


Juniper Networks vSRX

RECOMMENDED

OVERVIEW

In Q4 2023, CyberRatings.org conducted an independent test of Juniper Networks vSRX Next-Generation Virtual Firewall (vSRX Junos 22.4R2.8) against the Cloud Firewall Test Methodology v2.1, using Amazon Web Services running a c5n.2xlarge instance. The product was thoroughly tested to determine how it handled TLS/SSL 1.2 and 1.3 cipher suites, how it defended against 984 exploits, whether any of 1,645 evasions could bypass protection, and if the device would remain stable under adverse conditions. To provide a more realistic rating based on modern network traffic, both clear text and encrypted traffic were measured.

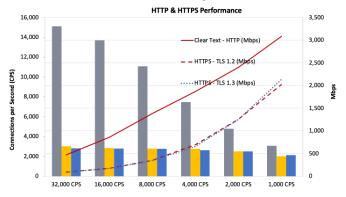
99.70% SECURITY EFFECTIVENESS

ROUTING & ACCESS CONTROL

Unrestricted Traffic Test	Pass
Segmented Traffic Test	Pass
Simple Policies	Pass
Complex Multi-Zone Policies	Pass

TLS/SSL FUNCTIONALITY

Decryption Validation	Supported
Top 10 Cipher Support	10/10 Supported
Prevention of Weak Ciphers	5/5 Prevented
Decryption Bypass Exceptions	Supported
TLS Session Reuse - Session Tickets	Supported
TLS Session Reuse - Session IDs	Supported


STABILITY & RELIABILITY

Protocol Fuzzing & Mutation	Pass
Blocking with Minimal Load	Pass
Blocking Under Load	Pass
Attack Detection/Blocking – Normal Load	Pass
State Preservation – Normal Load	Pass
Pass Legitimate Traffic – Normal Load	Pass
State Preservation – Maximum Exceeded	Pass
Drop Traffic – Maximum Exceeded	Pass

THREAT PREVENTION

False Positives	Pass (233/233)
Exploits	981/984
Evasions	1,645/1,645

RATED THROUGHPUT - 1,228 MBPS

Clear Text (HTTP)		TLS_ECDHE_RSA_WITH_AES_256_ GCM_SHA384 (0xC0, 0x30) TLS 1.2		TLS_AES_256_ GCM_SHA384 (0x13, 0x02) TLS	
CPS	Mbps	CPS	Mbps	CPS	Mbps
15,100	472	3,020	94	2,827	88
13,700	856	2,850	178	2,803	175
11,085	1,386	2,802	350	2,774	347
7,468	1,867	2,778	695	2,632	658
4,800	2,400	2,515	1,258	2,502	1,251
3,085	3,085	2,020	2,020	2,137	2,137

MSRP + 24/7 SUPPORT & MAINTENANCE

Juniper Networks 1-Year Cost	\$3,224.00
Amazon Web Services (AWS)	\$3,784.32

Routing & Policy Enforcement

Access control is the primary responsibility of a firewall. Firewalls have undergone several stages of development, from early packet filtering and circuit relay firewalls to application-layer (proxy-based), dynamic packet filtering firewalls, and user/application-aware "next-generation" firewalls. Throughout its history, the goal has been to enforce an access control policy between two networks. Rules were configured to permit or deny traffic from one network resource to another based on identifying criteria such as source IP, destination IP, source port, destination port, and protocols.

This test validates that the firewall enforces security policies over a range of policy environments, from simple to complex. The tests incrementally build on a baseline consisting of a simple configuration with no policy restrictions and no content inspection — to a complex multiple-zone configuration that supports many users, networks, policies, and applications. At each level of complexity, traffic was tested to ensure specified policies were enforced.

Network Segmentation	Results
Unrestricted Traffic Test (Allow All)	Pass
Segmented Traffic Test	Pass
Access Control	Results
Simple Policies	Pass
Complex Multi-Zone Policies	Pass

Figure 1 - Routing & Policy Enforcement

TLS/SSL Functionality

The use of the Secure Sockets Layer (SSL) protocol and its current iteration, Transport Layer Security (TLS), is now the norm. Let's Encrypt statistics show that as of December 2023, over 80% of web traffic was sent over HTTPS.¹

While CyberRatings believes using encryption is good, TLS/SSL is susceptible to various security attacks at multiple levels of network communication. For example, attacks have been observed in the handshake protocol, record protocol, application data protocol, and Public Key Infrastructure (PKI). To address the growing threat of focused attacks using the most common web protocols and applications, the capabilities of the DUT was tested to provide visibility into the TLS/SSL payloads and detect attacks concealed by encryption and attacks against the encryption protocols themselves. The table below lists the tested TLS/SSL in order of prevalence per December 2023.

Decryption Validation

Version	Prevalence	Cipher Suites	Results
TLS 1.3	66.51%	TLS_AES_256_GCM_SHA384 (0x13, 0x02)	Pass
TLS 1.2	11.85%	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30)	Pass
TLS 1.2	9.26%	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2F)	Pass
TLS 1.3	8.07%	TLS_AES_128_GCM_SHA256 (0x13, 0x01)	Pass
TLS 1.2	1.72%	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA8)	Pass
TLS 1.2	0.68%	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x28)	Pass
TLS 1.3	0.55%	TLS_CHACHA20_POLY1305_SHA256 (0x13, 0x03)	Pass
TLS 1.2	0.42%	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2C)	Pass
TLS 1.2	0.27%	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA9)	Pass
TLS 1.2	0.20%	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2B)	Pass

Figure 2 – TLS/SSL Functionality

First, we tested how the firewall handled cipher suites known to be insecure, using null ciphers (no encryption of data) and anonymous ciphers (no authorization). Then we validated the ability to correctly decrypt and inspect TLS/SSL traffic using prohibited content previously blocked during testing. The content was then encrypted and verified that it was still blocked. We then tested to see if we could permit conditional bypass of decryption. This might be required to preserve privacy for regulatory or other reasons.

Decryption Validation	Supported
Top 10 Cipher Support	10/10 Supported
Prevention of Weak Ciphers	5/5 Prevented
Decryption Bypass Exceptions	Supported
TLS Session Reuse - Session Tickets	Supported
TLS Session Reuse - Session IDs	Supported

¹ Let's Encrypt Stats (https://letsencrypt.org/stats/)

² https://crawler.ninja/files/ciphers.txt

Threat Prevention

A firewall is a mechanism used to protect a trusted network from an untrusted network while allowing authorized communications to pass from one side to the other, thus facilitating secure business use of the Internet. The CyberRatings exploit repository contains exploits demonstrating many protocols and applications. Exploits are selected based on CVSS score (how widely used is an application + what can an attacker do?), use case, and customer relevance.

False Positives

A key to effective protection is correctly identifying and allowing legitimate traffic while maintaining protection. False positives are any legitimate, non-malicious content/traffic perceived as malicious. False positive tests verify the ability of the firewall to block attacks while permitting legitimate traffic. If a device experienced false positive events, it was tuned until no further false positive events were encountered.

Exploit Protection

An exploit is an attack that takes advantage of a protocol, product, operating system, or application vulnerability. CyberRatings verified that the firewall could detect and block exploits while remaining resistant to false positives by attempting to send exploits through the product under test and verified that the malicious traffic was blocked, and all appropriate logging and notifications were performed.

99.70% Blocked (981/984)

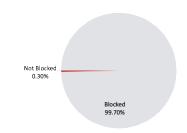


Figure 3 - Exploit Effectiveness

Coverage by Date

Figure 4 provides insight into whether a vendor is aggressively aging out protection signatures to preserve performance levels. It also reveals whether a product lags in protection for the most current vulnerabilities. CyberRatings reports exploits by individual years for the past ten years.

