
D
AY

O
N

E:D
EPLO

YIN
G

 BG
P

RO
U

TIN
G

 SEC
U

RITY
A

elm
ans,Raijer,G

allo

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: DEPLOYING BGP ROUTING SECURITY

By Melchior Aelmans, Niels Raijer, Andrew Gallo

DAY ONE: DEPLOYING BGP ROUTING
SECURITY

This book is intended for network administrators running Junos OS routers in the BGP
default-free zone. It provides field-tested device and protocol configurations for creating a
secure and stable network, as well as brief background information needed to understand
and deploy these solutions in your own environment. While many network administrators
may find the contents of this book interesting, its real value is to those running a BGP
network without having a default route present in their network (or accepting such a route
from their upstream provider): the default-free zone.

IT’S DAY ONE AND YOU HAVE A JOB TO DO:

n Understand the relevance of filtering routes as you learn them from your customers, peers,
and transits.

n Understand what portion of via BGP received routes should be rejected for securing your
routing table.

n Implement routing policies that reject invalid routing information.

n Understand and implement redundant Routinator, FORT, Prover and OctRPKI Resource
Public Key Infrastructure (RPKI) validators.

n Verify your configuration and support your network using basic troubleshooting
commands.

n How to use RIR tools to make sure your routes and prefixes are accepted by other ISPs
who filter and/or have deployed RPKI.

“High-quality Internet services require a global routing table of equally high quality and in
this very practical book the authors show how you can improve that global table using the
tools available today. It’s easy to read, with detailed tutorials, and even includes copy and
paste Junos configuration examples. Whether you have just started working with Internet
routing or have done so for many years, this book will show you how to do it better.”

Torunn Narvestad, Senior IP Network Architect, Telenor Norway

“The authors have done a fantastic job consolidating a ton of tribal knowledge and disparate
information sources into an easy-to-read RPKI Origin Validation deployment guide. This
book will help lower the barrier to run a secure and robust network!”

Job Snijders, Internet Architect, NTT Communications

Secure, field-tested, device and protocol
configurations for running Junos®

 OS routers
in the BGP default-free zone. Updated for 2021.

D
AY O

N
E: D

EPLO
YIN

G
 BG

P RO
U

TIN
G

 SEC
U

RITY
A

elm
ans, Raijer, G

allo

Juniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: DEPLOYING BGP ROUTING SECURITY

By Melchior Aelmans, Niels Raijer, Andrew Gallo

DAY ONE: DEPLOYING BGP ROUTING
 SECURITY

This book is intended for network administrators running Junos OS routers in the BGP
default-free zone. It provides field-tested device and protocol configurations for creating a
secure and stable network, as well as brief background information needed to understand
and deploy these solutions in your own environment. While many network administrators
may find the contents of this book interesting, its real value is to those running a BGP
network without having a default route present in their network (or accepting such a route
from their upstream provider): the default-free zone.

IT’S DAY ONE AND YOU HAVE A JOB TO DO:

n Understand the relevance of filtering routes as you learn them from your customers, peers,
and transits.

n Understand what portion of via BGP received routes should be rejected for securing your
routing table.

n Implement routing policies that reject invalid routing information.

n Understand and implement redundant Routinator, FORT, Prover and OctRPKI Resource
Public Key Infrastructure (RPKI) validators.

n Verify your configuration and support your network using basic troubleshooting
commands.

n How to use RIR tools to make sure your routes and prefixes are accepted by other ISPs
who filter and/or have deployed RPKI.

“High-quality Internet services require a global routing table of equally high quality and in
this very practical book the authors show how you can improve that global table using the
tools available today. It’s easy to read, with detailed tutorials, and even includes copy and
paste Junos configuration examples. Whether you have just started working with Internet
routing or have done so for many years, this book will show you how to do it better.”

Torunn Narvestad, Senior IP Network Architect, Telenor Norway

“The authors have done a fantastic job consolidating a ton of tribal knowledge and disparate
information sources into an easy-to-read RPKI Origin Validation deployment guide. This
book will help lower the barrier to run a secure and robust network!”

Job Snijders, Internet Architect, NTT Communications

Secure, field-tested, device and protocol
configurations for running Junos®

 OS routers
in the BGP default-free zone. Updated for 2021.

Day One: Deploying BGP Routing Security

by Melchior Aelmans, Niels Raijer, Andrew Gallo

Foreword by Job Snijders. . vii

Chapter 1: Introducing Routing Security. . 9

Chapter 2: Accepting and Announcing Routes. . 15

Chapter 3: Configuring RPKI: Resource Public Key Infrastructure (Updated). 21

Chapter 4: Configuring Routing Policies . . 45

Chapter 5: Troubleshooting. . 72

Appendix: How To Automatically Update Prefix Lists . . 77

	 iv

© 2021 by Juniper Networks, Inc.
All rights reserved. Juniper Networks and Junos are
registered trademarks of Juniper Networks, Inc. in the
United States and other countries. The Juniper Networks
Logo and the Junos logo, are trademarks of Juniper
Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners. Juniper Networks
assumes no responsibility for any inaccuracies in this
document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication
without notice.

Published by Juniper Networks Books
Authors: Melchior Aelmans, Niels Raijer, Andrew Gallo
Technical Reviewers: Jeff Haas, Colby Barth, Teun Vink,
Job Snijders, Torunn Narvestad, and Yuri Selivanov
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel

ISBN: 978-1-941441-86-2 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-85-5 (ebook)

Update Version History: 3, March 2022

 4 5 6 7 8 9 10

http://www.juniper.net/dayone

About the Authors
Melchior Aelmans is a Consulting Engineer at Juniper
Networks where he has been working with many operators
on the design and evolution of their networks. He has over
15 years of experience in various operations and engineer-
ing positions with Cloud Providers, Data Centers, and
Service Providers. Melchior enjoys evangelizing and
discussing routing protocols, routing security, internet
routing and peering, and data center architectures. He also
participates in IETF and RIPE, is a regular attendee and
presenter at conferences and meetings, is a member of the
NANOG Program Committee, and a board member at the
NLNOG foundation.

Niels Raijer was introduced to email, Gopher and USENET
in 1993 as part of his Chemical Engineering education at
the University of Amsterdam, and decided that they were
what all businesses in the world would need. After
graduation he founded Fusix Networks in 1997. Having
worked for Demon Internet and other ISPs since then, he is
now CTO of Fusix Networks, responsible for providing
network consultancy and connectivity services where the
keywords are security, stability, and speed. Niels is also the
founder of both Coloclue and NLNOG. He is married, has
two children, and likes to pretend he is still a fairly decent
competitive swimmer.

Andrew Gallo is Principal IT Architect and Network
Engineer, responsible for design and implementation of the
network for a large university. Starting in IT as a cable
installer for a campus-wide fiber-to-the-desk deployment,
his responsibility has grown to encompass optical
transport, wireless, VoIP/collaboration, IoT, and peering
and routing. He enjoys participating in testing new
technologies such as Automatic Multicast Tunneling and
Information Centric Networking. Andrew participates in
the higher education/research community to promote
routing security. He is currently co-chair of the Mutually
Agreed Norms for Routing Security (MANRS) Advisory
Group, helping to establish a self-governing structure for
this growing worldwide effort.

Authors’ Acknowledgments
The authors would like to thank, in random order:
Nathalie Trenaman (RIPE NCC); Job Snijders (NTT
Communications); Teun Vink (BIT); Torunn Narvestad
(Telenor Norway); Jeff Haas, Colby Barth, Kireeti
Kompella, Wim Tavernier and Nico Siebelink (Juniper
Networks); Chi Ho Kwok and Siebe Schaap (Digibites
Technology); Yulia Makhlin (Fusix Networks); Alex Band
(NLnet Labs); Klaartje van Leeuwen, Yuri Selivanov, and,
finally: the NLNOG community, NLnet Labs, the RIPE
community, and the RIPE NCC for their valuable
contributions, content, input, software, comments, and
mental support.

Feedback? Comments? Error reports? Email them to
dayone@juniper.net.

http://www.juniper.net/dayone

	 v	

Welcome to Day One
This book is part of the Day One library, produced and published by Juniper Net-
works Books.

Day One books cover the Junos OS and Juniper Networks networking essentials
with straightforward explanations, step-by-step instructions, and practical exam-
ples that are easy to follow.

	� Download a free PDF edition at http://www.juniper.net/dayone.

	� Purchase the paper edition at Vervante Corporation (www.vervante.com) for
between $15-$40, depending on page length.

Note that most mobile devices can also view PDF files.

Target Audience
This book is intended for network administrators running BGP on Juniper Net-
works routers in the default-free zone (DFZ). It provides field-tested device and
protocol configurations for creating a secure and stable network, as well as the
brief background information needed to understand and deploy these solutions in
your own environment. While many network administrators may find the contents
of this book interesting, its real value is to those running a BGP network without
having a default route present in their network (or accepting such a route from
their upstream provider): the DFZ.

IMPORTANT		 Most techniques described in this book do not apply to networks
that accept a default route. Why? Well, if you use default routes in your network,
most routing security methods like resource public key infrastructure (RPKI —
we’ll get to that) simply won’t work.

http://www.juniper.net/dayone
http://www.vervante.com

	 vi	

What You Need to Know Before Reading This Book
You should be familiar with the basic administrative functions of Junos OS,
including the ability to work with operational commands, and to read, under-
stand, and change configurations. There are several books in the Day One library
on learning Junos, found at http://www.juniper.net/dayone.

This book assumes that you, the reader, have intermediate level knowledge of:

	� Junos OS and its command-line interface (CLI).

	� General BGP protocol usage in Internet service provider (ISP) networks.

	� General troubleshooting techniques for ISP networks running the Junos OS.

	� The configuration of basic BGP connectivity in the Junos OS, including config-
uring neighbors and routing policy.

	� Basic Junos OS network and system operation.

	� Basic ESXi and Linux command line skills

	� Basic (Regional Internet Registry) RIR working knowledge (https://en.wikipe-
dia.org/wiki/Regional_Internet_registry).

What You Will Learn by Reading This Book
This book will help you to:

	� Understand the relevance of filtering routes as you learn them from your cus-
tomers, peers, and transits.

	� Understand what portion of BGP-received routes should be rejected for secur-
ing your routing table.

	� Implement routing policies that reject invalid routing information.

	� Understand and implement redundant RPKI validators and use them to filter
RPKI invalid routes.

	� Verify your configuration and support your network using basic troubleshoot-
ing commands.

	� Use RIR tools to make sure your routes and prefixes are accepted by other ISPs
who filter and/or have deployed RPKI.

Additional Resources
Now that you have a secure routing table, the next step can be to express to cus-
tomers and partners that you are taking responsibility for a safer and more stable
Internet.

http://www.juniper.net/dayone
https://en.wikipedia.org/wiki/Regional_Internet_registry
https://en.wikipedia.org/wiki/Regional_Internet_registry

	 vii	

One way to express this is to join MANRS (Mutually Agreed Norms for Routing
Security). MANRS is a global initiative, supported by the Internet Society, that
provides crucial fixes to reduce the most common routing threats. More informa-
tion is available on their website at: https://www.manrs.org/.

In addition, you can maximize the security of your routing table by discarding in-
valid or unusable routing information. In order to get your customers to announce
valid, usable information to you, you may have to help them to fix their announce-
ments, IRR registrations, or RPKI ROAs. The more networks that join, the more
secure the Internet becomes!

Foreword

The Internet is critical to our lives and businesses. The Internet relies on a complex
routing eco-system that is made out of the interconnections between our
Autonomous Systems (AS). The global routing system is decentralised in nature
and technically mostly based on trust. These are two beneficial properties: because
of BGP-4’s permissionlessness, we can easily interconnect with each other for
peering or use multiple transit providers; all the while maintaining a degree of
autonomy. However there are downsides too, a misconfiguration in one AS can
negatively impact other ASNs! Malicious actors can abuse the trust system.

Perhaps an analogy can be drawn between the rise and fall of open SMTP mail
relays and networks without RPKI Origin Validation. Decades ago open mail
relays served an important function as they enabled free communication between
various parts of the internet. But as the internet grew, so did the appetite for easy-
to-exploit spam cannons. Nowadays, every sensible mail operator keeps a tight lid
on who can use their mail servers and whom they can reach through those mail
servers. It simply has become unattainable to operate in a promiscuous mode.
Looking modern day Internet routing challenges, I can see Best Practises for BGP-4
follow a similar evolutionary path.

With that in mind, I’d like to urge everyone to ensure that any routes propagated
by their BGP speakers are in fact correct announcements, verified to the best of
their abilities. Routing policy statements designed with security in mind are in the
best interest of all Internet participants. In other words: as a network’s
trustworthiness increases, so does its value to the global Internet.

Keep in mind that routing security is not like herd immunity: the benefits of a more
secure routing perimeter are immediate and unilateral. There is no requirement for
a certain amount of Internet Autonomous Systems to have deployed Origin
Validation before the effects positively impact business. When you protect the
borders of your administrative domain, you immediately enjoy the benefits and

https://www.manrs.org/

	 viii	

have a competitive advantage compared to those networks who inadvertently
accepted a misconfiguration or BGP hijack.

Looking at RPKI Origin Validation and other BGP routing security best practises,
it appears the Internet Industry’s thinking has shifted from “routing security is a
nuisance” to “we have only ourselves to blame if we didn’t deploy the bare
minimum of BGP filters”. Organizations are seeing a measurable positive impact
on business operations after developing a stronger routing security posture. Only
you can protect your network!

I’d like to thank the authors and Juniper Networks for making Day One:
Deploying BGP Routing Security available to the operational community. The
authors have done a fantastic job consolidating a ton of tribal knowledge and
disparate information sources into an easy-to-read RPKI Origin Validation
deployment guide. This book will help lower the barrier to run a secure and robust
network!

Job Snijders, Internet Architect, NTT Communications

February 2019

ISPs connect their networks to each other and exchange routing information using
the BGP protocol. As the importance of the Internet has grown, the quality and
security of Internet routing have become critical.

This Day One Book began as a description of how to implement route validation
with RPKI, in order to make it easier for you to deploy by providing tested recipes.
But once we started writing about RPKI we found that routing policy in ISP net-
works is far more extensive than RPKI alone. Thus the scope of this book goes be-
yond RPKI; it can also help you set up routing policies for all routes that you may
accept into your network.

NOTE	 If you are reading this book only because you wish to implement RPKI
– and you’re happy with the rest of your routing policies – then you can skip
Chapters 2 and 4. To fully secure your routing table, though, please follow
through and read the whole book. You may find one or two usable suggestions
hidden away in the non-RPKI chapters, too.

Whether it is threatened by distributed denial of service (DDoS) attacks, prefix hi-
jacks, or ‘just’ unintentional route leaks, your network needs to deliver stability
and reliable reachability to the Internet. Most routing incidents are unintentional
and due to configuration mistakes, and unfortunately, all network engineers suffer
from the fat finger syndrome every now and then! You should consider implement-
ing routing security not only to protect your own network, but perhaps, even more
so, to help others protect theirs.

Chapter 1

Introducing Routing Security

	 10	 Chapter 1: Introducing Routing Security

Traditionally, firewalls and IDS/IPS systems are deployed to secure the network,
acting on traffic that arrives from the Internet. This means the ‘bad traffic’ has al-
ready reached your network before you can reject it and the ‘bad guys’ are com-
municating with your servers before you can stop them. Extra investments may be
needed to filter the clean traffic from the bad traffic.

When you leverage routing security, your network cannot fully communicate with
‘bad actors’ in the first place, thus making securely serving your customers easier
and more financially sustainable. The sooner you stop the threat, the better. By
deploying the correct methods you may not stop these threats from reaching your
network, but you can at least prevent your network from reaching an invalid pre-
fix, making it impossible to establish full two-way communication. So, implement-
ing routing security will make it harder for threats to propagate.

This book talks a lot about the configuration of the BGP-speaking routers that
form the edge of a DFZ network. They accept routes across BGP sessions with cus-
tomers, transit providers, and peers. They also announce routes originating from
your network and your customers’ networks. A route advertisement consists,
among other things, of a combination of prefix, prefix length, origin AS (autono-
mous system), and AS path. Routing security aims to reduce the number of poten-
tially invalid announcements that your network accepts by actively rejecting
invalid route announcements, and by ensuring you only announce the correct pre-
fixes yourself.

This book collects some of the best current practices for deploying routing
security. You can greatly improve the stability and security of your network, and
perhaps more importantly the stability and quality of the Internet, by using them.

Filtering and Rejecting Routes is Good!
One of the first concerns that comes to mind when thinking about filtering and
rejecting BGP routes is: if I reject a route, surely my network will not be able to
reach the whole Internet anymore?! While this could be true, rejecting invalid
routes is actually a good thing! Don’t think of it as making part of the Internet
unreachable. Instead, consider that leaving out clearly invalid routes from your
routing table means that you can make your network immune to (probably unin-
tentional) incorrect route announcements, as well as from (intentional) IP address
hijacks.

Another way to think about it is that many of the invalid routes you will reject are
accidental announcements (mostly typos!) and rejecting them actually keeps the
intended destination reachable, instead of making the unintended destination un-
reachable. In this case, rejecting the route actually guarantees reachability! And as
for the intentional prefix hijacks – it is obvious that you do not wish to accept
these in the first place. Therefore, the only option is to reject invalid routes and
make your routing table stable and secure.

	 11	 Internet Routing Registries

As an example, say you received a route for a /16 from your transit provider, and a
peer is sending you a single /24 that falls in that /16. If this is a legitimate route ad-
vertisement and your policies would accept it, you will send the traffic to that peer
instead of to the transit, which may be your intention. However, if the route is a
mistake or a hijack, then accepting it means that you actually make the correct /24
unreachable by accepting that route! So, rejecting routes does not automatically
mean making parts of the Internet unreachable at all.

