MassT now wants to have a way to historically track which private IP
addresses and ports were mapped to which public NAT IP addresses
and ports from their dynamic pool natpat44. But they are concerned
about lots of sessions being created and deleted because it could create
a lot of overhead on the syslog server. So MassT wants to implement
the PBA feature to make it more efficient. They go into the pool
natpat44 and they create port blocks that are 1024 ports in size allow-
ing a max of six blocks to be allocated to each subscriber, like this:

	 114	 Day One: CGNAT Up and Running on the MX Series

pool natpat44 {
        address 180.100.100.0/25;
                  port {
                          range low 1024 high 65535 random-allocation;
                          secured-port-block-allocation block-size 1024 max-blocks-per-
address 6;
  }
        address-allocation round-robin;
    }

But where MassT is thinking that their problem is with their public IP
addresses – they just do not have that many of them. So they are going
make the pool a bit smaller, like this:

pool natpat44 {
        address-range low 180.100.100.1 high 180.100.100.100
        port {
            range low 1024 high 65535 random-allocation;
            secured-port-block-allocation block-size 1024 max-blocks-per-address 6;
        }

Was this a wise move? Does MassT have enough IP addresses now and
did they have enough to begin with?

Since they are using the Port Block Allocation (PBA) feature you can
look at this a bit differently when trying to find the sweet spot on how
many IP addresses you should use in the pool. Each service PIC on the
MS-MPC card can handle 30 million sessions. Remember the single
service-PIC on the MS-MIC card can handle 15 million sessions. So
normally, large IP ranges assigned to a NAT pool do not help and end
up wasting IP addresses that could be used elsewhere. Think about a /22
address – 1022 host IP addresses that can be used with 64511 non-priv-
ileged ports each, so that would be a total of 65,930,242 sessions. Each
PIC cannot handle that many sessions so you would, under normal
circumstances, be better off using a /23 address. There are times when
breaking this rule can be useful, such as when using deterministic NAT
or the PBA feature.

Let’s look at a PBA example, since MassT just changed over to PBA and
they made their pools smaller. What does this possibly mean for their
end users?

MassT now has 100 IP addresses available with a port block size of
1024 and 64511 ports available per IP. So MassT has 62 port blocks
per NAT pool IP address when looking at their block range of 1024
against 64511 ports, so 62 blocks against 100 IP addresses in the pool
says that they can have 6200 private subscribers, at most, managed by
this pool concurrently.

Overall this setup allows you to have over 16,221,928 sessions, which

	 Chapter 5: Example Use Case	 115

is only half of what the service PIC can handle, so there is room to
grow, meaning MassT can add more public IP addresses to the pool in
the future if they need to. But for now, if they feel their average sub-
scribers typically use less than 1024 active sessions, or if they feel they
would have less than 6200 private subscribers coming through the box
at peak hours, they are okay.

Now that they are live, before making any further changes to their
NAT Pool MassT should, at a minimum, always check to see how
many active subscribers they have, who their peak active subscribers
are, and how many ports and sessions are actually being used. This will
give them an idea of how to proceed. At a minimum, run the show
services sessions count command or the show services sessions
analysis command to get that insight.

Even better, MassT should look to monitor the service PIC using
SNMP so they have historical data especially around the peak hours.

Using SNMP

Let’s look at using SNMP to help manage the MassT setup.

When using SNMP to monitor the CGNAT solution on the service
cards start at the hierarchy 1.3.6.1.4.1.2636.3.59, which in the tree is
the services MIB root:

1.3.6.1.4.1.2636.3.59
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59)}

From there you drop down to 1, which is the NAT services root of the tree. When in doubt on
what OID to grab you can just walk 1.3.6.1.4.1.2636.3.59.1 and down:
1.3.6.1.4.1.2636.3.59.1
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1)

And under the NAT MIB there are three branches, or children, to the
NAT hierarchy: Notifications, Objects, and Traps! Notifications are
for thresholds. Traps are, well, the TRAPS! Objects are for nearly
everything else you as the operator would want to monitor and
manage the solution:

NAT child OIDs:
jnxNatNotifications (0)
jnxNatObjects (1)
jnxNatTrapsVars (2)

1.3.6.1.4.1.2636.3.59.1.0.1

	 116	 Day One: CGNAT Up and Running on the MX Series

{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1) jnxNatNotifications(0)
jnxNatAddrPoolThresholdStatus(1)}

1.3.6.1.4.1.2636.3.59.1.1
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1) jnxNatObjects(1)

Let’s see what is under the NAT object child:
NAT Objects child OIDs:
jnxSrcNatStatsTable (1)
jnxNatRuleTable(2)
jnxNatPoolTable (3)

1.3.6.1.4.1.2636.3.59.1.1.1.1
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1) jnxNatObjects(1) jnxSrcNatStatsTable(1)
jnxSrcNatStatsEntry(1)}

Src Nat Stats Entry Child OIDs:
jnxNatSrcPoolName(1)
 jnxNatSrcXlatedAddrType(2)
 jnxNatSrcPoolType(3)
 jnxNatSrcNumPortAvail(4)
 jnxNatSrcNumPortInuse(5)
 jnxNatSrcNumAddressAvail(6)
 jnxNatSrcNumAddressInUse(7)
 jnxNatSrcNumSessions(8)

1.3.6.1.4.1.2636.3.59.1.1.2.1
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1) jnxNatObjects(1) jnxNatRuleTable(2)
jnxNatRuleEntry(1)}

1.3.6.1.4.1.2636.3.59.1.1.3.1
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1) jnxNatObjects(1) jnxNatPoolTable(3)
jnxNatPoolEntry(1)}

