Evolved Campus Core: An EVPN Framework for Campus Networks

Vincent Celindro – JNCIE #69 / CCIE #8630
LEGAL DISCLAIMER

This statement of direction sets forth Juniper Networks’ current intention and is subject to change at any time without notice. No purchases are contingent upon Juniper Networks delivering any feature or functionality depicted in this presentation.

This presentation contains proprietary roadmap information and should not be discussed or shared without a signed non-disclosure agreement (NDA).
Legacy 3-Tier Architecture

Circa – Late 90’s - 2017 ???

Cisco SRND
Cat 6500
Brocade MLX/XMR
Juniper 8200

How many networks are still running architectures like this?
Typical Campus Network
Redundancy – Spanning Tree
Spanning Layer 2 – Still Flood and Learn - Loops
Segmentation
Typical Campus Network

- Redundancy
- Spanning Tree
- Flood and Learn
- Users
- Layer 2 Adjacency
- Segmentation
Campus Deployments

Traditional Multi-tier

Collapsed distribution & core

Cloud Enabled Enterprise Single managed device

Evolved Campus Core EVPN-Based

Virtual Chassis Technology

Junos Fusion Enterprise

VC at the Edge EVPN at the Core

Common building blocks
JUNOS: One common operating system for all deployments
ECC – Evolved Campus Core
EVPN

Datacenter

Spine

Leaf

Compute

Campus

Core / Distribution

Access

Users, Compute, IOT
EVPN/VXLAN in the Campus

Standards Based
Large Industry Adoption
Minimized Fault Domain
Easy to Scale

EVPN - Control/Forwarding
Brown Field
Operational Advantages
ECC (Evolved Campus Core) – Five Key Concepts

1) Underlay
2) Overlay - EVPN/VXLAN
3) VRF Segmentation
4) ESI-LAG
5) Anycast Gateway
Underlay
Underlay - Config

- OSPF
- ISIS
- BGP

All that is needed is loopback reachability

```
protocols {
    ospf {
        area 0.0.0.0 {
            interface et-0/0/32.0;
            interface xe-0/0/0:0.0;
            interface xe-0/0/0:1.0;
            interface lo0.0;
        }
    }
}
```
Overlay – EVPN/VXLAN
Overlay – EVPN Config

protocols {
 evpn {
 encapsulation vxlan;
 default-gateway do-not-advertise;
 extended-vni-list all;
 }
}

protocols {
 bgp {
 group RR-OVERLAY {
 type internal;
 local-address 10.0.3.2;
 family inet {
 any;
 }
 family inet-vpn {
 any;
 }
 family evpn {
 signaling;
 }
 multipath;
 neighbor 10.0.3.3;
 }
 }
}
Overlay – VXLAN Config

switch-options {
 vtep-source-interface lo0.0;
 route-distinguisher 10.0.3.2:1;
 vrf-import EVPN_VRF_IMPORT;
 vrf-target {
 target:10:1;
 auto;
 }
}

vlans {
 VXLAN100 {
 vlan-id 100;
 l3-interface irb.100;
 vxlan {
 vni 5100;
 }
 }
 VXLAN200 {
 vlan-id 200;
 l3-interface irb.200;
 vxlan {
 vni 5200;
 }
 }
}
VRF Segmentation

WEB/APP/DB

Dev
Test
Prod
VRF Segmentation - Config

```plaintext
routing-instances {
    RI_FACULTY {
        instance-type vrf;
        interface irb.100;
        interface irb.200;
        route-distinguisher 10.0.3.2:101;
        vrf-target {
            target:10:1;
            auto;
        }
        routing-options {
            auto-export;
        }
    }
}
```
ESI-LAG (EVPN Multihoming A/A)
ESI-LAG (EVPN Multihoming A/A)
ESI-LAG - Config

```plaintext
ae1 {
  mtu 9192;
  esi {
    00:00:00:ab:cd:00:01:00:00:01;
    all-active;
  }
  aggregated-ether-options {
    lacp {
      active;
      system-id 00:11:00:00:00:01;
    }
  }
}

unit 0 {
  family ethernet-switching {
    interface-mode trunk;
    vlan {
      members [ VXLAN100 VXLAN 200];
    }
  }
}

...
Anycast Gateway
Anycast Gateway - Config

interfaces {
  irb {
    unit 100 {
      family inet {
        address 10.1.1.2/24 {
          virtual-gateway-address 10.1.1.1;
        }
      }
    }
  }
}

protocols {
  evpn {
    default gateway do-not-advertise
  }
  ...
}
NXT Steps - How Do I move to an ECC Architecture
Physical

Core
Distribution
Access
Hardware & Software

MX Series
EX 9200 Series
QFX 10k Series
QFX 5110

Juniper EX, VC, VCF, Fusion
Vendor X – LAG/LACP/VLANS
ECC Configuration

1) Underlay
2) Overlay - EVPN/VXLAN
3) VRF Segmentation
4) ESI-LAG
5) Anycast Gateway
ECC (Evolved Campus Core) - Takeaways

- Why ECC
  - Redundancy – eliminate spanning tree
  - Users – L2 adjacency / segmentation

- ECC Concepts
  - Underlay
  - Overlay - EVPN/VXLAN
  - VRF Segmentation
  - ESI-LAG
  - Anycast Gateway

- Migration
  - Physical
  - EVPN/VXLAN Core HW/SW
  - Enable ECC
Thank you

Vcelindro@juniper.net
Network /R/evolutionist

@VincentCelindro