When deploying RPKI, many network administrators decide to accept RPKI in-
valid routes regardless, but with a lower local preference. This does absolutely
nothing to make the routing table more secure: if the invalid route is more specific
to the correct route it will always win. Such is the nature of BGP. The only way to
correctly implement RPKI is by rejecting invalid routes.

Deploying routing security isn’t a single checkbox solution. Instead, it is a collec-
tion of routing policies, filters, and external sources such as ROA and RPKI valida-
tion tools. Routing policies are a method of influencing the default behavior of a
routing protocol. In this case you are trying to influence the default behavior of
BGP.

Beside the policies, which contain static or semi-static filters, routing security relies
on external sources of information, for example those offered by the Regional In-
ternet Registries (RIRs). In cases where RIR tools are mentioned, this book uses
RIPE (www.ripe.net) as an example. Obviously, there are other RIRs (https://
en.wikipedia.org/wiki/Regional_Internet_registry) who all have more or less the
same databases and tools available. ROA and RPKI validation sources are typical
examples of external sources that are leveraged in this book.

Internet Routing Registries
Routing information is stored in Internet Routing Registries (IRRs). Each of the
RIRs offers their own IRR. In addition, there are third-party IRRs, some are com-
mercial, and others are available free of charge. As you receive an IP address al-
location from your RIR, you can create a route object in an IRR in order to
‘connect’ your IP address allocation to your AS number.

But, you guessed it, there is a problem. Even though the IRRs are pretty reliable,
not all of the data they contain is guaranteed to be correct. In some IRRs you can
create objects without checks of any kind to make sure the information is correct.

Unfortunately, in many cases the IRRs still provide the best data, even though that
data may not be totally correct. In the majority of cases the data is good enough
and it is better than nothing. Therefore, we still use IRR data as needed, but will
use more reliable information when and if it is available.

http://www.ripe.net
https://en.wikipedia.org/wiki/Regional_Internet_registry
https://en.wikipedia.org/wiki/Regional_Internet_registry

	 12	 Chapter 1: Introducing Routing Security

Manually filtering a few downstream customers or peers with strict filters may be
trivial, but filtering hundreds or thousands of customers whose prefix list changes
by a handful of routes twice a week isn’t. Especially if you are using IRR sources to
build filters, it becomes very time consuming. So we will not touch on manual IRR
filtering in the next chapters, but you will find some tips and tricks on how it’s
done using scripts in the Appendix.

RPKI
There are hundreds of thousands of route announcements on the Internet today
and the magic million is not far away. Many of these announcements are invalid.
The most common routing error seen is the accidental route leak or the mis-origi-
nation of a prefix, meaning someone unintentionally announces an IP prefix that
they are not the holder of, or they advertise a more specific route without a valid
routing object in a RIR database. These errors would cause BGP routers to choose
a route that is not intended as it does not lead to the network of the rightful owner
of the IP space. As a (partial) answer to this problem, RPKI offers BGP origin vali-
dation. The question it tries to answer is: “Is this particular route announcement
authorized by the legitimate holder of the address space?”

It should be noted that RPKI does not validate the entire AS path. It will only tell
you if the originating AS is allowed to advertise that specific prefix. As of this writ-
ing, there is no good way to validate the entire AS path. Work is being done in
IETF to get a mechanism in place to solve this issue, and those drafts can be found
here: https://datatracker.ietf.org/doc/draft-ietf-grow-rpki-as-cones/ and here:
https://datatracker.ietf.org/doc/draft-azimov-sidrops-aspa-verification/.

RPKI allows network operators to create statements about the route announce-
ments they authorize that can be cryptographically validated with the prefixes they
hold. These statements are called route origin authorizations (ROAs). A ROA
states which AS is authorized to originate a certain IP address prefix. In addition, it
can determine the maximum length of the prefix the AS is authorized to advertise.
Based on this information, other network operators can make routing decisions.

Using the RPKI system fully requires action on two parts:

1. The legitimate holder of an IP prefix creates a certificate, or ROA, stating which
ASs their prefixes will be advertised (originated) from and the maximum
allowed prefix length.

NOTE	 Only the owner of the IP address allocation can create a ROA for this
allocation. This is more reliable than IRR data.

https://datatracker.ietf.org/doc/draft-ietf-grow-rpki-as-cones/
https://datatracker.ietf.org/doc/draft-azimov-sidrops-aspa-verification/

	 13	 RPKI

2. Other network operators can set their routing policies based on the RPKI
validity of route announcements when comparing them to the ROAs that were
created. These are the routing policies that would ultimately reject invalid
announcements.

When it comes to Step 1 above (create ROAs for your own IP allocations), you
turn to the web portal of your RIR. For purposes of this book that is the RIPE
NCC LIR Portal, where you can easily create your ROAs, and which offers an
easy-to-use method of showing your current BGP announcements and confirming
whether these are the exact announcements for which you wish to create an ROA.
Confirming this choice, and publishing the resulting ROAs, is all you have to do.

If you have not yet created ROAs that cover your IP space, then do so now. Creat-
ing ROAs for your IP space means that other networks will not be able to hijack
your IP prefixes any more – or more precisely, that those networks which have im-
plemented RPKI will reject these hijacks.

For Step 2 (installing and running a validator that will check the ROAs of other
networks), just keep reading and we’ll pull you through!

The RPKI is a public key infrastructure, and any party can choose to set up a Certi-
cate Authority (CA) and host it on their own servers. In order to make it easy to
start out with RPKI, the RIRs offer readily hosted CAs for IP space that belongs to
their members. The ROAs are stored on the CAs, trust anchors, run by the RIRs. A
ROA is a plain text file containing encrypted information and is downloaded from
the trust anchor into a validator, which runs in your own network. The validator
then talks to your routers so they can make routing policy decisions based on the
RPKI information received from the validator.

When a route is RPKI invalid, it means that the advertised route (the IP prefix, the
maximum length of the prefix, and the autonomous system number it is originated
from) does not correspond with the certificate created. For instance, AS123 cre-
ated a certificate allowing itself to announce 1.1.0.0/22 but instead you receive
1.1.0.0/22 from AS456. Since there is no certificate, the route from AS456 is in-
valid and should not be accepted into the routing table (even if the AS path is
shorter or the local preference is higher than on the route from AS123). This is
known as BGP Origin Validation.

	 14	 Chapter 1: Introducing Routing Security

Participate In Your Local NOG
In this book, you’ll find tested use cases to make your network more secure. The
authors use these in production networks and have verified that they work at the
time of this writing. However, everything does not always stay the same. New de-
velopments lead to new features in our routers’ software. Existing software may
have bugs that need to be worked around. In the fast-moving world of BGP net-
working, it is important to stay informed about changes. Our advice in this regard
is to get in touch – and stay in touch – with your local Network Operators’ Group
(NOG). Some NOGs have been around for years and years (like www.nanog.org
or www.nlnog.net) and have regular conferences and other events. Other NOGs
may be smaller and consist of only a mailing list or IRC channel. Whatever the
NOG in your area can offer, it pays to participate.

Some use cases in this book have been taken from the NLNOG BGP filtering
guide, which can be found on http://bgpfilterguide.nlnog.net. This website is regu-
larly updated as new ways to secure the Internet are found. We recommend check-
ing there every now and then and implementing any new recommendations found
there.

Conclusion
Networks need a secure routing table in order to keep bad traffic away. A secure
routing table does not contain invalid or bad routes. In order to achieve this as
closely as possible, there are multiple ways of filtering route advertisements, such
as implementing policies, or by using RPKI.

Filtering and rejecting routes is not scary and does not generally cause reachability
issues: in cases of obvious BGP hijacks, rejecting the routes is undeniably good,
and in case someone has made a typo in their route announcement, rejecting the
route will actually help reachability instead of hindering it.

Now let’s get started securing your routing table!

http://www.nanog.org
http://www.nlnog.net
http://bgpfilterguide.nlnog.net

Your network accepts and advertises routes to and from various sources via BGP.
For example, your transit providers send you a full table (all routes that they
know), peers send you their own routes and their customers’ routes, and you prob-
ably have customers who send you just their own routes (which may be only be a
single route). You also want to make sure you are sending the right set of routes to
the right peers or transits. All of these need their own filtering style and in this
chapter we look at the theory behind that. The actual configuration is in Chapter 3
(for RPKI) and Chapter 4 (for all other routing policy decisions).

Receiving and Advertising Routes to and from Customers
Providing connectivity to your customers is what you have built your network for!
If you provide statically-routed services to your customers (for example, leased
lines or co-location) and your customers generally use your IP space, then your
priority is to turn your own routing table into a secure routing table. If you also
provide BGP service to your customers (you act as their transit provider and your
customers announce their own IP space to you), then you will also want to config-
ure some additional policies in your network to make life easier for your custom-
ers and for yourself.

Accepting Routes from Customers
As you set up connections to your customers, BGP will be used to announce their
routes into your network. Your customers’ announcements cause your network to
forward them traffic. By sending your customers’ announcements to your peers
and transits (your routers will automatically prepend your own autonomous sys-
tem number onto theirs); your network keeps your customers online. Since

Chapter 2

Accepting and Announcing Routes

	 16	 Chapter 2: Accepting and Announcing Routes

accepting routes from your customers is often directly connected to revenue, it’s
important to accept as many routes from them as possible.

However, you need to perform checks on the announcements they send and not let
them announce just any old routes that could severely harm the stability and secu-
rity of your network.

These checks are:

	� Only accept prefixes that have a valid route object in an IRR database.

	� Only accept autonomous system numbers downstream of your customer that
have a valid registration in your customers’ AS-SET.

	� Only accept prefix lengths up to /24 IPv4 and /48 IPv6.

	� Only accept RPKI valid and unknown routes. Reject RPKI invalid.

	� Reject routes containing a bogon autonomous system number, bogon prefix,
prefix longer than /24, or AS path of unreasonable length.

	� Reject routes you originate yourself; you should never receive your own routes
from a customer.

Since your customers typically send you a few routes, it may seem feasible to im-
plement route filters manually. But in the long run this will not scale, and you’re
better off using automation to implement the checks on the routes your customers
send from the start. An example automation system is shown in the Appendix.
This will take care of the route object and AS-SET checks referred to above.

Thanks to these checks, mistakes (they happen!) do not affect your network or the
rest of the Internet. For instance, your customer could accidentally misconfigure
their router and start announcing a full table to you instead of just their own
routes. Without the correct filters on your side of the session you would accept and
forward their announcements to the rest of the Internet, potentially disrupting
business (and cat videos) worldwide.

Announcing Routes to Customers
Your customers expect to get full Internet connectivity from you. This means you
will typically announce to them:

	� A default route

	� A full table (all routes known in the global routing table)

	� Or a combination of a full table and a default route (not covered in detail)

Following the guidelines in this book means you will have a secure routing table to
announce to your customers. They may receive fewer routes from you than from
your competition (if your competition does not implement a secure routing table).

	 17	 Receiving and Advertising Routes to and from Peers

But in Chapter 1 we showed that this is a good thing! We also believe that provid-
ing a default route from this secure routing table is a better default route than one
from a non-secure routing table. Why offer a default route to networks that inten-
tionally, or unintentionally, announce the wrong IP address space?

Receiving and Advertising Routes to and from Peers
Now that we’ve looked at how to filter customer BGP sessions, the next step is
peering sessions. In this context, a peer is another BGP-speaking network, roughly
the same size, or at least the same type (tier) of network, as yours, that you are ex-
changing routes (and therefore traffic) with. Whether those peers are private peers
or peers on an Internet Exchange Point (IXP) is not important for the setup of your
secure routing table.

Typically, you would receive between one and several thousand routes from a peer;
the peer would send you their routes and those of their customers, and you would
send them your routes and those of your customers. Note that you will not be an-
nouncing your peer’s routes to your transits – if someone is paying you to distrib-
ute their routes further upstream (to your other peers and transits) they are
considered a customer, not a peer. Although you do, of course, announce routes
learned from a peer to your customers.

Accepting Routes from Peers
A peer’s network is a network like yours - operated by humans with fat fingers.
Just as you did for customer routes, you will also need to filter the advertisements
you accept from peers. In most cases you will receive a substantial number of
routes via peers, so filtering on a per prefix basis, or by manually adding policies,
doesn’t scale.

MORE?	 The Appendix presents an idea to automate prefix filtering for peers.

Here are some basics you should consider when it comes to accepting routes from
peers:

	� Obviously you will need to check for RPKI invalids and actively reject those
advertisements.

	� Received routes from a peer should never contain the AS number of a known
transit provider. For example, if your transit provider is AS123, then you
should never see AS123 in a path received from a peer. If you do see AS123 in
a route advertisement received from a peer, this means the peer is leaking
routes. Don’t ‘graylist’ those route leaks by giving them a lower preference “in
case you need them” when the transit fails; simply filter them out! A route leak
is never to be trusted; your peer will not have enough capacity to handle the
traffic anyway.

	 18	 Chapter 2: Accepting and Announcing Routes

	� Peers also make mistakes. One day the administrator on ‘the other side’ will
forget to apply an export policy and announce a full table by accident – so filter
what and where you can.

	� Reject routes containing a bogon autonomous system number, bogon prefix,
prefix longer than /24, or AS path of unreasonable length.

	� Reject routes you originate yourself; you should never receive your own routes
from a peer.

Announcing Routes to Peers
You will typically announce the following routes to your peers. In this example it
doesn’t really matter if it’s a private peer or if it’s on an IXP:

	� Your own routes (the ones that your AS originates)

	� Your customer’s routes (the ones that you learn from your BGP customers)

TIP	 Make sure to tag all advertisements you receive from customers, peers, and
transits with communities. This will make it fairly easy to quickly advertise the right
set of routes.

For example, if you tag routes received from your customers with a unique com-
munity and a general ‘customers community’ you can then advertise specific, or all,
customer routes really easily to your peers. Think about the possibilities if you ex-
tend this method to peers and transits – and realize that the hard work is actually
done in the import policies, not the export policies. Once your import policies filter
and tag all received routes correctly, your routing table is clean and exporting
routes from it will be a breeze.

Receiving and Advertising Routes from and to Transit Providers
So far, we’ve been talking about running BGP with your customers (who will send
you only their own routes) and peers (who will send you their own routes, plus
those of their customers).

In contrast, a transit will send you a ‘full table’, meaning that they will send you all
the routes they know – a route to every destination on the Internet (hopefully fil-
tered using RPKI, etc.).

A transit provider typically does not send a default route, although they can usually
do so on request. In addition to sending you their full routing table, a transit pro-
vider will also accept your routes and send them to all of their customers, peers, and
other transit providers, making them transport traffic on your behalf and sending it
on to your network. So it seems likely that you will always want to accept all routes
from your transit providers. But then, not everything is what it seems!

	 19	 Conclusion

Accepting Routes from Transit Providers
When it comes to accepting routes from your transit provider, you of course need
to accept the vast majority of them in order to make your network capable of
reaching the entire Internet. However, even transit providers may send you routes
that you may want to refuse, such as:

	� RPKI invalids;

	� Routes containing a bogon autonomous system number, bogon prefix, prefix
longer than /24, or AS path of unreasonable length;

	� Routes originating from your own network; you should never receive your
own routes from a transit.

Announcing Routes to Transits
Typically, you would announce your and your customer’s routes to your transit
providers—remember the TIP where we used communities to tag those routes?
This is the same set of routes that you would announce to your peers. Therefore,
the same rules apply as with the ‘Announcing routes to peers’ instance described
earlier in this chapter.

Conclusion
After implementing both the import and export filters and enabling RPKI, both of
which are detailed in the next chapters, you should arrive at a situation as illus-
trated in Figure 2.1, where it is very clear what you accept from whom and to
whom you advertise.

Table 2.1	 What and to Whom You Should Advertise

Classifier (attached in
ebgp-in)

ebgp-out to customer ebgp-out to peer ebgp-out to upstream

Learned from Customer accept accept accept

Learned from Peer accept reject reject

Learned from Upstream accept reject reject

My own routes accept accept accept

No Classifier reject reject reject

	 20	 Chapter 2: Accepting and Announcing Routes

To make it easier remember this simple rule: you should always tag received routes
with communities and advertise to the right parties based on these communities.
This will make your life much easier.

MORE?	 For more information on communities please see: https://www.juniper.
net/documentation/en_US/junos/topics/example/bgp-communities.html, and
https://www.juniper.net/documentation/en_US/junos/topics/usage-guidelines/
policy-defining-bgp-communities-and-extended-communities-for-use-in-routing-
policy-match-conditions.html.

MORE?	 This chapter was inspired by this presentation: https://ripe77.ripe.net/
wp-content/uploads/presentations/59-RIPE77_Snijders_Routing_Policy_Architec-
ture.pdf.

https://www.juniper.net/documentation/en_US/junos/topics/example/bgp-communities.html
https://www.juniper.net/documentation/en_US/junos/topics/example/bgp-communities.html
https://www.juniper.net/documentation/en_US/junos/topics/usage-guidelines/policy-defining-bgp-communities-and-extended-communities-for-use-in-routing-policy-match-conditions.html
https://www.juniper.net/documentation/en_US/junos/topics/usage-guidelines/policy-defining-bgp-communities-and-extended-communities-for-use-in-routing-policy-match-conditions.html
https://www.juniper.net/documentation/en_US/junos/topics/usage-guidelines/policy-defining-bgp-communities-and-extended-communities-for-use-in-routing-policy-match-conditions.html
https://ripe77.ripe.net/wp-content/uploads/presentations/59-RIPE77_Snijders_Routing_Policy_Architecture.pdf
https://ripe77.ripe.net/wp-content/uploads/presentations/59-RIPE77_Snijders_Routing_Policy_Architecture.pdf
https://ripe77.ripe.net/wp-content/uploads/presentations/59-RIPE77_Snijders_Routing_Policy_Architecture.pdf

In Chapter 1 you saw how the RPKI provides routing security by validating an-
nouncements of prefixes from their AS. You should also have created ROAs for
your own IP prefix(es). Now it’s time to log in to your router and set up RPKI! This
chapter creates a machine running an RPKI validator and configures your network
to talk to it, making sure that your routers can use RPKI to validate prefix
announcements.

