
White Paper

1

vMX Lightweight 4over6 Virtual
Network Function
Juniper and Snabb in a Docker Container

2

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

Table of Contents
Executive Summary .. 3

Introduction... 3

The IPv6 Transition Problem.. 3

vMX lwAFTR Docker Container... 4

vMX Virtual Control Plane.. 5

vMX Virtual Forwarding Plane ... 5

Snabbvmx.. 5

Juniper Extension Toolkit Application.. 5

Configuration.. 5

Redundancy and Scale-Out...8

vMX Interface Scale-Up..9

Multiple vMX Instances Scale-Out...9

Optional Dual Interface Single-Stack Design.. 10

IETF Softwire YANG Schema...11

How Snabbvmx Works ...14

Conclusion..14

About Snabb...15

About Juniper Networks..15

List of Figures
Figure 1: IPv4-to-IPv6 transition problem... 3

Figure 2: vMX lwAFTR Docker Container... 4

Figure 3: Example configuration with one dual-stack interface...6

Figure 4: vMX interface scale-up..9

Figure 5: Multiple vMX instances of scale-out..9

Figure 6: Dual interface single-stack design example... 10

Figure 7: How Snabbvmx works internally...14

3

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

Executive Summary
Juniper Networks® vMX virtual router, packaged with the open-source fast packet networking engine Snabb in a Docker

Container, delivers a highly scalable and high-performance virtual network function (VNF) to terminate millions of IPv4-

in-IPv6 tunnels as Address Family Transition Routers (AFTRs), per RFC 7596.

Introduction
As service providers accelerate the migration of their core networks to IPv6, they need to ensure uninterrupted access

and service continuity for all existing IPv4 users. This white paper describes the IPv6 transition challenges service

providers are facing, and how Lightweight 4over6, as presented by the IETF RFC 7596, can help. Additionally, this white

paper offers a detailed technical explanation of the main building blocks leading to a scalable and high-performance

VNF, which is required at the service provider edge.

Packaged and run within a Docker Container, the Juniper Networks vMX virtual router integrates and fully manages an

open-source, third-party, packet processing application (Snabb) to deliver a high-performance and scalable AFTR, and

connect the Intel 82599-based 10GbE interfaces to the vMX virtual network interfaces. The IETF YANG Data Model for

IPv4-in-IPv6 softwire is integrated with the vMX to configure and manage Snabb.

From a network integration perspective, the vMX Lightweight 4over6 VNF is a fully functional virtual routing solution,

transparently augmented by a special purpose third-party “micro VNF” in the data path. In addition to AFTR, the

vMX also supports multiple network protocol functions, including Address Resolution Protocol (ARP), IPv6 Neighbor

Discovery Protocol (NDP), Open Shortest Path First (OSPF), Bidirectional Forwarding Direction (BFD), Border Gateway

Protocol (BGP), Simple Network Management Protocol (SNMP), system logging, Network Configuration Protocol

(NETCONF), and more for a truly carrier-grade virtual solution.

Each 10GbE interface is capable of terminating millions of tunnels. The stateless nature of the AFTR tunnel termination

function allows a single VNF to not only scale up to multiple 10GbE interfaces, but also to scale out by sharing network

traffic across several VNFs.

The IPv6 Transition Problem
Public IPv4 address exhaustion1 is forcing service providers not only to accelerate IPv6 adoption, but also to share public

IPv4 addresses among their subscribers. A simple dual-stack approach, as shown in Figure 1, consumes one public IPv4

address per residential subscriber. The most common solution today uses a carrier-grade NAT (CGNAT) (shown on the

right side of Figure 1), also known as a large-scale Network Address Translation (NAT), which sits between the customer

premises equipment (CPE) and the core network. Juniper offers such a solution today based on the MX Series 3D

Universal Edge Routers (see the Day One: Deploying CGNAT on the MX Series guide for more details). The CGNAT router

provides stateful Network Address Port Translation (NAPT) for all CPE devices to a small range of public IPv4 addresses.

