

 Juniper Business Use Only

更新日：2019/12/1

本手順はMAAS/JUJUを使用し、Contrail(1912)、Kubernetesをインストールする手順となる。
※Contrail Insightは含まれない

MAASにて 1台の KVMを管理(Pod機能)し、VirtualMachineの Deployを実施
JUJUにてMAASで Deployされた VirtualMachineに OS Install及び Contrail Controller, OpenStack
Controller/Compute, K8S Master/Workerの Installを実施

最新 Versionの Installは本手順を参考に以下を参照下さい
https://www.juniper.net/documentation/en_US/contrail20/information-products/pathway-
pages/contrail-install-and-upgrade-guide.html

本手順では Nested K8S環境を作成する(K8S on OpenStackではない)。

Contrail Version毎に Supported SW Versionは異なっているため、以下の通りインストールする必要があ
る
https://www.juniper.net/documentation/en_US/release-
independent/contrail/topics/reference/contrail-supported-platforms.pdf

環境情報：
Network:
Mgmt / Data - 192.168.0.0/24

KVM: 192.168.0.1

VM:
MAAS Controller/JUJU Core : 192.168.0.2
JUJU Controller : dhcp
Contrail Controller : dhcp
K8S Master : dhcp
K8S Worker1 : dhcp

※Contrail Controller, K8S Master/WorkerはMAAS/JUJUにより Deployされるため事前準備不要

Step1: KVM 事前準備
※以降全て"ubuntu" userで作業するものとする

Step1.1 KVMの Install及び Nested Mode有効化
sudo apt install qemu-kvm libvirt-clients libvirt-daemon-system
bridge-utils virt-manager
sudo echo 'options kvm_intel nested=1' >> /etc/modprobe.d/qemu-system-
x86.conf
sudo cat /sys/module/kvm_intel/parameters/nested

Step1.2 Management/Data Net作成

 Juniper Business Use Only

net-maas.xml
<network>
 <name>maas</name>
 <forward mode='route'/>
 <bridge name=‘br-mng-y' stp=‘off' delay='0' />
 <ip address=‘192.168.0.1' netmask='255.255.255.0'>
 </ip>
</network>
※MAASは”maas”という名前の libvirt netを pxe boot用に使用するため、名前変更不可

sudo virsh net-create net-maas.xml

Step1.3 Managementと Dataを分けたい場合は追加で Data用 Netを作成(使用方法は後述)
net-data1.xml
<network>
 <name>data1</name>
 <forward mode='route'/>
 <bridge name=‘br-data1' stp=‘off' delay='0' />
 <ip address=‘192.168.1.1' netmask='255.255.255.0'>
 </ip>
</network>

sudo virsh net-create net-data1.xml

Step1.4 UFW設定
/etc/default/ufw
DEFAULT_INPUT_POLICY=“ACCEPT"
DEFAULT_FORWARD_POLICY=“ACCEPT"

/etc/ufw/sysctl.conf
net.ipv4.ip_forward=1

Step2: MAAS Controller / JUJU Core用 OS Install
sudo qemu-img create -f qcow2 /home/images/maas.qcow2 80G

sudo virt-install --name maas --disk path=/home/images/maas.qcow2,format=qcow2 --vcpus 1 --
ram=4096 --network bridge=br-mng-y,model=virtio --location /home/ubuntu/ubuntu-18.04.2-server-
amd64.iso --virt-type kvm --cpu host --os-variant ubuntu18.04 --serial pty --
console pty,target_type=virtio --graphics vnc,listen=0.0.0.0 --noautoconsole

sudo virt-install --name test --disk path=/home/images/test.qcow2,format=qcow2 --vcpus 1 --
ram=4096 --network bridge=br-mng-y,model=virtio --virt-type kvm --cpu host --os-variant ubuntu18.04 -
-serial pty --console pty,target_type=virtio --graphics vnc,listen=0.0.0.0 --noautoconsole

Ubuntu 18.04をインストール

 Juniper Business Use Only

Step3: MAAS Controller Install
sudo timedatectl set-timezone Asia/Tokyo
sudo apt-get update
sudo apt-get upgrade
sudo reboot

sudo apt-get install ntp
sudo systemctl disable ufw
sudo systemctl stop ufw
sudo apt-get install software-properties-common
sudo add-apt-repository ppa:maas/stable -y
sudo apt update
sudo apt install maas -y

Step3.1 MAAS管理用 admin userの作成
sudo maas createadmin --username=admin --email=admin@localhost.local