Schematically, this is how communication flows:

Figure 3.1	 Communication Flow for RPKI-RTR

Chapter 3

Configuring RPKI: Resource Public Key
Infrastructure

	 22	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

The Role of a Validator in the RPKI System
An RPKI validator, sometimes referred to as Relying Party Software or Validating
Cache, is a critical component of the Resource Public Key Infrastructure. The job
of a validator is to collect the Route Origin Authorizations (ROAs) from various
publication points, perform the cryptographic processing, and provide a summary
of results to one or more routers using the RPKI-to-Router (RPKI-RTR) protocol.
This separation relieves the router's control plane from having to contact all the
ROA publication points and handle the heavy cryptographic processing. As the
number of objects in the RPKI (ROAs and certificate revocation lists) increases,
the resources of the validator can be more easily scaled than if the function resided
directly on the router.

At the time of this writing, a popular validator, RIPE NCC’s Validator version 3
has been deprecated, with no further development, and has moved to archive sta-
tus. This chapter provides an overview of four current validators: Routinator, Oc-
toRPKI, FORT, and Prover. It includes instructions on installation and basic
configuration, along with a comparison of the performance of each validator. Pro-
metheus and Grafana are briefly discussed, as several of the validators support this
method of monitoring. This is not meant to be an exhaustive analysis of all RPKI
software options, but an introduction to get popular packages running. Specifi-
cally excluded are certificate authority (CA) implementations (for example Krill)
that are used in delegated RPKI setups.

Do I Need to Run a Validating Cache?
As with all good questions, the answer is: It depends! In the current landscape,
enforcement of origin validation, specifically, dropping RPKI Invalid prefixes, is
inconsistent- some operators are dropping invalids, others aren’t or are only drop-
ping them partially. If you want to be in control of which prefixes you accept with
respect to origin validation, then running a validator is the right way to go. In the
future, as more operators begin enforcing rejecting RPKI invalid announcements,
there may be less value for some networks in running your own validation service.
For example, non-transit networks that can ensure their upstreams are filtering
invalid announcements. However, today, running your own validation service is a
good idea, especially with the ease of installing and operating validation software,
which will hopefully be evident in this article, running your own validation service
is a good idea.

The RPKI Ecosystem
As a public key infrastructure, the RPKI is hierarchical, with the five Regional In-
ternet Registries (RIRs) acting as the roots (CA). In some cases, operators run
their own RPKI certificate authority (CA) by requesting “Up/Down” access
(RFC6492 - A Protocol for Provisioning Resource Certificates).

https://labs.ripe.net/author/nathalie_nathalie/lifecycle-of-the-ripe-ncc-rpki-validator/
https://www.nlnetlabs.nl/projects/rpki/routinator/
https://github.com/cloudflare/cfrpki
https://github.com/cloudflare/cfrpki
https://fortproject.net/en/validator
https://github.com/lolepezy/rpki-prover
https://www.nlnetlabs.nl/projects/rpki/krill/
https://datatracker.ietf.org/doc/html/rfc6492

	 23	 The Role of a Validator in the RPKI System

Trust Anchor Locators (TALs), as described in RFC8630, tell the relying party
software where to go to begin collecting ROAs and from there, any locations to
get ROAs available in delegated publication points. This means you don’t need to
keep track of any of the delegated repositories- that happens automatically. All
tested validators come with four of the five TALs preloaded.

ARIN’s TAL requires explicit acceptance of a Relying Party Agreement (RPA).
Depending on the package, this acceptance may be signalled via an installation
parameter. Otherwise, the TAL must be separately downloaded from ARIN and
installed. Further details can be found on the ARIN website: https://www.arin.net/
resources/manage/rpki/tal/

Figure 3.2	 Structure of the RPKI Environment

Installation
All validators were installed on standardized virtual machines running under
ESXi. The VMs were configured with 2 2.3Ghz CPUs, 8GB of RAM and 80GB
storage and ran Debian 10 (“Buster”). An additional VM was provisioned to run
Prometheus and Grafana, which was used to both monitor the performance of the
validators and to collect statistics from the routers. That setup will be briefly de-
scribed in the Monitoring and Performance section. Three test routers were con-
nected to each validator, and each router got a feed of a live internet route table
(full table) from a production router.

https://datatracker.ietf.org/doc/html/rfc8630
https://www.arin.net/resources/manage/rpki/tal/
https://www.arin.net/resources/manage/rpki/tal/

	 24	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

For added fun, this topology used IPv6 where possible. Only Prover was unable to
accept rtr connections using IPv6, otherwise, the routers connected to each valida-
tor via IPv6 and Prometheus collected statistics over IPv6. The protocol used to
connect to the TALs and repositories to collect ROAs varied.

Figure 3.3	 Validator Test Topology

Routinator
Routinator is relying party software maintained by NLnetlabs and written in the
Rust programming language. It is available for a number of platforms and easily
installable via standard package management systems (apt for Ubuntu and Debi-
an, yum for Red Hat/CentOS). A Docker container is available as well. It is issued
under the BSD 3-Clause “New or Revised” License (https://en.wikipedia.org/wiki/
BSD_licenses).

Installation on Debian is straightforward. Following the instructions, add the fol-
lowing line to /etc/apt/sources.list or /etc/apt/sources.list.d/:

deb [arch=amd64] https://packages.nlnetlabs.nl/linux/debian/ buster main

Add the NLnetlabs Public Key to your apt keyring with the following command:

wget -qO- https://packages.nlnetlabs.nl/aptkey.asc| sudo apt-key add -

https://hub.docker.com/r/nlnetlabs/routinator
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/BSD_licenses

	 25	 Routinator

The update and install:

sudo apt install routinator

NOTE	 Routinator requires rsync, which will be installed as a dependency if it is
not present).

To initialize the package after install, run:

sudo routinator-init

Running command as user routinator:

routinator --config /etc/routinator/routinator.conf init

NOTE	 Before we can install the ARIN TAL, you must have read and agreed to
the ARIN Relying Party Agreement (RPA), available at: https://www.arin.net/
resources/manage/rpki/rpa.pdf. If you agree to the RPA, please run the command
again with the --accept-arin-rpa option. Fatal error. Exiting.

Rerunning the init function as instructed:

sudo routinator-init --accept-arin-rpa
Running command as user routinator: routinator --config /etc/routinator/routinator.
conf init --accept-arin-rpa
Created local repository directory /var/lib/routinator/rpki-cache
Installed 5 TALs in /var/lib/routinator/tals

To enable the systemd service and start the program:

sudo systemctl enable --now routinator

Routinator is now running and listening on the following ports:

� 3323 for RTR

� 8323 for HTTP (UI)

NOTE	 By default, the initial configuration only accepts incoming connections
from the loopback:

/etc/routinator/routinator.conf
rtr-listen = ["127.0.0.1:3323"]
http-listen = ["127.0.0.1:8323"]

To accept connections from anywhere (which may not be desirable, see section
Security), modify the configuration file:

rtr-listen = ["[::]:3323"]
http-listen = ["[::]:8323"]

To support legacy (IPv4) transport:

rtr-listen = ["0.0.0.0:3323"]
http-listen = ["0.0.0.0:8323"]

https://www.arin.net/resources/manage/rpki/rpa.pdf
https://www.arin.net/resources/manage/rpki/rpa.pdf

	 26	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

Again, this test used IPv6 as the primary transport where possible.

You can now configure your routers to connect to this machine and start accepting
RPKI Validated ROA Payloads (VRPs).

Routinator provides a simple webUI that allows you to search for ASN/prefix
combinations to test validity as well as provide basic monitoring as shown in
Figure 3.4.

Figure 3.4	 Welcome to Routinator

A Prometheus endpoint is available at [host]:8323/metrics. NLnetlabs provides a
pre-build Grafana dashboard.

Figure 3.5	 Grafana for Routinator

	 27	 OctoRPKI and Tools

Routinator provides several API endpoints to facilitate integration with other
tools, among them:

� /api/v1/status - provides detailed information about the ROA collection pro-
cess (including ROA couts, publication points contacted and protocols used)

� /api/v1/validity/as-number/prefix - allows you to programmatically query Rou-
tinator for an ASN-prefix pair to determine origin validity

Other endpoints of interest:

/log - provides logs from the last validation run
/metrics - Prometheus endpoint
/status - additional monitoring and statistics
/version - version number

MORE?	 A public demo of this software is available at https://routinator-demo.aws.
nlnetlabs.nl/.

OctoRPKI and Tools
OctoRPKI is relying party software maintained by Cloudflare. It is written in the
Go programming language and released under BSD 3-Clause "New" or "Revised"
License. OctoRPKI offers only the RPKI validation part. It collects and processes
ROAs and produces a JSON formatted output available for use by other tools. It
does not include RPKI-RTR functions to connect routers to OctoRPKI. In order to
do so you will need to use GoRTR, which is also maintained by Cloudflare.

OctoRPKI comes bundled with four of five TALs: Afrinic, APNIC, LACNIC, and
RIPE. ARIN’s TAL must be downloaded separately and installed manually as men-
tioned earlier in this chapter.

Installation is fairly straightforward as a number of pre-built binaries are avail-
able. To install OctoRPKI on Debian, download the desired package from https://
github.com/cloudflare/cfrpki/releases and run:

sudo dpkg -i octorpki_1.2.2_amd64.deb

If you’ve accepted the ARIN RPA, download and install the TAL in /usr/share/oc-
torpki/tals/.

Important Note
Because this package was installed manually (via dpkg), rsync was not installed as
a dependency. To install rsync via package manager:

apt install rsync

Start and enable the service:

sudo systemctl enable octorpki --now

https://routinator-demo.aws.nlnetlabs.nl/
https://routinator-demo.aws.nlnetlabs.nl/
https://github.com/cloudflare/cfrpki
https://github.com/cloudflare/gortr
https://github.com/cloudflare/cfrpki/releases
https://github.com/cloudflare/cfrpki/releases

	 28	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

The software starts, collects, and processes ROAs. The first run may take some
time. Once complete, output is available at: http://host:8081/output.json.

NOTE	 If you receive File not ready yet, the software is still on its first run. You
can check the Prometheus metrics and look for:

# HELP state State of the Relying party (1 = stable, 0 = unstable).
# TYPE state gauge
state 0

NOTE	 If you forgot to install rsync, you’ll have an incomplete set of ROAs. Check
the logs for a message similar to this:

octorpki[499]: time="2021-07-06T14:54:18-04:00" level=info msg="Rsync sync rsync://repository.
lacnic.net/rpki/lacnic/rta-lacnic-rpki.cer"

octorpki[499]: time="2021-07-06T14:54:18-04:00" level=error msg="Error when processing cache/
repository.lacnic.net/rpki/lacnic (for {0xc000070c40}): rsync binary missing. Will add to rsync."

Most publication points have switched to using RPKI Repository Delta Protocol
(RRDP), however this transition is not complete. RRDP is defined in RFC8182.
The older rsync method is still in use and requires you to get a complete set of
ROAs.

A Prometheus endpoint is available at http://host:8081/metrics.

Make OctoRPKI Available to Your Routers
In order to make OctoRPKI available to your routers, you’ll need to install an ad-
ditional component: GoRTR. The package can be installed by downloading it
from https://github.com/cloudflare/gortr/releases and issuing the following
command:

sudo dpkg -i gortr_0.14.7_amd64.deb

By default, GoRTR uses Cloudflare’s publicly accessible OctoRPKI VRP data
(https://rpki.cloudflare.com/rpki.json). To configure it to use the local VRP data of
the validator running on the local machine, add the following to /etc/default/gortr:

GORTR_ARGS=-cache "http://[::]:8081/output.json"

Start and enable the service:

sudo systemctl enable gortr --now

The GoRTR will now expose two ports:

	� 8080 - provides a Prometheus endpoint (/metrics) and a JSON formatted ver-
sion of the available data (/rpki.json)

http://host:8081/output.json
https://datatracker.ietf.org/doc/html/rfc8182
http://host:8081/metrics
https://github.com/cloudflare/gortr/releases
https://rpki.cloudflare.com/rpki.json

	 29	 FORT

� 8282 - RPKI-RTR listener

There are several security options available for connecting OctoRPKI and GoRTR
to each other as well as connecting GoRTR to your routers using TLS or SSH as
transport mechanisms.

The disaggregation of the validator and rtr functions is a bit more complicated
than the other packages, but the flexibility in deployment and additional security
options may be useful in more complex use cases.

There is no UI but there is a pre-built Grafana dashboard available for both Oc-
toRPKI & GoRTR as shown in Figure 3.6.

Figure 3.6	 Grafana for GoRTR

FORT
FORT is a joint project of Latin America and Caribbean Network Information
Centre (LACNIC) and NIC.MX, the National Internet Registry for Mexico. It is
written in the C programming language and released under the MIT license. Bi-
nary releases are available in both Redhat and Debian packages. A Docker con-
tainer is also available.

Fetching the latest release and installing with apt will also install some dependen-
cies (again, rsync is important!). First, get the latest release from https://github.
com/NICMx/FORT-validator/releases, and next, start the installation issuing:

sudo apt install ./fort_1.5.0-1_amd64.deb

As with the other validators, four of five TALs are included. Initialize FORT with
the --init-tals directive to be prompted to accept ARIN’s RPA and restart:

https://github.com/NICMx/FORT-validator/releases
https://github.com/NICMx/FORT-validator/releases

	 30	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

sudo fort --init-tals --tal=/etc/fort/tal
sudo service fort restart

By default, FORT listens on port 323 for RPKI-RTR connections. If desired, this
can be changed in the configuration file is /etc/fort/config.json:

{
    "tal": "/etc/fort/tal",
    "local-repository": "/var/lib/fort",
    "slurm": "/etc/fort/slurm/",
    "server": {
	  "address": ["::"],
   	  "port": "323"
    },
    "log": {
   	  "output": "syslog"
    }
}

NOTE	 The rtr port will not open until the first validation run completes.

You can monitor syslog for the status of FORT:

fort[1888]: WRN: First validation cycle has begun, wait until the next notification to connect your
router(s)
fort[1888]: WRN: First validation cycle successfully ended, now you can connect your router(s)

FORT does not have a user interface or Prometheus endpoint.

Prover
Prover is relying party software maintained by Mikhail Puzanov of RIPE NCC. It
is written in the Haskell programming language and released under BSD 3-Clause
“New or Revised” License. It’s available as a 64-bit binary for Linux or a Docker
container. If you’re adventurous, it can be installed from source code which re-
quires a working Haskell environment. The instructions are clear but the installa-
tion can be a bit time consuming.

There is no configuration file. Any parameters that need adjusting can be done so
with command line flags. For the first run, there is an initialization option to es-
tablish the directory structure, agree to ARIN’s RPA and download and install the
TALs:

./rpki-prover-linux.exe --initialise --agree-with-arin-rpa \ --rpki-root-directory /var/lib/rpki-
prover/

After initialization, run Prover and enable the rtr function:

./rpki-prover-linux.exe --with-rtr --rpki-root-directory \ /var/lib/rpki-prover/

Prover will now expose two listening ports:

	 31	 Prover

� 8283 - RPKI-RTR

� 9999 - UI and Prometheus endpoint

Until the first validation session is complete, you’ll receive this message when con-
necting to the UI:

curl http://0:9999
Working, please hold still!

Figure 3.7 shows that the webUI provides basic validation statistics including in-
formation on the TALs contacted, and publication points (both RRDP and rsync)
used to fetch ROAs.

Figure 3.7	 Prover UI

As with Routinator, Prover also has several API endpoints, including:

� /api/vrps.json - JSON formatted output of validated ROA payloads (VRPs)

� /api/vrps.csv - CSV formatted VRPs

� /api/validation-result - result of last validation run (similar to webUI), JSON
formatted

� /api/app-metrics - similar to metrics in webUI and JSON formatted

� /api/lmdb-stat - JSON-formatted statistics for LMDB cache. Normally it is not
of a huge interest to anyone, mostly used for development and testing.

� /api/object

MORE?	 A Prometheus endpoint is available at http://0:9999/metrics.

	 32	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

Monitoring Performance
As mentioned earlier, three of the four validators include a Prometheus endpoint
for monitoring the status and health of the software, with two providing pre-built
Grafana dashboards. This section briefly discusses the performance monitoring
methodology used in this evaluation.

Prometheus
Prometheus is a time-series database for collection, storage, and reporting of per-
formance data and alerting. For those familiar with traditional network monitor-
ing, it is much more flexible and extensible than SNMP. Nodes run exporters that
expose metrics to be collected by the Prometheus server that uses HTTP(S) or an-
other transport mechanism. While Prometheus itself has a basic user interface, it is
commonly paired with Grafana.

Grafana is an open-source visualization tool that can pull data from many sources;
it comes bundled with a built-in Prometheus connector. Also see https://pro-
metheus.io/docs/visualization/grafana/ .

Prometheus is available either as a package (apt- or yum-based systems) or can be
installed from the latest binary or source code. Prometheus is configured via a
YAML file, usually found in /etc/prometheus. There are two sections relevant for
this discussion:

  - job_name: 'validators'
	 static_configs:
  	 - targets: ['routinator:8323', 'OctoRPKI:8081', 'OctoRPKI:8080', 'proverv4:9999']
  - job_name: 'node_exporter'
	 static_configs:
	 - targets: ['localhost:9100','routinator:9100', 'OctoRPKI:9100', 'FORT:9100','Prover:9100']

A Prometheus job is a collection of endpoints that share a similar function. In the
first job, there are four instances for this job to scrape metrics from: Routinator,
Prover, and two for OctoRPKI (one for the validator and one for GoRTR).