CGNAT requires the use of private IPv4 addresses assigned to individual CPE devices, making this approach incredibly

complex for offering inbound services over IPv4, not to mention the numerous other challenges related to resiliency,

scalability, and cost.

Figure 1: IPv4-to-IPv6 transition problem

1 https://en.wikipedia.org/wiki/IPv4_address_exhaustion

IPv6 and IPv4

Dual Stack
no IPv4 saving

Public IPv6
Public IPv4, $$$

IPv6

Lw4o6 RFC 7596
stateless tunnels

Public IPv6
port restricted shared public IPv4

IPv6

Before

A­er

Large scale NAT
stateful edge, $$$

Public IPv6
Private IPv4

http://www.juniper.net/us/en/products-services/routing/mx-series/vmx/
http://www.juniper.net/us/en/products-services/routing/mx-series/
http://www.juniper.net/us/en/products-services/routing/mx-series/
http://www.juniper.net/us/en/training/jnbooks/day-one/networking-technologies-series/deploying-cgnat/
https://en.wikipedia.org/wiki/IPv4_address_exhaustion

4

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

Lightweight 4over6, defined in RFC 7596 and shown in the middle of Figure 1, delegates the stateful network address

and port translation functionality to the CPE, while transporting the IPv4 traffic within an IPv6 stateless tunnel. The

transport mechanism is derived from Dual-Stack Lite (DS-Lite) as defined by IETF RFC 6333. This removes the need for

any address translation and stateful tunnel termination at the provider edge. In order to delegate the NAPT function and

make IPv4 address sharing possible, port-restricted IPv4 addresses are allocated to the CPEs.

A single public IPv4 address can be shared by multiple subscribers, each being assigned a unique port range of 1,024

TCP/UDP ports. The port range from 0 to 1,023 is reserved for incoming services like SSH or HTTP, and can be mapped

and optionally charged to select subscribers.

Table 1 depicts a typical binding table.

Table 1: Example Binding Table

Subscriber Public IPv6 Shared Public IPv4 UDP/TCP Port Range

2001:db8:1:1::1 193.5.1.1 1024 - 2047

2001:db8:1:1::2 193.5.1.1 2048 - 3071

2001:db8:1:1::3 193.5.1.1 3072 - 4095

.

2001:db8:1:1::63 193.5.1.1 64512 - 65535

2001:db8:1:1::64 193.5.1.2 1024 - 2047

vMX lwAFTR Docker Container
The vMX virtual router is launched within a Docker Container and connected to physical 10GbE interfaces via Snabb-

based user mode network card drivers. All required applications, interface drivers, libraries, and daemons required to

run the vMX virtual forwarding plane (VFP) and virtual control plane (VCP), including Qemu and KVM, are packaged in

the Docker Container image. The vMX image itself is not distributed within the Docker Container image; it is added at

startup, together with the configuration and license files.

Figure 2: vMX lwAFTR Docker Container

The compute node hosts the OS with minimal software version dependencies:

•	 Intel 82599-based 10GbE Ethernet card

•	 Linux kernel version 3.10 or newer with the KVM kernel module loaded (required to run the vMX lwAFTR Docker

Container on the compute node)

•	 Docker engine

•	 Hugepages

Because the container already contains Qemu, KVM, and an Ethernet card driver, there is no requirement for such

elements on the compute node, nor is there a conflict if the same or different versions are present.

KVM

Snabbvmx

JET App

Snabbvmx

Snabbvmx

Snabbvmx

vMX VCP

fxp0fxp0

em1

vMX VFP

int

0/0/0xe-0/0/0

xe-0/0/1

xe-0/0/2

xe-0/0/n

0/0/1

0/0/2

0/0/n

KVM

5

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

vMX Virtual Control Plane
The vMX VCP runs Juniper Networks Junos® operating system with the Lightweight 4over6 configuration and the

operation extension loaded based on an augmented version of the IETF YANG data model2. Lightweight 4over6 AFTR

functionality, as well as all vMX Junos OS features, are configurable via CLI and NETCONF. The Junos OS serial console is

directly accessible by attaching itself to a running Docker Container (“docker attach <name>”).

