_JUﬂ”Der White Paper

NETWORKS

Why and How to Use Contrail APIs

Designed to increase business innovation, Contrail APIs abstract the network by interoperating
with open cloud orchestration systems.

Why and How to Use Contrail APIs White Paper

Table of Contents
EXECUTIVE SUMIMIAIY 1.ttt ettt ettt ettt ettt ettt 3

Introduction...........

Virtualizing the Network...

WY SNOULA YOU USE APIS? oo 4
WVNY PYTNON GNA REST 2.ttt ettt 4
UNLOCK ThE POWET OF NETWOTK ...t 5
WV 1S TNE SOLUTIONT w888 5

=L @11 8
COMCLUSION 111 1
ADOUL JUNIDEI INETWOTKS ..ottt 12

List of Figures

Figure T: Network @s @ ClOSEA LOOD SYSTEM ...ttt ettt 5
Figure 2: CUSTOMET POITAL EXAMIDLE. ...ttt ettt 8
Figure 3: Virtual CPE network topology deployment €XAMIPLE ... 9

©2015, Juniper Networks, Inc. 2

Why and How to Use Contrail APIs White Paper

Executive Summary

Juniper Networks started opening up the Juniper Networks® Junos® operating system via APIs in the late 1990s. The
first implementation was done via undocumented APIs based on JavaScript. In 2001, after the APIs were rewritten to
use XML, those APIs were published and made widely available as the Junos OS XML management protocol. The [ETF
standardized Junos OS XML management protocol, which became what is today known as NETCONF. The Junos OS
XML management protocol became very popular among the Juniper customer base, as it enabled customers to write
automation tools natively on the network platform that were not based on screen scraping.

In the mid 2000s, following the success of the Junos OS XML management protocol, Juniper Networks Junos SDK
program was started and provided APIs to third-party developers for the control and service planes. The APIs were
low level (C/C++ libraries) and enabled customers to add new control and service applications to network platforms.
Released in 2010, Junos Space SDK provided APIs for the management plane. All programs had advantages and
disadvantages, but they provided an invaluable step forward in network automation and tooling. Juniper is using what
has been learned through the development and use of these various programming interfaces to bring a more refined
solution to the industry and market.

One of the new concepts that has created a lot of buzz in the industry is software-defined networking (SDN), which
brings new concepts of programmability to network operators. SDN explicitly defines four planes in networks:

Data or forwarding

Control

Service

Management

Each plane provides APIs that allow faster introduction of new features and services. It is much easier to test and
innovate new services and features using software than wait for equipment manufacturers to add needed features so
that network operators can satisfy their customer requests. Some of the requests can’'t even be answered, as the cost of
doing some custom work for a single network operator can be prohibitive. Integration with OSS and BSS becomes easier
as well, as all systems are software based.

Introduction

Over the last 30 years, compute hardware and software have advanced rapidly, but the way that networking is done has
remained virtually unchanged. The basic networking concepts are still the same as in the 1970s. At the same time, while
networks have become a critical component in all parts of daily life, traditional networking approaches have become too
complex, closed, and proprietary. In fact, they often represent a barrier to faster innovation and services that address the
new demands of consumer and enterprise environments.

The networks of today have become:

Complex—They are difficult to manage, scale, design, and to understand and analyze.
Slow—Many operations are still manual, too static, and too slow to respond to customer requests.

Closed—They are not programmable (do not mix automation and programmability) or accessible to third parties
for innovation and monetization. They are also monolithic and inflexible.

Uneconomical—IT CapEx and OpEx costs are increasing with rising complexity and as they are closed, it is hard to
differentiate and monetize.

Unreliable—The biggest problem is the human error in today’s network operation. Networks are complex and many
operations are still manual, which means error margins are high due to human interventions.

When carriers want to deploy a new feature, it is usually tied to a new box, which requires a change in the physical design
of the network through a slow process. At the end, integration with network IT departments ends up being another
complex, time-consuming, and expensive process.

©2015, Juniper Networks, Inc 3

Why and How to Use Contrail APIs White Paper

Virtualizing the Network

There have been attempts in the past to provide programmable interfaces to the networking platform (SNMP, CAMEL,
IN, just to mention a few), but they have all been complex and proprietary, and many providers created their own
solutions which were not providing separation of networking planes.