The second job is for the “node-exporter.”

Node-exporter
This is a small utility that runs on “*NIX” type operating systems and exposes a
slew of hardware and OS metrics. By default, the node-exporter listens on port
9100 for queries from the Prometheus server.

Grafana
Grafana is an open-source visualization and alerting tool. OS specific instructions
are available at https://grafana.com/docs/grafana/latest/installation/.

https://prometheus.io/docs/visualization/grafana/
https://prometheus.io/docs/visualization/grafana/
https://grafana.com/docs/grafana/latest/installation/

	 33	 Monitoring Performance

Briefly, it can be installed on Debian with apt after adding Grafana’s repository to
the apt-sources. After installation, the server listens on port 3000 for the web inter-
face. Initial credentials are admin/admin and you’ll be prompted to create a new
password as shown in Figure 3.8 and 3.9.

Figure 3.8 Grafana Login

Figure 3.9	 Grafana New Password

Once logged in, add the Prometheus server as a data source. Since we’re running
the Prometheus server on the same machine as Grafana, the configuration of the
data source looks like Figure 3.10.

NOTE	 When the page is first loaded, there is a ‘hint’ in the URL field that says (in
gray text) “http://localhost:9090”. You’ll need to type “http://localhost:9090” to
specify the URL. The gray text you see isn’t a default. If you click “Save and Test”
at the bottom of the page without entering anything, you’ll get a “Bad Gateway”
error.

	 34	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

Figure 3.10	 Grafana Data Sources-Prometheus

Once Prometheus is connected as a data source, install the pre-configured dash-
boards by navigating to Manage Dashboards-->Import.

Figure 3.11	 Grafana Dashboard Import

Two of the validators tested here have pre-built dashboards. Routinator’s dash-
board ID is 11922. OctoRPKI and GoRTR’s dashboard is 12501. Enter this in the
Grafana.com dashboard URL or ID field and click load.

Figure 3.12	 Import Dashboard by IDe

	 35	 Monitoring Performance

Select the data source the dashboard will use, then click import.

Figure 3.13	 Select Data Source for Dashboard

The node-exporter is a popular Prometheus exporter, and there are lots of dash-
boards available.

Results
All four validators performed well on the modestly configured virtual machines (as
a reminder, the VMs were provisioned with 2x2.3GHz CPUs and 8GB of RAM).
See Figure 3.14.

You can see that each machine shows periodic spikes in CPU activity, most likely
during re-validation runs. OctoRPKI + GoRTR and Prover showed the highest
memory usage, but in practice, that didn’t appear to be a problem in the test
environment.

NOTE	 It will be important to monitor the resource usage of whatever software
you choose to deploy. As the number of objects in the RPKI increases, expect
memory, CPU, and storage requirements to grow.

	 36	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

Figure 3.14	 Memory-CPU Graphs

Security Considerations
An RPKI validator becomes a key part of your infrastructure, especially once you
move from a mode of just monitoring route origin states to enforcing policy and
rejecting invalid announcements. As such, the security of the validation infrastruc-
ture is important.

The importance of following site best practices to secure the hosts and software is
obvious. The ports used, and default behavior of the software (ie- listen for in-
coming connections from localhost only or everywhere) varies by package. Pay
particular attention to which ports need to be open and who (which IP addresses)
is allowed to reach the validator. While the default port is 323, several packages
use different ports.

NOTE	 At the time of this writing, the communication between the router and
validator is both unauthenticated and in-the-clear. The RFC (8210) requires this
as a minimum:

“Caches and routers MUST implement unprotected transport over TCP using a
port, RPKI-RTR (323). Operators SHOULD use procedural means, for example,
access control lists (ACLs) to reduce the exposure to authentication issues.”

	 37	 Deployment Considerations

Additionally: “It is expected that when the TCP Authentication Option (TCP-
AO) [RFC5925] is available on all platforms deployed by operators, it will be-
come the mandatory-to-implement transport.”

Securing the communications channel between the router and validator is an ac-
tive area of present development.

Deployment Considerations
The quantity and location of validators within your network will be highly depen-
dent on the details of your environment. However, there are several items to con-
sider. First, what is your routing policy with respect to origin validation? Are you
dropping invalid routes or just monitoring? On one hand, if you are implementing
route filtering based on RPKI validation state, then the validators are critical com-
ponents of your network that need the same level of attention to availability as
other key elements. On the other hand, the loss of validation function results in
routes being flagged as Unknown, which is the default state, and by far, the most
common state for routes to be in today. To put another way, unless Unknown
routes are being dropped (which currently is clearly undesirable), the failure mode
for RPKI is open.

Having said this, if filtering Invalid routes is important to your network and the
service you provide your customers, treating the validation function as critical
seems appropriate. For small or regional operators, having two validators in dif-
ferent data centers, with no shared points of failure, and connecting your routers
to both the validators is a reasonable approach. Larger operators, especially if op-
erating in multiple regions, may want more localized validation functions, paying
particular attention to localizing routers and validators. This is especially true for
the caveats discussed above with respect to authentication and encryption of the
rtr connection.

Dealing with Exceptions
The information collected from the RPKI repositories represents trusted, crypto-
graphically verified assertions of AS/prefix origination. There may, however, be
situations where you need to override that information for local use. For example,
you might need to assert origin information that isn’t in the RPKI (such as private
space in use on your network) or you may want to filter ROAs learned externally
from being used by your network. Simplified Local Internet Number Resource
Management with the RPKI, in short SLURM (RFC8416), is a method to achieve
this.

The SLURM is a JSON formatted file containing local exceptions to the global
RPKI data.

https://datatracker.ietf.org/doc/html/rfc8416

	 38	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

An empty SLURM files looks like:

{
  "slurmVersion": 1,
  "validationOutputFilters": {

"prefixFilters": [],
"bgpsecFilters": []

  },
  "locallyAddedAssertions": {

"prefixAssertions": [],
"bgpsecAssertions": []

  }
}

The validationOutputFilters object removes matching entries from being sent to the
routers. The locallyAddedAssertions object adds origin assertions to the data being
sent to the routers. Filters can match on Autonomous System Number (ASN), pre-
fix, or ASN + prefix. Added assertions must contain both ASN and prefix. The
bgpsec objects are not used in this setup and are only included above for complete-
ness as specified in the RFC.

Let’s examine an example SLURM file:

{
  "slurmVersion": 1,
  "validationOutputFilters": {

"prefixFilters": [
{

"prefix": "192.0.2.0/24",
"comment": "All VRPs encompassed by prefix"

},
{

"asn": 64496,
"comment": "All VRPs matching ASN"

},
{

"prefix": "198.51.100.0/24",
"asn": 64497,
"comment": "All VRPs encompassed by prefix, matching ASN"

}
],
"bgpsecFilters": []

  },
  "locallyAddedAssertions": {

"prefixAssertions": [
{
"asn": 4200000000,
"prefix": "2001:db8::/33",
"comment": "IPv6 Doc prefix 1 "
},
{
"asn": 4200000001,
"prefix": "2001:db8:8000::/33",
"comment": "IPv6 Doc prefix 1"
}
],
"bgpsecAssertions": []

  }
}

	 39	 Connect Your Routers to the Validator

The output filter section is taken straight from the RFC and the comments indicate
what is being filtered. The first item filters any VRPs that contain the prefix or any
advertised prefix contained within it. The second item matches and filters any
VRPs with the indicated ASN. The third requires a match of both the prefix and
ASN.

The assertion section adds two VRPs to the data fed to the routers. This will cause
the following prefix/origin pairs to be flagged as valid:

2001:db8::/33 originated by ASN 4200000000, and
2001:db8:8000::/33 originated by ASN 4200000001

Using the Routinator UI as an example, we now see a valid VRP in Figure 3.15.

Figure 3.15	 Routinator UI Valid VRP

For Routinator, the location of the SLURM file is specified in the configuration:

# This settings contains a array of paths to files that contain local
# exceptions. The files are JSON files according to RFC 8416 (aka SLURM).
exceptions = ["/var/local/routinator/SLURM/v1.json"]

Both Fort and GoRTR (the companion to Cloudflare’s OctoRPKI), have a com-
mand line option -slurm ./slurm.json to indicate the process should look for a
SLURM file.

NOTE	 At the time of this writing, Prover does not support SLURM, but there is
an open issue to implement support.

Connect Your Routers to the Validator
The first step for using origin validation data within your Juniper Networks router
is to set up communication with the validator. In this example, the validator has
IPv6 address 2001:db8::f00:baa and the routers address is 2001:db8::1. This will
work using IPv4 as well.

	 40	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

Obviously, both don’t have to be on the same subnet. But they must be able to
communicate with each other on the RTR port (in the standard configuration, that
is, TCP port 8323). Make sure you have opened this port on any firewalls in be-
tween, and don’t forget to adjust the firewall filter on your router’s loopback inter-
face to allow communication with the validator. The terms cache and validator are
used; the cache is part of the validator and holds the ROA information. In this
context we use the term validator to identify both, and we will not distinguish be-
tween the cache and the validator:

routing-options {
    validation {

group rpki-validator {
session 2001:db8::f00:baa {

port 8323;
local-address 2001:db8::1;

}
}

    }
}

The commands to achieve this configuration are:

set routing-options validation group rpki-validator session 2001:db8::f00:baa port 8323
set routing-options validation group rpki-validator session 2001:db8::f00:baa local-
address 2001:db8::1

After committing the candidate configuration, your router will set up a validation
session. You can see the session status using:

user@router> show validation session 
Session State   Flaps     Uptime #IPv4/IPv6 records
2001:db8::f00:baa Up 0 	         00:00:47   0/0

If the session does not come up, troubleshoot connectivity between the router and
the machine running the validator. Remember to adjust the routers loopback fire-
wall filter and/or any iptables or firewall in the path, or a firewall on the validator.
Be sure to take the source address used on your router into account.

Configure Your Routers to Tag RPKI Valid Routes
The validation database is a separate entity in your router’s memory. Entries in the
validation database do not automatically make it into the routing table (let alone
into the forwarding table). Making RPKI work for your network means that you
have to configure a policy that will look at the state of each prefix and tag the cor-
responding route in the routing table. Now the RPKI status of the routes in your
routing table will be attached to those routes. The final step is to use the RPKI sta-
tus to accept or reject routes (or take other action on them as required) as shown in
Figure 3.16.

	 41	 Connect Your Routers to the Validator

Figure 3.16	 Validation Database Sequence

Accepting and Rejecting RPKI Checked Advertisements
As the RPKI validator has been installed and is made available on your routers,
nothing has yet happened to your routing table. Now it’s time to update your rout-
ing policies and actually do something with the RPKI information!

The validation database contains prefixes, prefix lengths, and autonomous system
numbers. Your routing policy uses this information to decide which routes to take
from the routing information base (RIB) and install into the forwarding informa-
tion base (FIB).

There are three possible RPKI states in the validation database: valid, invalid, and
unknown. As most networks in the world are only in the starting phase of RPKI
implementation, most routes will be of unknown state. Your task is to accept the
valid and unknown routes, and reject the invalid routes. In addition, add a BGP
community – a flag that each route carries with it. This will make troubleshooting
easier and will enable your customers to see your RPKI information as well.

In the configuration snippet below, we created a policy that you can call from oth-
er routing policies. It takes the RPKI state in the validation database and then sets
the corresponding validation state as the route goes to the RIB. In addition, the
policy sets a BGP community as a flag that shows the RPKI status of the prefix.
Note that none of the terms in this policy actually accept or reject the route; the
policy is purely there to tag the prefixes going to the RIB.

policy-options {
    policy-statement RPKI-CHECK {

term valid {
from {

protocol bgp;
validation-database valid;

}
then {

validation-state valid;

	 42	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

community add origin-validation-state-valid;
}

}
term invalid {

from {
protocol bgp;
validation-database invalid;

}
then {

validation-state invalid;
community add origin-validation-state-invalid;

}
}
term unknown {

from {
protocol bgp;
validation-database unknown;

}
then {

validation-state unknown;
community add origin-validation-state-unknown;

}
}

    }
}

You can enter this policy by cutting and pasting the following lines:

set policy-options policy-statement RPKI-CHECK term valid from protocol bgp
set policy-options policy-statement RPKI-CHECK term valid from validation-database valid
set policy-options policy-statement RPKI-CHECK term valid then validation-state valid
set policy-options policy-statement RPKI-CHECK term valid then community add origin-validation-
state-valid
set policy-options policy-statement RPKI-CHECK term invalid from protocol bgp
set policy-options policy-statement RPKI-CHECK term invalid from validation-database invalid
set policy-options policy-statement RPKI-CHECK term invalid then validation-state invalid
set policy-options policy-statement RPKI-CHECK term invalid then community add origin-validation-
state-invalid
set policy-options policy-statement RPKI-CHECK term unknown from protocol bgp
set policy-options policy-statement RPKI-CHECK term unknown from validation-database unknown
set policy-options policy-statement RPKI-CHECK term unknown then validation-state unknown
set policy-options policy-statement RPKI-CHECK term unknown then community add origin-validation-
state-unknown

In addition, define the communities used:

set policy-options community origin-validation-state-valid members 0x4300:0:0
set policy-options community origin-validation-state-unknown members 0x4300:0:1
set policy-options community origin-validation-state-invalid members 0x4300:0:2

These communities are well-known, large communities for tagging routes with
their RPKI status as seen from your network. The communities for RPKI valid and
RPKI unknown routes are added just for informational purposes. However, you
will use the community for RPKI invalid routes later on to actively reject these
RPKI invalid routes.

	 43	 Connect Your Routers to the Validator

NOTE	 The policy RPKI-CHECK does not actually accept or reject routes. It just
looks at the validation database for each route that passes it, and sets the RPKI
status on these routes in the RIB, as well as adding the informational BGP
community.

You will now add the policy RPKI-CHECK to the very beginning of every import policy
on your network, meaning on the BGP sessions with:

	� transit providers

	� peers

	� customers

Best practices are to add the RPKI-CHECK stanza to all your import policies. For ex-
ample you should add to the beginning of every import policy on your router:

term RPKI-CHECK {
    from policy RPKI-CHECK;
    }

Again, note that this does not actually reject RPKI invalid routes. Therefore the
last step to an RPKI-secured routing table is to add (somewhere after the term RP-
KI-CHECK) the term:

term RPKI-INVALID {
    from community origin-validation-state-invalid;
    then reject;
    }

If you commit these changes now, you’ll start rejecting RPKI invalid routes. At the
time of this writing (early 2019) that’s about 6000 invalid prefixes that will not be
present in your routing table! You can verify the routes using commands such as:

user@router> show route validation-state valid
user@router> show route validation-state unknown
user@router> show route validation-state invalid

None of the invalid routes should be active in your routing table.

If you’re unsure how the policies all fit together in the grand scheme of things, keep
reading. In Chapter 4 we’ll present a unified import policy that is the basis of your
secure routing table.

Router Vendor’s Support for RPKI
This book, being part of Juniper’s Day One Series, discusses techniques and reci-
pes for deploying RPKI on Juniper routers. However, in order for RPKI validation
to work, all your (edge) routers will need to implement it. All routes you learn
from other parties (customers, peers, transits) will have to be validated. In case
your (edge) routers do not support RPKI, they will still accept invalid routes and
install them in your network’s routing table.

	 44	 Chapter 3: Configuring RPKI: Resource Public Key Infrastructure

To make it easier for you to find out how successful your RPKI implementation
will be, we compiled a list of routing software that supports RPKI:

� Juniper Networks has supported the routing software listed below since Junos
OS version 12.2 (it is advised to take into account PR1309944).

� Cisco:

� XR 4.2.1 (CRS-x, ASR9000, c12K) / XR 5.1.1 (NCS6000, XRv)

� XE 3.5 (C7200, c7600, ASR1K, CSR1Kv, ASR9k, ME3600…)

� IOS15.2(1)S

� Alcatel Lucent has had support since SR-OS 12.0 R4.

� Nokia (R12.0R4):

� 7210 SAS

� 7750 SR

� 7950 XRS

� VSR

�

�

�

�

�

Quagga has support through BGP-SrX or RTRLib.

BIRD has support for ROA and supports RPKI-RTR from version 2.0 or via
RTRLib

GoBGP

FRRouting

OpenBGPD

Conclusion
You have now set up an RPKI validator, and your router is talking to it. Your rout-
er now has a validation database and for each prefix, it knows whether it is valid,
invalid, or unverified. This information has made it into the routing table and
RPKI invalid routes are rejected. In case this is all that you wanted to achieve, con-
gratulations, and you can skip Chapter 4 and turn straight to Chapter 5 where we
discuss troubleshooting RPKI. However, we hope you will just keep reading!

In Chapter 4, you’ll continue on the security quest and apply routing policies to
the routes you’ve learned from transits, peers, and customers.

If setting up RPKI validation was something new for you, you can now relax be-
cause this chapter will probably be more familiar! It will implement policies to fil-
ter incoming routes from your customers, peers, and transits, and it will show you
how to create scalable filters to advertise routes to your customers, peers, and
transits.

You may feel that your import and export policies are already quite good and do
not need additional work. And … we would probably agree! However, even if you
are sure that you’ve already got what it takes to successfully filter routes, please
take some time to at least skim through this chapter. There may be one or two
ideas in here that are worth your time.

Building Blocks: Basic Filtering Rules
Next we'll address the policies that will be referred to by other policies. They are
not unique per customer/peer/transit and need to be defined only once.

In this section, we are not showing you actual policies. You will cut and paste rel-
evant prefix lists and AS path groups, though, that are used in the policies later on
in the chapter.

Chapter 4

Configuring Routing Policies

	 47	 Building Blocks: Basic Filtering Rules

Reject Bogon Autonomous System Numbers
A BGP route announcement contains a field, called AS path, consisting of the au-
tonomous system numbers from all networks that propagate the route advertise-
ment in order to reach its destination, the originating autonomous system number.