Year	Coverage %
<=2014	100%
2015	100%
2016	100%
2017	100%
2018	100%
2019	99.46%
2020	100%
2021	100%
2022	100%
2023	98.46%

Figure 4 - Coverage by Date

Coverage by Target Vendor

Exploits within the CyberRatings exploit library target many protocols and applications. The below figure shows how the product under test offers exploit protection for ten top vendors targeted in this test.

Vendor	Coverage %
Adobe	100%
Advantech	100%
Apache	100%
IBM	100%
Cisco	100%
HPE	100%
Microsoft	100%
Oracle	100%
SolarWinds	100%
VMware	100%

Figure 5 - Coverage for Top Vendors

Resistance to Evasions

100% Effective (1,645/1,645)

Threat actors apply evasion techniques to disguise and modify attacks to avoid detection by security products. An attacker can bypass protection if a firewall fails to detect a single form of evasion. Therefore, it is imperative that a firewall correctly handles evasions.

Our engineers verified that the firewall could block exploits when subjected to numerous evasion techniques. To develop a baseline, we took several previously blocked attacks. We then applied evasion techniques to those baseline samples and tested them. This ensured that any misses were due to the evasions, not the baseline samples.

We adjusted scoring for evasions according to their impact: For example, TCP evasions are more impactful than HTML evasions. A TCP evasion can be applied to thousands of exploits, vs. an HTTP evasion that is limited to far fewer exploits.

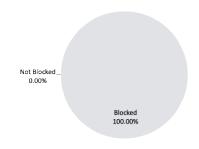


Figure 6 – Evasion Effectiveness

During testing, we used multiple exploits for each evasion technique to see how each product defended against these combinations. Some products properly handled an evasion technique with all tested exploits while others handled evasions with only some of the exploits.

Evasion Technique	Evasions Tested	Evasions Blocked
IP Packet Fragmentation	162	162
JSON Obfuscation	2	2
TCP Transfer Control Block (TCP Split-Handshake)	9	9
IP Address Spoofing	18	18
TCP Stream Segmentation	468	468
HTTP Chunked Encoding	171	171
HTTP Compression	36	36
HTTP Headers	117	117
Layered Evasions		
HTTP Compression, HTTP Chunked Encoding	207	207
HTTP Chunked Encoding, HTTP Headers	72	72
HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation	36	36
HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation, IP Packet Fragmentation	36	36
IP Packet Fragmentation, IP Insertion	99	99
JSON Obfuscation, HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation	16	16
JSON Obfuscation, HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation, IP Packet Fragmentation	16	16
TCP Stream Segmentation, IP Packet Fragmentation	36	36
TCP Stream Segmentation, TCP Insertion	72	72
TCP Stream Segmentation, TCP Transfer Control Block	72	72

Figure 7 – Evasions by Technique

Performance

The performance of the cloud network firewall was tested using various traffic conditions that provide metrics for real-world performance. Individual implementations will vary based on usage; however, these quantitative metrics provide a gauge as to whether a particular firewall is appropriate for a given environment.

Amazon Web Services (AWS) offers a wide range of instance types with baseline and burst bandwidth³. Depending on the instance type used by the vendor, the same instance was used to measure baseline control, and then repeated with the firewall in the exact same configuration for exploits and evasions.

Rated Throughput

We measured performance to determine the sustained throughput of the cloud network firewall over time for a range of packet sizes and connections per second to capture the firewall's performance curves for UDP, HTTP, and HTTPS. The "Plain Text Rated Throughput," "HTTPS Rated Throughput," and the combined "Rated Throughput" are good benchmarks for what an enterprise can expect the firewall instance to achieve consistently (over time) when deployed on AWS.

Performance		Result
Plain Text Rated Throughput (Average of HTTP capacity — without delays)	1,678 Mbps	Rated Throughput
HTTPS (TLS/SSL) Rated Throughput (Average of HTTPS Capacity tests)	779 Mbps	1,228 Mbps

Figure 8 - Rated Throughput (Mbps)

Raw Packet Processing Performance (UDP Throughput)

UDP packets of varying sizes were generated with variable source and destination IP addresses transmitting from a fixed source port to a fixed destination port. This allowed us to create a constant stream for each packet size tested (e.g. 64 bytes) transmitted bidirectionally through the firewall. This was to determine the maximum rate the firewall could process packets of various sizes, and the associated latency. Each vendor was required to write a signature to detect the test packets to ensure that they were being passed through the detection engine and not "fast-tracked" from the inbound port to the outbound port.

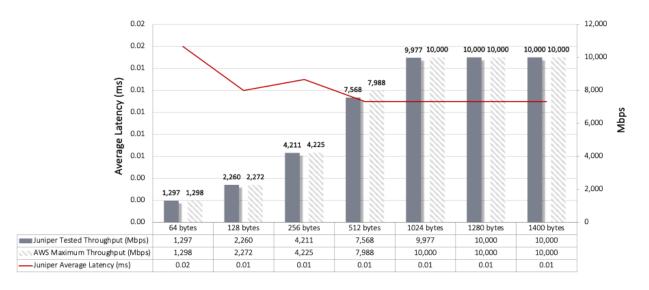


Figure 9 - Raw Packet Processing Performance (UDP Traffic)

³ https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/compute-optimized-instances.html and https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/memory-optimized-instances.html

Theoretical Maximum Capacity

The goal was to stress the firewall and determine how it handles high volumes of TCP connections per second, HTTP transactions per second, and concurrent open connections. All packets contained valid payload and address data, and these tests provided an excellent measurement of maximum connection rates and concurrency (simultaneous users/traffic).

- Theoretical Maximum Concurrent TCP Connections: This type of traffic would not typically be found on a network, but it provides the means to determine the maximum possible concurrent connections.
- Maximum HTTP Transactions per Second: This test is designed to determine the maximum HTTP transaction rate of the
 firewall with a one-byte response size. The object size defines the number of bytes in the body, excluding any bytes
 associated with the HTTP header. A one-byte response size is designed to provide the theoretical maximum HTTP
 transactions per second rate.

Figure 10 – Max TCP Concurrency and HTTP Transactions per Second

HTTP Capacity

The goal was to stress the HTTP detection engine and determine how the device copes with network loads of varying average packet sizes and varying connections per second. By creating genuine session-based traffic with varying session lengths, the device was forced to track valid TCP sessions, thus ensuring a higher workload than simple packet-based background traffic. This provided a test environment as close to real-world conditions as possible in a lab while ensuring absolute accuracy and repeatability.

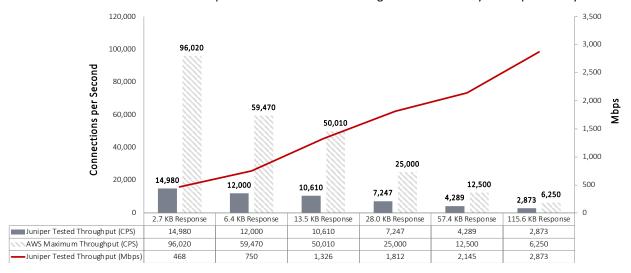


Figure 11 - HTTP Capacity (with delays)

Each transaction consisted of a single HTTP GET request with delays (i.e., the web browser/client waits ten seconds to "read" the content provided by the web server. The web server then responds immediately, after the web browser/client clicks to the next page thus maintaining each connection for ten seconds). All packets contained valid payloads.