Juniper Networks Contrail is a network and services virtualization system designed to increase business innovation,
improve system-level orchestration, and decrease networking costs. It works within open cloud orchestration systems
such as OpenStack and CloudStack. Contrail includes an open, standards-based SDN controller that virtualizes the
network to enable automation and orchestration of hybrid cloud environments, elastic service chaining of network and
security services, and a robust “Big Data for Infrastructure” (BDI) analytics engine that provides a real-time view of the
entire network.

The Contrail solution also provides APIs, which enable manipulation of configuration elements exposed by the Virtual
Network Server (VNS), as well as analytics and operational information. Interaction with VNS is possible through the
REST interface or Python, Java, and JavaScript libraries.

Why Should You Use APIs?

By using Contrail APIs, you make certain that your applications are more robust. As the implementation is hidden and
exposed only via an API, Juniper Networks can improve implementation and add new enhancements without causing
disruption to the existing applications using that API. New enhancements can be provided automatically to the existing
applications. The API can support multiple versions of the Contrail solution and detect which version it needs to use at
runtime. Applications developed by network operators and third parties have increased longevity and are less fragile,
rigid, and immobile. Over a longer time, this brings financial savings, as the applications can be easily extended without
the need to rewrite them from scratch.

Applications can have a modular design when APIs are used. APIs normally address a specific task or use case. As
such, APIs usually define a modular grouping of functionality with a coherent focus. Developing an application on top
of a collection of APIs promotes loosely coupled and modular architectures where the behavior of one module is not
dependent on the internal details of another module. Another benefit for that is reusability of modules for different
applications.

Why Python and REST?

Today, speed of development, ease of maintenance, and availability of different libraries are as important as ever,

and new developer tools are coming to market that answer those requirements better than before. Python, although
available since late 80s, is the new scripting language that is taking the place held previously by Perl. The ease with
which a programmer of other languages can pick up basic Python skills, and the huge standard library, are key to Python
adoption. Any network project of size has tasks to automate, and automating them in Python is orders of magnitude
faster than using more mainstream languages. Tools can be created to extract information from the network and
present them in a way that is useful to other applications and systems. Python provides for quick implementation, ease
of reading the code, and low maintenance—all of which make it easy for other developers to continue from where the
last developer finished. Even people without a background in Python can patch the applications without breaking them.

Juniper understands well that not all development environments are set up to support Python and that these
environments are using other programming languages. Representational State Transfer (REST) answers this
requirement that Contrail's VNS can be accessible from any programming language as long as that language provides
an HTTP library.

REST is a design idiom that employs the Web’s stateless client/server architecture to represent REST Web services

as resources identified by a URL. This is also the tiniest possible description of what REST actually means. It is not a
standard, rather a style describing the act of transferring a state of something by its representation. REST dramatically
reduces the complexity of communication by making the representation the only contract (compare that to RPCs). We
don’t want our communication to fail because two communicating sides understand a procedure differently.

Another benefit is that with REST, sessions are not needed. Anything can be done without sessions. Information is
encapsulated in the request of the URI, or even another resource can be created—for example, virtual network is */
virtual-network/1234.

Between two requests, the server can be turned off, the platform and OS uninstalled and then reinstalled, and the
platform and application restored from the backup—all without the client detecting any of this. There is no state stored
in the browser, so only cookies have to be taken care of.

©2015, Juniper Networks, Inc. 4

Why and How to Use Contrail APIs White Paper

Unlock the Power of Network

Networks can be viewed as closed loop systems. Typical actions that are taken to affect network assets include
permanent actions such as configuration of network devices and provisioning of services in response to customer orders.
There could also be dynamic actions such as quality-of-service (QoS) policy provisioning, enforcing security policies, etc.
This is classic network management, and there is nothing special to that.

Network platforms of today lack the ability to marry the action and asset side of the cycle based on the data that is
generated by the network assets, and that is a major pain point for developers. Network assets generate a lot of data. All
this data by itself is worthless unless you can turn it into value by understanding what it means in the business context
and what it might do operationally for your customers or your company.

What Is the Solution?

Action (5 ‘ Value
P PN

an m‘ ® Q

) Custom
VNS Config API Application
Configure Filter
Provisic?n _ Correlate
Dynamic Policy Combine

JUNOS

CONTRAIL

00
_g e | | o
— 10 010 U API
— 001010 Inventory

Networking Devices, Servers, History
Databases, Applications, etc. Real TIme

-’
-
-

ESl
ESli

Figure 1. Network as a Closed Loop System

Using Contrail APIs changes the equation. Referring to Figure 1, Contrail marries the Action and Assets side of the cycle
on the left with the Data and Value side on the right. It provides the ability to suck in the static and dynamic behavior

of the network and analyze this behavior in the context that can be provided by an internal or an external source. The
internal source could be an event on the network itself, and the external source could be some business intelligence or
a truly external entity in the form of user behavior, for example. Contrail combines the ability to access the static and
the dynamic nature of networks and the wealth of information hidden in them with the ability to combine this data with
an internal or an external source. This combined with a highly scalable and resilient platform, and a great set of tools
that allows developers to easily utilize the wealth of information, makes Contrail a great platform to develop new, next-
generation applications.