The AS paths you see in your routing table are automatically created as each net-
work propagating a route advertisement prepends its own autonomous system
number to the path. Finally, it is possible to manually prepend an autonomous sys-
tem number in order to influence routing decisions.

In addition to the public autonomous system numbers assigned by the RIRs, there
are private autonomous system numbers that are to be used for different purposes
(like private peering with networks that do not need an RIR-assigned autonomous
system number).

All autonomous system numbers used to be 16-bit numbers (from 0 up to 65,535),
but these days 32-bit autonomous system numbers are universally supported. The
different types of autonomous system numbers are:

	� 0: reserved

	� 1 through 64,495: public autonomous system numbers

	� 64,496 through 64,511: reserved to use in documentation

	� 64,512 through 65,534: private autonomous system numbers

	� 65,535: reserved

	� 4,200,000,000 through 4,294,967,294: 32-bit private autonomous system
numbers

A popular use of private autonomous system numbers is using such numbers
(from a private autonomous system numbers list) for networks that do not have an
autonomous system number assigned by an RIR in order to establish a BGP ses-
sion with an upstream network. In this case, mistakes are easy to make. Private
autonomous system numbers can accidentally leak into a publicly visible AS path.
Or sometimes a network operator will mistype the autonomous system number
they wish to prepend, polluting the path you receive. Therefore you have to reject
route advertisements that contain a private or reserved autonomous system
number.

The bogon autonomous system numbers are defined in RFCs. The list below
shows exactly which RFC describes the bogon autonomous system number, so if
you want to learn more about why a certain autonomous system number should

	 48	 Chapter 4: Configuring Routing Policies

not be in your secure routing table, you can consult the relevant RFC.

Define an as-path group that lists the bogon autonomous system numbers:

policy-options {
    as-path-group BOGON-ASNS {
        /* RFC7607 */
        as-path zero ".* 0 .*";
        /* RFC 4893 AS_TRANS */
        as-path as_trans ".* 23456 .*";
        /* RFC 5398 and documentation/example ASNs */ as-path examples1 ".* [64496-64511] .*";
        as-path examples2 ".* [65536-65551] .*";
        /* RFC 6996 Private ASNs*/
        as-path reserved1 ".* [64512-65534] .*";
        as-path reserved2 ".* [4200000000-4294967294] .*"; /* RFC 6996 Last 16 and 32 bit ASNs */
        as-path last16 ".* 65535 .*";
        as-path last32 ".* 4294967295 .*";
        /* RFC IANA reserved ASNs*/
        as-path iana-reserved ".* [65552-131071] .*";
    }
}

You do this by entering the following commands:

set policy-options as-path-group BOGON-ASNS as-path zero ".* 0 .*"
set policy-options as-path-group BOGON-ASNS as-path as_trans ".* 23456 .*"
set policy-options as-path-group BOGON-ASNS as-path examples1 ".* [64496-64511] .*"
set policy-options as-path-group BOGON-ASNS as-path examples2 ".* [65536-65551] .*"
set policy-options as-path-group BOGON-ASNS as-path reserved1 ".* [64512-65534] .*"
set policy-options as-path-group BOGON-ASNS as-path reserved2 ".* [4200000000-4294967294] .*"
set policy-options as-path-group BOGON-ASNS as-path last16 ".* 65535 .*"
set policy-options as-path-group BOGON-ASNS as-path last32 ".* 4294967295 .*"
set policy-options as-path-group BOGON-ASNS as-path iana-reserved ".* [65552-131071] .*"

Remember, this is not the actual policy yet. The policy calling these prefix lists is
coming up, so please read through a few more paragraphs!

With this policy your routers will filter routes that you receive from outside and
that may contain a private autonomous system number. In order to avoid private
autonomous system numbers being announced (sent) from your network, it is
good practice in DFZ operations to enable the remove-private option on EBGP
sessions.

For example:

set protocols bgp group ext type external
set protocols bgp group ext neighbor 192.168.10.1 peer-as 65530
set protocols bgp group ext neighbor 192.168.20.1 remove-private
set protocols bgp group ext neighbor 192.168.20.1 peer-as 200

Make sure you have this option set on all your EBGP sessions.

	 49	 Building Blocks: Basic Filtering Rules

Reject Bogon Prefixes
A bogon prefix should not be visible in the global routing table, as these prefixes
are meant for internal use (RFC 1918), test networks (RFC 4737), multicast, and
other internal purposes. Thus these prefixes should never be accepted or adver-
tised to the DFZ.

You can create a prefix list as follows:

policy-options { prefix-list BOGONS {
        0.0.0.0/8;
        10.0.0.0/8;
        100.64.0.0/10;
        127.0.0.0/8;
        169.254.0.0/16;
        172.16.0.0/12;
        192.0.0.0/24
        192.0.2.0/24;
        192.88.99.0/24;
        192.168.0.0/16;
        198.18.0.0/15;
        198.51.100.0/24;
        203.0.113.0/24;
        224.0.0.0/3;
}

You do this by entering the following commands:

set policy-options prefix-list BOGONS 0.0.0.0/8
set policy-options prefix-list BOGONS 10.0.0.0/8
set policy-options prefix-list BOGONS 100.64.0.0/10 
set policy-options prefix-list BOGONS 127.0.0.0/8 
set policy-options prefix-list BOGONS 169.254.0.0/16 
set policy-options prefix-list BOGONS 172.16.0.0/12 
set policy-options prefix-list BOGONS 192.0.0.0/24 
set policy-options prefix-list BOGONS 192.0.2.0/24 
set policy-options prefix-list BOGONS 192.88.99.0/24
set policy-options prefix-list BOGONS 192.168.0.0/16 
set policy-options prefix-list BOGONS 198.18.0.0/15 
set policy-options prefix-list BOGONS 198.51.100.0/24 
set policy-options prefix-list BOGONS 203.0.113.0/24 
set policy-options prefix-list BOGONS 224.0.0.0/3

The same for IPv6 commands:

set policy-options prefix-list BOGONS-INET6 0000::/8 
set policy-options prefix-list BOGONS-INET6 fe00::/9
set policy-options prefix-list BOGONS-INET6 ff00::/8
set policy-options prefix-list BOGONS-INET6 2001:db8::/32
set policy-options prefix-list BOGONS-INET6 3ffe::/16
set policy-options prefix-list BOGONS-INET6 2001::/32

The policy calling these prefix lists is coming up, only a few more paragraphs!

	 50	 Chapter 4: Configuring Routing Policies

Reject Long Prefixes
The global routing table in the DFZ is expanding daily, as more and more net-
works start announcing more and more prefixes. In principle, there is no problem
announcing routes of any length – technically, even a /32 route (for a single IPv4
address) will work. However, uncontrolled growth of the routing table is not sus-
tainable (just calculate how much bigger the DFZ would be if all IPv4 space would
be announced as a /32). Many networks have started filtering on prefix length.

These days you can generally expect your announcement to be dropped if you an-
nounce a prefix that is /25 or longer (a subnet of 128 IPv4 addresses or less). The
following policy configures your network to do the same, so all these pesky little
/28 and /32 routes don’t make it to your RIB. The same applies to IPv6 where we
put the boundary at /48 subnets.

The policies to filter out routes for these long prefixes appear later in the chapter.
They consist of two steps: a generic policy that is called and returns only prefixes
of sufficient length, and a policy that takes this list and filters only the relevant
routes from it.

Reject Long AS Paths
We’ve seen before that each network on the route automatically “builds” an AS
path, adding its own autonomous system number to the front of the AS path of the
advertised route. In practice, since BGP looks for the shortest AS path by default,
most active routes your network uses will have an AS path of only 1 - 6 autono-
mous system numbers. Perhaps sometimes a path can be longer, and then of course
there is manual AS path prepending (as a traffic engineering measure), which
causes longer paths to be seen in the table. But generally speaking, an AS path lon-
ger than a dozen or so autonomous system numbers can be considered useless. If
you see such a long AS path, it is probably the work of a network administrator
who needs a copy of this book.

The most common reason for extremely long AS paths is prepending. Using two to
three times your own autonomous system number in a prepend is, when needed,
considered a good practice to influence routes. However, prepending more than
that doesn’t make sense. Looking at the DFZ, at the time of this writing there are
some prefixes with an AS path length of about 40 autonomous system numbers,
which we highly doubt is useful. Let’s take a safe margin, and consider everything
with an AS path of more than 50 to be useless and deserving to be filtered out in
our secure routing table.

As always, define what you want to filter first:

set policy-options as-path too-many-hops ".{50,}"

And then, read on to get to the policy where we call this definition! Just one more
building block to go.

	 51	 Building Blocks: Basic Filtering Rules

Reject Routes Containing Known Transit or Very Large Network
Autonomous System Numbers

The biggest networks in the world (mainly known as “Tier-1”) never buy transit
from each other or from smaller (“Tier-2”) networks. For instance, it would be
very strange if your customer or peer started sending you routes that have AS2914
(NTT) or AS1299 (Telia) in their AS path; it is not very likely that NTT or Telia
would buy transit from your customer. Therefore, your import policy also con-
tains AS path filters that reject routes that have the AS numbers of the “big names”
in them. If you would legitimately receive these from a customer or peer, you are
probably not the target audience for this book.

The same goes for some of the other very large networks like Facebook, Google,
Microsoft, and Cloudflare. They will probably not buy transit from your peers, so
if you receive their routes from your peers, there must be something fishy going on.
So why not make sure you won’t use any of these routes, which you know are not
correct in the first place? 	First, let’s define the AS path group:

set policy-options as-path-group BIGNETWORKS as-path 174 ".* 174 .*"
set policy-options as-path-group BIGNETWORKS as-path 209 ".* 209 .*"
set policy-options as-path-group BIGNETWORKS as-path 286 ".* 286 .*"
set policy-options as-path-group BIGNETWORKS as-path 701 ".* 701 .*"
set policy-options as-path-group BIGNETWORKS as-path 702 ".* 702 .*"
set policy-options as-path-group BIGNETWORKS as-path 703 ".* 703 .*"
set policy-options as-path-group BIGNETWORKS as-path 714 ".* 714 .*"
set policy-options as-path-group BIGNETWORKS as-path 1239 ".* 1239 .*"
set policy-options as-path-group BIGNETWORKS as-path 1299 ".* 1299 .*"
set policy-options as-path-group BIGNETWORKS as-path 2828 ".* 2828 .*"
set policy-options as-path-group BIGNETWORKS as-path 2906 ".* 2906 .*"
set policy-options as-path-group BIGNETWORKS as-path 2914 ".* 2914 .*"
set policy-options as-path-group BIGNETWORKS as-path 3209 ".* 3209 .*"
set policy-options as-path-group BIGNETWORKS as-path 3257 ".* 3257 .*"
set policy-options as-path-group BIGNETWORKS as-path 3320 ".* 3320 .*"
set policy-options as-path-group BIGNETWORKS as-path 3356 ".* 3356 .*"
set policy-options as-path-group BIGNETWORKS as-path 3549 ".* 3549 .*"
set policy-options as-path-group BIGNETWORKS as-path 3561 ".* 3561 .*"
set policy-options as-path-group BIGNETWORKS as-path 5511 ".* 5511 .*"
set policy-options as-path-group BIGNETWORKS as-path 6453 ".* 6453 .*"
set policy-options as-path-group BIGNETWORKS as-path 6461 ".* 6461 .*"
set policy-options as-path-group BIGNETWORKS as-path 6762 ".* 6762 .*"
set policy-options as-path-group BIGNETWORKS as-path 7018 ".* 7018 .*"
set policy-options as-path-group BIGNETWORKS as-path 8075 ".* 8075 .*"
set policy-options as-path-group BIGNETWORKS as-path 12956 ".* 12956 .*"
set policy-options as-path-group BIGNETWORKS as-path 13335 ".* 13335 .*"
set policy-options as-path-group BIGNETWORKS as-path 15169 ".* 15169 .*"
set policy-options as-path-group BIGNETWORKS as-path 16509 ".* 16509 .*"
set policy-options as-path-group BIGNETWORKS as-path 32934 ".* 32934 .*"

Using this AS path group in the policy that’s coming up protects you from accept-
ing routes that your customers or peers are accidentally leaking to you. How this
fits into the bigger picture will be shown later on.

Make sure to add this policy only on your customer and peer BGP sessions (and
not to your transits) or you will end up with a very small (and a very limited) us-
able routing table!

	 52	 Chapter 4: Configuring Routing Policies

MORE?� If you do peer with one of the networks listed in this as-path-group, this
policy would cause the routes learned over peering to be rejected. In such cases you
would have to look at altering your policy to accept the routes.

MORE?		 Our list of big networks is only a suggestion. If you are looking to
improve on the list, this could be a good starting point: http://as-rank.caida.org/.

MORE?	 	 If you want to do more (going beyond the scope of this book), or if you
have downstream customers using BGP sessions to connect to your network, or
both, then take a look at two more possible features you can implement:

1. Graceful BGP session shutdown: https://tools.ietf.org/html/rfc8326. Graceful
Shutdown makes your network respond to an advance warning from a custom-
er, peer, or transit saying that maintenance is coming up. It will minimize
downtime that would occur with such maintenance. You can read more on how
to implement this at: http://bgpfilterguide.nlnog.net/guides/graceful_shutdown/.

2. Well-Known Blackhole Community: https://tools.ietf.org/html/rfc7999. The
Well-Known Blackhole Community lets your customers blackhole (null route)
traffic to a destination prefix inside of their own prefix. This is useful when a
DDoS attack comes in; it would drop all traffic to the victim (making the DDoS
attack successful) but at least it keeps the rest of the network online.

Reject the Remainder
By default, the last action in the Junos OS implementation of BGP is to allow every-
thing that is left after policies. The default behavior will become configurable in the
future to stay compliant with the BGP-4 specifications and as defined in https://
tools.ietf.org/html/rfc8212. Though, at the time of writing this book, RFC8212
hasn’t been implemented, so you should make sure you have a policy in place to
reject the remainder.

Define a policy that simply rejects all routes that it sees:

policy-options {
    policy-statement REJECT-ALL {
        then reject;
    }
}

Or in cut-and-paste commands:

set policy-options policy-statement REJECT-ALL then reject

This policy is used later on to create an explicit reject, meaning that you do not rely
on whatever the protocol (BGP) does at the end of a policy chain. It is always better
to make your configuration clear and explicit (think of your most junior network
admin having to troubleshoot a network outage at 4 AM).

http://as-rank.caida.org/
https://tools.ietf.org/html/rfc8326
http://bgpfilterguide.nlnog.net/guides/graceful_shutdown/
https://tools.ietf.org/html/rfc7999
https://tools.ietf.org/html/rfc8212
https://tools.ietf.org/html/rfc8212

	 53	 Filtering Customer Routes

Filtering Customer Routes
Finally, it’s time to configure some actual routing policy! First, let’s look at how to
filter routes that you receive from your customers, and how to set up a policy to
announce routes to your customers, both for default route and full table scenarios.

Accepting Routes from Customers
Checking the routes that you accept from your customers is the most important bit
of configuration in your network! In the end, you need to announce your custom-
er’s routes to others. Those announcements need to be clean and contain only cor-
rect routing information – so let’s start by accepting clean routes only, then you
won’t have to worry about bringing the Internet to a halt.

The routing policy that you will use to filter the routes received from customers
will include a list of the prefixes that the customer is allowed to advertise. In this
example you configure the prefix list manually, but in the Appendix you’ll find the
way to get the prefix lists to auto-update! After finishing this book you should feel
comfortable using this configuration for filtering your customer’s routes, and don’t
forget to implement automatic prefix-list updates so your routing table remains
secure!

The configuration below assumes that your customer’s AS number is 123 and they
will be announcing 192.0.2.0/24 and 2001:db8::/32. It also assumes that your
own AS number is 456:

policy-options {
    prefix-list AS123 {
        192.0.2.0/24;  
    } 
    prefix-list AS123-INET6 {   
        2001:db8::/32; =
    }  
} 

You configure these by entering:

set policy-options prefix-list AS123 192.0.2.0/24
set policy-options prefix-list AS123-INET6 2001:db8::/32

In addition, let’s create two BGP communities that the policies use, as well as one
you will need later on:

policy-options {
community RFC-NO-EXPORT members no-export;
community MYCUSTOMER members 456:9999;
community MYROUTES members 456:456;
}

set policy-options community RFC-NO-EXPORT members no-export
set policy-options community MYCUSTOMER members 456:9999
set policy-options community MYROUTES members 456:456

	 54	 Chapter 4: Configuring Routing Policies

When creating the discard ‘anchor route’ to originate your prefix, you can tie this
community to it:

routing-options {
    rib inet.0 {
        static {
            route 192.0.2.0/24 {
                discard;
                community 456:456;
            }
        }
    }
}

Now, onto the policies that will actually accept your customer’s routes. It all starts
by accepting the exact prefix that they are allowed to announce following the
prefix-list:

policy-options {
    policy-statement IMPORT-123 {
       term INET {
            from {
            prefix-list-filter AS123 exact;
            }
        then {
            community add MYCUSTOMER;
            accept;
            }
        }
    }
}

You configure this by entering:

set policy-options policy-statement IMPORT-123 term INET from prefix-list-filter AS123 exact
set policy-options policy-statement IMPORT-123 term INET then community add MYCUSTOMER
set policy-options policy-statement IMPORT-123 term INET then accept

This policy is unique to every BGP customer you have, just like every prefix list is
unique to each BGP customer. You apply this import policy on the BGP session
with your customer in the import policy chain.

We added the BGP community MYCUSTOMER to the routes accepted from your cus-
tomer. This makes it easier to export these routes later on.