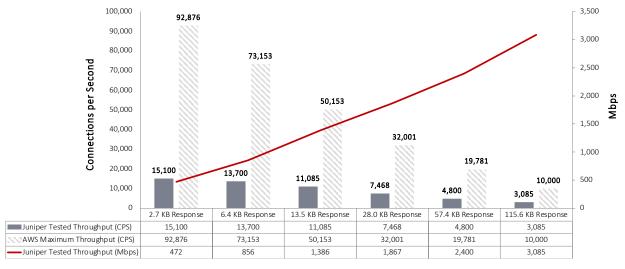


Figure 12 - HTTP Capacity (without delays)

Each transaction consisted of a single HTTP GET request, and there were no delays (i.e., the webserver responded immediately to all requests). All packets contained valid payload (a mix of binary and ASCII objects) and address data. Testing determined the maximum rate the firewall was able to process HTTP packets of multiple sizes and its efficiency at forwarding packets quickly to provide the highest level of network performance with the lowest latency. The results were recorded at each response size at a load level of 95% of the maximum throughput, just before latency increased (which indicates the throughput is not sustainable).

TLS/SSL Capacity

The goal was to stress the HTTPS engine and determine how the device coped with network loads of varying average packet sizes and varying connections per second.

By creating session-based traffic with varying session lengths, the device was forced to track valid TCP sessions, thus ensuring a higher workload than simple packet-based background traffic. Encrypting the traffic using TLS/SSL with varying algorithms forced the device to decrypt traffic before inspection, increasing the workload further. This provided a test environment that is as close to real-world conditions as possible to achieve in a lab environment (albeit biased towards HTTPS traffic) while ensuring accuracy and repeatability. Tests were performed similarly to HTTP with one HTTPS transaction per connection. Testing determined the maximum rate the firewall was able to process HTTPS traffic of various sizes and its efficiency at forwarding packets quickly to provide the highest level of network performance with the lowest latency. The results were recorded at each response size at a load level of 95% of the maximum throughput, just before latency increased (which indicates the throughput is not sustainable).

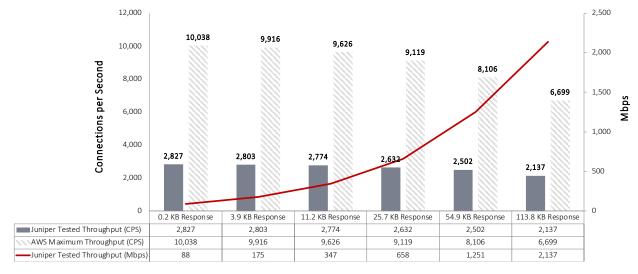


Figure 13 - HTTPS Capacity for TLS 1.3 (TLS_AES_256_GCM_SHA384 [0x13, 0x02])

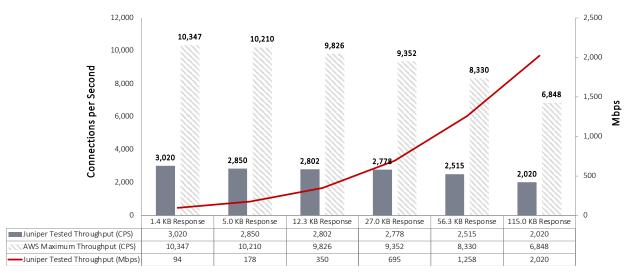


Figure 14 - HTTPS Capacity for TLS 1.2 (TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 [0xC0, 0x30])

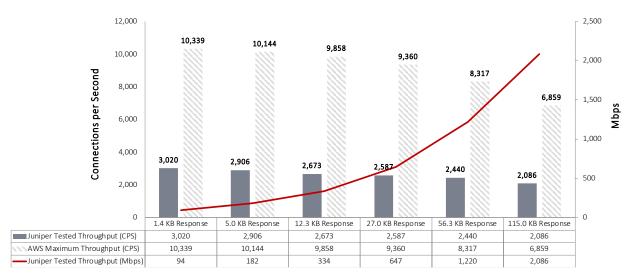


Figure 15 - HTTPS Capacity for TLS 1.2 (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 [0xC0, 0x2F])

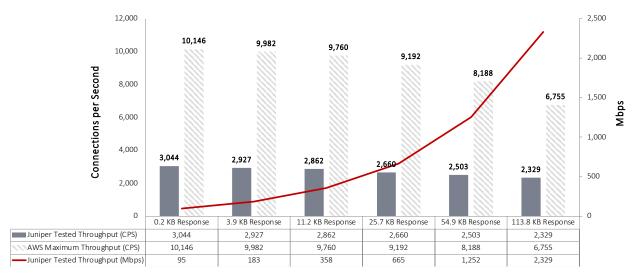


Figure 16 - HTTPS Capacity for TLS 1.3 (TLS_AES_128_GCM_SHA256 [0x13, 0x01])

Delta between HTTP and HTTPS Capacity & Throughput

How did the encryption overhead affect the bandwidth for the provided payloads? And how does the size of what is being transferred impact performance?

The purpose of these tests was to measure the amount of overhead added to each payload based on the cipher suite used. This test used HTTP without any TLS and then we tested the same payload using TLS 1.3 (TLS_AES_256_GCM_SHA384 [0x13, 0x02]). Each transaction consisted of a single HTTPS GET request with no transaction delays (i.e., the web server responds immediately to all requests). All traffic contains valid payloads.

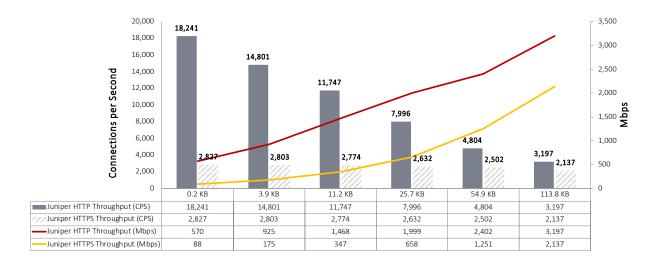


Figure 17 – Delta between HTTP and HTTPS Capacity & Throughput

Stability and Reliability

Long-term stability is essential for a firewall, where failure can produce network outages. These tests verified the firewall's stability and ability to maintain security effectiveness while under normal load and while passing malicious traffic. Products that could not sustain legitimate traffic (or that crash) while under hostile attack did not pass.

The product was required to remain operational and stable throughout these tests and to block 100% of previously blocked traffic, raising an alert for each. If any policy-forbidden traffic passed, caused by either the volume of traffic or by the product failing open for any reason, this resulted in a fail.

Protocol Fuzzing & Mutation

Testing determined how the firewall responded (e.g., crashes, reboots, etc.) due to traffic generated from various protocol randomizers and mutation tools. The product was expected to remain operational and capable of detecting and blocking exploits throughout the test.

Stability and Reliability	Result
Protocol Fuzzing & Mutation	Pass
Blocking under Extended Attack	
Blocking with Minimal Load	Pass
Blocking Under Load	Pass
Behavior of the State Engine under Load	
Attack Detection/Blocking – Normal Load	Pass
State Preservation – Normal Load	Pass
Pass Legitimate Traffic – Normal Load	Pass
State Preservation – Maximum Exceeded	Pass
Drop Traffic – Maximum Exceeded	Pass

Blocking Under Extended Attack

These tests indicated the ability of the firewall to remain operational and stable (i.e., block violations and raise associated alerts) throughout an extended attack.

Behavior of the State Engine Under Load

These tests determined whether the device could preserve its state across a large number of open connections over an extended period. At various points throughout the test (including after the maximum had been reached), it was confirmed that the device could inspect and block traffic that violated the currently applied security policy while ensuring that legitimate traffic was not blocked.

Total Cost of Ownership

When calculating TCO for a cloud firewall, there are several considerations:

- First, there is the cost of the cloud provider and the specific price for the cloud firewall instance.
- **Second**, some instances offer a guaranteed level of throughput; others offer boosts up to a certain amount of throughput but often fail to specify what type of traffic for a given period.
- Third, there is the ongoing cost of running the instance (cost per hour), which can be different for each region selected.

Traditional licenses are offered, but so are bundles, which could be as long as three or five years. There are also pay-as-you-go options, which are charged hourly or daily. Furthermore, enterprises should include labor costs for operational expenditures (OPEX) such as administration, policy and configuration handling, log handling, alert handling, monitoring, reporting, analysis, auditing and compliance, maintenance, software updates, and troubleshooting.

