

Painless Software Upgrades

Juniper Networks recently added features to JUNOS software that dramatically reduce the impact of software upgrades on transit traffic by making it possible to upgrade the router operating system while the router is “in service.” In this chapter, we build on the pre-upgrade procedures discussed in the previous chapter and show how unified In-Service Software Upgrade (ISSU) functionality supports high availability goals.

Unified ISSU functionality applies only to platforms with redundant routing engines (REs). And since not all routers have redundant REs, this chapter examines software upgrades for platforms that support unified ISSU and software upgrades for platforms with a single RE or where a release of JUNOS supporting unified ISSU is not in use. Figure 7-1 shows the network topology that we’ll upgrade.

In Figure 7-1, routers **r5** and **r6** have redundant REs and are platforms that support ISSU functionality. Routers **r1**, **r2**, **r3**, and **r4** do not have redundant REs but are to some extent paired so as to allow continuity of operations during OS upgrades (i.e., **r1** is paired with **r2**, and **r3** with **r4**).

Snapshots

Immediately before upgrading a chassis using either an ISSU or a non-ISSU image, capture a snapshot of the known stable image and configuration using the `request system snapshot` command. Doing this is important because problems do sometimes arise during the upgrade process, and having a known good fallback point makes it possible to recover quickly.

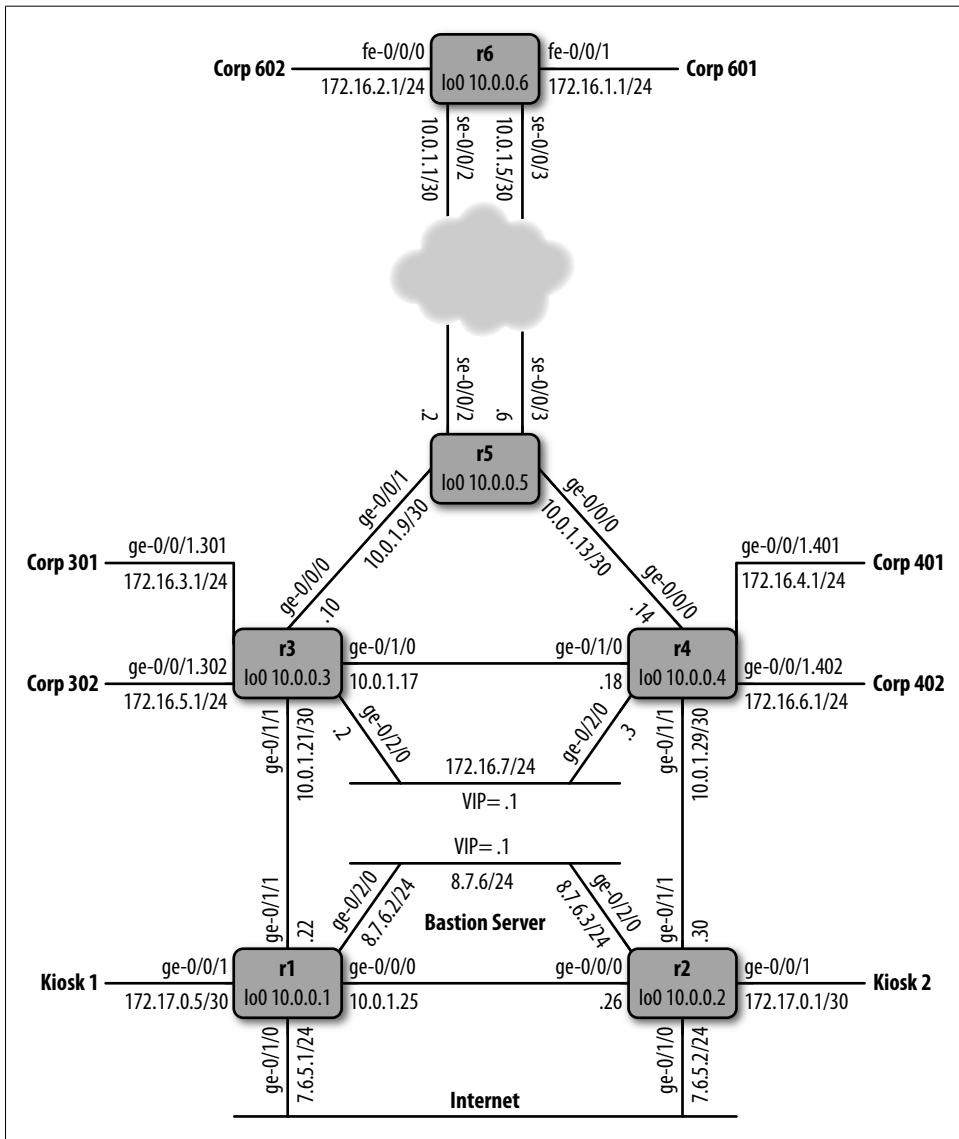


Figure 7-1. Enterprise topology to be upgraded

The `snapshot` command copies the content of `/config` and `/root` on the boot media to `/altconfig` and `/altroot` on the alternate boot media. For example, if the router boots from CompactFlash, the `snapshot` command creates the `/alt` files on the hard drive. If the router boots from the hard drive, the `/alt` files are created on the CompactFlash:

```
[edit]
lab@r5-reo# run request system snapshot
```


The `request system snapshot` command is commonly used with the `partition` option to troubleshoot failed boot media, including CompactFlash or the hard drive. In the following example, the CompactFlash has failed and should be replaced. We know this because of the error message generated:

```
[edit]
lab@r5-re0# run request system snapshot partition
error: s1a media missing or invalid
```

Software Upgrades with Unified ISSU

For routers with redundant REs, unified ISSU allows the administrator to upgrade between two different JUNOS software releases with no disruption on the control plane and with minimal disruption of traffic.

How It Works

Although the goal of this book is to discuss practical application of tools and technologies rather than protocol theory, let's take a quick look at how unified ISSU performs its magic. The process begins when the `in-service-upgrade` command is executed on the master RE:

```
[edit]
lab@r5-re0# run request system software in-service-upgrade /var/tmp/jinstall-9
.3R1.7-domestic-signed.tgz reboot
```

After this command is entered, the router begins an eight-step sequence to complete the upgrade:

1. The router validates the configuration to make sure all elements are compatible with the new revision of code, in this case 9.3R1.7. The router also checks to make sure that all Physical Interface Cards (PICs) are compatible with ISSU. If an incompatible PIC is found, the upgrade continues but the router issues a warning.
2. Kernel state on the backup RE is synchronized with the master RE.
3. The configuration file on the master RE is copied to the backup RE.
4. The backup RE is upgraded with the new operating system, and then kernel state is resynchronized to the master.
5. `chassisd` on the master RE notifies the Packet Forwarding Engine (PFE) on each Flexible PIC Concentrator (FPC) to download the new image from the backup RE.
6. The PFEs download the image, then reboot. Following reboot, they come back online synchronized to the backup RE.
7. Once all PFEs are synchronized to the backup RE, ownership of the chassis transfers to the backup RE and the backup becomes the master.

8. The former master is now upgraded to the new version of code and the process is complete.

Implementation Details

Support for unified ISSU is expanding across the M Series and T Series product lines with most new major releases of JUNOS. Table 7-1 shows unified ISSU platform support by JUNOS release.

Table 7-1. Unified ISSU platform support

Platform	First software release that supports unified ISSU
M120	JUNOS 9.2
M320	JUNOS 9.0
MX240, MX960	JUNOS 9.3
T320	JUNOS 9.0
T640	JUNOS 9.0
T1600	JUNOS 9.1
TX Matrix	JUNOS 9.3

Notice that not every protocol feature of JUNOS is compatible with unified ISSU. Table 7-2 lists protocols that support unified ISSU and the first software release on which unified ISSU for the protocol began being supported.

Table 7-2. Unified ISSU protocol support

Protocol	First software release that supports unified ISSU
Border Gateway Protocol (BGP)	JUNOS 9.0
Open Shortest Path First (OSPF), OSPFv3	JUNOS 9.0
Intermediate System to Intermediate System (IS-IS)	JUNOS 9.0
Label Distribution Protocol (LDP)	JUNOS 9.0
Virtual Private LAN Service (VPLS)	JUNOS 9.3
Layer 2 circuits	JUNOS 9.2
Layer 3 virtual private networks (VPNs)	JUNOS 9.2
Protocol-Independent Multicast (PIM; sparse, dense modes)	JUNOS 9.3

Notice that not all PICs are compatible with unified ISSU. During a unified ISSU operation, legacy PICs that do not support unified ISSU trigger a warning message which indicates that specific PICs in the chassis will be momentarily taken offline during the software upgrade. Once the new firmware is upgraded, the PICs are brought back online.