Next, your customer may announce more specific prefixes to you. The prefix list
entry may have a /22 defined, for instance, but you want to allow your customer to
announce up to a /24. Simply using prefix-list-filter AS123 orlonger doesn’t work,
because that would allow the customer to announce up to a /32. So first, create a
policy that allows routes up to /24, and then combine that with the policy allowing
these routes if they are inside the customer prefix list:

policy-options {
    policy-statement MORE-SPECIFIC-UPTO-24 {
        term INET {

	 55	 Filtering Customer Routes

            from {
                family inet;
                route-filter 0.0.0.0/0 upto /24;
            }
            then accept;
        }
        term REJECT {
            then reject;
        }
    }
    policy-statement IMPORT-123 {
        term MORE-SPECIFIC {
            from {
                policy MORE-SPECIFIC-UPTO-24;
                prefix-list-filter AS123 orlonger;
            }
            then {
                community add MYCUSTOMER;
                accept;
            }
       }
    }
}

Note that policy-statement MORE-SPECIFIC-UPTO-24 is generic – it is configured on the
router only once and used for all customers. The policy-statement IMPORT-123 is
unique to each customer, however, and has to be configured once per customer.

You configure these policies by entering:

set policy-options policy-statement MORE-SPECIFIC-UPTO-24 term INET from family inet
set policy-options policy-statement MORE-SPECIFIC-UPTO-24 term INET from route-
filter 0.0.0.0/0 upto /24
set policy-options policy-statement MORE-SPECIFIC-UPTO-24 term INET then accept
set policy-options policy-statement MORE-SPECIFIC-UPTO-24 term REJECT then reject
set policy-options policy-statement IMPORT-123 term MORE-SPECIFIC-INET from policy MORE-SPECIFIC-
UPTO-24
set policy-options policy-statement IMPORT-123 term MORE-SPECIFIC-INET from prefix-list-
filter AS123 orlonger
set policy-options policy-statement IMPORT-123 term MORE-SPECIFIC-INET then community add MYCUSTOMER
set policy-options policy-statement IMPORT-123 term MORE-SPECIFIC-INET then accept

The policy MORE-SPECIFIC-UPTO-24 needs to be defined only once. The customer’s AS
or prefixes are not referenced in this policy. The policy IMPORT-123 has to be defined
once per customer, though.

The exact same logic applies for the IPv6 policies, where you will accept routes up
to /48:

policy-options {
    policy-statement IMPORT-123-INET6 {
        term INET6 {
            from {
                prefix-list-filter AS123-INET6 exact;
            }
            then {
                community add MYCUSTOMER;

	 56	 Chapter 4: Configuring Routing Policies

                accept;
            }
        }
    policy-statement MORE-SPECIFIC-UPTO-48-INET6 {
        term INET6 {
            from {
                family inet6;
                route-filter ::/0 upto /48;
            }
            then accept;
        }
        term REJECT {
            then reject;
        }
    }
    policy-statement IMPORT-123-INET6 {
        term MORE-SPECIFIC-INET6 {
            from {
                policy MORE-SPECIFIC-UPTO-48-INET6;
                prefix-list-filter AS123-INET6 orlonger;
            }
            then {
                community add MYCUSTOMER;
                accept;
            }
        }
    }
}

You configure this by entering:

set policy-options policy-statement MORE-SPECIFIC-UPTO-48-INET6 term INET6 from family inet6
set policy-options policy-statement MORE-SPECIFIC-UPTO-48-INET6 term INET6 from route-
filter ::/0 upto /48
set policy-options policy-statement MORE-SPECIFIC-UPTO-48-INET6 term INET6 then accept
set policy-options policy-statement MORE-SPECIFIC-UPTO-48-INET6 term REJECT then reject
set policy-options policy-statement IMPORT-123-INET6 term MORE-SPECIFIC-INET6 from policy MORE-
SPECIFIC-UPTO-48-INET6
set policy-options policy-statement IMPORT-123-INET6 term MORE-SPECIFIC-INET6 from prefix-list-
filter AS123-INET6 orlonger
set policy-options policy-statement IMPORT-123-INET6 term MORE-SPECIFIC-
INET6 then community add MYCUSTOMER
set policy-options policy-statement IMPORT-123-INET6 term MORE-SPECIFIC-INET6 then accept

Like with the IPv4 policies, the policy MORE-SPECIFIC-UPTO-48-INET6 needs to be de-
fined only once. The customer’s AS or prefixes are not referenced in this policy.
The policy IMPORT-123-INET6 has to be defined once per customer, though.

Finally, you may choose to allow your customers to announce even more specific
routes to you – more specific than a /24. They could use these routes for traffic en-
gineering, for instance. While you may carry them in your network, you should
not announce them to your other customers, peers, or transits. This is why we will
accept them here, but add the well-known “NO-EXPORT” BGP community to them:

	 57	 Filtering Customer Routes

policy-options {
    policy-statement IMPORT-123 {
        term MOST-SPECIFIC-INET {
            from {
                prefix-list-filter AS123 orlonger;
            }
            then {
                community add RFC-NO-EXPORT;
                accept;
            }
        }
    }
}

You configure this by entering:

set policy-options policy-statement IMPORT-123 term MOST-SPECIFIC-INET from prefix-list-
filter AS123 longer
set policy-options policy-statement IMPORT-123 term MOST-SPECIFIC-INET then community add RFC-NO-
EXPORT
set policy-options policy-statement IMPORT-123 term MOST-SPECIFIC-INET then accept

And for IPv6:

policy-options {
    policy-statement IMPORT-123-INET6 {
        term MOST-SPECIFIC-INET6 {
            from {
                prefix-list-filter AS123-INET6 orlonger;
            }
            then {
                community add RFC-NO-EXPORT;
                accept;
            }
        }
    }
}

And you configure this by entering:

set policy-options policy-statement IMPORT-123-INET6 term MOST-SPECIFIC-INET6 from prefix-list-
filter AS123-INET6 longer
set policy-options policy-statement IMPORT-123-INET6 term MOST-SPECIFIC-
INET6 then community add RFC-NO-EXPORT
set policy-options policy-statement IMPORT-123-INET6 term MOST-SPECIFIC-INET6 then accept

Now that we’ve defined the import policy for your customer’s routes, you may
wonder where the final reject policy that will reject routes that the customer is not
allowed to announce is. You’re correct of course – here is the entire policy that you
will use for importing routes from your customers:

policy-options {
    policy-statement TRANSIT-CUSTOMER-GENERIC {
        term DEFAULT-INET {
            from {
                family inet;
                route-filter 0.0.0.0/0 exact;
            }
            then reject;
        }

	 58	 Chapter 4: Configuring Routing Policies

        term DEFAULT-INET6 {                    
            from {
                family inet6;
                route-filter ::/0 exact;
            }
            then reject;
        }
        term BOGONS-INET {
            from {
                family inet;
                prefix-list-filter BOGONS orlonger;
            }
            then reject;
        }
        term BOGONS-INET6 {
            from {
                family inet6;
                prefix-list-filter BOGONS-INET6 orlonger;
            }
            then reject;
        }
t        erm BOGON-ASNS {
            from as-path-group BOGON-ASNS;
            then reject;
        }
        term BIGNETWORKS {
            from as-path-group BIGNETWORKS;
            then reject;
        }
        term RPKI-CHECK {
            from policy RPKI-CHECK;
        }
        term RPKI-INVALID {
            from community origin-validation-state-invalid;
            then reject;
        }
        term NORMALIZE {
            then {
                local-preference 500;
                next term;
            }
        }
    }
}
policy-options {
    policy-statement IMPORT-CUSTOMER-AS123 {
        term INET {
            from {
                prefix-list-filter AS123 exact;
            }
            then {
                community add MYCUSTOMER;
                accept;
            }
        }
        term INET6 {
            from {
                prefix-list-filter AS123-INET6 exact;
            }

	 59	 Filtering Customer Routes

            then {
                community add MYCUSTOMER;
                accept;
            }
        }
        term MORE-SPECIFIC-INET {
            from {
                policy MORE-SPECIFIC-UPTO-24;
                prefix-list-filter AS123 orlonger;
            }
            then {
                community add MYCUSTOMER;
                accept;
            }
        }                                       
        term MORE-SPECIFIC-INET6 {
            from {
                policy MORE-SPECIFIC-UPTO-48;
                prefix-list-filter AS123-INET6 orlonger;
            }
            then {
                community add MYCUSTOMER;
                accept;
            }
        }
        term MOST-SPECIFIC-INET {
            from {
                prefix-list-filter AS123 orlonger;
            }
            then {
                community add RFC-NO-EXPORT;
                accept;
            }
        }
        term MOST-SPECIFIC-INET6 {
            from {
                prefix-list-filter AS123-INET6 orlonger;
            }
            then {
                community add RFC-NO-EXPORT;
                accept;
            }
        }
    }
}
policy-options {
    policy-statement REJECT-ALL {
        then reject;
    }
}

set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term DEFAULT-INET from family inet
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term DEFAULT-INET from route-
filter 0.0.0.0/0 exact
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term DEFAULT-INET then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term DEFAULT-INET6 from family inet6
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term DEFAULT-INET6 from route-
filter ::/0 exact

	 60	 Chapter 4: Configuring Routing Policies

set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term DEFAULT-INET6 then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGONS-INET from family inet
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGONS-INET from prefix-list-
filter BOGONS orlonger
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGONS-INET then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGONS-INET6 from family inet6
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGONS-INET6 from prefix-list-
filter BOGONS-INET6 orlonger
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGONS-INET6 then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGON-ASNS from as-path-
group BOGON-ASNS
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BOGON-ASNS then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BIGNETWORKS from as-path-
group BIGNETWORKS
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term BIGNETWORKS then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term RPKI-CHECK from policy RPKI-CHECK
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term RPKI-
INVALID from community origin-validation-state-invalid
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term RPKI-INVALID then reject
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term NORMALIZE then local-
preference 500
set policy-options policy-statement TRANSIT-CUSTOMER-GENERIC term NORMALIZE then next term

set policy-options policy-statement IMPORT-CUSTOMER-AS123 term INET from prefix-list-
filter AS123 exact
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term INET then community add MYCUSTOMER
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term INET then accept
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term INET6 from prefix-list-filter AS123-
INET6 exact
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term INET6 then community add MYCUSTOMER
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term INET6 then accept
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-INET from policy MORE-
SPECIFIC-UPTO-25
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-INET from prefix-list-
filter AS123 orlonger
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-
INET then community add MYCUSTOMER
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-INET then accept
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-INET6 from policy MORE-
SPECIFIC-UPTO-48
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-INET6 from prefix-list-
filter AS123-INET6 orlonger
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-
INET6 then community add MYCUSTOMER
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MORE-SPECIFIC-INET6 then accept
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MOST-SPECIFIC-INET from prefix-list-
filter AS123 orlonger
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MOST-SPECIFIC-
INET then community add RFC-NO-EXPORT
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MOST-SPECIFIC-INET then accept
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MOST-SPECIFIC-INET6 from prefix-list-
filter AS123-INET6 orlonger
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MOST-SPECIFIC-
INET6 then community add RFC-NO-EXPORT
set policy-options policy-statement IMPORT-CUSTOMER-AS123 term MOST-SPECIFIC-INET6 then accept

set policy-options policy-statement REJECT-ALL then reject

	 61	 Filtering Customer Routes

The BGP Configuration
The final part of the configuration for importing customer routes is to configure
the policies as import policies on the BGP session with the customer. Remember
that the first policy, TRANSIT-CUSTOMER-GENERIC, is generic and needs to be defined
only once; the second policy is AS specific. Each customer has three policies
chained together:

1. The generic policy that rejects the unwanted routes;

2. The customer-specific policy that accepts the customer’s routes;

3. A final reject policy that rejects everything else.

For instance:

group CUST-AS123 {
    type external;
    import [ TRANSIT-CUSTOMER-GENERIC IMPORT-CUSTOMER-AS123 REJECT-ALL ];
    export [ EXPORT-FULL-TABLE REJECT-ALL];
    remove-private;
    peer-as 123;
    neighbor 1.2.3.4;
}

Another customer would be:

group CUST-AS456 {
    type external;
    import [ TRANSIT-CUSTOMER-GENERIC IMPORT-CUSTOMER-AS456 REJECT-ALL ];
    export [ EXPORT-FULL-TABLE REJECT-ALL];
    remove-private;
    peer-as 456;
    neighbor 5.6.7.8;
}

Announcing Routes to Customers
Your customers receive your network’s routes, which enables them to use your
network for sending traffic. This can be either a full table, or a default route. If you
wish to send your customers a default route, be sure to generate one by creating a
discard default route.

IMPORTANT		 While we do offer cut-and-paste commands below to announce a
default route to customers, you need to have a default route in the first place if you
wish to announce it; accepting it from a transit provider may not be what you
want, and generating a default route can have adverse effects on your network if
done in the wrong place (remember that the default route will make it to all your
routers through your IGP). Therefore think this through carefully. We are deliber-
ately not including a cut-and-paste command to generate the default route in your
network.

	 62	 Chapter 4: Configuring Routing Policies

After reading the examples for full table and default route exports, it should be
easy for you to create a policy catering to those customers that wish to receive a
full table as well as a default route.

Announcing a Full Table to Customers
The policy for sending a full table is more complicated than it would seem. It is
necessary to drop routes that have the NO-EXPORT community, for instance. And
don’t forget to add a term that accepts the routes that your own network origi-
nates – a very common mistake is to send your transit customer only the routes
that you have learned via EBGP (which is BGP default behavior), and not include
your own routes:

    policy-statement EXPORT-FULL-TABLE {
       term DENY {
           from community RFC-NO-EXPORT;
           then reject;
       }
       term EXPORT-ORIGINATES {
           from community MYROUTES; 
            then accept;
           }
       }
       term EXPORT-BGP {
           from protocol bgp;
           then {
               accept;
           }
       }
   }

Or in cut-and-paste form:

set policy-options policy-statement EXPORT-FULL-TABLE term DENY from community RFC-NO-EXPORT
set policy-options policy-statement EXPORT-FULL-TABLE term DENY then reject
set policy-options policy-statement EXPORT-FULL-TABLE term EXPORT-ORIGINATES from community MYROUTES
set policy-options policy-statement EXPORT-FULL-TABLE term EXPORT-ORIGINATES then accept
set policy-options policy-statement EXPORT-FULL-TABLE term EXPORT-BGP from protocol bgp
set policy-options policy-statement EXPORT-FULL-TABLE term EXPORT-BGP then accept

Announcing a Default to Customers
The policies for sending a default route to customers are easy:

   policy-statement EXPORT-DEFAULT {
       term INET-DEFAULT {
           from {
               family inet;
               route-filter 0.0.0.0/0 exact;
           }
           then {
               accept;
           }
       }
       term INET6-DEFAULT {

	 63	 Filtering Customer Routes

           from {
               family inet6;
               route-filter ::/0 exact;
           }
           then {
               accept;
           }
       }
  

Or in cut-and-paste commands:

set policy-options policy-statement EXPORT-DEFAULT term INET-DEFAULT from family inet
set policy-options policy-statement EXPORT-DEFAULT term INET-DEFAULT from route-
filter 0.0.0.0/0 exact
set policy-options policy-statement EXPORT-DEFAULT term INET-DEFAULT then accept
set policy-options policy-statement EXPORT-DEFAULT term INET6-DEFAULT from family inet6
set policy-options policy-statement EXPORT-DEFAULT term INET6-DEFAULT from route-filter ::/0 exact
set policy-options policy-statement EXPORT-DEFAULT term INET6-DEFAULT then accept

This will work if you have a default route in your network already. Remember our
warning above in case you don’t have one.

The BGP Configuration
The final part of configuration for exporting routes to customers is to configure
the policies as export policies on the BGP session with the customer. All export
policies are generic and need to be defined only once. Each customer has two poli-
cies chained together:

1. The generic policy that accepts either default or full table routes.

2. A final reject policy that rejects everything else.

For instance:

group CUST-AS123 {
    type external;
    import [ TRANSIT-CUSTOMER-GENERIC IMPORT-CUSTOMER-AS123 REJECT-ALL ];
    export [ EXPORT-FULL-TABLE REJECT-ALL];
    remove-private;
    peer-as 123;
    neighbor 1.2.3.4;
}

Another customer would be:

group CUST-AS456 {
    type external;
    import [ TRANSIT-CUSTOMER-GENERIC IMPORT-CUSTOMER-AS456 REJECT-ALL ];
    export [ EXPORT-DEFAULT REJECT-ALL ];
    remove-private;
    peer-as 456;
    neighbor 5.6.7.8;
}

	 64	 Chapter 4: Configuring Routing Policies

Filtering Peering Routes
The policies for peers are a little different from those for customers, but not by
much. For peers, you reject the same routes as for customers, and you accept
routes inside their AS-SET (if you have automatic prefix filtering implemented). Of
course, you reject default routes, RPKI invalids, long AS paths, and bogons. The
only major changes are taking a different local preference (lower than customer
routes), not adding the BGP community for exporting the peer routes, and not al-
lowing any prefix longer than /24.