The management port (fxp0) of the vMX VCP is connected at runtime by Docker to the docker0 Linux bridge. The

internal (em1) port of the vMX VCP is connected to an internal bridge within the running container and isolated from

other containers and the compute host via network namespace isolation. This allows multiple vMX containers to run on

the same compute node simultaneously.

vMX Virtual Forwarding Plane
The vMX VFP runs the virtual Trio forwarding plane software and handles packet forwarding and next-hop resolution.

4over6 tunnel termination, however, is delegated to Snabbvmx.

The internal (int) interface of the VFP is connected to the same internal bridge within the running container as em1

from VCP.

The network interfaces 0/0/0 .. 0/0/n are connected via virtio_net para-virtualized network driver in Qemu in VhostUser

mode, supporting fast zero copy packet handover between the physical interface card and the guest virtual machine—in

this case, vMX VFP. This requires a sufficient amount of Hugepages on the compute node.

Snabbvmx
Snabbvmx is part of the open-source virtualized Ethernet networking stack Snabb3 and has two main functions:

1.	 Directly drive the physical interface port and transparently drive the transport packets to the vMX VFP

2.	 Perform Lightweight 4over6 AFTR tunnel termination

This dual functionality is best explained by comparing Snabbvmx to a “bump in the wire.” The IPv4-in-IPv6

encapsulated traffic is decapsulated; then all nonlocal IPv4 traffic is encapsulated in accordance with the provisioned

binding table. All other traffic, including ARP, IPv6 NDP, BFD, Link Layer Discovery Protocol (LLDP), OSPF, BGP, Internet

Control Message Protocol (ICMP) Ping, etc., are transparently passed between the physical port and the vMX VFP virtual

data interfaces (0/0/n).

The physical interface ports are referenced by their Peripheral Component Interconnect (PCI) addresses (e.g.,

0000:05:00.0) at runtime. The order of the addresses given to the container at startup defines mapping to the virtual

interfaces 0/0/0 through 0/0/n on the vMX. Each physical port is consumed by a Snabbvmx daemon and connected

over a high-performance VhostUser4 interface to the vMX VFP via Qemu or KVM.

If a network interface does not have a Lightweight 4over6 configuration in Junos OS, all traffic is passed transparently

between the physical port and virtual data interface on the vMX virtual router. Snabbvmx is fully transparent in this case,

allowing all supported vMX interface configurations, including single- and double-VLAN tagged and MPLS.

Snabbvmx has been contributed back to the Snabb project5.

Juniper Extension Toolkit Application
The Juniper Extension Toolkit (JET) application controls the functionality of all Snabbvmx interface driver applications

within the container based on the augmented Junos OS configuration for Lightweight 4over6. It also provides

operational and statistical access to the Junos OS control plane. Additional information about JET can be found here.

Configuration
The interface and Lightweight 4over6 tunnel configuration is conducted via the Junos OS configuration. The mapping

of physical interface ports to Junos OS interfaces is done via the ordered list of PCI interface port addresses given to the

container at startup. Below is a startup example, with the available 10GbE interface ports on the compute node:

$ lspci |grep 10-

81:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

81:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

2 https://tools.ietf.org/html/draft-ietf-softwire-yang-00
3 https://github.com/snabbco/snabb
4 http://www.virtualopensystems.com/en/solutions/guides/snabbswitch-qemu/
5 https://github.com/Igalia/snabb/tree/lwaftr/src/program/snabbvmx

https://www.juniper.net/techpubs/en_US/jet1.0/information-products/pathway-pages/product/1.0/index.html
https://tools.ietf.org/html/draft-ietf-softwire-yang-00
https://github.com/snabbco/snabb
http://www.virtualopensystems.com/en/solutions/guides/snabbswitch-qemu/
https://github.com/Igalia/snabb/tree/lwaftr/src/program/snabbvmx

6

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

83:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

83:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

$ cat run1.sh

#!/bin/bash

NAME=”lwaftr1”