While a few seconds of interface downtime may sound trivial, it can be significant. During this time, any routing protocol enabled on the interface loses connectivity across that interface to neighbors. This means that while the PIC downtime might last for only a second, the protocols' recovery time could be dramatically longer. It is indeed best to understand potential downtime well in advance of the upgrade. A complete list of legacy PICs that do not support unified ISSU is available in the "High Availability Guide" that accompanies each release of JUNOS software. For JUNOS 9.3, it is available at the following URL:

<http://www.juniper.net/techpubs/software/junos/junos93/swconfig-high-availability/unified-issu-pic-support.html#section-issu-supported-pics>

Configuration dependencies

To perform unified ISSU, Graceful Routing Engine Switchover (GRES) and Non-Stop Active Routing (NSR) must be enabled on the router. GRES is the component that allows the router to switch between the master and backup REs without interrupting packet forwarding. NSR builds on GRES to preserve routing and switching protocol state information during the transfer between the master and backup REs.

GRES configuration. You add GRES configuration elements at the chassis level of the configuration hierarchy:

```
[edit]
lab@r5-reo# set chassis redundancy graceful-switchover
```

Once committed, this configuration change triggers a marker on the hierarchy label to tell users whether they are on the master or backup RE. You need to know this because you must execute the ISSU command from the master RE:

```
[edit]
lab@r5-reo# commit
commit complete

{master}[edit]
lab@r5-reo#
```

NSR configuration. NSR configuration requires GRES configuration (as shown previously) as well as configuration elements at the system and routing-options hierarchy levels. At the system level of hierarchy, we enable the `commit synchronize` option to automatically synchronize any configuration changes between REs. The `nonstop-routing` element under the routing-options level of hierarchy enables NSR:

```
{master}[edit]
lab@r5-reo# set system commit synchronize

{master} [edit]
lab@r5-reo# set routing-options nonstop-routing

{master} [edit]
lab@r5-reo# commit
```

```
re0;
configuration check succeeds
re1;
commit complete
re0;
commit complete
```

Notice that with the `commit synchronize` feature enabled, all commits result in a configuration update on both the master and backup REs.

Software Upgrades Without Unified ISSU

Chapter 6 looked in detail at configuration elements, such as Virtual Router Redundancy Protocol (VRRP) and the OSPF overload bit, which you can use to “encourage” network traffic to avoid specific routers or links within the network. These configurations deployed chassis in pairs to allow you to perform software upgrades in situations where ISSU is not an option.

If you look at Figure 7-1 again, you might notice that routers `r1` and `r2` share responsibilities to a great extent. With the exception of the Kiosk LANs, these two chassis effectively serve as a redundant pair. In this scenario, traffic could be shifted from `r1` to `r2` to permit a JUNOS upgrade on `r1` and then from `r2` to `r1` to permit the `r2` upgrade.

Routers `r3` and `r4` are also redundant in many ways; however, each serves as a non-redundant gateway for a pair of Corp LANs. To upgrade JUNOS on `r3` with minimal disruption, transit traffic and ownership of virtual IP (VIP) 172.16.7.1 can be transferred to `r4`. Once the upgrade to `r3` is complete, transit traffic and ownership of the VIP can be transferred back to `r3` to permit the `r4` upgrade with minimal impact.

Loading a JUNOS Image

Only two steps are needed to load a JUNOS image. First, get the image onto the chassis. Then, make the chassis use it as a boot image.

FTP is commonly used to transfer a JUNOS image. The only real trick to the transfer is to make sure the image is sent to the router using the `bin` (binary) option available in most FTP client applications. Here’s the transfer, using a Microsoft Windows-based host system:

```
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
```

```
C:\Documents and Settings\jsonderegger>ftp 10.10.13.6
Connected to 10.10.13.6.

220 r5-re0 FTP server (Version 6.00LS) ready.
User (10.10.13.6:(none)): lab
331 Password required for lab.
Password:
```

```

230 User lab logged in.
ftp> bin
200 Type set to I.

ftp> put c:\jinst*
200 PORT command successful.
150 Opening BINARY mode data connection for
'jinstall-9.0R4.5-domestic-signed.tgz'.

226 Transfer complete.
ftp: 163950321 bytes sent in 14.23Seconds 11521.46Kbytes/sec.
ftp>