Accepting Routes from Peers
This is the entire policy statement for importing routes from peers:

policy-options {
    policy-statement PEER-GENERIC {
        term DEFAULT-INET {
            from {
                family inet;
                route-filter 0.0.0.0/0 exact;
            }
            then reject;
        }
            term DEFAULT-INET6 {                    
                from {
                    family inet6;
                    route-filter ::/0 exact;
            }
            then reject;
        }
        term BOGONS-INET {
            from {
                family inet;
                prefix-list-filter BOGONS orlonger;
            }
            then reject;
        }
        term BOGONS-INET6 {
            from {
                family inet6;
                prefix-list-filter BOGONS-INET6 orlonger;
            }
            then reject;
        }
        term BOGON-ASNS {
            from as-path-group BOGON-ASNS;
            then reject;
        }
        term BIGNETWORKS {
            from as-path-group BIGNETWORKS;
            then reject;
        }
        term RPKI-CHECK {
            from policy RPKI-CHECK;
        }

	 65	 Filtering Peering Routes

        term RPKI-INVALID {
            from community origin-validation-state-invalid;
            then reject;
        }
        term NORMALIZE {
            then {
                local-preference 200;
                next term;
            }
        }
    }
}
policy-options {
    policy-statement IMPORT-PEER-AS789 {
        term INET {
            from {
                prefix-list-filter AS789 exact;		 # if you have automatic filter generation
            }
            then {
                accept;
            }
        }
        term INET6 {
            from {
                prefix-list-filter AS789-INET6 exact;	# if you have automatic filter generation
            }
            then {
                accept;
            }
        }
        term MORE-SPECIFIC-INET {
            from {
                policy MORE-SPECIFIC-UPTO-24;
                prefix-list-filter AS789 orlonger;		 # if you have automatic filter generation
            }
            then {
                accept;
            }
        }                                       
        term MORE-SPECIFIC-INET6 {
            from {
                policy MORE-SPECIFIC-UPTO-48;
                prefix-list-filter AS789-INET6 orlonger;	 # if you have automatic filter generation
            }
            then {
                accept;
            }
        }
    }
}
policy-options {
    policy-statement REJECT-ALL {
        then reject;
    }
}

Or in cut-and-paste form:

	 66	 Chapter 4: Configuring Routing Policies

set policy-options policy-statement PEER-GENERIC term DEFAULT-INET from family inet
set policy-options policy-statement PEER-GENERIC term DEFAULT-INET from route-filter 0.0.0.0/0 exact
set policy-options policy-statement PEER-GENERIC term DEFAULT-INET then reject
set policy-options policy-statement PEER-GENERIC term DEFAULT-INET6 from family inet6
set policy-options policy-statement PEER-GENERIC term DEFAULT-INET6 from route-filter ::/0 exact
set policy-options policy-statement PEER-GENERIC term DEFAULT-INET6 then reject
set policy-options policy-statement PEER-GENERIC term BOGONS-INET from family inet
set policy-options policy-statement PEER-GENERIC term BOGONS-INET from prefix-list-
filter BOGONS orlonger
set policy-options policy-statement PEER-GENERIC term BOGONS-INET then reject
set policy-options policy-statement PEER-GENERIC term BOGONS-INET6 from family inet6
set policy-options policy-statement PEER-GENERIC term BOGONS-INET6 from prefix-list-filter BOGONS-
INET6 orlonger
set policy-options policy-statement PEER-GENERIC term BOGONS-INET6 then reject
set policy-options policy-statement PEER-GENERIC term BOGON-ASNS from as-path-group BOGON-ASNS
set policy-options policy-statement PEER-GENERIC term BOGON-ASNS then reject
set policy-options policy-statement PEER-GENERIC term BIGNETWORKS from as-path-group BIGNETWORKS
set policy-options policy-statement PEER-GENERIC term BIGNETWORKS then reject
set policy-options policy-statement PEER-GENERIC term RPKI-CHECK from policy RPKI-CHECK
set policy-options policy-statement PEER-GENERIC term RPKI-INVALID from community origin-validation-
state-invalid
set policy-options policy-statement PEER-GENERIC term RPKI-INVALID then reject
set policy-options policy-statement PEER-GENERIC term NORMALIZE then local-preference 200
set policy-options policy-statement PEER-GENERIC term NORMALIZE then next term

set policy-options policy-statement IMPORT-PEER-AS789 term INET from prefix-list-filter AS789 exact
set policy-options policy-statement IMPORT-PEER-AS789 term INET then accept
set policy-options policy-statement IMPORT-PEER-AS789 term INET6 from prefix-list-filter AS789-
INET6 exact
set policy-options policy-statement IMPORT-PEER-AS789 term INET6 then accept
set policy-options policy-statement IMPORT-PEER-AS789 term MORE-SPECIFIC-INET from policy MORE-
SPECIFIC-UPTO-24
set policy-options policy-statement IMPORT-PEER-AS789 term MORE-SPECIFIC-INET from prefix-list-
filter AS789 orlonger
set policy-options policy-statement IMPORT-PEER-AS789 term MORE-SPECIFIC-INET then accept
set policy-options policy-statement IMPORT-PEER-AS789 term MORE-SPECIFIC-INET6 from policy MORE-
SPECIFIC-UPTO-48
set policy-options policy-statement IMPORT-PEER-AS789 term MORE-SPECIFIC-INET6 from prefix-list-
filter AS789-INET6 orlonger
set policy-options policy-statement IMPORT-PEER-AS789 term MORE-SPECIFIC-INET6 then accept

set policy-options policy-statement REJECT-ALL then reject

The BGP Configuration
The final part of configuration for importing peer routes is to configure the policies
as import policies on the BGP session with the peer. Remember that the first policy,
PEER-GENERIC, is generic and needs to be defined only once; the second policy is AS
specific. Each peer has three policies chained together:

1. The generic policy that rejects the unwanted routes.

2. The peer-specific policy that accepts the peer’s routes.

3. A final reject policy that rejects everything else.

For instance:

	 67	 Filtering Peering Routes

group PEER-AS789 {
    type external;
    import [ PEER-GENERIC IMPORT-PEER-AS789 REJECT-ALL ];
    export [ EXPORT-PEER REJECT-ALL];
    remove-private;
    peer-as 789;
    neighbor 1.2.3.4;
}

Announcing Routes to Peers
Your peers should receive your own routes and the routes of your customers. For-
tunately, we have used BGP communities to tag these routes, so it is very simple to
create the relevant policy statements:

policy-statement EXPORT-PEER {
    term DENY {
        from community RFC-NO-EXPORT;
        then reject;
    }
    term EXPORT-ORIGINATES {
        from community MYROUTES; 
        then accept;
        }
    }
    term EXPORT-CUSTOMER {
        from {
            protocol bgp;
            community MYCUSTOMER;
        }
        then {
            accept;
        }
    }
}

Or in cut-and-paste form:

set policy-options policy-statement EXPORT-PEER term DENY from community RFC-NO-EXPORT
set policy-options policy-statement EXPORT-PEER term DENY then reject
set policy-options policy-statement EXPORT-PEER term EXPORT-ORIGINATES from community MYROUTES
set policy-options policy-statement EXPORT-PEER term EXPORT-ORIGINATES then accept
set policy-options policy-statement EXPORT-PEER term EXPORT-CUSTOMER from protocol bgp
set policy-options policy-statement EXPORT-PEER term EXPORT-CUSTOMER from community MYCUSTOMER
set policy-options policy-statement EXPORT-PEER term EXPORT-CUSTOMER then accept

The BGP Configuration
The final part of the configuration for exporting routes to peers is to configure the
policies as export policies on the BGP session with the peer. All export policies are
generic and need to be defined only once. Each peer has two policies chained
together:

1. The generic policy that accepts your routes and customer routes.

	 68	 Chapter 4: Configuring Routing Policies

2. A final reject policy that rejects everything else.

For instance:

group PEER-AS789 {
    type external;
    import [ PEER-GENERIC IMPORT-PEER-AS789 REJECT-ALL ];
    export [ EXPORT-PEER REJECT-ALL];
    remove-private;
    peer-as 789;
    neighbor 1.2.3.4;
}

Filtering Transit Routes
The policies for your transit providers are once again a little different from those
for peers, but again not by much. For transits, you reject the same routes as for
peers: default routes, RPKI invalids, long AS paths, and bogons. The only major
changes are accepting routes from the “big networks” instead of rejecting them,
taking a different local preference (lower than peer routes), not adding the BGP
community for exporting the transit routes, and accepting all remaining routes
instead of rejecting them.

Accepting Routes from Transits
This is the entire policy statement for importing routes from transits:

policy-options {
    policy-statement TRANSIT-GENERIC {
        term DEFAULT-INET {
            from {
                family inet;
                route-filter 0.0.0.0/0 exact;
            }
            then reject;
        }
        term DEFAULT-INET6 {  
            from {
                family inet6;
                route-filter ::/0 exact;
            }
            then reject;
        }
        term BOGONS-INET {
            from {
                family inet;
                prefix-list-filter BOGONS orlonger;
            }
            then reject;
        }
        term BOGONS-INET6 {
            from {
                family inet6;
                prefix-list-filter BOGONS-INET6 orlonger;

	 69	 Filtering Transit Routes

            }
            then reject;
        }
        term BOGON-ASNS {
            from as-path-group BOGON-ASNS;
            then reject;
        }
        term RPKI-CHECK {
            from policy RPKI-CHECK;
        }
        term RPKI-INVALID {
            from community origin-validation-state-invalid;
            then reject;
        }
        term NORMALIZE {
            then {
                local-preference 100;
                next term;
            }
        }
    }
}
policy-options {
    policy-statement IMPORT-TRANSIT-AS10 {
        term INET {
            from {
                family inet;
                route-filter 0.0.0.0/0 upto /24;
            }
            then accept;
        }
        term INET6 { 
            from {
                family inet6;
                route-filter ::/0 upto /48;
            }
            then accept;
        }
    }
}
policy-options {
    policy-statement REJECT-ALL {
        then reject;
    }
}

Or in cut-and-paste form:

set policy-options policy-statement TRANSIT-GENERIC term DEFAULT-INET from family inet
set policy-options policy-statement TRANSIT-GENERIC term DEFAULT-INET from route-
filter 0.0.0.0/0 exact
set policy-options policy-statement TRANSIT-GENERIC term DEFAULT-INET then reject
set policy-options policy-statement TRANSIT-GENERIC term DEFAULT-INET6 from family inet6
set policy-options policy-statement TRANSIT-GENERIC term DEFAULT-INET6 from route-filter ::/0 exact
set policy-options policy-statement TRANSIT-GENERIC term DEFAULT-INET6 then reject
set policy-options policy-statement TRANSIT-GENERIC term BOGONS-INET from family inet
set policy-options policy-statement TRANSIT-GENERIC term BOGONS-INET from prefix-list-
filter BOGONS orlonger

	 70	 Chapter 4: Configuring Routing Policies

set policy-options policy-statement TRANSIT-GENERIC term BOGONS-INET then reject
set policy-options policy-statement TRANSIT-GENERIC term BOGONS-INET6 from family inet6
set policy-options policy-statement TRANSIT-GENERIC term BOGONS-INET6 from prefix-list-
filter BOGONS-INET6 orlonger
set policy-options policy-statement TRANSIT-GENERIC term BOGONS-INET6 then reject
set policy-options policy-statement TRANSIT-GENERIC term BOGON-ASNS from as-path-group BOGON-ASNS
set policy-options policy-statement TRANSIT-GENERIC term BOGON-ASNS then reject
set policy-options policy-statement TRANSIT-GENERIC term RPKI-CHECK from policy RPKI-CHECK
set policy-options policy-statement TRANSIT-GENERIC term RPKI-INVALID from community origin-
validation-state-invalid
set policy-options policy-statement TRANSIT-GENERIC term RPKI-INVALID then reject
set policy-options policy-statement TRANSIT-GENERIC term NORMALIZE then local-preference 200
set policy-options policy-statement TRANSIT-GENERIC term NORMALIZE then next term

set policy-options policy-statement IMPORT-TRANSIT-AS10 term INET from family inet
set policy-options policy-statement IMPORT-TRANSIT-AS10 term INET from route-
filter 0.0.0.0/0 upto /24
set policy-options policy-statement IMPORT-TRANSIT-AS10 term INET then accept
set policy-options policy-statement IMPORT-TRANSIT-AS10 term INET6 from family inet6
set policy-options policy-statement IMPORT-TRANSIT-AS10 term INET6 from route-filter ::/0 upto /48
set policy-options policy-statement IMPORT-TRANSIT-AS10 term INET6 then accept

set policy-options policy-statement REJECT-ALL then reject

The BGP Configuration
The final part of configuration for importing transit routes is to configure the poli-
cies as import policies on the BGP session with the transit provider. Remember
that the first policy, TRANSIT-GENERIC, is generic and needs to be defined only once;
the second policy is AS specific. Each transit has three policies chained together:

1. The generic policy that rejects the unwanted routes.

2. The transit-specific policy that accepts the transit’s routes.

3. A final reject policy that rejects everything else.

For instance:

group TRANSIT-AS10 {
    type external;
    import [ TRANSIT-GENERIC IMPORT-TRANSIT-AS10 REJECT-ALL ];
    export [ EXPORT-TRANSIT REJECT-ALL];
    remove-private;
    peer-as 10;
    neighbor 1.2.3.4;
}

Announcing Routes to Transits
Your transits should receive your own routes and the routes of your customers. As

	 71	 Filtering Transit Routes

with exporting routes to peers, here we use BGP communities to tag these routes,
so it is very simple to create the relevant policy statements:

    policy-statement EXPORT-TRANSIT {
       term DENY {
           from community RFC-NO-EXPORT;
           then reject;
       }
       term EXPORT-ORIGINATES {
           from community MYROUTES; 
           then accept;
           }
       }
       term EXPORT-CUSTOMER {
           from {
               protocol bgp;
               community MYCUSTOMER;
           }
           then {
               accept;
           }
       }
   }

And in cut-and-paste form:

set policy-options policy-statement EXPORT-TRANSIT term DENY from community RFC-NO-EXPORT
set policy-options policy-statement EXPORT-TRANSIT term DENY then reject
set policy-options policy-statement EXPORT-TRANSIT term EXPORT-ORIGINATES from community MYROUTES
set policy-options policy-statement EXPORT-TRANSIT term EXPORT-ORIGINATES then accept
set policy-options policy-statement EXPORT-TRANSIT term EXPORT-CUSTOMER from protocol bgp
set policy-options policy-statement EXPORT-TRANSIT term EXPORT-CUSTOMER from community MYCUSTOMER
set policy-options policy-statement EXPORT-TRANSIT term EXPORT-CUSTOMER then accept

The BGP Configuration
The final part of configuration for exporting routes to transits is to configure the
policies as export policies on the BGP session with the transit. All export policies
are generic and need to be defined only once. Each transit has two policies chained
together:

1. The generic policy that accepts your routes and customer routes.

2. A final reject policy that rejects everything else.

For instance:

group TRANSIT-AS10 {
    type external;
    import [ TRANSIT-GENERIC IMPORT-TRANSIT-AS10 REJECT-ALL ];
    export [ EXPORT-TRANSIT REJECT-ALL];
    remove-private;
    peer-as 10;
    neighbor 1.2.3.4;
}

	 72	 Chapter 4: Configuring Routing Policies

Conclusion
From a policy perspective your routers now have what it takes to filter routes, cre-
ate a secure routing table, and talk BGP to your customers, peers, and transit pro-
viders. Your network should be in great shape! Well done!

You might have noticed that we did not configure policies to filter routes you origi-
nate on customer, peer, and transit sessions. This was done on purpose, as by na-
ture BGP will filter announcements containing your own AS number in order to
prevent loops. If you receive a route advertisement containing your prefix but orig-
inating from a different AS number, RPKI will filter those if you have created
ROAs. It is however never bad to explicit filter out your own routes on all eBGP
sessions.

Next, some ways to check if things are going right and what to do if they aren’t.

In life things may not go according to plan – and BGP networking is no exception.
As you start using your secure routing table and deploying RPKI in your network,
customers may notice that in rare situations some networks or IP addresses they
want to access have become unreachable.

This chapter discusses steps you can take to find out whether a reported problem is
the result of your routing security implementation. Do not expect a full BGP trou-
bleshooting tutorial, just some tips and tricks and a few pointers on where to find
additional information that can come in handy.

MORE?	 A good starting point for troubleshooting BGP is the Juniper Networks
TechLibrary: https://www.juniper.net/documentation/en_US/junos/topics/task/
verification/bgp-configuration-process-summary.html.

Check If a Destination is Present In the Routing Table
Junos OS uses two databases (tables) for routing information:

	� Routing table: Contains all the routing information learned by all routing pro-
tocols [RIB].

	� Forwarding table: Contains the routes actually used to forward packets [FIB].

Junos OS installs all active routes from the routing table into the forwarding table.
The active routes are routes that are used to forward packets to their destinations.
The Junos operating system kernel maintains a master copy of the forwarding ta-
ble. It copies the forwarding table to the Packet Forwarding Engine, which is the
component responsible for forwarding packets.

Chapter 5

Troubleshooting

https://www.juniper.net/documentation/en_US/junos/topics/task/verification/bgp-configuration-process-summary.html
https://www.juniper.net/documentation/en_US/junos/topics/task/verification/bgp-configuration-process-summary.html

	 74	 Chapter 5: Troubleshooting

If a customer suggests that a certain prefix seems unreachable, you need to check
the route(s) to that prefix. In order to make sure the route has been installed and
the destination is reachable from your network, you should look in both the rout-
ing and forwarding table.

There are three ways to check the different tables:

	� show route <destination-prefix>: This will display the routing table entries.

	� show route forwarding-table destination <destination-prefix>: This will show the
routing engine's version of the destination prefix in the forwarding table.

	� show pfe route ip prefix <destination-prefix>: This will show the forwarding
table entry that is actually installed in each PFE.

In a perfect world the destination prefix will be visible in all three scenarios and
should show an RPKI validation-state: valid if it has a valid ROA and passed the
RPKI validation.