In order to reduce complexity and provide meaningful guidance, we held the labor and OPEX costs constant. This yielded a simplified formula to measure the TCO and value of the firewall:

Security Effectiveness = Exploit Block Rate* Evasions* Stability and Reliability⁴
TCO per Protected Mbps = TCO / (Security Effectiveness * Tested Throughput)

Figure 18 – Security Effectiveness and TCO per Protected Mbps Formulas

This formula incorporates the cost of the cloud firewall, the instance costs, and how effective the firewall is in delivering both security and performance over time. The *TCO per Protected Mbps* metric provides clear guidance on whether a product's price is higher or lower than its competitors.

Figure 19 contains the pay-as-you-go pricing for Juniper Networks Next-Generation Firewall. It is not meant as an extensive list. The pricing was collected from Amazon Web Services (AWS)⁵.

vCPU/Instance	Juniper Networks License	License Cost 1 year	License Cost 3 years	License Cost 5 years
c5n.2xlarge	vSRX Next Generation Virtual Firewall	\$3,224.00	\$9,672.00	\$16,120.00

Figure 19 – Juniper Networks List Price

If a customer opts to use Juniper Networks annual pay-as-you-go license and the c5n.2xlarge in AWS (North-Virginia), with an hourly cost of \$0.432, then the calculation would be as follows:

	Cost c5n.2xlarge	Daily Cost	Annual Cost	AWS Cloud + Juniper Networks Cost
AWS	\$0.432	\$10.37	\$3,784.32	ć7 000 22
Juniper Networks			\$3,224.00	\$7,008.32

Now, we can calculate the TCO:

AWS Cloud + Juniper Networks	Exploit Block Rate	Evasions	Stability & Reliability	Tested Throughput	TCO per Protected Mbps
\$7,008.32	99.70%	100%	100%	1,228	\$5.72

Figure 20 – TCO Calculation

⁴ Stability and Reliability in this formula includes TLS/SSL functionality.

https://aws.amazon.com/marketplace/pp/prodview-z7jcugjx442hw?sr=0-1&ref_=beagle&applicationId=AWSMPContessa

Appendix A - Scorecard

Summary				
Vendor		Juniper		
Cloud Service Provider		AWS	AWS	
AWS Instance Type		c5n.2xlarge		
Version		vSRX Junos	vSRX Junos 22.4R2.8	
vCPU		8		
Memory		21 GB		
Routing Functionality		Result	Result	
Unrestricted Traffic Test		Pass	Pass	
Segmented Traffic Test		Pass		
Access Control		Result		
Simple Policies		Pass		
Complex Multi-Zone Policies		Pass		
TLS/SSL Support				
Cipher Suites	Prevalence	Version	Result	
TLS_AES_256_GCM_SHA384 (0x13, 0x02)	66.51%	TLS 1.3	Pass	
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30)	11.85%	TLS 1.2	Pass	
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2F)	9.26%	TLS 1.2	Pass	
TLS_AES_128_GCM_SHA256 (0x13, 0x01)	8.07%	TLS 1.3	Pass	
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA8)	1.72%	TLS 1.2	Pass	
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xC0, 0x28)	0.68%	TLS 1.2	Pass	
TLS_CHACHA20_POLY1305_SHA256 (0x13, 0x03)	0.55%	TLS 1.3	Pass	
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x2C)	0.42%	TLS 1.2	Pass	
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xCC, 0xA9)	0.27%	TLS 1.2	Pass	
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xC0, 0x2B)	0.20%	TLS 1.2	Pass	
Null ciphers (no encryption of data)		Version	Result	
TLS_RSA_WITH_NULL_MD5 (0x00, 0x01)		SSL 3.0	Pass	
TLS_RSA_WITH_NULL_SHA (0x00, 0x02)		SSL 3.0	Pass	
Anonymous Ciphers (no authorization)		Version	Result	
TLS_DH_anon_WITH_AES_256_CBC_SHA (0x00, 0x3a)		SSL 3.0	Pass	
TLS_DH_anon_WITH_RC4_128_MD5 (0x00, 0x18)		SSL 3.0	Pass	
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA (0x00, 0x1b)		SSL 3.0	Pass	
Decryption Validation			Supported	
Decryption Bypass Exceptions			Supported	
TLS Session Reuse - Session Tickets			Supported	
TLS Session Reuse - Session IDs			Supported	

Threat Prevention	
False Positives	Result
False Positives	100%
Exploits	Block Rate
Exploits without Background Network Load	99.70%
Exploits with Background Network Load	99.70%
Evasions	
IP Packet Fragmentation	Result
Fragment IP packets (1032-byte)	Pass
Fragment IP packets (520-byte)	Pass
Fragment IP packets (72-byte)	Pass
Fragment IP packets (8-byte)	Pass
Fragment IP packets (24-byte); Order packets (reverse)	Pass
Fragment IP packets (24-byte); Order packets (random)	Pass
Fragment IP packets (24-byte); Delay packet (first) (100 milliseconds)	Pass
Fragment IP packets (24-byte); Delay packet (random) (100 milliseconds)	Pass
Fragment IP packets (24-byte); Delay packet (last) (100 milliseconds)	Pass
Fragment IP packets with partial overlap favoring new (24-byte)	Pass
Fragment IP packets (56-byte); Fragment IP packets (24-byte)	Pass
Fragment IP packets (40-byte); Fragment IP packets (16-byte)	Pass
Fragment IP packets (80-byte); Fragment IP packets (56-byte); Fragment IP packets (40-byte); Fragment IP packets (32-byte)	Pass
Fragment IP packets (24-byte); Delay packet (first) (100 milliseconds); Delay packet (last) (100 milliseconds)	Pass
Fragment IP packets (24-byte); Order packets (reverse); Delay packet (first) (100 milliseconds); Delay packet (last) (100 milliseconds)	Pass
Fragment IP packets with partial overlap favoring new (24-byte); Order packets (reverse)	Pass
Fragment IP packets with partial overlap favoring new (24-byte); Order packets (random)	Pass
Fragment IP packets with partial overlap favoring new (24-byte); Delay packet (last) (100 milliseconds)	Pass
JSON Obfuscation	Result
Unicode-Escape JSON Strings	Pass
TCP Transfer Control Block	Result
TCP Split-Handshake	Pass
IP Address Spoofing	Result
Spoof IP Address (127.0.0.1)	Pass
Spoof IP Address (10.0.199.199)	Pass
TCP Stream Segmentation	Result
Segment TCP Segments (1-byte)	Pass
Segment TCP Segments (2-byte)	Pass
Segment TCP Segments (3-byte)	Pass
Segment TCP Segments (4-byte)	Pass
Segment TCP Segments (5-byte)	Pass
Segment TCP Segments (6-byte)	Pass
Segment TCP Segments (7-byte)	Pass
Segment TCP Segments (8-byte)	Pass