Contrail provides APIs for the following modules:

Operational module—The ops server provides APIs to get the current state of the User Visible Entities in the Contrail
VNS. User Visible Entity (UVE) is defined as an object that can span multiple components and require aggregation
before the UVE information is presented.

©2015, Juniper Networks, Inc 5

Why and How to Use Contrail APIs White Paper

Virtual Network: This UVE provides information associated with a virtual network such as:

List of networks connected to this network
List of virtual machines spawned in this virtual network
List of access control lists (ACLs) associated with this virtual network
Global input/output statistics
Per virtual network pair of input/output statistics
The REST API to get this UVE is through HTTP GET using the URL /analytics/virtual-network/<name>.

Virtual Machine (VM): This UVE provides information associated with a virtual machine such as:

List of interfaces in this VM
List of floating IPs associated with each of its interfaces
Input/output statistics
The REST API to get this UVE is through HTTP GET using the URL /analytics/virtual-machine/<name>.

VRouter: This UVE provides information associated with a VRouter such as:

Configuration module—The Juniper Networks Contrail configuration API server allows for manipulation of
configuration elements exposed by the VNS. Interaction with this server is possible through either a REST interface
or by a Python library.

The following UVEs can be manipulated through the APIs:

Virtual Networks (L2/L3)—Create/Read/Update/Delete
Virtual Network Policies—Create/Read/Update/Delete
- Security, QoS, IPAM Rules, Floating IP, Analyzer/Mirroring

Both Python and REST APIs are designed so that they can be used from anywhere. The Python library is designed on top
of REST, so by using the Python library and importing the library into your application, REST communicates to the VNS
configuration and ops servers. This is achieved by specifying the contrail.conf file in the configuration directory, which
contains the server IP address and port number.

Here is an example of how to specify connectivity to the configuration server. By default, the server uses port 8082, and
the ops server uses port 8081.

[DEFAULTS]

api_server_ip=10.84.18.11

api_server_port=8082

ops_server_ip=10.84.18.11

ops_server_port=8081

Once connectivity is defined, the Python library determines where to connect, and data can be exchanged between the
application and VNS.

There are many REST clients—some run from the browser, and some run from Integrated Development Environment
(IDE) applications. Both have pluses and minuses. This document does not go into details on REST client specifics. The
good news is that all can be used. For users who are comfortable with CLI, the UNIX utility curl can also be used for fast
prototyping and debugging.

Once workflow is created, REST calls and data structure can be defined. It is also easy to verify by using a REST client
if the correct data is being sent and received. Once the calls are verified, those can be placed into any programming
language, where the data is manipulated into the correct format by the application logic, instead of manually.

In order to be able to create new services, the following items have to be already available, set up, or both:

Images or snapshots of virtual machines—New instances can be created from images or snapshots. These
should be listed in the images, snapshot folder, or both of the service orchestration system.

Virtual networks—These are used to connect instances to VRouter. Virtual networks can be created using the
following API. By changing the HTTP verb from POST to GET, existing virtual networks are read, and they can be
updated (using PUT) or deleted (using DELETE).

©2015, Juniper Networks, Inc. o

Why and How to Use Contrail APIs White Paper

POST http://10.84.14.2:8082/virtual-networks
Content-Type: application/json;
charset=UTF-8;
{“virtual-network”:
{“*fg name”: [“default-domain”, “admin”, “vn-blue”],
“network_ipam refs”:
[{“attr”:

{“ipam_subnets”:

[{“subnet”:
{“ip_prefix”: “10.1.1.0”, “ip_prefix_len”:
24%
}]
1,
“to”:
[“default-domain”, “admin”, “default-network-
ipam”]
H]
}
}