Step3.2 KVM管理用 maas userの ssh keyの作成と KVMへの Import
sudo chsh -s /bin/bash maas
sudo su - maas
ssh-keygen -f ~/.ssh/id_rsa -N ''
logout

"sudo cat ~maas/.ssh/id_rsa.pub"で表示される maas userの PublicKeyをMAASからの管理対象で
ある KVM Hostの/home/ubuntu/.ssh/authorized_keysに追加

KVMにて以下を実施し、Passwordなしで listが表示できることを確認
sudo -H -u maas bash -c 'virsh -c qemu+ssh://ubuntu@192.168.0.1/system list --all'

Step3.3 作業用 ubuntu userの ssh key作成
ssh-keygen
cat .ssh/id_rsa.pub

Step3.4 MAAS GUI Login
MAAS GUI(http://192.168.0.2:5240/MAAS)にアクセスし、Step3.3で作成した id_rsa.pubを Import
※CLI Loginは"maas login admin http://192.168.0.2:5240/MAAS"

Step3.5 Subnet作成
“Subnet” Tabの VLANにて mgmt,data1 interfaceの DHCPを有効化
新規 space “space1”,“space2”を作成し、space1に mgmt, space2に data1を設定

 Juniper Business Use Only

Step3.6 Pod作成
“Pod” Tabにて以下の設定で新規 Podを作成
Pod Type = virsh
Virsh address = qemu+ssh://ubuntu@192.168.0.1/system

MAASでは Podで指定した KVMに VMを Deployする(後述)

Step3.7 JUJU Controller用 VM作成
Pods->TakeAction->Composeにて JUJU Controller用の VMを作成
※事前に machineを作っておく必要はないが、hostnameがランダムになるためあえて作成

 Juniper Business Use Only

※以下は CLIでの作成方法
maas admin pod compose 1 hostname=juju-controller cores=1 memory=4096 storage=40

PXE Bootが完了し、Statusが Readyになれば OK

Step4 JUJU Coreのインストール及び設定
MAAS Controller / JUJU Coreの VMにて以下を実施

Step4.1 JUJU Core Install
sudo add-apt-repository ppa:juju/stable
sudo apt-get install juju

Step4.2 JUJUで管理する Cloudを設定
JUJUでは Cloud(aws, gcp, maas, etc)を指定し、各 Applicationを deploy可能
今回はMAASを利用しているため、maas用の cloudを作成

juju add-cloud
Select cloud type: maas
Enter a name for your maas cloud: cloud1
Enter the API endpoint url: http://192.168.0.2:5240/MAAS

juju add-credential cloud1
Enter credential name: cloud1-creds
Enter maas-oauth: “MAAS GUIから Admin->MAAS Keysをコピぺ"

Step4.2 JUJU Controller(BootStrap)をインストール
juju bootstrap --bootstrap-series=bionic cloud1 juju-controller
juju controller-config features="[multi-cloud]”

上記によりMAASで準備した juju-controller VMに Ubuntu bionic(18.04)と JUJU Controllerがイン
ストールされる

 Juniper Business Use Only

JUJU Controllerの status確認
ubuntu@maas:~$ juju status
Model Controller Cloud/Region Version SLA Timestamp
default juju-controller cloud1/default 2.7.0 unsupported 14:55:46+09:00

Step4.3 JUJU GUI Access
以下にて GUI access方法を確認
ubuntu@maas:~$ juju gui --no-browser
GUI 2.15.0 for model "admin/default" is enabled at:
 https://192.168.0.164:17070/gui/u/admin/default
Your login credential is:
 username: admin
 password: ca2ddc4fe5b3e837884f4f28d16f77b4

Step5 JUJUを使用し、K8S, Contrail をインストール

Step5.1 Contrailをインストールするための Charmを DownLoad
MAAS Controller / JUJU Coreの VMにて以下を実施
git clone https://github.com/tungstenfabric/tf-charms

Step5.2 Multi NIC設定
SingleNICで問題ない場合は本 Stepは Skip
MAAS 2.6.1はMulti Space(Multi Interface)のMachineをデプロイできない Bugがあり、juju bundle
内のMulti spaceが利用できない
※MultiNICのMachineをデプロイするには以下を実施

maas admin pod compose後にMAAS GUIから Intefaceを追加
その後、KVM Hostにて Virsh editで Intefaceを追加
juju add-machine --constraints spaces=space1,space2を実施