1.3.6.1.4.1.2636.3.59.1.2
{iso(1) identified-organization(3) dod(6) internet(1) private(4) enterprise(1) 2636
jnxMibs(3) jnxSvcsMibRoot(59) jnxNatMIB(1) jnxNatTrapVars(2)}

NAT Objects child OIDs:
jnxNatAddrPoolUtil(1)
jnxNatTrapSrcPoolName(2)

Okay let’s walk the jnxNatMibs to look at some example output:

	 Chapter 5: Example Use Case	 117

user@re0# run show snmp mib walk ascii 1.3.6.1.4.1.2636.3.59.1
jnxNatSrcXlatedAddrType.”pool1” = 1
jnxNatSrcPoolType.”pool1” = 2
jnxNatSrcNumPortAvail.”pool1” = 7483392
jnxNatSrcNumPortInuse.”pool1” = 0
jnxNatSrcNumAddressAvail.”pool1” = 116
jnxNatSrcNumAddressInUse.”pool1” = 0
jnxNatSrcNumSessions.”pool1” = 1203
jnxNatRuleType.”rule1:1” = 4
jnxNatRuleTransHits.”rule1:1” = 2609398
jnxNatPoolType.”pool1” = 4
jnxNatPoolTransHits.”pool1” = 2609398

Notes:

�� This means you have a NAT Pool called pool1 that has 116 IP
addresses available to be NAT’d:

jnxNatSrcNumAddressAvail.”pool1” = 116

�� This shows you the total number of active sessions using this
pool:

jnxNatSrcNumSessions.”pool1” = 1203

�� The jnxNatSrcNumAddressInUse always remains 0 if natp-44 is
used since this counter does not currently support this transla-
tion-type.

	 118	 Day One: CGNAT Up and Running on the MX Series

Useful CLI commands are the key to troubleshooting no matter how
the MX Series is configured. This final chapter in this Day One book
focuses on the commands you need to analyze the session table and
CGNAT functionality to verify what is happening on the service PIC.
Some of these commands have already been used as you went through
this book, but this chapter reviews them all as a quick reference.

NOTE	 Most of these commands are used for troubleshooting the service PICs
for the MS-MPC and MS-MIC service cards and are not used for Inline
NAT.

shows services nat pool detail

Our first command shows NAT statistics related to IP and port usage
for your NAT pools. The output shows you each pool and what service
interface it belongs to. You can see what IP and port range the pool is
set up to use, and you can also see PBA and address-pooling paired
stats, if your pool uses these features:

user@re0# run show services nat pool detail
Interface: ms-1/0/0, Service set: ss1
 NAT pool: pool1, Translation type: NAPT-44
 Address range: 188.0.0.0-188.0.0.1
 Configured port range: 0-0
 Port range: 1024-65535, Ports in use: 5675, Out of port errors: 0, Max ports used: 75676
 AP-P port allocation errors: 43226
 Memory allocation errors: 0

Chapter 6

Troubleshooting

	 120	 Day One: CGNAT Up and Running on the MX Series

 Max number of port blocks used: 525, Current number of port blocks in use: 444, Port block
allocation errors: 0
 Port blocks limit exceeded errors: 14430521
 Unique pool users: 444

You can tell that the NAT pool called pool1 has not encountered
out-of-port error hits due to every port being assigned to an active
subscriber. The fact that, Out of port errors: is 0, is great news, and
shows that at least the pool has always had free ports and has not been
100% starved at any point in time since the service PIC was last
rebooted:

 Port range: 1024-65535, Ports in use: 5675, Out of port errors: 0, Max ports used: 75676

Though it should be noted that not all is well with this NAT pool in
this example. This pool cannot currently meet all the sessions that it is
expected to handle and an investigation is required. Take note that the
AP-P out of port errors counter shows 44226:

 AP-P port allocation errors: 43226

This means the address-pooling paired feature is being used and one of
the NAT’d IP addresses has been, and still could be, starved of free
ports. It would be smart to run this command again several times to see
if the AP-P out of ports counter increments to tell you if you currently
have a resource issue.

Also, the Port block limit exceeded error has quite a few hits, which
means the pool is also being used with the Port Block Allocation
feature. This counter tells us that at least one subscriber has been
assigned their max number port blocks and has used every port in
those blocks. Now each new session from one of these subscribers that
needs to get NAT’d will get dropped with this error counter increment-
ing until some of their ports get freed up:

 Port blocks limit exceeded errors: 14430521

You know from the fact that the Port Block Allocation error counter
being 0 that the system never actually assigned every port block from
this pool, so the issue is localized to only certain subscribers pushing
their limit as defined by the PBA settings:

 Port block allocation errors: 0

The NAT pool has not exceeded assigning its total available IP and
ports, but at least one subscriber has exceeded the total port block
resources allocated to them. This is actually quite typical since there
can be some real power users on the network, such as heavy peer-to-
peer sharing users. But the thing that should really be of concern with
this pool is the AP-P out-of-port errors. This means that at one point

	 Chapter 6: Troubleshooting	 121

there was enough traffic getting NAT’d that one of the IP addresses in
this pool hit its limit and had no further ports or port blocks to allo-
cate. This is a clear indication that something needs to be done.
Increasing the number of available IP addresses in the NAT pool would
be the first thing to try. If there are no more available IP addresses for
you to add to the NAT pool, then you could try lowering the port
block size to free up more un-used ports. Many subscribers may not be
using all of their available ports in their assigned port blocks, but note
that this change could also cause more subscribers to exceed their port
block limits.