CFG=”lwaftr1.txt”

VMX=”vmx-bundle-16.1R1.7.tgz”

CONTAINER=”vmxlwaftr:v0.10”

IDENTITY=”lab,lab123”

INTERFACES=”0000:81:00.0 0000:81:00.1 0000:83:00.0 0000:83:00.1”

LICENSE=”license-eval.txt”

docker run --name $NAME -ti --privileged -v $PWD:/u:ro $CONTAINER -i $IDENTITY -l

$LICENSE -c $CFG $VMX $INTERFACES

This results in the following interface mapping:

Table 2: Port to Interface and ID Mapping

PCI Address Junos OS IFD Snabbvmx id lwaftr-instance id

0000:81:00.0 xe-0/0/0 xe0 0

0000:81:00.1 xe-0/0/1 xe1 1

0000:83:00.0 xe-0/0/2 xe2 2

0000:83:00.1 xe-0/0/3 xe3 3

By default, vMX uses ge-0/0/x interface naming. This can be changed to xe with the following configuration:

chassis {

 fpc 0 {

 pic 0 {

 interface-type xe;

 }

 }

}

Figure 3: Example configuration with one dual-stack interface

KVM

Snabbvmx

JET App

Snabbvmx

Snabbvmx

Snabbvmx

vMX VCP

fxp0fxp0

em1

vMX VFP

int

0/0/0
xe-0/0/0

0000:81:00.0
0/0/1

0/0/2

0/0/n

KVM

Internet

IPv6
Access

7

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

A single physical port is connected to a router with a dual-stack configuration for IPv4 and IPv6. The vMX acts as the

next hop, responding to ARP and IPv6 NDP protocol queries and IGP and BGP termination points. Optionally, BFD can

also be enabled as well; however, this requires the following standard Junos OS configuration on 0/0/0:

interfaces {

 xe-0/0/0 {

 mtu 9000;

 unit 0 {

 description “xe0”;

 family inet {

 address 172.20.0.16/24;

 }

 family inet6 {

 address 2004:400::1/64;

 }

 }

 }

}

The IETF YANG schema is used to configure the Snabbvmx physical port driver with VLAN information, IPv4 and

IPv6 information, as well as the Lightweight AFTR configuration and binding table. Each network interface has a

corresponding lwaftr-instance object. The example configuration shows five binding entries:

ietf-softwire:softwire-config {

 binding {

 br {

 br-instances {

 br-instance 0 {

 tunnel-payload-mtu 9000;

 tunnel-path-mru 9100;

 binding-table {

 binding-entry 2004:400:400::1 {

 binding-ipv4-addr 4.4.4.1;

 port-set {

 psid-offset 0;

 psid 1;

 psid-len 6;

 }

 brr-ipv6-addr 2004:400::1;

 }

 binding-entry 2004:400:400::2 {

 binding-ipv4-addr 4.4.4.1;

 port-set {

 psid-offset 0;

 psid 2;

 psid-len 6;

 }

 br-ipv6-addr 2004:400::1;

 }

8

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

 binding-entry 2004:400:400::3 {

 binding-ipv4-addr 4.4.4.1;

 port-set {

 psid-offset 0;

 psid 3;

 psid-len 6;

 }

 br-ipv6-addr 2004:400::1;

 }

 binding-entry 2004:400:400::4 {

 binding-ipv4-addr 4.4.4.1;

 port-set {

 psid-offset 0;

 psid 4;

 psid-len 6;

 }

 br-ipv6-addr 2004:400::1;

 }

 binding-entry 2004:400:400::5 {

 binding-ipv4-addr 4.4.4.1;

 port-set {

 psid-offset 0;

 psid 5;

 psid-len 6;

 }

 br-ipv6-addr 2004:400::1;

 }

 }

 jnx-aug-softwire:ipv4_address 172.20.0.16;

 jnx-aug-softwire:cache_refresh_interval 1;

 }

 }

 }

 }

}

The IPv4 address in the augmented lwaftr-instance object is used to detect local traffic that must bypass tunnel

encapsulation and be passed on to the vMX network interface—in this example, xe-0/0/0.