Step5.3 各 VMをMAASから Deploy
MAASの VM名はランダムなので、事前にMachineを用意する
※VM名がランダムで OKの場合、本 Stepは SKIP

maas admin pod compose 1 hostname=contrail1 cores=4 memory=16384 storage=200
maas admin tags create name=contrail1
maas admin tag update-nodes contrail1 add=[compose時の system id]

maas admin pod compose 1 hostname=k8s-master cores=2 memory=8192 storage=40
maas admin tags create name=k8s-master
maas admin tag update-nodes k8s-master add=[compose時の system id]

maas admin pod compose 1 hostname=k8s-worker1 cores=2 memory=8192 storage=40

 Juniper Business Use Only

maas admin tags create name=k8s-worker1
maas admin tag update-nodes k8s-worker1 add=[compose時の system id]

また、Multi NICの場合
Step5.4の Charm Bundleの contrail-controller箇所に xmpp通信用の control-networkを IP指定す
る必要があるため、maasで machine作成後に IPをチェックしておく

Step5.4 K8S, Contrailをインストールする JUJU Charm Bundle を設定
MAAS Controller / JUJU Coreの VMにて以下のファイルを作成

k8s-contrail-bungle.yaml
machines:
 #openstack controller
 "1":
 series: bionic
 constraints: cores=2 mem=8G root-disk=40G
 #constraints: cores=2 mem=8G root-disk=40G tags=os-ctl
 # k8s master
 "2":
 series: bionic
 constraints: cores=2 mem=8G root-disk=40G
 #constraints: cores=2 mem=8G root-disk=40G tags=k8s-master
 #constraints: cores=2 mem=8G root-disk=40G spaces=space1,space2 tags=k8s-
master
 # k8s worker
 "3":
 series: bionic
 constraints: cores=2 mem=8G root-disk=40G
 #constraints: cores=2 mem=8G root-disk=40G tags=k8s-worker1
 #constraints: cores=2 mem=8G root-disk=40G spaces=space1,space2 tags=k8s-
worker1

#common
series: bionic
services:
 ntp:
 charm: cs:ntp
 num_units: 0
 options:
 source: 210.173.160.27

#contrail
 contrail-agent:
 series: bionic

<- step5.3実施時

<- step5.2実施時
<- step5.2,5.3実施
時

<- step5.2実施時
<- step5.2,5.3実施
時

 Juniper Business Use Only

 charm: /home/ubuntu/tf-charms/contrail-agent
 options:
 docker-registry: hub.juniper.net/contrail
 docker-user: xxxx
 docker-password: xxxx
 physical-interface: "ens5"
 vhost-gateway: "192.168.1.1"
 image-tag: "1912.32"
 num_units: 0
 contrail-analytics:
 series: bionic
 expose: true
 charm: /home/ubuntu/tf-charms/contrail-analytics
 options:
 docker-registry: hub.juniper.net/contrail
 docker-user: xxxx
 docker-password: xxxx
 image-tag: "1912.32"
 num_units: 1
 to: ["1"]
 contrail-analyticsdb:
 series: bionic
 charm: /home/ubuntu/tf-charms/contrail-analyticsdb
 num_units: 1
 options:
 docker-registry: hub.juniper.net/contrail
 docker-user: xxxx
 docker-password: xxxx
 image-tag: "1912.32"
 cassandra-minimum-diskgb: "4"
 cassandra-jvm-extra-opts: "-Xms1g -Xmx2g"
 to: ["1"]
 contrail-controller:
 series: bionic
 expose: true
 charm: /home/ubuntu/tf-charms/contrail-controller
 num_units: 1
 options:
 docker-registry: hub.juniper.net/contrail
 docker-user: xxxx
 docker-password: xxxx
 image-tag: "1912.32"
control-network: "192.168.0.13/24"
data-network: "192.168.1.13/24”
 auth-mode: no-auth
 cassandra-minimum-diskgb: "4"
 cassandra-jvm-extra-opts: "-Xms1g -Xmx2g"