```

Once the image is on the router, it can be loaded. When upgrading JUNOS without ISSU, it is necessary to reboot the router to load the image. Here we see *jinstall-9.0R4.5-domestic-signed.tgz* loading and the router rebooting and starting the new image:

```

lab@r5-reo> request system software add
/var/home/lab/jinstall-9.0R4.5-domestic-signed.tgz no-validate
Installing package '/var/home/lab/jinstall-9.0R4.5-domestic-signed.tgz' ...
Verified jinstall-9.0R4.5-domestic.tgz signed by PackageProduction_9_0_0
./+INSTALL: /sbin/x509-exts: not found
Adding jinstall...

WARNING: This package will load JUNOS 9.0R4.5 software.
WARNING: It will save JUNOS configuration files, and SSH keys
WARNING: (if configured), but erase all other files and information
WARNING: stored on this machine. It will attempt to preserve dumps
WARNING: and log files, but this can not be guaranteed. This is the
WARNING: pre-installation stage and all the software is loaded when
WARNING: you reboot the system.

Saving the config files ...
Installing the bootstrap installer ...

WARNING: A REBOOT IS REQUIRED TO LOAD THIS SOFTWARE CORRECTLY. Use the
WARNING: 'request system reboot' command when software installation is
WARNING: complete. To abort the installation, do not reboot your system,
WARNING: instead use the 'request system software delete jinstall'
WARNING: command as soon as this operation completes.

Saving package file in /var/sw/pkg/jinstall-9.0R4.5-domestic-signed.tgz ...
Saving state for rollback ...

lab@r5-reo> request system reboot
Reboot the system ? [yes,no] (no) yes

```

Snapshots Redux

After you complete the software upgrade and confirm that all hardware and protocol behavior is as expected, run the `request system snapshot` command again to copy the new image to the backup boot media. This step is important because the backup media

is intended to be redundant to the primary boot media. To be truly redundant, the backup must have the same JUNOS image as the primary media:

```
lab@r5-re0> request system snapshot
```

Image Upgrade Tweaks and Options

The traditional `request system software add <image-name>` command supports options for additional functionality through the upgrade process. The help key (?) lists the options:

```
lab@r5-re0> request system software add jbundle-8.1R1.5-domestic.tgz?
Possible completions:
  <[Enter]>          Execute this command
  delay-restart       Don't restart processes
  force              Force addition of package (ignore warnings)
  no-copy            Don't save copies of package files
  no-validate        Don't check compatibility with current configuration
  reboot             Reboot system after adding package
  validate           Check compatibility with current configuration
  |                  Pipe through a command
```

delay-restart

Installs the software package but does not restart any software process. This option does not eliminate the need to restart for the upgrade to take effect; it just stops the restart from happening automatically.

force

Forces the image to be loaded regardless of any system warnings that are generated. This is a dangerous option and can result in a corrupt JUNOS image being loaded as a boot image, effectively making the router inoperable.

no-copy

Installs the new image but does not save copies of package files.

no-validate

Installs the new image but suppresses the warning messages that would be generated by the `validate` function.

validate

Confirms that all configuration elements and hardware components are compatible with the image being loaded.

reboot

Automatically reboots the system after finishing the image upgrade.

unlink

Removes the package after successful installation. This option is very useful on J Series chassis, where storage space is at a premium.

best-effort-load

Load succeeds if at least one statement is valid.

J Series Considerations

Currently, J Series routers—the chassis most commonly used in the enterprise—are not equipped with a rotating media hard drive. Their on-system memory for storing JUNOS images is limited. As a result, some additional image upgrade commands and options are available as mentioned previously.

Cleanup

J Series chassis support a `cleanup` command that frees up storage space by deleting files in the `/cf/var/tmp/` directory that have not been accessed in the past 48 hours, as well as all crash files in the `/cf/var/crash` directory. This command also rotates all current logfiles in the `/cf/var/log` directory. This command takes a minute or two to complete. You can run it immediately before a software upgrade to free up space for the JUNOS image:

```
lab@r5-reo> request system storage cleanup
```

List of files to delete:

Size	Date	Name
2300B	Dec 8 09:39	/cf/var/log/interactive-commands.0.gz
8561B	Jun 11 06:00	/cf/var/log/interactive-commands.1.gz
9.8K	Jun 10 09:00	/cf/var/log/interactive-commands.2.gz
9290B	Jun 2 2008	/cf/var/log/interactive-commands.3.gz
8990B	May 20 2008	/cf/var/log/interactive-commands.4.gz
2408B	Dec 8 09:39	/cf/var/log/messages.0.gz
11.7K	Dec 8 08:00	/cf/var/log/messages.1.gz
14.8K	Jul 30 09:00	/cf/var/log/messages.2.gz
11.1K	Jul 25 07:00	/cf/var/log/messages.3.gz
5550B	Jul 9 19:00	/cf/var/log/messages.4.gz
5527B	Jul 9 14:00	/cf/var/log/messages.5.gz
20.3K	Jul 9 09:00	/cf/var/log/messages.6.gz
17.0K	Jun 11 06:00	/cf/var/log/messages.7.gz
13.0K	Jun 10 10:00	/cf/var/log/messages.8.gz
10.6K	Jun 10 06:00	/cf/var/log/messages.9.gz
8269B	May 20 2008	/cf/var/log/sampled.0.gz
36.3M	May 18 2008	/cf/var/tmp/junos-jseries-8.2R4.5-domestic.tgz