Segment TCP Segments (9-byte)	Pass
Segment TCP Segments (15-byte)	Pass
Segment TCP Segments (16-byte)	Pass
Segment TCP Segments (18-byte)	Pass
Segment TCP Segments (31-byte)	Pass
Segment TCP Segments (32-byte)	Pass
Segment TCP Segments (33-byte)	Pass
Segment TCP Segments (34-byte)	Pass
Segment TCP Segments (63-byte)	Pass
Segment TCP Segments (64-byte)	Pass
Segment TCP Segments (65-byte)	Pass
Segment TCP Segments (127-byte)	Pass
Segment TCP Segments (128-byte)	Pass
Segment TCP Segments (129-byte)	Pass
Segment TCP Segments (255-byte)	Pass
Segment TCP Segments (256-byte)	Pass
Segment TCP Segments (257-byte)	Pass
Segment TCP Segments (511-byte)	Pass
Segment TCP Segments (512-byte)	Pass
Segment TCP Segments (513-byte)	Pass
Segment TCP Segments (1023-byte)	Pass
Segment TCP Segments (1024-byte)	Pass
Segment TCP Segments (1025-byte)	Pass
Segment TCP Segments (33-byte); Order packets (reverse)	Pass
Segment TCP Segments (33-byte); Order packets (random)	Pass
Segment TCP Segments (33-byte); Delay packet (first) (100 milliseconds)	Pass
Segment TCP Segments (33-byte); Delay packet (random) (100 milliseconds)	Pass
Segment TCP Segments (33-byte); Delay packet (last) (100 milliseconds)	Pass
Segment TCP Segments (64-byte); Delay packet (first) (100 milliseconds)	Pass
Segment TCP Segments (128-byte); Delay packet (first) (100 milliseconds)	Pass
Segment TCP Segments (255-byte); Delay packet (first) (100 milliseconds)	Pass
Segment TCP Segments (256-byte); Delay packet (first) (100 milliseconds)	Pass
Segment TCP Segments (257-byte); Delay packet (first) (100 milliseconds)	Pass
Segment TCP Segments with partial overlap favoring new (3-byte)	Pass
Segment TCP Segments with partial overlap favoring new (3-byte) then no overlap (1-byte)	Pass
Segment TCP Segments with partial overlap favoring new (3-byte) then partial overlap favoring old (1-byte)	Pass
Segment TCP Segments with partial overlap favoring new (15-byte) then no overlap (3-byte)	Pass
Segment TCP Segments with partial overlap favoring new (15-byte) then partial overlap favoring old (3-byte)	Pass
Segment TCP Segments (7-byte); Segment TCP Segments (4-byte)	Pass
Segment TCP Segments (3-byte); Segment TCP Segments (2-byte)	Pass
Segment TCP Segments (10-byte); Segment TCP Segments (7-byte); Segment TCP Segments (5-byte); Segment TCP Segments (4-byte)	Pass
Segment TCP Segments (33-byte); Delay packet (first) (100 milliseconds); Delay packet (last) (100 milliseconds)	Pass
Segment TCP Segments (33-byte); Order packets (reverse); Delay packet (first) (100 milliseconds); Delay packet (last) (100 milliseconds)	Pass

Segment TCP Segments with partial overlap favoring new (33-byte); Order packets (random)	Pass
HTTP Chunked Encoding	Result
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('00000000') (before)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (' ') (before)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x17') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x1c') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (',') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (' \$') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('-0')	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0')	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (420-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (257-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (256-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (255-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (16-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (5-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (2-byte)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (1-byte)	Pass
No HTTP Content Encoding; HTTP Identity Transfer Encoding	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte)	Pass
HTTP Compression	Result
HTTP Identity Content Encoding; No HTTP Transfer Encoding	Pass
HTTP Gzip Compression Content Encoding; No HTTP Transfer Encoding	Pass
HTTP Deflate Compression Content Encoding; No HTTP Transfer Encoding	Pass
HTTP Brotli Compression Content Encoding; No HTTP Transfer Encoding	Pass
HTTP Headers	Result
No HTTP Content Encoding; No HTTP Transfer Encoding; Replace the HTTP End of Headers Token with ('\r\n\x10\r\n')	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Replace the HTTP End of Headers Token with ('\n\r\r\n')	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Replace the HTTP End of Headers Token with ('\n\x06\x11\n\n')	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Replace the HTTP End of Headers Token with ('\n3\n\x03\n\n')	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Transfer-Encoding: chunked,') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('X-Custom-Encoding: chunked') (after); Add HTTP header ('\tTransfer-Encoding: chonked') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Content-Encoding: gzip pizza') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Transfer-Encoding: gzip') (after)	Pass

No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Content-Encoding: gzip,') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Content-Encoding: br pizza') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Transfer-Encoding: br') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Content-Encoding: br,') (after)	Pass
No HTTP Content Encoding; No HTTP Transfer Encoding; Add HTTP header ('Content-Encoding: gzip') (after); Add	
HTTP header ('Content-Encoding: br') (after)	Pass
Layered Evasions	
HTTP Compression, HTTP Chunked Encoding	Result
·	
HTTP Identity Content Encoding; HTTP Chunked Transfer Encoding (7-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (7-byte)	Pass
HTTP Deflate Compression Content Encoding; HTTP Chunked Transfer Encoding (7-byte)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (7-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('00000000') (before)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Dana
Non-Terminal HTTP Chunk Headers (' ') (before)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Pass
Non-Terminal HTTP Chunk Headers ('\x04') (after)	1 033
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Pass
Non-Terminal HTTP Chunk Headers ('\x17') (after)	. 433
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x1c') (after)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Pass
Non-Terminal HTTP Chunk Headers (',') (after)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Pass
Non-Terminal HTTP Chunk Headers (' \$') (after)	. 433
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in	Pass
the Terminal HTTP Chunk Header ('-0')	
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in	Pass
the Terminal HTTP Chunk Header ('0.0')	
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('00000000') (before)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	
Non-Terminal HTTP Chunk Headers (' ') (before)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	
Non-Terminal HTTP Chunk Headers ('\x04') (after)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	_
Non-Terminal HTTP Chunk Headers ('\x17') (after)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Doce
Non-Terminal HTTP Chunk Headers ('\x1c') (after)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Pass
Non-Terminal HTTP Chunk Headers (',') (after)	1 033
,,,,	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (' \$') (after)	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\$') (after) HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in	
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\$') (after) HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('-0')	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (' \$') (after) HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('-0') HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in	
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (' \$') (after) HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('-0') HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0')	Pass
HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers (' \$') (after) HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in the Terminal HTTP Chunk Header ('-0') HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Replace the Chunk Size in	Pass

No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Replace HTTP header ('Transfer-Encoding: chunked') with ('Transfer-Encoding: chunked,')	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Replace HTTP header ('Transfer-Encoding: chunked') with ('\r\rTransfer-Encoding: chunked')	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Replace HTTP header ('Transfer-Encoding: chunked') with ('\t\t\t\tTransfer-Encoding: chunked')	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Add HTTP header ('Content-Encoding: gzip pizza') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Add HTTP header ('Content-Encoding: gzip,') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Add HTTP header ('Content-Encoding: br pizza') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Add HTTP header ('Content-Encoding: br,') (after)	Pass
No HTTP Content Encoding; HTTP Chunked Transfer Encoding (7-byte); Add HTTP header ('Content-Encoding: gzip') (after); Add HTTP header ('Content-Encoding: br') (after)	Pass
HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation	Result
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments (3-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (3-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then no overlap (3-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then partial overlap favoring old (3-byte)	Pass
HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation, IP Packet Fragmentation	Result
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments (3-byte); Fragment IP packets (16-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (3-byte); Fragment IP packets (16-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then no overlap (3-byte); Fragment IP packets (16-byte)	Pass
HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then partial overlap favoring old (3-byte); Fragment IP packets (16-byte)	Pass
IP Packet Fragmentation, IP Insertion	Result
Fragment IP packets (24-byte); Interleave Chaff IP Packets (Invalid IP option) (before)	Pass
Fragment IP packets (24-byte); Interleave Chaff IP Packets (Invalid IP option) (after)	Pass
Fragment IP packets (24-byte); Interleave Chaff IP Packets (Invalid IP Checksum) (before)	Pass
Fragment IP packets (24-byte); Interleave Chaff IP Packets (Invalid IP Checksum) (after)	Pass
Fragment IP packets (24-byte); Interleave Chaff IP Packets (Invalid IP option) (before and after)	Pass
Fragment IP packets (24-byte); Interleave Chaff IP Packets (Invalid IP Checksum) (before and after)	Pass