This bring us to the show service nat pool brief output. One thing to
like about the brief output is that this command will show you your
current port block efficiency usage. If this value is really low when
running the command during peak hours, then you may have plenty of
room to make your port blocks smaller. If this value is really high,
many of your subscribers are being starved of free ports and you may
want to find more IP addresses to add to your NAT pool so you can
increase your block size to fit your general subscribers’ needs:

user@re0# run show services nat pool brief
Interface: ms-1/0/0, Service set: ss1
NAT pool Type Address Port Ports used
pool1 NAPT-44 188.0.0.0-188.0.0.0 1024-65535 100
Port block type: Secured port block, Port block size: 50, Max port blocks per address: 1,
Active block timeout: 120, Effective port range: 1024-65523, Effective number of port blocks:
1290, Effective number of ports: 64500, Port block efficiency: 0.200000

Everything may look good in this output, but if you dig deeper into the
data there is an issue: you have a single IP address in this pool and you
are assigning very small port blocks, a block size of 50 ports, and one
block per private address. You currently have less than one percent of
the ports in the total port block in use, and you can see the efficiency is
only .2 percent.

But if you run show services nat pool detail you will see that only two
unique pool users are using the pool right now, and the port blocks
limit exceeded errors continue to increment:

user@re0# run show services nat pool detail
Interface: ms-1/0/0, Service set: ss1
 NAT pool: pool1, Translation type: NAPT-44
 Address range: 188.0.0.0-188.0.0.0
 Configured port range: 0-0
 Port range: 1024-65535, Ports in use: 100, Out of port errors: 0, Max ports used: 49550
 AP-P port allocation errors: 0
 Memory allocation errors: 0
 Max number of port blocks used: 1000, Current number of port blocks in use: 2, Port block
allocation errors: 0
 Port blocks limit exceeded errors: 14797543
 Unique pool users: 2

	 122	 Day One: CGNAT Up and Running on the MX Series

Based on this (very simple) example, just because the pool looks like it
might be okay, does not mean it is. Yes, there are free ports but the two
subscribers using the NAT pool at this time have exceeded their limits.
This begs the question of whether assigning a single port block to each
subscriber whose block size is 50 ports will be enough to satisfy your
end users or if you need to increase this block size.

show services sessions

The show services sessions count command is a simple CLI command
that you can run to see the total number of current sessions being
handled by the MX. In this case, there is a standalone MS interface,
ms-1/0/0, handling service set ss1 and then there is an AMS interface
using all four service PICs from the MS-MPC card in FPC slot 4
handling service set nat44. You can use this command to see the load
balancing of the traffic through the AMS bundle:

user@re0# run show services sessions count 
Interface   Service set                        Sessions count
ms-1/0/0    ss1                             1027
mams-4/0/0  nat44                              30245
mams-4/1/0  nat44                              30889
mams-4/2/0  nat44                              31034
mams-4/3/0  nat44                              30333

You can use the same command, removing the count parameter, to
check the creation of the pre-NAT, post NAT, and non-NAT’d sessions
within the service interfaces. This means you get to view the details of
each session that is currently in memory on the service PIC:

user@re0# run show services sessions
ms-1/0/0

Service Set: ss1, Session: 2028242634, ALG: none, Flags: 0x200000, IP Action: no, Offload:
no, Asymmetric: no
UDP 10.202.0.12:53852 -> 77.76.75.144:23308 Forward I 87
UDP 77.76.75.144:23308 -> 188.0.0.0:47837 Forward O 1020

Service Set: ss1, Session: 1994621085, ALG: none, Flags: 0x200000, IP Action: no, Offload:
no, Asymmetric: no
UDP 10.202.0.12:50711 -> 77.76.75.123:9453 Forward I 1322
UDP 77.76.75.123:9453 -> 188.0.0.0:47833 Forward O 1332

Service Set: ss1, Session: 2095286559, ALG: none, Flags: 0x200000, IP Action: no, Offload:
no, Asymmetric: no
TCP 10.202.0.12:19019 -> 77.76.75.139:15862 Forward I 2
TCP 77.76.75.139:15862 -> 188.0.0.0:47836 Forward O 1

The MX automatically creates both input and output direction session
entries after the first packet is received and the session is created. This

	 Chapter 6: Troubleshooting	 123

output will show you the protocol used such as ESP, UDP, TCP, ICMP,
etc. It will also show you NAT’d and non-NAT’d traffic. If any traffic
flows into the service PIC but does not get NAT’d based on the NAT
rules term logic, the session still passes through the session table and
gets created.

For source NAT translation types, you will see traffic entering the
service PIC from the private source IP address. It will show up as
Forward I. Then the return traffic will show up in the output of this
command as being destined to the NAT’d address. This will show up
as Forward O.

Forward and Drop sessions are the two states that can be seen when
running the show services sessions command.

�� A Forward state just means the packet is passed through the
session table when the packet is NAT’d or even when it is not
NAT’d.

�� A Drop state just means it drops any packets in that session. A
drop can occur when using a nat44 setup, for example, and
traffic from the public network is destined to a NAT’d address
and port but there isn’t a matching session already created for
that traffic. Or it could be protocol errors like a TCP session
being started by a FIN and not a SYN. It can even occur when
you have run out of available NAT IP addresses or ports, or port
blocks in one of your NAT pools.

show services sessions extensive

When using the show services sessions command with the extensive
option you can see some addition data, such as the inactivity timeout
values for each session, and some info around the NAT Mapping:

Service Set: ss1, Session: 1894010314, ALG: none, Flags: 0x200000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 10.202.0.12:26390 -> 188.0.0.0:47837
UDP 10.202.0.12:26390 -> 77.76.75.87:1997 Forward I 111
 Byte count: 92
 Flow role: Initiator, Timeout: 12
UDP 77.76.75.87:1997 -> 188.0.0.0:47837 Forward O 0
 Byte count: 0
 Flow role: Responder, Timeout: 12

Service Set: ss1, Session: 1927517352, ALG: none, Flags: 0x200000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44