Network policies—These define how the instances are connected to the virtual networks and how the traffic flows.
POST http://10.84.14.2:8082/network-policys
Content-Type: application/json;
charset=UTF
{“*network-policy”:
{“fg _name”: [“default-domain”, “admin”, “policy-red-blue”],
“‘network_policy_entries”:
{“policy_rule”:
[{“direction”: “<>”, “protocol”: “tcp”,
“dst_addresses”:
[{“virtual_network”: “default-
domain:admin:vn-blue”}], “dst_ports”:
[{“*start_port”: 80, “end_port”: 80}],
“simple_action”: “pass”,

“src_addresses”:

[{“virtual_network”: “default-
domain:admin:vn-red”}], “src_ports”:
[{“end_port”: -1, “start_port”: -1}]
]
}
}
}

Service templates—These provide another abstraction layer that allows you to specify what parameters are
needed to create a new service. Today, a service template can contain up to three virtual networks that specify how
the traffic to and from the instance flows. Service templates are defined as issvcActivation/config/service.conf.

©2015, Juniper Networks, Inc 7

Why and How to Use Contrail APIs

White Paper

Example

New virtual security services need to be offered:

Basic firewall, elite firewall, intrusion detection system (IDS), and intrusion prevention system (IPS)

[DEFAULTS]

v Furi

Communications

api_server_ip=10.84.13.31
api_server_port=8082
proj_name=some_project_name
mgmt_vn=mgmt-virtual-network
left_vn=left-virtual-network
right_vn=right-virtual-network
max_instances=1

auto_scale=true
instance_name=some_instance_name
template_name=some_template_name

policy name=some_policy_ name

Statements

Hello Mock Financial,

Order new services available in your region below:

Basic $14.99/mo

Basic Firewall

Order Online
Now

Elite $34.99/mo

Elite Firewal o5

72\

(¥

Order Online Order Online
Now Now

IPS $19.99/mo

IPs

Figure 2: Customer Portal Example.

Images with a preconfigured security appliance for the aforementioned services are created and uploaded into an image
folder of the service orchestration system.

From a network topology view, each customer is connected via an access network to the data center. In the data center,
the security appliance is instantiated each time a subscriber establishes connection to the service provider network.

©2015, Juniper Networks, Inc.

Why and How to Use Contrail APIs White Paper

Physical Server
VM

S
P e

—
_l
—

Data Center

- |_$_
“ CPE MX1

Internet

Figure 3: Virtual CPE network topology deployment example

The VM connects the red network to the customer CPE and the blue network to the Internet. The green network is for
management of the security appliance

Using REST API with method POST, new virtual networks are created. The following is an example of how to create vn-blue.
POST http://10.84.14.2:8082/virtual-networks

Content-Type: application/json;

charset=UTF-8;

{“*virtual-network”:

{
“fg name”:
[“default-domain”, “admin”, “vn-blue”],
“network_ipam_ refs”:
[{“attr”:
{“ipam_subnets”:
[{“subnet”:
{“ip_prefix”: *10.1.1.0”, “ip_prefix len”:
24}
11
},
“to”:
[“default-domain”, “admin”, “default-network-ipam”]
1]
}
}
Response
{“virtual-network”:
{“href”: “http://10.84.14.2:8082/virtual-network/c07f0ecf-
bfb6-4fbe-8£01-45580027d25b”, “fg name”:
[“default-domain”, “admin”, “vn-blue”],
“‘name”: “vn-blue”,
“uuid”: “c07f0ecf-bfb6-4fbe-8£01-45580027d25b”
}

©2015, Juniper Networks, Inc

Why and How to Use Contrail APIs White Paper

We want to create a network policy that defines how the traffic is flowing to and from the instance. In the previous
example, the bidirectional HTTP traffic is specified.

POST http://10.84.14.2:8082/network-policys

Content-Type: application/json;

charset=UTF;

{“*network-policy”:

{“fg name”: [“default-domain”, “admin”, “policy-red-
blue”],
“network_policy _entries”:
{“policy_ rule”:
[{“*direction”: “<>”, “protocol”: “tcp”,
“dst_addresses”:
[{*virtual_network”: “default-
domain:admin:vn-blue”}], “dst_ports”: [{“start_port”: 80, “end_port”: 80}],
“simple_action”: “pass”,
“src_addresses”:
[{“virtual_network”: “default-
domain:admin:vn-red”}], “src_ports”: [{“end port”: -1, “start_port”: -1}]
]
}
}
}
Response

{“*network-policy”:
{“href”: “http://10.84.14.2:8082/network-policy/507ce7ff-e277-
4508-937b-b18c6£d087e9",