The cache_refresh_interval, measured in seconds (if set), will periodically send a copy of the processed packet to the

vMX for next-hop resolution, cache the next hop (one per family IPv4 and IPv6 each), and use it for all packets. If cache_

refresh_interval is not set, all packets are sent to the vMX on default xe-0/0/0 for routing and will be forwarded to the

physical port once received back.

Redundancy and Scale-Out
The stateless nature of Lightweight 4over6 at the service provider’s edge allows the use of load-balancing traffic to

many interfaces without the need for an encapsulation and decapsulation path going through the same interface and

instance. The only requirement is that each instance have the full binding table loaded.

The vMX announces the tunnel endpoints over each interface via BGP, but with a different next hop (different IP per

interface). The peering router receives four next hops per protocol family if all four instances are operational and can

load-balance traffic to the interfaces using equal-cost multipath (ECMP). If one instance terminates, the route is no

longer announced and the next hop is withdrawn.

9

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

vMX Interface Scale-Up

Figure 4: vMX interface scale-up

Four interfaces on a single vMX are not the actual limit. The true limit is only reached when all cores on the same non-

uniform memory access NUMA nodes are in use. Traffic never traverses one interface to another, because each interface

has the full binding table and hence can form encapsulation and decapsulation tunnels bidirectionally.

Multiple vMX Instances Scale-Out
The concept of interface scale-up is not limited to a single vMX. It works equally well up to the ECMP limit of the peering

router, which is typically 64.

Figure 5: Multiple vMX instances of scale-out

KVM

Snabbvmx

JET App

Snabbvmx

Snabbvmx

Snabbvmx

vMX VCP

fxp0fxp0

em1

vMX VFP

int

0/0/0

0/0/1

0/0/2

0/0/3

KVM

Internet

IPv6
Access

KVM

Snabbvmx

JET App

Snabbvmx

Snabbvmx

Snabbvmx

vMX VCPfxp0

vMX VFP

0/0/0

0/0/1

0/0/2

0/0/3

KVM

KVM

Snabbvmx

JET App

Snabbvmx

Snabbvmx

Snabbvmx

vMX VCPfxp0

vMX VFP

0/0/0

0/0/1

0/0/2

0/0/3

KVM

KVM

Snabbvmx

JET App

Snabbvmx

Snabbvmx

Snabbvmx

vMX VCPfxp0

vMX VFP

0/0/0

0/0/1

0/0/2

0/0/3

KVM

Internet

100 GbE

12 x 10 GbE

100 GbE

IPv6
Access

10

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

Figure 5 shows an example of three vMX docker containers, each serving 4x10GbE, resulting in a total bidirectional

capacity of 120 Gbps for millions of bindings.

Optional Dual Interface Single-Stack Design
There are networks that require the vMX to use separate physical interfaces per protocol family. Protocol encapsulation

and decapsulation is still done at ingress, but next-hop caching cannot be used because the packet must be sent to the

vMX for routing based on the packets’ IP family.

Figure 6 shows a design using two separate physical interfaces, one for IPv4 traffic and another for IPv6 traffic. Tunnel

encapsulation and decapsulation always occur at ingress, never at egress; therefore, the same binding table must be

shared by both lwaftr-instances. This can be achieved by simply storing the binding table in a file and referencing it for

use by all interfaces:

Figure 6: Dual interface single-stack design example

ietf-softwire:softwire-config {

 binding {

 br {

 br-instances {

 br-instance 0 {

 tunnel-payload-mtu 9000;

 tunnel-path-mru 9100;

 ipv4_address 172.16.2.35;

 }

 br-instance 3 {

 tunnel-payload-mtu 9000;

 tunnel-path-mru 9100;

 ipv4_address 172.16.2.35;

 }

 }

 binding-table-file binding_table_4m.txt;

 }

 }

}

The interfaces xe-0/0/0 and xe-0/0/1 still must be configured as dual stacks, because they have two main tasks to

perform:

1.	 Respond to the BFD, ICMP, and peer via OSPF and BGP protocols

2.	 Accept and route decapsulated IPv4 packets or encapsulated IPv6 packets

KVM

encap

JET App

Snabbvmx

Snabbvmx

decap

vMX VCP

fxp0fxp0

xe-0/0/0

0000:81:00.0

xe-0/0/3

0000:83:00.1

vMX VFP

0/0/0 IPv4 and IPv6

0/0/3 IPv4 and IPv6

KVM

IPv4
only

IPv6
only

11

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

IETF Softwire YANG Schema
Junos OS Release 16.1 supports a custom YANG schema to be added at runtime to extend the configuration storage, CLI

commands, and access via NETCONF and gRPC.

The vMX lwAFTR Docker Container incorporates the latest draft of the IETF softwire YANG schema. Additional

information can be found here.

Junos OS also supports YANG schema augmentation and deviation to add solution-specific YANG containers and leafs.

For vMX lwAFTR, several additional leafs have been added and published in a separate augmentation file:

module jnx-softwire {

 namespace “http://yang.juniper.net/software/aug”;

 prefix “jnx-swire”;

 import ietf-inet-types {prefix inet; }

 import ietf-softwire {prefix sw; }

 organization “Juniper Networks, Inc.”;

 revision 2016-07-19 {

 description

 “Juniper software augments. “;

 }

 augment “/sw:softwire-config/sw:binding/sw:br” {

 leaf binding-table-file {

 type string;

 description “Complete path of the binding table file”;

 }

 }

 augment “/sw:softwire-config/sw:binding/sw:br/sw:br-instances/sw:br-instance” {

 leaf ipv6_address {

 type inet:ipv6-address;

 }

 leaf ipv4_address {

 type inet:ipv4-address;

 }

 leaf ipv6_vlan {

 type uint16 {

 range 0..4094;

 }

 }

 leaf ipv4_vlan {

 type uint16 {

 range 0..4094;

 }

 }

 leaf hairpinning {

 type boolean;

 default false;

 }

http://www.juniper.net/us/en/products-services/nos/junos/
https://datatracker.ietf.org/doc/draft-ietf-softwire-yang/

12

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

 leaf fragmentation {

 type boolean;

 default false;

 }

 leaf cache_refresh_interval {

 type uint32;

 units seconds;

 default 1;

 }

 leaf icmpv6_rate_limiter_n_packets {

 type uint32;

 }

 leaf icmpv6_rate_limiter_n_seconds {

 type uint32;

 default 1;

 }

 leaf policy_icmpv6_incoming {

 type enumeration {

 enum allow;

 enum drop;

 }

 }

 leaf policy_icmpv6_outgoing {

 type enumeration {

 enum allow;

 enum drop;

 }

 }

 leaf policy_icmpv4_incoming {

 type enumeration {

 enum allow;

 enum drop;

 }

 }

 leaf policy_icmpv4_outgoing {

 type enumeration {

 enum allow;

 enum drop;

 }

 }

 leaf ipv6_ingress_filter {

 type string;

 description

 “IPv6 ingress filter in libpcap format”;

 }

 leaf ipv6_egress_filter {

 type string;

13

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

 description

 “IPv6 egress filter in libpcap format”;

 }

 leaf ipv4_ingress_filter {

 type string;

 description

 “IPv4 ingress filter in libpcap format”;

 }

 leaf ipv4_egress_filter {

 type string;

 description

 “IPv4 egress filter in libpcap format”;

 }

 }

}

In the event that some of these leafs are added to the final IETF RFC, they can simply be removed from the

augmentation file and a new Docker Container built.