ragment IP packets with partial overlap favoring new (24-byte); Interleave Chaff IP Packets (Invalid IP option) before and after)	Pass
ragment IP packets with partial overlap favoring new (24-byte); Interleave Chaff IP Packets (Invalid IP Checksum) before and after)	Pass
ragment IP packets with partial overlap favoring new (24-byte); Delay packet (last) (100 milliseconds); Interleave haff IP Packets (Invalid IP option) (before and after)	Pass
ragment IP packets with partial overlap favoring new (24-byte); Delay packet (last) (100 milliseconds); Interleave naff IP Packets (Invalid IP Checksum) (before and after)	Pass
agment IP packets with partial overlap favoring new (24-byte); Delay packet (last) (100 milliseconds); Interleave naff IP Packets (Invalid IP Checksum) (before and after); Delay packet (last) (100 milliseconds)	Pass
ON Obfuscation, HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation	Result
Inicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments (3-byte)	Pass
nicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (3-byte)	Pass
nicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then no verlap (3-byte)	Pass
nicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then partial verlap favoring old (3-byte)	Pass
nicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments (3-byte)	Result
nicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (3-byte)	Pass
nicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then no verlap (3-byte)	Pass
nicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then partial verlap favoring old (3-byte)	Pass
SON Obfuscation, HTTP Compression, HTTP Chunked Encoding, TCP Stream Segmentation, IP Packet Fragmentation	Result
nicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments (3-byte); Fragment IP packets (16-byte)	Pass
nicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-yte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the erminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (3-byte); Fragment IP ackets (16-byte)	Pass

Unicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then no overlap (3-byte); Fragment IP packets (16-byte)	Pass
Unicode-Escape JSON Strings; HTTP Gzip Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then partial overlap favoring old (3-byte); Fragment IP packets (16-byte)	Pass
Unicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments (3-byte); Fragment IP packets (16-byte)	Pass
Unicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (3-byte); Fragment IP packets (16-byte)	Pass
Unicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then no overlap (3-byte); Fragment IP packets (16-byte)	Pass
Unicode-Escape JSON Strings; HTTP Brotli Compression Content Encoding; HTTP Chunked Transfer Encoding (256-byte); Affix to the Chunk Sizes in Non-Terminal HTTP Chunk Headers ('\x04') (after); Replace the Chunk Size in the Terminal HTTP Chunk Header ('0.0'); Segment TCP Segments with partial overlap favoring new (5-byte) then partial overlap favoring old (3-byte); Fragment IP packets (16-byte)	Pass
TCP Stream Segmentation, IP Packet Fragmentation	Result
Segment TCP Segments (3-byte); Fragment IP packets (16-byte)	Pass
Segment TCP Segments with partial overlap favoring new (3-byte); Fragment IP packets (16-byte)	Pass
Segment TCP Segments with partial overlap favoring new (5-byte) then no overlap (3-byte); Fragment IP packets (16-byte)	Pass
Segment TCP Segments with partial overlap favoring new (5-byte) then partial overlap favoring old (3-byte); Fragment IP packets (16-byte)	Pass
TCP Stream Segmentation, TCP Insertion	Result
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Invalid TCP Checksum) (before)	Pass
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Invalid TCP Checksum) (after)	Pass
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Older PAWS Timestamps) (before)	Pass
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Older PAWS Timestamps) (after)	Pass
Segment TCP Segments (33-byte); Interleave Chaff TCP Segments (Invalid TCP Checksum) (sandwich)	Pass
Segment TCP Segments (33-byte); Interleave Chaff TCP Segments (Older PAWS Timestamps) (before)	Pass
Segment TCP Segments with partial overlap favoring new (33-byte); Interleave Chaff TCP Segments (Invalid TCP Checksum) (sandwich)	Pass
Segment TCP Segments with partial overlap favoring new (33-byte); Interleave Chaff TCP Segments (Older PAWS Timestamps) (after)	Pass
TCP Stream Segmentation, TCP Transfer Control Block	Result
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Requests to Resync Sequence Numbers Midstream) (before)	Pass
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Requests to Resync Sequence Numbers Midstream) (after)	Pass
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Out-Of-Window Sequence Numbers) (before)	Pass
Segment TCP Segments (3-byte); Interleave Chaff TCP Segments (Out-Of-Window Sequence Numbers) (after)	Pass
Segment TCP Segments (33-byte); Interleave Chaff TCP Segments (Out-Of-Window Sequence Numbers) (sandwich)	Pass

Segment TCP Segments (33-byte); Interleave Chaff TCP Sestream) (sandwich)					Pass	
Segment TCP Segments with partial overlap favoring new (33-byte); Interleave Chaff TCP Segments (Out-Of-Window Sequence Numbers) (sandwich)					Pass	
Segment TCP Segments with partial overlap favoring new (33-byte); Interleave Chaff TCP Segments (Requests to Resync Sequence Numbers Mid-stream) (sandwich)					Pass	
Performance						
Raw Packet Processing Performance (UDP Throughput)			Throughput (Mbps		ncy (μs)	
54 Byte Frames 1,297		1,297	0.02			
128 Byte Frames		2,260		-		
256 Byte Frames 4,23		4,211 0.01		_		
512 Byte Frames			7,568 0.03		-	
· · · · · · · · · · · · · · · · · · ·		9,977 0.01		-		
1280 Byte Frames			10,000	0.01	-	
1400 Byte Frames			10,000	0.01	-	
Maximum Capacity	CPS	TPS				
Max Concurrent TCP Connection	63,403	-				
Max TCP TPS	-	39,070				
HTTP Capacity (without transaction delay)	CPS	Throug	Throughput (Mbps)		Time (ms)	
1,000 Connections Per Second - 115.6 KB Response	3,085	3,085			739.73	
2,000 Connections Per Second - 57.4 KB Response	4,800	2,400			200.54	
4,000 Connections Per Second - 28.0 KB Response	7,468	1,867			154.20	
8,000 Connections Per Second - 13.5 KB Response	11,085	1,386			76.12	
16,000 Connections Per Second - 6.4 KB Response	13,700	856	856		52.22	
32,000 Connections Per Second - 2.7 KB Response	15,100	472	472		16.80	
HTTP Capacity (with transaction delay)	CPS	Throug	Throughput (Mbps)		Response Time (ms)	
1,000 Connections Per Second - 115.6 KB Response	2,873	2,873			10040.48	
2,000 Connections Per Second - 57.4 KB Response	4,289	2,145			10020.91	
4,000 Connections Per Second - 28.0 KB Response	7,247	1,812			10013.42	
8,000 Connections Per Second - 13.5 KB Response	10,610	1,326	·		10018.78	
16,000 Connections Per Second - 6.4 KB Response	12,000	750			10010.47	
32,000 Connections Per Second - 2.7 KB Response	14,980	468	+		10005.31	
HTTPS Capacity (0x13, 0x02)	CPS	Throug			Response Time (ms)	
1,000 Connections Per Second - 113.8 KB Response	2,137	2,137			51.72	
2,000 Connections Per Second - 54.9 KB Response	2,502	1,251			14.20	
4,000 Connections Per Second - 25.7 KB Response	2,632	658			10.14	
8,000 Connections Per Second - 11.2 KB Response	2,774	347			8.78	
16,000 Connections Per Second - 3.9 KB Response	2,803	175			2.71	
32,000 Connections Per Second - 0.2 KB Response	2,827	88			0.10	
HTTPS Capacity (0xC0, 0x30)	CPS	Throug	hput (Mbps)	Response	Time (ms)	
1,000 Connections Per Second - 115.0 KB Response	2,020	2,020				
2,000 Connections Per Second - 56.3 KB Response	2,515	1,258	· ·			
4,000 Connections Per Second - 27.0 KB Response	2,778	695				