“fg name”: [“default-domain”, “admin”, “policy-red-
blue”],
“name”: “policy-red-blue”,
*uuid”: “507ce7ff-e277-4508-937b-b18c6£d087e9"
}
}

Once the needed virtual networks and network policies are created, the service can be instantiated, either by the end
user via a GUI or another application via an API (as in the following example).
#create service instance
def create_si(self):
#get service template
try:
st_obj = self._vnc_lib.service_template_read(fg name=self._st_fqg name)
st_prop = st_obj.get_service_template_properties|()
if st_prop == None:
print “Error: Service template %$s properties not found” % (self._args.
template_name)
return
except NoIdError:
print “Error: Service template %$s not found” % (self._args.template_name)

return

©2015, Juniper Networks, Inc. 10

Why and How to Use Contrail APIs White Paper

#check if passed VNs exist
if self._args.left_vn:
try:
self._vnc_lib.virtual_network_read(fg name = self._left_vn_fqg name)
except NoIdError:
print “Error: Left VN %s not found” % (self._left_vn_fg name)
return
if self._args.right_vn:
try:
self._vnc_lib.virtual_network_read(fg name = self._right_vn_fqg name)
except NoIdError:
print “Error: Right VN %s not found” % (self._right_vn_fqg name)
return
#create si

print “Creating service instance %$s” % (self._args.instance_name)

project = self._vnc_lib.project_read(fg name=self._proj_fg name)
try:
si_obj = self._vnc_lib.service_instance_read(fg name=self._si_fqg name)

si_uuid = si_obj.uuid
except NoIdError:
si_obj = ServicelInstance(self._args.instance_name, parent_obj = project)
si_uuid = self._vnc_lib.service_instance_create(si_obj)
si_prop = ServicelInstanceType (left_virtual_network = self._args.left_vn,
management_virtual_network = self._args.mgmt_vn,
right_virtual_network = self._args.right_wvn)
#set scale out
scale_out = ServiceScaleOutType (max_instances = self._args.max_ instances,
auto_scale = self._args.auto_scale)
si_prop.set_scale_out (scale_out)
si_obj.set_service_instance_properties (si_prop)
st_obj = self._vnc_lib.service_template_read(id = st_obj.uuid)
si_obj.set_service_template(st_obj)
self._vnc_lib.service_instance_update(si_obj)
return si_uuid

#end create_si

Once the service is activated, operational information can be retrieved using the ops server. The data provided from the
ops server can be used as a trigger for another service enablement. For example, the customer might be exceeding the
available resources of the service instance and based on the subscriber policy, the ops server is allowed to automatically
extend the service capacity and charge for it.

Conclusion

Designed to increase business innovation, Contrail APIs abstract the network by interoperating with open cloud
orchestration systems. Contrail APIs ensure that applications are more robust and enable businesses to create
customized management solutions for their customers’ specific needs

Contrail APIs enable new network-aware applications to be created that provide control over networks. They create

a programmable network that enables you to leverage the connections and intelligence embedded in the network to
create customized management solutions for your company and your customers’ specific needs. You can make better
use of resources to create and use new insertion points for creating revenue streams. Contrail APIs make it simple to
safely extract data from your network to use in applications. This data allows for the creation of solutions that can
respond and react to your network, making applications more intelligent and providing better end-user experiences.

©2015, Juniper Networks, Inc n

Why and How to Use Contrail APIs

White Paper

About Juniper Networks
Juniper Networks is in the business of network innovation. From devices to data centers, fromn consumers to cloud
providers, Juniper Networks delivers the software, silicon and systems that transform the experience and economics
of networking. The company serves customers and partners worldwide. Additional information can be found at

www.juniper.net.

Corporate and Sales Headquarters
Juniper Networks, Inc.

1133 Innovation Way

Sunnyvale, CA 94089 USA

Phone: 888.JUNIPER (888.586.4737)
or +1.408.745.2000

Fax: +1.408.745.2100

www.juniper.net

Copyright 2015 Juniper Networks, Inc. All rights reserved. Juniper Networks, the Juniper Networks logo, Junos
and QFabric are registered trademarks of Juniper Networks, Inc. in the United States and other countries.

All other trademarks, service marks, registered marks, or registered service marks are the property of their
respective owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper
Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

2000527-001-EN Sept 2015

APAC and EMEA Headquarters

Juniper Networks International B\V.

Boeing Avenue 240

M9 PZ Schiphol-Rijk
Amsterdam, The Netherlands
Phone: +31.0.207.125.700

Fax: +31.0.207125.701

Jun

IPE(

NETWORKS

