
CONTAINERS AND MICROSERVICES
WITH CONTRAIL

Scott Sneddon Sree Sarva DP Ayyadevara
Sr. Director Sr. Director Director

Cloud and SDN Contrail Solutions Product Line Management

This statement of direction sets forth Juniper

Networks’ current intention and is subject to

change at any time without notice. No purchases

are contingent upon Juniper Networks delivering

any feature or functionality depicted in this

presentation.

This presentation contains proprietary roadmap

information and should not be discussed or shared

without a signed non-disclosure agreement (NDA).

AGENDA

3

 Background and Evolution of Technology and Ecosystem

 Fundamentals of Containers - what and why

 Microservices and Container Orchestration

 Contrail Networking for Containers

CONTAINERS

THE RISE OF CONTAINERS & MICROSERVICES

Containers:

 Standardized frame for all services.

 Simplified a painful integration process in a heterogeneous

infrastructure world.

 Docker - revolution in how developers build and deploy applications

w/Containers.

APIs:

 The rapid adoption of APIs has created a standardized format for

communications.

Scalable cloud infrastructure:

 Private or public, delivers the resources needed on demand to scale,

and operate services effectively.

 Cloud is the new computer!

https://www.sequoiacap.com/article/build-us-microservices/

https://www.sequoiacap.com/article/build-us-microservices/

Namespaces:

Virtualize by isolating:

• User IDs

• Process IDs & tree

• Filesystem mounts

• Network interfaces

WHAT ARE CONTAINERS?

Host OS

Container Engine

Infrastructure

Binaries /

Libraries

App A App B App C

Binaries /

Libraries

Binaries /

Libraries

Control Groups (cgroups):

Virtualize by sharing and limiting

access:

• CPU,

• Memory,

• Disk I/O,

• N/w I/O

• Processes isolated from the host

and (optionally) other containers

• Share the same underlying Kernel

• Virtual network interfaces / addresses

(maybe host NAT’d)

• Files and optional (shared) mounts

from the host filesystem

Security:

• SELinux policy and enforcement

control over all resources

• AppArmor to restrict a program’s

abilities

• Linux capabilities etc.

VIRTUAL MACHINES VS CONTAINERS

Host OS + Hypervisor

Guest OS

Binaries /

Libraries

App A

Infrastructure

Host OS

Container Engine

Infrastructure

App B App C

Binaries /

Libraries

Binaries /

Libraries

Guest OS Guest OS

Binaries /

Libraries

App A App B App C

Binaries /

Libraries

Binaries /

Libraries

THE PROMISE OF DOCKER
Build Once, Run Anywhere

DOCKER LAYERS

DOCKER NETWORKING

Bridge

Container

eth0

eth0

Host

Container

eth0

Container

eth0

eth0

Host

Container

eth0

● Bridged (docker0)
● Bridged MacVLAN L2

● Host mode
● L3 mode

DOCKER NETWORKING

• Docker provides:

▪ Default networking

▪ Mac-vlan

▪ VXLAN Overlay

▪ “multi-host” networking ;)

• Plugins

https://blog.docker.com/2015/04/docker-networking-takes-a-step-in-the-right-direction-2/

MICROSERVICES

MICROSERVICE CONCEPT

(2006) (2016)

MICROSERVICE CONCEPT

containers are the perfect

vehicle for microservices

containers orchestration platforms

are suited to handle the deployment

and scaling of these microservices

CONTAINERS & MICROSERVICES
ORCHESTRATION

KUBERNETES

http://www.publicartarchive.org/work/helmsman

The name ?
Greek for “pilot” or “helmsman of a ship”

The project?
Open Source project originally designed by Google (Project Borg) and
donated to the CNCF

“Open-source platform for automating deployment, scaling, and
operations of application containers across clusters of hosts,
providing container-centric infrastructure”

Desired state / Intent-based system

“Tell Kubernetes what you want and it will take care of everything
else”

WHAT IS KUBERNETES ?

Application Focus

 Deploy / scale / rolling updates / control resources

Portable
 Run everywhere (public/private cloud, bare metal, VMs, laptop)

Self-Healing
 Auto-restart, auto-rescheduling, auto-scaling, auto-replication

Bridge the Dev/Ops gap
 Taking advantage of application containerization and micro services
 CI/CD environments
 Mechanisms to tie the infrastructure and the applications running

on it

Master Node #2

API Server

Controller / Replication Mgr

Scheduler

Data Store

(etcd)

N a m e s p a c e - B

N a m e s p a c e - A

…

Containers

…

C1 C2 …

…

Containers

POD 2

C1 C2 …

…

Containers

POD 1 (POD1-IP)

C1 C2 …

Service – S1

Application 1

(Load balancing across multiple PODs)

Service – S2

…

Containers

…

C1 C2 …

…

Containers

POD 6

C1 C2 …

…

Containers

POD 5

C1 C2 …

Service (VIP, Port) Service (VIP, Port)

Minion / NodeMinion / Node …

Application 2

(Load balancing across multiple PODs)
Repl.