8,000 Connections Per Second - 12.3 KB Response 2,802 350 2,89 16,000 Connections Per Second - 5.0 KB Response 2,850 178 1.74 32,000 Connections Per Second - 1.14 KB Response 3,020 94 0.10 HTTPS Capacity (0xC0, 0x2F) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 56.3 KB Response 2,086 2,086 103.63 4,000 Connections Per Second - 56.5 KB Response 2,587 647 7.64 8,000 Connections Per Second - 1.23 KB Response 2,573 334 2.42 16,000 Connections Per Second - 1.14 KB Response 2,096 182 0.49 3,000 Connections Per Second - 1.14 KB Response 3,020 94 0.10 HTTPS Capacity (0x13, 0x01) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54.9 KB Response 2,503 1,252 38.29 4,000 Connections Per Second - 11.2 KB Response 2,660 665 10.55 8,000 Connections Per Second - 1.12 KB Response 2,862 358 3.30 16,000 Connections Per Second - 1.12 KB Response 3,194 95 0.10 17TP C					
32,000 Connections Per Second - 1.4 KB Response	8,000 Connections Per Second - 12.3 KB Response	2,802	350	2.89	
HTTPS Capacity (0xC0, 0x2F)	16,000 Connections Per Second - 5.0 KB Response	2,850	178 1.74		
1,000 Connections Per Second - 15.0 KB Response 2,086 2,086 103.63 2,000 Connections Per Second - 56.3 KB Response 2,440 1,220 18.06 4,000 Connections Per Second - 27.0 KB Response 2,587 647 7.64 8,000 Connections Per Second - 12.3 KB Response 2,673 334 2,42 16,000 Connections Per Second - 1.4 KB Response 2,906 182 0.49 32,000 Connections Per Second - 1.4 KB Response 3,020 94 0.10 HTTPS Capacity (0x13, 0x01) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54,9 KB Response 2,329 2,329 9.719 2,000 Connections Per Second - 54,9 KB Response 2,560 665 10.55 8,000 Connections Per Second - 25,7 KB Response 2,660 665 10.55 8,000 Connections Per Second - 3,9 KB Response 2,927 183 2,38 3,2000 Connections Per Second - 0,2 KB Response 3,044 95 0.10 Delta Capacity (without transaction delay) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54,9 KB Response 4,804 2,402 204.47	32,000 Connections Per Second - 1.4 KB Response	3,020	94 0.10		
2,000 Connections Per Second - 56.3 KB Response 2,440 1,220 18.06 4,000 Connections Per Second - 27.0 KB Response 2,587 647 7.64 8,000 Connections Per Second - 12.3 KB Response 2,587 334 2.42 16,000 Connections Per Second - 5.0 KB Response 2,906 182 0.49 32,000 Connections Per Second - 1.4 KB Response 2,906 182 0.49 32,000 Connections Per Second - 1.4 KB Response 2,906 182 0.10 HTTPS Capacity (0x13, 0x01) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54.9 KB Response 2,329 2,329 97.19 2,000 Connections Per Second - 54.9 KB Response 2,503 1,252 38.29 4,000 Connections Per Second - 25.7 KB Response 2,660 665 10.55 8,000 Connections Per Second - 3.9 KB Response 2,862 358 3.30 16,000 Connections Per Second - 0.2 KB Response 2,927 183 2.38 32,000 Connections Per Second - 0.2 KB Response 3,044 95 0.10 Delta Capacity HTTP Capacity (without transaction delay) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 113.8 KB Response 3,197 3,197 240.65 2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 54.9 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 3.9 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 14,801 925 36.67 32,000 Connections Per Second - 113.8 KB Response 14,801 925 36.67 32,000 Connections Per Second - 25.7 KB Response 14,801 925 36.67 32,000 Connections Per Second - 113.8 KB Response 14,801 925 36.67 32,000 Connections Per Second - 113.8 KB Response 2,803 175 2.71 32,000 Connections Per Second - 14.2 KB Response 2,803 175 2.71 32,000 Connections Per Second - 5.4 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB R	HTTPS Capacity (0xC0, 0x2F)	CPS	Throughput (Mbps) Response Time (ms)		
4,000 Connections Per Second - 27.0 KB Response	1,000 Connections Per Second - 115.0 KB Response	2,086	2,086	103.63	
8,000 Connections Per Second - 12.3 KB Response	2,000 Connections Per Second - 56.3 KB Response	2,440	1,220	18.06	
16,000 Connections Per Second - 5.0 KB Response 2,906 182 0.49	4,000 Connections Per Second - 27.0 KB Response	2,587	647	7.64	
3,000 Connections Per Second - 1.4 KB Response 3,020 94 0.10	8,000 Connections Per Second - 12.3 KB Response	2,673	334	2.42	
HTTPS Capacity (0x13, 0x01)	16,000 Connections Per Second - 5.0 KB Response	2,906	182	0.49	
1,000 Connections Per Second - 113.8 KB Response 2,329 2,329 97.19	32,000 Connections Per Second - 1.4 KB Response	3,020	94	0.10	
2,000 Connections Per Second - 54.9 KB Response 2,503 1,252 38.29 4,000 Connections Per Second - 25.7 KB Response 2,660 665 10.55 8,000 Connections Per Second - 11.2 KB Response 2,862 358 3.30 16,000 Connections Per Second - 0.2 KB Response 3,044 95 0.10 Delta Capacity HTTP Capacity (without transaction delay) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54.9 KB Response 3,197 3,197 240.65 2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 0.2 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 2,137 2,137 51.72 1,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 54.9 KB Response 2,632 658 10.14 4,000 Connections Per Second - 25.7 KB Res	HTTPS Capacity (0x13, 0x01)	CPS	Throughput (Mbps)	Response Time (ms)	
4,000 Connections Per Second - 25.7 KB Response 2,862 358 3.30 16,000 Connections Per Second - 3.9 KB Response 2,927 183 2.38 32,000 Connections Per Second - 0.2 KB Response 3,044 95 0.10 Delta Capacity HTTP Capacity (without transaction delay) CPS Throughput (Mbps) Response 1,000 Connections Per Second - 113.8 KB Response 3,197 3,197 240.65 2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 113.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 52.7 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 11.2 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 11.2 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 11.2 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 11.2 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Pass Mutation Pass Blocking with Minimal Load Pass Blocking with Minimal Load Pass Blocking Winder Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass State Preservation – Normal Load Pass	1,000 Connections Per Second - 113.8 KB Response	2,329	2,329	97.19	
8,000 Connections Per Second - 11.2 KB Response 2,862 358 3.30 16,000 Connections Per Second - 3.9 KB Response 2,927 183 2.38 32,000 Connections Per Second - 0.2 KB Response 3,044 95 0.10 Delta Capacity HTTP Capacity (without transaction delay) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 11.3 KB Response 3,197 240.65 2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 12.2 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 13.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 25.7 KB Respons	2,000 Connections Per Second - 54.9 KB Response	2,503	1,252	38.29	
16,000 Connections Per Second - 3.9 KB Response 2,927 183 2.38 32,000 Connections Per Second - 0.2 KB Response 3,044 95 0.10 Delta Capacity HTTP Capacity (without transaction delay) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 113.8 KB Response 3,197 3,197 240.65 2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 14,801 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54.9 KB Response 2,137 2,137 2,172 2,000 Connections Per Second - 11.2 KB Response 2,632 658 10.14 8,0	4,000 Connections Per Second - 25.7 KB Response	2,660	665	10.55	
32,000 Connections Per Second - 0.2 KB Response 3,044 95 0.10	8,000 Connections Per Second - 11.2 KB Response	2,862	358	3.30	
Delta Capacity HTTP Capacity (without transaction delay)	16,000 Connections Per Second - 3.9 KB Response	2,927	183	2.38	
HTTP Capacity (without transaction delay)	32,000 Connections Per Second - 0.2 KB Response	3,044	95	0.10	
1,000 Connections Per Second - 113.8 KB Response 3,197 3,197 240.65 2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54.9 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,632 658 10.14 8,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking Under Load Pass Attack Detection/Blocking - Normal Load	Delta Capacity	<u>'</u>			
2,000 Connections Per Second - 54.9 KB Response 4,804 2,402 204.47 4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 113.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 3.9 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Pass Blocking With M	HTTP Capacity (without transaction delay)	CPS	Throughput (Mbps)	Response Time (ms)	
4,000 Connections Per Second - 25.7 KB Response 7,996 1,999 114.87 8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 51.72 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Pass Blocking With Minimal Load Pass Blocking Under Load Pass State Preservation - Normal L	1,000 Connections Per Second - 113.8 KB Response	3,197	3,197	240.65	
8,000 Connections Per Second - 11.2 KB Response 11,747 1,468 77.67 16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 54.9 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking Under Load Pass Attack Detection/Blocking - Normal Load Pass State Preservation - Maximum Exceeded	2,000 Connections Per Second - 54.9 KB Response	4,804	2,402	204.47	
16,000 Connections Per Second - 3.9 KB Response 14,801 925 36.67 32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 113.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking With Minimal Load Pass Blocking Under Load Pass State Preservation - Normal Load Pass State Preservation - Maximum Exceeded Pass	4,000 Connections Per Second - 25.7 KB Response	7,996	1,999	114.87	
32,000 Connections Per Second - 0.2 KB Response 18,241 570 0.10 HTTPS Capacity (0x13, 0x02) CPS Throughput (Mbps) Response Time (ms) 1,000 Connections Per Second - 113.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking With Minimal Load Pass Blocking Under Load Pass State Preservation – Normal Load Pass State Preservation – Normal Load Pass State Preservation – Maximum Exceeded Pass	8,000 Connections Per Second - 11.2 KB Response	11,747	1,468	77.67	
HTTPS Capacity (0x13, 0x02) 1,000 Connections Per Second - 113.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Blocking with Minimal Load Pass Blocking Under Load Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass State Preservation – Maximum Exceeded Pass State Preservation – Maximum Exceeded	16,000 Connections Per Second - 3.9 KB Response	14,801	925	36.67	
1,000 Connections Per Second - 113.8 KB Response 2,137 2,137 51.72 2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	32,000 Connections Per Second - 0.2 KB Response	18,241	570	0.10	
2,000 Connections Per Second - 54.9 KB Response 2,502 1,251 14.20 4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	HTTPS Capacity (0x13, 0x02)	CPS	Throughput (Mbps) Response Time (ms)		
4,000 Connections Per Second - 25.7 KB Response 2,632 658 10.14 8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	1,000 Connections Per Second - 113.8 KB Response	2,137	2,137	51.72	
8,000 Connections Per Second - 11.2 KB Response 2,774 347 8.78 16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	2,000 Connections Per Second - 54.9 KB Response	2,502	1,251	14.20	
16,000 Connections Per Second - 3.9 KB Response 2,803 175 2.71 32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	4,000 Connections Per Second - 25.7 KB Response	2,632	658	10.14	
32,000 Connections Per Second - 0.2 KB Response 2,827 88 0.10 Stability and Reliability Result Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Pass Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	8,000 Connections Per Second - 11.2 KB Response	2,774	347	8.78	
Stability and Reliability Protocol Fuzzing & Mutation Pass Blocking with Minimal Load Pass Blocking Under Load Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass State Preservation – Mormal Load Pass State Preservation – Maximum Exceeded Pass	16,000 Connections Per Second - 3.9 KB Response	2,803	175	2.71	
Protocol Fuzzing & Mutation Blocking with Minimal Load Pass Blocking Under Load Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Pass Pass State Preservation – Maximum Exceeded Pass Pass	32,000 Connections Per Second - 0.2 KB Response	2,827	88	0.10	
Blocking with Minimal Load Blocking Under Load Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Pass Pass State Preservation – Maximum Exceeded Pass Pass	Stability and Reliability		Result		
Blocking Under Load Attack Detection/Blocking – Normal Load Pass State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	Protocol Fuzzing & Mutation		Pass		
Attack Detection/Blocking – Normal Load State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	Blocking with Minimal Load		Pass		
State Preservation – Normal Load Pass Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	Blocking Under Load		Pass		
Pass Legitimate Traffic – Normal Load Pass State Preservation – Maximum Exceeded Pass	Attack Detection/Blocking – Normal Load		Pass		
State Preservation – Maximum Exceeded Pass	State Preservation – Normal Load		Pass		
	Pass Legitimate Traffic – Normal Load Pass				
Drop Traffic – Maximum Exceeded Pass	e Preservation – Maximum Exceeded Pass				
	Drop Traffic – Maximum Exceeded		Pass		