Delete these files ? [yes,no] (no) yes

Backup Images

J Series chassis support a USB port that allows files, including JUNOS images, to be added and removed from the chassis. Table 7-3 shows the list of officially supported USB thumb drives as of JUNOS 9.3.

Table 7-3. Officially supported USB drives

Manufacturer	Size	Manufacturer part number
SanDisk—Cruzer Mini 2.0	256 MB	SDCZ2-256-A10
SanDisk	512 MB	SDCZ2-512-A10
SanDisk	1,024 MB	SDCZ2-1024-A10
SanDisk—ImageMate USB 2.0 Reader/Writer for CompactFlash Type I and II	N/A	SDDR-91-A15
SanDisk-CompactFlash	512 MB	SDCFB-512-455
SanDisk-CompactFlash	1,024 MB	SDCFB-1000-A10
Kingston	512 MB	DTI/512KR
Kingston	1,024 MB	DTI/1GBKR

Before upgrading an image, you can write the current configuration and image to a USB drive using the `request system snapshot` command. In this example, the USB drive has not previously been used on a JUNOS platform, a FreeBSD environment, so the `partition` option is also necessary. The initial `da0` output is generated when the USB drive is inserted into the chassis:

```
da0 at umass-sim0 bus 0 target 0 lun 0
da0: <OPTI3 Flash Disk 2.00> Removable Direct Access SCSI-2 device
da0: 1.000MB/s transfers
da0: 125MB (256000 512 byte sectors: 64H 32S/T 125C)

lab@r5-reo> request system snapshot partition media usb
Clearing current label...
Partitioning usb media (da0) ...
Partitions on snapshot:

      Partition  Mountpoint  Size      Snapshot argument
                  a          /  111MB    root-size
                  e      /config   13MB    config-size
Running newfs (111MB) on usb media / partition (da0s1a)...
Running newfs (13MB) on usb media /config partition (da0s1e)...
Copying '/dev/ados1a' to '/dev/da0s1a' .. (this may take a few minutes)
Copying '/dev/ados1e' to '/dev/da0s1e' .. (this may take a few minutes)
The following filesystems were archived: / /config
```


The USB port can also be used as boot media if it is loaded with a `jinstall` image that meets the install-media guidelines. For the J Series chassis, the install-media packages will have a size indicated in the suffix of the package name to describe system storage requirements for the image, as in this example:

`Junos-jseries-8.0R2-export-cf256.gz`

Rescue Configuration

A rescue configuration is a feature specific to J Series routers. Though it is not a true part of the software upgrade procedure, its functionality is directly related. The rescue configuration allows you to create a known stable working configuration and save it in a special memory location in the J Series router. There is no rescue configuration by default. It must be created and saved by the administrator.

```
lab@r4> request system configuration rescue save
```

Once saved, it can be viewed as needed to make sure it is still current and appropriate for the system:

```
lab@r4> show system configuration rescue
version 9.4R2.9;
system {
    host-name r4;
    root-authentication {
        encrypted-password "$1$vky7kv0i$/NeUtRaLSDgDb3we4nPVs/"; ## SECRET-DATA
    }
    login {
        class juniper {
            permissions view;
            allow-commands "show route";
        }
        user lab {
            uid 2003;
            class superuser;
            authentication {
                encrypted-password "$1$pYM5k*hEy_zeUS6rfe32R.4bg.";
                ## SECRET-DATA
            }
        }
    }
...
}
```

Then the rescue configuration can be loaded and committed on the router by momentarily pressing the RESET CONFIG button on the face of the chassis. The rescue configuration can also be loaded through the command-line interface (CLI).

```
[edit]
lab@r4# rollback rescue
load complete
```


Pressing the RESET CONFIG button momentarily loads and commits the rescue configuration, but be warned: holding the RESET CONFIG button for 15 seconds will delete the active configuration, the rescue configuration, and all rollback configurations, and will reset the system to a factory default.