The draft-ietf-softwire YANG models have containers for features not supported by the vMX-based Lightweight 4over6

implementation, mainly ce (client side) and algorithm (for MAP-T, MAP-E). These are marked as “not-supported” by a

deviation file:

module jnx-softwire-dev {

 namespace “http://yang.juniper.net/software/aug”;

 prefix “jnx-swire”;

 import ietf-softwire {prefix sw; }

 organization “Juniper Networks, Inc.”;

 revision 2016-07-19 {

 description

 “Juniper software deviation (lwaftr) BR only functionality “;

 }

 deviation /sw:softwire-config/sw:binding/sw:ce {

 deviate not-supported;

 }

 deviation /sw:softwire-config/sw:algorithm {

 deviate not-supported;

 }

}

There are no Junos OS release dependencies other than requiring a minimal version supporting custom YANG, which is

16.1.

14

White PapervMX Lightweight 4over6 Virtual Network Function

©2016, Juniper Networks, Inc.

How Snabbvmx Works
Figure 7 shows a block diagram of all required Snabb components. IPv4 and IPv6 packets come in from the physical 10GbE

port and are either passed transparently to a corresponding vMX virtual interface (e.g., xe-0/0/0) or detected as a packet

in need of Lightweight 4over6 encapsulation or decapsulation. Pending configuration, fragmentation, and re-assembly

can take place at ingress and egress. Snabbvmx acts as a network interface driver daemon that not only transparently

passes packets between a dedicated physical 10GbE interface and a virtual interface on the vMX (running on Qemu), but

also handles IPv4 in IPv6 packets and nonlocal IPv4 packets by passing them through the LwAFTR application. While the

diagram only shows one Snabbvmx instance and one pair of physical and virtual interfaces, the Snabbvmx solution scales

out by running multiple instances, each connecting to a separate pair of physical and virtual interfaces.

Figure 7: How Snabbvmx works internally

The Snabb daemon Snabbvmx loads the Intel10g application to drive a physical Intel 82599-based 10GbE port.

The LwAFTR application is the workhorse, handling the tunnel encapsulation and decapsulation. FragmenterX and

ReassemblerX are in the data path to handle IPv4 to IPv6 fragmentation and reassembly. The Split v4v6 application

splits IPv4 from IPv6 packets and sends them upstream from the Intel10g application to the protocol-specific

reassembler application. Packets received from the vMX via the VhostUser application are also split based on IPv4

or IPv6 and sent to the protocol-specific nh_fwd4/nh_fwd6 triage function. This nh_fwd makes a forwarding decision

based on unicast or broadcast destination media access control (MAC), matching local IPv4 destination or IPv4-in-IPv6.

Split v4v6, in combination with the application tap, allows monitoring of packets coming in and out of the physical

port based on matching IPv4 address, either as source, destination, or within an IPv4-in-IPv6 packet. Configuration of

such filters is done via shared memory location in the file system and accessible via Snabb snabbvmx monitor <ipv4-

address>.

Contrary to the operations support system (OSS) Snabb daemon for LwAFTR, Snabbvmx, ARP, IPv6 neighbor discovery,

and any other control protocol like BFD or IS-IS, the vMX handles BGP and transparently passes it through Snabbvmx.

This simplifies and empowers the solution for Lightweight 4over6.

The Snabbvmx daemon is controlled via configuration files that are generated by the vMX VCP. It updates binding

table entries by alerting the running Snabbvmx daemon to the presence of a new, precompiled binding table. Multiple

Snabbvmx daemons connected to the same vMX share the same binding table.

The configuration file for LwAFTR, fragmentation, reassembly, and binding table used internally are documented here.

They are automatically generated every time the vMX Junos OS configuration is updated.

Conclusion
Lightweight 4over6 AFTR VNF based on vMX and Snabb offers a scalable, high-performance, and carrier-grade tunnel

termination functionality that is easy to deploy. It scales to millions of bindings and dozens of 10GbE interfaces, limited

only by the number of concurrent ECMP hops a data center gateway router supports for IPv4 and IPv6.

The Juniper Networks vMX virtual routing solution provides carrier-grade control plane and management functionality,

including BGP for IPV4 and IPv6, BFD, and custom YANG for provisioning according to published IETF softwire schema.