Check RPKI Validation State of a Route
In order to check if a route is used, it is essential to be able to display information
about the route validation database when RPKI route validation is configured.
You can query all route validation records that match a given prefix or origin-au-
tonomous-system. In addition, you can filter the output by a specific RPKI cache
session:

user@R1> show route
inet.0: 3 destinations, 3 routes (2 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both
2.2.0.2/32 		 *[BGP/170] 01:06:58, localpref 110, from 1.0.1.1
 	 AS path: 200 I, validation-state: valid
 			 > to 10.0.0.2 via lt-1/2/0.1
172.16.1.1/32 		 *[BGP/170] 00:40:52, localpref 90, from 1.0.1.1
 			 AS path: 200 I, validation-state: invalid
 			 Unusable
192.168.2.3/32 	 *[BGP/170] 01:06:58, localpref 100, from 1.0.1.1
 AS path: 200 I, validation-state: unknown
 > to 10.0.0.2 via lt-1/2/0.1 224.0.0.5/32

Validation states can be any of the states defined in RFC 6811:

	� Valid

	� Invalid

	� Unknown

But also, another state that means “validation was not run against this at all”:

	� Unverified

	 75	 Check If the RPKI Validator is Reachable and the Database is Up-to-Date

Unverified is different from unknown; a route that is unverified might be any of
valid, invalid, or unknown, if validation were attempted. Unverified basically
means that Origin Validation (RPKI) simply isn’t enabled or isn’t running on your
router.

MORE?	 For additional commands visit the Juniper TechLibrary: https://www.
juniper.net/documentation/en_US/junos/topics/reference/command-summary/
show-validation-database.html.

Check If the RPKI Validator is Reachable and the Database is Up-to-
Date

show validation statistics

This command shows statistics about the validation database. Obviously if you
have enabled RPKI and the connection with the validator is working, you should
see entries in the database:

user@host> show validation statistics

Total RV records:        453455
  Total Replication RV records: 453455	
    Prefix entries:         35432
    Origin-AS entries:     124400
  Memory utilization: 16.31MB
  Policy origin-validation requests: 234995
    valid:                  23445
    invalid:                14666
    unknown:                34567
  BGP import policy reevaluation notifications: 460268
    inet.0:                435345
    inet6.0:                 3454

Tech Library reference: https://www.juniper.net/documentation/en_US/junos/top-
ics/reference/command-summary/show-validation-statistics.html.

show validation database

This command shows you the actual content of the database:

user@host> show validation database

RV database for instance master

  Prefix                Origin-AS Session         State   Mismatch
  172.16.1.0/24-32                 1 10.0.77.1       valid  
  172.16.2.0/24-32                 2 10.0.77.1       valid  

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-database.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-database.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-database.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-statistics.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-statistics.html

	 76	 Chapter 5: Troubleshooting

  172.16.3.0/24-32                 3 10.0.77.1       valid  
  172.16.4.0/24-32                 4 10.0.77.1       valid  
  172.16.5.0/24-32                 5 10.0.77.1       valid  
  172.16.6.0/24-32                 6 10.0.77.1       valid  
  172.16.7.0/24-32                 7 10.0.77.1       valid  
  172.16.8.0/24-32                 8 10.0.77.1       valid  
  72.9.224.0/19-24          26234 192.168.1.100   valid   *
  72.9.224.0/19-24           3320 192.168.1.200   invalid *
  10.0.0.0/8-32                 0 internal        valid  

  IPv4 records: 14
  IPv6 records: 0

Tech Library reference: https://www.juniper.net/documentation/en_US/junos/top-
ics/reference/command-summary/show-validation-database.html.

show validation session

If your validation database is empty or you want to check to see if your validators
are still up and running, you can do so with the show validation session brief and
show validation session detail commands:

user@host> show validation session brief

Session                                 State   Flaps     Uptime #IPv4/IPv6 records
  1.3.0.2                                 up          2   00:01:37 13/0
  10.255.255.11                           up          3   00:00:01 1/0
  10.255.255.12                           connect     2            64/68

Note that the third session in this output shows connect instead of up. This is most
likely the result of configuring all three sessions under the same RPKI group; if you
do so, only two sessions will come up and any additional ones will stay down if
you don’t change the maximum number of validators per group.

show validation session detail
user@host> show validation session detail

Session 10.0.77.1, State: up
    Group: test, Preference: 100
    Local IPv4 address: 10.0.77.2, Port: 2222
    Refresh time: 300s
    Session flaps: 14, Last Session flap: 5h13m18s ago
    Hold time: 900s
    Record Life time: 3600s
    Serial (Full Update): 0
    Serial (Incremental Update): 0
      Session flaps 2
      Session uptime: 00:48:35
      Last PDU received: 00:03:35
      IPv4 prefix count: 71234
      IPv6 prefix count: 345

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-database.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-validation-database.html

	 77	 Re-Run Validation, Optionally, Against Only Specified Routes

Re-Run Validation, Optionally, Against Only Specified Routes
When BGP origin validation is configured and for some reason the database gets
corrupted, or you would like to refresh it, manually request a route validation pol-
icy to be reevaluated. This command causes dependent route validation records to
be reevaluated. Dependent route validation records are exactly matching and
more specific records:

user@host> request validation policy

 Enqueued 1 IPv4 records
  Enqueued 0 IPv6 records

Tech Library reference: https://www.juniper.net/documentation/en_US/junos/top-
ics/reference/command-summary/request-validation-policy.html.

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/request-validation-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/request-validation-policy.html

Throughout this book you have worked extensively with prefix lists. A prefix list
contains one or more prefixes that can be used in routing policies. When you build
your network, you usually start with manually-created and manually-updated pre-
fix lists. Your own set of prefixes (the ones that you will originate) doesn’t change
very often; you accept everything from your transit providers anyway, and when
you do not have a lot of peers or customers there are not many changes to their
prefix lists, either. We’ve all been there.

However, as your network and your customer base grow, it is not feasible to keep
manually updating prefix lists. In this Appendix we show you how we use the
NETCONF functionality of Junos OS, along with a few Python scripts, to auto-
matically upload prefix list changes.

This Appendix is a bit different from the rest of the book, since we cannot provide
ready-made scripts that you can cut-and-paste into your network’s management
system. Instead we show you how we do it, and invite you to talk to your software
development team, encouraging them to be enthusiastic about your new secure
routing table, too, and have them implement automatic prefix list changes on your
network.

There are three basic steps:

1. Make sure that for each customer, your customer database contains the AS-SET
(or AS number) that your customers announce to you.

2. Retrieve the prefix list for that AS-SET from the IRR.

3. Upload the prefix list to your router(s).

Appendix

How to Automatically Update Prefix Lists

	 79	 Customer Database

Doing this periodically (for instance, twice a day) means that you don’t have to
worry about customers who wish to change their prefix list. They do not have to
create tickets asking you to change their prefix list, and what’s more: that means
you don’t have to handle these tickets any longer.

Customer Database
Your database needs to contain at least two fields for each customer:

	� Their AS number (we will use this in the name of the prefix list as it is uploaded
to the router).

	� Their AS-SET.

Your customer will have created their own AS-SET in the IRR. When connecting
your customer to the network, you will check to see if their AS-SET makes sense. It
should contain the AS number that they use for their own network (from which
they will announce their own prefixes) as well as the AS numbers and/or AS-SETs
of their customers. By walking through this “tree”, the bgpq3 tool will create one
single prefix list that collapses all prefixes that your customer may announce.

Retrieve Prefix-list: Use bgpq3
The tool to convert AS-SETs to prefix lists is bgpq3. The official bgpq3 web site is at
https://github.com/snar/bgpq3 where you are invited to read, learn, and contrib-
ute. After installing bgpq3 on a machine, you can use it to create prefix lists like
the one below:

user@server:~$ bgpq3 -h rr.ntt.net -J -l AS123 AS-EXAMPLE
policy-options {
replace:
    prefix-list AS123 {
        192.0.2.0/24;
    }
}

And for IPv6:

user@server:~$ bgpq3 -6 -h rr.ntt.net -J -l AS123-INET6 AS-EXAMPLE
policy-options {
replace:
    prefix-list AS123-INET6 {
        2001:db8::/32;
    }
}

Using bgpq3, create a .txt file in the directory prefix-list.d/ for each AS-SET that
you wish to auto-update. The .txt file should have the name of the prefix list as you
want it pushed to the router; and the contents should be a prefix per line. Creating
a script that does this periodically is left as an exercise to the reader.

https://github.com/snar/bgpq3

	 80	 Appendix: How to Automatically Update Prefix Lists

Upload to Your Router
The Junos OS supports multiple ways of uploading external information into the
configuration database. Since this is an Appendix, it is not exhaustive and does not
offer a ready-made, field-tested configuration. Only an example is provided here.
In the example, the NETCONF interface for Junos OS is used to upload informa-
tion. This example specifically uses the Python 3 language and the Junos PyEZ li-
brary created and maintained by Juniper Networks. Note that PyEZ may also be
used with Python 2.7 if preferable.

MORE? 	 Check out the Day One PyEZ book here: https://www.juniper.net/us/en/
training/jnbooks/day-one/automation-series/junos-pyez-cookbook/.

In this example, a fictitious Juniper device is used as the configuration target.
However, the example should work on any of the Junos OS devices that use prefix
lists in the same manner. Our requirement is to update the list of IP prefixes present
in the prefix list based on the contents of a text file. The script that will accomplish
this is run from a remote host.

Requirements
For the Junos OS device:

	� Have the NETCONF SSH subsystem (see: https://www.juniper.net/documen-
tation/en_US/junos/topics/topic-map/netconf-ssh-connection.html) enabled
through:

	� # set system services netconf ssh

	� Allow access from remote server on NETCONF port (default: 830)

For the remote server:

	� Have Python 3.5 installed

	� (alternatively, use Python 2 and adjust syntax accordingly in code below)

	� Have Junos PyEZ installed (see: https://github.com/Juniper/py-junos-eznc), for
example, through:

	� # pip install junos-eznc

Example Code

The Python 3 code below looks for *.txt files in a directory named prefix-list.d
inside the parent directory of the script itself. Each such file represents a prefix list
to update and should contain prefixes, one per line, that the prefix list should con-
sist of. Empty lines and lines starting with the hash (#) symbol are ignored. The

https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/junos-pyez-cookbook/
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/junos-pyez-cookbook/
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/netconf-ssh-connection.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/netconf-ssh-connection.html

	 81	 Upload to Your Router

name of the file (excluding the extension suffix) is used as the name of the prefix
list.

Update the configuration variables HOST, USER, and PASS at the top of the script
to match your setup. Refer to the comments inside the script for further
explanation:

<code>

from pathlib import Path

from jnpr import junos
from jnpr.junos.utils.config import Config
from lxml import etree as ET

HOST = 'mx0.example.com'
USER = 'automation'
PASS = 'secret'

# Prefix lists to update.
# Dictionary of {name -> list of prefixes}.
prefix_lists = {}

# Find files matching 'prefix-list.d/*.txt'
# relative to the parent directory of the script.
CONF_DIR = Path(__file__).parent / 'prefix-list.d'

for f in CONF_DIR.glob('*.txt'):
    with f.open('r', encoding='utf-8') as fp:
        # Use the file basename ('stem') as the prefix list name;
        # read, split & trim lines, exclude comments ('#') and empty.
        lines = [x.strip() for x in fp.read().splitlines()]
        prefix_lists[f.stem] = [x for x in lines if x and not x.startswith('#')]

# Connect to configuration target.
# Note: should use agent auth if PASS is None.
print('Connect to [%s]...' % HOST)

with junos.Device(host=HOST, user=USER, passwd=PASS) as device:
    # Open configuration; use private mode to avoid
    # committing existing shared candidate configuration.
    print('Open private configuration...')
    
    with Config(device, mode='private') as config:
        # Merge XML config for each prefix list.
        for name, prefixes in prefix_lists.items():
            # Generate an XML configuration with the following structure:
            """
            <configuration>
                <policy-options>
                    <prefix-list replace="replace">
                        <name>{name}</name>
                        
                        <prefix-list-item>
                            <name>x.x.x.x/n</name>
                        </prefix-list-item>
                        

	 82	 Appendix: How to Automatically Update Prefix Lists

                        (...)
                    </prefix-list>
                </policy-options>
            </configuration>
            """
            
            patch = ET.Element('configuration')
            policy_options = ET.SubElement(patch, 'policy-options')
            # Note: replace entire prefix-list to remove extraneous entries.
            prefix_list = ET.SubElement(policy_options, 'prefix-list', replace='replace')
            ET.SubElement(prefix_list, 'name').text = name
            
            for prefix in prefixes:
                item = ET.SubElement(prefix_list, 'prefix-list-item')
                ET.SubElement(item, 'name').text = prefix
            
            print('\nUpdate prefix list [%s] with [%d] entries:' % (name, len(prefixes)))
            print('---\n' + ET.tounicode(patch, pretty_print=True) + '---')
            
            config.load(patch)
        
        print('\nUpdated [%d] prefix lists; config diff:' % len(prefix_lists))
        print('---\n' + config.diff() + '---')
        
        while True:
            choice = input('\nDo you want to commit these changes? [y/n] ').lower()
            if choice in ('y', 'yes'):
                print('Committing changes...')
                config.commit()
                print('Commit successful!')
                break
            elif choice in ('n', 'no'):
                print('Changes not committed.')
                break

</code>

This code is probably not a cut-and-paste into your own network management
system, but it should definitely get you up and running, and ready for automated
prefix list changes.

The Next Step: Use the Same Mechanism for Filtering Your Peers
Developers are creatively writing software, and network engineers are creatively
using it!

Based on the work described above, not only are you now creating prefix lists to
filter your customers, you can use the same mechanism to filter your peers as well;
simply create a ‘pseudo customer’ in your network management system, note
down the AS-SET that the peer should announce, and then you can refer to the
prefix-list in the BGP policy for that peer.

This way you can be sure that your customers, as well as your peers, have a degree
of security in the prefixes that they are allowed to announce.

	 83	 Additional Resources	 83	

Additional Resources
Now that you have a secure routing table, the next step is to express to customers
and partners that you are taking responsibility for a safer, more stable Internet.

One way to express this is to join MANRS (Mutually Agreed Norms for Routing
Security). MANRS is a global initiative, supported by the Internet Society, that
provides crucial fixes to reduce the most common routing threats. More informa-
tion is available on their website at: https://www.manrs.org/.

In order to get your customers to announce valid, usable information to you, you
may have to help them to fix their announcements, IRR registrations, or RPKI
ROAs. The more networks that join, the more secure the Internet becomes!

There’s great documentation within the Juniper TechLibrary that can help:

	� Enabling BGP to Carry Flow-Specification Routes: https://www.juniper.net/
documentation/en_US/junos/topics/example/routing-bgp-flow-specification-
routes.html.

	� BGP Feature Guide for Routing Devices: https://www.juniper.net/techpubs/
en_US/junos15.1/information-products/pathway-pages/config-guide-routing/
config-guide-routing-bgp.pdf.

And these frequently asked questions compiled by NLnet Labs are very handy on
RPKI specific issues: https://nlnetlabs.nl/projects/rpki/faq/.

Conclusion
The authors hope that the information provided in this book will help you get
started designing and implementing methods for a secure routing table, and like-
wise a more stable and reliable network.

It is very likely, and maybe even the wish of the authors, that parts of this book
soon become obsolete due to all the work being done to get to a more secure rout-
ing table. If parts of this book do become obsolete, we will have achieved our goal!

You might have noticed that implementing routing security can consume quite a
bit of time. However, we hope that you will take the time to do so, or even better,
help build the tools to do so – there are already many tools and scripts available on
sources like Github, which you can use to cut down on time spent. And remember
that we all have the same goal, so let us know if you think you can help or have
suggestions on how to improve those tools.

If you have any ideas, suggestions, or remarks on how to further develop routing
security feel free to reach out to the authors (dayone@juniper.net). By joining forc-
es and helping each other we can make the Internet a safer place for all!

https://www.manrs.org/
https://www.juniper.net/documentation/en_US/junos/topics/example/routing-bgp-flow-specification-routes.html
https://www.juniper.net/documentation/en_US/junos/topics/example/routing-bgp-flow-specification-routes.html
https://www.juniper.net/documentation/en_US/junos/topics/example/routing-bgp-flow-specification-routes.html
https://www.juniper.net/techpubs/en_US/junos15.1/information-products/pathway-pages/config-guide-routing/config-guide-routing-bgp.pdf
https://www.juniper.net/techpubs/en_US/junos15.1/information-products/pathway-pages/config-guide-routing/config-guide-routing-bgp.pdf
https://www.juniper.net/techpubs/en_US/junos15.1/information-products/pathway-pages/config-guide-routing/config-guide-routing-bgp.pdf
https://nlnetlabs.nl/projects/rpki/faq/

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Authors
	Welcome to Day One
	Target Audience
	What You Need to Know Before Reading This Book
	What You Will Learn by Reading This Book

	Additional Resources
	Foreword
	Chapter 1: Introducing Routing Security
	Filtering and Rejecting Routes is Good!
	Internet Routing Registries
	RPKI
	Participate In Your Local NOG
	Conclusion

	Chapter 2: Accepting and Announcing Routes
	Receiving and Advertising Routes to and from Customers
	Receiving and Advertising Routes to and from Peers
	Receiving and Advertising Routes from and to Transit Providers
	Conclusion

	Chapter 3: Configuring RPKI: Resource Public KeyInfrastructure
	The Role of a Validator in the RPKI System
	Routinator
	OctoRPKI and Tools
	FORT
	Prover
	Monitoring Performance
	Security Considerations
	Deployment Considerations
	Dealing with Exceptions
	Connect Your Routers to the Validator
	Conclusion

	Chapter 4: Configuring Routing Policies
	Building Blocks: Basic Filtering Rules
	Filtering Customer Routes
	Filtering Peering Routes
	Filtering Transit Routes
	Conclusion

	Chapter 5: Troubleshooting
	Check If a Destination is Present In the Routing Table
	Check RPKI Validation State of a Route
	Check If the RPKI Validator is Reachable and the Database is Up-to-Date
	Re-Run Validation, Optionally, Against Only Specified Routes

	Appendix: How to Automatically Update Prefix Lists
	Customer Database
	Upload to Your Router
	Additional Resources
	Conclusion