	 124	 Day One: CGNAT Up and Running on the MX Series

 NAT source 10.202.0.12:12730 -> 188.0.0.0:47833
TCP 10.202.0.12:12730 -> 77.76.75.134:13467 Forward I 1232
 Byte count: 92
 Flow role: Initiator, Timeout: 30
TCP 77.76.75.134:13467 -> 188.0.0.0:47833 Forward O 1833
 Byte count: 0
 Flow role: Responder, Timeout: 30

Service Set: ss1, Session: 1893964435, ALG: none, Flags: 0x200000, IP Action: no, Offload:
no, Asymmetric: no
NAT PLugin Data:
 NAT Action: Translation Type - NAPT-44
 NAT source 10.202.0.12:32780 -> 188.0.0.0:47838
TCP 10.202.0.12:32780 -> 77.76.75.94:41776 Forward I 12
 Byte count: 92
 Flow role: Initiator, Timeout: 27
TCP 77.76.75.94:41776 -> 188.0.0.0:47838 Forward O 13
 Byte count: 0
 Flow role: Responder, Timeout: 27

Show services service-sets < … >

The show services service-sets command focuses on the health of the
overall service set from a system point of view. It shows you such
things as flow/session drops caused by CPU or memory limits being
reached, or if the configured sessions limits are set and have been
reached. The command will show the drops per service set and the
service interface being used by that service set, including the individual
MAMS that are part of any AMS bundles you are using:

lab@jtac_setup# run show services service-sets statistics packet-drops 
                                    Cpu limit      Memory limit    Flow limit
Interface      Service Set          Drops          Drops           Drops
ms-1/0/0       natp44                   0               0             0
ms-1/0/0       twice-nat                0               0             0
mams-4/0/0     nat                      0               0             0
mams-4/1/0     nat                      0               0             0
mams-4/2/0     nat                      0               0             0
mams-4/3/0     nat                      0               0             0
ms-5/0/0       cust_nat                 0               0             0

Here is an additional series of commands to run against the service sets
to gather some very useful data on how the service set is currently
behaving:

user@re0# run show services service-sets summary 
                      Service sets   CPU   
Interface             configured           Bytes used   Policy bytes used  UtilizationU
ms-1/0/0           3  1219043875      ( 4.16%)      4103480 ( 0.76%)      35.22 %
ms-4/0/0           2  1219016539      ( 4.16%)      3657976 ( 0.68%)      0.94 %
ms-4/1/0           2  1219016667      ( 4.16%)      3618448 ( 0.67%)      0.95 %
ms-4/2/0           2  1219016667      ( 4.16%)      3618448 ( 0.67%)      0.94 %

	 Chapter 6: Troubleshooting	 125

ms-4/3/0           2  1219016667      ( 4.16%)      3618448 ( 0.67%)      0.95 %
ms-5/0/0           2  1219044291      ( 4.16%)    3010960 ( 0.56%)      35.21 %

user@re0# run show services service-sets cpu-usage  
   CPU
Interface   Service Set(or system category)                        Utilization
ms-1/0/0    ipsec_ss  0.00 %
ms-1/0/0    ss1   0.00 %
ms-1/0/0    System  0.70 %
ms-1/0/0    Idle   64.77 %
ms-1/0/0    Receive   0.00 %
ms-1/0/0    Transmit  0.00 %
mams-4/0/0  nat44   0.00 %
mams-4/0/0  System  0.95 %
mams-4/0/0  Idle   99.04 %
mams-4/0/0  Receive   0.00 %
mams-4/0/0  Transmit  0.00 %
mams-4/1/0  nat44   0.00 %
mams-4/1/0  System  0.94 %
mams-4/1/0  Idle   99.05 %

If the CPU is hitting 90%, the service PIC is too busy. Most likely it is
handling too many packets per second and there is just too much
traffic to process. You are going to want to monitor the interface to see
what the traffic is, in Packets Per Second (PPS), for Input and Output.
For example, monitor interface ms-5/0/0, and then look to see if you
can load balance the traffic among additional service PICs.

Note if you are viewing a MS or AMS interface using the show inter-
faces ms-5/1/0 extensive command and its input or output drops
counter has any hits, and is increasing, then you will want to check the
CPU usage:

user@re0> show interfaces ms-5/1/0 extensive
Physical interface: ms-5/1/0, Enabled, Physical link is Up
 Interface index: 180, SNMP ifIndex: 565, Generation: 183
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192, Clocking:
Unspecified, Speed: 40000mbps
  Device flags   : Present Running
  Interface flags: Point-To-Point SNMP-Traps
  Link type      : Full-Duplex
  Link flags     : None
  Physical info  : Unspecified
  Hold-times     : Up 0 ms, Down 0 ms
  Damping        : half-life: 0 sec, max-
suppress: 0 sec, reuse: 0, suppress: 0, state: unsuppressed
  Current address: Unspecified, Hardware address: Unspecified
  Alternate link address: Unspecified
  Last flapped   : 2016-11-30 03:35:14 PST (04:20:44 ago)
  Statistics last cleared: Never
  Traffic statistics:
   Input  bytes  :           4974889433           1570882800 bps

	 126	 Day One: CGNAT Up and Running on the MX Series

   Output bytes  :           3868098872           1221415968 bps
   Input  packets:              7594338               299753 pps
   Output packets:              2531513                99919 pps
   IPv6 transit statistics:
    Input  bytes  :                   0
    Output bytes  :                   0
    Input  packets:                   0
    Output packets:                   0
  Input errors:
    Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0, Policed discards: 0,
Resource errors: 0
 Output errors:
 Carrier transitions: 2, Errors: 0, Drops: 0, MTU errors: 0, Resource errors: 0