Meanwhile, Snabb provides high-performance Lightweight 4over6 tunnel encapsulation and decapsulation with

optional fragmentation and re-assembly for millions of bindings. The combination of vMX and Snabb gives service

providers the flexibility to migrate to IPv6 networks while ensuring service continuity for IPv4 users.

KVM vMX VCP

vMX VFPKVM

Vhost
User

Intel
10GbE

nh_fwd6

Snabbvmx

nh_fwd4

mirror
tap xeX

Split
v4v6

Split
v4v6

Tap

LwA�r

Fragmenter6

Reassembler6

Reassembler4

Fragmenter4

https://github.com/Igalia/snabb/blob/lwaftr/src/program/lwaftr/doc/README.configuration.md

Corporate and Sales Headquarters

Juniper Networks, Inc.

1133 Innovation Way

Sunnyvale, CA 94089 USA

Phone: 888.JUNIPER (888.586.4737)

or +1.408.745.2000

Fax: +1.408.745.2100

www.juniper.net

Copyright 2016 Juniper Networks, Inc. All rights reserved. Juniper Networks, the Juniper Networks logo, and

Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other

trademarks, service marks, registered marks, or registered service marks are the property of their respective

owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks

reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

APAC and EMEA Headquarters

Juniper Networks International B.V.

Boeing Avenue 240

1119 PZ Schiphol-Rijk

Amsterdam, The Netherlands

Phone: +31.0.207.125.700

Fax: +31.0.207.125.701

White PapervMX Lightweight 4over6 Virtual Network Function

2000648-001-EN Nov 2016

About Snabb
Snabb (formerly “Snabb Switch”) is a simple and fast packet networking toolkit, publically available under the Apache

2.0 license at https://github.com/snabbco/snabb.

Snabb is written using these main techniques:

•	 Lua, a high-level programming language that is easy to learn

•	 LuaJIT, a just-in-time compiler that is competitive with C

•	 Ethernet I/O with no kernel overhead (“kernel bypass” mode)

Snabb compiles into a standalone executable called snabb. This single binary includes multiple applications and runs on

any modern Linux/x86-64 distribution.

Snabb lwAFTR implements the Internet-facing AFTR component of Lightweight 4-over-6 (lw4o6) and can also be run

standalone, though without NETCONF/YANG and without dynamic routing control plane. For more information, visit

https://github.com/snabbco/snabb/tree/master/src/program/lwaftr/doc.

Snabbvmx is currently being contributed back into the Snabb project. See https://github.com/Igalia/snabb/pull/391 for

current status.

About Juniper Networks
Juniper Networks challenges the status quo with products, solutions and services that transform the economics of

networking. Our team co-innovates with customers and partners to deliver automated, scalable and secure networks with

agility, performance and value. Additional information can be found at Juniper Networks or connect with Juniper on Twitter

and Facebook.

https://github.com/snabbco/snabb
https://github.com/snabbco/snabb/blob/master/src/doc/porting.md
https://github.com/snabbco/snabb/tree/master/src/program/lwaftr/doc
https://github.com/Igalia/snabb/pull/391
http://www.juniper.net
https://twitter.com/Junipernetworks
https://www.facebook.com/JuniperNetworks

	Executive Summary
	Introduction
	The IPv6 Transition Problem
	vMX lwAFTR Docker Container
	vMX Virtual Control Plane
	vMX Virtual Forwarding Plane
	Snabbvmx
	Juniper Extension Toolkit Application

	Configuration
	Redundancy and Scale-Out
	vMX Interface Scale-Up
	Multiple vMX Instances Scale-Out

	Optional Dual Interface Single-Stack Design
	IETF Softwire YANG Schema
	How Snabbvmx Works
	Conclusion
	About Snabb
	About Juniper Networks
	Figure 1: IPv4-to-IPv6 transition problem
	Figure 2: vMX lwAFTR Docker Container
	Figure 3: Example configuration with one dual-stack interface
	Figure 4: vMX interface scale-up
	Figure 5: Multiple vMX instances of scale-out
	Figure 6: Dual interface single-stack design example
	Figure 7: How Snabbvmx works internally