Appendix B - CyberRatings Rating Matrix

Rating	Definition
Recommended	A product with the "Recommended" rating has the highest rating assigned by CyberRatings. These products are recommended for security, performance, and value. The product's capacity to meet its commitments to consumers is extremely strong.
Neutral	A "Neutral" product is less capable than the higher-rated categories. These devices would be suitable for environments where budget is a priority, and a slightly lower level of protection is acceptable in exchange for a lower cost of ownership. The product's capacity to meet its commitments to consumers is still strong.
Caution	A product rated "Caution" offers poor value for money given the measured security effectiveness, performance, and 3-year cost. Products that earn a Caution rating from CyberRatings should not be short-listed or renewed.

SPECIAL THANKS

We would like to issue a special thank you to Keysight for providing their <u>CyPerf</u> and Breaking Point tools for us to test the performance, TLS functionality, and stability of Cloud Network Firewalls.

We would also like to thank <u>TeraPackets</u> for providing us with their Threat Replayer tool which enabled us to accurately replay exploits in a cloud environment.

AUTHORS

Thomas Skybakmoen, Ahmed Basheer, Vikram Phatak

CONTACT INFORMATION

CyberRatings.org 2303 Ranch Road 620 South Suite 160, #501 Austin, TX 78734 info@cyberratings.org www.cyberratings.org

© 2024 CyberRatings. All rights reserved. No part of this publication may be reproduced, copied/scanned, stored on a retrieval system, emailed, or otherwise disseminated or transmitted without the express written consent of CyberRatings ("us" or "we").

Please read the disclaimer in this box because it contains important information that binds you. If you do not agree to these conditions, you should not read the rest of this report but should instead return the report immediately to us. "You" or "your" means the person who accesses this report and any entity on whose behalf he/she has obtained this report.

- 1. The information in this report is subject to change by us without notice, and we disclaim any obligation to update it.
- 2. The information in this report is believed by us to be accurate and reliable at the time of publication but is not guaranteed. All use of and reliance on this report are at your sole risk. We are not liable or responsible for any damages, losses, or expenses of any nature whatsoever arising from any error or omission in this report.
- 3. NO WARRANTIES, EXPRESS OR IMPLIED ARE GIVEN BY US. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, ARE HEREBY DISCLAIMED AND EXCLUDED BY US. IN NO EVENT SHALL WE BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, PUNITIVE, EXEMPLARY, OR INDIRECT DAMAGES, OR FOR ANY LOSS OF PROFIT, REVENUE, DATA, COMPUTER PROGRAMS, OR OTHER ASSETS, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
- 4. This report does not constitute an endorsement, recommendation, or guarantee of any of the products (hardware or software) tested or the hardware and/or software used in testing the products. The testing does not guarantee that there are no errors or defects in the products or that the products will meet your expectations, requirements, needs, or specifications, or that they will operate without interruption.
- 5. This report does not imply any endorsement, sponsorship, affiliation, or verification by or with any organizations mentioned in this report.
- 6. All trademarks, service marks, and trade names used in this report are the trademarks, service marks, and trade names of their respective owners.