You never want to see the memory being used by the service interface
being in the orange or the red memory zone when using the show
services service-sets memory-usage zone command. If it is in either
zone the service set will drop packets destined for new sessions until
the memory drops back into the yellow warning zone. The green zone
is great, and it is what’s desired. The yellow zone will not change how
the service PIC functions but it does indicate that you may have many
sessions piling up. Think of the yellow zone as a warning that memory
could soon be a problem. If you are hitting the yellow, orange, or red
zones you may want to make sure your inactivity timeouts and map-
ping-refresh timeouts are not holding expired sessions in memory for
too long. If the zone hits Orange or Red when running this command,
you would start to see new sessions tied to your busiest service sets
hosted on that service interface start to get into a DROP state:

user@re0# run show services service-sets memory-usage zone   
Interface   Memory zone
ms-1/0/0    Orange
mams-4/0/0  Green
mams-4/1/0  Green
mams-4/2/0  Green
mams-4/3/0  Green
ms-5/0/0    Yellow

You never want to be in the orange or red zone. If you are, the box is
either configured poorly in regard to settings like long inactivity
timeouts based on the volume of sessions you are receiving, or else the
service PIC is just handling too many sessions and you need to better
distribute the load among other service PICs.

The last services service-sets statistics command in this chapter is
the show services service-sets statistics integrity-drops. This
command will tell you if the session table dropped any packets due to a
packet error. It is more of a corner case command, required when you
are looking to see if the session table is dropping packets because the
packets themselves are incorrect somehow:

	 Chapter 6: Troubleshooting	 127

user@re0# run show services service-sets statistics integrity-drops     
Interface: ms-1/0/0
  Service set: ss1
    Errors:
      IP: 0, TCP: 0
      UDP: 0, ICMP: 0
    IP errors:
      IP packet length inconsistencies: 0
      Illegal source address: 0
      Illegal destination address: 0
      TTL zero errors: 0, Illegal IP protocol number (0 or 255): 0
      Land attack: 0
      Non-IPv4 packets: 0
      Non-IPv6 packets: 0
      Bad checksum: 0
      Illegal IP fragment length: 0
      IP fragment overlap: 0
      IP fragment reassembly timeout: 0
      IP fragment limit exceeded: 0
      Unknown: 0
    TCP errors:
      TCP header length inconsistencies: 0
      Source or destination port number is zero: 0
      Illegal sequence number and flags combinations: 0
    UDP errors:
      IP data length less than minimum UDP header length (8 bytes): 0
      Source or destination port number is zero: 0
    ICMP errors:
      IP data length less than minimum ICMP header length (8 bytes): 0
      ICMP error length inconsistencies: 0

show services sessions analysis

The show services sessions analysis command will show you current
active session numbers along with historical peak numbers. This is a
good command in general, but it is very important to run if you have
ever hit any memory zone issues and you want to see how many
sessions were actually on the box for a peak value:

user@re0# run show services sessions analysis    
  Services PIC Name:    ms-1/0/0

Session Analysis Statistics:

  Total sessions Active                   :7482942      
  Total TCP Sessions Active               :0            
      Tcp sessions from gate              :0            
      Tunneled TCP sessions               :0            
      Regular TCP sessions                :6482942            
      IPv4 active Session                 :6482942            
      IPv6 active Session                 :0            
  Total UDP sessions Active               :1000000     

	 128	 Day One: CGNAT Up and Running on the MX Series

      UDP sessions from gate              :0            
      Tunneled UDP sessions               :0            
      Regular UDP sessions                :1000000      
      IPv4 active Session                 :1000000      
      IPv6 active Session                 :0            
  Total Other sessions Active             :0            
      IPv4 active Session                 :0            
      IPv6 active Session                 :0            
  Created sessions per Second             :24713        
  Deleted sessions per Second             :24736        
  Peak Total sessions Active              :9231813      
  Peak Total TCP sessions Active          :8231812            
  Peak Total UDP sessions Active          :1000000     
  Peak Total Other sessions Active        :0            
  Peak Created Sessions per Second        :24774        
  Peak Deleted Sessions per Second        :44656        
  Packets received                        :34008777           
  Packets transmitted                     :25007846           
  Slow path forward                       :58900118           
  Slow path discard                       :9000444
           

shows services nat mappings

The show services nat mapping summary command shows you how
many private IP to public IP NAT mappings you have per service
interface for the address-pooling paired (APP) and EIM features. It
also tells you how many of these EIMs have an EIF assigned to them.
Note the MAMS interfaces display as just MS interfaces since this
output displays the total mapping for an individual service PIC and a
MS interface that is part of an AMS bundle can also be used by another
service set as a standalone interface:

user@re0# run show services nat mappings summary    

Service Interface:  ms-1/0/0  
Total number of address mappings:                           100         
Total number of endpoint independent port mappings:         100         
Total number of endpoint independent filters:               0         

Service Interface:  ms-4/0/0  
Total number of address mappings:                           0         
Total number of endpoint independent port mappings:         0         
Total number of endpoint independent filters:               0         

Service Interface:  ms-4/1/0  
Total number of address mappings:                           0         
Total number of endpoint independent port mappings:         0         
Total number of endpoint independent filters:               0         

Service Interface:  ms-4/2/0  
Total number of address mappings:                           0         
Total number of endpoint independent port mappings:         0         

	 Chapter 6: Troubleshooting	 129

Total number of endpoint independent filters:               0         

Service Interface:  ms-4/3/0  
Total number of address mappings:                           0         
Total number of endpoint independent port mappings:         0         
Total number of endpoint independent filters:               0         

Service Interface:  ms-5/0/0  
Total number of address mappings:                           98432         
Total number of endpoint independent port mappings:         0         
Total number of endpoint independent filters:               0   

You can also run the show services nat mappings detail command to
see each private to public mapping. It will display the mapping if the
session is active, or if the session has timed out it will show you the
timeout value left before the EIM or APP mapping is removed. Remem-
ber from earlier in the book the EIM mappings start their timeout
countdown only after the session has timed out and the and APP starts
its timeout only after all sessions mapped to it are timed out:

{master}[edit services nat rule rule1]
user@re0# run show services nat mappings detail     
Interface: ms-1/0/0, Service set: ss1

NAT pool: pool1
Mapping          : 10.10.10.12     :50000  --> 150.100.100.7   :10926 
Session Count    :     1 
Mapping State    : Active    
Mapping          : 10.10.10.10     :50000  --> 150.100.100.6   :10926 
Session Count    :     1 
Mapping State    : Active    
Mapping          : 212.27.42.153   :52062  --> 150.100.100.5   :46665 
Session Count    :     0 
Mapping State    : Timeout (223s)

show services nat statistics

The show services nat statistics command presents the operator with
a lot of details on what is occurring with the NAT mappings. This
command is most likely going to be more useful when an issue is
occurring so it can be shared with JTAC:

user@re0# run show services nat statistics interface ms-1/0/0 
Interface: ms-1/0/0
 
Session statistics 
 
Session statistics 
    Total Session Interest events                           :123931
    Total Session Create events                             :123931
    Total Session Destroy events                            :123931
    Total Session Pub Req events                            :0

	 130	 Day One: CGNAT Up and Running on the MX Series

    Total Session Accepts                                   :123929
    Total Session Discards                                  :0
    Total Session Ignores                                   :2
    Total Session Time events                               :0
    Session interest thru pub event                         :0
    ALG Session interest                                    :0
    ALG Session Create                                      :0
    Packet  Dst in NAT route                                :0
    Packet drop in backup state                             :0
    Session Ext Alloc Failures                              :0
    Session Ext Set Failures                                :0
    Session Created for EIF                                 :0
    Session Created for EIM                                 :0
    NAT rule lookup failures                                :2
    Pool session count update failed on create              :0
    Pool session count update failed on close               :4

NAT Allocation statistics
    NAT allocation Successes                                :123929
    NAT allocation Failures                                 :0
    NAT Free Successes                                      :123925
    NAT Free Failures                                       :4
    NAT EIM mapping reused                                  :0
    NAT EIM mapping allocation failures                     :0
    NAT EIM mapping Duplicate entry                         :0
    NAT EIM mapping create failed                           :0
    NAT EIM mapping Created                                 :0
    NAT EIM mapping Updated                                 :0
    NAT EIF mapping Free                                    :0
    NAT EIM mapping Free                                    :0
    NAT EIM waiting for init                                :0
    NAT EIM waiting for init failed                         :0
    NAT EIM lookup and hold success                         :0
    NAT EIM lookup entry in timeout                         :0
    NAT EIM lookup timer cleared for timeout entry          :0
    NAT EIM lookup timeout entry without timer              :0
    NAT EIM release without entry                           :0
    NAT EIM release entry in timeout                        :0
    NAT EIM release race                                    :0
    NAT EIM release set entry for timeout                   :0
    NAT EIM timer entry refreshed                           :0
    NAT EIM timer invalid timer started                     :0
    NAT EIM timer entry freed                               :0
    NAT EIM timer entry updated                             :0
    NAT EIM entry drained                                   :0

Packet statistics
    Total Packets Processed                                 :87716758
    Total Packets Forwarded                                 :87716758
    Total Packets Discarded                                 :0
    Total Packets Translated                                :87716756
    Total Packets Restored                                  :2

Translation statistics

	 Chapter 6: Troubleshooting	 131

    Src  IPv4   Translations                                :87716756
    Src  IPv4   Restorations                                :0
    Dst  IPv4   Translations                                :0
    Dst  IPv4   Restorations                                :2
    Src  IPv6   Translations                                :0
    Src  IPv6   Restorations                                :0
    Dst  IPv6   Translations                                :0
    Dst  IPv6   Restorations                                :0
    Src  Port   Translations                                :87716756
    Src  Port   Restorations                                :0
    Dst  Port   Translations                                :0
    Dst  Port   Restorations                                :2
    ICMP ID     Translations                                :0
    ICMP ID     Restorations                                :0
    ICMP Error  Translations                                :0
    ICMP Drops  :0
    ICMP Allocation Failure                                 :0
    TCP  Port   Translations                                :0
    TCP  Port   Restorations                                :0
    UDP  Port   Translations                                :87716756
    UDP  Port   Restorations                                :2
    NAT Unexpected Protocol With Port Xlation               :0
    GRE  CallID Translations                                :0
    GRE  CallID Restorations                                :0
    GRE  Wrong protocol value                               :0
    SRC IP restored in ICMP Error                           :0
    DST IP restored in ICMP Error                           :0
    SRC IP translated in ICMP Error                         :0
    DST IP translated in ICMP Error                         :0
    New SRC IP translated in ICMP Error                     :0
    Inner SRC IP restored in ICMP Error                     :0
    Inner SRC port restored in ICMP Error                   :0
    Inner DST port restored in ICMP Error                   :0
    Inner DST IP restored in ICMP Error                     :0
    Inner SRC IP translated in ICMP Error                   :0
    Inner SRC port translated in ICMP Error                 :0
    Inner DST port translated in ICMP Error                 :0
    Inner DST IP translated in ICMP Error                   :0

Misc Errors
    NAT error - no policy                                   :0
    NAT error - IP version                                  :0
    NAT error - xlate free called with null ext             :0
    NAT error - ext free failed                             :0
    NAT error - policy add failed                           :0
    NAT error - policy delete failed                        :0
    NAT error - prefix filter allocation failed             :0
    NAT error - prefix filter name failed                   :0
    NAT error - prefix list create failed                   :0
    NAT error - prefix filter tree add failed               :0