<- Data(xmpp)用
Interfaceと
GatewayIP

<- multi nicの場合指
定が必要

 Juniper Business Use Only

 to: ["1"]

contrail-kubernetes
 contrail-kubernetes-master:
 charm: cs:~juniper-os-software/contrail-kubernetes-master
 series: bionic
 options:
 docker-registry: hub.juniper.net/contrail
 docker-user: xxxx
 docker-password: xxxx
 image-tag: "1912.32"
 service_subnets: "10.96.0.0/12"
 contrail-kubernetes-node:
 charm: cs:~juniper-os-software/contrail-kubernetes-node
 series: bionic
 options:
 docker-registry: hub.juniper.net/contrail
 docker-user: xxxx
 docker-password: xxxx
 image-tag: "1912.32"

kubernetes
 easyrsa:
 series: "bionic"
 charm: cs:~containers/easyrsa
 num_units: 1
 to:
 - "2"
 etcd:
 series: "bionic"
 charm: cs:~containers/etcd
 num_units: 1
 options:
 channel: 3.2/stable
 to:
 - "2"
 kubernetes-master:
 series: "bionic"
 charm: cs:~containers/kubernetes-master-696
 num_units: 1
 options:
 channel: 1.14/stable
 service-cidr: "10.96.0.0/12"
 enable-dashboard-addons: false
 enable-metrics: false

 Juniper Business Use Only

 dns-provider: "none"
 docker_runtime: "custom"
 docker_runtime_repo: "deb
[arch=amd64] https://download.docker.com/linux/ubuntu bionic stable"
 docker_runtime_key_url: "https://download.docker.com/linux/ubuntu/gpg"
 docker_runtime_package: "docker-ce"
 to:
 - "2"
 kubernetes-worker:
 series: "bionic"
 charm: cs:~containers/kubernetes-worker-550
 num_units: 1
 options:
 channel: 1.14/stable
 ingress: false
 docker_runtime: "custom"
 docker_runtime_repo: "deb
[arch=amd64] https://download.docker.com/linux/ubuntu bionic stable"
 docker_runtime_key_url: "https://download.docker.com/linux/ubuntu/gpg"
 docker_runtime_package: "docker-ce"
 to:
 - "3"

relations:
#contrail
- ["contrail-analytics", "contrail-analyticsdb"]
- ["contrail-controller", "contrail-analytics"]
- ["contrail-controller", "contrail-analyticsdb"]
- ["contrail-agent", "contrail-controller"]
- ["contrail-controller", "ntp"]

kubernetes
- [kubernetes-master:kube-api-endpoint, kubernetes-worker:kube-api-
endpoint]
- [kubernetes-master:kube-control, kubernetes-worker:kube-control]
- [kubernetes-master:certificates, easyrsa:client]
- [kubernetes-master:etcd, etcd:db]
- [kubernetes-worker:certificates, easyrsa:client]
- [etcd:certificates, easyrsa:client]
- [kubernetes-master, ntp]
- [kubernetes-worker, ntp]

#contrail kubernetes
- [contrail-kubernetes-node:cni, kubernetes-master:cni]
- [contrail-kubernetes-node:cni, kubernetes-worker:cni]

 Juniper Business Use Only

- [contrail-kubernetes-master:kube-api-endpoint, kubernetes-master:kube-api-
endpoint]
- [contrail-kubernetes-master:contrail-kubernetes-config, contrail-kubernetes-
node:contrail-kubernetes-config]
- [contrail-kubernetes-master:contrail-controller, contrail-controller:contrail-
controller]
- [contrail-agent:juju-info, kubernetes-worker:juju-info]
- [contrail-agent:juju-info, kubernetes-master:juju-info]

Step5.5 K8S, Contrailをインストール
juju add-model contrail1
juju switch contrail1
juju models
juju deploy ./k8s-contrail-bundle.yaml
juju status

JUJUでは各 Application/Machineの集合をModelとして定義可能(Modelを分けておけば後でま
とめて削除可能)
上記では contrail1という model内に openstack, K8S, contrailをインストールする

全て activeになるまで 1.5hほど

※以下のように contrail-analytics health checkに失敗するため、bundle deploy中に contrail用の
machineに loginし、/etc/hostsを以下のように書き換える必要あり
alarm-gen is not ready. Reason: (Redis-UVE:AggregateRedis[None] connection down)

/etc/hosts in contrail-controller
192.168.0.xxx contrail1 contrail1.maas
#127.0.1.1 contrail1 contrail1.maas

Security Privilegeを使用できるように設定
juju config kubernetes-master allow-privileged=true

※環境を削除する場合は以下
juju destroy-model contrail1

Step6.1. GUI アクセス
Contrail https://192.168.0.xx:8143 admin_domain/admin/contrail123

Step7. OpenStack Compute, K8S Worker追加
K8S Workerを追加する場合は以下を実施

 Juniper Business Use Only

juju add-machine --constraints "mem=4G cores=2 root-disk=40G" --series=bionic
juju add-unit kubernetes-worker --to xxx