Ctrl

Master

Master Node #1

kube-apiserver

kube-controller-manager

kube-scheduler

Data Store

(etcd)

KUBERNETES ARCHITECTURE

Kubelet Kubelet

OPENSHIFT
Red Hat’s Container Application Platform (PaaS)

Self Service
• Templates

• Web Console

Multi-language

Automation
• Build

• Deploy

Collaboration
• DevOps

Security
• NameSpaces

• RBAC

Scaleable
• Integrated

Loadbalancer

Open Source

Enterprise Grade
• Authentication

• Web Console

• Central Logging

source: www.redhat.com

CONTRAIL NETWORKING
FOR CONTAINERS

20

Physical IP Fabric

(no changes)

CONTRAIL ARCHITECTURE

CONTRAIL

CONTROLLER

ORCHESTRATOR

Host O/SvRouter

Network / Storage

orchestration

Gateway

…

Internet / WAN
or Legacy Env.

(Config, Control, Analytics, Svr Mgmt)

(Windows, Linux ….) on BMS

TOR

Compute

orchestration

Virtual Network

Blue

Virtual Network

Red

FW

Logical View

…

C
e
n
tr

a
liz

e
d

P
o
lic

y
 D

e
fi
n
it
io

n

D
is

tr
ib

u
te

d

P
o
lic

y
 E

n
fo

rc
e
m

e
n
t

BGP

BGP XMPPOVSDB

CONTAINERIZED CONTRAIL

CONTRAIL ARCHITECTURE WITH KUBERNETES

CONTRAIL WITH KUBERNETES
CONTRAIL VALUE PROP

User-Defined Isolation

Custom Isolation

Namespace Isolation

Default Cluster
Network Mode

• Virtual Network per

namespace

• solation per namespace

• Define Networks and

Security Policies in Contrail

• Use Network/Security Policy

per namespace and/or pods

using annotations

• All Pods and Services are reachable

What do the users / app team get ?

▪ Distributed LB

▪ Security / Isolation / multi-
tenancy

▪ External / Public access from
within cluster (SNAT) and vice
versa (using floating IP)

▪ Exposing cluster to Enterprise
network outside the cluster

I N
 C

 R
 E

 A
 S

 I
N

 G

 L
 E

 V
 E

 L
 S

 O

 F

 I
S

O
 L

 A
 T

 I
O

 N

KUBERNETES TO CONTRAIL OBJECT MAPPING

Namespace Single project OR Shared project

Pod

Service

Ingress

Network Policy

Virtual Machine

ECMP Loadbalancer

Haproxy Loadbalancer for URL

Security Groups

CONTRAIL WITH KUBERNETES ON BAREMETAL

K8s Master K8s Node1
K

8
s
 A

P
I
S

e
rv

e
r

•
K

u
b

e
 M

a
n

a
g

e
r

•
C

o
n

tr
o

lle
r

•
A

n
a

ly
ti
c
s

•
A

n
a

ly
ti
c
s
-D

B

vrouter
K

8
s
 K

u
b
e
le

t

•
A

g
e
n
t

C
N

I

P
O

D

P
O

D

K8s Node2

vrouter

K
8

s
 K

u
b
e
le

t

•
A

g
e
n
t

C
N

I

P
O

D

P
O

D

CONTRAIL WITH KUBERNETES ON OPENSTACK

vrouter

K
8
s
 A

P
I
S

e
rv

e
r

K
u
b
e
 M

a
n
a
g
e
r

K
8
s
 K

u
b
e
le

t

C
N

I

K8s Master K8s Node1

A
g
e

n
t•

N
o

v
a

 A
P

I
•

G
la

n
c
e

•
K

e
y
s
to

n
e

•
…

.

•
C

o
n

tr
o

lle
r

•
A

n
a

ly
ti
c
s

•
A

n
a

ly
ti
c
s
-D

B

Openstack + Contrail Controller Openstack Compute 1

P
O

D

P
O

D
vrouter

K
8
s
 K

u
b
e
le

t

C
N

I

K8s Node2

Openstack Compute 2

P
O

D

P
O

D

Green

VM

A
g
e

n
t

CONTRAIL WITH OPENSHIFT

Container runtime environment

Container orchestration

Container Development

Enterprise Management & Integration

User Experience

Docker

Kubernetes

Minimal OSAtomic

Deploy

Run

Host

OpenShift

Enterprise

Build

• IDM(LDAP,SSO)

• Web-Console

• JBOSS xPaas images

• Eclipse & Jenkins integrations

• Router (Now Ingress in K8S)

• OpenShift SDN for Isolation

• Logging & Metrics

Contrail SDN augments

OpenShift SDN