Misc Counters 

	 132	 Day One: CGNAT Up and Running on the MX Series

    NAT prefix filter created                               :0
    NAT prefix filter changed                               :0
    NAT prefix filter control free                          :0
    NAT prefix filter match                                 :0
    NAT prefix filter no match                              :0
    NAT prefix filter mapping add                           :0
    NAT prefix filter mapping remove                        :0
    NAT prefix filter mapping free                          :0
    NAT prefix filter unsupported IP version                :0
    NAT unsupported layer-4 header for port translation     :0
    NAT unsupported icmp id for port translation            :0

NAT64 Counters
    NAT64 - IP options drop                                 :0
    NAT64 - UDP checksum zero drop                          :0
    NAT64 - Unsupported ICMP type drop                      :0
    NAT64 - Unsupported ICMP code drop                      :0
    NAT64 - Unsupported header drop                         :0
    NAT64 - Unsupported L4 drop                             :0
    NAT64 - MTU exceeded                                    :0
    NAT64 - dfbit set                                       :0
    NAT64 - Unsupported ICMP error                          :0
    NAT64 error - mapping ipv4 source                       :0
    NAT64 error - mapping ipv6 destination                  :0
    NAT64 error - MTU exceed build                          :0
    NAT64 error - TTL exceed build                          :0
    NAT64 error - MTU exceed send                           :0
    NAT64 error - TTL exceed send                           :0

NAT Subscriber extension counters
    NAT subscriber extension allocated                      :3000004
    NAT subscriber extension invalid parameters             :0
    NAT subscriber extension no memory                      :0
    NAT subscriber extension freed                          :0
    NAT subscriber extension is null                        :0
    NAT subscriber extension is invalid                     :0
    NAT subscriber extension link successful                :2
    NAT subscriber extension link already exists            :123927
    NAT subscriber extension link failed                    :0
    NAT subscriber extension link unknown return value      :0
    NAT subscriber extension unlink successful              :2
    NAT subscriber extension unlink fail                    :0
    NAT subscriber extension unlink on busy                 :0
    NAT subscriber extension resource in use                :0
    NAT subscriber extension svc set is not active          :0
    NAT subscriber extension svc set is null                :0
    NAT subscriber extension timer start successful         :4
    NAT subscriber extension timer start failed             :0
    NAT subscriber extension delay timer start successful   :2
    NAT subscriber extension delay timer start failed       :0
    NAT subscriber extension reuse from timer               :1
    NAT subscriber extension timer callback called          :4
    NAT subscriber extension refcount decrement failed      :0
    NAT subscriber extension subscriber reset failed        :0

	 Chapter 6: Troubleshooting	 133

    NAT subscriber extension session count update ignored   :0
    NAT subscriber extension incorrect state                :0
    NAT subscriber extension unknown error unlinking        :0
    NAT subscriber extension queue inconsistent             :0
    NAT subscriber extension return to prealloc queue error :0
    NAT subscriber extension dec invalid session count      :0
    NAT subscriber extension dec invalid eim count          :0
    NAT subscriber extension ports in use error             :0
    NAT subscriber extension error while setting state      :0
    NAT subscriber extension nat extension is missing       :0
    NAT subscriber extension unexpected eim refcount        :0

NAT jflow-log counters
    NAT jflow-log error - session extension get fail        :0
    NAT jflow-log error - memory allocation fail            :0
    NAT jflow-log - memory allocation success               :0
    NAT jflow-log - memory free success                     :0
    NAT jflow-log error - memory free fail null record      :0
    NAT jflow-log error - memory free fail null data        :0
    NAT jflow-log error - invalid nat translation type      :0
    NAT jflow-log - memory free success fail queuing        :0
    NAT jflow-log - invalid input arguments                 :0
    NAT jflow-log - invalid allocation error type           :0
    NAT jflow-log - rate limit fail to get pool name        :0
    NAT jflow-log - rate limit fail to get nat pool         :0
    NAT jflow-log - rate limit fail to get pool given id    :0
    NAT jflow-log - rate limit fail to get service set      :0
    NAT jflow-log - rate limit fail invalid current time    :0

show interfaces load-balancing

You can make sure your service PICs are okay when using an AMS
interface bundle by running thee show interfaces load-balancing
detail command.

The following output of the command shows you a load-balanced
AMS bundle using all four PICs within the MS-MPC in FPC slot 4. All
of the PICs are in an active state so they all look good from the AMS
point of view and should receive traffic from the MX for processing:

user@re0# run show interfaces load-balancing detail 
Load-balancing interfaces detail
Interface        : ams0       
  State          : Up               
  Last change    : 4d 08:49     
  Member count   : 4            
  HA Model       : None         
  Members        :
      Interface    Weight   State
      mams-4/0/0   10       Active 
      mams-4/1/0   10       Active 
      mams-4/2/0   10       Active 

	 134	 Day One: CGNAT Up and Running on the MX Series

      mams-4/3/0   10       Active

Thee next output of the command shows you a load-balanced AMS
bundle using all four PICs within the MS-MPC in FPC slot 4 and slot 5
with the service PIC in FPC slot 5, pic slot 4, being designated the
backup to the other seven service PICs:

user@re0# run show interfaces load-balancing detail    
Load-balancing interfaces detail
Interface        : ams0       
  State          : Up               
  Last change    : 00:00:09     
  Member count   : 8            
  HA Model       : Many-to-One  
  Members        :
      Interface    Weight   State
      mams-4/0/0   10       Active 
      mams-4/1/0   10       Active 
      mams-4/2/0   10       Active 
      mams-4/3/0   10       Active 
      mams-5/0/0   10       Active 
      mams-5/1/0   10       Active 
      mams-5/2/0   10       Active 
      mams-5/3/0   10       Backup

The other states that a service PIC can be in, aside from Active and
Backup, are Discard and Inactive. Discard states occur when an active
member fails with no backup available and the member-failure-option
is set to drop-member-traffic, and rejoin-timeout is set. In this case, the
member moves from Active to Discard until the rejoin time is reached.
In the time that it takes to happen, all traffic toward that MAMs
interface will get dropped. If the MAMS cannot rejoin, it moves to the
Inactive state. Inactive state is a state that means the MAMS interface
is removed and no traffic will get steered towards it. When something
happens to a MAMS and the setting or system require it to be removed
it goes into this state and traffic is distributed to the other MAMS in
the AMS bundle.

Inline NAT

To wrap up this final chapter, let’s look at the system when Inline NAT
is used. Remember with Inline NAT there is no service card being used.
You will never have a session table without a service card, so be aware
when building your MX system that without the service card you
cannot see the NAT’d sessions, because in reality with Inline NAT you
are just changing the header of transient traffic based on the PFE’s
programming.

The following couple of commands can help you tell if NAT is even

	 Chapter 6: Troubleshooting	 135

occurring, if there are any errors, and what POOLs are being used.

show services inline nat statistics

user@re0#run show services inline nat statistics    

 Service PIC Name                                      si-2/0/0 

 Control Plane Statistics
     Received IPv4 packets                                0  
     ICMPv4 error packets pass through                    0  
     ICMPv4 error packets locally generate                0  
     Dropped IPv4 packets                                 0  
     Received IPv6 packets                                0  
     ICMPv6 error packets pass through for NPTv6          0  
     ICMPv6 error packets locally generated for NPTv6     0  
     Dropped IPv6 packets                                 0  

 Data Plane Statistics           Packets                  Bytes
     IPv4 NATed packets            17691                20521614  
     IPv4 deNATed packets          12311                17764566  
     IPv4 error packets            0                       0        
     IPv4 skipped packets          0                       0        
     IPv6 NATed packets            0                       0      
     IPv6 deNATed packets          0                       0        
     IPv6 error packets            0                       0        
     IPv6 skipped packets          0                       0  

show services inline nat pool

user@re0# run show services inline nat pool
Interface: si-2/0/0, Service set: NAT_SS1
  NAT pool: NAT_POOL1, Translation type: BASIC NAT44
    Address range: 19.200.0.1-19.200.100.1
    NATed packets: 213, deNATed packets: 209, Errors: 0, Skipped packets: 0

	 136	 Day One: CGNAT Up and Running on the MX Series

CGNAT Up and Running on the MX Series Summary

When designing your CGNAT setup, the main things you should think
about are how many NAT’d IP addresses and port combinations you
have. This is especially true when setting up a dynamic NAT type. You
should also consider the number of mappings and potential sessions,
and then do the math. Do not design a setup where you have two
public IP addresses each having 64,511 ports available that need to
handle two million concurrent sessions at one time. Some things are
just not possible.

Also, do not waste valuable public IP addresses in your NAT pools.
Let’s say (unrealistically for the sake of this example) you have 327,600
potential NAT’d IP addresses for use and you want to use deterministic
NAT as your NAT translation type. Deterministic NAT does not use
ports 0-1023, so each NAT’d IP can potentially use 64,511 ports. If
you set the deterministic-port-block-allocation block-size to 256, or
64,511 ports divided by 256 blocks equals 251 port block assignments
per NAT’d IP. So that means 327,600 potential NAT’d IPs with
251unique port blocks, for each one is a total of 82,227,600 private
subscriber mappings and 21,133,803,600 potential sessions. Very few
operators have 82 million subscribers for their whole network. If these
327,600 potential NAT’d IP addresses are valuable Internet routable IP
addresses, you may want to tie up far, far fewer of them with your MX
Series CGNAT solution.

Remember to think about the features you are enabling. ALGs may
very well be required, but enable just the ones you need since you do
not want to spend CPU cycles on the service PICs handling NAT traffic
through an ALG that does not require it.

EIM with EIF is a very good feature that is needed for certain applica-
tions to work as expected when NAT is added, but always remember to
be aware of the risk of traffic from the outside opening up lots of
sessions. Monitoring the solution is one of the best things you can do.
Looking at the number of active sessions, the memory, the CPU load on
the service PIC, and the packet per second through the service inter-
faces are all good data points to use to make sure events are not causing
the solution to be pushed beyond the boundaries.

Just do the math, design accordingly, monitor the solution when in
production, and the MX Series can deliver a scalable and powerful
CGNAT service for you!

	Front Cover
	Back Cover
	Title Pages & Table of Contents
	Copyright Page & About the Author
	Welcome to Day One
	What You Need to Know Before Reading This Book
	What You Will Learn by Reading This Book
	Preface

	Chapter 1: Configuration
	Service Interfaces
	Services NAT
	NAT Rules
	Service Sets

	Chapter 2: Additional Features
	Address Pooling Paired
	Endpoint Independent Mapping (EIM)
	Endpoint Independent Filtering (EIF)
	Best Practices with EIF

	Chapter 3: Application Layer Gateways and User-Defined Application Controls
	Chapter 4: Final Configuration Topics
	Syslog
	Service Filters and Other Filtering Options
	Setting Up Load Balancing

	Chapter 5: Example Use Case
	NAT the Data Center
	IPv4 Address Exhaustion
	Creating a Service Filter
	Changing to Next Hop Style Service Sets
	Enabling EIM With EIF
	Adding ALG
	Using the Port Block Allocation Feature
	Using SNMP

	Chapter 6: Troubleshooting
	shows services nat pool detail
	show services sessions
	show services sessions extensive
	Show services service-sets < … >
	show services sessions analysis
	shows services nat mappings
	show services nat statistics
	show interfaces load-balancing
	Inline NAT

	CGNAT Summary

